ALLAOUI, SALAH EDDINE (2011) INTEGRALES SINGULIÈRES. Doctoral thesis, Université de Batna 2.
|
Text
sce ALLAOUI SALAH EDDINE.pdf Download (479kB) | Preview |
Abstract
On the localized Besov space (Bs p;q(Rn))`r we study the boundedness of the singular integral operators defined by pseudo differential operators of order m with symbols satisfying a condition of Dini-type. Then we deduce the continuity on pointwise multipliers Besov algebra space M(Bs p;q(Rn)) when p < q: We are interested in the superposition operators Tf (g) := f ◦g on vector valued Besov and Lizorkin-Triebel spaces of positive smoothness exponent s. We establish that the local Lipschitz continuity of f is necessary if Bs p;q(Rn;Rm) (or Fs p;q(Rn;Rm)) is imbedded into L1(Rn;Rm), and that the uniform Lipschitz continuity of f is necessary if not. We study also the regularity of Tf
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Singular integral operators, Pseudo-dierential operators, Localized Besov spaces, Lizorkin-Triebel spaces, Besov spaces, Composition operators. |
Subjects: | Mathématiques |
Divisions: | Faculté des mathématiques et de l'informatique > Département des mathématiques |
Date Deposited: | 04 Apr 2017 13:00 |
Last Modified: | 17 May 2017 10:56 |
URI: | http://eprints.univ-batna2.dz/id/eprint/682 |
Actions (login required)
View Item |