INTEGRALES SINGULIÈRES

ALLAOUI, SALAH EDDINE (2011) INTEGRALES SINGULIÈRES. Doctoral thesis, Université de Batna 2.

[img]
Preview
Text
sce ALLAOUI SALAH EDDINE.pdf

Download (479kB) | Preview

Abstract

On the localized Besov space (Bs p;q(Rn))`r we study the boundedness of the singular integral operators defined by pseudo differential operators of order m with symbols satisfying a condition of Dini-type. Then we deduce the continuity on pointwise multipliers Besov algebra space M(Bs p;q(Rn)) when p < q: We are interested in the superposition operators Tf (g) := f ◦g on vector valued Besov and Lizorkin-Triebel spaces of positive smoothness exponent s. We establish that the local Lipschitz continuity of f is necessary if Bs p;q(Rn;Rm) (or Fs p;q(Rn;Rm)) is imbedded into L1(Rn;Rm), and that the uniform Lipschitz continuity of f is necessary if not. We study also the regularity of Tf

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Singular integral operators, Pseudo-dierential operators, Localized Besov spaces, Lizorkin-Triebel spaces, Besov spaces, Composition operators.
Subjects: Mathématiques
Divisions: Faculté des mathématiques et de l'informatique > Département des mathématiques
Date Deposited: 04 Apr 2017 13:00
Last Modified: 17 May 2017 10:56
URI: http://eprints.univ-batna2.dz/id/eprint/682

Actions (login required)

View Item View Item