

REPUBLIQUE ALGERIENNE DÉMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Hadj Lakhdar-Batna

Institut de Génie Civil, d'Hydraulique et d'Architecture Département de génie civil Mémoire de Magister en Génie Civil Option : Interaction sol-structure Présenté par : ANNANE Abdallah

Pour obtenir le diplôme de Magister en génie civil

Mur de soutènement en zone sismique

Sous la direction du Dr. DEMAGH KAMEL Mémoire soutenu le : 22/12/2013 Devant le jury composé de :

Pr. H. CHABIL Dr. K. DEMAGH Dr. T. BOUZID Dr. M. BAHEDDI Président Rapporteur Examinateur Examinateur Université de Constantine Université de Batna Université de Batna Université de Batna

Dédicace

A mes parents dont le rêve était toujours de me voir réussir. Qu'ils sachent que leur place dans mon cœur et ma pensée, reste et demeure immense. A toute ma famille et tous mes amis. A mes collègues de promotion, Mon Promoteur, sans oublier tous mes enseignants auxquels j'exprime mon profond respect.

Et à tous ceux quí me sont chers.

Annane abdallah

Remercíements

Louange à Díeu, tout puissant de m'avoir guidé durant ma formation et de m'avoir permis de réaliser ce modeste travail.

Mes vífs remerciements à mon Promoteur : Dr. **Demagh Kamel** pour ses conseils durant l'élaboration de ce mémoire ainsi qu'à l'ensemble des enseignants qui ont assuré ma formation.

Mes respects aux membres du jury quí me feront l'honneur d'apprécier ce modeste travail.

Enfin ma reconnaissance à tous ceux qui ont contribué, de près ou de loin, à la réalisation de cette thèse.

Résumé : -

Les Murs de soutènement sont des ouvrages importants au vu de leur coût et de leur fonction. Leur protection est très recommandée car les dégâts qu'ils peuvent occasionner sont énormes en cas de renversement ou de glissement. En zone sismique les risques sont amplifiés. La préservation de ces ouvrages commence par une bonne conception et donc un bon calcul. Ce mémoire a pour principal objectif la mise en œuvre d'un programme sur Excel qui permet de dimensionner et vérifier un mur de soutènement. Il existe deux type de programme : sans charge statique et avec une charge dynamique. Le 1^{er} programme statique prend en compte une monocouche et une bicouche avec et sans nappe phréatique. Le 2^{eme} programme dynamique permet de faire le calcul et la vérification avec une monocouche avec nappe et une bicouche sans nappe. Pour ce programme la méthode pseudo-statique est utilisée. Les résultats de ce travail adoptent l'influence des paramètres mécaniques de sol et les caractéristiques géométriques de mur et variations des (charges cas statique et cas dynamique) sur les coefficients des sécurités de glissement, renversement et l'incrément dynamique.

Mots clés:

Vérification stabilité, soutènement, séisme, calcul pseudo-statique, stabilité

SOMMAIRE

INTRODUCTION	01
CHAPITRE I : GÉNÉRALITÉ SUR LES MURS DE SOUTÈNEMENT	
1.1 DÉFINITION DES MURS DE SOUTÈNEMENT	03
1.2 TYPE DES MURS DE SOUTÈNEMENT	03
1.2.1 Mur poids	03
1.2.2 Mur en gabions	04
1.2.3 Les murs en éléments préfabriqués	04
1.2.4 Les murs en béton armes	05
1.2.4.1 Mur en «T renversé » classique	05
1.2.4.2 Mur à contreforts	07
1.2.4.3 Murs divers	07
1.3 TYPE DES ÉCRANS DE SOUTÈNEMEN	08
1.3.1 Les murs en parois moulées	08
1.3.2 Les rideaux de palplanches	09
1.3.3 Les murs en terre armée	09
CHAPITRE II : LES APPROCHES ET LES MÉTHODES DE CALCUL	
2.1 Introduction	10
2.2 Étude sur la poussée et butée	11
2.3 État de repos	11
2.4 Frottement sol-structure	12
2.5 Équilibres de poussée et de butée	13
2.5.1 Équilibre de poussée	14
2.5.2 Équilibre de butée	15
2.6 Les théories de calcul des coefficients de poussée et de butée d'un se	ol sans
cohésion (sol pesant)	16
2.6.1 Théorie de COULOMB	16
2.6.1.1 Formule de Poncelet	18
2.6.2 Théorie de RANKINE	19
2.6.3 Théorie de BOUSSINESQ	23

2.7 Sol stratifies	28
2.8 Présence d'une nappe	29
2.9. Stabilite des murs de soutenement	29
2.9.1. Vérification de la stabilité	30
2.9.1.1. Stabilité au renversement	30
2.9.1.2. Stabilité au glissement sur la base	30
2.9.1.3. Stabilité au poinçonnement	31
2.10. La force de surcharge	31
2.11. La force dynamique	32
2.11.1. Cas des sols secs	34
2.11.2. Cas des sols saturés de perméabilité faible ou moyenne	34
2.11.3. Cas des sols salures de perméabilité forte	34
2.11.4. Cas des sols partiellement sous nappe et des sols stratifiés	34
2.11.5. Cas des sols cohérents	35
2.11.6. Liquéfaction partielle	35
2.12. La force de surcharge dynamique	35
2.13. Les combinaisons statique et dynamique	36

CHAPITRE III : VALIDATION ET EXPÉRIMENTATION

3.1 VALIDATION	37
3.1.1 Données	37
3.1.2 Les résultats de l'exemple [EC2 – clause 2.4]	37
3.1.3 Les résultats de programme	38
3.2 EXPRIMENTATION	40
3.2.1 Les résulta de 1 ^{er} programme une couche avec nappe aquifère	40
3.2.1.1 Les coefficients de sécurité en fonction de l'angle de frotten	nent (sans
nappe):	40
3.2.1.2 Les coefficients de sécurité en fonction de poids volumique	(sans eau)
	41
3.2.1.3 Les coefficients de sécurité en fonction de la hauteur	totale de
remblai (sans eau)	42
3.2.1.4 Les coefficients de sécurité en fonction d'angle d'inclinaiso	n de talus
(sans eau)	43

3.2.1.5 Les coefficients de sécurité en fonction de surcharge d'exploita	ition
(sans eau)	44
3.2.1.6 Les coefficients de sécurité en fonction de hauteur de nappe (avec
eau)	45
3.2.2 les résulta de 2 ^{em} programme deux couche avec nappe aquifère	47
3.2.2.1 Les coefficients de sécurité en fonction de rapport des angle	s de
frottement (sans eau)	47
3.2.2.2 Les coefficients de sécurité en fonction de rapport des p	oids
volumique (sans eau)	49
3.2.3 Les résulta de 3 ^{em} programme une couche avec nappe aquifère	cas
dynamique	51
3.2.3.1 L'incrément dynamique en fonction de l'angle de frottement (sans
eau)	-51
3.2.3.2 Les coefficients de sécurité en fonction de L'incrément dynam	ique
(sans eau)	52
3.2.3.3 L'incrément dynamique en fonction de poids volumique (sans	eau)
3.2.3.4 L'incrément dynamique en fonction de la hauteur de ren	53 1blai
(sans eau)	54
3.2.3.5 L'incrément dynamique en fonction de l'angle de frotter	nent
(avec eau) perméabilité faible	56
3.2.3.6 Les coefficients de sécurité en fonction de L'incrément dynami	que
(avec eau) perméabilité faible	57
3.2.3.7 L'incrément dynamique en fonction de l'angle de frottement (avec
eau) perméabilité forte	58
3.2.3.8 Les coefficients de sécurité en fonction de L'incrément dynami	que
(avec eau) perméabilité forte	59
3.2.3.9 L'incrément dynamique en fonction de coefficient d'accélération) n
	59
3.2.3.10 Les coefficients de sécurité en fonction de L'incrément dynami	que-
	60
3.2.4 Les résulta de 4 ^{em} programme avec deux couche sans nappe aquifère	e cas
łynamique	61

3.2.4.1 L'incrément dynamique en fonction de rapport	de poids
volumique	61
3.2.4.2 L'incrément dynamique en fonction de coefficient d'ac	célération-
	61
3.2.4.3 Les coefficients de sécurité en fonction de L'incrément d	ynamique-
	62
CHAPITRE IV : CONCLUSION ET RECOMMONDATIONS	
4.1 Conclusion	63
4.1.1 Chargement statique	63
4.1.1.1 Chargement statique monocouche	63
4.1.1.2 Chargement statique bicouche	63
4.1.2 Chargement dynamique monocouche et bicouche	63
4.2 Recommendations	64
4.3 Perspective	64
ANNEXE	65
RÉFÉRENCES BIBLIOGRAPHIQUES	79

LISTE DES FIGURES

N°	Titre de la figure	Page
Fig.1.1	Mur en maçonnerie de pierres sèches	03
Fig.1.2	Mur en maçonnerie jointoyée	04
Fig.1.3	Mur poids en béton	04
Fig.1.4	Mur en gabions	04
Fig.1.5	Mur en éléments préfabriqués en béton empilés (PELLER)	05
Fig.1.6	Mur en «T renversé» classique	05
Fig.1.7	Présentation murs en déblai	06
Fig.1.8	Diverses dispositions de bêches	06
Fig.1.9	Mur à contreforts en béton arme	07
Fig.1.10	0 Les murs divers	08
Fig.1.1	1 Les murs en parois moulées	08
Fig.1.12	2 Les rideaux de palplanches	09
Fig.1.1.	3 Mur en terre arme	09
Fig.2.1	État initial du sol au repos(sans talus, $\beta = 0$)	12
Fig.2.2	État initial, sol sans déplacement	13
Fig.2.3	déplacement nécessaire à la mobilisation des états limite de poussée et butée	14
Fig.2.4	État limite de poussée du sol	15
Fig.2.5	État limite de butée du sol	16
Fig.2.6	Équilibre du coin coulomb	17
Fig.2.7	Formule de poncelet	19
Fig.2.8	Équilibres de poussée et de butée de Rankine	20
Fig.2.9	Diagramme de poussée sur l'écran <i>l</i>	22
Fig.2.10	D Équilibres de Boussinesq et de Rankine	23
Fig.2.1	1 Multicouche - poussée le long de AB	28
Fig.2.12	2 Prise en compte de pression hydrostatique	29
Fig .2.1	3 Notations pour le calcul des ouvrages de soutènement	32
Fig.2.14	4 Prise en compte des pressions d'eau	32
Fig.3.1	Influence de l'angle de frottement sur les coefficients de sécurité	40
Fig.3.2	Influence de poids volumique sur coefficient de sécurité	42
Fig.3.3	Influence de hauteur de remblai total coefficient de sécurité	43

Fig.3.4 Influence d'angle d'inclinaison de talus sur coefficient de sécurité44
Fig.3.5 Influence de surcharge d'exploitation sur le coefficient de sécurité45
Fig.3.6 Influence de l'hauteur de nappe sur coefficient de sécurité46
Fig.3.7 Influence de rapport des angles de frottement $({}^{\phi_1}/_{\phi_2})$ sur le coefficient de sécurité de renversement48
Fig.3.8 Influence de rapport des angles de frottement $({}^{\varphi_1}\!/_{\varphi_2})$ sur le coefficient de sécurité de
glissement49
Fig.3.9 Influence de rapport des poids volumique (γ_1/γ_2) sur le coefficient de sécurité de
renversement50
Fig.3.10 Influence de rapport des poids volumique $\binom{\gamma_1}{\gamma_2}$ sur le coefficient de sécurité de glissement51
Fig.4.11 Influence de l'angle de frottement sur L'incrément dynamique
52
Fig.4.12 Influence de L'incrément dynamique sur les coefficients de sécurité
53
Fig.4.13 Influence de poids volumique sur L'incrément dynamique
54
Fig.4.14 Influence la hauteur de remblai sur L'incrément dynamique
55
Fig.4.15 Influence l'angle de frottement sur L'incrément dynamique (Perméabilité faible :
0.00005m/s)57
Fig.4.16 Influence de L'incrément dynamique sur les coefficients de sécurité (Perméabilité
faible : 0.00005m/s)58
Fig.4.17 Influence l'angle de frottement sur L'incrément dynamique (Perméabilité forte :
<i>10m/s</i>)58
Fig.4.18 Influence de L'incrément dynamique sur les coefficients de sécurité (Perméabilité
forte : <i>10 m/s</i>)59
Fig.4.19 l'incrément dynamique en fonction du coefficient d'accélération
60
Fig.4.20 Les coefficients de sécurité en fonction de l'incrément dynamique
60
Fig.4.21 L'incrément dynamique en fonction de rapport de poids volumique
61

Fig.4.22	22 l'incrément dynamique en fonction du coefficient d'accélération	
	62	
Fig.4.23	Les coefficients de sécurité en fonction de l'incrément dynamique	
	62	

LISTE DES TABLEAUX

N°	Titre du tableau	Page
Tableau.2.1	Angle de frottement sol-mur en fonction de l'état de surface du paren	nent
		13
Tableaux.2.2	2 coefficient de poussée et butée (caquot et kérisel)	24
Tableaux.2.2	2.1 valeurs du coefficient de poussée K_a	24
Tableaux .2.	2.2 valeurs du coefficient de Butée <i>K</i> _p	27

Liste des symboles

K_0	Coefficient de pression des terres au repos.	
ν	Coefficient de poisson.	
φ	Angle de frottement de sol.	
δ	Angle de frottement sol-mur.	
σ_{h0}	Contrainte horizontale initiale.	
K _a	Coefficient de poussée.	
K_p	Coefficient de butée.	
σ_v	Contrainte verticale.	
τ	Contrainte de cisaillement.	
Ŕ	Réaction totale du sol.	
β	Inclnisant de talus.	
λ	Inclnisant de voil avec le horizontal.	
γ	Poids volumique.	
K_R	Coefficient de securit de renversement.	
K _G	Coefficient de securit de glissement.	
K _{aq}	Coefficient de poussée de surcharge.	
K_{pq}	Coefficient de butée de surcharge.	
E_{ws}	Poussée statique d'eau interstitielle.	
E_{wd}	Poussée hydrostatique.	
G	Charge permanente.	
Q	Charge exploitation.	
var	Valeur variable.	

INTRODUCTION

INTRODUCTION

Ce mémoire s'interesse aux ouvrages qui retiennent du terrain. Le matériau est retenu par l'ouvrage s'il est maintenu à une pente plus raide que celle qu'i adopterait éventuellement si aucun ouvrage n'était présent. Les ouvrages de soutènement comprennent tous les types de murs et de systèmes de l'appui dans lesquels des éléments de structure sont combinés avec du sol ou du rocher.

Pour le dimensionnement des ouvrages de soutènement, il peut être judicieux de distinguer les trois principaux types d'ouvrages de soutènement suivant :

Les murs-poids qui sont des murs en pierre, en béton ou en béton armé, ayant une semelle de base horizontale avec ou sans talon, épaulement ou contrefort. Le poids du mur lui-même, qui inclut parfois une masse stabilisatrice de sol ou de rocher joue un rôle important dans le soutènement du matériau retenu. On peut citer comme exemples de tels murs, les murs-poids en béton d'épaisseur constante ou variable, les murs en béton armé à semelle, les murs à contreforts,...;

Les murs encastrés sont des murs relativement minces en acier, en béton armé ou en bois, supportés par des ancrages, des butons et/ou la butée des terres. La résistance à la flexion de ces murs joue un rôle important dans le soutènement du matériau retenu alors que le poids du mur a un rôle insignifiant. On peut citer comme exemples, de tels murs, les murs cantilever en palplanches métalliques, les murs ancrés ou butonnés en palplanches d'acier ou de béton, les murs à diaphragme,...;

Les ouvrages de soutènement composites sont des murs formés d'éléments appartenant aux deux types précédents. Il existe un très grand nombre de murs de ce type. On peut citer comme exemples, les batardeaux constitués de deux rideaux de palplanches, les murs en sol renforcé, les ouvrages de soutènement renforcés par des ancrages, des géotextiles ou des injections, les ouvrages comportant des rangées multiples d ancrages ou de clous,...; [1]

Destinés à soutenir les terres, à contenir leur poussées, les murs de soutènement sont réalisés dans le but de limiter l'emprise du talus.

Il est important, pour la stabilité des murs de soutènement, d'éviter l'accumulation d'eau dans les terres qu'ils soutiennent; d'où la réalisation fréquente de barbacanes et d'un drainage au pied du mur cote «terres». L'eau est récupérée dans le drain (poteries non jointives) et s'écoule vers un ou plusieurs exutoires appropriés. [2]

Les Murs de soutènement sont des ouvrages importants au vu de leur coût et de leur fonction. Leur protection est très recommandée car les dégâts qu'ils peuvent occasionner sont énormes en cas de renversement ou de glissement. En zone sismique les risques sont amplifiés et la préservation de ces ouvrages commence par une bonne conception et donc un bon calcul. Ce mémoire a pour but d'écrire un programme de calcul qui permet de faire le pré dimensionnement, de vérifier la stabilité interne et externe, et de calculer le ferraillage d'un mur de soutènement en tenant compte de l'action sismique. Pour généraliser l'outil il sera pris une multicouche pour le sol de remblai.

Après une Introduction (problématique, buts du mémoire, plan du mémoire), les chapitres I et II donnent une synthèse bibliographique sur les murs de soutènement, ainsi que les approches et les méthodes de calcul.

Le chapitre III présente la validation de programme et expérimentation. Enfin une conclusion générale et des recommandations pour d'éventuelles futures recherches sont données.

CHAPITRE I

GÉNÉRALITÉ SUR LES MURS DE SOUTÈNEMENT

GENERALITES

1.1 DÉFINITION DES MURS DE SOUTÈNEMENT

Un ouvrage de soutènement est une construction destinée à prévenir l'éboulement ou le glissement d'un talus raide. Les ouvrages de soutènement sont essentiellement employés, soit en site montagneux pour protéger les chaussées routières contre le risque d'éboulement ou d'avalanches, soit en site urbain pour réduire l'emprise d'un talus naturel, en vue de la construction d'une route, d'un bâtiment ou d'un ouvrage d'art. II existe deux grandes classes d'ouvrages de soutènement : ceux composés d'une paroi résistante et d'une semelle de fondation et ceux composés d'une paroi (palplanches) (3).

1.2 TYPE DES MURS DE SOUTÈNEMENT

I.2.1 Mur poids

Le type d'ouvrage le plus classique et le plus ancien est le mur poids en béton ou en maçonnerie. Ce sont des ouvrages rigides qui ne peuvent supporter sans dommages des tassements différentiels, [4]. C'est le genre de murs qui convient le mieux pour résister par son propre poids sur des hauteurs de 2 à 3 m de remblais.

Fig.1.1 Mur en maçonnerie de pierres sèches.

Fig.1.3 Mur poids en béton.

1.2.2 Mur en gabions

C'est un mur dérivé du mur poids, il a la forme d'une caisse chargée par sa partie haute de cailloux quant aux murs gabions, ils peuvent être assimilés à des murs poids ou caisson : il s'agit d'une enveloppe de fil de fer grillagée parallélépipédique remplie de gros galets laissant le drainage de l'eau et évitant ainsi toute pression hydrostatique. Ce type de murs convient dans le cas de terrains compressibles.

Fig.1.4 Mur en gabions.

1.2.3 Les murs en éléments préfabriqués

Ce sont des murs en béton armé préfabriqué ou en métal constitués d'élément superposés. Ce dispositif offre un aspect architectural très intéressant, la face visible n'est pas forcément plane et uniforme certains éléments étant avancés ou reculés les une par rapport aux autres.

Fig.1.5 Mur en éléments préfabriqués en béton empilés (PELLER).

1.2.4 Les murs en béton armes

Les murs en béton armé peuvent avoir des formes diverses et être réalisés de façons multiples.

1.2.4.1 Mur en «T renversé » classique

Fig.1.6 mur en «T renversé» classique

Le mur en « T renversé » est la forme classique pour un mur en béton armé de treillis soudé. Il est économique sans contreforts, tant que sa hauteur n'excède pas 5 à 6 mètres, et peut-être réalisé sur un sol de qualités mécaniques peu élevées. En effet, par rapport à un mur-poids de même hauteur, il engendre des contraintes sur le sol plus faibles pour une même largeur de semelle. Dans le cas de murs en déblai (c'est-à-dire réalisés en terrassant un talus) les limitations de volume de terrassement et les difficultés de tenue provisoire des fouilles obligent à réduire le talon et à augmenter le patin (Fig.1.7). [3]

Fig.1.7 présentation murs en déblai.

Parfois, la stabilité au glissement du mur nécessite de disposer sous la semelle une «bêche ». Celle-ci peut être soit à l'avant, soit à l'arrière de la semelle, soit parfois encore en prolongement du voile. Cette bêche est toujours coulée en «pleine fouille » sans coffrage. Le premier cas (1) peut paraître intéressant car il permet de mettre la semelle totalement hors gel. Mais à l'ouverture de la fouille de la bêche, il y a un risque de décompression du sol dans la zone où il est le plus sollicité. De plus, il y a aussi un risque de voir, après la construction du mur, la butée devant la bêche supprimée par des travaux de terrassement (ouverture d'une tranchée pour pose d'une canalisation par exemple).

Fig.1.8 Diverses dispositions de bêches.

Le troisième cas (**3**) est peu employé. Il est néanmoins très intéressant car il permet de réaliser facilement le ferraillage de l'encastrement du voile sur la semelle en prolongeant dans la bêche les treillis soudés formant armatures en attente.

1.2.4.2 Mur à contreforts

Lorsque la hauteur du mur devient importante ou que les coefficients de poussée sont élevés, le moment d'encastrement du voile sur la semelle devient grand. Une première solution consiste à disposer des contreforts dont le but est de raidir le voile.

Fig.1.9 Mur à contreforts en béton arme.

1.2.4.3 Murs divers

On peut encore adopter d'autres solutions pour limiter les poussées des terres sur le voile des murs, mais elles sont d'un emploi peu fréquent. Ces solutions, certes astucieuses et séduisantes, ont l'inconvénient d'être d'une exécution difficile et de grever le coût du mur, même si l'on économise par ailleurs sur la matière.

Fig.1.10 Les murs divers.

1.3 TYPE DES ÉCRANS DE SOUTÈNEMENT

1.3.1 Les murs en parois moulées

Les murs en parois moulées, technique qui consiste à construire un mur au sein du sol en place, avant toute excavation, par bétonnage d'une tranchée remplie de boue pour en assurer la stabilité. Cette technique est particulièrement utilisée pour les travaux sous la nappe, en zones urbaine et portuaire. Une paroi moulée fonctionne par encastrement total ou partiel dans le sol de fondation. [4]

Fig.1.11 Les murs en parois moulées.

1.3.2 Les rideaux de palplanches

Les rideaux de palplanches, encastrés dans le sol de fondation : ce sont des ouvrages de soutènement flexibles, où l'interaction structure-remblai a une influence prépondérante sur le comportement de l'ouvrage. [4]

Fig.1.12 Les rideaux de palplanches.

1.3.3 Les murs en terre armée

La terre armée est une technique relativement récente. Le principe consiste à associer à un sol pulvérulent et un renforcement (armatures) résistant à la traction. L'ouvrage est terminé sur sa face vue par un parement destiné à retenir les grains de sol entre les lits d'armatures. Les principaux avantages de la terre armée résident dans son économie, son intégration aux ouvrages en terre et surtout dans sa grande déformabilité qui lui permet de s'adapter sans risques à des mouvements de terre importants.

Fig.1.13 mur en terre arme.

CHAPITRE II

LES APPROCHES ET LES MÉTHODES DE CALCUL

2.1 Introduction :

Tous les ouvrages de soutènement qui doivent résister à la pression latérale des terres nécessitent la détermination de la répartition des contraintes auxquelles ils sont soumis ou qu'ils mobilisent.

Ces ouvrages de soutènement concernent les murs (mur-poids, murs cantilevers, murs cellulaires..) et les écrans (parois moulées, parois berlinoises et dérivées, rideaux de palplanches...). Suivant le problème traité, on fera un calcul à la rupture (sol dans un comportement rigide-plastique) ou un calcul en déplacement (sol dans un comportement élasto-plastique, ou autre...).

Les méthodes de calcul des murs de soutènement sont du type calcul à la rupture en adoptant une loi de comportement rigide-plastique.

Les méthodes de calcul des écrans sont globalement, actuellement, de trois types :

*sans interaction avec la structure, le sol est considéré à l'état d'équilibre limite. Ce sont les méthodes rigides-plastiques, les plus anciennes, qui s'appliquent assez bien aux calculs des rideaux de palplanches. Elles ont une solution analytique dans les cas simples.

* avec interaction avec la paroi et les tirants ou butons. Le sol est alors modélisé, à l'interface du sol et de l'écran par des ressorts et des patins (méthodes aux coefficients de réaction). Cette méthode a été particulièrement développée en France, parallèlement au pressiomètre. Elle est encore beaucoup utilisée pour le calcul des parois, mais nécessite l'emploi d'un logiciel et d'un micro-ordinateur.

La méthode des éléments finis permet d'étudier la paroi comme une partie de l'ensemble constitué par le sol, la paroi et les tirants d'ancrage ou les butons. Si le problème est bien résolu mathématiquement, l'état des connaissances est moins avancé concernant les lois de comportement du sol et surtout les éléments d'interface entre les tirants d'ancrage et le sol. Le calcul est généralement effectué en déformation plane, ce qui suppose de trouver une équivalence entre les nappes de tirants et des plaques continues. Cette méthode, souvent utilisée dans le cadre de recherches appliquées, est actuellement en cours de développement pour les études courantes grâce au développement de logiciels de calcul destinés aux ingénieurs et à la puissance des micro-ordinateurs. [5]

2.2 Étude sur la poussée et butée :

On détermine les actions du sol sur un écran quand le sol est à la rupture. Suivant les déplacements relatifs entre le sol et l'écran, le sol se trouvera en équilibre de poussée (état actif) ou de butée (état passif).

2.3 État de repos :

On considérant le sol comme un massif de dimensions horizontales infinies ne se déforme pas latéralement. Seulement le tassement est possible pour se type de sol. Si le sol est supposé un matériau pesant, homogène, les contrainte et horizontales et verticales à une profondeur donnée sont proportionnelles et on peut écrire : [6]

$$\sigma_{h0} = K_0 * \sigma_{\nu 0} \tag{2.1}$$

Soit σ_{v0} la contrainte verticale sur une facette horizontale en point \mathbf{M}° quelconque du milieu. Cette contrainte est principale par raison de symétrie.

Soit σ_{h0} la contrainte sur un élément de facette verticale. Cette contrainte est aussi principale et donc horizontale (Fig.2.1). [6,7]

En supposant que le sol est un matériau élastique isotrope, le coefficient de pression des terres au repos s'écrit : [6]

$$K_0 = \frac{\nu}{1 - \nu} \tag{2.2}$$

 K_0 dépend:

- de la nature du sol,
- de l'histoire du sol,
- de la profondeur considérée.

Les valeurs ci-après peuvent être retenues à titre d'ordre de grandeur :

- > sable : $K_0 \simeq 0.5$,
- ▶ argile : $K_0 \simeq 0.7$,
- ▶ argile très molle, vase : $K_0 \simeq 1$,
- → roche à très grande profondeur : $K_0 \ge 1$

(cas des tunnels profonds). [7]

Puisque le coefficient de poisson varie entre 0 et 0.5, K_0 varie entre 0 et 1. [6]

Jaky (1944) a proposé une formulation de K_0 pour les sables et argiles normalement consolidés, en fonction de l'angle de frottement. La formule simplifiée de Jaky s'écrite : [5, 6, 8,9]

$$K_0 = 1 - \sin \varphi \tag{2.3}$$

Pour les sols fins surconsoldés ou pulvérulents surcomprimés, le coefficient K_0 dépend du degré de surconsolidation OCR, tel que : [5,6, 9]

$$K_0 = K_0(NC) * OCR^{1/2}$$
(2.4)

 $K_0(NC)$ Peut être estimé par la formule de Jaky ci-dessus. Le coefficient n est général pris égale à (0.5). Ce coefficient peut être déterminé expérimentalement à partir d'un essai triaxial à déformations latérales nulles, appelé essai K_0 . [6]

Fig.2.1 État initial du sol au repos (sans talus, $\beta = 0$). [5, 6, 7, 8]

2.4 Frottement sol-mur :

L'angle de frottement δ entre le sol et le parementè**a**eridu mur dépend des facteurs suivants :

- la rugosité du parement ;
- > l'angle de frottement interne du sol φ ;
- le tassement relatif entre le mur et le sol ;
- l'inclinaison de la surface.

En première approximation on peut déterminer cet angle de frottement en fonction de l'état de surface du parement, comme il est indiqué dans le Tableau .2.1.

Lorsque l'ouvrage de soutènement a tendance à tasser plus que le sol retenu, ce qui est le cas, par exemple, d'un mur plaqué contre un talus de déblai, l'anglé est alors négatif. Le tassement relatif entre le sol et le mur joue ainsi un rôle important.

Dans tous les cas courants de murs rugueux en béton ou en maçonnerie, la valeur de $2/3 \varphi$ est celle à retenir.

État de surface	Angle de frottement
du parement	sol-mur
Surfaces très lisses ou lubrifiées	$\delta = \varphi$
Surface peu rugueuse	
(béton lisse, béton traité)	$\delta = \frac{1}{3} \varphi$
Surface rugueuse	
(béton, béton projeté, maçonnerie, acier)	$\delta = \frac{2}{3} \varphi$
Murs caissons	$\delta \ge \frac{2}{3} \varphi$
Parements fictifs inclinés des murs	
Cantilever	$\delta = \varphi$

 Tableau .2.1
 Angle de frottement sol-mur en fonction de l'état de surface du parement. [4]

2.5 Équilibres de poussée et de butée :

Pour qu'il y ait équilibre de poussée ou de butée, il faut qu'il y ait déplacements (Fig.2.2). grossièrement de l'ordre de $\frac{H}{1000}$ pour mobiliser la poussée et supérieur à $\frac{H}{100}$ pour mobiliser la butée. (Expériences de Terzaghi). [4]

Fig.2.2 État initial, sol sans déplacement

Fig.2.3 déplacement nécessaire à la mobilisation des états limite de poussée et butée.

2.5.1 Équilibre de poussée :

Le sol pousse sur l'écran et le met en poussée. Le sol se déplacera jusqu'à ce que la contrainte horizontal initiale σ_{h0} diminue, le sol se décomprime, pour atteindre une valeur limite σ_a (équilibre actif ou inférieur) inférieure à σ_{h0} . [7]

Par rapport à l'état initial, la contrainte σ_{v0} étant constante, la contrainte horizontale σ_{h0} diminue jusqu'à ce que le cercle de Mohr devienne tangent à la droite de Mohr-Coulomb pour une valeur de $\sigma_h = \sigma_a$ Le sol est à l'état de poussée ; la contrainte de poussée est reliée à la contrainte verticale σ_{v0} , dans le cas d'un écran vertical sans frottement sol-écran, par le coefficient de poussée K_a (**a** comme actif).

$$\sigma_a = K_a * \sigma_{v0} \tag{2.5}$$

Fig. 2.4 État limite de poussée du sol.

2.5.2 Équilibre de butée :

L'écran pousse sur le sol et le met en butée. Le sol se déplacera jusqu'à ce que la contrainte initiale σ_{h0} augmente, le sol se comprime, pour atteindre une valeur limite σ_p (équilibre passif ou supérieur) supérieure à σ_{h0} . Par rapport à l'état initial, la contrainte σ_{v0} étant constante, la contrainte horizontale σ_{h0} augmente jusqu'à ce que le cercle de Mohr devienne tangent à la droite de Mohr-Coulomb pour une valeur de $\sigma_h = \sigma_p$. Le sol est à l'état de butée la contrainte de butée est reliée à la contrainte verticale σ_v , dans le cas d'un écran vertical sans frottement sol-écran, par le coefficient de butée K_p (p comme passif).

$$\sigma_p = K_p * \sigma_{\nu 0} \tag{2.6}$$

Fig.2.5 État limite de butée du sol.

2.6 Les théories de calcul des coefficients de poussée et de butée d'un sol sans cohésion (sol pesant) :

Plusieurs théories permettent de calculer les coefficients de poussée et de butée d'un sol pulvérulent (C = 0). On mentionne les principales par ordre chronologique.

2.6.1 Théorie de COULOMB :

Charles Augustin Coulomb (1736 - 1806) a été d'abord un ingénieur du génie militaire avant de devenir plus tard un physicien encore plus célèbre par ses mémoires sur l'électricité et le magnétisme entre 1785 et 1791. Son premier ouvrage important fut, en tant que « Lieutenant en Premier du Génie », la construction de 1764 à 1772 à la Martinique du fort Bourbon. A son retour en métropole en 1773 il publie à l'Académie des sciences un important mémoire de mécanique appliquée.

Coulomb suppose que la surface de rupture soit plane (coin de Coulomb).

Coulomb calcule la poussée A par rapport à un plan quelconque et détermine par les règles de maximis et de minimis sa valeur maximum.

Soit un écran vertical soutenant un massif de sol sans cohésion avec un terre-plein horizontal (Fig.2.6).

Fig.2.6 Équilibre du coin coulomb.

On suppose que la surface de rupture potentielle est un plan (coin de Coulomb) passant par le pied de l'écran et faisant un angle θ avec l'horizontale.

On fait l'hypothèse que la contrainte de cisaillement $\tau = \sigma tan\varphi$ est complètement mobilisée le long de ce plan. Le coin de Coulomb se comporte de façon rigide-plastique, ce qui n'est pas le cas généralement surtout si l'écran est de grande hauteur.

La réaction totale du sol \vec{R} sur lequel glisse le coin de Coulomb est donc incliné de l'angle φ sur la normale au plan de rupture.

Le principe consiste simplement à écrire l'équilibre des forces en présence \vec{R} , \vec{W} et $\vec{F_a}$; \vec{W} étant le poids du mur et $\vec{F_a}$ la poussée du sol incliné de δ sur la normale à l'écran (Fig.2.6).

On détermine ainsi \vec{F} en fonction de l'angle θ . La méthode de Coulomb consiste à prendre le maximum de $F(\theta)$ (Maximis) pour calculer la poussée $\vec{F_a}$, ce serait le contraire pour la butée (Minimis).

En application de la méthode de Coulomb, on calcule la poussée en supposant que $\delta = 0$.

$$F_a = R \sin(\theta - \varphi)$$
$$W = R \cos(\theta - \varphi)$$

$$F_{a} = W \frac{\sin(\theta - \varphi)}{\cos(\theta - \varphi)} = W \tan(\theta - \varphi)$$

$$F_{a} = \frac{1}{2} \gamma h^{2} \ \cot\theta \ \tan(\theta - \varphi)$$

$$\frac{dF_{a}}{d\theta} = \frac{1}{4} \gamma \ h^{2} \left[\frac{\sin 2\theta - \sin 2(\theta - \varphi)}{\sin^{2} \theta \cos^{2}(\theta - \varphi)} \right] = 0$$

$$\implies \sin 2\theta - \sin 2(\theta - \varphi) = 0$$

La solution de cette équation : $\theta = \frac{\pi}{4} + \varphi$

Dans le coefficient :

$$K_{a} = \cot\left(\frac{\pi}{4} + \varphi\right) \tan\left(\frac{\pi}{4} - \varphi\right) = \tan^{2}\left(\frac{\pi}{4} - \varphi\right)$$
$$K_{a} = \tan^{2}\left(\frac{\pi}{4} - \varphi\right)$$
(2.7)

Et

$$F_a = \tan^2 \left(\frac{\pi}{4} - \varphi\right) \frac{1}{2} \gamma h^2 \tag{2.8}$$

2.6.1.1 Formule de Poncelet :

On a supposé, jusqu'à présent, le-massif pulvérulent et homogène et l'écran *AB* rectiligne ; si de plus le terre-plein est également rectiligne et non surchargé, on peut conduire le calcul jusqu'au bout, on se trouve d'ailleurs dans les conditions d'utilisation-du schéma de Boussinesq, ce qui permettra une confrontation des résultats. La (Fig.2.7) montre les éléments de la démonstration : [10]

- ✤ l'écran AB,
- \clubsuit le terre-plein *AT*,
- ✤ la ligne de glissement possible BC, qui fait un angle avec l'horizontale,
- ↔ une ligne auxiliaire *BD* qui fait un angle φ avec l'horizontale,
- ♦ la direction *BS* qui fait avec la ligne *BD* l'angle ψ connu que *E* fait avec la verticale.

On mène par A et C des parallèles à la direction BS qui coupent BD respectivement en K et g. On voit sans peine que le triangle BCg est semblable au triangle des forces FEW, ce qui permet d'écrire :

$$\frac{E}{W} = \frac{Cg}{Bg}$$
$$W = \frac{\gamma}{2} * l * AC$$
$$Cg = AK * \frac{Dg}{DK}$$
$$AC = Kg * \frac{AD}{DK}$$

Donc :

$$E = \frac{1}{2} * \gamma * \frac{AD * AK}{DK^2} * \frac{Kg * Dg}{Bg}$$

En posant BD = a, BK = b, Bg = x, on finalement

$$E = \frac{1}{2} * \gamma * \frac{AD * AK}{DK^2} * \frac{(x-b) * (a-x)}{x}$$

Où seul x est variable quand θ varie, c'est-à-dire quand *BC* prend les différentes positions possibles. [10]

Fig.2.7 Formule de Poncelet.

L expression $\frac{(x-b)*(a-x)}{x}$ passe par un maximum pour $x = \sqrt{ab}$, elle a alors pour valeur $(\sqrt{a} - \sqrt{b})^2$. Le calcul des différentes longueurs *l*, *AD*, *AK*... en fonction de *AB* = *l* et des angles β , λ , φ et δ ne présente aucune difficulté, mais il est fastidieux. On obtient en fin de compte.

$$Emax = p = \frac{1}{2}K_a\gamma l^2 \tag{2.10}$$

Avec :

$$K_{a} = \frac{\cos^{2}(\varphi - \lambda)}{\cos\left[\left(1 + \sqrt{\frac{\sin\left[\left(\varphi + \delta\right)\sin\left[\left(\varphi - \beta\right)\right]}{\cos\left[\left(\lambda + \delta\right)\cos\left[\left(\varphi - \beta\right)\right]}\right]^{2}}\right]^{2}}$$
(2.9)

On voit que cette formule, appelée formule de Poncelet. [10]

2.6.2 Théorie de RANKINE :

En plus des hypothèses suivantes :

- sol semi-infini, homogène, isotrope,

- condition de déformation plane,
- courbe intrinsèque de MOHR-COULOMB
- massif à surface libre plane,

RANKINE (1857) avait rajouté l'hypothèse que la présence d'un écran ne modifie pas la répartition des contraintes dans le massif. [4]

• Cas général :

Avec cette hypothèse, on peut déterminer la répartition des contraintes de poussée (ou de butée) le long d'un plan OD, dans le cas d'un sol pesant pulvérulent (γ, φ) non surchargé.

Le calcul de la contrainte t à une profondeur z sur le plan OD s'effectue à partir du cercle de MOHR, le plus petit pour l'équilibre de poussée, passant par l'extrémité M du vecteur contrainte qui s'exerce sur la facette parallèle à la surface libre et tangent aux droites intrinsèques de COULOMB ($\tau = \sigma tan\phi$). L'équilibre de butée s'étudierait à partir du cercle de MOHR, le plus grand pour l'équilibre de butée, passant par le même point M et tangent également aux droites intrinsèques de COULOMB (Fig.2.8).

OM est le vecteur contrainte $\gamma z. cos\beta$ s'exerçant sur la facette parallèle à la surface libre, à une profondeur z.

OM' est le vecteur contrainte s'exerçant sur la facette verticale à la même profondeur z. Ces deux contraintes sont conjuguées.

ON est le vecteur contrainte t s'exerçant sur la facette inclinée de λ à la même profondeur z.

Fig.2.8 Équilibres de poussée et de butée de Rankine.
Le développement des calculs montre que :

- l'angle δ , que fait le vecteur contrainte **t** avec la normale à la facette dépend de φ , λ et

 β . δ Il est **constant** quelle que soit la profondeur **z** puisqu'il ne dépend pas de **z**.

$$tan\delta = \frac{\sin\varphi \sin\left(2\lambda + \alpha - \beta\right)}{1 - \sin\varphi \cos\left(2\lambda + \alpha - \beta\right)}$$
(2.12)

Avec α , angle auxiliaire défini par :

$$\sin\alpha = \frac{\sin\beta}{\sin\varphi} \tag{2.13}$$

En particulier, si l'écran est vertical, le cercle de Mohr montre directement que $\delta = \beta$, le vecteur contraint de poussée est parallèle à la pente.

- les lignes de glissement, enveloppes des facettes de glissement forment un réseau de droites faisant entre elles un angle $\frac{\pi}{2} - \varphi$.

- la contrainte t_a en un point du plan OD (écran) est proportionnelle au rayon polaire *l*. La distribution des contraintes est donc triangulaire, t_a fait un angle δ avec la normale à l'écran.

$$t_{a} = \left\{ \frac{\cos\left(\lambda - \beta\right)\sin\alpha}{\cos\delta\sin\left(\alpha + \beta\right)} \left[1 - \sin\varphi\cos(2\lambda + \varphi - \beta) \right] \right\} \gamma * l$$
(2.14)

Avec l'inclinaison δ par rapport à la normale à l'écran définie plus haut.

$$t_{a} = K_{a} * \gamma * l$$

$$\Rightarrow \quad K_{a} = \frac{\cos(\lambda - \beta)\sin\alpha}{\cos\delta\sin(\alpha + \beta)} [1 - \sin\varphi\cos(2\lambda + \varphi - \beta)] \qquad (2.15)$$

L'inconvénient de la théorie de RANKINE est que l'angle δ de la contrainte de poussée avec la normale à l'écran dépend des conditions géométriques mais n'a **pas la réalité physique** d'un angle de frottement sol-écran.

Fig.2.9 Diagramme de poussée sur l'écran *l*

La répartition des contraintes de poussée sur l'écran est donc linéaire en fonction de l; cette répartition triangulaire donne directement la force de poussée.

$$F_a = K_a * \gamma * \frac{l^2}{2} \tag{2.16}$$

Dont le point d'application est situé au l/3 à partir de la base de l'écran. [4]

• Cas particulier : écran vertical, surface libre horizontale :

Ce cas particulier, mais très fréquent, est beaucoup plus simple à traiter et des calculs rapides permettent de déterminer les coefficients de poussée K_a et de butée K_p .

Hypothèses :

- $\lambda = \beta = \delta = 0$ (Pas de frottement sol-écran)
- $\varphi \neq 0$
- C = 0
 - **Cas du sol seulement frottant :**(sable, gravier, argile drainée cisaillée dans le domaine normalement consolidé).

Les formules valeur des coefficients de poussée K_a et de butée K_p sont égales :

$$K_a = \tan^2\left(\frac{\pi}{4} - \frac{\varphi}{2}\right) \tag{2.17}$$

$$K_p = \tan^2\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \tag{2.18}$$

2.6.3 Théorie de BOUSSINESQ:

BOUSSINESQ (1882) a amélioré la théorie de RANKINE en prenant **l'interaction réelle** entre le sol et l'écran, c'est-à-dire en **choisissant** la valeur de l'angle de frottement δ sol-écran.

Dans cet équilibre, BOUSSINESQ considère une première zone où on a l'équilibre de RANKINE se raccordant à une seconde zone où il tient compte des conditions aux limites sur l'écran.

Fig.2.10 Équilibres de Boussinesq et de Rankine.

BOUSSINESQ garde les résultats de RANKINE concernant la répartition des contraintes sur l'écran :

- l'obliquité des contraintes est **constante** le long de l'écran OD, elle est choisie et fixée à δ ;

- la répartition des contraintes sur l'écran est triangulaire :

$$t = K_a * \gamma * l \tag{2.19}$$

Si BOUSSINESQ avait bien posé le problème, il n'a été résolu qu'en 1948 par **CAQUOT** et **KERISEL** qui en ont donné la démonstration suivante.

On travaillera en coordonnées polaires, pour lesquelles les équations d'équilibre

$$div\tau + F = 0 \tag{2.20}$$

s'écrivent :

$$\begin{cases} \frac{\partial \sigma_r}{\partial r} + \frac{\partial \sigma_r}{r\partial \theta} + \frac{\sigma_r - \sigma_\theta}{r} = \gamma \cos \theta \\ \frac{\partial \tau_r}{\partial r} + \frac{\partial \sigma_\theta}{r\partial \theta} + 2\frac{\tau}{r} = -\gamma \sin \theta \end{cases}$$
(2.21)

 σ_r : Contrainte normale radiale.

 σ_{θ} : Contrainte normale orthoradiale.

 τ : Contrainte de cisaillement..

En combinant les équations d'équilibre précédentes et les relations données par le cercle de Mohr des contraintes tangentes aux droites de Coulomb on établit le système des 2 équations différentielles suivantes :

$$\frac{\partial \sigma_{\theta}}{\partial \theta} + 2\tau = -\gamma r \sin \theta \tag{2.22}$$

$$\frac{\partial \sigma_{\theta}}{\partial \theta} + 2(\sigma_r - \sigma_{\theta}) = -\gamma r \cos \theta \tag{2.23}$$

Avec:

$$\sigma_{\theta} = K \,\sigma_r \tag{2.24}$$

Le système des deux équations différentielles a été intégré par Caquot et Kérisel, les calculs étant améliorés par ABSI pour donner des tables complètes de poussée et butée fournissant les coefficients K_a et K_P .

Le problème est déterminé par les conditions aux frontières :

- surface libre : contraintes nulles

- sur l'écran : obliquité imposée δ de la contrainte.

Entre la surface libre et la première ligne de glissement on a un équilibre de Rankine et entre la première ligne de glissement et l'écran un équilibre de Boussinesq.

Le tracé des lignes de glissement montre que les lignes de glissement diffèrent peu de lignes droites dans le cas d'équilibre de poussée, par contre elles s'en éloignent fortement dans le cas d'équilibre de butée. [4]

2.2 Tableaux de coefficient poussée et butée (caquot et kérisel).

Tableaux 2.2.1 valeurs du coefficient de poussée K_a . [4]

β/φ=0.8	λ٥	φ=10°	φ=15°	φ=20°	φ=25°	φ=30°	φ=35°	φ=40°	φ=45°	φ=50°
	+15	0.881	0.838	0.796	0.754					
	+10	0,860	0.801	0.743	0.688	0.634	0.583	0.533	0.487	0.443
	+5	0.834	0.759	0.689	0.622	0.559	0.499	0.443	0.390	0.341
δ/φ=1	0	0.802	0.714	0.633	0.557	0.488	0.423	0.364	0.309	0.258
	-5	0.765	0.665	0.575	0.494	0.421	0.354	0.294	0.240	0.192
	-10	0.722	0.613	0.517	0.432	0.357	0.291	0.233	0.182	0.139
	-15	0.676	0.559	0.459	0.373	0.298	0.234	0.180	0.133	0.096
	+15	0.883	0.837	0.782	0.728			_		
	+10	0.863	0.799	0.733	0.668	0.602	0.538	0.475	0.415	0.357
	+5	0.837	0.759	0.682	0.607	0.534	0.465	0.399	0.337	0.279
δ/φ=2/3	0	0.806	0.715	0.628	0.546	0.469	0.397	0.330	0.269	0.215
	-5	0.770	0.667	0.573	0,486	0.406	0.334	0.269	0.211	0.161
	-10	0.728	0.617	0.517	0.427	0.347	0.276	0.214	0.161	0.117
	-15	0.682	0.564	0,460	0.369	0.291	0.223	0.166	0.119	0.081
{	+15	0.920	0.872	0.816	0.753					
	+10	0.903	0.841	0.773	0.699	0.624	0.548	0.472	0.400	0.331
	+5	0.880	0.805	0.725	0.644	0.562	0.482	0.405	0.333	0.267
δ/φ=0	0.	0.850	0.763	0.674	0.586	0.500	0.419	0.342	0.272	0.210
	-5	0.814	0.717	0.621	0.528	0.440	0.358	0.284	0.218	0.161
ł	-10	0.773	0.667	0.565	0.469	0.381	0.301	0.231	0.170	0.120
1	-15	0.727	0.614	0.508	0.411	0.324	0.248	0.182	0.128	0.085

β/φ=0	.6 λ.	° φ=10	0° φ=15	° φ=20°	φ=25°	φ=30°	φ=35°	φ=40°	φ=45°	φ=50°
	+1	5 0.81	0 0.74	4 0.685	0.631	0.583	0.539	0.500	0.471	1
	+1	0 0.79	4 0.71	4 0.644	0.580	0.523	0.472	0.425	0.383	0.345
	+	5 0.77	1 0.68	0 0.599	0.528	0.465	0.408	0.358	0.312	0.270
δ/φ=]	0	0.74	4 0.64	1 0.553	0.476	0.409	0.349	0.297	0.250	0,209
1	-5	0.71	0 0.59	9 0.505	0.424	0.355	0.295	0.243	0.197	0.157
	-10	0 0.67	1 0.55	3 0.455	0.373	0.303	0.245	0.194	0.152	0.115
	1	5 0.62	8 0.50	5 0.405	0.323	0.255	0.198	0.152	0.113	0.081
	+1	5 0.81	3 0.74	3 0.677	0.614	0.554	0.498	0.445	0.396	
	+1	0 0.79	8 0.71	5 0.638	0.566	0.499	0.439	0.382	0.328	0.282
	+5	0.77	6 0.68	1 0.596	0.518	0.447	0.383	0.324	0.271	0.224
δ/φ=2/	3 0	0.74	8 0.64	4 0.551	0.468	0.395	0.329	0.271	0.219	0.174
	-5	0.71	6 0.60	3 0.504	0.419	0.344	0.279	0.223	0.174	0.132
	-10	0 0.67	8 0.55	8 0.456	0.369	0.295	0.233	0.179	0.135	0.098
	-1:	5 0.63	6 0.51	1 0.407	0.321	0.219	0.19	0.141	0.101	0.069
1	+1	5 0.85	3 0.78	5 0.716	0.646	0.578	0.509	0.443	0.381	
	+1	0 0.83	9 0.76	0 0.681	0.603	0.528	0.456	0,388	0.325	0.266
		0.81	9 0.72	9 0.641	0.558	0.478	0.404	0336	0.273	0.218
δ/φ=(0.79	3 0.69	3 0.599	0.510	0.428	0.353	0.286	0.226	0.173
	-5	0.76	1 0.65	3 0.553	0.461	0.378	0.304	0.239	0.182	0.135
	-10	0 0.72	4 0.60	9 0.505	0.412	0.329	0.257	0.195	0.144	0.101
L	-1	5 0.68	3 0.56	2 0.456	0.362	0.281	0.213	0.156	0.110	0.073
					0.00	-200	-250	0=40°	(0=45°	σ=50°
β/φ=0.4	λ°	φ=10°	φ=15°	φ=20°	$\varphi = 25^{\circ} \varphi$	= 30° 0		0.426	0 302	0.367
	+15	0.762	0.683	0.615	0.557 0	0.507 0	0.404	0 366	0328	0 295
ľ	+10	0.748	0.568	0.581	0.515 0	0.458	0.409	0.300	0 270	0 234
Ì	+5	0.729	0.628	0.554	0.472 0	2.411	0.331	0.261	0.220	0 183
δ/φ=1	0	0.704	0.594	0.504	0.428	0,363	0.309	0.201	0.175	0.140
	-5	0.673	0.556	0.461	0.383	0.318	0.202	0.215	0.136	0.104
	-10	0.637	0.515	0.417	0.338	0.273	0.219	0.174	0.103	0.075
	-15	0.597	0.471	0.373	0.294	0.231	0.179	0.130	0.103	0.296
	+15	0.766	0.683	0.610	0.544	0.484	0.430	0.381	0.337	0.242
	+10	0.753	0.659	0.577	0.504	0.440	0.383	0.331	0.204	0.195
	+5	0.734	0.631	0.542	0.464	0.396	0.336	0.283	0.230	0.155
δ/φ=2/3	0	0.710	0.598	0.503	0.442	0.352	0.291	0.239	0.195	0.134
	-5	0.680	0.561	0.462	0.379	0.309	0.249	0.198	0.133	0.010
	-10	0.645	0.521	0.419	0.336	0.267	0.209	0.101	0.121	0.064
	-15	0.605	0.478	0.376	0.293	0.226	0.172	0.128	0.092	0.004
	+15	0.807	0.728	0.652	0.579	0.511	0.446	0.387	0.330	0.213
	+10	0.796	0.706	0.622	0.544	0.470	0.403	0.341	0.204	0.233
·	+5	0.779	0.680	0.588	0.505	0.428	0.359	0.297	0.241	0.154
δ/φ=0	0	0.756	0.648	0.551	0.464	0.386	0.316	0.254	0.201	0.134
	-5	0.727	0.612	0.511	0.422	0.342	0.273	0.214	0.104	0.121
	-10	0.693	0.573	0.468	0.378	0.300	0.233	0.177	0.130	0.092
	-15	0.654	0.530	0.424	0.333	0.258	0.194	0.143	0.101	0.000
β/φ=0.2	λ°	1 100				200	-200	m=40°	m=45° 1	ω=50°
		φ=10*	φ=15°	φ=20°	$\varphi = 25^{\circ} \varphi$	p=30°	p=35°	$\varphi = 40^{\circ}$	$\phi = 45^{\circ}$ 0 345	$\frac{\varphi=50^{\circ}}{0.320}$
	+15	$\phi = 10^{\circ}$ 0.725	φ=15° 0.637	φ=20° 0.564	φ=25° 0	0.453	p=35° 0.411	$\phi = 40^{\circ}$ 0.375	$\phi = 45^{\circ}$ 0.345 0.291	$\frac{\phi=50^{\circ}}{0.320}$ 0.262
	+15 +10	$\phi = 10^{\circ}$ 0.725 0.714	φ=15° 0.637 0.616	φ=20° 0.564 0.536	φ=25° (0.504 0.469	0.453 0.413	p=35° 0.411 0.366	$\varphi = 40^{\circ}$ 0.375 0.326	$\phi = 45^{\circ}$ 0.345 0.291 0.243	$\varphi = 50^{\circ}$ 0.320 0.262 0.211
	+15 +10 +5	$\varphi = 10^{\circ}$ 0.725 0.714 0.696	φ=15° 0.637 0.616 0.590	φ=20° 0.564 0.536 0.503	φ=25° φ 0.504 0.469 0.432	p=30° (0.453 0.413 0.373	p=35° 0.411 0.366 0.323	$\varphi = 40^{\circ}$ 0.375 0.326 0.280 0.237	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200	
δ/φ=1	+15 +10 +5 0	φ=10° 0.725 0.714 0.696 0.673	φ=15° 0.637 0.616 0.590 0.559	φ=20° 0.564 0.536 0.503 0.468	φ=25° (0.504 (0.469 (0.432 (0.394 (p=30° (0.453 0.413 0.373 0.332	p=35° 0.411 0.366 0.323 0.281	φ=40° 0.375 0.326 0.280 0.237	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161	
δ/φ=1	+15 +10 +5 0 -5	φ=10° 0.725 0.714 0.696 0.673 0.645	φ=15° 0.637 0.616 0.590 0.559 0.525	φ=20° 0.564 0.536 0.503 0.468 0.430	φ=25° (0.504 (0.469 (0.432 (0.394 (0.354 (p=30° (0.453 0.413 0.373 0.332 0.292	p=35° 0.411 0.366 0.323 0.281 0.241	φ=40° 0.375 0.326 0.280 0.237 0.198	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161	
δ/φ=1	+15 +10 +5 0 -5 -10	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391	φ=25° φ 0.504 0 0.469 0 0.394 0 0.354 0	=30° 0 0.453 0 0.413 0 0.373 0 0.32 0 0.292 0 0.253 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161	$\varphi=45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127	$\begin{array}{c} \varphi = 50^{\circ} \\ 0.320 \\ 0.262 \\ 0.211 \\ 0.167 \\ 0.130 \\ 0.098 \\ 0.071 \end{array}$
δ/φ=1	+15 +10 +5 0 -5 -10 -15	$\begin{array}{c} \varphi = 10^{\circ} \\ 0.725 \\ 0.714 \\ 0.696 \\ 0.673 \\ 0.645 \\ 0.612 \\ 0.574 \end{array}$	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350	\$\phi = 25^{\niongle}\$ \$\phi\$ 0.504 \$\phi\$ 0.469 \$\phi\$ 0.394 \$\phi\$ 0.354 \$\phi\$ 0.314 \$\phi\$ 0.274 \$\phi\$	p=30° c 0.453 0.413 0.373 0.332 0.292 0.253 0.215 0.215	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.32°	$\varphi=45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297	$\begin{array}{c} \varphi=50^{\circ} \\ 0.320 \\ 0.262 \\ 0.211 \\ 0.167 \\ 0.130 \\ 0.098 \\ 0.071 \\ 0.261 \end{array}$
δ/φ=1	+15 +10 +5 0 -5 -10 -15 +15	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561	φ=25° φ 0.504 0 0.469 0 0.394 0 0.354 0 0.314 0 0.274 0	=30° 0 0.453 0 0.413 0 0.373 0 0.292 0 0.253 0 0.215 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.206	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.297	$\begin{array}{c} \varphi=50^{\circ} \\ 0.320 \\ 0.262 \\ 0.211 \\ 0.167 \\ 0.130 \\ 0.098 \\ 0.071 \\ 0.261 \\ 0.216 \end{array}$
δ/φ=1	+15 +10 +5 0 -5 -10 -15 +15 +10	$\begin{array}{c} \varphi = 10^{\circ} \\ 0.725 \\ 0.714 \\ 0.696 \\ 0.673 \\ 0.645 \\ 0.612 \\ 0.574 \\ 0.729 \\ 0.719 \end{array}$	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561	q=25° q 0.504 0 0.469 0 0.394 0 0.354 0 0.314 0 0.493 0 0.461 0	p=30° c 0.453 0.413 0.373 0.332 0.292 0.253 0.215 0.435 0.398 0.292	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.256	φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253	$\begin{array}{c} \varphi=50^{\circ} \\ 0.320 \\ 0.262 \\ 0.211 \\ 0.167 \\ 0.130 \\ 0.098 \\ 0.071 \\ 0.261 \\ 0.216 \\ 0.176 \\ \end{array}$
δ/φ=1	+15 +10 +5 0 -5 -10 -15 +15 +10 +5	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702	q=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.638 0.618 0.593	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561 0.533 0.503	q=25° q 0.504 0 0.469 0 0.394 0 0.354 0 0.314 0 0.493 0 0.461 0	=30° 0 0.453 0 0.413 0 0.373 0 0.332 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304	$\varphi = 40^{\circ}$ 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.256 0.218	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253 0.213 0.176	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.702 0.680	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618 0.593 0.564	$\begin{array}{c} \varphi=20^{\circ} \\ 0.564 \\ 0.536 \\ 0.503 \\ 0.468 \\ 0.430 \\ 0.391 \\ 0.350 \\ 0.561 \\ 0.533 \\ 0.502 \\ 0.469 \end{array}$	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0.274 0.493 0.461 0.426 0.389	=30° 0 0.453 0 0.413 0 0.373 0 0.332 0 0.292 0 0.253 0 0.215 0 0.435 0 0.398 0 0.360 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.206	$\varphi = 40^{\circ}$ 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.256 0.218 0.182	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253 0.213 0.176 0.143	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618 0.593 0.564 0.530	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561 0.533 0.502 0.469 0.432	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0.274 0.493 0.461 0.426 0.389 0.351 0	=30° 0 0.453 0 0.413 0 0.373 0 0.332 0 0.253 0 0.215 0 0.435 0 0.398 0 0.360 0 0.322 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.229 0.229	$\varphi = 40^{\circ}$ 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.256 0.218 0.218 0.142	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253 0.213 0.176 0.143 0.113	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652 0.6055	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618 0.593 0.564 0.530 0.549 0.530	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561 0.533 0.502 0.469 0.432	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0 0.493 0 0.493 0 0.461 0 0.426 0 0.389 0 0.351 0	>30° 0 0.453 0 0.413 0 0.373 0 0.372 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0 0.322 0 0.284 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194	φ=40° 0.375 0.326 0.280 0.237 0.161 0.128 0.338 0.296 0.256 0.218 0.182 0.182 0.182	$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253 0.213 0.176 0.143 0.113 0.097	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652 0.6055 0.583	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618 0.593 0.564 0.530 0.494	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561 0.533 0.502 0.469 0.432 0.393	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0 0.493 0 0.493 0 0.461 0 0.426 0 0.389 0 0.313 0	>30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.372 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0 0.322 0 0.284 0 0.247 0 0.211 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.402		φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.297 0.253 0.213 0.176 0.143 0.113 0.113 0.295	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15 +15	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652 0.6055 0.583 0.771	φ=15° 0.637 0.616 0.590 0.559 0.525 0.487 0.638 0.593 0.564 0.530 0.494 0.454	φ=20° 0.564 0.536 0.503 0.468 0.430 0.391 0.350 0.561 0.533 0.502 0.469 0.432 0.393 0.353	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0 0.493 0 0.493 0 0.461 0 0.426 0 0.389 0 0.351 0 0.313 0	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.372 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0 0.322 0 0.284 0 0.247 0 0.211 0 0.464 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.161 0.402		φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.297 0.297 0.253 0.213 0.176 0.143 0.113 0.087 0.295	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.219\\ 0.210\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15 +15 +10	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.719 0.702 0.680 0.652 0.665 0.683 0.655 0.583 0.771	φ =15° 0.637 0.616 0.590 0.559 0.525 0.487 0.648 0.593 0.564 0.593 0.564 0.530 0.494 0.454 0.684	φ=20° 0.564 0.536 0.503 0.468 0.391 0.350 0.561 0.533 0.502 0.469 0.432 0.393 0.353	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.354 0 0.354 0 0.461 0.493 0.461 0.426 0.389 0.351 0.313 0.274 0.531 0.501	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.372 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0 0.322 0 0.284 0 0.247 0 0.464 0 0.430	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.161 0.402 0.365	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.218 0.182 0.149 0.120 0.346 0.326	φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.297 0.297 0.253 0.213 0.176 0.143 0.113 0.087 0.295 0.255 0.255	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ 0.210\\ 0.175\\ \end{array}$
δ/φ=1 δ/φ=2/3	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -5 -10 -15 +15 +10 +5	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652 0.665 0.583 0.771 0.763 0.748	φ =15° 0.637 0.616 0.590 0.525 0.487 0.447 0.648 0.618 0.593 0.564 0.593 0.564 0.494 0.454 0.684	φ=20° 0.564 0.536 0.503 0.468 0.391 0.350 0.561 0.502 0.469 0.432 0.393 0.353 0.604 0.579	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.354 0 0.354 0 0.422 0 0.394 0 0.354 0 0.426 0 0.389 0 0.351 0 0.274 0 0.313 0 0.274 0 0.501 0	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.373 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0 0.322 0 0.284 0 0.247 0 0.464 0 0.430 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.161 0.402 0.365 0.328	φ=40° 0.375 0.326 0.280 0.237 0.198 0.161 0.128 0.338 0.296 0.256 0.218 0.182 0.182 0.149 0.120 0.346 0.308 0.270	φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.297 0.253 0.213 0.176 0.143 0.181 0.087 0.295 0.256 0.256 0.256	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ 0.210\\ 0.210\\ 0.175\\ 0.142\\ \end{array}$
δ/φ=1 δ/φ=2/3 δ/φ=0	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15 +15 +10 +5 0	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.719 0.702 0.680 0.6552 0.683 0.771 0.763 0.723	φ =15° 0.637 0.616 0.590 0.525 0.487 0.447 0.638 0.593 0.564 0.593 0.564 0.530 0.494 0.454 0.684 0.6684 0.6643	φ=20° 0.564 0.536 0.503 0.468 0.391 0.350 0.561 0.502 0.469 0.432 0.393 0.353 0.604 0.579 0.550 0.517	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0 0.472 0 0.314 0 0.474 0 0.461 0.426 0.389 0.351 0.313 0.274 0.531 0.501 0.467 0.431	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.373 0 0.373 0 0.373 0 0.373 0 0.292 0 0.253 0 0.215 0 0.435 0 0.398 0 0.360 0 0.322 0 0.284 0 0.247 0 0.464 0 0.430 0 0.393 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.161 0.402 0.365 0.328 0.290		φ=45° 0.345 0.291 0.243 0.200 0.161 0.127 0.297 0.253 0.213 0.176 0.143 0.176 0.295 0.295 0.256 0.219 0.161	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ 0.210\\ 0.175\\ 0.142\\ 0.113\\ \end{array}$
δ/φ=1 δ/φ=2/3 δ/φ=0	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15 +15 +10 +5 +10 +5 0 -5	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.719 0.702 0.680 0.652 0.6055 0.583 0.771 0.763 0.727 0.703	φ =15° 0.637 0.616 0.590 0.559 0.525 0.487 0.447 0.638 0.618 0.593 0.564 0.593 0.564 0.530 0.494 0.454 0.6684 0.6684 0.6643 0.615	φ=20° 0.564 0.536 0.503 0.468 0.391 0.350 0.561 0.533 0.562 0.469 0.432 0.393 0.353 0.604 0.579 0.550 0.517 0.481	φ=25° Q 0.504 0 0.469 0 0.394 0 0.394 0 0.354 0 0.314 0 0.474 0 0.461 0 0.461 0 0.461 0 0.313 0 0.313 0 0.501 0 0.501 0 0.467 0	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.373 0 0.373 0 0.373 0 0.292 0 0.253 0 0.215 0 0.398 0 0.398 0 0.322 0 0.284 0 0.247 0 0.247 0 0.464 0 0.393 0 0.356 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.343 0.304 0.266 0.229 0.194 0.402 0.365 0.328 0.290 0.293		$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.297 0.253 0.213 0.176 0.143 0.113 0.087 0.295 0.256 0.219 0.256 0.256 0.219 0.256 0.256 0.219 0.256	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ 0.210\\ 0.175\\ 0.142\\ 0.113\\ 0.097\\ \end{array}$
δ/φ=1 δ/φ=2/3 δ/φ=0	+15 +10 +5 0 -5 -10 -15 +15 +10 +5 0 -5 -10 -15 +15 +15 +10 -5 0 -5 -10	φ=10° 0.725 0.714 0.696 0.673 0.645 0.612 0.574 0.729 0.710 0.702 0.680 0.675 0.680 0.652 0.605 0.583 0.711 0.763 0.748 0.727 0.701	φ=15° 0.637 0.616 0.590 0.559 0.559 0.487 0.447 0.638 0.593 0.553 0.5618 0.593 0.554 0.503 0.504 0.503 0.5454 0.6664 0.615 0.583 0.5466	φ=20° 0.564 0.536 0.503 0.468 0.391 0.350 0.561 0.533 0.502 0.469 0.393 0.353 0.604 0.579 0.550 0.517 0.481	φ=25° Q 0.504 0 0.469 0 0.354 0 0.394 0.354 0.314 0.274 0.493 0.461 0.426 0.389 0.351 0.313 0.313 0.274 0.531 0.501 0.467 0.431 0.393 0.354	=30° 0 0.453 0 0.413 0 0.373 0 0.373 0 0.373 0 0.373 0 0.373 0 0.292 0 0.253 0 0.215 0 0.398 0 0.360 0.322 0.284 0 0.247 0 0.464 0 0.393 0 0.356 0 0.318 0	p=35° 0.411 0.366 0.323 0.281 0.241 0.203 0.167 0.383 0.304 0.229 0.194 0.161 0.402 0.365 0.328 0.290 0.253		$\varphi = 45^{\circ}$ 0.345 0.291 0.243 0.200 0.161 0.127 0.097 0.253 0.213 0.176 0.143 0.113 0.087 0.295 0.256 0.219 0.256 0.219 0.256 0.219 0.184 0.152 0.122	$\begin{array}{c} \varphi=50^{\circ}\\ 0.320\\ 0.262\\ 0.211\\ 0.167\\ 0.130\\ 0.098\\ 0.071\\ 0.261\\ 0.216\\ 0.176\\ 0.140\\ 0.110\\ 0.083\\ 0.061\\ 0.249\\ 0.210\\ 0.175\\ 0.142\\ 0.113\\ 0.087\\ 0.087\\ 0.065\end{array}$

β/φ=0.0	λ°	0°	$\omega = 15^{\circ}$				ω=35°	σ =40°	₀=45°	σ=50°
P/ \$ 0.0	+15	0.694	0.600	0 524	0.462	0 412	0 371	0 336	0 308	0.286
	+10	0.074	0.000	0.524	0.402	0.712	0.371	0.330	0.364	0.227
	+10	0.003	0.362	0.500	0.433	0.378	0.333	0.295	0.204	0.237
	+5	0.670	0.559	0.471	0.401	0.344	0.296	0.256	0,222	0.193
δ/φ=1	0	0.649	0.531	0,440	0.367	0.308	0.260	0.219	0.185	0.155
	-5	0.622	0.500	0.406	0.332	0.273	0.224	0.184	0.150	0.121
	-10	0.591	0.465	0.370	0.296	0.237	0.190	0.152	0.119	0.093
	-15	0.555	0 427	0 332	0.259	0.203	0.158	0.122	0.092	0.068
	+15	0.700	0.602	0.510	0.454	0.205	0.150	0.204	0.267	0.224
	115	0.700	0.002	0.515	0.407	0.390	0.347	0.304	0.207	0.434
	+10	0.091	0.363	0.499	0.427	0.300	0.314	0.290	0.230	0.190
	+5	0.676	0,563	0,471	0.396	0.333	0.280	0.235	0.196	0.161
δ/φ=2/3	0	0.656	0.537	0.442	0.364	0.300	0.247	0.202	0.163	0.130
	-5	0.630	0.506	0,408	0.330	0.266	0.214	0.170	0.134	0.103
	-10	0.600	0.472	0.373	0.295	0.233	0.182	0.141	0.107	0.079
1. Sec. 1	-15	0.565	0.435	0.336	0 260	0.200	0.152	0.114	0.083	0.058
	+15	0.742	0.640	0.566	0.402	0.426	0.367	0.315	0.277	0.225
	110	0.776	0.045	0.500	0.4/2	0.420	0.307	0.313	0.277	0.225
	+10	0.730	0.034	0.545	0.407	0.398	0.330	0.282	0.235	0.192
	+5	0.723	0.613	0.520	0.438	0.366	0.304	0.250	0.202	0.161
δ/φ≕0	0	0.704	0.589	0.490	0.406	0.333	0.271	0.217	0.172	0.133
	-5	0.680	0.558	0.458	0.372	0.299	0.238	0.186	0.143	0.106
	-10	0.650	0.525	0.422	0.336	0.265	0.206	0.156	0.116	0.083
	-15	0.616	0 488	0 384	0 300	0 231	0 174	0.128	0.001	0.062
L		0.010	0.700	0.504	0.500	1,0,4,01	0,1/4	0.120	0.091	0.002
β/m=0 0	λ°		$\omega = 15^{\circ}$	∞=20°			@=35°	m=40°		0°
-F" ¥ V.V	+15	0.694	0.600	0 524	0 462	0 412	0 371	0 3 3 6	0 308	0.286
	+10	0.074	0.000	0.524	0.422	0.712	0.371	0.355	0.264	0.227
	+10	0.003	0.302	0.500	0.433	0.378	0.333	0.293	0.204	0.437
s/ •	+3	0.070	0.539	0.4/1	0.401	0.344	0.290	0.250	0.222	0.193
0/φ=1		0.649	0.531	0,440	0.367	0.308	0.260	0.219	0,185	0.155
	5	0.622	0.500	0.406	0.332	0.273	0.224	0.184	0.150	0.121
	-10	0.591	0.465	0.370	0.296	0.237	0.190	0.152	0.119	0.093
	-15	0.555	0.427	0.332	0.259	0.203	0.158	0.122	0.092	0.068
	+15	0.700	0.602	0.519	0.454	0.396	0.347	0.304	0.267	0.234
	+10	0.691	0.585	0.499	0.427	0.366	0 3 1 4	0 296	0.230	0 196
	+5	0.676	0.563	0.471	0.396	0 333	0.280	0.235	0.196	0.161
$\delta/m=2/3$		0.656	0.537	0.442	0.364	0.300	0.247	0.202	0.153	0.130
0/ψ-2/3		0.030	0.557	0.400	0.304	0.300	0.247	0.202	0.105	0.100
	-3	0.030	0.500	0,408	0.330	0.200	0.214	0.170	0.134	0.103
	-10	0.600	0.472	0.373	0.295	0.233	0.182	0.141	0.107	0.079
	-15	0.565	0.435	0.336	0.260	0.200	0.152	0.114	0.083	0.058
	+15	0.742	0.649	0.566	0.492	0.426	0.367	0.315	0.277	0.225
	+10	0.736	0.634	0.545	0.467	0.398	0.336	0.282	0.235	0.192
	+5	0.723	0.613	0.520	0.438	0.366	0.304	0.250	0.202	0.161
δ/თ≕0	0	0 704	0.589	0.490	0.406	0 333	0.271	0.217	0.172	0 133
	5	0.680	0.559	0.450	0.272	0.300	0.220	0.196	0.142	0.105
	-5	0.000	0.330	0.400	0.312	0.299	0.238	0.160	0.143	0.100
	-10	0.050	0.323	0.422	0.330	0.205	0.200	0.130	0.110	0.083
L	-15	0.616	0.488	0.384	0.300	0.231	0.174	0.128	0.091	0.062
Q/10-02	30	100	1				-250	- 100		
μ/φ=-0.2	A.	φ=10	$\varphi = 15^{\circ}$	$\phi = 20^{\circ}$	$\varphi = 25^{\circ}$	$\phi = 30^{\circ}$	$\phi=35^{\circ}$	$\phi = 40^{\circ}$	φ=45	$\phi=50^{\circ}$
}	+15	0.668	0.568	0.490	0.428	0.378	0.337	0.304	0.278	0.257
	+10	0.661	0.553	0.470	0.403	0.350	0.306	0.270	0.241	0.216
	+5	0.647	0.533	0.445	0.376	0.320	0.275	0.237	0.205	0.178
δ/φ=1	0	0.628	0.508	0.417	0.346	0.289	0.243	0.204	0.172	0,145
	-5	0.602	0.479	0.386	0.314	0.257	0.211	0.173	0.142	0.115
	-10	0.573	0 446	0 352	0 281	0 225	0 180	0.144	0 114	0.088
	_15	0.530	0411	0317	0 247	0 102	0.150	0.116	0.088	0.065
	-15	0.559	0.572	0.017	0.421	0.175	0.150	0.110	0.000	0.000
	+10	0.014	0.512	0.470	0.421	0.303	0.017	0.270	0.241	0.170
	+10	0.00/	0.338	0.470	0.398	0.339	0.289	0.247	0.211	0.179
	+5	0.655	0.539	0.447	0.372	0.311	0.260	0.218	0.181	0.150
δ/φ=2/3	0	0.636	0.515	0.420	0.343	0.282	0.231	0.189	0.153	0.122
1	-5	0.612	0.487	0.390	0.313	0.252	0.202	0.161	0.126	0.098
	-10	0.583	0.455	0.357	0.281	0.221	0.173	0.134	0.102	0.076
1	-15	0.549	0.420	0.323	0.249	0.191	0.145	0.109	0.080	0.056
	+15	0 718	0.620	0.534	0.460	0.395	0 338	0.288	0.244	0.205
	+10	0 712	0.607	0517	0.420	0 271	0 312	0.261	0.216	0177
]		0.713	0.007	0.405	0.439	0.311	0.312	0.201	0.210	0.177
81. 0	+3	0.702	0.590	0.495	0.414	0.344	0.284	0.233	0.198	0.150
δ/φ=0		0.685	0.567	0.468	0.385	0.315	0.255	0.205	0.161	0.124
	-5	0.663	0.540	0.439	0.354	0.285	0.226	0.177	0.135	0.100
	-10	0.635	0.509	0.406	0.322	0.253	0.196	0.149	0.111	0.079
ļ	-15	0.602	0.474	0.371	0.288	0.221	0.167	0.124	0.088	0.061

01 0.1	20	-109	a-15°	(n=20°	m=25°	σ=30°	σ=35°	φ=40°	φ=45°	φ=50°
$\beta/\phi = -0.4$	<u>^</u>	$\varphi = 10^{\circ}$	$\frac{\phi - 13}{0.541}$	$\frac{\psi^2}{0.461}$	0 398	0 349	0.309	0.276	0.250.	0.230
	+15	0.043	0.541	0.401	0.378	0 325	0.283	0.248	0.220	0.197
	+10	0.039	0.520	0.477	0.354	0.299	0 256	0,220	0.190	0.165
	+5	0.027	0.310	0.722	0.327	0 272	0.228	0.192	0.161	0.136
δ/φ=1	0	0.009	0.461	0.357	0.298	0.243	0.199	0.164	0.134	0.109
	->	0.585	0.401	0.300	0.258	0.214	0.171	0.137	0.108	0.085
	-10	0.557	0.450	0.337	0.236	0.184	0.144	0.111	0.085	0.063
	-15	0.524	0.590	0.304	0.393	0 337	0 291	0.252	0.218	0.190
	+15	0.652	0.540	0.402	0.374	0.316	0 268	0.228	0.194	0.164
	+10	0.047	0.534	0.445	0.352	0.292	0 243	0.203	0.168	0.139
	+3	0.030	0.317	0.423	0.332	0.266	0.218	0.177	0.144	0.115
$\delta/\phi=2/3$	0	0.019	0.490	0.401	0.320	0.239	0 191	0.152	0.120	0.093
		0.590	0.470	0.373	0.259	0.235	0.165	0.128	0.098	0.073
	-10	0.509	0.440	0.343	0.20	0.183	0 140	0.105	0.077	0.054
ļ	-15	0.536	0.407	0.511	0.432	0.165	0 313	0.265	0.223	0.186
	+15	0.697	0.594	0.307	0.432	0.348	0.291	0 242	0.200	0.163
	+10	0.694	0.585	0.493	0.413	0.375	0.267	0.218	0.176	0.140
	+5	0.685	0.509	0.475	0.353	0.320	0.242	0.193	0.152	0.118
δ/φ=0	0	0.669	0.549	0.450	0.300	0.300	0.215	0 168	0.129	0.097
	-5	0.648	0.524	0.423	0.340	0.212	0.189	0 144	0.107	0.077
	-10	0.622	0.495	0.393	0.310	0.245	0.162	0 120	0.086	0.059
	-15	0.591	0.462	0.300	0.279	0.214	0.102	10.120		
				000			(0=35°	$\omega = 40^{\circ}$		φ=50°
β/φ=-0.6	λ°	φ=10°	φ=15°	φ=20°	φ=25°	$\varphi = 30^{\circ}$	$\varphi = 35^{\circ}$	$\varphi = 40^{\circ}$	φ=45° 0 224	φ=50° 0.204
β/φ=-0.6 0.127	λ° +15	φ=10° 0.625	φ=15° 0.517	φ=20° 0.435	φ=25° 0.372	$\phi = 30^{\circ}$ 0.322	φ=35° 0.282	$\phi = 40^{\circ}$ 0.250 0.228	$\phi = 45^{\circ}$ 0.224 0.201	$\phi = 50^{\circ}$ 0.204 0.178
β/φ=-0.6 0.127	λ° +15 +10	φ=10° 0.625 0.620	φ=15° 0.517 0.506	φ=20° 0.435 0.421	φ=25° 0.372 0.356	$\phi = 30^{\circ}$ 0.322 0.303	φ=35° 0.282 0.262	φ=40° 0.250 0.228 0.204	φ=45° 0.224 0.201 0.176	$\phi = 50^{\circ}$ 0.204 0.178 0.152
<u>β/φ=-0.6</u> 0.127	$\frac{\lambda^{\circ}}{+15}$ +10 +5	φ=10° 0.625 0.620 0.609	φ=15° 0.517 0.506 0.490	φ=20° 0.435 0.421 0.402	φ=25° 0.372 0.356 0.335	$\varphi = 30^{\circ}$ 0.322 0.303 0.281	φ=35° 0.282 0.262 0.239	φ=40° 0.250 0.228 0.204 0.180	φ=45° 0.224 0.201 0.176 0.151	$\varphi = 50^{\circ}$ 0.204 0.178 0.152 0.127
<u>β/φ=-0.6</u> 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0	φ=10° 0.625 0.620 0.609 0.592	φ=15° 0.517 0.506 0.490 0.470	φ=20° 0.435 0.421 0.402 0.379	φ=25° 0.372 0.356 0.335 0.310	$\phi = 30^{\circ}$ 0.322 0.303 0.281 0.257	φ=35° 0.282 0.262 0.239 0.214	φ=40° 0.250 0.228 0.204 0.180	φ=45° 0.224 0.201 0.176 0.151 0.127	$\varphi = 50^{\circ}$ 0.204 0.178 0.152 0.127 0.103
<u>β/φ=-0.6</u> 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5	φ=10° 0.625 0.620 0.609 0.592 0.570	φ=15° 0.517 0.506 0.490 0.470 0.444	$\begin{array}{c} \phi=20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \end{array}$	φ=25° 0.372 0.356 0.335 0.310 0.285	$\varphi=30^{\circ}$ 0.322 0.303 0.281 0.257 0.231 0.204	φ=35° 0.282 0.262 0.239 0.214 0.189	φ=40° 0.250 0.228 0.204 0.180 0.155 0.130	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103	$\varphi=50^{\circ}$ 0.204 0.178 0.152 0.127 0.103 0.081
<u>β/φ=-0.6</u> 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5 -10	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415	$\begin{array}{c} \phi=20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \end{array}$	φ=25° 0.372 0.356 0.335 0.310 0.285 0.256	$\phi=30^{\circ}$ 0.322 0.303 0.281 0.257 0.231 0.204 0.177	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.128	φ=40° 0.250 0.228 0.204 0.180 0.155 0.130	φ=45° 0.224 0.201 0.176 0.151 0.127 0.103 0.082	$\begin{array}{c} \varphi = 50^{\circ} \\ 0.204 \\ 0.178 \\ 0.152 \\ 0.127 \\ 0.103 \\ 0.081 \\ 0.061 \end{array}$
<u>β/φ=-0.6</u> 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5 -10 -15	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542 0.510	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383	$\begin{array}{c} \phi=\!20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \end{array}$	$\varphi=25^{\circ}$ 0.372 0.356 0.335 0.310 0.285 0.256 0.227	$\varphi=30^{\circ}$ 0.322 0.303 0.281 0.257 0.231 0.204 0.177 0.212	$\varphi=35^{\circ}$ 0.282 0.262 0.239 0.214 0.189 0.163 0.138	φ=40° 0.250 0.228 0.204 0.180 0.155 0.130 0.107	$\varphi = 45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082	$\begin{array}{c} \varphi = 50^{\circ} \\ 0.204 \\ 0.178 \\ 0.152 \\ 0.127 \\ 0.103 \\ 0.081 \\ 0.061 \\ 0.188 \end{array}$
<u>β/φ=-0.6</u> 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5 -10 -15 +15	$\begin{array}{c} \phi = 10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523	$\begin{array}{c} \phi=\!20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \end{array}$	φ=25° 0.372 0.356 0.335 0.310 0.285 0.256 0.227 0.368	$\varphi=30^{\circ}$ 0.322 0.303 0.281 0.257 0.231 0.204 0.177 0.313	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.240	φ=40° 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177	$\begin{array}{c} \varphi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ \end{array}$
β/φ=-0.6 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5 -10 -15 +15 +10	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542 0.510 0.633 0.629	\$\varphi=15^{\circ}\$ 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514	$\begin{array}{c} \phi=20^{\circ}\\ 0.435\\ 0.421\\ 0.402\\ 0.379\\ 0.353\\ 0.324\\ 0.293\\ 0.437\\ 0.424 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\end{array}$	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249		$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.155	$\begin{array}{c} \varphi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ \end{array}$
β/φ=-0.6 0.127 δ/φ=1	$\frac{\lambda^{\circ}}{+15}$ +10 +5 0 -5 -10 -15 +15 +10 +5	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542 0.510 0.633 0.629 0.619	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499	$\begin{array}{c} \phi=\!20^\circ \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \end{array}$	$\begin{array}{c} \phi=25^{\circ}\\ 0.372\\ 0.356\\ 0.335\\ 0.310\\ 0.285\\ 0.256\\ 0.227\\ 0.368\\ 0.353\\ 0.333\\ \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ \end{array}$	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.229	$\varphi=40^{\circ}$ 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210 0.189	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156	$\begin{array}{c} \varphi=50^{\circ} \\ 0.204 \\ 0.178 \\ 0.152 \\ 0.127 \\ 0.103 \\ 0.081 \\ 0.061 \\ 0.188 \\ 0.169 \\ 0.149 \\ 0.129 \end{array}$
β/φ=-0.6 0.127 δ/φ=1 δ/φ=2/3	$ \begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \end{array} $	$\begin{array}{c} \varphi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \end{array}$	$\varphi=15^{\circ}$ 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479	$\begin{array}{c} \phi=\!20^{\circ} \\ 0,435 \\ 0,421 \\ 0,402 \\ 0,379 \\ 0,353 \\ 0,324 \\ 0,293 \\ 0,437 \\ 0,424 \\ 0,406 \\ 0,384 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ 0.253\end{array}$	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.228 0.206	$\varphi=40^{\circ}$ 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210 0.189 0.167	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.108\end{array}$
β/φ=-0.6 0.127 δ/φ=1 δ/φ=2/3	$ \begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \end{array} $	$\begin{array}{c} \phi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \end{array}$	$\varphi = 15^{\circ}$ 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.475	$\begin{array}{c} \phi=\!20^{\circ} \\ 0,435 \\ 0,421 \\ 0,402 \\ 0,379 \\ 0,353 \\ 0,324 \\ 0,293 \\ 0,437 \\ 0,424 \\ 0,406 \\ 0,384 \\ 0,359 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ 0.253\\ 0.228\\ \end{array}$	$\varphi=35^{\circ}$ 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.228 0.206 0.182	$\varphi=40^{\circ}$ 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210 0.189 0.167 0.145 0.167	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.004	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.129\\ 0.088\\ \end{array}$
β/φ=-0.6 0.127 δ/φ=1 δ/φ=2/3	$\frac{\lambda^{\circ}}{+15} + \frac{1}{10} + \frac{1}{5} = \frac{1}{0} - \frac{1}{5} - \frac{1}{10} - \frac{1}{15} + \frac{1}{15} + \frac{1}{10} + \frac{1}{5} = \frac{1}{0} - \frac{1}{5} - \frac{1}{10} - \frac{1}{5} - 1$	$\begin{array}{c} \phi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \end{array}$	$\varphi = 15^{\circ}$ 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.475 0.427	$\begin{array}{c} \phi=\!20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \\ 0.259 \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ 0.253\\ 0.228\\ 0.203\\ \end{array}$	$\varphi=35^{\circ}$ 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.228 0.206 0.182 0.158	$\varphi=40^{\circ}$ 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210 0.189 0.167 0.145 0.123	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.094 0.094	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.129\\ 0.108\\ 0.081\\ 0.070\\$
β/φ=-0.6 0.127 δ/φ=1 δ/φ=2/3	$\frac{\lambda^{\circ}}{+15} + \frac{1}{10} + \frac{1}{5} = \frac{1}{10} - \frac{1}{15} + \frac{1}{15} + \frac{1}{10} + \frac{1}{5} = \frac{1}{5} - \frac{1}{10} - \frac{1}{15} = \frac{1}{15} - \frac{1}{15} - \frac{1}{15} - \frac{1}{15} - \frac{1}{15} = \frac{1}{15} - \frac{1}{15$	$\begin{array}{c} \phi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.427 0.395	φ=20° 0.435 0.421 0.402 0.379 0.353 0.324 0.293 0.437 0.424 0.406 0.384 0.359 0.331	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ \end{array}$	φ=30° 0.322 0.303 0.281 0.257 0.231 0.204 0.177 0.313 0.296 0.275 0.253 0.228 0.203 0.178	φ=35° 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.228 0.206 0.182 0.158 0.158 0.135	$\varphi=40^{\circ}$ 0.250 0.228 0.204 0.180 0.155 0.130 0.107 0.229 0.210 0.189 0.167 0.145 0.123 0.101 0.213	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.094 0.075	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.108\\ 0.008\\ 0.008\\ 0.070\\ 0.168\\ \end{array}$
<u>β/φ=-0.6</u> 0.127 δ/φ=1 δ/φ=2/3	$\begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \end{array}$	$\begin{array}{c} \varphi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \\ 0.679 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.427 0.395 0.572	φ=20° 0.435 0.421 0.402 0.379 0.353 0.324 0.293 0.437 0.424 0.406 0.384 0.359 0.331 0.301	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \end{array}$	$\begin{array}{c} \varphi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ 0.253\\ 0.228\\ 0.203\\ 0.178\\ 0.344\\ \end{array}$	$\varphi=35^{\circ}$ 0.282 0.262 0.239 0.214 0.189 0.163 0.138 0.267 0.249 0.228 0.206 0.182 0.158 0.135 0.289 0.289		$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.094 0.075 0.203 0.197	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.070\\ 0.168\\ 0.070\\ 0.150\\ 0.150\\ 0.150\\ 0.0150\\ 0.0150\\ 0.00$
<u>β/φ=-0.6</u> 0.127 δ/φ=1 δ/φ=2/3	$\begin{array}{r} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ \end{array}$	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542 0.510 0.633 0.629 0.619 0.633 0.582 0.555 0.525 0.679	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.427 0.395 0.572 0.565	$\begin{array}{c} \phi=\!20^\circ \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.301 \\ 0.483 \\ 0.471 \\ \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ \end{array}$	$\begin{array}{c} \phi=30^{\circ}\\ 0.322\\ 0.303\\ 0.281\\ 0.257\\ 0.231\\ 0.204\\ 0.177\\ 0.313\\ 0.296\\ 0.275\\ 0.253\\ 0.228\\ 0.203\\ 0.178\\ 0.344\\ 0.328\\ \end{array}$	$\begin{array}{c} \phi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.163\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.158\\ 0.135\\ 0.289\\ 0.272\\$		$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.094 0.075 0.203 0.185 0.165	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.070\\ 0.168\\ 0.120\\ \end{array}$
<u>β/φ=-0.6</u> 0.127 δ/φ=1 δ/φ=2/3	$\begin{array}{r} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ \end{array}$	φ=10° 0.625 0.620 0.609 0.592 0.570 0.542 0.510 0.633 0.629 0.619 0.633 0.582 0.5525 0.677 0.669	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.514 0.499 0.479 0.479 0.479 0.479 0.425 0.395 0.572 0.565 0.552	$\begin{array}{c} \phi=\!20^\circ \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.301 \\ 0.483 \\ 0.471 \\ 0.455 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ 0.375 \end{array}$	$\begin{array}{c} \phi=30^{\circ} \\ 0.322 \\ 0.303 \\ 0.281 \\ 0.257 \\ 0.231 \\ 0.204 \\ 0.177 \\ 0.313 \\ 0.296 \\ 0.275 \\ 0.228 \\ 0.203 \\ 0.228 \\ 0.203 \\ 0.178 \\ 0.344 \\ 0.328 \\ 0.309 \end{array}$	$\begin{array}{c} \phi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.163\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.158\\ 0.135\\ 0.289\\ 0.272\\ 0.252\end{array}$		$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.177 0.156 0.135 0.114 0.094 0.075 0.203 0.185 0.165	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.070\\ 0.168\\ 0.150\\ 0.130\\ 0.113\\ \end{array}$
$\beta/\phi=-0.6$ 0.127 $\delta/\phi=1$ $\delta/\phi=2/3$ $\delta/\phi=0$	$\begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -5 \\ -10 \\ -15 \\ +115 \\ +10 \\ +15 \\ +10 \\ -15 \\ +10 \\ -15 \\ -10 \\ -10 \\ -15 \\ -10 \\$	$\begin{array}{c} \varphi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \\ 0.677 \\ 0.669 \\ 0.656 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.514 0.499 0.479 0.455 0.395 0.572 0.565 0.552 0.523	$\begin{array}{c} \phi=\!20^\circ \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.331 \\ 0.331 \\ 0.483 \\ 0.471 \\ 0.455 \\ 0.434 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ 0.375 \\ 0.353 \end{array}$	φ=30° 0.322 0.303 0.281 0.257 0.231 0.204 0.177 0.313 0.296 0.275 0.228 0.203 0.178 0.344 0.328 0.309 0.287	$\begin{array}{c} \phi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.163\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.206\\ 0.182\\ 0.158\\ 0.135\\ 0.289\\ 0.272\\ 0.252\\ 0.230\\ \end{array}$	$\begin{array}{c} \phi=40^{\circ}\\ 0.250\\ 0.228\\ 0.204\\ 0.180\\ 0.155\\ 0.130\\ 0.155\\ 0.130\\ 0.107\\ 0.229\\ 0.229\\ 0.229\\ 0.210\\ 0.189\\ 0.167\\ 0.145\\ 0.123\\ 0.101\\ 0.243\\ 0.225\\ 0.205\\ 0.183\\ \end{array}$	φ=45° 0.224 0.201 0.176 0.151 0.127 0.082 0.197 0.156 0.135 0.114 0.094 0.075 0.203 0.185 0.165	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.061\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.50\\ 0.130\\ 0.130\\ 0.111\\ 0.021\end{array}$
<u>β/φ=-0.6</u> 0.127 δ/φ=1 δ/φ=2/3	$\begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +15 \\ +10 \\ -5 \\ 0 \\ -5 \\ -5 \\ 0 \\ -5 \\ 0 \\ -5 \\ \end{array}$	$\begin{array}{c} \varphi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \\ 0.679 \\ 0.677 \\ 0.669 \\ 0.656 \\ 0.636 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.395 0.572 0.552 0.552 0.554 0.511	$\begin{array}{c} \phi=\!20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.301 \\ 0.483 \\ 0.471 \\ 0.455 \\ 0.434 \\ 0.410 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.333 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ 0.375 \\ 0.353 \\ 0.328 \\ \end{array}$	$\begin{array}{c} \phi=30^{\circ} \\ 0.322 \\ 0.303 \\ 0.281 \\ 0.257 \\ 0.231 \\ 0.204 \\ 0.177 \\ 0.313 \\ 0.296 \\ 0.275 \\ 0.253 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.178 \\ 0.344 \\ 0.328 \\ 0.309 \\ 0.287 \\ 0.262 \end{array}$	$\begin{array}{c} \phi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.138\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.135\\ 0.289\\ 0.272\\ 0.252\\ 0.230\\ 0.206\\ \end{array}$	$\begin{array}{c} \phi=40^\circ\\ 0.250\\ 0.228\\ 0.204\\ 0.180\\ 0.155\\ 0.130\\ 0.107\\ 0.229\\ 0.107\\ 0.229\\ 0.167\\ 0.145\\ 0.123\\ 0.101\\ 0.243\\ 0.225\\ 0.205\\ 0.183\\ 0.161\\ \end{array}$	$\varphi=45^{\circ}$ 0.224 0.201 0.176 0.151 0.127 0.103 0.082 0.197 0.176 0.135 0.197 0.156 0.135 0.114 0.094 0.075 0.203 0.185 0.165 0.165 0.144 0.123	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.081\\ 0.081\\ 0.169\\ 0.149\\ 0.129\\ 0.149\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.150\\ 0.130\\ 0.111\\ 0.092\\ 0.092\\ 0.092\\ \end{array}$
β/φ=-0.6 0.127 δ/φ=1 δ/φ=2/3	$\begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ 0 \\ -5 \\ -10 \\ \end{array}$	$\begin{array}{c} \varphi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \\ 0.679 \\ 0.677 \\ 0.669 \\ 0.677 \\ 0.669 \\ 0.656 \\ 0.636 \\ 0.611 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.427 0.395 0.522 0.552 0.552 0.552 0.534 0.511 0.483	$\begin{array}{c} \phi=20^{\circ} \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.301 \\ 0.483 \\ 0.471 \\ 0.455 \\ 0.434 \\ 0.410 \\ 0.382 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ 0.375 \\ 0.353 \\ 0.328 \\ 0.301 \end{array}$	$\begin{array}{c} \varphi=30^{\circ} \\ 0.322 \\ 0.303 \\ 0.281 \\ 0.257 \\ 0.231 \\ 0.204 \\ 0.177 \\ 0.313 \\ 0.296 \\ 0.275 \\ 0.275 \\ 0.228 \\ 0.203 \\ 0.178 \\ 0.304 \\ 0.328 \\ 0.309 \\ 0.287 \\ 0.287 \\ 0.262 \\ 0.235 \end{array}$	$\begin{array}{c} \phi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.138\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.135\\ 0.289\\ 0.272\\ 0.252\\ 0.230\\ 0.206\\ 0.182\end{array}$	$\begin{array}{c} \phi=40^\circ\\ 0.250\\ 0.228\\ 0.204\\ 0.180\\ 0.155\\ 0.130\\ 0.167\\ 0.229\\ 0.107\\ 0.229\\ 0.167\\ 0.145\\ 0.123\\ 0.101\\ 0.243\\ 0.225\\ 0.205\\ 0.183\\ 0.161\\ 0.138\\ \end{array}$	$\begin{array}{c} \varphi=\!$	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.081\\ 0.081\\ 0.188\\ 0.169\\ 0.149\\ 0.129\\ 0.188\\ 0.070\\ 0.168\\ 0.088\\ 0.070\\ 0.168\\ 0.150\\ 0.130\\ 0.111\\ 0.092\\ 0.074\\$
$\frac{\beta/\phi=-0.6}{0.127}$ $\delta/\phi=1$ $\delta/\phi=2/3$ $\delta/\phi=0$	$\begin{array}{c} \lambda^{\circ} \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -15 \\ +10 \\ +5 \\ 0 \\ -5 \\ -10 \\ -5 \\ -10 \\ -15 \end{array}$	$\begin{array}{c} \phi=10^{\circ} \\ 0.625 \\ 0.620 \\ 0.609 \\ 0.592 \\ 0.570 \\ 0.542 \\ 0.510 \\ 0.633 \\ 0.629 \\ 0.619 \\ 0.603 \\ 0.582 \\ 0.556 \\ 0.525 \\ 0.679 \\ 0.677 \\ 0.669 \\ 0.656 \\ 0.636 \\ 0.636 \\ 0.611 \\ 0.581 \end{array}$	φ=15° 0.517 0.506 0.490 0.470 0.444 0.415 0.383 0.523 0.514 0.499 0.479 0.455 0.427 0.395 0.572 0.5552 0.532 0.5311 0.483 0.452	$\begin{array}{c} \phi=\!20^\circ \\ 0.435 \\ 0.421 \\ 0.402 \\ 0.379 \\ 0.353 \\ 0.324 \\ 0.293 \\ 0.437 \\ 0.424 \\ 0.406 \\ 0.384 \\ 0.359 \\ 0.331 \\ 0.301 \\ 0.483 \\ 0.471 \\ 0.455 \\ 0.434 \\ 0.410 \\ 0.382 \\ 0.351 \end{array}$	$\begin{array}{c} \varphi=25^{\circ} \\ 0.372 \\ 0.356 \\ 0.335 \\ 0.310 \\ 0.285 \\ 0.256 \\ 0.227 \\ 0.368 \\ 0.353 \\ 0.311 \\ 0.286 \\ 0.353 \\ 0.311 \\ 0.286 \\ 0.259 \\ 0.231 \\ 0.408 \\ 0.394 \\ 0.375 \\ 0.353 \\ 0.328 \\ 0.301 \\ 0.271 \\ \end{array}$	φ=30° 0.322 0.303 0.281 0.257 0.231 0.204 0.177 0.313 0.296 0.275 0.253 0.228 0.203 0.178 0.303 0.275 0.263 0.275 0.203 0.178 0.344 0.309 0.287 0.262 0.235 0.262	$\begin{array}{c} \varphi=35^{\circ}\\ 0.282\\ 0.262\\ 0.239\\ 0.214\\ 0.189\\ 0.163\\ 0.138\\ 0.267\\ 0.249\\ 0.228\\ 0.206\\ 0.182\\ 0.158\\ 0.135\\ 0.289\\ 0.272\\ 0.252\\ 0.230\\ 0.206\\ 0.182\\ 0.252\\ 0.230\\ 0.206\\ 0.182\\ 0.158\\$	$\begin{array}{c} \phi=40^\circ\\ 0.250\\ 0.228\\ 0.204\\ 0.180\\ 0.155\\ 0.130\\ 0.107\\ 0.229\\ 0.210\\ 0.189\\ 0.167\\ 0.145\\ 0.123\\ 0.101\\ 0.243\\ 0.225\\ 0.205\\ 0.183\\ 0.161\\ 0.138\\ 0.116\end{array}$	$\begin{array}{c} \phi=\!45^\circ\\ 0.224\\ 0.201\\ 0.176\\ 0.151\\ 0.127\\ 0.103\\ 0.082\\ 0.197\\ 0.177\\ 0.156\\ 0.135\\ 0.114\\ 0.094\\ 0.075\\ 0.203\\ 0.185\\ 0.165\\ 0.144\\ 0.123\\ 0.103\\ 0.084\\ \end{array}$	$\begin{array}{c} \phi=50^{\circ}\\ 0.204\\ 0.178\\ 0.152\\ 0.127\\ 0.103\\ 0.081\\ 0.081\\ 0.081\\ 0.081\\ 0.169\\ 0.149\\ 0.129\\ 0.108\\ 0.088\\ 0.070\\ 0.168\\ 0.070\\ 0.168\\ 0.058\\ 0.070\\ 0.130\\ 0.111\\ 0.092\\ 0.074\\ 0.058\\ \end{array}$

Tableaux 2.2.2 valeurs du coefficient de Butée K_p .

Coefficient de butée pour ($i = 0, \lambda = 0, \delta = -\varphi$).

φ°	K _p '	φ	K _p ^y	φ	K _p ⁷	φ	K _p ⁷	φ	K _p ^γ
10	1.645	18	2.639	26	4.634	34	9.25	42	22.40
11	1.737	19	2.815	27	5.011	35	10.20	43	25.49
12	1.837	20	3.008	2.8	5.432	36	11.29	44	29.17
13	1.964	21	3.220	29	5.899	37	12.53	45	33.53
14	2.063	22	3.451	30	6.421	38	13.96	46	38.80
15	2.190	23	3.706	31	7.007	39	15.62	47	45.16
16	2.327	24	3.984	32	7.666	40	17.54	48	52.93
17	2.476	25	4.293	33	8.407	41	19.78	49	62.49

Coefficient de butée pour ($i = 0 \ et \ \delta = -\varphi$).

φ°	. 10	15	20	25	30	35	40	45	50
λ=+15	1.44	1.82	2.35	3.14	4.35	6.35	9.87	16.7	32.0
λ=+10	1.52	1.95	2.57	3.50	4.98	7.47	12.0	21.2	42.5
λ=+5	1.59	2.07	2.79	3.89	5.67	8.75	14.5	26.7	56.3
λ=0	1.64	2.19	3.01	4.29	6.42	10.2	17.5	33.5	74.3
λ=-5	1.69	2.30	3.23	4.72	7.25	11.9	21.1	42.1	98.2
λ=-10	1.73	2.40	3.45	5.17	8.17	13.8	25.5	52.9	130
λ=-45	1.76	2.50	3.67	5.66.	9.20	16.1	30.7	66.6	172

Coefficient de minoration à appliquer aux valeurs ci-dessus pour $\delta \neq -\varphi$.

φ°	10	15	20	25	30	35	40	45	50
δ/φ=0.75	0.984	0.971	0.954	0.934	0.908	0.877	0.835	0.784	0.718
δ/φ=0.66	0.973	0.952	0.926	0.895	0.856	0.808	0.749	0.679	0.594
δ/φ=0.50	0.946	0.907	0.862	0.808	0.746	0.674	0.592	0.500	0.399
δ/φ=0.33	0.918	0.863	0.799	0.727	0.647	0.558	0.463	0.364	0.266
δ/φ=0.00	0.864	0.775	0.678	0.574	0.467	0.362	0.262	0.174	0.102

2.7 Sol stratifies :

Les terres situées au-dessus de la couche dans laquelle la pression des terres doit être calculée son supposées agir comme une surcharge.

En effet, pour déterminer la poussée des terres le long de *AB* dans le cas général (Fig 2.11), il est possible de superposer les action suivant :

- La poussée due au poids de la couche *i*,
- L'action des couches supérieures et de la surcharge q₁,
- L'action de la cohésion.

Fig.2.11 multicouche - poussée le long de AB.

En un point M compris entre A et B. la composante normale de la pression des terres est la somme des actions suivantes :

- L'action de S, soit $q_S = K_a * S * \cos \delta$
- L'action de la poussée due a la couche *i*, elle-même $q_i = K_a * \gamma_i * l * \cos \delta$
- L'action de la cohésion $q_c = (1 K_a * \cos \delta) * c_i * \tan \varphi_i$.

2.8 Présence d'une nappe :

Deux actions doivent être superposées (Fig.2.12) :

- L'action de la poussée des terres, en considérant le poids volumique déjaugé en dessous de la nappe.
- La poussée hydrostatique de l'eau, qui est normale à l'écran.

Fig.2.12 prise en compte de pression hydrostatique.

S'il existe également une nappe côté aval de l'écran, la poussée hydrostatique est considérée comme constat en dessous du niveau aval et égale à la différence de niveau H entre les côtes amont et aval.

- La poussée due à l'eau est considérable. Des systèmes de drainage et des barbacanes sont installés derrière les murs de soutènement autostables afin d'éliminer cette poussée.la mise en œuvre d'un drainage est rarement possible pour les rideaux de palplanches ou les parois moulées.
- Cette modélisation est une simplification puisqu'elle ne prend pas en compte les poussées dues à l'écoulement de l'amont vers l'aval ou vers le drainage. Ces poussées d'écoulement peuvent avoir une action défavorable, même si un drainage est prévu.

2.9. STABILITE DES MURS DE SOUTENEMENT :

Dans la plupart des cas, un mur de soutènement est enterré en pied d'une certaine hauteur. Il se trouve donc soumis à un effort de poussée et un effort de butée (considérée comme stabilisante). Or pour mobiliser la butée, il faut un déplacement beaucoup plus fort que pour mobiliser la poussée. La valeur calculée de la butée risque de ne jamais être atteinte. Dans la pratique, lorsque le déplacement du mur parait insuffisant pour mobiliser la butée, on ne considère qu'une partie de cette butée ou on n'en tient pas compte. (Cas des remblais récents compactés servant à enterrer le pied du mur). On reste donc du côté de la sécurité.

2.9.1. Vérification de la stabilité :

2.9.1.1. Stabilité au renversement :

La stabilité se définit comme le rapport du moment des forces stabilisatrices sur le moment des forces de renversement, moments calculés par rapport au point 0.

Forces de renversement : poussée, résultante éventuelle des sous-pressions de l'eau. Force stabilisatrices : poids, butée.

Si la condition suffisante n'est pas vérifiée, la stabilité au renversement est assurée si:

$$K_R = \frac{\sum Moments \ stabilisants}{\sum Moments \ renversants}$$
(2.25)

2.9.1.2. Stabilité au glissement sur la base : On doit s'assurer que les contraintes de cisaillement mobilisées à la base du mur sont en deçà de la résistance à l'adhérence base/sol. Par analogie avec le critère de rupture du sol de Mohr-Coulomb, on écrit que la contrainte de cisaillement maximum à la base du mur ou résistance à l'adhérence est égale à :

$$\tau_{ult} = a + \sigma \tan \psi_a \tag{2.26}$$

a est "l'adhérence" sol/base du mur et ψ_a est l'angle d'adhérence, prise souvent égale à $\frac{2\varphi}{3}$.

En cas d'un sol frottant ($\varphi \neq 0$) à la base du mur, pour des raisons de sécurité, on néglige l'adhérence a, ce qui permet d'écrire l'expression suivante du coefficient de sécurité F_s. La stabilité au glissement à la base est assurée si ce coefficient est au moins égal à 1.50 :

$$K_G = \frac{\psi_a}{\theta} \ge 1.50 \tag{2.27}$$

 θ :est l'inclinaison de la résultante des efforts sur le mur par rapport à l'axe vertical de la semelle.

En cas d'un sol purement cohérent à la base du mur ($\varphi = 0$), la résistance à l'adhérence sera réduite à "a". Ce dernier peut être pris en première approximation égal à $2C_u/3$, C_u étant la cohésion non drainée à la base du mur. En notant T la composante horizontale de la résultante des efforts et S l'aire de la base de la semelle, la stabilité au glissement à la base est assurée si :

$$K_G = \frac{a*S}{T} \ge 1.50 \tag{2.28}$$

Par souci de prudence, il est couramment recommandé de négliger une éventuelle butée sur la semelle, notamment à l'aval du mur. En outre, la résistance au glissement peut être améliorée en munissant la base de la semelle par un système de bêches dans lequel le frottement se fait sol/sol.

2.9.1.3. Stabilité au poinçonnement : La résultante des efforts agissant sur le mur (la réaction du sol à la base du mur étant exclue) est en général inclinée et excentrée. Il faut vérifier la capacité portante du sol sous la fondation du mur en considérant celle-ci comme une semelle continue de largeur réduite B', transmettant une force inclinée et excentrée dont la composante verticale est N, soit:

$$\frac{N}{B'} \le q_a \tag{2.29}$$

 $\frac{N}{R'}$:La contrainte de Meyerhof.

 q_a : La contrainte admissible se calcule selon les méthodes de la capacité portante des fondations superficielle.

2.10. La force de surcharge :

La pression ultime sur mur provenant d'une surcharge uniforme Q agissant à la surface d'un sol non cohérent (C = 0) et non pesant ($\gamma = 0$) a été déterminée par Sokolovsky (1961) par le biais de la méthode des caractéristiques des contraintes, comme suit :

 $P = K_q * Q$ avec $K_q = f(\lambda, \varphi, \beta, \delta)$

$$K_{q} = \frac{\cos \delta \mp \sin \varphi \cos \Delta_{2}}{\cos \alpha \mp \sin \varphi \cos \Delta_{1}} e^{\mp 2\psi \tan \varphi}$$

$$\cos \Delta_{1} = \frac{\sin \alpha}{\sin \varphi}$$

$$\cos \Delta_{2} = \frac{\sin \delta}{\sin \varphi}$$
(2.30)

On considère le signe supérieur pour la poussée (K_{aq}) et tout angle est positif si son sens est contraint à celui des aiguilles d'une montre. Le singe inférieur correspond à la butée (K_{pq}) , et dans ce cas, considérer tout angle comme positif si son sens est celui des aiguilles d'une montre.

Le sol est homogène la pression est uniforme et sa résultante agit au milieu du mur.

Le tableau 63 [4], donne les valeurs typiques des coefficients de poussée K_{aq} pour une surcharge normale ($\alpha = 0$) en fonction de φ, δ et la différance $\lambda - \beta$.

2.11. La force dynamique :

Les calculs sont conduits dans les hypothèses suivantes (figures 13 à 14):

- l'obliquité δ des poussées actives est limitée supérieurement au tiers de l'angle de frottement interne φ_u du matériau considéré (valeur à déterminer dans le cadre du projet):

$$\varphi_u \leq \delta \leq \frac{\varphi_u}{3}$$

(obliquité réduite par rapport à un calcul statique)

- le théorème des états correspondants est considéré comme applicable dans les situations sismiques, ce qui permet de prendre en compte l'effet de la cohésion.

Fig.2.13 Notations pour le calcul des ouvrages de soutènement.

Fig.2.14 Prise en compte des pressions d'eau.

La force de poussée totale (statique + dynamique) s'exerçant sur le soutènement E, s'écrit :

$$E_{t} = \frac{1}{2} * \gamma^{*} * (1 \mp \sigma_{v}) * K * H^{2} + E_{ws} + E_{wd} + surcharge$$
(2.31)

où:

H : est la hauteur du soutènement.

 E_{ws} : poussée statique de l'eau interstitielle.

 E_{wd} : poussée hydrodynamique (définie ci-dessous) de l'eau interstitielle.

 γ : poids volumique du sol dépendant du cas étudié (défini ci-dessous).

K : coefficient de poussée des terres (statique + dynamique).

Le coefficient K peut être calculé en notant que l'introduction des coefficients sismiques peut se ramener à considérer que le soutènement est soumis à une accélération inclinée sur la verticale. Il suffit donc d'effectuer une rotation d'angle $\theta = \arctan\left(\frac{\sigma_h}{1\pm\sigma_v}\right)$ pour se ramener à un calcul classique de mur de soutènement.

Si l'on adopte de plus l'expression de la formule de Coulomb pour le coefficient de poussée, on obtient le coefficient K par la formule de Mononobe-Okabe, adoptée par les Recommandations AFPS ou l'Eurocode 8, et rappelée ci-après:

si : $\beta \leq \varphi_u - \theta$

 $K = \frac{\cos^2(\varphi_u - \lambda - \theta)}{\cos \theta \cos^2 \lambda \cos (\delta + \lambda + \theta)} \left[1 + \sqrt{\frac{\sin(\varphi_u + \delta) \sin(\varphi_u - \beta - \theta)}{\cos(\delta + \lambda + \theta) \cos(\beta - \lambda)}} \right]^{-2}$ (2.32)

si : $\beta \ge \varphi_u - \theta$

alors

alors

$$K = \frac{\cos^2(\varphi_u - \lambda - \theta)}{\cos \theta \, \cos^2 \lambda \, \cos \left(\delta + \lambda + \theta\right)} \tag{2.33}$$

 $\tan \theta$ égale à $\frac{\sigma_h}{1+\sigma_n}$ pour un sol sec et donné ci-dessous pour les autres cas.

Il est à noter que la poussée est calculée a partir de la valeur caractéristique de l'angle de cisaillement φ_u du sol.

Une très bonne approximation du coefficient K, proposée par Seed et Whitman (référence 23), valable pour $\sigma_h < 0.2$, est donnée par:

$$K = K_a + \frac{3}{4}\sigma_h \tag{2.34}$$

Est K_a le coefficient de poussée correspondant à une sollicitation statique.

La poussée totale du sol est donnée par:

$$p = \frac{1}{2}\gamma^* (1 \mp \sigma_v) K H^2 = P_0 + P_{ad}$$
(2.35)

Où P_0 correspond à la situation non sismique; P_{ad} est l'incrément de poussée dynamique qui est supposé agir à mi-hauteur du soutènement, ce qui correspond à une répartition uniforme de contraintes. Dans le cas particulier où le soutènement peut tourner autour du pied (mur de soutènement avec butée négligeable), l'incrément de poussée dynamique agit à la même hauteur que la poussée statique P_0 .

La poussée statique P₀ est calculée par les procédures habituelles.

La partie de l'action sismique E correspondra dans ce contexte à l'incrément de poussée dynamique P_a .

 θ, γ^* et E_{wd} : Sont définis suivant les propriétés du sol, de la façon suivante:

2.11.1. Cas des sols secs :

 $\gamma^* = \gamma_d$: Poids volumique du sol humide.

$$\tan \theta = \left(\frac{\sigma_h}{1 \pm \sigma_v}\right) \tag{2.36}$$

$$E_{wd} = 0 \tag{2.37}$$

2.11.2. Cas des sols saturés de perméabilité faible ou moyenne (k < 5 10^{-4} m/s) :

$$\gamma^* = \gamma_{sat} - \gamma_w \tag{2.38}$$

 γ_{sat} : Poids volumique du sol saturé.

 γ_w : densité d'eau.

$$\tan \theta = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_w} \left(\frac{\sigma_h}{1 \pm \sigma_v} \right)$$

$$E_{wd} = 0$$
(2.39)

2.11.3. Cas des sols salures de perméabilité forte $(k > 5 \ 10^{-3} \ m/s)$:

$$\gamma^* = \gamma_{sat} - \gamma_w$$

 γ_{sat} : Poids volumique du sol saturé.

 γ_w : Poids volumique d'eau.

 γ_d : Poids volumique du sol sec.

$$\tan\theta = \frac{\gamma_d}{\gamma_{sat} - \gamma_w} \left(\frac{\sigma_h}{1 \pm \sigma_v}\right) \tag{2.40}$$

$$E_{wd} = \frac{7}{30} * \gamma_w * H_w^2 * \sigma_h$$
 (2.41)

Où : H_w est la hauteur de la couche de sol saturé. Le point d'application de E_{wd} se situe à $0.6 * H_w$ sous le niveau de la nappe.

Cette relation correspond à la formule de Westergaard pour le calcul de la poussée hydrodynamique, affectée d'un coefficient 0.4, pour tenir compte du fait que cette poussée n'est pas concomitante avec la poussée des terres.

2.11.4. Cas des sols partiellement sous nappe et des sols stratifiés :

Dans ce cas, la poussée est calculée de la façon suivante:

- le coefficient de poussée des terres K est calculé dans chaque couche, et la poussée calculée par:

$$P = \sum_{l} \left(\frac{\sigma_{h}}{1 \pm \sigma_{v}} \right) K_{l} \left[\sum_{k=1}^{l=1} \gamma_{k}^{*} Z_{k} + \frac{1}{2} \gamma_{l}^{*} \left\{ (Z_{l+1})^{2} - Z_{l}^{2} \right\} \right]$$
(2.45)

 γ_l^* : est le poids voiumique du sol dépendant du cas étudié, pour la couche *i*,

 K_l : est le coefficient de poussée dans la couche étudiée,

 Z_l : est la cote du haut de la couche *l*. par rapport au niveau supérieur du soutènement.

Le point d'application de la force dynamique correspondant à chaque terme de la somme est placé au milieu de la couche correspondante.

2.11.5. Cas des sols cohérents :

En règle générale, la cohésion n'est pas prise en compte. Pour les cas le nécessitant (cohésion élevée et frottement faible), il faut revenir à la procédure de calcul du coefficient de poussée, utilisant la rotation d'angle $\theta = \arctan\left(\frac{\sigma_h}{1+\sigma_v}\right)$.

La méthode classique de l'équilibre de Rankine (référence 16) permet alors de calculer la diminution de poussée due à la cohésion.

2.11.6. Liquefaction partielle:

Dans le cas où les essais triaxiaux cycliques conduiraient à un coefficient de sécurité vis à vis de la liquéfaction F supérieur à 1.33 mais proche de cette valeur, les surpressions interstitielles dynamiques doivent être prises en compte. Toutefois, il n'existe pas dans la littérature, de procédure reconnue pour apprécier de façon quantitative les effets sur la stabilité de l'augmentation de pression interstitielle. Une interprétation bien menée des essais au triaxial cyclique peut permettre d'évaluer l'augmentation de pression interstitielle, mais ce type d'interprétation doit être confié à un bureau spécialisé en génie parasismique.

2.12. La force de surcharge dynamique :

Lorsque le terre plain situe derriere un ecran est charge une surcharge uniformément réparte q, la poussée active statique qui en résulte a pour expression

$$P_{qas} = qH \frac{H}{\cos(\lambda - i)} K_{as}$$
(2.46)

Dans cette relation le coefficient de poussée statique active K_{as} est celui défini par le relation statique, et le point d'application de la poussée est situe a mi-hauteur de l'encrant (H/2).

Lorsque le terre-plein situé devant un écran est charge par une surcharge uniforme d'intensité q, la poussée statique passive qui en résulte a pour expression :

$$P_{qps} = qH \frac{H}{\cos\left(\lambda - i\right)} K_{ps} \tag{2.47}$$

Dans cette relation le coefficient de poussée statique passive K_{ps} est celui définie par la relation statique, et le point d'application de la poussée est situe a mi-hauteur de l'écran (H/2).

2.13. Les combinaisons statique et dynamique :

Les combinaisons statiques :

Les combinaisons d'actions à considérer pour la détermination des sollicitations et des déformations de calcul sont :

- 1.35 G + 1.5 Q
- 1.35 P_{remblai}+1.0 G_{mur}+1.0 G_{remblai}+1.5 Q_{surcharge}+1.5 P_{surcharge}
- 1.35 P_{remblai}+1.35 G_{mur}+1.35 G_{remblai}+1.5 Q_{surcharge}+1.5 P_{surcharge}
- 1.35 P_{remblai}+1.0 G_{mur}+1.35 G_{remblai}+1.5 Q_{surcharge}+1.5 P_{surcharge}
- 1.35 P_{remblai}+1.35 G_{mur}+1.0 G_{remblai}+1.5 Q_{surcharge}+1.5 P_{surcharge}

Les combinaisons statique et dynamique :

L'action sismique est considérée comme une action accidentelle au sens de la philosophe de calcul aux Etats Limites.

Les combinaisons d'actions à considérer pour la détermination des sollicitations et des déformations de calcul sont :

- G + Q + E
- $0.8 G \pm E$ [RPA]

CHAPITRE III

VALIDATION ET EXPRIMEVTATION

3.1 VALIDATION :

3.1.1 Données :

Hauteur de voile : 2.50 m

Hauteur de remblai : 2.50 m

Largeur de base : 2.50 m

Epaisseur de la semelle : 0.50 m

Epaisseur de la tête de voile : 0.30 m

Epaisseur de la base de voile : 0.30 m

Angle de frottement interne remblai : $\varphi = 30^{\circ}$

Angle de d'inclnisant de talus : $i = 0^{\circ}$

Angle de frottement sol- mur : $\delta = 0$

Poids volumique de remblai : $\gamma_{remblai 1} = 18 \ KN/m^3$

Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$

Hauteur de remblai (Butée) :0.00 m

Surcharge d'exploitation : $Q=10.00 \text{ KN/m}^2$

3.1.2 Les résultats de l'exemple [EC2 – clause 2.4] :

a) Vérification de la stabilité au glissement:

Les forces de glissement :

- > La poussée de terre horizontale ($\gamma_G = 1.1$) : 29.40 KN
- > La poussée de surcharge horizontale ($\gamma_0 = 1.5$): 14.85 KN

La force de glissement totale: 44.25 KN

Les forces résistantes :

- > La force de mur en béton($\gamma_{\rm G} = 0.9$) : 25.65 KN
- > La force de terre amont ($\gamma_{G} = 0.9$): 39.24 KN

La force résistante totale : 64.89 KN

Le coefficient de sécurité de glissement : $F_G = \frac{64.89}{44.25} = 1.466$

b) Vérification de la stabilité au renversement:

Les moments de renversement :

- > moment de poussée de terre horizontale ($\gamma_G = 1.1$): 29.40 KN.m
- > moment de poussée de surcharge horizontale ($\gamma_0 = 1.5$): 22.28 KN.m
- Le moment total de renversement : 51.68 KN.m

Les moments stabilisants :

- > le moment de mur en béton ($\gamma_G = 0.9$) : 46.13 KN.m
- \blacktriangleright le moment de terre amont ($\gamma_{G} = 0.9$): 113.60 KN.m

Le moment total stabilisant : 159.73 KN.m

Le coefficient de sécurité de renversement : $F_R = \frac{159.73}{51.68} = 3.09$

c) Vérification des contraint sur le sol en ELU :

Le moment a par pour ou centre de gravite de la semelle :

- > Le moment de poussée de terre($\gamma_{G} = 1.35$) : 36.08 KN.m
- > Le moment de poussée surcharge ($\gamma_0 = 1.5$) : 22.28 KN.m
- > Le moment de mur en béton($\gamma_{G} = 1.0$) : 11.25 KN.m
- > Le moment de terre amont ($\gamma_{\rm G}$ = 1.0) : -30.60 KN.m

Le moment total : 39.01 KN.m

Les forces verticales :

- ➢ Force de mur en béton (poids) : 50 KN
- ➢ Force de terre (poids) :76.5 KN

La force totale : 126.5 KN

Excentricité : e = 39.01/126.5 = 0.31 m

La contrainte de Meyerhof : 67.28 *KN/m*

3.1.3 Les résultats de programme :

a) Vérification de la stabilité au glissement:

Les forces de glissement :

- > La poussée de terre horizontale ($\gamma_G = 1.1$) : 29.7000 KN
- > La poussée de surcharge horizontale ($\gamma_0 = 1.5$): 15.0000 KN

La force de glissement totale: 44.7000 KN

Les forces résistantes :

- > La force de mur en béton($\gamma_G = 0.9$) : 25.9808 KN
- > La force de terre amont ($\gamma_G = 0.9$): 39.7506 KN

La force résistante totale : 65.7313 KN

Le coefficient de sécurité de glissement : $F_G = \frac{65.7313}{44,7000} = 1.4705$

b) Vérification de la stabilité au renversement:

Les moments de renversement :

- > moment de poussée de terre horizontale ($\gamma_{G} = 1.1$): 29.7000 KN.m
- > moment de poussée de surcharge horizontale ($\gamma_0 = 1.5$): 22.5000 KN.m

Le moment total de renversement : 52.2000 KN.m

Les moments stabilisants :

- > le moment de mur en béton ($\gamma_G = 0.9$) : 46.125 KN.m
- \triangleright le moment de terre amont ($\gamma_G = 0.9$): 113.6025 KN.m

Le moment total stabilisant : 159.7275 KN.m

Le coefficient de sécurité de renversement : $F_R = \frac{159.7275}{52,2000} = 3.0599$

c) Vérification des contraint sur le sol en ELU :

Le moment a par pour cotée de la semelle (points de rotation) :

- > Le moment de poussée de terre ($\gamma_G = 1.35$) : -36.4500 KN.m
- > Le moment de poussée surcharge ($\gamma_0 = 1.5$) : -22.500. KN.m
- > Le moment de mur en béton ($\gamma_G = 1.0$) : 51.2500 KN.m
- > Le moment de terre amont ($\gamma_{\rm G}$ = 1.0) : 126.2250 KN.m

Le moment total : 118.5250 KN.m

Les forces verticales :

- ➢ Force de mur en béton (poids) : 50 KN
- ➢ Force de terre (poids) :76.5 KN

La force totale : 126.5000 KN

Excentricité : $e = \left(\frac{2.5}{2}\right) - (118.5250/126.5000) = 0.3130 m$

La contrainte de Meyerhof : 67.5058 KN/m^2

L'interprétation :

`	Le coefficient de sécurité de	Le coefficient de	Excentricité	La contrainte
	glissement	sécurité de renversement		de Meyerhof
Les résultats de l exemple	1.466	3.09	0.31	67.28
`Les résultats de programme	1.4705	3.0599	0.3130	67.5058

On remarque que les résultats d'un exemple de validation [EC2 – clause 2.4] et les résultats de programme sont presque les mêmes avec une précision de programme quatre chiffre après la virgule.

3.2 EXPRIMENTATION :

- **3.2.1** Les résulta de 1^{er} programme une couche avec nappe aquifère :
 - **3.2.1.1** Les coefficients de sécurité en fonction de l'angle de frottement (sans nappe):
 - a) Données :
 - Hauteur de voile : 4.50 m
 - Hauteur de remblai : 4.00 m
 - Largeur de base : 2.50 m
 - Epaisseur de la semelle : 0.50 m
 - Epaisseur de la tête de voile : 0.30 m
 - Epaisseur de la base de voile : 0.30 m
 - Angle de frottement interne remblai : $\varphi = var$
 - Angle de d'inclnisant de talus : $i = 0^{\circ}$
 - Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$
 - Poids volumique de remblai : $\gamma_{remblai 1} = 18 \ KN/m^3$
 - Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$
 - Hauteur de remblai (Butée) : 0.00 m

Surcharge d'exploitation : $Q=0.00 \text{ KN/m}^2$

b) Résultat:

φ (°)	20	25	30	35	40
K_R	2.235	2.881	3.741	4.911	6.547
K _G	1.056	1.302	1.611	2.005	2.520

Quand on augmente l'angle de frottement φ les coefficients sécurités (glissement, reversement) augmentent, le coefficient de renversement (*KR*) est plus grand de coefficient de glissement (*KG*).

3.2.1.2 Les coefficients de sécurité en fonction de poids volumique (sans eau) :

a) Données : Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = var$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$ Hauteur de remblai (Butée) : 0.00 m Surcharge d'exploitation : $Q=0.00 \ KN/m^2$

b) Résultat:

γ	14	16	18	20
KR	4.007	3.857	3.741	3.648
KG	1.778	1.684	1.611	1.552

Fig.3.2 Influence de poids volumique sur coefficient de sécurité.

Les coefficients de sécurité sont varient très peu, ils sont presque constants.

3.2.1.3 Les coefficients de sécurité en fonction de la hauteur totale de remblai (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : var Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = (\frac{2}{3})\varphi$ Poids volumique de remblai : $\gamma_{remblai 1} = 18 \text{ KN/m}^3$ Poids volumique de béton : $\gamma_{béton} = 25 \text{ KN/m}^3$ Hauteur de remblai (Butée) : 0.00 m Surcharge d'exploitation : $Q=0.00 \text{ KN/m}^2$ b) Résultat:

H_t	3	3.5	4	4.5
KR	7.680	5.192	3.741	2.822
KG	2.343	1.913	1.611	1.388

Les deux coefficients de sécurité diminuent quand la hauteur du remblai est augmente.

3.2.1.4 Les coefficients de sécurité en fonction d'angle d'inclinaison de talus (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : i = varAngle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = 18 \ KN/m^3$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$ Hauteur de remblai (Butée) : 0.00 m

Surcharge d'exploitation : $Q=0.00 \text{ KN/m}^2$

b) Résultat:

i(°)	10	15	20	25	30
KR	3.394	3.172	2.894	2.511	1.566
KG	1.447	1.345	1.221	1.054	0.653

Fig.3.4 Influence d'angle d'inclinaison de talus sur coefficient de sécurité.

L'interprétation :

L'angle d'inclinaisons du talus $(10^\circ \rightarrow 30^\circ)$ on notée que coefficient de sécurité de renversement et glissement (*KR*, *KG*) est diminué.

3.2.1.5 Les coefficients de sécurité en fonction de surcharge d'exploitation (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai 1} = 18 \ KN/m^3$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$ Hauteur de remblai (Butée) : 0.00 m Surcharge d'exploitation : Q= var

b) Résultat:

Q	2.5	5	7.5	10
KR	3.3131	2.9730	2.6962	2.4666
KG	1.4930	1.3914	1.3027	1.2247

Fig.3.5 Influence de surcharge d'exploitation sur le coefficient de sécurité.

L'interprétation :

L'augmentation de la surcharge Q, produit une diminution des coefficients de sécurité renversement et glissement.

3.2.1.6 Les coefficients de sécurité en fonction de hauteur de nappe (avec eau) :

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m

Largeur de base : 2.50 m

Epaisseur de la semelle : 0.50 m

Epaisseur de la tête de voile : 0.30 m

Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai}$ $_1 = 18 \ KN \ /m^3$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN \ /m^3$ Poids de remblai saturée : $\gamma_{sat \ 1} = 20 \ KN \ /m^3$ Densité d'eau : $\gamma_w = 10 \ KN \ /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = var$ Surcharge d'exploitation : Q=0.00

b) Résultat :

H_w	2	2.5	3	3.5	4.00
KR	2.422	1.906	1.452	1.086	0.804
KG	0.974	0.811	0.670	0.552	0.454

Fig.3.6 Influence de l'hauteur de nappe sur coefficient de sécurité.

L'interprétation :

On remarque l'influence de la hauteur de la nappe sur les coefficients de sécurité (*KR*, *KG*), quelle que soit la hauteur de la nappe aquifère augment les coefficients de sécurité diminuée.

3.2.2 les résulta de 2^{em} programme deux couche avec nappe aquifère :

3.2.2.1 Les coefficients de sécurité en fonction de rapport des angles de frottement (sans eau) :

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai totale : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai 01 : $\varphi_1 = var$ Angle de frottement interne remblai $02: \varphi_2 = var$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = 18 \ KN \ /m^3$ Poids de remblai saturée : $\gamma_{sat 1} = 0.00 \ KN \ /m^3$ Poids volumique de béton : $\gamma_{b\acute{e}ton} = 25 \ KN/m^3$ Poids volumique de remblai : $\gamma_{remblai}$ 2 = 14 KN /m³ Poids de remblai saturée : $\gamma_{sat 2} = 0.00 \ KN \ /m^3$ Hauteur de remblai 02 : 2.00 m Densité d'eau : $\gamma_w = 10 \ KN \ /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = 0$ Surcharge d'exploitation : Q = 0

b) Résultat :

rapport des angles de frottement	$\varphi_1/_{\varphi_2}$	0.5	0.6	0.7	0.8	1
Angle de frottement couche 02	$\varphi_2(^\circ)$	30	30	30	30	30
Angle de frottement couche 01	$\varphi_1(^\circ)$	15	18	21	24	30
$H_1 = 2m$	KR(KN.m)	2.1790	2.3976	2.6280	2.8700	2.3869
$H_2 = 2m$	KG(KN.m)	1.2288	1.2865	1.3421	1.3955	1.4957
Angle de frottement couche 02	$\varphi_2(^\circ)$	30	30	30	30	30
Angle de frottement couche 01	$\varphi_1(^\circ)$	15	18	21	24	30
$H_1 = 1m$	KR(KN.m)	2.8637	2.9806	3.0912	3.1954	3.3850
$H_2 = 3m$	KG(KN.m)	1.4771	1.4982	1.5173	1.5347	1.5648
Angle de frottement couche 02	$\varphi_2(^\circ)$	30	30	30	30	30
Angle de frottement couche 01	$\varphi_1(^\circ)$	15	18	21	24	30
$H_1 = 3m$	KR(KN.m)	1.8517	2.1174	2.4201	2.7658	3.6174
$H_2 = 1m$	KG(KN.m)	1.0309	1.1220	1.2168	1.3153	1.5226

Fig.3.7 Influence de rapport des angles de frottement $({}^{\varphi_1}/{\varphi_2})$ sur le coefficient de sécurité de renversement.

sur le coefficient de sécurité de glissement.

L'interprétation :

On remarque que : $(H_1 = 2m, H_2 = 2m)$; $(H_1 = 1m, H_2 = 3m)et(H_1 = 3m, H_2 = 1m)$ quand l'angle de frottement φ_1 augmentes les coefficients de sécurité augmentant.

3.2.2.2 Les coefficients de sécurité en fonction de rapport des poids volumique (sans eau) :

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai totale : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai 01 : $\varphi_1 = 30^\circ$ Angle de frottement interne remblai 02 : $\varphi_2 = 30^\circ$ Angle de d'inclnisant de talus : $i = 0^\circ$ Angle de frottement sol- mur : $\delta = (\frac{2}{3}) \varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = var$ Poids de remblai saturée : $\gamma_{sat \ 1} = 0.00 \ KN \ /m^3$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN \ /m^3$ Poids volumique de remblai : $\gamma_{remblai \ 2} = var$ Poids de remblai saturée : $\gamma_{sat 2} = 0.00 \ KN \ /m^3$ Hauteur de remblai 02 : 2.00 m Densité d'eau : $\gamma_w = 10 \ KN \ /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = 0$ Surcharge d'exploitation : Q = 10

b) Résultat :

rapport des poids volumique	γ_1/γ_2	0.7	0.8	0.9	1
poids volumique couche 02	$\gamma_2(^\circ)$	20	20	20	20
poids volumique couche 01	<i>γ</i> ₁ (°)	14	16	18	20
$H_1 = 2m$	KR(KN.m)	4.1716	3.8930	3.6704	3.4885
$H_2 = 2m$	KG(KN.m)	1.6744	1.5878	1.5155	1.4544
poids volumique couche 02	$\gamma_2(^\circ)$	20	20	20	20
poids volumique couche 01	$\gamma_1(^\circ)$	14	16	18	20
$H_1 = 1m$	KR(KN.m)	3.9817	3.7772	3.6006	3.4465
$H_2 = 3m$	KG(KN.m)	1.6197	1.5675	1.5203	1.4776
poids volumique couche 02	$\gamma_2(^\circ)$	20	20	20	20
poids volumique couche 01	$\gamma_1(^\circ)$	14	16	18	20
$H_1 = 3m$	KR(KN.m)	4.1329	3.9158	3.7468	3.6115
$H_2 = 1m$	KG(KN.m)	1.7089	1.6140	1.5387	1.4776

sur le coefficient de sécurité de renversement.

sur le coefficient de sécurité de glissement.

L'interprétation :

Les deux coefficients de sécurité diminuent quand les poids volumique des couches est augmente.

3.2.3 Les résulta de 3^{em} programme une couche avec nappe aquifère cas dynamique : 3.2.3.1 L'incrément dynamique en fonction de l'angle de frottement (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = var$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = 18 \ KN \ /m^3$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN \ /m^3$ Poids de remblai saturé : $\gamma_{sat \ 1} = 0.00 \ KN \ /m^3$ Densité d'eau : $\gamma_w = 10 \ KN \ /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = 0$ Surcharge d'exploitation : Q = 00Le coefficient d'accélération de zone : A = 0.20

La perméabilité : K=0.00005 m/s

b) Résultat:

φ	25	27.5	30	32.5	35	37.5	40
ΔP	28.3164	26.4284	24.7693	23.2894	21.9539	20.7373	19.6199

Fig.3.11 Influence de l'angle de frottement sur L'incrément dynamique.

L'interprétation :

L'incrément dynamique diminue avec l'augmentation de l'angle de frottement.

3.2.3.2 Les coefficients de sécurité en fonction de L'incrément dynamique (sans

eau):

ΔP	28.3164	26.4284	24.7693	23.2894	21.9539	20.7373	19.6199
KR	1.7713	1.9599	2.1654	2.3900	2.6364	2.9075	3.2066
KG	1.1375	1.2521	1.3774	1.5151	1.6670	1.8353	2.0226

Fig.3.12 Influence de L'incrément dynamique sur les coefficients de sécurité.

Les coefficients de sécurité diminuent avec l'augmentation de l'incrément dynamique.

3.2.3.3 L'incrément dynamique en fonction de poids volumique (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : 4.00 m Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai \ 1} = var$ Poids volumique de béton : $\gamma_{béton} = 25 \ KN/m^3$ Poids de remblai saturé : $\gamma_{sat \ 1} = 0.00 \ KN \ /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = 0$ Surcharge d'exploitation : Q = 00

Le coefficient d'accélération de zone : A=0.20

La perméabilité : K=0.00005 m/s

b) Résultat:

γ	14	15	16	17	18	19	20
ΔP	19.2650	20.6411	22.0172	23.3932	24.7693	26.1454	27.5215

Fig.3.13 Influence de poids volumique sur L'incrément dynamique.

L'interprétation :

L'incrément dynamique augment quand le poids volumique augmente.

3.2.3.4 L'incrément dynamique en fonction de la hauteur de remblai (sans eau):

a) Données :

Hauteur de voile : 4.50 m Hauteur de remblai : var Largeur de base : 2.50 m Epaisseur de la semelle : 0.50 m Epaisseur de la tête de voile : 0.30 m Epaisseur de la base de voile : 0.30 m Angle de frottement interne remblai : $\varphi = 30^{\circ}$ Angle de d'inclnisant de talus : $i = 0^{\circ}$ Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$ Poids volumique de remblai : $\gamma_{remblai}$ $_1 = 18 KN/m^3$ Poids volumique de béton : $\gamma_{béton} = 25 KN/m^3$ Poids de remblai saturé : γ_{sat} $_1 = 0.00 KN /m^3$ Densité d'eau : $\gamma_w = 10 KN /m^3$ Hauteur de remblai (Butée) : 0.00 m Hauteur de la nappe aquifère : $H_w = 0$ Surcharge d'exploitation : Q = 00Le coefficient d'accélération de zone : A=0.20La perméabilité : K=0.00005 m/s

b) Résultat:

Н	1.5	2	2.5	3	3.5	4
ΔP	3.4832	6.1923	9.6755	13.9327	18.9640	24.7693

Fig.3.14 Influence la hauteur de remblai sur L'incrément dynamique.

L'interprétation :

L'incrément dynamique augment avec l'augmentation de la hauteur de remblai.
3.2.3.5 L'incrément dynamique en fonction de l'angle de frottement (avec eau) perméabilité faible :

a) Données :

Hauteur de voile : 4.50 m

Hauteur de remblai : 4.00 m

Largeur de base : 2.50 m

Epaisseur de la semelle : 0.50 m

Epaisseur de la tête de voile : 0.30 m

Epaisseur de la base de voile : 0.30 m

Angle de frottement interne remblai : $\varphi = 30^{\circ}$

Angle de d'inclnisant de talus : $i = 0^{\circ}$

Angle de frottement sol- mur : $\delta = \left(\frac{2}{3}\right)\varphi$

Poids volumique de remblai : $\gamma_{remblai \ 1} = 18 \ KN/m^3$

Poids volumique de béton : $\gamma_{b\acute{e}ton} = 25 \ KN/m^3$

Poids de remblai saturé : $\gamma_{sat 1} = 21 \ KN \ /m^3$

Densité d'eau : $\gamma_w = 10 \ KN \ /m^3$

Hauteur de remblai (Butée) : 0.00 m

Hauteur de la nappe aquifère : $H_w = 2$

Surcharge d'exploitation : Q = 00

Le coefficient d'accélération de zone : A=0.20

b) Résultat:

φ	25	27.5	30	32.5	35	37.5	40
ΔP	12.1629	12.4941	13.2784	14.2055	15.1669	16.1157	17.0297

Fig.3.15 Influence l'angle de frottement sur L'incrément dynamique (Perméabilité faible : 0.00005m/s).

On remarque que l'angle de frottement augmente en observe l'incrément dynamique et plus importent pour une perméabilité faible (0.00005 m/s).

3.2.3.6 Les coefficients de sécurité en fonction de L'incrément dynamique (avec eau) perméabilité faible :

ΔP	12.1629	12.4941	13.2784	14.2055	15.1669	16.1157	17.0297
KR	2.478	2.593	2.666	2.719	2.761	2.797	2.830
KG	1.513	1.567	1.606	1.638	1.666	1.691	1.716

Fig.3.16 Influence de L'incrément dynamique sur les coefficients de sécurité (Perméabilité faible : 0.00005m/s).

On observe les coefficients de sécurité (*KR*, *KG*) augment malgré incrément dynamique est augment pour une perméabilité faible (0.00005m/s).

3.2.3.7 L'incrément dynamique en fonction de l'angle de frottement (avec eau) perméabilité forte:

φ	25	27.5	30	32.5	35	37.5	40
ΔP	10.3423	11.5137	12.7472	13.9645	15.1330	16.2389	17.2772

Fig.3.17 Influence l'angle de frottement sur L'incrément dynamique (Perméabilité forte : *10m/s*).

On remarque que l'angle de frottement augmente en observe l'incrément dynamique et plus importent pour une perméabilité forte (*10 m/s*).

3.2.3.8 Les coefficients de sécurité en fonction de L'incrément dynamique (avec eau) perméabilité forte :

ΔP	10.3423	11.5137	12.7472	13.9645	15.1330	16.2389	17.2772
KR	2.625	2.677	2.713	2.740	2.764	2.785	2.807
KG	1.565	1.597	1.623	1.646	1.667	1.687	1.708

Fig.3.18 Influence de L'incrément dynamique sur les coefficients de sécurité (Perméabilité forte : 10 m/s).

L'interprétation :

On observe les coefficients de sécurité (*KR*, *KG*) presque constante malgré incrément dynamique est augment pour une perméabilité forte (10 m/s).

3.2.3.9 L'incrément dynamique en fonction de coefficient d'accélération:

Α	0.15	0.25	0.30	0.40
ΔP	17.5908	32.7779	41.7647	67.6482

Fig.3.19 l'incrément dynamique en fonction du coefficient d'accélération

On remarque que le coefficient d'accélération augmente en observe l'incrément dynamique et augmente.

3.2.3.10 Les coefficients de sécurité en fonction de L'incrément dynamique :

ΔP	17.5908	32.7779	41.7647	67.6482
KR	2.5950	1.8278	1.5556	1.0887
KG	1.5411	1.2315	1.1007	0.8427

Fig.3.20 Les coefficients de sécurité en fonction de l'incrément dynamique.

Les coefficients de sécurité diminuent avec l'augmentation de l'incrément dynamique.

3.2.4 Les résulta de 4^{em} programme avec deux couche sans nappe aquifère cas dynamique :

3.2.4.1	L'incrément	dynamique	en fonction de rapport	de poids	volumique:
---------	-------------	-----------	------------------------	----------	------------

rapport des poids volumique	γ_1/γ_2	0.7	0.8	0.9	1
poids volumique couche 02	$\gamma_2(^\circ)$	20	20	20	20
poids volumique couche 01	$\gamma_1(^\circ)$	14	16	18	20
$\gamma_2 = 20$	$\Delta P(KN)$	20.9811	22.9955	25.0099	27.0243
poids volumique couche 02	$\gamma_2(^\circ)$	18	18	18	18
poids volumique couche 01	$\gamma_1(^\circ)$	12.6	14.4	16.2	18
$\gamma_2 = 18$	$\Delta P(KN)$	18.8830	20.6959	22.5089	24.3218
poids volumique couche 02	$\gamma_2(^\circ)$	19	19	19	19
poids volumique couche 01	$\gamma_1(^\circ)$	13.3	15.2	17.1	19
$\gamma_2 = 19$	$\Delta P(KN)$	19.9320	21.8457	23.7594	25.6730

L'interprétation :

L'incrément dynamique augment quand le poids volumique augmente.

3.2.4.2 L'incrément dynamique en fonction de coefficient d'accélération:

Α	0.15	0.25	0.30	0.40
ΔP	15.318	28.6951	36.5110	56.8410

Fig.3.22 l'incrément dynamique en fonction du coefficient d'accélération.

L'incrément dynamique augment quand le coefficient d'accélération augmente.

3.2.4.3 Les coefficients de sécurité en fonction de L'incrément dynamique :

ΔP	15.318	28.6951	36.5110	56.8410
KR	1.5865	1.3189	1.2002	0.9666
KG	1.9981	1.5873	1.4171	1.1078

Fig.3.23 Les coefficient de sécurité en fonction de l'incrément dynamique.

L'interprétation :

Les coefficients de sécurité diminuent avec l'augmentation de l'incrément dynamique.

CHAPITRE IV

CONCLUSION ET RECOMMONDATIONS

4.1 Conclusion :

Ce présent travail consiste à élaborer un programme de calcul sur Excel qui permet de dimensionner et de vérifier les murs de soutènement sous charges statiques et sismeques. Le programme prend en compte un remblai monocouche et bicouche avec présence d'une nappe phréatique. La 1^{ère} étape était la mise en œuvre du programme, la 2^{eme} étape concernait sa validation et la 3^{eme} étape son expérimentation.

A partir de cette dernière étape les divers paramètres qui influent sur les coefficients de sécurités (glissement, renversement) été simules, les conclusions sont les suivantes :

4.1.1 Chargement statique :

4.1.1.1 Chargement statique monocouche :

- > Quand on augmente l'angle de frottement φ les coefficients sécurités augmentent ;
- Les coefficients de sécurité varient très peu, ils sont presques constants, en fonction de poids volumique ;
- Les deux coefficients de sécurité diminuent quand la hauteur du remblai est augmente ;
- ➢ Quand L'angle d'inclinaisons du talusaugment $(10^\circ → 30^\circ)$ les coefficients de sécurité de renversement et glissement est diminué ;
- L'augmentation de la surcharge Q, produit une diminution des coefficients de sécurité renversement et glissement ;
- On remarque l'influence de la hauteur de la nappe sur les coefficients de sécurité, quelle que soit la hauteur de la nappe aquifère les coefficients de sécurité diminuent.

4.1.1.2 Chargement statique bicouche :

- Pour les remblais bicouche quand l'angle de frottement de la couche 1 (φ₁) augmentes les coefficients de sécurité augmentent;
- Les deux coefficients de sécurité diminuent quand les poids volumique des couches est augmente.

4.1.2 Chargement dynamique monocouche et bicouche :

L'incrément dynamique diminue avec l'augmentation de l'angle de frottement.

- Les coefficients de sécurité diminuent avec l'augmentation de l'incrément dynamique
- L'incrément dynamique augment quand le poids volumique augmente et l'augmentation de la hauteur de remblai ;
- On remarque que l'angle de frottement augmente en observe l'incrément dynamique et plus importent pour une perméabilité faible et forte ;
- L'incrément dynamique augment avec la sismicité.

4.2 Recommandations :

A partir des conclusions ci-dessus ou peut être les recommandations suivantes :

- On utilise les sols avec de paramètre de l'angle de frottement grand et poids volumique petit.
- > On évité le cas des sols saturée il faut produire les barbacanes.
- Les murs de soutènement en zone sismique doivent être vérifiés et calcules avec le séisme.

4.3 Perspective :

Il serait intéressant d'étendre cette recherche en considérant des murs plus hauts et donc prendre en compte un calcule dynamique.

ANNEXE

PRÉSENTATION DES PROGRAMMES

3.1 Programme de vérification cas statique :

3.1.2 Programme une couche avec nappe aquifère :

3.1.2.1 Structure de programme :

A. Bloque des données :

les données de calcul		
Hauteur de voil (m)	H _c	4.50
Hauteur de remblai (m)	H _t	4.00
Largeur de base(m)	B	2.50
Epaisseur de la semalle(m)	<i>E</i> ₃	0.50
Epaisseur de la tete de voil(m)	<i>E</i> ₁	0.30
Epaisseur de la base de voil(m)	<i>E</i> ₂	0.30
Angle de frottement interne remblai (°)	φ	30.00
Angle de d'inclnisant de talus (°)	i	0.00
Angle de frottement sol- mur(°)	δ	20.00
cohésant de remblai	С	0.00
cohésant de sol sous la semelle	<i>C</i> ′	0.00
poids volumique de remblai (KN/m^3)	γ remblai	17.00
poids de remblai saturée (KN/m ³)	γ sat remblai	20.00
poids de sol sous semelle (KN/m ³)	Y sol	18.00
Densité d'eau <i>(KN/m³)</i>	Υw	10.00
poids volumique de béton <i>(KN/m³)</i>	Y Béton	25.00
Hateur de remeblai (Butée) (m)	Н	0.00
Hauteur de la nappe aquifère (m)	H _w	0.00
Surcharge d'exploitation (KN/m ²)	Q	0.00
largeur de béche (m)	<i>E</i> ₄	0.50
le coefficient de sécurité	F	3.00
Angle de d'inclnisant de voil avec le horizontal (°)	λ	0.00
Angle de d'inclnisant de surcharge d'exploitation (°)	α ₀	0.00
Angle de frottement sol-semelle(°)	φ'	30.00
Le coefficient de perméabilité (m/s)	K	0.00000

Fig.1 Les données de calcul (une couche avec nappe aquifère).

Fig.2 présentation de mur de soutènement en béton arme

(une couche avec nappe aquifère).

B. Bloque des données calculées :

B.1 Bloque des calculs des pressions :

Fig.3 calcul des pressions (une couche avec nappe aquifère).

B.2 Bloque des calculs des moments :

cul les force de poids volimuque:					
DIMA	RAGE				
séction 1	0.0000	KN	f	orce de terre amont	101.1500 KN
séction 2	0.0000	KN	f	orce de terre aval	0.0000 KN
séction 3	30,0000	KN	n	nure en béton	61,2500 KN
séction 4	31,2500	KN			
séction 5	0.0000	KN			
séction 6	101,1500	KN			
séction 7	0.0000	KN			
charge d'exploitation	0.0000	KN			
Somme des force	162,4000	KN			
Tableaux de centre de gravit	é et les force et les mom	ent :			
72	centre de gravité /o (m)	les force (KN)	moment (KN*m)		
séction 1	1.6500	0.0000	0.0000		
séction 2	0.8000	0.0000	0.0000		
séction 3	0.6500	30.0000	19.5000		
séction 4	1.2500	31.2500	39.0625		
séction 5	0.2500	0.0000	0.0000		
séction 6	1.6500	101.1500	166.8975		
séction 7	1.9333	0.0000	0.0000		
force de poussée horizontal	1.3333	37.9962	-50.6616		
force de poussée vertical 9	0.8000	13.8295	11.0636		
force de poussée horizontal 12	0.0000	0.0000	0.0000		
force de poussée vertical	0.8000	0.0000	0.0000		
F charge d'exploit horiz sec 14	2.0000	0.0000	0.0000		
F charge d'exploit verti sec 15	0.8000	0.0000	0.0000		
la force de poussée eau hori 16	0.0000	0.0000	0.0000		
F charge d'exploit horiz sat	0.0000	0.0000	0.0000		
F charge d'exploit verti sat	0.0000	0.0000	0.0000		
force butée 17	0.0000	0.0000	0.0000		
charge d'exploitation	1.6500	0.0000	0.0000		
terre amont	1	101 1500	166 8975		
terre aval	1	0.0000	0.0000		
mure en béton	1	61.2500	58.5625		
ind consecut	1	0112000	0010020		

Fig.4 calcul des moments (une couche avec nappe aquifère).

	VALEUR	UNITÉ		VALEUR	UNITÉ	1		
35P15	51,2948	KN	0.9G₁tanǿ	31.8264	KN	1		
5Pob	0.0000	KN	0.9Gotané	52,5591	KN			
2n	0.0000	<i>M</i>	0.9G.taná	0.0000	KN			
			(0 QR)	0.0000	KIV KIV			
tal	E1 2049	UN	(0,50h)	94 3955	KIV KN	In alianaman	turnife	
Lai	51.2948	KIV	57	84.3855	KIV	le glissemer	it verifie	
RIFIC	ATION DE LA STABILITÉ .	AU RENVER	SEMENT					
	VALEUR	UNUTÉ		VALEUR	UNUTÉ]		
35 M _{p1}	-53.4573	KN*m	0,9M _{G1}	52.7063	KN*m	1		
5M _{p2}	0.0000	KN*m	0,9M _{G2}	150.2078	KN*m			
			0,9M _{G4}	0.0000	KN*m			
			(0,9M _B)	0.0000	KN*m			
al	53.4573	KN*m	</td <td>202 9140</td> <td>KN*m</td> <td>le renverser</td> <td>nent verifie</td> <td></td>	202 9140	KN*m	le renverser	nent verifie	
ÉRIFIC	ATION DES CONTRAINT S	UR LE SOL I	EN ELU			ie renversen	iene vergie	
ÉRIFIC	CATION DES CONTRAINT S	UR LE SOL I	EN ELU λ _γ	λ _θ	λ _g	λ _q]	
RIFIC	CATION DES CONTRAINT S	UR LE SOL I	EN ELU λ _γ Ρ _{1h}	λ _θ P _{2h}	λ_{g} G1,G2 et G ₄	λ _q G ₃]	
ERIFIC	CATION DES CONTRAINT S cas de charge CAS 1	SUR LE SOL I	EN ELU λ ₇ Ρ _{1h} 1.35	λ _θ P _{2h} 1.5000	$\lambda_{\rm g}$ G1,G2 et G ₄ 1.3500	λ_q G ₃ 1.5		
ÉRIFIC	CATION DES CONTRAINT S cas de charge CAS 1 CAS 2	SUR LE SOL I	EN ELU Α _γ Ρ _{1h} 1.35 1.35	λ ₀ P _{2h} 1.5000 1.5000	λ _g G1,G2 et G ₄ 1.3500 1.0000	λ_q G_3 1.5 1.5		
ÉRIFIC	CATION DES CONTRAINT S cas de charge CAS 1 CAS 2 CAS 3	SUR LE SOL I	EN ELU λ ₇ P _{1h} 1.35 1.35 1.35	λ ₀ P _{2h} 1.5000 1.5000 1.5000	$\frac{\lambda_g}{G1,G2 \text{ et } G_4}$ $\frac{1.3500}{1.0000}$ $\frac{1.3500}{1.3500}$	λ _q G ₃ 1.5 1.5 0		
ÉRIFIC	CATION DES CONTRAINT S cas de charge CAS 1 CAS 2 CAS 3 CAS 4	SUR LE SOL S	λ _γ P _{1h} 1.35 1.35 1.35 1.35 1.35	λ ₀ P _{2h} 1.5000 1.5000 1.5000 1.5000	λ _g G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.0000	$ \begin{array}{c} \lambda_{q} \\ G_{3} \\ 1.5 \\ 1.5 \\ 0 \\ 0 \end{array} $		
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		λγ P _{1h} 1.35 1.35 1.35 1.35 1.35 0	λ₀ P _{2h} 1.5000 1.5000 1.5000 1.5000 0.0000	$\begin{array}{c} \lambda_{g} \\ \hline G1,G2 \mbox{ et } G_{4} \\ \hline 1.3500 \\ \hline 1.0000 \\ \hline 1.3500 \\ \hline 1.3500 \\ \hline \end{array}$	$\begin{array}{c} \lambda_{q} \\ G_{3} \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 1.5 \end{array}$		
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λ _γ P _{1h} 1.35 1.35 1.35 1.35 0 CAS1	λ₀ P2h 1.5000 1.5000 1.5000 1.5000 0.0000 CAS2	λ _g G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.3500 CAS3	λ _q G ₃ 1.5 1.5 0 0 1.5 CAS4	CASS	
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	UNITÉ	λ _γ P _{1h} 1.35 1.35 1.35 0 CAS1 1.35	λ₀ P2h 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500	$\frac{\lambda_{g}}{G1,G2 \text{ et } G_{4}}$ $\frac{1.3500}{1.0000}$ $\frac{1.3500}{1.3500}$ $\frac{CAS3}{1.3500}$	λ _{ij} G ₃ 1.5 1.5 0 0 1.5 1.5 0 1.35	CAS5 0	
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λγ P1h 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	λ₀ P₂ħ 1.5000 1.5000 1.5000 0.0000 0.0000 0.0000	$\begin{array}{c} \lambda_{\pm} \\ G1,G2 \mbox{ et } G_4 \\ 1.3500 \\ 1.0000 \\ 1.3500 \\ 1.3500 \\ \hline \\ CAS3 \\ 1.3500 \\ 1.5000 \end{array}$	λ _q G ₃ 1.5 1.5 0 0 1.5 1.5 1.5 1.5 0 1.5	CAS5 0	
ÉRIFIC	CATION DES CONTRAINT S cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λ _γ P _{th} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	λ₀ P₂n 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.3500 1.5000 1.5000 1.5000	λ _g G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.3500 CAS3 1.3500 1.5000 1.3500	λ _q G ₃ 1.5 1.5 0 0 1.5 1.5 CAS4 1.35 1.5 1.5	CAS5 0 1.35	
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 3 CAS 5	GUR LE SOL I	λ _γ P _{1h} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.5	λ₀ P2h 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000	$\begin{array}{c} \lambda_{\rm g} \\ {\rm G1,G2etG_4} \\ {\rm 1.3500} \\ {\rm 1.0000} \\ {\rm 1.3500} \\ {\rm 1.3500} \\ \\ {\rm CAS3} \\ {\rm 1.3500} \\ {\rm 0.0000} \end{array}$	λ ₄ G ₃ 1.5 1.5 0 0 1.5 1.5 0 1.5 CAS4 1.35 1.5 1 0 0	CASS 0 0 1.35 1.5	
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λγ P _{1h} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.5 270.5348359	λ₀ P₂h 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.3500 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000	λ _± G1,G2 et G4 1.3500 1.0000 1.3500 1.0000 1.3500 CAS3 1.3500 1.3500 2.3500 0.0000 270.5348	A ₄ G ₃ 1.5 1.5 0 0 1.5 1.5 1.5 1.5 0 0 213.694836 1.364836	CASS 0 0 1.35 1.5 219.24	
ÉRIFIC	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λ _γ P _{1h} 1.35 1.35 1.35 0 CAS1 1.35 1.5 1.35 0 CAS1 1.35 1.5 1.5 200.5348359 235.9778855	λ₀ P2h 1.5000 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500 1.5000 1.3500 0.0000 CAS2 1.3500 1.5000 1.5000 1.5000 1.5000 1.5000 213.6948 157.0669	$\begin{array}{c} \lambda_{\pm} \\ \hline \\ G1,G2 \mbox{ et } G_4 \\ \hline 1.3500 \\ \hline 1.0000 \\ \hline 1.3500 \\ \hline \\ \hline \\ CAS3 \\ \hline 1.3500 \\ \hline \\ 270.5348 \\ \hline \\ 235.9779 \end{array}$	λ ₄ G ₃ 1.5 1.5 0 0 1.5 1.5 0.35 1.5 1.35 1.5 1.5	CAS5 0 0 1.35 1.5 219.24 304.371	
ÉRIFIC 'A	CATION DES CONTRAINT S Cas de charge CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	SUR LE SOL I	λ _γ P _{th} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.5 1.5 1.5 1.5 0.5348359 235.9778855 -0.377735677	λ₀ P₂n 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 213.6948 157.0669 -0.5150	λ _g G1,G2 et G4 1.3500 1.0000 1.3500 1.0000 1.3500 CAS3 1.3500 0.0000 1.3500 0.0000 235.9779 -0.3777	λ ₄ G G3 1.5 1.5 0 0 1.5 CAS4 1.35 1.5 1 0 213.694836 157.066885 -0.51499447	CAS5 0 0 1.35 1.5 219.24 304.371 0.138300493	

C. Bloque des vérifications des stabilités :

Fig.5 Des vérifications des stabilités (une couche avec nappe aquifère).

3.2 Programme deux couches avec nappe aquifère cas statique:

3.2.1 Structure de programme :

A. Bloque des données :

les données de calcul				
		couche 1		couche 2
Longeur de voil (m)	H _c	4.50		
Longeur totale de traine (m)	H _t	4.0000		
Largeur de base (m)	B	2.50		
Epaisseur de la semalle (m)	<i>E</i> ₃	0.50		
Epaisseur de la tete de voil (m)	<i>E</i> ₁	0.30		
Epaisseur de la base de voil (m)	<i>E</i> ₂	0.30		
Angle de frottement interne remblai (°)	φ	30.00	#	30.00
Angle de d'inclnisant de talus (°)	i	0.00		
Angle de frottement sol- mur (°)	δ	20.00	#	20.00
cohésant de remblai	С	0.00		0.00
angle de frottement interne de sol sous la semmelle (°)	φ	0.00		
cohésant de sol sous la semelle	С	30.00		
Densité de remblai (KN/m ³)	γ remblai	16.00		20.00
Densité de sol sous semelle (KN/m ³)	Y sol	0.00		
Densité du béton (KN/m ³)	Y Béton	25.00		
Hateur de remeblai (Butée) (m)	Н	0.00		
Surcharge d'exploitation (KN/m3)	Q	0.00		
largeur de béche (m)	<i>E</i> ₄	0.50		
le coefficient de sécurité	F	3.00		
Angle de d'inclnisant de voil avec le horizontal (°)	λ	0.00		
Angle de frottement sol-semelle (°)	φ'	30.00		
la hateur de remeblai (teraine 2) (m)	H ₂			2.0000
Angle de d'inclnisant de surcharge d'exploitation (°)	α ₀	0.00		
La position de nappe aquifère (m)	H _w	2.	.000	0
Densité d'eau (KN/m ³)	Yw	1	10.00	
Densité de remblai saturée (KN/m ³)	Y sat remblai	19.00		22.00
le coefficient de perméabilité (m/s)	K			10.0000

Fig.6 Les données de calcul à deux couches.

Fig.7 présentation de mur de soutènement en béton arme avec remblai à deux couches.

B. Bloque des données calculées :

B.1 Bloque des calculs des pressions :

calcul des pressions	avec n calcul de	appe pression et moment
	(couch	e 1)
calcul les coefficient de poussée et butée de (couche 1):	ļ	
Ceofficient de poussée K_a 0.2973	I	
Ceofficient de butée K _p 3.3634	T .	
calcul des force de poussée et butée (couche 1):		
la pression de poussée de terre sans eau : P_a 9.5140	KN/m^2	la force de poussée: 9.5140 KN
la force de poussée horizontal 8.9403	KN	
la force de poussée vertical 3.2540	KN	
la pression de poussée de terre avec eau : F_a 0.0000	KN/m^2	la force de poussée triangle: 0.0000 <i>KN</i>
la force de poussée triangle: la force de poussée horizontal 0.0000	KN	
la force de poussée vertical 0.0000	KN	
0.7772		
0.75330.0.2021Ceofficient de poussée de surcharge d'exploitation $K_{s,q}$	0.3035	
Ceofficient de butée de surcharge d'exploitation $K_{\mu z}$	3.2946	
sans nappe	0.0000 KN/m ²	la force de surcharge d'exploitation:
m pression de poussee de sur entriès à expronation	0.0000	in force de bui entre a explorationi
la force de surcharge d'exploitation horizontal:		0.0000 KN
la force de surcharge d'exploitation vertical: la pression de poussée de surcharge d'exploitation dans la couche 01 avec o	eau :	0.0000 KN
avec nappe dans 1 ^{er} couche : la pression de poussée de surcharge d'exploitation:	9.7129 KN/m ²	la force de surcharge d'exploitation: 0.0000 KN
la force de surcharge d'exploitation horizontal:		0.0000 KN
la force de surcharge d'exploitation vertical:		0.0000 KN
la pression d'eau :	0.0000	la force d'eau: 0.0000 KN

Fig.8 calcul des pressions à deux couches.

Fig.9 calcul des pressions à deux couches.

force de poids volimuque						
storee de polas tollinaque						
séction	1	30.6000	KN		force de terre amont	85.0000 KN
séction	2	0.0000	KN		force de terre aval	0.0000 KN
séction	3	30.0000	KN		mure en béton	61.2500 KN
séction	4	31.2500	KN			No. of the second se
séction	5	0.0000	KN			
séction	6	54.4000	KN			
séction	7	0.0000	KN			
charge d'exploitation	1	0.0000	KN			
Somme des force	0	146.2500	KN			
			-			
Tableaux de centre de gra	vité e	t les force et les mome	nt:			
afatian		centre de gravité /o (m)	les force (KN)	moment (KN*m	4	
section	1	1.6500	30.6000	50.4900	-	
section	2	0.8000	0.0000	0.0000		
section	3	0.6500	30.0000	19.5000		
section	4	1.2500	31.2500	39.0625	-	
section	5	0.2500	0.0000	0.0000		
séction	6	1.6500	54.4000	89.7600		
séction	7	1.9333	0.0000	0.0000		
force poussée hor <u>couche 1</u>	8	2.6667	8.9403	-23.8407		
force poussée ver <u>couche 1</u>	9	0.8000	3.2540	2.6032		
force poussee hor analysis	-		0.0000	0.0000		
force poussee ver		0.8000	0.0000	0.0000		
orce poussee nor <u>couche 2</u>	10	0.0000	0.0000	0.0000		
force poussée ver <u>couche 2</u>	11	0.8000	0.0000	0.0000		
force poussée noi <u>couche 2</u>		0,6667	0.7052	-4.4701	-	
E exploitation boriz couche 1	12	2,0000	2.4405	0.0000	-	
F exploitation verti couche 1	13	0.8000	0.0000	0.0000	-	
F exploitation horiz couche 1	12'	2 0000	0,0000	0.0000		
F exploitation verti couche 1	13'	0.8000	0.0000	0.0000		
F exploitation horiz couche 2	14	1.0000	18.2543	-18,2543	1	
F exploitation verti couche 2	15	0.8000	6,6440	5.3152	1	
F exploitation horiz couche 2	14'	0.0000	0.0000	0.0000	1	
F exploitation verti couche 2	15'	0.8000	0.0000	0.0000	1	
la force d'eau couhe 1:		0.0000	0.0000	0.0000		
la force d'eau couche 02:	16	0.6667	20.0000	-13.3333	1	
force butée	17	0.0000	0.0000	0.0000		
charge d'exploitation		1.6500	0.0000	0.0000		
terre amont		1	85.0000	140.2500		
terre aval		1	0.0000	0.0000		
mure en béton		1	61.2500	58.5625		
		/				

B.2 Bloque des calculs des moments :

Fig.10 Calcul des moments à deux couches.

TIMPINT		É ALL CLICCENT	N INC					
VERIFIC	ATION DE LA STABILIT	E AU GLISSEME	NI					
	VALEUR	UNITÉ		VALEUR	UNITÉ	٦		
1,35P _{1b}	21.12140301	KN	0,9G₁tanǿ	31.8264	KN	1		
1.5P2b	27.38147754	KN	0.9G ₂ tanø	44,1673	KN			
-/ 20			0.9G₄tanǿ	0.0000	KN			
			(-0.9B _b)	0.0000	KN			
total	48.50288054	KN	</td <td>75.9937</td> <td>KN</td> <td>le glisseme</td> <td>nt verifie</td> <td></td>	75.9937	KN	le glisseme	nt verifie	
		6		-				
VERIFIC	CATION DE LA STABILIT	E AU RENVERS	EMENT					
	VALEUR	UNUTÉ		VALEUR	UNUTÉ]		
1,35M _{p1}	-50.06963203	KN*m	0,9M _{G1}	52.7063	KN*m			
1,5Mp2	-19.4086433	KN*m	0,9M _{G2}	126.2250	KN*m			
			0,9M _{G4}	0.0000	KN*m			
			(-0,9M _B)	0.0000	KN*m			
total	69.47827533	KN*m	</td <td>178.9313</td> <td>KN*m</td> <td>le renverse</td> <td>ment verifie</td> <td></td>	178.9313	KN*m	le renverse	ment verifie	
VÉRIFIC	CATION DES CONTRAINT	F SUR LE SOL EN	IELU	_				
	cas de chara		λ.,	λα	λ.	λ.		
	tas ue thaig					nq		
		e	P _{1h}	P _{2h}	G1,G2 et G ₄	G ₃		
	CAS 1	je	P _{1h} 1.35	P _{2h} 1.5000	G1,G2 et G ₄ 1.3500	G ₃ 1.5		
	CAS 1 CAS 2	je	P _{1h} 1.35 1.35	P _{2h} 1.5000 1.5000	G1,G2 et G ₄ 1.3500 1.0000	G ₃ 1.5 1.5		
	CAS 1 CAS 2 CAS 3	e	P _{1h} 1.35 1.35 1.35	P _{2h} 1.5000 1.5000 1.5000	G1,G2 et G ₄ 1.3500 1.0000 1.3500	G ₃ 1.5 1.5 0		
	CAS 1 CAS 2 CAS 3 CAS 4		P _{1h} 1.35 1.35 1.35 1.35 1.35	P _{2h} 1.5000 1.5000 1.5000 1.5000	G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.0000	G ₃ 1.5 1.5 0 0		
	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 1.35 1.35 0	P _{2h} 1.5000 1.5000 1.5000 1.5000 0.0000	G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.0000 1.3500	G ₃ 1.5 1.5 0 0 1.5		
	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 1.35 0	P _{2h} 1.5000 1.5000 1.5000 1.5000 0.0000	G1,G2 et G ₄ 1.3500 1.0000 1.3500 1.0000 1.3500	G ₃ 1.5 1.5 0 0 1.5		
	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{th} 1.35 1.35 1.35 1.35 0 CAS1	P _{2h} 1.5000 1.5000 1.5000 1.5000 0.0000 CAS2	G1,G2 et G4 1.3500 1.0000 1.3500 1.0000 1.3500 CAS3	G ₃ 1.5 1.5 0 0 1.5 CAS4	CAS5	1
λ _γ	CAS 1 CAS 2 CAS 3 CAS 4 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 0 CAS1 1.35	P _{2h} 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500	G1,G2 et G4 1.3500 1.0000 1.3500 1.3500 CAS3 1.3500	G ₃ 1.5 1.5 0 0 1.5 CAS4 1.35	CAS5 0]
λ_{γ} λ_{0}	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 1.35 0 CAS1 1.35 1.35 1.35 1.35	Pan 1.5000 1.5000 1.5000 1.5000 0.0000 0.0000 CAS2 1.3500 1.5000	G1,G2 et G4 1.3500 1.0000 1.3500 1.0000 1.3500 CAS3 1.3500 1.5000	G ₃ 1.5 1.5 0 0 1.5 CAS4 1.35 1.5	CAS5 0 0]
λ ₇ λ ₀ λ _g	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 1.35 1.35 0 CAS1 1.35 1.35 1.5 1.35	P _{2h} 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500 1.5000 1.5000 1.5000	G1,G2 et G4 1.3500 1.0000 1.3500 1.3500 1.3500 1.3500 1.5000 1.3500	G ₃ 1.5 1.5 0 0 1.5 CAS4 1.35 1.5 1	CAS5 0 1.35]
$\lambda_{\gamma} = \lambda_{0} = \lambda_{g} = \lambda_{q}$	CAS 1 CAS 2 CAS 3 CAS 4 CAS 4 CAS 5		P _{th} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.5 1.5 1.5	P _{2h} 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500 1.5000 1.5000 1.5000 1.5000	G1,G2 et G4 1.3500 1.0000 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 0.0000	G ₃ 1.5 1.5 0 0 1.5 CAS4 1.35 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	CAS5 0 0 1.35 1.5]
$\lambda_{\gamma} \lambda_{0} \lambda_{g} \lambda_{q} \lambda_{q} G$	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5		P _{1h} 1.35 1.35 1.35 0 CAS1 1.35 1.5 1.35 1.5 1.5 272.9403805	P2h 1.5000 1.5000 1.5000 1.5000 0.0000 0.0000 0.0000 0.0000 1.5000 0.0000 0.0000 1.5000 1.5000 1.5000 1.5000 221.7529	G1,G2 et G4 1.3500 1.0000 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 0.0000 272.9404	G ₃ 1.5 1.5 0 0 1.5 CAS4 1.35 1.5 1 0 221.752881	CAS5 0 0 1.35 1.5 197.4375	
λ_{γ} λ_{0} λ_{g} λ_{q} G	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	UNITÉ KN KN*m	P _{1h} 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.5 1.35 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	P _{2h} 1.5000 1.5000 1.5000 1.5000 0.0000 CAS2 1.3500 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000	G1,G2 et G4 1.3500 1.0000 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 272,9404 184,7957	G ₃ 1.5 1.5 0 1.5 CAS4 1.35 1.5 1.5 1.5 1.2 221.752881 115.211341	CAS5 0 1.35 1.5 197.4375 268.396875	
λ_{γ} λ_{θ} λ_{g} λ_{q} G M e_{0}	CAS 1 CAS 2 CAS 3 CAS 4 CAS 5	UNITÉ KN KN*m m	P _{1h} 1.35 1.35 1.35 1.35 1.35 1.35 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	P2h 1.5000 1.0000 1.5000 1.0000 1.5000 1.000	G1,G2 et G4 1.3500 1.0000 1.3500 1.0000 1.3500 1.0000 1.3500 1.3500 1.3500 2.3500 1.3500 1.3500 1.3500 1.3500 1.3500 1.3500 2.72.9404 184.7957 -0.5729	G3 G3 1.5 0 0 1.5 CAS4 1.35 1.5 1 1 0 221.752881 115.211341 -0.73045166	CAS5 0 0 1.35 1.5 197.4375 268.396875 0.109401709	MAXI

Fig.11 Des vérifications des stabilités à deux couches.

3.3 Programme de vérification cas dynamique

3.3.1 Programme une couche avec nappe aquifère :

3.3.1.1 Structure de programme :

A. Bloque des données :

les données de calcul									
Longeur de voil	H.	(m)	4 500	1					
Longeur de téraine	H.	(m)	4,000						/
Largeur de base	B	(m)	2 500				Ε.	/	6
Engisseur de la semalle	E.	(m)	0.500		-		-1	<u> </u>	<u> </u>
Epaisseur de la tete de voil	E ₁	(m)	0.300						1
Epaisseur de la base de voil	F	(m)	0.300						
Angle de frottement interne remblai	Ø	(**)	30.000						
Angle de d'inclnisant de talus	i	(°)	0.000				n n		
Angle de d'inclnisant de voil	β	(?)	90.000					5	F_Q
Angle de frottement sol- mur	δ	(°)	20.000		H			2	Fp
cohésant de remblai	C	.,	0.000				_		
angle de frottement interne de sol sous la semmelle	φ'		30.000		F _B		-	B	
cohésant de sol sous la semelle	C'		0.000			H			
Densité de remblai	Yremblai	KN/m ³	18.000		A.	E		2	
Densité de remblai saturée	Ysat remblai	KN/m ³	21.000						
Densité de sol sous semelle	Ysol	KN/m ³	0.000			/T			
Densité d'eau	Yw	KN/m ³	10.000		/				
Densité du béton	YBéton	KN/m ³	25.000		point d	e retation ()	В	
Hateur de remeblai (Butée)	Н	(m)	0.000					_	_
La position de nappe aquifère	Hw	(m)	0.000						
Surcharge d'exploitation	Q	KN/m ²	0.000						
largeur de béche	E ₄	(m)	0.500		GROUPE	I	II a	II b	III
le coefficient de sécurité	F		3.000		1A	0.15	0.25	0.30	0.40
Angle de d'inclnisant de voil avec le horizontal	λ	(?)	0.000		1B	0.12	0.20	0.25	0.30
Angle de d'inclnisant de surcharge d'exploitation	α ₀	(?)	0.000		2	0.10	0.15	0.20	0.25
Angle de frottement sol-semelle	φ'	(?)	30.000		3	0.07	0.10	0.14	0.18
Étude dynamique la méthode de	Mononob	e-Okabe	2	avec nappe					
			1 cou	iche					
			sol sec	sol saturée					
le coefficient d'accélération de zone	A		0.400	******					
composante verticale d'accélération	σ_h	1	0.400	******					
composante horizontale d'accélération	σ_v		0.120	******					
Angle de rotation	θ (°)	0.343	19.654	19.654 24.444	+				
coefficient de perméabilite de remblai saturé	k	m/s	10.000000						
le poids volumige de sol calculée	v*	KN/m ³	11.000	******	6				
l'accélération	g		10.000	******					

Fig.12 Les données de calcul (une couche avec nappe aquifère cas dynamique).

- B. Bloque des données calculées :
 - **B.1** Bloque des calculs des pressions :

	21212 2100 0		P-		1		
calcul des pressio	ns	Avecn	appe aquifère	$H_t \ge H_1$			
calcul les coefficient de poussée et bu	tée:	E: CAS STA	TIQUE				
Ceofficient de poussée K _a	0.2973						
Ceofficient de butée K _p	3.3634		n	nodification			
calcul des force de poussée et butée:							
la pression de poussée de terre sans eau	P _a 21.4066	KN/m^2	la	a force de poussée:	42.8132 KN	comme une	triangle
la force de poussée horizontal	40.2312	KN			/	1	
la force de poussée vertical	14.6430	KN	_				
la pression de poussée de terre avec eau	P _a 0.0000	KN/m^2	la	a force de poussée triangle:	0.0000 KN		
la force de poussée triangle:	0.0000	KN					
la force de poussée vertical	0.0000	KN					
la pression de poussée d'eau :	OUSSÉE STATIQUE DE . 0.0000	L'EAU INTERST KN/m ²	TITIELLE E	#s a force de poussée:	0.0000		
POL	SSÉE DE SURCHARGE	Z D'EXPLOITA	TION STATIQ	UE:			
Ceofficient de poussée de surcharge d'ex	ploitation: K _{ag}	0.3035					
Ceofficient de butée de surcharge d'explo	pitation: K_{pq}	3.2946					
la pression de poussée de surcharge d'es	xploitation:	0.0000 K	N/m ² la	a force de surcharge d'exploita	tion: 0.	0000 KN	
la force de surcharge d'exploita	tion horizontal:		0.0000 A	^{KN}			
la force de surcharge d'exploita	ition vertical:		0.0000	KN			
parte de sol saturée							
la pression de poussée de surcharge d'en	cploitation:	0.0000 K	N/m ² la	a force de surcharge d'exploita	tion: 0.	0000	
la force de surcharge d'exploita	tion horizontal:		0.0000 K	KN			
la force de surcharge d'exploita	ition vertical:		0.0000	KN			
la pression de butée : P _p	0.0000	K	(N/m ² la	a force butée horizontal:	0.0000 KN		
	-						

B.1.1 Bloc des calcul des pressions cas statique :

Fig.13 Calcul des pressions une couches.

B	.1.2	Bloc	des	calculs	des	pressions	cas	dynamique	:
						F			

CALCUL DES FORCE DE POUSSÉE ET	BUTÉE: CAS DYN	AMIQUE		
	DIMARAGE dyn	amique		
pour le sol sec	0.7000	0.1700		
0.9837 1.0000 0.77 0.9417	0.7660	0.1796	1 +	
0.9955 1.0000 0.714 0.9104	0.7660	0.0968	1 .	
Ceoncient de poussee dynamique : +	0.6594			
Ceofficient de poussée dynamique : -	0.8717			
la force de poussée dynamique : +	[106.3478 KN		
la force de poussée dynamique : -		110.4614 KA	r.	
pour le sol saturée				
0.9837 1.000 0.77 0.9417	0,7660	0.1796	1 +	
0.9953 1.0000 0.714 0.9104	0.7660	0.0968	1 -	
Ceofficient de poussée dynamique : +	0.6594			
Ceofficient de poussée dynamique : -	0.8717			
la force de poussée dynamique : +		0.0000 KN		
la force de poussée dynamique : -	1	0.0000 KA	1	
a force de poussee dynamique f		0.0000		
CUDCULDOF	DURY DI OUT L'TIOU I			
SURCHARGE	DEXPLOITATION	UYNAMIQUE :		
Ceofficient de poussée de surcharge d'exploitation: +	0.6594			
Ceofficient de poussée de surcharge d'exploitation: -	0.8717			
	,			
la force de surcharge d'exploitation : +		0.0000 KN		
la force de surcharge d'exploitation:	1	0.0000	,	
la lorce de surcharge d'exploitation.		0.0000		
POUSSÉE HYDRODYN	AMIQUE DE L'EAU	INTERSTITIEL	EWD	
la poussée hydrodynamique de l'eau interstisielle : E_{wd}	0.0000	KN		
LA FORCE DE POUSS	SÉE TOTALE (STA)	TIQUE + DYNAMIQ	UE)	
cas + 106.3478				
<i>cas</i> - 110.4614				
	LINCRÉMEN	TDYRAMIQUE		
		and the second second		
l'incrément dynamique + 63.5346		10	max	
l'incrément dynamique - 67.6482		a increment dynan	67.6482	
l'incrément dynamique horizontal 63 5685				
03.000				
l'increment dynamique vertical 23.1371				

Fig.14 Calcul des pressions à deux couches.

es force de poids volimuque	e:					
séction	1	0.0000	KN		force de terre amont	107.1000 K
séction	2	0.0000	KN		force de terre aval	0.0000 K
séction	3	30.0000	KN		mure en béton	61.2500 K
séction	4	31.2500	KN			
séction	5	0.0000	KN			
séction	6	107.1000	KN			
séction	7	0.0000	KN			
charge d'exploitation		0.0000	KN			
Somme des force	_	168.3500	KN			
	_					
Tableaux de centre de grav	vité	et les force et les mome	ent:			
		antes de marité la (m)	les fames (I/N)	www.entertheory	1	
séction	1	centre de gravite /o (m)	les force (KN)	moment (KN*m)		
séction	2	1.6500	0.0000	0.0000		
séction	2	0.8000	0.0000	0.0000		
section	3	0.6500	30.0000	19.5000		
section	4	1.2500	31.2500	39.0625		
section	5	0.2500	0.0000	0.0000		
section	6	1.6500	107.1000	176.7150		
section	7	1.9333	0.0000	0.0000		
force de poussée horizontal	8	1.3333	40.2312	-53.6417		
force de poussée vertical	9	0.8000	14.6430	11.7144		
force de poussee horizontal	12	0.0000	0.0000	0.0000		
l'in minute de poussee vertical	13	0.8000	0.0000	1525645		
l'incriment dynamique norizon	ntat	2.4000	03.3003	-152.5045		
E charge d'exploitation horiz	14	2,0000	0.0000	0.0000		
F charge d'exploitation verti	15	0.8000	0.0000	0.0000		
la force de poussée horiz	16	0.0000	0.0000	0.0000		
force butée	17	0.0000	0.0000	0.0000		
		1,6500	0.0000	0.0000		
charge d'exploitation		1.0300				
charge d'exploitation		1.6500				
charge d'exploitation		1.0500	107 1000	176 7150	i i	
charge d'exploitation		1.6500	107.1000	176.7150		
charge d'exploitation terre amont terre aval		/	107.1000 0.0000	176.7150 0.0000		

B.1.3 Bloque des calculs des moments :

Fig.15 Calcul des moments une couche couche (cas dynamique).

C. Bloque des vérifications des stabilités :

Fig.16 Calcul du coefficient de sécurité.

3.4 Programme de vérification cas dynamique :

3.4.1 Programme une couche avec nappe aquifère :

3.4.1.1 Structure de programme :

A. Bloque des données :

Fig.17 Les données de calcul (deux couche cas dynamique).

B. Bloque des données calculées :

B.1 Bloque des calculs des pressions :

B.1.1 Bloc des calculs des pressions cas statique :

➢ 1^{er} couche :

calcul des pressions	C	avec nappe alcul de pression et	H ₂ > E ₃ moment	
		(couche 1)		
calcul les coefficient de poussée et butée de (couche 1):				
Ceofficient de poussée K _a 0.2973				
Ceofficient de butée K _p 3.3634				
calcul des force de poussée et butée (couche 1):				
la pression de poussée de terre sans eau : <i>P_a</i> 9.5140	KN/m ²	la	force de poussée: 9.5140	KN
la force de poussée horizontal 8.9403	KN			
la force de poussée vertical 3.2540	KN			
0.7533 0 0.2021				
Ceofficient de poussée de surcharge d'exploitation K_{aq}	0.3035			
Ceofficient de butée de surcharge d'exploitation $\mathcal{K}_{\mathrm{p}q}$	3.2946			
la pression de poussée de surcharge d'exploitation:	3.0353	la t	force de surcharge d'exploitation:	6.0706
la force de surcharge d'exploitation horizontal:		5.7045 KI	N	
la force de surcharge d'exploitation vertical:		2.0763 K	N	

Fig.18 calcul des pressions 1^{er} couche cas statique.

 \succ 2^{eme} couche :

	(couche 2)
calcul les coefficient de poussée et butée de (couche 2):	
Caofficiant de noussáe K 0.2072	
Ceofficient de butee A _p 3.3634	
calcul des force de poussée et butée (couche 2):	
la pression de poussée de terre sans eau : P _a 11.5952	$\frac{KN}{m^2}$ la force de poussée: p_{a} 11.5952 KN
la force de poussée horizontal 10.8960	KN
la force de poussée vertical 3.9658	KN
0.9700	
Ceofficient de poussée de surcharge d'exploitation	0.3035
Ceofficient de butée de surcharge d'exploitation	3.2946
la pression de poussée de surcharge d'exploitation:	12.7482 la force de surcharge d'exploitation: 25.4964 KN
la force de surcharge d'exploitation horizontal:	23.9588 KN
la force de surcharge d'exploitation vertical:	8.7203 KN

Fig.19 calcul des pressions ^{2eme} couche cas statique

B.1.2 Bloc des calculs des pressions cas dynamique :

➢ 1^{er}couche :

CALCUL DES FORG							(couche 1)		
		DIM	ARAGE dyn	amique					100
pour le sol sec									
0.9437 1.0000	0.86	0.9827	0.7660	0.3308	1	+			
0.9511 1.0000	0.8479	0.9781	0.7660	0.3088	1				
Ceofficient de poussée dynamique :	+		0.4428						
Ceofficient de poussée dynamique :	-		0.4670						
	-			A MARK ON A PARTY.	KN				
la force de poussee dynam	nique : +			15.0183					
la force de poussée duran	nique :		_	14.0400	KN				
la lorce de poussee dynam	inque			14.0480					
	SUR	CHARGE D'EXPL	OITATION	YNAMIOUE					
Ceofficient de poussée de surcharge	e d'exploitatio	on: +	0.4428	1					
Ceofficient de poussée de surcharge	d'exploitatio	on: -	0.4670						
				5					
la force de surcharge d'exp	ploitation : +			9.3865	KN				
					2				
la force de surcharge d'exp	ploitation: -			8.7804	KN				
	LA FORCE	DE POUSSEE TO	ALE (SIA)	IQUE+DYNA	MIQUEJ			0	
24 4049									
cus + 24.4048	KN								
cas . 22 8290	KN								
LL.SL.SU									
		1	INCRÉMENT	T DYNAMIQU	R				
l'incrément dynamique	+	8.8202	KN			max			
	_			l'incrément d	ynamique	8.8202	KN		
l'incrément dynamique		7.2443	KN						
l'incrément dynamique horizontal		8.2883	KN						
	_								
l'incrément dynamique vertical		3.0167	ĸN						

Fig.20 calcul des pressions à 1^{er} couche cas dynamique.

CALCUL DES FORCE DE POUSSÉE ET BUTÉE: CAS DY	(couche 2)
DIMARAGE dy	ynamique
0.9437 1.0000 0.86 0.9827 0.7660	0.3308 1 +
0.9511 1.0000 0.8479 0.9781 0.7660	0.3088 1
Ceofficient de poussée dynamique : + 0.4428	
Ceofficient de poussée dynamique : - 0.4670	
la force de poussée dynamique : +	18.3036 KN
la force de poussée dynamique : -	17.1217 KN
SURCHARGE D'EXPLOITATION	
max	
Ceofficient de poussée de surcharge d'exploitation: + 0.4428	
Ceofficient de noussée de surcharge d'exploitation:	
ceonteient de poussee de sai endige d'exploration.	
la force de surcharge d'exploitation : +	39.4231 KN
la force de surcharge d'exploitation: -	36 8775 KN
a na sana kata kata kata kata kata kata kata k	300073
LA FORCE DE POUSSÉE TOTALE (ST	ATIQUE+DYNAMIQUE)
cas + 57.7267 KN	
cas - 53.9993 KN	
1 (10/0) ² 11/	are politication
Lingerante	NT DYNNMIQUE
l'incrément dynamique + 20.6351 KN	max
Pincrément dunamique	l'incrément dynamique 20.6351 KN
Tind ement dynamique	
l'incrément dynamique horizontal 19.3906 KN	
l'incrément dynamique vertical 7 0576 KN	
A A A A A A A A A A A A A A A A A A A	
la pression de butée : 0.0000	la force butée horizontal: 0.0000 KN
0,000	

Fig.21 calcul des pressions à 1^{er} couche cas dynamique.

séction 1	54.4000	KN		force de terre amont	120.7000
séction 2	0.0000	KN		force de terre aval	0.0000
séction 3	30.0000	KN		mure en béton	61.2500
séction 4	31.2500	KN			
séction 5	0.0000	KN			
séction 6	66.3000	KN			
séction 7	0.0000	KN			
section 8	0.0000	KN			
charge d'exploitation	17.0000	KN			
Somme des force	198.9500	KN			
Tableaux de centre de gravité e	t les force et les mome	nt:			
0					
	centre de gravité /o (m)	les force (KN)	moment (KN*m)		
séction 1	1.6500	54.4000	89.7600		
séction 2	0.8000	0.0000	0.0000		
séction 3	0.6500	30.0000	19.5000		
séction 4	1.2500	31.2500	39.0625		
séction 5	0.2500	0.0000	0.0000	1	
séction 6	0.8000	66.3000	53.0400	1	
séction 7	1.9333	0.0000	0.0000	1	
section 8	0.0000	0.0000	0.0000	1	
Jection	0.0000	0.0000	0.0000		
force poussée hor <u>couche 1</u> 8	3.1667	8.9403	-28.3109		
force poussée hor couche 1 8 force poussée ver couche 1 9	3.1667 0.8000	8.9403 3.2540	-28.3109 2.6032		
force poussée hor <u>couche 1</u> 8 force poussée ver <u>couche 1</u> 9 force de l'incrément dyna hor c1	3.1667 0.8000 3.7000	8.9403 3.2540 8.2883	-28.3109 2.6032 -30.6665		
force poussée hor <u>couche 1</u> 8 force poussée ver <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1	3.1667 0.8000 3.7000 0.8000	8.9403 3.2540 8.2883 3.0167	-28.3109 2.6032 -30.6665 2.4133		
force poussée hor <u>couche 1</u> 8 force poussée ver <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force poussée hor <u>couche 2</u> 10	3.1667 0.8000 3.7000 0.8000 1.1667	8.9403 3.2540 8.2883 3.0167 10.8960	-28.3109 2.6032 -30.6665 2.4133 -12.7120		
force poussée hor couche 1 8 force poussée ver couche 1 9 force de l'incrément dyna hor c1 1 force de l'incrément dyna ver c1 1 force poussée hor couche 2 10 force poussée ver couche 2 11	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658	-28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726		
force poussée hor <u>couche 1</u> 8 force poussée ver <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force poussée hor <u>couche 2</u> 10 force poussée ver <u>couche 2</u> 11 force de l'incrément dyna hor c2	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906	-28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641		
force poussée hor <u>couche 1</u> 8 force poussée ver <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force poussée hor <u>couche 2</u> 10 force poussée ver <u>couche 2</u> 11 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2	3.1667 0.8000 0.8000 1.1667 0.8000 1.7000 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576	-28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461		
force poussée hor <u>couche 1</u> 8 force poussée hor <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force poussée hor <u>couche 2</u> 10 force poussée ver <u>couche 2</u> 11 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz <u>couche 1</u> 12	3.1667 0.8000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000	8,9403 3,2540 8,2883 3,0167 10,8960 3,9658 19,3906 7,0576 5,7045	-28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657		
force poussée hor <u>couche 1</u> 8 force poussée hor <u>couche 1</u> 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force de l'incrément dyna ver c1 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz <u>couche 1</u> 12 F exploitation horiz <u>couche 1</u> 13	3.1667 0.8000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763	-28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force de l'incrément dyna ver c1 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz couche 1 12 F exploitation horiz couche 1 13 F exploitation horiz couche 2 14	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 1.5000 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force de l'incrément dyna ver c1 force de l'incrément dyna hor c2 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz couche 1 12 F exploitation horiz couche 1 13 F exploitation horiz couche 2 14 F exploitation verti couche 2 15	0.0000 3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 3.5000 0.8000 1.5000 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 8.7203	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382 -6.9762 2.0020		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 1 force poussée hor couche 2 10 force poussée hor couche 2 11 force de l'incrément dyna ver c2 1 F exploitation horiz couche 1 13 F exploitation horiz couche 2 14 F exploitation horiz couche 2 15 force butée 17	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 0.8000 1.5000 0.8000 0.8000 0.8000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 0.0000	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382 -6.9762 0.0000		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 1 force poussée hor couche 2 10 force poussée hor couche 2 11 force de l'incrément dyna ver c2 1 F exploitation horiz couche 1 12 F exploitation horiz couche 2 14 F exploitation horiz couche 2 15 force butée 17 charge d'exploitation 17	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 3.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.5000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 0.0000 17.0000	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 -19.9657 1.6610 -35.9382 -6.9762 0.0000 28.0500		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 force poussée hor couche 2 10 force poussée hor couche 2 10 force poussée hor couche 2 11 force de l'incrément dyna ver c2 force de l'incrément dyna ver c2 force de l'incrément dyna ver c2 Fexploitation horiz couche 1 F exploitation horiz couche 2 14 F exploitation horiz couche 2 15 force butée 17 charge d'exploitation 17	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 0.8000 0.8000 1.5000 0.8000 1.5000 0.8000 1.5000	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 0.0000 17.0000	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 -5.6461 -19.9657 1.6610 -35.9382 -6.9762 0.0000 28.0500		
force poussée hor couche 1 8 force poussée ver couche 1 9 force de l'incrément dyna hor c1 1 force poussée hor couche 2 10 force poussée hor couche 2 11 force de l'incrément dyna ver c2 1 F exploitation horiz couche 1 13 F exploitation horiz couche 2 14 F exploitation verti couche 2 15 force butée 17 charge d'exploitation 17	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.6500	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 0.0000 17.0000	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382 -6.9762 0.0000 28.0500		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force de l'incrément dyna ver c1 force de l'incrément dyna hor c2 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz couche 1 12 F exploitation horiz couche 1 13 F exploitation verticouche 1 13 F exploitation verticouche 2 14 F exploitation verticouche 2 15 force de l'exploitation térre amont	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.6500	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 2.39588 8.7203 0.0000 17.0000	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382 -6.9762 0.0000 28.0500 142.8000 0.0000		
force poussée hor couche 1 8 force poussée hor couche 1 9 force de l'incrément dyna hor c1 force de l'incrément dyna ver c1 force de l'incrément dyna ver c1 force de l'incrément dyna hor c2 force de l'incrément dyna hor c2 force de l'incrément dyna ver c2 F exploitation horiz couche 1 12 F exploitation horiz couche 1 13 F exploitation horiz couche 2 14 F exploitation verti couche 2 15 force butée 17 charge d'exploitation	3.1667 0.8000 3.7000 0.8000 1.1667 0.8000 1.7000 0.8000 3.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.5000 0.8000 1.6500	8.9403 3.2540 8.2883 3.0167 10.8960 3.9658 19.3906 7.0576 5.7045 2.0763 23.9588 8.7203 0.0000 17.0000 120.7000 0.0000 6.12500	-28.3109 -28.3109 2.6032 -30.6665 2.4133 -12.7120 3.1726 -32.9641 5.6461 -19.9657 1.6610 -35.9382 -6.9762 0.0000 28.0500 142.8000 0.0000 58.5625		

B.2 Bloque des calculs des moments :

Fig.22 calcul des moments deux couches (cas dynamique).

B.3 Bloque des vérifications des stabilités :

VÉRIFIC	CATION DE LA STABI	LITÉ AU GLISSEME	NT			
	Q+G+E					
	VALEUR	UNITÉ		VALEUR	UNITÉ	
P _{1h}	19.8362	KN	0,9G₁tanǿ	31.8264	KN	
P _{2h}	29.6633	KN	0,9G ₂ tanø	62.7176	KN	
Pa	27.6789		0,9G₄tanǿ	0.0000	KN	2
			(-0,9B _h)	0.0000	KN	1.225
total	77.1784	KN	</td <td>94.5440</td> <td>KN</td> <td>le glissement non vrifie</td>	94.5440	KN	le glissement non vrifie
	0.9045					
	U.OGTE					
VÉRIFI	CATION DE LA STABI	LITÉ AU RENVERSI	EMENT			
VÉRIFI(CATION DE LA STABI	LITÉ AU RENVERSI	EMENT			
VÉRIFI(CATION DE LA STABI	LITÉ AU RENVERSI UNUTÉ	EMENT	VALEUR	UNUTÉ	
VÉRIFIC	VALEUR -47.58343726	LITÉ AU RENVERSE UNUTÉ KN*m	EMENT 0,9M _{G1}	VALEUR 52.7063	UNUTÉ KN*m	7
VÉRIFIC 1,35M _{p1} 1,5M _{p2}	VALEUR -47.58343726 -91.82860919	LITÉ AU RENVERSE UNUTÉ KN*m KN*m	0,9M _{G1}	VALEUR 52.7063 128.5200	UNUTÉ KN*m KN*m	
VÉRIFIC 1,35M _{p1} 1,5M _{p2} M _{pa}	CATION DE LA STABI VALEUR -47.58343726 -91.82860919 -55.5712	LITÉ AU RENVERSI UNUTÉ KN*m KN*m	0,9M _{G1} 0,9M _{G2} 0,9M _{G4}	VALEUR 52.7063 128.5200 0.0000	UNUTÉ KN*m KN*m KN*m	
VÉRIFIC 1,35M _{p1} 1,5M _{p2} M _{pa}	CATION DE LA STABI VALEUR -47.58343726 -91.82860919 -55.5712	LITÉ AU RENVERSI UNUTÉ KN*m KN*m	0,9M _{G1} 0,9M _{G2} 0,9M _{G4} (-0,9M _B)	VALEUR 52.7063 128.5200 0.0000 0.0000	UNUTÉ KN*m KN*m KN*m KN*m	0.9294

Fig.23 Calcul du coefficient de sécurité (cas dynamique).

RÉFÉRENCES BIBLIOGRAPHIQUES

REFERENCES BIBLIOGRAPHIQUES

[1] Eurocode 7 «calcul géotechnique» Editée et diffusée par l'Association française de Normalisation (AFNOR) 1996.

[2] Henri Duthu, Daniel Montharry et Michel Platzer «la technique du bâtiment tous corps d'état» Edition le moniteur 2004.

[3] M. CAVÉ, M. LEVEILLARD, M. SANDROLINI, M. JALIL, M. PERCHAT et JEAN PERCHAT «Règles BAEL 91 modifiées 99»

Édition 2005.

[4] François SCHLOSSER «Techniques de l'Ingénieur C244» Murs de soutènement.

[5] C. Plumelle «B6/chapitre 14 (version du 17/12/02)» Cnam – Paris – *Géotechnique*.

[6] Ali BUAFIA «CALCUL PRATIQUE DES FONDATION ET DES SOUTENEMENT» 2^{éme} Edition revue et corrigée /OFFICE DES PUBLICTIONS UNIVERSITAIRES 02-2009.

[7] Gérard PHILPPONNAT PRÉFACE DE Maurice ALBIGÈS «FONDATION ET OUVRAGES EN TERRE» DEUXIEME EDITION nouveau tirage EDITIONS EYROLLES 61, boulevard Saint-Germain, 75005 Paris 1987.

[8] Gérard PHILPPONNAT et Bertrand Hubert «fondation et ouvrages en terre» Deuxième tirage 2000 Éditions Eyrolles, 1998, ISBN2-212-07218-X.

[9] BRAJA M. DAS «Principles of Geotechnical Engineering» COPYRIGHT © 2006 by Nelson, a division of Thomson Canada Limited.

[10] Jean Costet / Guy Sanglerat «Cours pratique de mécanique des sols » troisième édition © BORDAS, Paris, 1983 ISBN2-04-016412-X.

[11] Ministere de l'habitat et de l'urbanisme document technique reglementaire DTR B C 2 48 «REGLES PARASISMIQUES ALGERIENNES RPA 99 / VERS 2003».

[12] «EARTHQUAKE GEOTECHNIQAL ENGINEERING» proceedings of the second international conference on earthquake geotechnical engineering/lisboa/portugal/21-25june1999.

[13] EUROCODE 02