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CHAPTER 1

General Introduction

This thesis is composed of five chapters. The first one is devoted to the essential results,
a brief outline for each chapter and the basic tools of the proof. In the second chapter we
are concerned with the asymptotic behavior problem for nonconvex random integral
functionals depending on second gradient. To identify the I'—limit, we use the ergodic
theorem for discrete subadditive processes and by I'— convergence argument we treat
the problem in question. The third chapter deals with the axisymmetric incompressible
Navier-Stokes equations. We treat two problems. In the first one we study the global
well-posedness for three-dimensional Navier-Stokes, where the initial data is an
axisymmetric vector field and belonging to the critical Besov spaces. In the second part
we establish the inviscid limit, when the viscosity v goes to 0 of the solutions (v, ), of
Navier-Stokes equations toward the solution v of Euler equations and we evaluate the
rate of convergence. The fourth chapter is reserved to investigate the global
well-posedeness of another evolution problem which called the Euler-Boussinesq system
with fractional dissipation and initial data lying in critical Besov spaces.

Firstly, we treat the commutator term coming from the commutation between the
fractional Laplacian and the regularized flows. Secondly, we prove the smoothing effects
of the transport-diffusion equation governing the evolution of the temperature. The final
chapter deals with the essential background already used in the third and fourth chapter.
We recall to the basic results concerned the Littlewood-Paley theory, as well as the Besov
spaces and their properties and the famous paraproduct identity.

CHAPTER 2

1. Nonconvex Random Higher Order Integrals and Homogenization

Composites are structures constituted by two or more materials which are finely mixed
at microscopic length scales. Despite the high complexity of their microstructure,
composites appear essentially as homogeneous at macroscopic length scale. It suggests
to give a description of their effective properties as a kind of average made on the
respective properties of the constituents.

The Homogenization Theory renders possible to define properly such an average, by
thinking of a composite as a limit (in a certain sense) of a sequence of structures whose

heterogeneities become finer and finer. There is a wide literature on the subiject: we refer
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e The asymptotic expansions by multi-scales method, it is adapted in particularly to
study the linear problems, we refer to A. Bensoussan, J. L. Lions and G. Papanicolaou
[8], E. Sanchez Palencia [53].

e The H—convergence due to F. Murat and L. Tartar [46] is permit to describe the
asymptotic behavior of a sequence of second order elliptic operators in divergence form.
This notion appears as a generalization of the G— convergence (see [16], chapter 22)
introduced independently for symmetric operators.

e The variational methods like I'-convergence and Mosco-convergence are devoted to
describe the asymptotic analysis of families of minimum problems, usually depending
on some parameters whose nature may be geometric or constitutive, deriving from a
discretization argument, an approximation procedure, see E. De Giorgi! [19], H. Attouch
[5] and U. Mosco? [43].

e The probabilistic methods are introduced in order to treat the heterogeneous random
media, see G. C. Papanicolaou and S. R. S. Varadhan [49], G. Dal Maso and L. Modica
[17, 18], K. Messaoudi and G. Michaille [40].

e The two-scales convergence due to G. Neguesting [48] developed par G. Allaire et M.
Briane [4] in order to deal with the weak convergence problems.

The physicists and the mechanics rather use the multiple scales method which has the
advantage of being easy to implement. The mathematicians prefer in general the others,
because they make it possible to show that the homogenized solution is close (in a
precise sense) to the real solution and to consider the error made by replacing the real
solution by the homogenized solution. The majority of these methods provide moreover
the convergence of energies and marry with the approximation techniques, like duality
see P. Suquet [55], H. Attouch, D. Azé and R. Wetz [6], . ...

Our aim here is to characterize the behavior as € tends to zero of the family of functionals
defined on W??(O) by

Ge(w)(u) :/O](w,slx,vzu(x))dx.

under periodicity in law and (nonconvexity) hypothesis with O is an open bounded
subset of RY.

The term G,(w) can be interpreted as the energy under a deformation u of an elastic
body whose microstructure is distributed in random way. We seek to approximate in a
I'— convergence sense the microscopic behavior of this kind of material by a
macroscopic, or average, description. We combine a I'— limit argument with techniques
of ergodic theorem.

The density ] : Q x R? x M?*? — [0, 4-00] is a function satisfying the following

conditions:
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e the map x — J(w, x, ) is x— measurable and for every &1,& € Mméxd

J(w,x,61) = J(w,%,82)] S LA+ &P+ 6P )6 — &l ae (vw) € R x O

o there exists two positive constants «, B such that 0 < & < B and for every
& € M%*? we have:

a|ElP < J(w,x,&) < B(1+E)P) ae (x,w) € R x Q.

To determine the effective I'— limit we introduce the following set function:
I >3Qv My(w,], &) = inf{ /Q](w, x, VZu(x))dx :u € Lg + Wg’p(Q)},

where .# = {[a,b[: a,b € Z%} and L; is an affine function.
Then we show that .7 > Q — Zp(w, ], ¢) is a discrete subadditive process with respect
to a given dynamical system (see definition 2.2 below), namely we have:
) ol ]8) _ Aol Jot)
L4(1/€Q) L4(Q)
@) -4, 1,9)ll (4.0(9)7)) < B(1+2P)L4(Q) forall (Q,],¢) € F x G x M*4,
(3) Q +—— #y(.,.,.) is subadditive and covariant;
(4) there exists a constant L’ such that for all &1, Ep in M9

%Q('/]/é(l) . ‘%Q(/]I€2) ! p—1 p—1 .
£4(Q) £4(Q) S L4 +162077) 18 — 2.

Afterward, we identify the I'— limit by applying the ergodic theorem for discrete

subadditive processes du to M. Ackoglu and U. Krengel [3].
Lastly we establish the almost everywhere I'— convergence of {G,} toward Gpop, by
checking the lower and upper I'-limit (see definition 2.18). Our main result reads as

follows:

THEOREM 1.1. Let | be an ergodic and stationary (periodic in law) integrand. Then the
corresponding random process { Ge¢(w)} defined by Ge(w) = (peG) (w) for every w € O, T—
converge almost every where in W>P(O) when & — 0 to the homogenized functional Gyom
defined by:

Ghom(”) :/O]hom(vzu(x))dx/

where the integrand Jyom is given by the following statement: for every & € M*4,

]hom(g) =
. 1 ) ] 1,
ll_r%m /Qmm { /1/sQ J(w,x, V?u(x))dx : u € Le+ € W, p(l/sQ)}d]P(w),

with Q = [0,1[? is a unit cube in R¥.

We emphasize that the homogenized integrand ], inherit the same properties that J,
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(i) «[¢]P < Jhom(€) < B(1+ |¢]P) for all & € M?*? with a, B two constants given by
growth and coerciveness conditions (II.3) of Chapter 2, Section 3.

CHAPTER 3

2. Inviscid Limit For Axisymmetric Navier-Stokes System

Historically, the mathematical study of fluid dynamics was initiated by L. Euler® in his
famous work in the middle of the seventeenth century [23] where he showed that the
velocity v of a perfect incompressible fluid subjected to an external force f obeys to the
following system:

oov+v-Vo+Vp=f
(E) divo=0

— 50
U|t:O—U .

Here, the first equation describes the conservation of the momentum while the second
one means that the fluid mass is preserved through the evolution in time.

The unknown p is a real scalar function called the pressure of the fluid and which can be
expressed from the velocity and the external force as below

—Ap =div (v- Vo) —div f.

In many cases this model fails to describe the motion of the fluid because we need to
take into account the viscous friction between particles which is very crucial for the
dynamics of the fluid. This work was successfully carried out by C. Navier* [47] and G.
Stokes® [54]. They proved that the dissipation process can be mathematically modeled
by Laplace-Beltrami operator. More precisely, the evolution of the velocity v(f, x) is
given by the equations

otvy + vy - Vo, —vAv, +Vp, = f
(NS,) divo, =0

— 0
UV“’:O =0".

These equations are called Navier-Stokes equations and the parameter v > 0 is the
viscosity. One of the most interesting mathematical field is to study existence and
uniqueness solutions for this IVP. Questions that one can ask are in which sense we have
to understand these equations: some difficulties arise when we deal with less smooth
initial data. Does the solutions exist globally in time or there is some blowup solutions in
finite time.

Let us recall some significant results obtained in this direction in the last century and we

will restrict ourselves to the viscous case with zero force.

o3 B o o B B o D o L _ L
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In his pioneering work in the last century J. Leray® [36] was able to construct globally in
time solutions in the energy space which are called weak solutions. More precisely he
showed that if the initial velocity belongs to the Lebesgue’ space L2(IR?) then the system

(NS,) admits a solution v, in the function space
vy € LY(R+; L2(RY)) N L2 (Ry; HY(RY)).

Moreover this solutions satisfies the energy inequality:

t
vVt >0, ||U(t)||%2(1[<d) +2V/0 ||Vv(5)||%2(1[{d)d5 < ||UO||%2(1Rd)-

The proof is done by using a compactness method and the a priori bound mentioned
above. Unfortunately those solutions are not known to be unique due to the lack of
regularity. However the uniqueness is proved in space dimension two since the velocity
is almost bounded. Afterward, many authors sought additional criteria allowing to
ensure the existence and the uniqueness of global solutions. Thus, in a famous article H.
Fujita and T. Kato [8] developed another kind of solutions. Their result can be stated in
the following way: if v° lies in H 2=1 then there exists a unique maximal solution v,

belonging to the space

v, € €([0, T*[; H2 1 (R?)) N L2 ([0, T*[; H% (RY)).
Moreover, if T* < +o0, then we have:

li = .
T HU”LZ([O,T},-H%(W)) e
If the initial data is sufficiently small, that is ||o° HH 1, <Cv where C is an absolute
constant then the solution exists globally in time and remains small. In few words the
proof is based in the smoothing effect of the heat operator combined with the Duhamel

formula

ou(t) = S(£)o0 + /Otsu — )P (v, - Vo) (1)dx,

where S(t) = ¢! is the heat semi-flow and P is Leray’s projector over free divergence
vector fields.
T. Kato [31] established a similar result for small data in L? in the absence of external

forces. In [51], F. Planchon showed that it was possible to generalize the Kato’s result

.2 -1
when ¥ € LP N %22; » With p > 3 if moreover ||o°|| 3y issmalland f = 0. Recently, H.
7 & p

“72p,00

6]ean LERAY: French mathematician, 1906-1998. He received the Wolf Prize in 1979, for pioneering
work on the development and application of topological methods to the study of differential equations,

jointly with André WEIL. He had worked in Nancy, France, in a prisoner of war camp in Austria (1940-
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Koch and D. Tataru [12] managed to generalize this type of results by working in space
BMO™!,

Mo Y {ve.s sup (1B(x,R)I 1/ / jodtdx)’ <oo}
B(x,R)

For a more details about this subject we refer to the book of P. G. Lemarié-Rieusset [35].
Global existence of smooth solutions with large initial data remains till now one of the
most open problem in partial differential equations.

Let us recall that the Besov spaces 4, . (resp. Sobolev spaces H”) is called critical if

s = % + 1, sub-critical if s < % + 1 and super-critical s > % + 1, where d is the space
dimension.

Now, we give the different blowup criterion

e Let T* the maximal time of existence for (NS, ) solutions, then
T" < o0 = lir¥ lo(t)||gs = +o0.
t—T*
e In consequence of the H® energy estimate,
T*
T* < 0o = / [0(7) || =dT = +co.
0

e Beale-Kato-Majda [7]: If 0 € H® (s > % + 1), then

Ty
T* < 00 = / o (8)|| Lwdt = +o0.

We empha51ze that the blowup B-K-M criterion rest valid for the Besov spaces %, ,, with
s > 5 + 1

Moreover, this criterion ensures that the development of finite time singularities for
Kato’s solutions is related to the blowup of the L norm of the vorticity near the
maximal time existence. A direct consequence of this result is the global well-posedness
of two-dimensional Navier-Stokes solutions for smooth initial data since the vorticity is
only advected and then does not grow.

Often a significant quantity appear in the systems (E) and (NS,) who is called the
vorticity denoted by w and defined by the curl of the velocity, i.e., w = curl v. The

coefficients of the antisymmetric matrix w are given by :
d . .
aJi]'(U) :f ajv’ — a,-v].
We apply the curl operator to the equation (NS,) leading under the assumption
div v = 0 to the following equation:

oiw+ (v-V)w+ (w-V)v—vw = 0.

When the value of w is known, then one can deduce the velocity v by applying
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For d = 2 and div = 0 the vorticity is reduced to a scalar function, namely
w = 9,0 — 91v? and consequently the equation which it checks is the following
transport-diffusion equation:

diw + (v-V)w —vAw = 0.
The incompressibility of the fluid leads that the flow ¢ defined by

P(t,x) =x+ /Otv('c,gb(r,x))dr

preserve the Lebesgue measure.
In dimension d = 3, the vorticity w can be identified with a vector. Moreover it obeys the
following equation:

oiw + (v- V)w —vAw = (w - V)v.

The term of the right-hand side, (w - V)v, is called the vorticity stretching term. This
term is the main obstacle to achieve in time regularity of the three-dimensional
Navier-Stokes equations. Nevertheless we have interesting cases in dimension three for
which we can prove global existence: we assume some geometric properties for initial
data. Namely we have the following two cases. The helicoidal initial data which means
that the components of the velocity are constant on the helicoids (see [22]). The second is
the axisymmetric initial data (see [58]). Hereafter, we will focus on the last case.

A vector field v is said to be axisymmetric if in cylindrical coordinates (¢,, €y, €;) it takes
the form:

(AX) v(t,x) = ve(t,7,2)€ + v.(t,7,2)e,

where ¢, stands for the unit (outer) radial vector and &, for the unit vertical vector. The
expression (AX) means that the components v,, vg = 0 and v, does not depends in
angular variable 8. An easy computation shows that the vorticity w is reduced to
w(r,0,z) = wy(r,z)ey with wy aef 9.0y — 9,0z, and obeys to the following equation:

diw ~+ (v-V)w —vAw = %w.
For the study of axisymmetric solutions of the Navier-Stokes without swirl, Ukhovskii
and Yudovich [21], and independently Ladyzhenskaya® [33], proved the existence of
generalized solutions, uniqueness and the regularity. S. Leonardi, J. Malek, J. Necis and
M. Pokorny [34] gave a refined proof, especially for initial data v € H?. This result was
recently improved by H. Abidi [1] for v° € H ? and axisymmetric external forces
fel2 (Ry;HP), with g > 1.
The inviscid (Euler) axisymmetric flows were the subject of M. Ukhovisky and V.
Yudovich [21], the authors had to assume that the vorticity vanishes rapidly enough near
the axis of symmetry, namely < € L® to conclude global existence for initial data
o’ € H%, with s > % This result was relaxed by Yanagisawa [19] for Kato’s solutions,
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recently, H. Abidi, T. Hmidi and S. Keraani [2] proved an analogous result for critical
3

Besov spaces %, 7. To overcome the non validity of B-K-M criterion they use the special
geometric structure of the vorticity leading to a special decomposition of the vorticity.
This allows them to bound Lipschitz norm of the velocity.

Here, we aim to investigate the global well-posedness problem for the system (NS,) with
3

axisymmetric initial data lying in critical Besov spaces %, , " which have a good local
theory [11]. We agree to call these critical spaces insofar as they are injected into W1*
and admitting the same scales. With this spaces the criterion of Beale-Kato-Majda (see
[7]) does not applicable, therefore it will be necessary to control the Lipschitz norm of the
velocity. The statement of the result in question is:

THEOREM 1.2 (Uniform boundedness of the velocity). Let p € [1, +c0] and vy be an

axisymmetric vector fields in divergence free. Assume that

1+2
(A1) vg € %’p’l”,

(A2) <0 ¢ [31,
143
Then there exists a unique global solution v, € € (1R+ ; %p . P) to Navier-Stokes system, such

that
lou ()] 1,5 < CoeP <,
#,,"

rl
where Cy depends only on the initial data and not on the viscosity.

The proof relies on the uniform estimate of the Lipschitz norm of the velocity. For this
purpose we use the method developed in [2] for the inviscid case. However the situation
in the viscous case is more complicate because of the dissipative term. We have
especially to check that it doesn’t undermine some geometric properties of the vorticity.

REMARK. For p € [1,3][ the second condition (A2) is a consequence of the first one (A1). More

I

THEOREM 1.3 (Rate convergence). Let v, and v be respectively the solution of Navier-Stokes

precisely, we have:

S 0 3.
oo S0

. L 1+3
and Euler systems with the same initial data v° € %’p 1" Then we have the rate of convergence

3

1
||vy - v”%?nax(p »1 S COeexp COt(Vt) 2+2max(p,3) , p c [1, oo]

We use for the proof the uniform bounds in Besov spaces combined with smoothing

effects on the vorticity.
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CHAPTER 4

3. On the Global well-posedness of the Euler-Boussinesq system with fractional
dissipation

In this chapter, we are interested in two-dimensional Euler-Boussinesq system with

partial viscosity given by the following coupled equations:

0tv +v-Vou+ VII = e,
910 +v-VO+x«|D|*0 =0
divo =0

Vg =%, O = 6°.

(Ba)

Here, the unknowns are:

e the velocity v = (v!,v?) is two dimensional vector fields;
e the pressure ITis a real scalar function;

o the temperature 6 is a scalar function.

The vector e; is given by (0,1), a is a real number in ]0,2] and « > 0 is a diffusion
molecular. The operator |D|* is defined in a standard fashion through its Fourier’

transform

Z(ID[*u)(§) = [¢I*(Fu)(C)-
The Boussinesq system describes the influence of the convection (or
convection-diffusion) phenomenon in a viscous or inviscid fluid. It is used as a toy
model for geophysical fluids whenever rotation and stratification play an important role
(for more example see the books of [41]). In addition to its intrinsic mathematical
importance this equation serves as a 2D model in geophysical fluid dynamics, for more
details about the subject see [10, 50] and has lately received significant attention in
mathematical fluid dynamics due to its connection to three-dimensional incompressible
tflows.
Indeed, the vorticity w = 910> — 9,0! satisfies a transport-diffusion equation with second

member 016 given as follows

diw +v-Vw = 010,

90 +v-VO+x|D|*0 =0,
divo =0,

Olt=0 = 0, 01=0 = 6,

which, in turn, obeys a transport equation with second member (Vv)0;6. This quantity
is a stretching term in the three-dimensional incompressible Euler vorticity equation (see
[30]).

o. . N _ . . B o o o L o
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The system (B,) has a certain mathematical analogies with the quasigeostrophic
equations that we recall here in the form:

(TD,) 30 +v-VO+x|D|*0 =0,

where v = (—0,|D|10,0,|D|19) is the Riesz transform of v.

This equation has been intensively investigated and much attention is carried to the
problem of global well-posedness. For the sub-critical case (« > %) the theory seems to
be in a satisfactory state. Indeed, global existence and uniqueness for arbitrary initial
data are established in various function spaces (see for example [15, 52]). However the
critical and super-critical cases, corresponding respectively to a = % and a < %, are
harder to deal with. In the super-critical case, we have until now only global results for
small initial data, see for instance [11, 15, 60, 61]. For critical case , Constantin, Cérdoba
and Wu showed in [13] the global existence in Sobolev space H 1 under smallness
assumption of L* norm of 8°. Very recently, Kiselev, Nazarov and Volberg proved in [22]
the global well-posedness for arbitrary periodic smooth initial data by using an elegant
argument of modulus of continuity. In [1] H. Abidi et T. Hmidi established the global
well-posedness in the critical case when initial data belong to the homogeneous critical
Besov space Bgo,l (R?): they removed the periodic condition and weakened the initial
regularity.

We focus our attention that the system (B,) is investigated by numerous authors in
various function spaces [10, 25] and the references therein. For x = 0 the problem of
global well-posedness is well understood. In [5], Chae proved global well-posedness for
initial data (v%;6°) lying in Sobolev spaces H® x H®; with s > 2. This result has been
recently improved in [17] by taking the data in H® x H®; with s > 0. However they give
only a global existence result without uniqueness in the energy space L? x L2. In [1] they
prove a uniqueness result for data belonging to L2 N %’;}1 X %g/l. More recently Danchin
and Paicu [12] have established a uniqueness result in the energy space.

Our goal here is to study the global well-posedness of the system (B,); with x > 0. First
of all, let us recall that the two-dimensional incompressible Euler system, corresponding
to 80 = 0; is globally well-posed in the Sobolev space H*; with s > 2. This is due to the
advection of the vorticity by the flow: there is no accumulation of the vorticity and thus

there is no finite time singularities according to B-K-M criterion [7]. In critical spaces like
2

%’Z}l the situation is more complicate because we do not know if the B-K-M criterion
works or not. In [26], Vishik proved that Euler system is globally well-posed in these
critical Besov spaces. He used for the proof a new logarithmic estimate taking advantage
of the particular structure of the vorticity equation in dimension two. For the
Euler-Boussinesq system (B,), Chae has proved in [5] the global well-posedness for
initial data v%; 0° lying in Sobolev space H%; with s > 2. His method is basically related to

C I T v Tauvme it v bt mt 2o vl e oA v T~ < tvr o memn A Lo Lveine~ s br vt ~vam ammaTd A~ T £~ 1~
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The main result in question is given by the following statement:

142
THEOREM 1.4. Let (a, p) 6]1, 2]x]1,00[,o° € B j” be a divergence free vector-field of R? and
a+1+2

oY € Bp,1 PN L', with =5 < r < co. Then there exists a unique global solution (v, 0) for the
system (B,) such that
1+2 —at+1+2
ve?(Ry;B,,") and 6¢€Lj(Ri;B,; 7" NL")NLj(R+;Lip(R?))

In order to prove the previous theorem we need to give the following commutator
estimate:

PROPOSITION 1.5 (Commutator estimate). Let v € L} (R4; Lip(R?)) be a divergence free
vector filed. For q € Z, let 1, the flow of the regularized vector field Sq_lv. Then for f € %;"1

and (q,a, p) € Zx]1,2] x [1,00], there exists constant C = C(a) such that

11DI*(fg 0 $q) = (IDI*fg) o $gllur < CeaWVy (1)1 =229] 1,

d . d
where Vy (1) 2 ||V, 10llyy o and £y E A,f.

The smoothing effect of the temperature play a significant role in the proof of the
theorem 1.4, namely we have:

THEOREM 1.6 (Smoothing effect of the temperature). Let (p,7,m) € [1,00]3,5 > —1and v

d
be a smooth divergence free vector filed of R* with vorticity w &) curlo. Let 8 be a smooth
solution of (TDy), then

(1) for every t € R4, we have

t
||9||L°°Bs +Km||9|| 2 » < Ce cv(t (HQOHBS Kt)% +/0 e_CV(T)FS(T)dT),
pr
with,
! VO e llo(t)]lps , ifs > 1
t) "’;f/ IVo(T)||~dT, Ts(t) d;f IVO()[| L= |0 )HBW l.fS 2
0 0, ifs €] —1,1[;

(2) for every g > —1, we have

1_,a 1
K205 A8l pr S 16w (1+ (O + (g4 2) @l g0+ [IVA 12 1310 )-
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CHAPTER 2

Nonconvex Random Higher Order Integrals and Homogenization
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Abstract. The asymptotic behavior by I'— convergence analysis of the family of nonconvex
random integral functionals, depend on the second gradient is obtained. To identify the almost
sure I — limit, we use the ergodic theorem for discrete sub-additive processes, see [1, 18]. The
main result of our paper generalizes the one studied by [15, 16] in the convex case.
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1. Introduction

In this chapter we deal with an homogenization problem for integral functionals of the

form:
(1.1) Ge(w) (1) = /O J(w, e 1%, V2u(x))dx,

where u is a real function of the space W>?(0), O bounded domain in R?, ¢ > 0 and
assuming that the density function () x RY x M%< 5 (w,x,8) — J(w,x,§) is statistically
stationary or periodic in law with respect to the spatial variable x € R,

Functionals (1.1) can be interpreted as the stored strain energy of an elastic material and
heterogeneous material, u being a deformation or displacement field. The set O
represents a reference configuration. In any case, the medium under consideration is
composed of several materials, which are randomly distributed at the microscopic scale
given by the e.

In the theory of homogenization only the most simple properties of stationary random
tields are used. The notion of stationary random field is formulated in such general
terms as to cover various subjects whose is not probabilistic, e.g., periodic or
almost-periodic density.

The question is how to describe approximately the macroscopic behavior of the material,
especially the limit problem (homogenization) of {G;} when ¢ — 0.

The present work is an attemot to develop ceneral techniaties for the asvmbptotic
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In physical terms, homogenization means that the heterogeneous medium behaves as an
ideal homogeneous one at the macroscopic scale. We seek also to identify the
homogenized density J,om, by using the argument of discrete subadittive processes.

Let us give a brief account of our major results.

e Deterministic case. Functionals of the type (1.1) have been studied in the
I'—convergence sense by many authors within the Sobolev and BV settings. In a

Sobolev setting and for functionals of the form:
/ J(e'x, V2u(x))dx,
O

where x — J(x, &) is [0,1]?—periodic and & — J(x, &) is convex, we refer for
example to H. Attouch [2]. For vector-valued u and nonconvex J, the result is
extended by A. Braides [5] and S. Miiller [44]. For more similar results we refer
[3,5,6,7,17].

e Random case. For the random case the functional (1.1) has the form:

/o ](w,e_lx, Vzu(x))dx,

where w € ), with (), X, IP) is a given probability space and (w, x) — J(w, x, ¢)
is a realization of a random field, i.e., periodic in law. The functional is treated
by [9, 10] in convex case. We can even obtain the same result in [22] with new
easy approach. In the nonconvex case the result is investigated by [40]. More
similar results are established in various cases, we refer for instance
[15,16,17, 19, 21, 24].
We start by assuming that for each x € R¥ a random variable Y, is given. Then the
family of random variables Yy define a random process on IR that is called a random field
and noted by Y = (Yx),cd-

DEFINITION 2.1. A random field is said to be stationary (periodic in law), if for finite set

2

consisting of points x', x2, ..., x' € R, and any h € R?, the distribution of random vector

(1.2) Yt Yaapr o Yol
does not depend on h € R%.
Assume that the random field Y = (Y« ), g« is defined on the same probability space

(Q,%E,P) by Ye(w) =Y(x,w), w € Q. Then we can claim the field Y to be stationary, if it
can be represented in the form

(1.3) Y(x,w) = Z(tyw),

where Z(w) is a fixed random variable and T = (7 ) e : @ — Q is a group of
transformation which preserves the measure IP on () in the sense of definition 2.2. In a

R T S T TR S SR .S TS S U T Shap [ |
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2. Probabilistic Description of Non-Homogeneous Media

In this section we collect some ingredients concerning the random medium by starting
with the concept of dynamical system corresponding to such medium, some particular
examples like : the periodic, quasi periodic medium. Afterward we give the ergodic
theorem for discrete subadditive processes which play a crucial step to determine the

I'—limit.

2.1. Subadditive processes and ergodic theorem. Let ((), %, IP) be a probability
space, with IP is countably additive non-negative normalized measure.

DEFINITION 2.2. A dynamical system with d— dimensional time, or simply a dynamical system
is defined as a group of mappings T, : Q — Q, x € R¥, which satisfy the following conditions:

(1) the group property: 1o = 1, 1 is the identity map;
Tx 0Ty = Taty forall x,y € RY;

(2) the mappings T, : Q — Q preserve the measure IP on Q), i.e., for every x € R¥, and
every IP—measurable set E € %, we have

nwE€Y, Por(E)=P(E);

(3) for any measurable function f(w) on Q, the function f(Tyw) defined on Q) x RY is also
measurable (where R? is endowed with the Borel measure).

DEFINITION 2.3. Let f(w) be a measurable function on Q) and T = (Ty) ,cra 4 dynamical
system defined on Q). Then we have :

(i) the function f(Tyw) for x € RY is said to be a realization of function f;
(i) f is invariant with respect to T = (Ty) yegd if f(Tew) = f(w) for any x € RY almost
everywhere in ().

DEFINITION 2.4. A dynamical system T = (Tx),cga defined on Q is said to be ergodic, if every
invariant function is constant everywhere in ). In this situation we shall also say that the

measure IP is ergodic with respect to T = (Tx) yca-

REMARK. There is analogously definition of the concept of ergodicity given by: a dynamical
system T = (Tx) cca defined on Q) is called ergodic if all T—invariant sets E (txE = E for every
x € R?) have the property P(E) = 0 or P(E€) = 0.

A random medium is modeled by a probability space (€, X, IP) where () is the set of all
the possible realization. ¥ is a o —algebra on (), and the probability IP is a non-negative
measure on (), X) such that P(Q)) = 1. We shall always assume that X is P—complete.
In the rest of the context we restraint ourselves to the dynamical system defined on the
group Z*. For this let .# = {[a,b[: a,b € Z?} and consider the set map
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DEFINITION 2.5. Let (Tz),c 54 be a dynamical system defined on (Q), %, IP). A set map
Q — A is called a subadditive process with respect to (T;) 4 if the following conditions are
fulfilled:
(1) Ao,u0, < Ao, + Mg, for every Q1, Q2 € & be such that Q1 N Qr = &;
(il) A1 q(.) = Mg(T2.) for every (z,Q) € Z% x .7;
(iif)
Mo (W)

o L4(Q)

In order to give the ergodic theorem we need to introduce the following definition of

Y(AM) = inf{ dP(w): Q € .7, L4(Q) # 0} > —o0.

regular families

DEFINITION 2.6. Let {Qg} be a family of sets in .%, where n ranges overs a subsets of the
positive rational numbers. Then {Qy} is called regular (with the constant C < oo) if there exists
another family {Qly} of sets in .7 such that:
(i) Qo € Q forall ® > 0;
(ii) Q;% C Q192 whenever 91 < Uy,
(iif) 0 < L4(Q}y) < CL4(Qyp) forall ® > 0.

According to M. Ackoglu and U. Krengel [1] and recently C. Licht and G. Michaille [19],
we have the following theorem:

THEOREM 2.7. Let (T;),cza be a dynamical system defined on (Q), X, IP) and a subadditive
precess Q — Mg with respect to (T;),cza. We assume that there exists f € L1(Q), %, P) such
that || Zo ()| 1o,z p) < f- Let {Qo} be a regular sequence of .7 satisfying

limy 0 0(Qg) = +o0. Then almost surely

M
lim M exists.

9—-0 L4(Qyp)

In particular we have:

. Meg(w) M e (W)
o 7 /eq) o EM{ L4(1/Q) }
where B 5 is the conditional expectation operator to the o—field

AY {E € & : E = EVz € Z%}. Moreover, if (T;) ,c 4 is ergodic
. Meg(w) AMo(w)
i i~ TG

REMARK. Recently C. Licht and G. Michaille [19] have been extending the result of the above
theorem to the family By, (RY) of all bounded Borel convex sets of RY.

dP(w): Q € 7, £4(Q) # o} — ().

2.2. Examples. To illustrate the above notions we give some example and particular

cases:

2 Chift vvrmts T Ak T TN Tha A vvamct1ivalrlAa cinama A- A T L A A Aavlritvarxr s dAav cont ThA
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unilateral sequence (wy, w1, wy, ... ), and in the case J = Z with the bilateral sequence
(..., w_1,wW_2,wp, w1, ws,...). The shift 6 : O — Q) is the transformation defined by:

Xi(0w) = Xii1(w).

The shift in QO = EZ is often called bilateral shift. It is bijective and both 6 and 6~ are
measurable with respect to & = .#%, The shiftin QT = EZ" is measurable with respect
toxt =.ZZ" and surjective but not invertible. It is called unilateral shift.

If E is a topological space, the unilateral shift is continuous in the product topology, and
the bilateral shift is even a homeomorphism.

The simplest way to define a § —invariant measure in () is to take a product measure. It
is easy to see that P = )jcz IPj is —invariant iff all P; are identical. The automorphism
0 in (), %, P) is then called a (bilateral) Bernoulli shift. Unilateral Bernoulli shifts are
defined in the same way in Q" with P = ® jez, Pjand identical IP;.

e Periodic case. Let ) = 7% the unit cube % = {w € R?:0< wi<1,j= 1,...,d}. The
relation Tyw = w + x ( mod 1) defines a dynamical system on Q). The Lebesgue
measure is invariant and ergodic with respect to this system; a realization of measurable
function f has the form f(w + x).

® Quasi-periodic case. Let () = 7% the unit cube in R, and let IP denote the Lebesgue
measure on % . For x € R? set Tew = w + yx ( mod 1), where v = {7;;} isand x m
matrix. Obviously, the mapping 7, preserves measure IP on (). The property of
ergodicity will be present if y;x; # 0 for any vector k¥ # 0 with integer components. The
realization have the form f(w + 7x). It should be mentioned that quasiperiodic
functions form is a special class of almost-periodic functions.

We recall that a function f € L2 (R?) is almost-periodic if there is a sequence of

loc
trigonometric polynomials converging to f with respect to the norm

: 1 12
1111 = (timsup s [ Pax)

3. A general Homogenization Theorem

3.1. Assumptions on the integrands. We denote by & the family of all bounded
subsets in R?. Let us consider a family ¢ of all | : R? x M?*? — R having the following
properties:

(I.1) x — J(x, &) is measurable for all & € M4*¥;
(I1.2) & — J(x, &) satisfies the following: there exists a positive constant L > 0 such
that for every &1, & € M?*? and a.e. x € R? we have:

J(x,81) = J(x,&2)| LA+ &P +16lP1)IE — &l
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¢ will be equipped of the trace c—field denoted by ¢ (¥ ), of the product o—field of

RR*M™ The energy density for a random medium is a map:

J: Q-9
wr—J(w,.,.)
defined by
J(@x,8) = J(tw,8), ¥(x§) € R x M
and satisfies the stationary condition (1.2) or (1.3).
An example of such density is given as follows: let ¢ and & be two homogeneous stored
energy density belonging to ¢. Consider an infinite composite medium consisting of a
matrix with identical spherical particles randomly embedded within the matrix. Then a
realization w € () is identified to the set w = {x, : n € N} of the centers x, of the
particles.
Let N(w, O) denote the number of centers that fall in the domain O € 7, i.e.,
N(w,0) =} 6,(0),

YEW

where J, stands the Dirac! mass with support {y}. = is defined as the smallest
o—algebra containing the subsets of () of the form:

{w E Q . N(b,ol) :kl,...,N(w,On) — kn},

O1,...,0, are a collection of n disjoint domains in & and ky, .. ., k, are a collection of n
positive integers. The probability measure IP is uniquely defined on X by its values on
these subsets. The translation operator acts on () as follows:

Vx e R} VweQ: tww = {x,+x:ncN}.

In order to guarantee the statistical homogeneity of the composite, P must be obeys the
Poisson distribution:

P(N(w,01) =ki,...,N(w,0,) = k) =P(N(w,01) =kq) x --- X P(N(w,On) = kn)
with (aL5(0))

als
P(N(w,0) =k) = e (—acl3(0)),

where a4 > 0 is a constant and £3(0O) is the measure of O.
For r > 0, we define the random non homogeneous stored energy density by:

J(w,x,8) = g(&) + (h(&) — g(&)) min {1, N(, B(x,7))},

ie.,

h(¢) otherwise.

The function | is a model for the energy density of such composite material,

J(w,x,8) = { 8(6) ifx € UyewB(y,7),

(B(uy 7)) _ beine the rescaled random incliisions with a nrobabilitv expectation
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For a given random medium, let | € ¢ be a density and define the integral functional G

_ d
from Q) into lRLp(]R )Xﬁ:

G(w)(u,0) = { fo](w, X, V2u(x))dx, ifulpe WZ'F’(O),

+o00 otherwise,

where (1,0) € LP(R%) x O.
For every (¢,z) € R% x Z“, we define the operators T, and p,, respectively, of translation
and dilatation

Tu(x) = u(x —z) ,0={xeR:x—z¢€ O},
pett(x) = u(e 1x) p:0 = {x € R? : ex € O}.

Moreover, if G is random process then the functional p.G is defined by:
3.1) (peG)(w) (1, 0) = £"G(w)(pett, <O).

for every u € LP(R%),0 € 0.

If | denotes the integrand of G then (3.1) becomes

(3.2) (0eG)(w)(u,0) = /O](cu,slx, V2u(x))dx.

for every u € W>?(0),0 € 0.
Let us introduce the small parameter € being the size of inhomogeneity. Then in view of
(3.2) the random processes {G¢(w) } = (p¢G)(w) is defined by:

Jo T(w,e71x, V2u(x))dx  if u [oe W2P(O),
+oo otherwise.

(3.3) Ge(w)(u,0) = {
Then we easily check the following proposition:

PROPOSITION 2.8. For (w,0,u) € Q x & x W*P(0), the two following mappings
G(w)(u,0), (pe)(w)(u,O) are random variables.

3.2. Identification and properties of I —limit. Let ] : O x RY x M“*? — R be such
that the conditions (II.1)-(IL.3) are hold, i.e., ] € ¢4. The Dirichlet problem for the
variational functional associated with | plays a central role in the calculus of variations:
for each (O, w) € € x Q), we introduce:

(3.4) Mo(w, ], 9) = inf{ /O J(w,x, Vu(x))dx:u € ¢ + wgf’”(O)},

where ¢ € WIZO’ f (R?) is fixed. We have thus defined a set function:
My(w,],8): 0 — [0,00],

which satisfies for every O € O,

[P La(O) < Ao(w,],8) < (1+[¢[P)La(O).

I i Y S B 2 T/ A [ Ik BT [ B cE [ T S A h P
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Q € . and ¢ is usually an affine function, i.e., p(x) = ¢x.
Now, let us consider the group (7;),.z« which acts on ¢ in the following way: for every
(w,x,&) € Qx O xM4*d

(3.5) (o)) (w,x,&) = J(w,x+2,&) VzezZ

According to the following mapping, where I, = Pojt,
(QLLP)— (9,09),P), w—J(w,..),

the triplet (¢, (%), P}) is a probability space, and it is easily seen

PROPOSITION 2.9. (¢,0(¥),P;) is a dynamical system. Moreover, if | satisfies (3.5) then

(Tz) e za is ergodic.

Let us give some properties of & > O — #:

%1/€O(v]/ 6) _ '///O('/ ]81 C) .
L4(1/€0) £4(0)
(P2) there exists a constant L', such that for every &, & in M4*4

%O('llrgl) j/O('/LgZ) / 1 1 .
L,00)  L£400) S L1+ 6P + 167 ) 161 — Gl

PROPOSITION 2.10. (P1)

(P3) H'%O(I ]/ é)HLl (glg(g)/ﬂ)]) S ﬁ (1 + ’élp) Ed(O)for (O/ ]/ é) E ﬁ X g X MdXd/
(P4) O — #o(.,],§) is subadditive and covariant with respect to (3.5).

PROOF. A straightforward computation yields (P1) and (P3). For (P2) put:

H(p) = o S)

Lety >0and u, € Wg’p(O) be such that

H(&) > %[/O](w,s_lx,vzuﬂ(x) —|—§)dx—;7}.

The Lipshitzian assumption (II.2) on | and Holder’s? inequality leading to

(3.6)
H(&1) — H(C2)
< Edio)/o[](w,s_lx,v2u,7(x)—|—§1)—](w,s_lx,Vzuq(x)+§2)]dx+17
L B o p—
< Ed(o)/o(lJr\Vzun(x)JrCﬂ” VR () + G 1/p!€1—§2|dx+%
<ML [ asiar+ o7+ Vi) +a)dx] e - &)+ -1,
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On the other hand, the coerciveness condition (II.3) on | yields

1 1 _
(3.7) m/o|vzu,7(t)+§2|”dx < m/ol(w,s 1x,V2u,7(x)—|—§2)dx

< L[HE)+ )

P U
< E(l + ’(:2‘;7) + ‘X‘Cd(o)

Inserting (3.7) in (3.6) and letting # go to 0 one has

H(&)—H(&) < LA+ &P+ 18P Y a -l

where L' depends only on p, a, f and L. We conclude the proof by interchanging the
roles of ¢1 and ¢».
Let us move now to (P4). Let z € Z¢ then we have

Mro(w,],8) = inf] / (@, V2u(x))dx s € Le+Wy"(z.0) }
= inf{ /O](w,x+2, Viu(x+z)+&)dx:tu € Wg’p(O)}.

Setting v, (x) = T_.u(x) = u(x + z). We easily check that V2v,(x) = V?u(x + z) and
from (3.5) we get

Meo(w,],C) = inf{ /O](w,x+2, Vzvz(x) +¢&)dx v, € Wg’p(O)}

= inf{ /O (T.]) (@, %, V0, (x) + §)dx : v, € Wy (0) }.
This implies
%Z—Q—O(wl ]/ C) = %O(TZCU, I 6)
which give .#, o = #o o T,. The proof is completed.

REMARK. The properties of above proposition remains true if we replace the family O of all
bounded subsets O in RY by the family .% defined in paragraph 2. 1, Section 2.

Then the main result of this chapter reads as follows:

THEOREM 2.11. Let | € ¢ be such that the stationary assumption (3.5) is verified. Then the
corresponding random process { Ge(w) } defined by (3.3), T — converge almost every where in
W2P(O) when & — 0 to the homogenized functional Gy,

Ghom(ur O) = /O]hom(vzl/l(X))dx,
where its integrand Jyon, takes the form:

- 7o\ 4. %1/8(2((’0’]’5) e omoadxd
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COROLLARY 2.12 (definition of Jhom). There exists a subset Q' C Q, with P(Q)) = 1 and a
function Jpom given for every & € M**4 py:

B . %I/EQ((’U’]’C)
]hom(g) - ll_l’)l’(l) ﬁd(l/EQ)

) 1 . . 2,
= ll_r%m /me{ /1/eQ J(w,x, &+ Vu(x))dx : u € W, p(l/sQ)}d]P(a)).

The next proposition give the main properties of J,,om,, namely we have:

PROPOSITION 2.13. The homogenized integrand Jyom given by Corollary 2.12 having the
following properties:
(@) [nom (€1) = Jhom (§2)| < L'(1+[&G1[P~1 + [&2lP 1) |61 — Gal for all §1, & € MA*4
with L is defined in (P2) of Proposition 2.10;
(i) a|Z]P < Jhom(€) < B(1+|E|P) forall & € M with & < B is given by (I1.2)
condition.

REMARK. According to above proposition, the homogenized density [y, belonging to the family
¢ defined in paragraph 3.1 of Section 3.

PROOF OF COROLLARY 2.13. For (i). In view of Proposition 2.10, we have for every
e>0,

Mye(1,81) Ayl ], 82)

L4(1/eQ) L4(1/€Q)

Going to the limit on ¢, according to Corollary 2.12 we get the result.

<LAFIEP + (2P )6 - &l

Concerning (ii). Let Q be any cube in .# then for every u € WO2 7(Q) we have
Mo (@0,1,E) < /1/ (@384 V2u()dx e >0
3
If we take u = 0, it follows from (II.2) the following

MW, ],8) < /Q](w,x,c+vzu<x))dx < B(1+|EIP)La(1/€Q).

We divide the both members by £;(1/¢Q) and letting ¢ — 0 we shall have for every
ge Méxd
]hom(g) < :3(1 + |§|P)

For the lower bound estimate, using the fact | satisfying (I1.2) we get

%1/8(2(“)/]16) 1
L4(1/€Q) L4(1/€Q)
Since the elementary function r — |r|P is convex, we obtain
1
S V2u(x)|dx > |¢]P.
/i) oo 6 TRl > I

T 4 o N L LAl o o madxd

. 2 : 2,p
lemf{ /1/8Q|§—|—V u(x)|dx :u € W, (1/£Q)}.
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4. Proof of the main result

Before stating the proof of the theorem 2.11, we need to introduce the notion of
I'—convergence® of a sequence of functions defined on a topological space, and compare
this definition with the classical notion of convergence of sets in the sense of Kuratowski.
For a large literature of this subject we consult [2, 8, 5, 11, 17].

4.1. I'-Convergence. Let X be a topological space. The family of neighborhood of x
in X will be denoted by 7 (x). Let {G } be a sequence of functions from X into R.

DEFINITION 2.14. The T —lower limit and the T —upper limit of the sequence { G, } are the
functions from X into R defined by

(I —liminfG)(x) = sup liminfinf G(y),
e—0 VEA//( ) e—0 ye

(I —limsup G;)(x) = sup limsup inf Ge(y).
e—0 Ve“//( ) e—0 ]/E

If there exists a function Gpom : X — R such that

—liminf G, =T — limsup G; = Gpom,

e=0 e—0
then we write Gnom = I' — lim,_,o G, and we say that { G, } T —converges to Gpom, in X.
REMARK 1. It is clear that
o I' —liminf, .o Ge < T —limsup,_,, G, hence { G} I'—converges to Gyon, if and only
if

r— 11m mf Ge < Ghom < T —limsup Gg.

e—0
o If the functions { G} are independent of ¢, i.e., there exists G : X — R such that
G = G for every x € X and every € > 0, then
I -limG, =G,
e—0
where G is the regularized lower semicontinuous of G.

EXAMPLES. In these two examples we take X = R.
o If Ge(x) = (1/€)xe 2/ then {G,} T—converges in R to the function
—Ller ifx =0,
Ghom(x) = 2 /
0 ifx #0,
whereas { G} converges pointwise to 0.
o If G¢(x) = arctan(x/¢), then {G¢} T —converges in R to the function
- jfx <0,
Ghom(x) = T 2 f -
7 fx=0

i dimrvinmace S0 X Anrrrrovirnc 1amarirderriron £ £10h L9194 Adarnan
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F Fx<o,
G(x)=<¢ 0 ifx=0,
7 ifx>0.

We now illustrate the relationships between I'—convergence and topological set
convergence in the sense of Kuratowski. Let { E; } be a sequence of subsets of the
topological space X. Then we have:

DEFINITION 2.15. The K—lower limit and K—upper limit of the sequence { E. } are sets of X
defined by

K—liminfE, = {xeX:VV e #(x) Ik >0:VNE;#QDVe<x},

e—0

K—limsupE, = {xe€X:VV e ¥ (x)Vk >03de <x:VNE; #D}.

e—0
REMARK. It is clear that
e K—liminf, g Ee C K—limsup,_,, E, hence {E;} K—converges to E if and only if
K — limiOnng C EC E —limsupE..
£—

e—0
e IfE isa subset of X and Ec = E for every € > 0, then {E¢} K—converges to E, the
closure of E in X (using just the definition).

EXAMPLE. Let X = R2. IfE. = {(e,y) : 0 <y < 1}, then {E.} K— converges to
E={(0y):0<y<1}.

We recall that, for every E C X, 1 E4 denotes the indicator function of E. The following
proposition shows that the K—convergence of sets is equivalent to the I'—convergence of

the corresponding indicator functions.

PROPOSITION 2.16 ([8, 17]). Let {E;} be a sequence of subsets of X, and let

E; = K—liminfE,, E; = K —limsup E..

e—0 e—0

Then

Ig, =T —limsuplg, Ig, =T —Iliminflg.
e—0 e=0

In particular {E¢} K—converges to E in X if and only if (Ig,) T —converges to I in X.

The following theorem shows the connection between I' -convergence of functions and
K—convergence of their epigraphs’. This is the reason why I —convergence is sometimes
called epi —convergence.

THEOREM 2.17. Let {G,} be a sequence of functions from X into R, and let

G =T- limiglf Ge, Gy =T —limsupG,.
£—

e—0

Then
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where the K—limits are taken in the product topology of X x R. In particular {G,} T —converges
to G in X if and only if {epi G¢} K—converges in X x R.

The following proposition provides a characterization of I' — lim inf and I — lim sup in
terms of sequences, when X satisfies the first axiom of countability (for example a metric
space), i.e., the neighborhood system of every point of X has a countable base.

DEFINITION 2.18. Assume that X satisfies the first axiom of countability. Then {G¢} T'—
converges to Gpom it X if and only if the two following sentences hold:

(a) Lower bound: for every x € X and for every sequence (x.) converging to x in X,
Ghom (X) < lim iglf Ge(xe);
E—

(b) Upper bound: for every x € X there exists a sequence (x¢) converging to x in X
such that

Ghom (%) > lim sup Gg(x,).
e—0
Then we write

Ghom (%) = T — lim G¢(x).

e—0
Other significant properties of the I'—convergence are given by the following
proposition:

PROPOSITION 2.19. Let {G,} be a sequence I —converges to Gpom and G : X — R be a
continuous function. Then
(i) Stability by continuous perturbation:
I —lim(Ge +G) = (T — lim Ge) +G;
&£— &£—
(ii) Regularity: Gy is lower semicontinuous on X;
(iii) Convergence of minimum: Let (x;) be sequence of minimizers of {G,} in X, i.e.,

Ge(xe) < ylg}g Ge(y) +e.
If x is cluster point of (x), then x is a minimizer of Gpon in X, and
Ixrélpl’(l Ghom (%) = lli% ;g)f( Ge(x)
4.2. Proof of the lower bound.

LEMMA 2.20. For every sequence (ii¢),~ in W>P(O) such that ue — u in W>P(O). Then we
have

lim inf G¢(w) (#e, O) > Ghom (4, O).

e—0
PROOF. We divide the proof in two steps.
Step 1. We denote by My (O) the set of all Radon® measures on O and set

AAT(ON — X = AM-(OD) -2 > N\
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For every ¢ > 0 define
e % ](w,sflx, Vzu(.)),
namely, forall O € &
Ae(O) = /O](w,s_lx, VZu(x))dx.

By growth condition (I.3) the sequence {A.} is uniformly bounded in M7 (O). Then up
to a subsequence there exists A € M} (O) such that

Ae = A weakly in Mg(O).
Namely we have
Vo € Co(O) : /Oq)/\£ — /Oq))t.
Let Apom € M (O) be defined by

)\hom(o) :/O]hom(vzu(x))dx'

The idea is to compare the limit measure A with Ay, Thanks to the Aleksandrov
theorem, see [12] we have:

A(O) < liminf A¢(O).

e—0

Then it is enough to prove that
)\hom(o) < /\(O)
For this aim using the Lebesgue’s decomposition theorem we find that

/\ — Agﬁd + Ag, Aa << ;Cd and AeJ_ﬁd,

where A, and A, are absolutely continuous and singular parts of A with respect to the
Lebesgue measure. From Besicovitch differentiation theorem of measure, there exists
NS L! (O, ]R+) such that A, = ¢L;, and for a.e. xyg € O we have

. Aa(Bs(xo)) .. A(Bs(xo))
b PO = I L Balr0) 0 La(Bio))

Here B;(xo) is the open ball in R?, centered in x, with radius 6 > 0. For every
0 € [0,60[\D, where D is a countable set. In the sequel, we will take J such that
A (3Bs(xp)) = 0, according to the Aleksandrov’ theorem, we have in particular

A(Bs(x0)) = lim Ae(B;(x0))-

Consequently (4.1) becomes

e Ae(Bs(xo))
0] = N L (B

Then it is enough to show that
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Indeed: if L;—a.e. x € O

. . )\S(B&'(x))
]hom(vzu(x)) < (15125(1) ll_l'% m

Then L£;— a.e. x € O, Jnom (V?u(x)) < ¢(x) consequently

[ Ihom(V2u(x))dx < [ gy,

ie.,
)\hom(o) < )\a(o) < Aa(o) + AS(O) = )‘(O)-
We prove then
... Ae(Bs(x0))
: < lim lim 25220200
Jrom (V2(30)) < I3 7, (Bol0)
We assume that 1, = ug in 0Bs(xp) with
_ T(y _
up(x) = u(xg) + V2u(xo) (x xo)z(x xo).

Therefore in view of (3.4) we have

(42) m/[; (xO)](w’€_1XIvzu£(x))dx
= EB T g (T e )0+ ()
> —Ed(Bi(xo)) inf{ /B o) J(w, e tx, V20(x) + VZup(x)) 1 v € Wg’p(Bp(xO))}dx,

We apply the Corollary 2.12 we thus find

M JeB, () (W, ], V?u(x0))
) o 1/€B;(x9)
@3 hom(Viulxo)) = Himlim === o o))

s 1 ~1 2
< -
S im i B, o)) /35@(0)](“”8 X, Vite(x))dx
oy Ae(Bs(x0))
= i B () PO

This achieved the result.

Step 2. Following E. De Giorgi it is suffices to modify the sequence u. defined in step 1,
by a function of W (dBs(xp)), which coincides with 19 on 9B (xp) in the trace sense
(for more details of this techniques, see [13]).

We fix 0 < r < 1 and we set

Brp(5+i (p6—1p5) (XO) fOI' 1= 0, .o.,S.

s

i pum
We obviously remark

Brp(g(xO) =ByCB;C---CBg= Bpg(XQ).

— ~ 4 e ~ - - . 't . . VoVl L e ° o~ 7 ™ \
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Define

de

nei(x) (i) + (1= 9i(x)) ((x0) + V2u(xo)
= up(x) + (%) (ue(x) — up(x)).

Then we have u, € W27 (B,s(x0)), ue = up on a neighborhood of 9B, (xq),

(x —x0); (x — xp)
012 Ok>

VZME(X) in Bi—li

Ve i(x) :{ V2u(x) in Bys(x0)\B;

and
Vaugi(x) = VZu(xo) + V2i(x) (ue(x) — up(x))
+2Vipi(x) ® V(ue(x) —uo(x)) in B;\B;_1.
On the other hand, fori = 1,...s we have

,///BPJ(XO)(w,]g,V2u(xO)) < /B ](w,gilx,v2u€(x))dx—|— BB ](a),sflx,v2v€,l-(x))dx
; i\Bi_1

-1
+/ ] w, e Yx, Vu(xg))dx
Bps(x0)\B; ( ( 0))

d
EI Iy + 1, + I5.
For II;, we obviously check
I < / ](w,sflx, Vzug(x))dx.
Bps(x0)
Concerning I, according to growth condition (I.3) we obtain

I < B(1+V2u(x0)|") La(Bps(x0)) (1 —17)

20:(x)|P — Pd
+ Jo VAR el) — o) P

20 [ IVl V() = V()|
Bi\Bi4
Then we deduce

L < B(1+|V2u(x0)|P)La(Bes(x0)) (1 —r)
sP bd
0TS (1 — )2 /B,.\BH e(x) = 1o (x)|Fdx
2PgP
_ 4
AT /B 1 [Tel) = Vo)l

Let us move to the proof of the member II3. Using once again the growth condition (I1.3)

_|_

we get

T . [ 17/ . —1.. v~—2. . 7..1\\ 7.
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Putting together I, I; and I3 it follows

'//{Bpé(xo)(w’]&vzu(x())) < / ](w,e_lx,vzug(x))dx

Bps(x0)
+B(1+ |v2u(x0)|p)£d(3p5(x0)) (1)
sP
— p
TR — /Bl-\Bi_l ue(x) = uo(x)["dx

—{—L/ |Vug(x) — Vug(x)|Pdx
PP‘Sp(l — )P B;/\Bi_1 ‘ 0 '

We divide by L;(B,s(x0)), then the above estimates becomes

%Bps(xo) (w’ Jes Vzu(xo))
L4(Bys(x0))
< —Ed(B;(xO)) /de(xo) J(w, e x, Vg (x))dx + B(1 + [ VZu(xo)|P) (1 — )
+ il L / lue(x) — ug(x)|Pdx
p2p52p(1 - r)Zp Ed(Bp(S(XO)) Bi\Bi 1
P ! / Ve (x) — Vg (x)[Pdx.
pPoP (1 —7)P L(Bos(x0)) /BBy
Going to the limit on € and J, then combining (P1) of Proposition 2.10, Corollary 2.12 and
[Theorem 3.4.2, p. 129] in W. P. Ziemer [25] or [Lemma 4.2.1, p. 428] in H. Attouch, G.
Buttazzo and G. Michaille [3] , i.e., fora.e. x € O,

1
lim—/ u(x) —ug(x)|Pdx =0,
0—0 Ld(Bpé(xo)) BpJ(XO)’ ) o)
1
lim—/ Vu(x) — Vug(x)|P dx = 0.
5—0 ‘Cd(Bp(S(xO)) de(x0)| ( ) 0( )l
We shall have
1 1
om Vu(x < limlim——/ w, e Yx, Viug(x))dx
]h ( ( 0)) 6—0e—0 pd £d(B5(x0)) Bpg,-(xo)]( ( ))

+B(1+ [V2u(x0)|P) (1 — 7).

Finally, letting p — 1 and r — 1 we get

1
(V2 < limli —/ ey, V2 d
Jrom (Viu(x0) < 51i%€£%£d<B5(x0)) Bo(Xo)](wS w Y uelx))dx
= limlim—( J(XO)),
6-0e=0 L4(Bs(x0))
which ends the proof. O

4.3. Proof of the upper bound.

TEMMA D O1 Tov onorir 11  WW2P(O) theve ovicte 1 coarence (11 ()Y - ~ 311 W2P (O c110h +hat
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PROOF. We proceed by steps.
Step 1. We assume that u is a square function, i.e.,

u(x) = Le(x) = G5,

with the second gradient is .
Let v > 0, we consider (Q;)cr(,) and (Qi)iek(,) two families of open disjoints cubes
with side  and lattice in R? spanned by ]0, v| such that

U gcoc U Q.
i€l(y) i€l(y)UK(7)
with

Ed( U Qi) = o(7) and 'lyli% o(y) =0.
i€l(y)

In view of Corollary 2.12 we have

(44) Ghom(4,0) = Grom (1, | Q1) = L L£a(Qi)Jnom(©)
icl(y) i€l(y)
= lim ) Ao (w]e).
“iel(y)

The construction of the sequence (us(w) )~ follows from y—minimizers of
Mo, (w, ], €). Let v; e, in W2P(Q;) such that

Y
card(I(y) UK(7))

Setting v¢y = Vj¢, in Q; and ue y = Ve + Lg. In view of (4.4) and upper growth

(4.5) Ge(w) (Vi + Lg, Qi) < Mg, (w, ], ¢) +

conditions (I1.3) we get

Ghom(1,0) > limsup Ge(w) (uey, U Qi) =7

e—0 icl(y)
> limsup Ge(w)(ue,5, 0) — B(1+ [E]P)o(7y) — 2.
e—0
Letting -y tend to 0 we find
(4.6) Ghom (%, O) > limsup lim sup G¢(w) (e, O).
¥—0 e—0

On the other hand, we apply (IL.3)

1
(4.7) IV?0ieq +¢l5, < ~Ge(w) (vien + Le, Qi)
1 v
< _«% : 7 7
- o 0@ Jer &) + acard (I(y) UK(7))

s
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Using the Poincaré inequality two times for v;, and for Vv, in Wg & (Q;), there exists
Cy1,Cy > 0 such that

||Ui,s,7||(r)),p < Cl’)’PHVUi,s,’yH(r)],p and ||vvi,s,7”g,p < C27p||v20i,s,'y||g,p'

Then we deduce
||Ui,s,'y Hg,p <G CZ’)’ZP || vzvi,s,'y ”;27,;7

Combining the above estimates with (4.7) we thus get

T 2 ' .
(4.8) lviello, = Cv p(ﬁd(Ql)+card(I(7)UK(7))>'

g,p = ||vg,7|]g,p and from (4.6), (4.7) one has

Y
2P (ﬁd(Qi) + card(I(y) UK(y)) )]

By definition of i, we have ||u, — L¢

4.9) ||”s,7_LC||g,p < Cc )
i€l(y)UK(y)

< CY*(La(0) +7),

where C is a constant that depends only on p, &, 8, ¢ and O is any bounded set containing
O. From (4.6), (4.7) and diagonalization argument there exists a map ¢ — 7y(¢), which
7(e) tends to 0 when ¢ tends to 0. Setting u = u, (). Clearly we have lim, o ue = L
and

Ghom (4, O) > lim sup G¢(w)(ue, O).

e—0
Step 2. We assume that u € W??(0). By continuity of G,om on W2?(0) it is enough to
prove the Lemma 2.21 for u is piecewise affine continuous function and applying the
previous step. More precisely, let (O;);c be a finite open partition of O such that
u(x) = Lg(x) + w' in Oy, with & € M?*? and w' € R”.
Using the first step there exists v;. € W>?(O;) depending on w such that lim_,v;. = u
and

Ghom (1, 0;) > lim S(l)lp Ge(w)(vie, O)).
e—

By the same manner as in step 1 we construct a sequence (u; ) depending on w such that

]j.mE‘)O Uije = U, Ue=TU in 801
Ghom(u, O,‘) > lim sup,. .o Gg(w)(uilg, Ol').

After summing over i it follows that

lim,_,gue = u,
Ghom (1, 0) > limsup,_,; Ge(w)(ue, O).



40 Nonconvex Random Higher Order Integrals and Homogenization

REMARK 2. By minor modifications in the proof, one can easily obtain a similar version of
Theorem 2.11 for the case when | depends explicitly on the first gradient Vu. More precisely, Ge
takes the form:

Ge(w)(u,0) :/O](w,e‘lx,Vu(x),Vzu(x))dx,

where the density ] : Q x RY x R? x M?*4 — [0, +oo[ having the following conditions:

o x — J(w,x,¢, () is measurable for every (w,E, ) € Q X R? x Ma*4.
e forevery (w, &, 01,02) € O X RY x M2%4 gnd ge. x € RY

U(w/xlglél) - ](w,x,fj,Cz)\ < L(l + |€1|p_1 + |€2|P—1)|€1 - Czl;

e there exists two positive constants o, : 0 < a < B < 4-00 such that for every
(w, &) € QxR x M4 and a.e. x € RY

a([C)P+1217) < J(w,x,8,0) < pA+IEIP+12]7);

e there exists a positive constant S such that for every (w, &1, &, ) € Q x R* x IM4*4
and a.e. x € R?

‘\/](w/xlglig) - \/](w1x162/€)‘ S S”él - 62”

The corresponding I'— limit is still given by (2.12), explicitly we have

Grom (1) = /O Trom (Vi(x), V2u(x))dx,

with

) 1 )
Jhom (¥, ¢) = lﬂm/ﬂfggg {G(w)(u, (1/SQ))}dP(W)

where

1
NAg = {M; ui(x) — Yiexx — ECkaxkxm € Wz’p(Ql)}

e
Concerning the expression of the homogenized integrand J;,,, which is given by a
minimum, we computed its value explicitly in various examples, in particular, in the
example of a heterogeneous material, which its heterogeneousness is distributed in a
random way, endowed with a Poisson process, see [4]. We associate to [0, the suitable
Euler equation and with a Kolmogorov® theorem (central limit) we infer its expression.



Bibliography

[1] M. A. Ackoglu and U. Krengel: Ergodic theorem for super-additive process. ]. Reine Angew. Math. 323
(1981), 53-67.

[2] H. Attouch: Variational convergence for functions and operators. Research Notes in Mathematics,
Pitman, London (1984).

[3] H. Attouch, G. Buttazzo and G. Michaille: Variational analysis in Sobolev en BV spaces: applications to
PDEs and optimization. Society for Industrial and Applied Mathematics and the Mathematical
Programming Society (2006).

[4] L. Breiman: Probability. Blaisdell (1968).

[5] A.Braides: Gamma convergence for beginner’s. Oxford Press (2002).

[6] A.Braides and A. Defranceschi: Homogenization of multiple integrals. Oxford Lecture Series in
Mathematics and its Applications, Clarendon Press 12 Oxford (1998).

[7] G. Bouchitté, I. Fragala and M. Rajesh: Homogenization of second-order energies on periodic thin
structures. Calc. Var. Partial Differential Equations 20 (2004), 175-211.

[8] G. Dal Maso: An introduction to Gamma-convergence. Birkhduser, Boston, Basel, Berlin (1993).

[9] G. Dal Maso and L. Modica: Non linear stochastic homogenization. Ann. Math. Pura. App. (1985),
346-389.

[10] G. Dal Maso and L. Modica: Non linear stochastic homogenization and ergodic theory. ]. Reine angew.
Math. 363 (1986), 28-42.

[11] E. De Giorgi and T. Franzoni: Su un tipo di convergenza variazionale. Atti Accad. Naz.Lincei Rend. Cl.
Sci. Fis. Mat. Natur. 58(8) (1975), 842-450.

[12] L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions. Studies in Advanced
Mathematics. CRS Press, Boca Raton (1992).

[13] I Fonseca and S. Miiller: Quasi-convex integrands and lower semicontinuity in L'*. SIAM J. Math.
Anal. (1992), 1081-1098.

[14] I. Eklend and R. Temam: Convex analysis and variational problems. North-Holland (1978).

[15] B. Gambin: Stochastic homogenization. Control and Cybernetics 23(4) (1994), 672-676.

[16] B. Gambin: Stochastic homogenization of the first gradient-strain modelling of elasticity. Journal of
Theoretical and Applied Mechanics 35(1) (1997), 83-93.

[17] V. V.]Jikov, S. M. Kozlov and O. A. Oleeinik: Homogenization of differential operators and integral
functionals. Translated from the Russian by G. A. Yosifian, Springer Verlag (1994).

[18] U. Krengel: Ergodic theorems. Walter de Gruyter, Berlin, New York (1985).

[19] C. Licht and G. Michaille: Global-local sub-additive ergodic theorems and application to homogenization in
elasticity. Ann. Math. Blaise Pascal 9 (2002), no. 1, 21-62.

[20] K. Messaoudi and G. Michaille: Stochastic homogenization of nonconvex integral functionals.
Mathematical Modelling and Numerical Analysis 28 (1994), 329-356.

[21] K. Messaoudi and M. Zerguine: Random fissured elastic material and homogenization. J. Fac. Sci. UAE
Univ. 12B (2002), 20-31.

[22] K. Messaoudi, M. L. Leghmezi and M. Zerguine: Convex random integral functionals and



42 Bibliography

[24] M. Zerguine: Etude par techniques d’epiconvergence d'un materiau présentant de nombereuses petites
fissures distribuées d’une facon aléatoire. These de Magister, Institut des Sciences Exactes, Université
de Batna (1999).

[25] W. P. Ziemer: Weakly differentiable functions: Sobolev spaces and functions of bounded variation.
Springer-Verlag, New York Berlin Heidelberg (1989).



CHAPTER 3

Inviscid limit For Axisymmetric Navier-Stokes System

This work is the subject of the following publication :
T. Hmidi and M. Zerguine: Inviscid limit for axisymmetric Navier-Stokes system. Differential
and Integral Equations 22 (2009), no. 11-12, 1223-1246.

Abstract. We are interested in the global well-posedness of the axisymmetric Navier-Stokes
3

system with initital data belonging to the critical Besov spaces B:?. We obtain uniform
estimates of the viscous solutions (v, ) with respect to the viscosity in the spirit of the work [2]
concerning the axisymmetric Euler equations. We provide also a strong convergence result in L?
norm of the viscous solutions (v, ) to the Eulerian one v.

Keywords and phrases. Axisymmetric data, Navier-Stokes system, global existence,
dyadic decomposition, paradifferential calculus.

2000 Mathematics Subject Classification. 76D03 (35B33, 35Q35, 76D05).

1. Introduction
In this paper we deal with the incompressible Navier-Stokes system described by:

0tvy + vy - Vo, —vAv, = —Vp,
(NSy) ¢ divo, =0

Vy|t—0 = V0-
It models the flow of an homogeneous incompressible viscous fluid of viscosity v > 0.
The velocity v, is three-dimensional vector-field, the pressure p, = p,(t, x) is a real
scalar. The condition div v, = 0 means that the fluid is incompressible.
The mathematical theory of (NS,) was started by ]J. Leray in his pioneering work [15]. He
proved the global existence of weak solutions in energy space by using a compactness
method. Nevertheless, the uniqueness of weak solutions is only known in space
dimension two. According to the work of H. Fujita and T. Kato [8], we can prove local

well-posedness for initial data lying in the critical Sobolev space H 2. More similar
3

results are established in various functional spaces like L3, B; 3;? and BMO~!. We refer
to [13] for more details about the subject. The global existence of these solutions for
arbitrary initial data is an outstanding open problem in PDEs.

When the viscosity v = 0, the Navier-Stokes system is reduced to Euler system (E) which
has a local theory in a satisfactory state. We will restrict ourselves to some significant

result: in [111 Kato proved local well-posedness for initial data in H, with s > 2. We can
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they have in cylindrical coordinates (¢, €y, €;) the following structure:
o(t,x) = ve(t,7,2)€ +v:(t,7,2)8;.

For these flows the vorticity w takes the form w = (9,0 — 9,0%)€y and obeys the

equation:
oiw —VAw+ (v-V)w = %w.

For the axisymmetric Navier-Stokes system, M. Ukhoviskii and V. Yudovich [21] proved
global well-posedness for initial data v* € H! such that wg, “2 € L? N L*®, with uniform
bounds on the viscosity. In [14], S. Leonardi, J. Malek, J. Necis and M. Pokorny proved
the global well-posedness for initial data v° € H?. This result was recently improved by
H. Abidi [1] for v° € H? and external axisymmetric forces f € L2 _(R.; HF), with g > 1.

loc

In the case of axisymmetric Euler system, M. Ukhoviskii and V. Yudovich [21] proved
global well-posedness for initial data v* € H*, with s > 7. This result was relaxed by
Yanagisawa [19] for Kato’s solutions, e HS,s > % We point out that their proofs are
based on B-K-M criterion. More recently, H. Abidi, T. Hmidi and S. Keraani [2] proved a

3

145
pl 7’

validity of B-K-M criterion they use the special geometric structure of the vorticity

similar result for critical Besov spaces B with 1 < p < co. To overcome the non
leading to a new decomposition of the vorticity. This allows them to bound Lipschitz
norm of the velocity.

In this paper we study the persistence of the Besov regularity B:{; for Navier-Stokes
solutions uniformly with respect to the viscosity. The inviscid limit problem is also
treated. We notice that this problem was studied by Majda for smooth initial data in all
dimensions, see [16]. In space dimension two we refer to the papers of

T. Hmidi and S. Keraani [17, 18] where they proved the uniform persistence in critical
2

1+2
Besov spaces B,,;", p € [1,09].
Here are the main results of this paper:

THEOREM 3.1 (Uniform boundedness of the velocity). Let p € [1,+o00| and vy be an
axisymmetric divergence free vector-field. Assume that

1+2
(Al) o € B,,",

(A2) <0 ¢ [31,
1+3
Then there exists a unique global solution v, € € <1R + B, 4 ) to the Navier-Stokes system, such

that

v () ] 143 < CoeeexpCOt,

pl

where Cy depends only on the initial data and not on the viscosity.

la gl PR A (R ) FL AR T SR Al B P (S . SR A 1) N (SN SR [ T R
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REMARK 3. For p € [1,3] the second condition (A2) is a consequence of the first one (A1). More

o SClol g
p1

Our second main result deals with the inviscid limit, namely we have:

THEOREM 3.2 (Rate convegence). Let v, and v be respectively the solution of Navier-Stokes

. o 1435
and Euler systems with the same initial data v° € B p1 " Then we have the rate of convergence

_ exp Cot %+ﬁ(ps)
oy UHBEJMXW)1 < Coe (vt) , pEl el

We use for the proof the uniform bounds in Besov spaces combined with some
smoothing effects on the viscous vorticity.

The paper is organized as follows: section 2 is devoted to some basic tools: we introduce
the functional framework needed for the proofs and we recall some useful lemmas. We
discuss in section 3 the persistence of some important geometric properties for a vorticity
like equation. This part is essential for the proof of the main results. We give in section 4
some a priori estimates and we prove a new decomposition of vorticity which allows us
to prove the result of Theorem 1.1. The proof of the inviscid limit is given in section 5.
We end this paper by an appendix where we give the proof of a technical lemma.

2. Preliminaries

We recall in this section some functional spaces and tools frequently used in this paper.
We begin with the usual Lebesgue space L defined as the set of p— integrable functions,
endowed with the following norm

o]l = (/}RS |v(x)|”dx) .

We recall now Lorentz spaces.

==

DEFINITION 3.3. Let 1 < p < coand q € [1,00]. The Lorentz' space LP1 can be defined by the
real interpolation theory,

g 1 700
LP1 =L, L ]1_%#.

The spaces LP1 have the following properties:
1) LPP = LP,
2) LPA0 — [P forall1l < g < g1 < oo,
3) [luvllpg < l[ulleollv]lpq-

Now, we give the Littlewood?-Paley operators based on a dyadic partition of the unity,

for more details we refer the reader to chapter 5, especially to the proposition 5.1 of
paragraph 5.1.2.
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PROPOSITION 3.4. There exists two radial functions x € 2(R3) and ¢ € 2(R3\{0}) such
that

@) x(6) + L0 @(2770) =1 VZeR’,
(if) Tgez p(2798) =1 V¢ € RO\{0},
(iii) |9 — gl = 2= supp ¢(277 ) Nsupp p(277) = 2,
(iv) g > 1 = supp x Nsupp ¢(279-) = @.
DEFINITION 3.5. For every v in 7', we define the Littlewood-Paley operators by

Aw=x(D)y; Vge N Ajp=¢29D)y, Spu= )Y  Ap.
“1<720-1

Consequently
Aro(x) =gxo(x) = [ gl)olx - y)dy
Vg EN, Ago(x)=2%1(27) xo(x) = 2% / h(@y)o(x — y)dy,
R

where § = x and /i = ¢. Let us notice that the operators A4 and S; maps continuously L?
into itself uniformly on g and p. The homogeneous operators A, and S, are defined by
VoeZ A;=¢2'D)u, S;= ) Ajp.
j=q-1
Now, we will recall the definition of the Besov spaces.
DEFINITION 3.6. Let s € R, p,r € [1,00] . The inhomogeneous Besov space B;, , (resp. the

homogeneous Besov space B;’r) is the set of all tempered distributions v € . (resp. v € f‘lp)

such that
de
lolls;, < (2% a0l ), < oo,

def .
(resp. l[ollg5, = (2711350l ),

We have denoted by P the set of polynomials.

< 00).
"(2) )

Let us recall the Bony decomposition [2]. For u,v € ./ ". The product of uv is formally
defined by
uv = Tyv + Tyu + R(u,v),

where
d d ~
T, v gZSq,lAqv, R(u,v) gZAqquv,
q q

with Zq = Zi_zll Agy1- The terms T,v and Tyu are called paraproducts and the third term
R(u,v) is the remainder. For a detailed explanation of this subject, we consult the section
5. 3 of chapter 5.

YAT - — — 3 Vv 1Y e 1T O Y. T DY 2 o1 o~ 1T YA (A MY . T0ODS
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—~ ! def
5By, = {0:0,T) = 7 ollgy, < @F180l1510), < oo}
We have the following embeddings:
LB;, — L1B;, ifa<r,
LBy, — LTB;, ifa >r.

In addition, we have the interpolation result: let T > 0, s; < s < sy and x € (0,1) such
that s = xs; + (1 — x)sp. Then we have

2.1) lollgzp;, < Cllolify g Il
T=pr

LByl L B52 '

Next, we state the following proposition which deals with the persistence of Besov
regularities in a transport-diffusion equation.

PROPOSITION 3.7. Let v be a smooth divergence free vector-field and f be a smooth solution of
the transport-diffusion equation

(D) {Btf—vAf-I—v-Vf:g
f|t:0:f0

where fo € By ,, g € LZOC(R+;B;,r) and (s,r,p) €] —1,1[x[1, 00]?. Then we have for t > 0,

t
£ Olls5, < O (Ifolls, + [ e Ollg(x) 3, d7),
with t
= [ IV0(@) umdr

and C a constant which depends only on s and not on the viscosity. For the limit case
s=—-1lr=occandp e [l,0] or s=1r=1landp € [l,)]

d
the above estimate remains true despite we change V (t) by Z(t) = ) ol LB, . In addition if
f = curl v, then the above estimate holds true for all s € [1,4o0].

PROOF. We will only restrict ourselves to the proof of the limiting cases s = F1. The
d
remainder cases are done for example in [2]. First, let g € N U {—1} and define f, ) Ag,

<q Y Azg. Then applying the Littlewood-Paley block to the equation, we get

difg+ (v-V)fg—vAfs = g+ (v-V)fg—(v-Vfy)
= A8 —[Ag0- VIf.

Multiplying the above equation by |f,| f; and using Holder inequalities we shall have:

t t
Ifillwr < ||qu||U,+/O ||gq(T)||LpdT—i—/O |80 V1] dr.

According to Bony’s decomposition, the commutator is given by:
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where Tzl,u stands for Tyu + %2 (v, u). To treat the first member ,//ql, we write from the

definition
1 ~ .
'/%11 = Z Aqa]'(AkakU]).
k>q-3
Therefore in view of Bernstein inequalities of Chapter 5, Lemma 5.1 we get for s = —1,
(22) sup 274 | S N fll g1 10l

q=-1

To estimate //Zqz, we write

'//L;Z = ATajij = ‘ Z| Aq(Sk_laijkvj).
qg—k|<4

The Bernstein and Young inequalities leads to

~Y

(2.3) sup2 7|47 | S sup27?)|Sy-1fller27(| A/ |1y
g g

S ollg, sup Y, 27727 Awf |
’ g —1<m<g-2

S Ul gl

Concerning the member .7, we obviously check that can be rewritten as follows

Bloeo’

,//[73 = TAqa],fZJj = Z Sk+2Aqa]~Akvf.
k>q-2

We apply once again the Bernstein inequality, we shall have
- - —knk
27 | S 27BNl Yo 2772 A,
k>q-2

Therefore the convolution inequality yields

(2.4) qs;132_”’||///$l|m S 1l gz ol .-

For the last member we write
My =D, Tyl0if = Y [Ag, Si10/]AD;f-
k—q|<4

The following is classical (see for example [6]),

1[8g, Sk-10/ 1A f e S 27|V Sk_10]| 110, A f | r
S 27| Vol | o || Akl -
This implies
(2.5) sup 27| |1 S (| fl 25, [ VO Lo

q>-1
Putting together the estimates (2.2), (2.3), (2.4) and (2.5), we get

sup 279[[Ag, 2 VIF| < Iflur ol
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To conclude the desired result it suffices to apply the Gronwall’s® inequality.

Let us now move to the case s = 1 that will briefly explained. We estimate t///q1 as follows:

Y2l S Y 272N A 2| Aol | 1
q k>g-3
< g, ol

For the second member we have
Y 21l <Y 271Sg-10,f|Iie | Ag0 || Lo
q q

< VAol
S Wil lollr
The third and the last members are treated in the same way to the first one. The proof is

completed O

In the sequel, we denote by C a harmless constant whose value may vary from line to
line. The notation X < Y means that X < CY for some constant C.

3. Study of a vorticity like equation

In this section we study some geometrical properties of any solution satisfying a
vorticity like equation given by:
o' — vAT -V)I'=(T-V
(3.1) = O+(v )T =('-V)o
[j—o =17,
where I' = (T'1,T,T'3) is an unknown vector-valued function. Our main result in this
section reads as follows:

PROPOSITION 3.8. Let v be an axisymmetric smooth vector-field with zero divergence and I" be
the solution of (3.1) with smooth initial data T°. Then we have the following properties:

(i) ifdivIg = 0, then
divI(t) =0, VteRy;
(i) if T° =T(r,z) &, then
[(t,x) =Tgy(t,r,z)e, VteRy;
(iii) under assumption (ii) we have T'1(t,x1,0,z) = I'2(t,0, x2,z) and
2 o 1 1 v’
olg+ (v-V)Iy —v|o0: +BZ+;ar—r—2 Iy = 71“9.

PROOF. (i) We apply the divergence operator to the equation (3.1) and by an easy
computations, using the incompressibility of v, we get

((9,divI — vAdivT + (v-V)divI = 0

7S ™S\
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From maximum principle, we obtain
|divT || < ||divI?|| .

This gives the desired result.

(ii) Let (T, Ty, ;) denote the coordinates of I in cylindrical basis. The result will be done
in two steps: we show first that the cylindrical components of I' do not depend on the
angular parameter 6. We prove in the second one that the components I', and I'; are zero.
To establish the first point it is enough to prove that (3.1) is stable under rotation
transforms. For this purpose we will check that for every a € IR, the quantity

Tu(t, x) = Ry T (t, Rax) satisfies also (3.2). Here R, is a rotation with angle a and axis

(0z),1ie.
cosx —sina 0
Ry= ] sina cosa 0
0 0 1

It is well-known that the operator A commutes with rotations, i.e.,
A(T(t,Rux)) = (AT)(t, Rax).
This gives,
(3.3) AT, (t,x) = Ry YAT) (¢, Rax).
For the advection term we write
(RyY(v- VD)) (t, Rax) = (v- VR T (E, Rax).
On the other hand we have
o(t,x) -V (R7IT(t, Ryx)) = (R,xv(t, R:1x)- vn;lr) (t, Ra(x)).

As the velocity is axisymmetric then

o(t,x) - VIu(t,x) = (v- VRG'T) (t, Ra(x)).

Combining these estimates we find

(34) (Rl (v-VI)(t, Rax) = v(t,x) - VT,4(t,x).

For the stretching term we write by the same way as before

(3.5) (RyUT-V0))(t, Rax) = ([-VR;W0)(t, Rax)
= ([-Vo(t, Ry x)(t, Rax)
= T,-Vo(tx).

Plugging together the equation (3.1) with the identities (3.3), (3.4) and (3.5) we thus get
atra_‘_v'vrtx _VAI-"X — ]’.—'a ‘VU.

Cioe o TO/ N  T07aN £l oo Tes vt oo T (0N T L oA Tt T e Tt e o
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Since v is axisymmetric then we get by straightforward computations
(’0 * Vr) * Er — vrarrr + Uzazrr
- 0 - Vrr,

. 1
(r ° vv) ° er — rrarvr + ;r@a@vr + rzazvr
— Frarvr + rzazvr.

For the dissipative term we have by definition and by the first step,

1 1
VAT -3, = u{afr-é;+;arrr-a+r—zagr-zﬁagr-a}
= v ar(l“-er)+;ar(r~er)+r—2<89(r-er)+(F~er)

—~205T & ) + (T a)}

1

1 1
= VvV a%rr + _arrr + _agrr -
r r2

2
1
— v [Al“r _ r—zrr}.
It follows that,

(3 6) atrr + 0 - vrr —V [Arr - rlz].—‘r} - rrarvr + rzazvr
' Trjpg = T7.

By the same method, we can find that the component I'; satisfies the following equation:

atrz + (N vrz — VA].—'Z — ].—‘rarvz + I—'Zazvz
3.7)
rz|t:0 - O.

We multiply (3.6) by |T';|P~2T,, integrating by parts and using the fact that div v = 0,

- |Tv [P
SOl + vp-1) /]ngvrr‘z,rryp de+1//]R3 dx
< / ]I’r]”arvrdx—i—/ FZ|Fr|p*ZI’razvrdx
RR3 R3

-1
< (ITo iy + Tl 1 ) Vol e,

where we have used Holder inequality. This gives

ITr(D)lly < IT7 N2 +/0t (T (D) ller + IT=(D)lee) Vo (T) [[1~dT.

Applying the same argument to (3.7) we get,

IT=(B)l|zr < T2z +/0t T (O ller + IT=(Dlee) Vo (T) [ L~dT.

It suffices now to use Gronwall’s lemma leading for every p € [2, o],
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(iii) The first statement is a direct consequence of I' A & = 0. Let’s give the equation

governing the angular component I'y. By easy computations one has

AT -8 = A(Tey) &
I'g

— Arg—r—z,

and
(v-VT)-€g=v-VIy, (I'-Vov)-& = %Fg.
Then taking the angular component in the system (3.1) we get

{ 9Tg+v-VIp—v[ATg— 4] = 2Ty

(3.8) r
Tgji—o = Tp.

This achieves the proof.

We need the following properties of the vorticity, see for example [2].

PROPOSITION 3.9. Assume that v is an axisymmetric vector-field with zero divergence and
w = V A v itsvorticity. Then the following properties hold true:

(i)" the vector w satisfies
W ANeég= 0;
in particular, for every (x1, x2,z) in R3 we have
w3 =0, wi(x1,0,z) = w(0,x3,2) =0;
(i) for every q > —1, Agv is axisymmetric and
Aqw Neég = 0.
4. Proof of Theorem 1.1

4.1. Some a priori estimates. In this section we give some elementary estimates.

PROPOSITION 3.10. Let v be an axisymmetric solution of Navier-Stokes system. Then we have
forallt € R4

() ||«
.. r(t)
(i) UTHLOO <C )
(iii) [|w(t)||1 < Cllewo]|eCIF 31,

(i) [[o(t) ]| < C(|loo| e + [|ewol| ) e T i),

The constant C does not depend on the viscosity.

“o
r

131 — 1317
“o
r

L3J’

PROOF. (i) We set 7 = 2, then we have
-  a— r . 3 - " o
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By interpolation we get for 1 < p < oo and q € [1, o],

1) |Lra < [0l pa-

(ii) We use the following inequality due to T. Shirota and T. Yanagisawa [19]
s L]
r R

3 .
As L € L2, then from the convolution laws LP/7 x LF'7 — L, we have

|
‘ vy (1) w(t)

.=
r e ™ r

It suffices now to combine this estimate with (i).

131

(iii) Since w satisfies
v
dw+7v-Vw—vAw = —w
r
—_ 0
W|t:0 = w".
Then maximum principle and the estimate of (ii) yields

o
ol < s+ [

5T) w(T) HLwdT

t
o | (@

IN

wo
lewollzes + || <2
:

This gives in view of Granwall’s inequality
w|ze < [|ewol|peoeStN T Neaa.

The desired estimate is then proved.
(iv) We will use an argument due to P. Serfati [18] and applied for Euler case. From

homogeneous Littlewood-Paley decomposition,

lo(t)|[t> < [IS-Nolle + Y [1Ag0|1s,
4>—N

where N is a parameter that will be judiciously chosen later. Using Bernstein’s inequality
we get,

4.1) Y. lAoflre < 2V |wl|Le.
q=—N

Since S_ N satisfies the equation
(0t —vA)S_nv = —P(v- Vo),
then we get easily

. . t .
1SN < [|S—Nvo || +/0 |S-NP(v - Vo)(T)dT||1,

1 wm * T v . o ~ 1 1 A T L. 1 T A * o« ey 1,
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We combine (4.1) and (4.2), we get
t
(4.3) lo()ll= < llvolle + 2V ||| +2_N/0 [o(7) [[~dT.
If we choose N such that
t
2N x 1+ w2 [ () dr,
then the estimate (4.3) becomes

t
[o(DllZ= < [loollfe + llw(t)][F + IIw(t)HLoo/O [o(7) [ Z~d.

We apply again the Granwall inequality
Ct||w!| oo
(4.4) o))l < (loolle + llw () ler=)e
Inserting the estimate (iii) of Proposition 3.10 into (4.4),
@
lo(®)lles < (lloolls + wolle) e s,

The proof is now completed. O]

4.2. Vorticity decomposition and Lipschitz bound. The following result is the main
step to bound the Lipschitz norm of the velocity. We will establish a new decomposition
of the vorticity based on the special structure of axisymmetric flows. We mention that
this result were first proved for Euler case [2] and we generalize it here for the viscous

case uniformly with respect to the viscosity.

PROPOSITION 3.11. Let w be the vorticity of the viscous axisymmetric solution. Then there
exists a decomposition {@q} 4> 1 of the vorticity w such that for every t € R,

(B1) w(t, x) = ZqZ—l cbq(t,x);
(B2) div @, (t,x) = 0; )
(B3) ¥g > 1, [|@y(1) |~ < [[Agewp|p=e 7o,
(B4) there exists a constant C > 0 independent on the viscosity such that for
every k,q > —1
| Akg (1) 1= < €271 D] Agewn| 1,

. def
with Z(t) = “UHL}B},O,{

PROOF. For g > —1 we define @, as the solution of the following linear Cauchy

problem
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Since div A,w? = 0, then Proposition 4.12 gives div @,(t) = 0. From Proposition 3.9, we
have Aqwo Neég = 0. It follows from Proposition 4.12 that this property is preserved in
time and

(4.6) Qg — VA, + (0 V)@ = Gy
Wylt—0 = Agqwp.

Applying the maximum principle, we obtain

||d’q(t) |1 < ||Aqw0||L°°

Therefore we get from Gronwall’s lemma and (ii) of Proposition 3.10,
g (8) | < [ Agcwg eI i

The proof of (B4) is equivalent to

4.7) | A@q (1) || 1 < C2K1eC2 0 || Agep | oo
and
(4.8) | Ak@q (1) || o < C2T7%eCZ 0 || Apcop|| o

To prove (4.7) we apply Proposition 3.7,

t
e gl gy, < C(I18g00llgy, + [ e g - Vo(o)l|gy dr).
According to Bony’s decomposition,
Wq-Vo=Tg, -Vo+ Ty, @4+ R(d)g,aiv).

Then we have

IN

Iy Vollgzs, < 1Ta, - Vollgor, + [ Too - @yllyes, + IR@y, 90 5ot

S IVolliell@glp s, + IR(@5, )51, -

Y

Using (B2) we obtain
IR(@g, 90)llp1, = 19:R(@5,0)l5,
S sup ) [[Aj@yll=| AL
ko j>k-3

S ll@gllpgllollp -

Consequently,
|- Vollser, < Nolsy lldlpen,

We finally obtain

e A quHB N HAqCUOHB ; +/ lo( HBl e (T)H‘Dq(T)HB;}oodT'
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It follows that
(4.9) 1Ak (1)]] o < C2 9“0 | Agewo| .

Let us now move to the estimate (4.8). As v/ = 0, then

where (vl, v?, 0) is the components of v in cartesian basis. According to Proposition 4.12
the vector-valued solution @, has two components in cartesian basis CD; and cbg We
restrict ourselves to the proof of the estimate of the first component. The second one is

done by the same way. We have

2
~1 ~1 ~1 U -1
— VA . ——
(4.10) 8twq vAG, + (v- V)@ xzwq
By Proposition 3.9, we have
—CZ() | ~1 1 bz 2%
(4.11) LD gy, S I8ghlay, + [ 0 o)) 0
For the last term of the right-hand side we write
~1 ~1 ~1
@ @ @
(4.12) Hvz—"’ < ‘TwwzH —I—’Tvz 1 +HR< q)‘
xo IIBL = B, X2 X2 /1B,
d
S S

To estimate F; we use the definitions of paraproducts and Besov spaces

413 B < 2"”5 ( )H A ||y < —H .
(4.13) 1 k>Z:1 k-1 L1807l S vl o [P

Similarly we have for (F3),

~1
@
414 B< Y 29A02 | A—qH < o —H .
(4.14) 3NZZ;3 A0 ||L % Lo < oll ol |8
The estimate of F» is more subtle,
~1
@y (x)
415 B < 2Hs A H .
(4.15) 2Z§N llv)l<x2>L°"
It is easily seen that,
~1 ~1
@g(x) Aycog (x)
sean(A)) < [ w0
H11()l o e = 11()x2 .

st o1 o] .

— J— . . o~ o~ o~ . . . . o~ Lo BN N N -
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Therefore we get

cbl(X)

(4.16) y o Hsl_

< IVollll@dlg -
leN !

=

To treat the commutator term we write by definition,

s (o) [an ]} = S /Rgh<zl<x—y>><xz—yz>‘°5(y)dy
1/ S_17? - @;
— 2 l<lx—;>23lh(21.)*<x—3)(x),

where /i(x) = xh(x). The following identity holds true for every f € S'(R3).

P2 )« f= Y 29h(2N) x Arf.
lI—k|<1

Indeed, we have /i = i0z,1t = idz,¢(&). This implies that supp;z\ C suppg, and so

22 h(2L)« A f =0, for |l —k| > 2.

Consequently,
~1
1 S;_10* @y
@17) Y 2|stfa—lal| s X [P (5]
IeN [ } il i—k<1 X2 TET (x2> e
ol
S Vol
X 0,1
Thus it follows from (4.16) and (4.17),
~1
@
. <10, + [, )
(4.18) S IVoL (quHB}m,l_{_ o Bgo)

Putting together (4.13), (4.14) and (4.18), we get

~1
w
Hvz q
X2

S Vol (Il |

oo )
B,

Bl
00,1
Thanks to (4.11) and the above estimate one has

@19 OOl < (@O

~Y

t
o Al TGV P TP

b e @l(1)
+ [ e O Iy [ L

. dr.
Boo,l

~1

In order to estimate the quantity H %7 we will make use of Lemma 3.15 (see

BO

oo,1

appendix): first of all. we have due to Proposition 3.9 @i(x1 0 2) = 0. Hence we oet bv
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E

1
< [ 19@} sy, (1~ 1og )y

N

1
|@}lgy, | (1~ log p)dp
S ”“7;”8(1)0,1'

Then the estimate (4.19) becomes

Oy, S N3Oy, + [ POl gy 30 gy b

It follows from Gronwall’s lemma that
l@g ()l < Cliaog (Ol .
This gives in particular the estimate (4.8)
18k (£) |1 < C2775eS“0|| Agewp|| 1.
The proof of (B4) is now completed. U

Now, we achieve the proof of Theorem 3.1 by giving the persistence of the initial
regularity uniformly on the viscosity.

143
PROPOSITION 3.12. Let p € [1, 00] and v be the solution of (NS,) with initial data vy € B, ¢

such that “2 ¢ L3, Then we have:
(E1) case p = +c0.
VEZ 0, w®llp + o) < Cor P,

(E2) case1 < p < H-c0.

exp Cot

Vi 0, Jw®) 5 +lo®] .3 < o™,
;1 B pl !
where the constant Cy depends on the norm of vy but not on the viscosity.

PROOF. To prove (E1), we fix an integer N which will be judiciously choosen later. By
virtue of (B1) of Proposition 3.11, we have

a20) ey, < T[aTa]
j q
< Y @B+ Y, 1Aj@ (1)
li—q|>N i—ql<N
d

To estimate the first member H; we apply the last part (B4) of Proposition 3.11
(4.21) Hy <27 N||wp| go 1eCZ(t).

For Hj, we use (B3) of Proposition 3.11
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Combining this estimate with (4.21) we obtain

Hy + Hy <27 NeC2(t) 4 NeCot,

It is enough to take N equals to [CZ(t)] +1,

lw(®)llg0, S (Z(£) +1)e.
On the other hand we have

ol < ol + @l
Thus it follows from (iii) and (iv) of Proposition 3.10

t
follgs,, < Coe? 5+ Coe [ o) .
Hence we get by Gronwall’s lemma
ol < Coe,

and consequently we have

lellg < CoeP.

This gives (E1).
For (E2), we apply the Proposition 3.7 to the vorticity equation
t
(4.22) eV ONw| 5 < llwoll 5 + / eV |w-Vo()| 5 dr.
B, B, /0 B,

We want to prove that

(4.23) lw- Vo) 3 Sllwl 3 [ Vol

pl B pl

According to Bony’s decomposition we have

(4.24) lw-Vo()|| 5 <|Tvo-w@| 5 +|Tw- Vo 5 +[IR(w',0:0)
B B B

I 5
pA pA pl B

pl

By definition of ||R (w',9,0) || 3 ,we have

pl
3
IR(w, VO)ll 5 < 327 ¥ [|Ajwllir|AjVol|s
Bp,l qu ]'2[1—3
_ 3 ;3
S |Volle Y 29705200 | Ajo|| 1
j=9-3

S IVolle=flwll 5

Y

pl
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For the third term we write,

qi
1Tw-Voll 5 < Y. 27 ||S, 1wl =] VAo
By q€N
P,
3
S lwlles 3 27| Agw] e
geN
S IVolleeflwll 5

pA

Thus we get

t
VO w|| 2 < [lwoll +/ e VO Vo() e w(D)] 5 dr.
By By 70 By

3
p

Using Gronwall’s lemma we get,

o]l 3 < lewol| %eCV(t) < Coeeexpcof.

pl B pl

By definition,

3
o) 12 S Aol 2 4+ Y 2927|| A1
P BF’
pl p1  geN

S @)l + llw(t)

I 3

Bp’1
It remains to estimate ||v(t)||rr. Since for p €]1, 00|, Riesz transforms map continuously
L? into itself, then

t
lo()) ]l < Hvol|m+/0 lo(7) - Vo(1)]|rdT

t
S 100 +/0 [o(T) | Vo (T) || LedT.
Applying again Gronwall’s lemma,

HZ)OHLpeCV(t)

e&xp Cot

lo() v

IN A

Coe
For the case p = 1 we write

ol < 1Soo(®)llr+ Y 1Aq0(8) |1
q9>0

S 0ol + 3, 27714y Vo (bl
920
; def
S Soo(®)l[p + lw(®)lr = Y1+ Ya.
To estimate Y; we use the Navier-Stokes equations,

i < IS0+ Y AP ((v- V)o(t)) |

- a
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For Y,, we have
Y < wll, < ol -
Combining Y; and Y;, we get

[o(t) |1 < Coet™ ™"

This finishes the proof. [

5. The Rate Convergence

Before stating the proof of Theorem 3.2, we need the following lemmata, for more details
we refer to T. Hmidi and S. Keraani [18].

LEMMA 3.13. Let s €] — 1,1[, (p1,p2,a) € [1,00]> and v € L' (R4; Lip(IR®)) be a divergence
free vector-field. Then, there exists a constant C which depends on s and such that the following
holds true: let f to be a smooth solution of (TD,), then for all t € R

SN

vilFl L < CeSVO (14 ut)

t=P1P2

t
(Wfollgsp, + | 8(0)lIg5 7).

where V(t) = ||V LIz and C is a constant that does not depend on the viscosity.

LEMMA 3.14. Let v € 32,1 be a divergence free vector-field and w & B<1>o,1- Then we have
1) o~ Veollg S ol Iellg
Besides, if v = w then we have
@ llo- Vol S lollurliolz,
PROOF OF THEOREM 3.2. We distinguish in the proof three cases: p < 3, p = 3 and
3<p.

e Case p €]3,0]. We setz, = v, —vand P, = p, — p. We can easily check that z,
satisfies the system

(I\/TSV) { ath + (UV . V)ZU — VAUV _ (ZV . V)U + VPV

Z‘i‘ZO — O

By virtue of Proposition 3.7 and Proposition 3.12, we have

t
eoxp Cpt
lalsg, < Coe™™ ([ (a0 (Dl
Hlzw- To(D)lg, + VP, ) )

d ef exp Cpt

= (Cphe (X 4+ X5 4+ Xa).
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Therefore we get from the interpolation inequality (2.1),

X; < Cllvw,|

LB,

e AR
< Cllvw||” 5 flvew]]” 7 5.

LiB) oo LiBpod

For the first term of the right-hand side, we apply Holder inequality and Proposition
3.12,

1 3

Nl—=

1,3 3 1,
(5.1) vl % < )T F ewu|” %

LiBpeo LT Bpeo

< Co(vt)%Jr%eeprOt.
For the second term we use Lemma 4.7,
62 vl g < COTE O (@] 5+ flwnVoul s ).
1 Bpoo Bpeo LiBy

We have the law product

lwy - Voull 5 S llwdll s llovll 15
Pl pl pl
3
Indeed, for p < oo this is a direct consequence of the algebra structure of the space B ;,1.

But for p = oo, we use the incompressibility of the vorticity (div w, = 0). Thanks to (E2)
of Proposition 3.12 and (5.1),

(5.3) ||1/wv||~1 23 < CoeeeXpCOf(l + vt).

t = p,oo
Thus we get,

ex 1,3 1.3
(5.4) Xp < Coe®™ PV (wt) 2T (14 vt)2 .

Concerning X, we use (1) of Lemma 3.14 it follows,
55 A
Applying the differential operator div to (N/SV), we deduce
—AP, = div(zy, - V(vy +0)).
Since Bg/l — Bg/l and Riesz transforms act continuously on homogeneous Besov spaces,
vavHB%1 < Cllzv - V(v + U)HB%l'
Combining this estimate with Lemma 3.14 and Proposition 3.12, we find

VP, || g < Coe®PC0t||z, || 50 .
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Inserting (5.4), (5.5) and (5.6) in (5.1), we get

3 -3

1 ! t
(V)2 2 (1 +vt)2 " +Coeexpcot/ 2o (7)o AT
0 P

C
HZVHB;O” 5 Coeeexp ot

Gronwall’s lemma yields

Zyllmo < CgeeeXpCOt vt %Jr%.
B 1
P,

e Case p = 3. We reproduce the same calculus by changing only the interpolation
inequality before (5.1) by

Iveoligy < WH)llovley,
We get finally

Cot
||Zv||ﬁB§1 < Coe* " (vt).

1+2
e For 1 < p < 3, we use the Besov embedding B p P B%/l. It follows then

exp Cot

(vt).

12vllpg, < Coet

This achieves the proof of the theorem. [

6. Appendix

We have the following result which was proved in [2] and for the convenience of the
reader we will give here the proof.

LEMMA 3.15. Let h : R® — R3 be a function in Bgo,l and taking hy, (x1, X2, x3) = h(pux1, x2, x3)
with y €)0, 1. Then, there exists an absolute constant C such the following inequality holds

||hpt||}5;go,1 <C(1- logﬂ)HhHBgo,l-

PROOF. Let yin ]0,1[ and taking h, , = (Agh), for g > —1. It is obvious that
hy, = qu_l hW' By definition we have,

ullge = 1A_ahullis + 3 Akl
’ jeN
< Cllills+ Y 1Al
jeN
q>—1

For j,q € IN, the Fourier transform of A;h, ) is supported in the set

(., _ Y g - 1, - Y B
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Thus we get for an integer 74

Pdlso | < i+ X Ahgulls

q—np+logu<j
]§q+}’l1
S Nl + (1 —logp) Y [1hgullLe
q
S N flle + (1 —logp) Y 1]l
q

S (1= logp)llkllg -

7. Perspectives

The decomposition of the vorticity argument proposed above allow us to extend to the
Navier-Stokes system (resp. Euler sytem) for initial data which satisfies the so-called
helical symmetry condition (for more details we refer to A. Dutrifoy [7] and recently the
paper of B. Ettinger and E.S. Titi [4]). Let (&, &, €:) be a cylindric coordinates in R? and v
a vector field be such that v = v,¢, + vyéy + v,€,. Then, for some positive real number k

we have

DEFINITION 3.16. A vector field v in R3 is called helical symmetry if

(i) the components v,, vy and v, are constant on the helical r = ry,z = zo + h0,
(i) at every point of R® the vector field v is orthogonal to T := 1€y + he., i.e. rvg + hv, = 0

An equivalent notion of helical symmetry is given as follows

DEFINITION 3.17. A vector fields v : R3 — IR3 is helical symmetry, if the following assertion
holds

(i") (Helical) v(Hgx) = Rgv(x) for every 6 € R, where Ry is the 0— rotation transform

defined by
cosf —sinf 0
Ro(x) = | sinf® cos® 0
0 0 1
and
0 xcosf + xsinf
He=TRe(x)+| 0 | =| —xsinf+ycosb
hz z+ hz

(ii") (Symmetry) The vector fields v obeys the following constraint
rvg + hv, = 0.
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CHAPTER 4

On the Global well-posedness of the Euler-Boussinesq system with

fractional dissipation

This work is the subject of the following publication :
T. Hmidi and M. Zerguine: On the global well-posedness of the Euler-Boussinesq system with
fractional dissipation. Article in Press, Physica D.

Abstract. We study the global well-posedness of the Euler-Boussinesq system with term
dissipation |D|* on the temperature equation. We prove that for « > 1 the coupled system has
global unique solution for initial data with critical regularities.

Keywords and phrases. Euler-Boussinesq system, Besov spaces, paradifferential
calculus.

2000 Mathematics Subject Classification. 35Q35, 35B65, 76D03.

1. Introduction
In this paper we deal with the two-dimensional Euler-Boussinesq system given by

div+v-Vo+ V= 0e
90 +v- VO +«|D|*0 =0
divo =0

Vjp—0 = N, 0|t:0 =69,

(Bx)

Here, the unknowns are the velocity v = (v!,0?) € R?, the pressure 7 and the
temperature 6. The vector e; is given by (0,1), « is a real number in ]0,2] and « > 0 is

called the molecular diffusivity. The fractional Laplacian |D|* is defined as follows:

DPF() = 1oz [ e E e T (@)

! serves to model many physical phenomena such as overdriven

The fractional Laplacian
detonations in gases [9] or anomalous diffusion in semiconductor growth [27]. It is also
used in some mathematical models in hydrodynamics, molecular biology and finance
mathematics, see [14, 21, 23].

In space dimension two the vorticity is defined by the scalar w = 910> — 9,v!. Thus the
system (B,) can be written under the vorticity-temperature formulation as follows:

! Jiw +v-Vw =010

(1.1) 90 +v- V6 +«|D[*0 =0
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In the case of zero diffusivity this system can be seen as an hyperbolic quasi-linear
system and thus it is locally well-posed in Sobolev spaces H® with s > 2. Nevertheless
the question of whether smooth solutions develop singularities in finite time or not
remains till now an outstanding open problem. For ¥ > 0 and a = 2 the question of
global existence is solved recently in a serie of papers [4, 12, 13, 17]. In [4], Chae proved
the global existence and uniqueness for initial data (v°,6°) € H® x H®, with s > 2. This
result has been recently improved in [17] by Hmidi and Keraani for initial data

e BE:l and 0° € lel_l N L', with r €]2, co]. It seems that the only smoothing effects
due to the transport-diffusion equation governing the temperature is sufficient to
counterbalance the amplification of the vorticity. More recently, the study of global
existence of Yudovich solutions for this system has been done in [12]. We mention that in
[13] Danchin and Paicu proved that if we have only an horizontal viscosity, that is 97,6
instead of A, then Euler-Boussinesq system admits global unique solution.

In this paper, we aim at solving the question of global existence for less dissipative term
|D|*6. As we shall see the difficulty depends on the parameter « and it appears that the
system shares some properties with the 2d quasi-geostrophic equation (QG) described by

30 +0-VO+x|D*9 =0, v=(—0,|D|716,8;|D|10).

Indeed, the velocity in the second equation of (B,) has basically the same regularity as
the temperature but it is given through a complex dynamical system. In a similar way to
the quasi-geostrophic equation we shall call critical the value o = 1. It corresponds to the
fact that the likely amplification of the vorticity due to the term 9,6 and the dissipation
have the same rate. Thus we expect for the sub-critical case « > 1 to have global
existence since the dissipation is much stronger than the amplification. This will be the
main goal of this paper. We emphasize that our method does not give any answer to the
global existence for the critical case. On the other hand the approach developed by
Kiselev, Nazarov and Volberg [22] to settle global existence for the critical (QG) equation
does not work here because the relation between the velocity and the temperature is not
local in time. Likewise there is no hope with the method used by Caffarelli and Vasseur
[3] since we have not sufficient estimates on the velocity like v € L*([0, T|; BMO). We
recall that the BMO space is the set of functions of bounded mean oscillation introduced
by John and Nirenberg. Now, we state the main result of this paper:

142
THEOREM 4.1. Let (a,p) €]1,2]x]1,00[, v° € Bpjp be a divergence free vector-field of R? and

0 —a+1+
0" cB,,

system (By) such that

2
PN LT, with 22 < r < co. Then there exists a unique global solution (v,8) for the

a—1

2 _ 2
ve¢(Ry;B,,") and 0€€(RyB,, ' NL)NL(Ry;Lip)

loc

REMARK 4. Notice that the recularity assumntion on the velocity is in some sense critical.
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that the incompressible Euler system has global unique solution for initial data lying in theses
spaces. It is then legitimate to try to obtain a similar result for our system, which is the subject of
this paper.

et . : ,
REMARK 5. The Besov regularity B pj P of the temperature is also optimal with respect to the

regularity of the velocity. Indeed, to estimate the quantity ||v(t)|| B we need to control
pl
{21 I— 2- Now from the maximal smoothing effect of the fractional heat equation the best space
L!B o

—a+1+42
of the initial temperature should be B p; P . It is obvious that when p is sufficiently large then
the temperature will not be necessary in any Lebesgue space and thus there is no plain

conservation laws. For this reason we need to put the initial temperature in some regular

2

Lebesgue space L, withr > =,

but we do not know whether we can improve or remove this
technical condition.

The proof of our main theorem relies heavily on some smoothing effects of the
transport-diffusion equation governing the evolution of the temperature, see
Propositions 4.8 and 4.9. This is the crucial ingredient of the proof and it allows us to
control the growth of the vorticity by the quantity 0,0.

Our paper is organized as follows. The second section deals with some basic notions of
Littlewood-Paley theory and we recall some useful lemmas. In the third one we are
interested in studying a transport-diffusion equation. We prove basically two kinds of
estimates: some smoothing effects and a commutator estimate type. The proof of our

main result is given in the fourth section.

2. Preliminaries

Throughout this paper, the notation A < B means that there exists a positive constant C
such that A < CB. We denote by C a harmless constant whose value may vary from line
to line.

We will gather in this section some definitions and tools frequently used along this
paper. We start with the so-called Littlewood-Paley operators which allow us to define
the Besov spaces. For the following assertion we can see the Proposition 5.2 given in
paragraph 1.2 of chapter 5.

PROPOSITION 4.2. There exists two radial positive functions x € 2(R?) and ¢ € 2(R*\{0})
such that

(1) x(6) + L0 9(279¢) =1, V¢ eR?

(2) Lyez 9(279¢) =1, V¢ € R*\{0},

(3) [ —aql =2 = supp ¢(277-) Nsupp ¢(27%:) = 2,

(4) g > 1= supp x Nsupp ¢(271-) = @.

NTAtr7r a7 Aafiao tho tha T 3+t lavarand PAalayr Aarmvoratare me £fAIlA e £A1r axroryr farmt i ara
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It is easy to see that the operators A; and S; map continuously L? into itself uniformly
with respect to g and p. We can also define the homogeneous operators A, and S,

VieZ Aj=¢Q2'D)u and S;= ) A
j=q-1
According to [2] we can split the product uv into three parts:
uv = Tyv + Tyu + R(u,v),
with

1
Too =) S;qubgo, R(u,0) =) AjuAp and A;j= ) A
q q i=—1
For (p,r) € [1,+]? and s € R we define the inhomogeneous Besov space B}, as the set

of tempered distributions u such that

def
lullgs, = (271 Aquler) , < +oo.

The homogeneous Besov space B;,r is defined as the set of u € .#/(IRY) up to

polynomials such that

def (ogs >
lullgs, = (2#18gul1r),, < +oo.

In the case (s, p,r) €]0,1[x[1,0]? we have an other characterization of the Besov space,
(for the proof see [25]),

L o = x) = o()lfy dx \}
1) Mol < (fo, ) < Clels,

Let T > 0 and p > 1, we denote by LF}B;J the space of distributions u such that

def
W, |2 1) ], < 1o

We say that u belongs to the space ZPTB;,r if

def
lullzegs, < (2F1Agullypyn), < +oo.
By a direct application of the Minkowski inequality, we have the following links
between these spaces. Let ¢ > 0, then

L4B;, — LB5, — LB 5 if r>p,

LiBYe — LB, — LEB;, ,if p>r.
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LEMMA 4.3. There exists a constant C > 0 such that for 1 < a < b < co and for every function
v and every q € Z, we have:

sup [9S;0llye < 27260 501,
|ee|=k

C_k2‘7k||Aqv||La < sup ||8"‘Aqv||Lu < CkzquAqUHLu.
lac|=k

Notice that Bernstein inequalities remain true if we change the derivative 0* by the
fractional derivative |D|*. The next proposition deals with some commutator estimates.

PROPOSITION 4.4. Let u be a smooth function and v be a smooth vector-field of R? with zero
divergence. Then for every q > —1, we have

|[Ag, 0 V]uHLP < v (HVA_ﬂ)HLm + (g —1—2)chrlv\|Loo>.
Besides we have for every s > —1

Y. 2%0[Ag, 0 Viullr < [[Volli=llulls, + I Vulli=lolls;  11,0((s).
q=z-1
The first estimate is proved in [19]. However the second one is classical and its proof can
be found for example in [6].
Next we recall a logarithmic estimate proven first by Vishik in [26] for the particular case
of Besov space BY ;. The proof for more general case can be found in [20].

PROPOSITION 4.5. Let (p,r) € [1,00]2, v be a divergence free vector-field belonging to the space

L},.(Ry;Lip(R?)) and let a be a smooth solution of the following transport equation,
oa+v-Va=f
aj—g = a’.

If the initial data a° € Bg,r, then we have for all t € R4

t
lalzgag, < (12, + 1 lzgag, ) (1+ [ IV0(0) 1w,

Let us now end this section with a classical result about incompressible Euler equation,
see for instance [5].

PROPOSITION 4.6. Let v be a solution of the incompressible Euler system,
o0v+v-Vo+Vmr=f, Vjp—g = 0, divo = 0.

Then fors > —1,(p,r) €]1,00[x[1, 00] we have
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3. Study of a transport-diffusion equation

This section is devoted to some estimates for the following transport-diffusion model

{ 30 +0-VO+|D|*0 = f

(TDy)
‘ 0, = 6°.

The first estimate deals with the L? estimates, see [11].

LEMMA 4.7. Let a € [0,2], v be a smooth divergence free vector-field. We assume that 6 is a
smooth solution of the equation (TDy). Then for p € [1, 0]

el < 160 + [ IF @l

Now we intend to discuss some important smoothing effects which are the cornerstone

of the proof of Theorem 4.1.

3.1. Smoothing effects. We will discuss here two kinds of smoothing effects. The
first one is described by the following proposition.

PROPOSITION 4.8. Let & € [0,2], p € [2,00[,p € [1,00] and v be a smooth divergence free
vector-filed of R?. Let 6 be a smooth solution of (TDy,) with a zero force f. Then we have for every
t>0,geNU{-1}

2751846 10 < 16°01r (14 £+ (9 -+ 2)leurl o 3 e + [ VA0l 3, ).
REMARK 6. If the velocity belongs to L{Lip then the previous estimate becomes
270|800l o S N16°M1p (1 + £+ V0]l o)

Although we have not a frequency-logarithmic loss in this case, the estimate seems to be not very
convenient for our context due to the term |Vv| . As we shall see, it is much harder to

estimate this quantity rather than the vorticity.

d
PROOF. First, let g € N* and define 0, ) A40. Then applying the Littlewood-Paley
operator A, to the equation, we get

(3.1) 0, + v - VO, + |D|*0, = —[Ag,v - V]6.
Multiplying the above equation by |6,|7 26, and using Holder inequalities we get
1d _ -1
EﬁH@quP + /RZ(ID|”‘9q)I9qIP 20gdx < 1041175 I[Ag, 2 - V10|
Now recall from [8] the following generalized Bernstein inequality
20,1, < [, (IDI*6;)]6,1" 0y,

where the constant ¢ depends on p. Inserting this estimate in the previous one yields

1 d o an O an o o —=—1. - .
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Hence

d 24 [\4
= (2 65 (D)ller ) S e 1,0 V1O(E) 1.

Integrating in time this differential inequality leads to

43 t 43
165(t)Lr < [|6g]Ire™ +/0 e~ [Ag, 0 V]O(T) [ pd.
Recall from Proposition 4.4 that
118g,0-VI0llr < [10]lr (9 +2) @]l + VA1 1)

Integrating once again in time and using the convolution inequalities we find the desired
result. [

The second main goal of this section is to establish another kind of smoothing effects for
any solution of (TD,).

PROPOSITION 4.9. Let p € [1,00],a € [0,2], p € [1,00],5 > —1 and v be a smooth divergence
free vector-field of R?. Let 0 be a smooth solution of (TD,) with a zero force f. Then for t > 0

1 t
61l s < CeVO (s, (1+7)+ [ Tu(x)ar),

t=pl

with
def [t def
v Z [ IVo@ldr, Te(t) = V000 o o(8) 157, 1 o)

REMARK 7. Using the method described in the proof of Proposition 4.8 one can establish the
above proposition for p € [2,00[ but the estimates include some constants which blow up when p
goes to infinity. On the other hand the method of [8] does not work for p € [1,2[ due to some
composition laws which are not valid in this case although we expect the final result to be true. In
order to cover all the value p € [1, 00| we will use a different approach based on the Lagrangian
coordinates.

PROOF. The proof will be done in the spirit of [1, 15]. Roughly speaking, it consists
tirst in localizing in frequency the evolution equation and second in rewriting the
equation in Lagrangian coordinates. This will lead to some technical difficulties,
especially, when we have to treat a commutator term coming from the commutation
between the fractional Laplacian and the regularized flows.

Let g € IN and define 6, “f Ag0. Then localizing in frequency the equation we get
(32) 916 + Sqv - Vg + [D[*6y = (Sqv —©) - VO — [Ag,0- V]0 := %y,

Applying Lemma 4.7 yields

t
10 < 16910 + [ 11, (T rd.
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Let us recall from Proposition 4.4 the following estimate

(3.3) ;2qs||e@q(T)||LP < [[Voll=[|6][s | + [IVOl=[ollBs 11,00 (5)-
Combining together these estimates and using Gronwall’s inequality we thus find

(3.4 Jellzzp:, < CeVO (1605, + [ &€V (r)ac).

This achieves the proof for the particular case p = +c0. Let us now move to the
smoothing effect. We define by ¢, the flow of the regularized velocity S;v, given by the

integral equation,

Pg(t, x) = x+ /Ot Sqv(T, Pq(T, x))dT.
Set
O7(t,x) = 0,(t,Po(t,x)) and  Zy(t,x) = Zq(t, Pq(t, x)).

It is easily seen that

- ~ _ def
(3.5) 90, + |D|*6; = %y + [D|* (6 0 ¥g) — (ID[*6g) 0 g = 2%,
We will use the following estimate
(3.6) IIDI* (8 0 1q) — (IDI*6g) o ¢glle < Ce™ IV (£)2%|6 | r-

The proof of this estimate is postponed at the end of this section. Now, since the flow ¢,

preserves Lebesgue measure then we get by (3.6)

(3.7) 1%y ()| S eV OV(£)2)|6g1o + 1| %5 (1) |-

"
At this stage of the proof one can remark that the function 6, is not necessarily localized
in frequency. Thus in order to quantify the smoothing effects we need once again to
localize the equation (3.5). Now, let j € IN then applying the operator A; to the equation
(3.5) yields

91AjB; + [DI*Aib; = A%y
The frequency description of the smoothing effect of the fractional heat semigroup can

be summarized in the following estimate
—tID|* _ 2j¢x
le™ P aifllr S e 18 f -

~Y

The proof of this inequality can be found for example in [7] for the case « = 2 and [18]
for a €]0,2[. Combining this estimate with Duhamel formula and (3.7) one obtains

188 (D)llr S e (|88 | o

¢ o
+ 2qaeCV(t)V(t)/0 e—C(t—T)ZJ ||9q(T)||LPdT

(3.8) + / c(t=m2"

Pxr vvvtnvmntinr 297 F1vvm 21vd 1103 A~ rAl11 i A tvn~v11Aal i Ac var v~k LA 4 — INT

‘@’1 )HLPdT
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Now, let N € IN be a fixed number that will be chosen later. Since y; preserves Lebesgue

measure then we get

T 10081 o = 2700 (8) ] o

gz”(5+”)< 2 Al + 2 HA%HW>

i—ql<N i—ql>N
def
= I + 11,
If g > N, then it follows from (3.9),
(3.10) Iy < 2%]|68||y + eV OV (£)2N2TC ) g, ey +2 Noom| 2, (e
To estimate the second term II; we use the following result due to Vishik [26]
18651, < 271977V 0] 1.
Hence

(3.11) I, < 2 NeCVN216T0) g, lieps-

For low frequencies, § < N, we have from Holder’s inequality

e 1
Z 2!1 ? ’9 HLPLP ~ PtP||9HE?Ole.
EI<N P,
It suffices now to use (3.4), leading to
(3.12) Y- 21578 g, lpprr 2 NG reCV (D) HGOHBs +/ dT).
g<N
Putting together (3.10), (3.11), (3.3) and (3.12), we get
Ne 1
||9||~p e < CH90||B;,1(1+2 rtoeCVt))
pl

CV(t) Nua -N .
+ Ce <V(t) N« 4 2 ) Heuszs?
P,
a 1 t
+ C2No (14 k) eCV ) / Ts(T)dT.
0
It is easy to check that there exists two absolute constants N € IN and C; > 0 such that

V() < C = CeCV) (V(t)Z“N +2—N) < %

Indeed, we start with taking f such that V(t) < 1, which is possible since

lim¢_o V(t) = 0. Next, we choose N in order to have Ce“2~N < 1. Now, we take V (t)
sufficiently small such that Ce€V()V ()2#N < %. This proves the above assertion. Under
this assumption V(t) < C1, we get

Jellpecs < (1 9) (16005, + [ To(x)a).

ln i PRS- I T R [ ISR [ R AP i [ S-S (SR (R AN T 1) PR .U S AP J.3 TSR
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Then reproducing the same calculation we get

1 tiy1
16150 15, 3240y S (L (b = 1)) (0t s, + [ Te(m)de).

Since
K-1
18020 0,555 < 2 NMEo s, apmiey
i=0
then
1 K-1 t
1610555 < (1419 L It s, + | Te(oa).
1=
It suffices now to combine this estimate with (3.4). U

3.2. Proof of (3.6).

PROOF. Note that the case « €]0, 1] was treated in [1, 17]. We will use here the
method developed in these papers to extend the estimate for & € [1,2]. The case &« = 2
can be done explicitly by Leibniz formula and some estimates of the flow. It is plain that

DI*(fgo ) = (IDI*f) oy = [DI{(IDI%f) o 9pq} — {IDIZ(IDI%f)} o ¢y
+DIE{IDI2(fy 0 1g) — (IDI%fp) o g}
= I +1I,.
For the term I, it suffices to apply Proposition 3.1 of [18], with 5 and f = ID|2 fq- Thus
we get,

—1,2+5%
Il S max (|1 — vy 742

4

_o_ & 13
1= [Vll =2 ) IV glE- Bl -

pa
The flows lP}I Y g and ! satisfy the classical estimates

(3.13) eV < |Vt e < eV

It follows from Bernstein inequality

(3.14) ITgllr < eV eV E —1)2%)| fy | o

For the second term we use the following representation of the fractional Laplacian

A R it)
i =c [ FE g

Since the flow ¢, preserves Lebesgue measure then we get easily

fq(lpq(x)) _fq(l/’q(]/))

R?2 x —y[*T2

IDI2(fg 0 9q)(x) = (IDI2 fy) o g(x) =

x —y|?*2

<(1- g (x) — ¢q<y>|2+%)dy '
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with .
|h|2+§

bo(x,h) =1— _.
A PR E R R

It is not hard to see from Bony’s decomposition that for s > 0 we have the following law

product:
> < oo o} S .
Hfé%"h%;l1 S fle HgHBpll + HfHBmHgHLP

Combining this estimate with the embedding BY | < L%, we find

Iller < [IDIZ(fy 0 9q) — (IDIZfy) o 4y

53

< Cllgllmms [, 1172 Hlgg() = o =)l s dh

pA

+ Coup IFy )y [ 10722 lgg() = gyl = W)l rdh
heR? Boa /R

= L+
To estimate | 6} we use the mean value Theorem,
1 |h|2+%
2+5 =
IVyll;n2  [$(x) —¢(x—h)
Therefore we get by the definition of g[vq and the above estimate,
- _1,,2+% _D_ &
1l < max (11— [V 722011 — [Vl 21).
It follows from (3.13) that

—12+%
2+3 <Ivy 1HL°°2‘

(3.15) [q e < ceCV(t)(eCV(t) ~1).
Using the definition of Besov spaces and the commutation of A; with translation
operators one finds

28y () = gq- =)l

pl

aj _a dh
<T2Y [ I Eai80() — (Aiga) -~ ) o
]

The characterization of Besov spaces (2.1) yields

o @i
oo P B30 = o =g e < CE2H gl g

pl pl

IN

C Z 2j%2%k||AjAk8q||LP
lj—k|<1

Cllgllys -

IN

Now we use the following interpolation result,

1—¢ @
ngHB;1 N ngHLPZHA8q||frJ~
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Applying Bernstein inequality and (3.13) we get

1Aggller S eV 22| foll e + 29)| fyll e [| Atg || oo-

The derivative of the flow equation with respect to x and the use of Gronwall and
Bernstein inequalities give

t
(316) 19595l S VO [ 92S50(r) umdT

< CVOy ()2,
Combining both last estimates we obtain
(3.17) IAgglly < e D22 fyll o

~Y

Putting together (3.15) and (3.17)
173 ()l S eV VD — 1027 £y o

Let us now turn to the second term | g. The integral term can be estimated from (2.1) as
follows

[ 2R lgg() = 8o = W) lrth S gl 5 -

pl

Using the composition result proven in [24]

(3.18) 184 () S IVgllz=lifall s
pl

< eCV(t)zq%quHLP-

I3
pl

In order to estimate §; we use the interpolation inequality

Il s S a2 Vg (o ) o

32
Boo,l

This leads in view of (3.15) to

(3.19) [FaCo s < CeSV VIOV athy () -
oo,1
The derivative of ¢, with respect to x yields
_ h|3+2 Vg (x) — Vipg(x — h
|vx¢Q(x/h)| S ‘ ‘ 3+% | qu( ) h xq)q( )|
|1Pq(x)_¢’q(x_h)| 2 |h]

_1,3+%
< VY i VPl
Combining (3.13) and (3.16), we obtain

(3.20) IV () | oo sy S VOV (#) 29,
Plugging (3.20) into (3.19) we find

(2 91) N7 (. I . < CV(D17(4) 095
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This achieves the proof of the desired estimate. [

4. Proof of Theorem 4.1

The aim of this section is to prove our main theorem. It will be done in several steps. In
the first step we establish some significant a priori estimates. In the second one we prove
the uniqueness part and the construction of the solution is described in the third step.
the last step is devoted to the continuity-in-time of the solution.

4.1. a Priori Estimates. The a priori estimates will be described in several
propositions. We start with the following one,

PROPOSITION 4.10. Let a €]1,2], (p, ) € [1,00[x] 27, 00| and define p = max{p,r}. If

w® € L® N LP and 6° € L then any smooth solution of the Boussinesq system (B, ) satisfies
(1)
()l < [16°]2;

(2)
J(®) 1w + IVl e < Coeo'

PROOF. To prove the inequality (1) it is enough to apply Lemma 4.7. Notice that we
do not have any restriction on the value of r for this estimate. To establish the second

estimate (2), we start with the vorticity equation
diw +v-Vw = 0:6.

It is clear that
lw(®)]lr= <l + VO] 1o

2
Using the classical embedding B:J{ " — Lip(IR?), one can easily obtain

(4.1) lwo(®)llee S Nl + (61l | 2.
LtBr,l

Combining now Proposition 4.9 with Bernstein inequalities, we get for € > 0
llzipee S 16%0e (14 £+ ol e + 181 92] 11
S 10 (14 £+ eoll g + 190l 105 )

. ~ 2
with p tef max{p,r}. Take € such that 1 + % < « — €, then we have L}B;’.‘;f SN L}B:/Jl”.
Thus we find,

1011, 1z S 1600 (14 £+ lwllgge + V0] 0.
t=r,1

On the other hand, the classical Calderén-Zygmund estimate ||Vv||;; = ||w||r yields
(4.2) 161, 13 S 16%er (14t + Il + el 0)-
t=rl

The ectimate of the 7?2 norm of the vorticitv can be done cimilarly o the T ectimate
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Set f(1) Y 611 , ., then combining (4.1), (4.2) and (4:3) leads to

t=r1

t
F S NN+t + el ponre) + IIGOIIU/O f(r)dz.
It follows from Gronwall’s inequality that,

C
(44) 161l , vz < Coe™,

t-rl
where Cj is a constant depending on the initial data. This gives in view of Besov
embeddings
I8l < Coe™".
From (4.1) and (4.2), we deduce
leo(£) | sz < Coe"
This completes the proof of the proposition. U

Next, we will establish the following proposition.

PROPOSITION 4.11. Under the same assumptions of Proposition 4.10 and if in addition
w® € BY | then we have for every t € R

leo(®)llgo . + I Vo(t) |1 < Coe™P .

PROOF. Applying Proposition 4.5 to the vorticity equation and using Besov

embeddings,

s S (1l + 18l ) (14 1V0]510)
(4.5) S (l®lag,, + 161, 12) (14 192l 0).
On the other hand we have |
(4.6) Vo)l < [VAo(B)lle + ) 185VO(t)]|1

qEN
S IVAv()ler + llw(®)llp |
S Nw® e+ llwlizep -
Putting together (4.4), (4.5) and (4.6) and using Gronwall’s inequality we deduce
@) I90(6) 1+ el | < Coe™PE.
Now, the proof is achieved. g

Let us now see how to propagate the initial regularities. The Lipschitz estimate on the

velocity will be very crucial.

1+2
PROPOSITION 4.12. Let p €]1,00[,0° € B, " be a divergence free vector-field of R* and

2
AN n_a+1+5 Py

¥ ey a4 a4 D T o~ A Y Yt A Y oy A
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PROOF. From Remark 6 and (4.7) we have

161, o < Coe™P.

t =1,

& 2

Now we use Besov embedding Bf o, — Bé’o o.Since 142 <2 5 then we have the
embeddings

LYBf o < LYBL; — L{Lip.
Hence, it follows that
< exp Cot.
HVQHLfLoo < Coe
To establish the second estimate of the proposition we distinguish two cases: the first

one is —tx—i—l—i—% < 1 and the second one is —zx+1+% > 1.
e Case —a+1+ % < 1. We apply Proposition 4.9 to the temperature equation,

1911 1.2 +H9|| 2 S8 i (1 1)V,
L Bp 1 t r, 1 Bp 1
It suffices now to combine this estimate with the Lipschitz bound of the velocity (4.7).
e Case —a +1+ % > 1. Applying once again Proposition 4.9 we get

L s N g (THEHIVOl ol ng)em”-

pl t pl pl pl

Hence we obtain from Proposition 4.10 and (4.7)

exp Cot
HGH 1+2 < Coet (1+ HU” a+1+%)'
pl p1
Applying Proposition 4.6 we get
C
ol ez S YO oz 101 )
pl Bp,l Lt pl
expCt
< QAo )
t 1
Thus
exp Cot
101,105 < Coe ™ @ 10l g

topl pl
Iterating this procedure we get forn € IN

exp Cpt
01, 15 < Cor™ ¥ (4101, )
p1 t=p1
To conclude it is enough to choose n such that —(n 4+ 1)a + 1+ % < 1 and then we can
apply the first case. Finally we get

exp Cot

161 1.2 < Coe
1lp

<IN
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Applying again Proposition 4.6 we get

p

ol 1z S YO g +l0l )
toon,l Bp,l Lt Bp,l

&xp Cot

< Coe
4.2. Uniqueness. We will prove a uniqueness result in the following space
Xr = (LYLP N LiLip) x (L¥L" N LiLip), r> 2.

Without loss of generality we can suppose that p € [r, oo[. Indeed, let p = max{p, r} then
2 142

from Besov embedding we have Bp,lﬁ — B, P LP. Let (0!, ', 0') and (v?, 12, 6?) be
two solutions of (B, ) belonging to the space A1 and denote
v=0v>—0, 0=0*—-0' and 7= n*— .

Then we have the equations

010+ v% Vo= —-Vr—v- Vol +0e,
0:0 +v%- VO + |D|*0 = —v- V!

The L? estimate of the velocity is given by
ol < 1%l + [ o) IV @)l + V() T + 615
From the incompressibility condition we get
Vr = VA ldiv(—ov- Vo' +0e) — VA 1div(v? - Vo).

Now due to the identity div(v? - Vo) = div(v - Vv?), one obtains

V= VA ldiv(—0v- V(o' +0%) + fey).
Using the continuity of Riesz transform on L? with p €]1, co[ we get

V7l < ol (IVo! s + [V0%) + [16]]2e-

Combining this estimate with the L? estimate of the velocity we get
t
lo(®)|[r S 119° e +/0 lo(T) | (IV0! (T) | + | VO* ()| 1) dT + 161 1
Now, we apply Proposition 4.9 with s = —1 + e and € €]0, 1] we get

HQ(t)HL}LP 5 ||9||L}B;j+e+a

CIIVP2]| 1, o f
$ T (100 g+ [0 VO Dl i)
r P
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We have used in the last inequality the embeddings L" <— B, 11+€+ B_j% valid for €
satisfying —1 + € + 2 < 0. This is possible since 7 > 2. Finally we get
ClIVe? | 1,00
lo@llr < e ([ + 6%
[ Bl (190 @)l + V0@ s + V6 1)),

Using Gronwall’s inequality we find

C|l (v*,v2%,6%)
e

e
(4.8) lo())ller S 9 (10 e+ 11610

This gives in turn

Cll@"% %)l 1y
(4.9) [ FT P ([0l + 16%2r) (14 1)
This concludes the proof of the uniqueness part.

4.3. Existence. We consider the following system

010y, + vy - Vo, + Vi, = 0,6
(Bn) :
le’Un - 0

Unji—o = S, 0°, Onji—o = S,,00.
By using the method of [19] we can prove that this system has a unique local smooth
solution (v, 6,). The global existence of this solution is governed by the quantity
| Vou|| L1 Now from the a priori estimates the Lipschitz norm can not blow up in finite
time and then the solution (v, 6, ) is globally defined. Once again from the a priori
estimates we have
lonll_ vg +10nll_ wirig + [Onllizrr + [VOnll g1 < @5(T).
T Bp 1 LTB,,

Consequently, up to an extraction the sequence (v, 0, ) converges weakly to (v, 6)

~ o123 —a+1+2
belonging to LOTOBPJ <L°°B PNLYL N LY L1p>
For (n,m) € IN? we set Up,m = Uy — Uy and 0y, = 0, — 0, then according to the
estimates (4.8) and (4.9) we get

Cot
[on,ml e + ||9n,m||LlTLﬁ < Coe® " (11510° — Sm®||1r + [|Su8° — Smb°||1r),

with 7 = max{p, r}. This proves that the sequence (v,, ;) converges strongly to (v, 0) in
L¥LP x LLLP. This allows us to pass to the limit in the system (B,) and then we get that

(v,0) is a solution of the Boussinesq system (B, ).

4.4. Continuity-in-time. Let us first sketch the proof of the continuity in time of the
velocity. Lete > 0,N € N*and T > 0, then forevery 0 <t <t < T,

— 1.2\ o S — (1. 2\



On the Global well-posedness of the Euler-Boussinesq system with fractional
84 dissipation

~ 142
Since v € LTB p1 ", then there exists N sufficiently large such that

2
Y. 2q(1+P)||AqU||L%°LP <e.
g>N

Thus we get

[a>)

P
pl

2
lo() =2l 13 5 27 llo(t) oDl +e
On the other hand from the equation of the velocity we get

t

o(t,x) —o(t,x) = / P(o-Vo)(t,x)dt + /TtP(Gez)(t',x)dt’,

T

where P denotes Leray’s projector. Since P acts continuously on L? for p €]1, co[ then

t t
lo(t) 0@l 5 [ IV lumlo@)dt + [ o) erat
T T
t
S It = lIVelligislloligr + [ 10¢) |t
T

Let p > a, then using Holder inequality, Besov embeddings and Proposition 4.9 we get

t _1
[ 1e@ldr < (=) 6l
T t=pl

S OG0 (10|00
B
pl

Choose p such that —a + 1 + % > — %, which is possible for p close to &. Then

t
[ le®)llde s VOt 0 (141060 .oz
T B

~Y

pl
Finally we obtain
1-1 1
lo(t) =o(Dller < lt=TlIVolgrelolige +eV Ot -1 P(1+tP)H90||B,M+z~

P
pl

This ensures the continuity in time of the velocity.
Let us now move to the proof of the continuity-in-time of the temperature. We will first

—a+1+42
prove that 0 € ([0, T], B p; 7). Similarly to the velocity we write since

-~ —at1+2
RS L%"BpliHr 7 that for large N
—at14+-2
188) =8| iz < X 2T 800() — Ag6(0) 1

Bya g<N

— o112\



5 Perspectives 85

From the equation of § and Bernstein inequality we find for 0 < 7 <t
t
186(8) = 86(D)lr < [ 18g(0- TO)(E)l|urdt’ +29(t = )[448
T

t / / q(th—l—g)
< Mollgo [ V0@ [mdt +27* 0 =)o)

—a+1+3

T pl

It follows that

2 t
[0) 6@ oz < 2P folligrr [ 1VOE) ot
pl

+ 2N (- ONBIL, asneg +e

T pl

—at14+-2
This proves that 0 € €(|0, T],BPEHr +”).

Let us now prove that 6 € ([0, T], L"). Denote by S(t) = e {IPI" and f = —v - V. Then
from Duhamel formulae we get

0(t,x) —0(r,x) = [S(t) = S(T)]e°(x)+ () ( [

i S(—t’)f(t’)dt’)
+ (8 =s(I( | S(=far).

To conclude we use the fact that (S(t))¢>0 is a Co-semigroup of contractions with positive

t

T

kernels combined with the estimates

t t
L)t < olses [ 190 |
T

and

T

<[5~ sl [ IS¢ 0lar).

This integral fot | f(#")||rdt’ is bounded according to (4.4) and Proposition 4.12.

1st)-s@i( [

0

S(—t) f(t’,x)dt’)

5. Perspectives

There remain many questions to explore in the Cauchy problem for the systems which
we saw but I will limit myself to the critical case « = . This case seems a difficult
question and I think that it requires a new approach similar to that introduced by
Kiselev and therein in the case of the critical quasigeostrophic equation.

For the supercritical quasigeostrophic equation one did not establish the global existence
apart from the small data yet then it is completely possible to build a family of non small
initial data and generating an infinite time of existence. To be done one can be possibly
inspired on the work of J.-Y. Chemin et I. Gallagher within the framework of the

NTAavr: e CL T vt ~LI9T T AL v vt e Lo A 1 e e A2 i L oo mrTdn i A A vt
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There is also a significant question which still remains in the case of the critical
quasigeostrophic equation and which refers to the stability of the global solutions which
are built in [1]. It is a question in particular of knowing if the flow 8° — 6(t) is
continuous from critical space ,%7’20/1 into L (R+; @80/1) , for more details we refer T.
Hmidi [16].
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CHAPTER 5

Littlewood-Paley thoeory and Besov Spaces

In this chapter, we introduce a basic tool for the second and third chapter: the
Littlewood-Paley decomposition, v = Sof + } ;1 Aqv, and the Besov spaces %, .. We
will discuss the localization in frequency (Bernstein inequalities), homogeneous
decomposition for distributions modulo the polynomials. We study how the product
and the composition acts on Besov spaces. Our main references for Besov spaces are the
books by Bergh and Lofstrom [1], by Meyer [5], and by Peetre [6], and P.-G
Lemarié-Rieusset [4], and Y. Chemin [2], and J.-Y. Chemin, B. Desjardins, I. Gallagher
and E. Grenier [3]. Another classical reference is the book by Triebel [7].

1. Localization in Frequency Space

The very basic idea of this theory consists in a localization procedure in the frequency
space. The interest of this method is that the derivatives (or more generally the Fourier
multipliers) act in a very special way on distributions the Fourier transform of which is

supported in a ball or a ring. More precisely, we have the following lemma:
1.1. Bernstein inequalities.

LEMMA 5.1 (of localization). Let C be a ring, B a ball. Then there exists a constant C > 0 such
that for 1 < a < b < oo, for any function v € L* and every q € Z, we have:

supp  C AB = sup [|0%v||;p < Ck)xk+d(%_%) 0| Le;
lac|=k

supp & C AC = C*AM||o||e < sup [|0%]|1e < CAK||9|| 0.
la|=k

PROOF. Let ¢ be a function of 2(IR¥) such that ¢ = 1 near the ball B. As
5(&) = ¢(A18)5(¢), we can write, if ¢ denotes the inverse Fourier transform of ¢,

"v = d%g % 0.
where x denotes the convolution operator, i.e.
g xo(x) = [ (@) (x—y)e)dy.
By Young’s' inequality, we get

%o, < ANV 500l Nolle, 1/c=1+1/b—1/a.
L 8
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Then using the general convexity inequality
V(A,B) € Ry x Ry, V7 €]0,1], AB < 7AY¢+(1-1/7)BY1¢.

Therefore the result follows through

10%glle < [10%gllre + [[0%g ]l 1
< A+ 2% e
< [1(1d = 2)*(()*¢) I
< c*

To prove the second assertion, let us consider a function ¢ € 2(IR%\{0}) such that ¢ = 1
near the ring C. Using the following algebraic identity

(1.1) e = ) e

|a|=k
= ||Z_:k(i5)“(—i5)“,

and stating ¢, Y g (i&)*|&|~%*P(¢), we can write, as § = ¢ that

0= ) (—i8)" &,

|a|=k
which implies that
(1.2) v=Y gu*0"v
|a|=k
and then the result. This proves the whole lemma. 4

1.2. Dyadic partition of unity. Now, let us define a dyadic partition of unity. We
shall use it along this text.

PROPOSITION 5.2. Let us define by C the ring of center 0, of small radius 3 /4 and great radius
8/3. It exists two radial functions x and ¢ the values of which are in the interval [0,1],
belonging respectively to (B(0,4/3)) and to 2(C) such that

(1.3) VEER!, x(@)+ ) ¢277) =1
q=0
(14) vZ e RN\{0}, ) ¢(27%0) =1
qeZ
(1.5) g~ =2 = supp p(277.) Nsupp p(277.) = &;
(1.6) g >1= supp x Nsupp ¢(27°7.) = Q.

IfC = B(0,2/3) + C, then C is a ring and we have
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1
1.9 R? = (271
(19) EERND), < T el <
PROOF. Let us choose a in the interval |1,4/3] let us denote by C the ring of small
radius a~! and big radius 2«. Let us choose a smooth function 6, radial with value in
0,1], supported in C with value 1 in the neighborhood of C ' The important point is the
following. For any couple of integers (g,4 ) we have

(1.10) g—q|>2=21CN21¢C=0.

Indeed, let us assume that 29C N 21 ¢ #+ @ and that g > ¢ . It turns out that
27 x 3/4 < 4 x 2911 /3 which implies g — q/ < 1. Now let us state

¢) =), 0(277%).

qeZ
Thanks to (1.10), this sum is locally finite on the space R\ {0}. Thus the function S is
smooth on this space. As « is greater than 1,

| 27¢" = R\ {0}.

qeZ

As the function 6 is non negative and has value 1 near C /, it comes from the above

covering property that the above function is positive. Then let us state:

0

(1.11) 9=

Let us check that ¢ fits. It is obvious that ¢ € 2(C). The function 1 — )~ ¢(27¢) is
smooth thanks to (1.10). As the support of 6 is included in C, we have

(1.12) 2> Y e =
37 &

We get identities (1.3) and (1.5) thus stating:

(1.13) x(@) =1-) ¢(27),
90

Identity (1.6) is a obvious consequence of (1.10) and of (1.12). Now let us prove (1.7)
which will be useful in Section 5.2. It is clear that the ring C is the ring of center 0, of
small radius 1/12 and of big radius 10/3. Then it turns out that

~ [ / 1 1 /
ZQCDZ”]C#@:(ZXZQ gqugoouﬁxzquq ><§>

and (1.7) is proved.
Now let us prove (1.8). As x and ¢ have their values in [0, 1], it is clear that:

(1.14) X@+Y 27 < 1.
q>0
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with

M) = ), ¢27) IL@E= ) ¢e@27).

7=0(2),4=0 4=1(2)4=0
From this it comes that 1 < 3(x*(¢) +IT3(&) + I13(¢)). But thanks to (1.5), we get
@)= ), ¢*(277%).
4204=i(2)

The proposition is proved. O

Now let us to fix the notations that will be used in all the following of this text. We
choose two functions ) and ¢ satisfying the assertions (1.3)-(1.8).
Notations.

e h=F lpandg= 71y

e A_jv=x(D)v=F"1(x9);

e VgeEIN Ajw=¢(279D)v, Sv=Y_1<jcq-14/0;

o Vg< -2, Ajuv=0;

o Aqu(x) = gxo(x) = [gs g(y)o(x —y)dy;

o Vg €N, Ago(x) =291(279.) x v(x) = 27 [ h(27y)v(x — y)dy.
REMARK. Let us notice that the operators Ay and Sy maps continuously LF into itself uniformly
on q and p.

Now let us have a look of the case when we may write:
Id=) A, or Id=) A,
q q
This is described by the following proposition:

PROPOSITION 5.3. Let v be in . (]Rd ). Then, we have, in the sense of the convergence in the
space ' (RY),
v = lim qu.

q—>00

PROOF. Let ¢ € .7 (IR%). We have (v — S50, ¢) = (v, 9 — Sgip). Thus it is enough to
prove that in the space .7 (]Rd), we have

P = lim Sgip.

g—00
We shall use the family of semi norms .4; of . defined by
def A
M) = sup  (1+[E) 0 H(D)].
|a| <k, ZeR?
Thanks to Leibniz formula, we have

Mp=s) < sup LA+ Ia)F(11—x(@7%8)] x [0

|a| <k, EeR4

L N cPo—alBli (2B (0—97) |« 98B (&Y ) L
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This achieved the proof of the proposition. [

The following proposition tells us that the condition of convergence in.#" is somehow
weak for series, the Fourier transform of which is supported in dyadic rings.

PROPOSITION 5.4. Let (ug),eN be a sequence of bounded functions such that the Fourier
transform of u, is supported in 29C where C is a given ring. Let us assume that

Then the series (uq),eN is convergent in 7

PROOF. Let us use the relation (1.2). After rescaling it can be written as
vy =27 Y 2%g,(27.) % 9*v,.
|ac|=k

Then for any test function ¢ in .7, let us write that

(1.15) (ug,¢) = 27 Y (vg,2%1g4(27.) % 3*P)
o=k
< C2 % Y- 2iN|[9% ]| 1.
la =k

Let us choose k > N. Then ((vg, ¢))
geN
than C.4}(¢) for some integer M. Thus the formula

(v, ) def lim Z <Aq/v,4)>

— 00
T <

is a convergent series, the sum of which is less

defines a tempered distribution. O]

2. Inhomogeneous Besov Spaces

2.1. Definitions.

DEFINITION 5.5. Let s be a real number, and p and r two reals numbers greater than 1. The
Besov spaces 2y, , is the space of all tempered distributions so that

2%(|Agv]|p) < +oo.

2« v

HU”L@;J ez

The following proposition (the proof of which is straightforward and omitted) describes
the relations between homogeneous and inhomogeneous spaces.

PROPOSITION 5.6. Let s be a negative number. Then @;fw is a subset of %y, . and a constant C

(independent of s) exists so that, for any v belonging to @;/r, we have

C
[0l < —llv

pr— g (’;,r'

T ot ¢ ho 1 nocitine niher Thew GBS ia a ciiheot nf GBS hon 1 ic fnite @5 (O L' ia a ariheot
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LEMMA 5.7. If r is finite, then for any v in %, ,, we have

Lﬁg;Hqu—‘UN@;rZZQ

The proof of this proposition is an easy consequence of the definition of the norm of %}, ,
and dyadic block S,.

Let us give the first example for Besov space, the Sobolev spaces H®. We have the
following result.

THEOREM 5.8. The two spaces H* and 95 , are equal and the two norms satisfies:

1
ol < lolu < CH o4,

PROOF. As the support of the Fourier transform of A;v is included in the ring 29C, it

is clear, as g > 0, that a constant C exists such that, for any real s and any v such that ¢

2
loc”

belongs to L

1

@ ok

2| Agoll 2 < [[Agellar < CFH12% Ao 2

Using identity (1.8), we get
Sl < [P@0+ 1Py @Pdg+ T [ 97161+ 15R)10() P < ol
g>0

which proves the theorem. O

PROPOSITION 5.9. The space %2/1 is continuously embedded in LP and the space L? is
continuously embedded in % .

PROOF. The proof is trivial. The first inclusion comes from the fact that the series
(Agv)4ez is convergent in LP. The second one comes from the fact that for any p, we
have HAquU’ < CHZ)HLP. ]

2.2. Basic properties. The first point to look at is the invariance with respect to the
choice of the dyadic partition of unity chosen to define the space. Most of the properties
of the Besov spaces are based on the following lemma:

LEMMA 5.10. Let C' be a ring in R ; let s be a real number and p and r two real numbers

greater than 1. Let (v;),eN be a sequence of smooth functions such that

supp i, C 29C°  and H (2% [Jvg | e < +oo.

)qGNHW

Then we have

v=) v €%, and |[v]z, <G
geN '

(ZWSHU,]”LP)qu gr.
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PROOF. In order to prove the lemma, let us first observe that (v;),eN is a convergent

d_
series in .. Indeed using Lemma 5.1, we get that |vg]| L < C27 (=) . Proposition 5.4
implies that (v;)4en is a convergent series in .7 ". Then, let us study Ajv. AsCand C "are
two rings, an integer Ny exists so that

g —q| > Ny=21CN27C = .
Here C is the ring defined in the Proposition 5.2. Now, it is clear that
|q/ —q| >Ny = ﬁ(Aq/vq) =0
= Aq/ Uq — 0.
Now, we can write that
I8l = || 8 A,

lg—q'|<No

< C Y ol
lg—q'|<No
So, we obtain that
/ /
27°)|A ol < C, Y. 277A vl
q2-1

!
l9—9 [<No

< C Z 2qS||Z)q||Lp.

q>-1
i
lg—q |[<No

We deduce from this that
21%|Ayoller < (ck)kez * (d1)iez

with cp = 1_y, np) (k) and d) = In(! )2 |0 || e The classical property of convolution
between ¢}(Z) and ¢’ (Z) gives that

1

lollas, < (X 2% llogls)’
geN

which proves the lemma. [

The following theorem is the equivalent of Sobolev embedding:

THEOREM 5.12. Let 1 < p; < pp < ocand1 < ry <1y < co. Then for any real number s, the

s—d ( 1 L)
s g - ; PP
space B, ,, is continuously embedded in B, r, :

In order to prove this result, we again apply Lemma 5.1 which tells us that

do(L -1
1Sl m < Cliollo and Aol < 22 1A ol
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PROOF. By definition %, , is a subspace of % . Thus we have only to prove of a
constant C and an integer M exists such that for any test function ¢ in . we have:

(2.2) (v,¢) < Cllovllz;,Am(¢)-

Using the above Theorem 5.12 and the relation (1.15), we can write, if N is a large
enough integer,
(2.3) (Ao, @) = 27TNFD Y (A0, 298, (21.) % 9%9)

|a|=N+1

< 277vfl gy sup [[0%¢]|L
" a|=N+1

< C27[ol 55, (@)
Now Proposition 5.3 implies the inequality (2.2). O

THEOREM 5.14. The space %, , equipped with the norm || - || s is a Banach® space and satisfies
pr Fpr
the Fatou properties, i.. if (0n)nen is a bounded sequence of 2, ,, then an element v of %, , and

a subsequence v,,(,,) exist such that:

P

. . / . .
lim o, =vin. and |loy| g, < hﬂngU”“«@ir'

n—odo
PROOF. Let us first prove the Fatou’s property. Using Lemma 5.1, we claim that, for
any g, the sequence (A;v,),enN is bounded in LP N L. Then, using Cantor’s diagonal
process, we infer the existence of a subsequence (v,(,))nen and a sequence (7, )4z such
that, for any g € Z and any ¢ € .,
lim / Ag0p(n) (X)p(x)dx = / 9y(x)p(x)dx and |8yl < lim [|Ago, |1

n—oo

As the Fourier transform of (Aqvn)neN is supported in 27 C, the same holds for 0y - Then,

let us observe that the sequence ((2%(|Agvp| 1) q) is bounded in ¢, an element (&;)4

nelN
of £ such that (up to an omitted extraction), we have, for any sequence (d,), of non

negative real numbers different from 0 only for a finite number of index g,
nh_{r(}o quS“Aqvp(n)“Lqu = Zéqdq and  [[(&g)qller < nlg{}o ||vp(n)||@;,,'
q q

Going to the limit in the sum gives that (297 1») , belongs to ("(Z). Using Lemma 5.1
and Proposition 5.9 implies that the series (7;)4ez converges to some v in %, , such that:

[0]l;, < Cs

(zquﬂqHLﬂ)q

o

This is proves the first part of the theorem.

Now, let us check that %’;J is complete. Let us consider a Cauchy sequence (v, ),en. This
sequence is of course bounded. Thus v exists in 93’;/? such that a subsequence (v,(,))neN

converges to v in .7 Using that, for any positive ¢, an integer 7. exists such that:
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Applying the above method to the sequence (v — v, () )nenN, we infer that
Vim > ne = ||om —v||@;r < e

The theorem is proved. O

3. Paradifferential Calculus

In this section, we are going to study the way how the product acts on Besov spaces. Of
course, we shall use the dyadic decomposition constructed in the Section 5.1.2.

3.1. Bony’s decomposition. Let us consider two tempered distributions u and v, we

write:

u=) Ay and 0=} A
q I
Formally, the product can be written as:

uv = Z Aq/quv.
/
949
Now, let us introduce Bony’s decomposition:

DEFINITION 5.15. We shall designate paraproduct by u and shall denote by T, v the following
bilinear operator:

d
T, v of Y Spqulgo.
q

We shall designate remainder of u and v and shall denote by R(u, v) the following bilinear
operator:
R(u,v) = ) Aqqu/v.
l9—q'|<1
Just by looking at the definition, it is clear that

(3.1) uv = T,v + Tyu + R(u,v).

The way how paraproduct and remainder act on Besov spaces is described by the
following theorem:

LEMMA 5.16. For any s, a constant C exists such that, for any (p,r) € [1, 0]?, we have

V(u,v) € L x A,

o | Tuvllsy, < Cllollzs 2],

PROOF. From the assertion (1.7), the Fourier transform of S, 1uA,v is supported in
29C. Then, let us write that:

1Sg-18q0|r < [Jul[= || Agol[r-

Theorem 5.12 implies the result. [

) U P S | I T (R S S LA A IR 5 IR ( (PR JRE AL A (SR ARG A ) R
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LEMMA 5.17. Let B be a ball of RY, s a positive real number and (p,r) € [1,00]. Let (v9)geN
be a sequence of smooth functions such that

supp il; C 2B and H(qulquLP)quHﬂ < o0,
Then we have:

U= 2 Vg € '%;57,1’ and HUH@;V < GCs (ZqSqu”U’)qu .
geN

PROOF. We have for any g,
[ogllr < C27%.

As s is positive, (v;)5eN is a convergent series in L¥. We then study Aq/ vg. As C is aring
(defined in the proposition 5.2) and B is a ball, an integer N exists so that

4 >q+N =2CN2B=0.
So we obviously check
g >q+N = F(Byvg) =0
= Aq/vq = 0.
Now, we write that

Iy = | ¥ sy,

< L I8l
q2q9 —Ni

Y. logller

9>q' —N;

IN

Therefore we deduce

! !
27518 vl < YD 27518 vyl

924"~ N,
< Y z(q'fq)szqs”vqum
924 —Ny
= () * (dy).
with
Ck = 1[—N1,+oo[(k)2_ksf d; = 25||vy | »
The proof of the lemma is achieved. U

LEMMA 5.18. For any (s1,sp) such that sy + sp > 0 a constant C exists such that, any
(p1,p2,11,72) € [1,00]4 such that

Loyl 1, lagl

! + 1o
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PROOF. By definition of the remainder operator, we have:

1

R(u,v) =) R, with R, = Y A, julo.
q I=-1

By definition of A, the support of the Fourier transform of R, is included in 27B(0, 24).

Moreover, Holder inequalities implies that
1
20 Ryl < Y5 18g-gutll o [ Bg0llnra-
I=-1

Thus 249(s1+52) |Rq||r appears to be a sum of three series which are the product of a /"
series by a ¢2 series. Thus the lemma is proved. O]

Now, we are going to deduce the following corollary:

COROLLARY 5.19. For any positive s, the space L™ N %, , is an algebra. More precilesely, there
exists constant C such that

g5, < Cllullml0lla, + 1l o).

The proof is nothing but the use of Bony’s decomposition and the application of Lemmas
5.16 and 5.18.

3.2. Action of smooth functions. In this paragraph we shall study the action of
smooth functions on the space &), .. More precisely, if f is a smooth function vanishing

at 0, and v a function of #*

b, does f o v belongs to 4}, ,? The answer is given by the

following theorem:

THEOREM 5.20. Let f be a smooth function and s a positive real number and (p,r) € [1,00)2. If
v belongs to #,,, N L™, then f o v belongs to %y, , and we have:

If evllaz, < C(s, £, lIolle) 0],

Before proving this theorem, let us notice thatifs > d/porifs = d/p and r = 1, then the
space %, , is included into L. Thus in those cases, the space %, , is stable under the

action of f by composition. This is in particular the case for the Sobolev space H* with
s>d/2.

PROOF. We shall use the argument of the so called "telescopic series". As the
sequence (5;40),eN converges to v in LV and f(0) = 0, then we have:

. def
(3.2) flo)=Yf; with f3'= f(S4110) — f(S50).
q
Taylor formula at order 1 yields

(33) fo=mgAgo with m, 2 / £ (Sqv+ tA0)dt.

At this point of the proof, let us point out that there is no hope for the Fourier transform
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LEMMA 5.21. Let s be a positive real number and (p,r) € [1, +00]2. A constant Cs exists such
that if (v4) e is a sequence of smooth functions which satisfies:
( sup 27(s~Ia]) ||a“vq||m) er.
la|<[s]+1 1

Then we have:

v= Y v, €%, and ||v]z, <C ( sup 2q(s4a|>”aqu\|m>
geN ’ || <[s]+1

qHzr'

PROOF. As s is positive, the series (u4),ecN is convergent in LP. Let us denote its sum
by v and let us write that

AqU = Z Aqvq/ —+ Z Aqvq/.

q'<q q'>q
Using that HAqvq/ Iy < ||vq/ |Lr , we get that
gs gs
(3.4) 2 Z Aoy, < 2 Z o, [l
q>q q>q
—(q' —0)sp's
S /Z 2 2 qu/ || Lp
q>q

Then the lemma 5.1 implies

||Aqvq/||Lp§C2"7([s]“) sup ||9%v
Ja|=[s]+1

nn

Then we write

27

Y Ay < Y 2 =D (EH1-9)  gyp zq’<s—|a|>||aavq,||m,
q'<q q'<q || =[s]+1

This inequality together with (3.4) implies that
2| Agol| < (axb)g

with
def —qs —q([s]+1-s)
ag = In(9)27% +1n(q)2 ,
d
by 2%|[ogls + sup 29671 3oy .
|a|=[s]+1
This proves the lemma. [l

PROOF OF THEOREM 5.20. Let us admit for a while that
(3.5) Va € N9, [|0%my|e < Cu(f, |0]|L=)29%.
Thus using Leibnitz formula and lemma 5.1, we get that

19%fllr < Y CR2TIC, (£, o]l o) 290 1D Ago | .

pu
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with [[(cs) || = 1. We apply lemma 5.21 and the theorem is proved provided we check
(3.5). In order to do it, let us recall Faa-di-Bruno’s formula:
p

ogla) =Y (ga“ka)g(’”(a).

a1+ =lal

g >1
From this formula, we find
rmy= Y / a“k (Sqo+ t840) ) FP (S0 + tA ) dt.
apttap= ||
lag|>1

Using lemma 5.1, we get that

pmlie < Q) L[ qu‘“vruanm)

ayteAap=|al
g >1

< Gl lloflis)2e
This proves (3.5) and thus the theorem. [
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RESUME. La premiere partie de cette theése est conscrée a étudier le comportement asymptotique
d’une fonctionnelle intégrale stochastique non convexe dépendant du second gradient dont
'intégrante est ceorcive, bornée, Lipschitzienne et vérifiant une condition de périodicité en loi.
Pour identifier la I'-limite, nous combinons le théoréme ergodique des processus discret
sous-addtif avec les techniques de la I'-convergence on démontre le probleme en question. La
deuxieme partie est composée de deux chapitres. Premierement, on s’intéresse a étudier
l'existence globale du systéme de Navier-Stokes lorsque les données initiales sont axisymétriques
et dans des espaces de Besov critiques. Ensuite, on étudie la limite non-visqueuse du systeme de
Navier-Stokes vers le systeme d’Euler, dont on estime le taux de convergence. Dans le deuxiéme
chapitre, on établit I’existence et 'unicté du systeme d’Euler-Boussinesq avec une dissipation
fractionnaire dans les espaces de Besov. La démonstration de ce résultat s’appuie sur le terme
commutateur venant de la commutation entre le laplacien fractionnaire et le flot régularisé, puis

l'effet régularisant de 1’équation transport-diffusion régissant 1’évolution de la température.

ABSTRACT. The first part of this thesis is devoted to study the asymptotic behavior of
nonconvex random integral functionals depending on second gradient whose integrand is
coercive, bounded, Liphschitzian and periodic in law. In order to identify the I'—limit, we
combine the ergodic theorem for discrete subadditive processes with I'— convergence techniques
we prove the problem in question. The second part is composed of two parts. Firstly, we are
interested to study the global well-posedness of incompressible Navier-Stokes equations with
initial data is an axisymmetric vector fields and lying to critical Besov spaces. Afterward, we
establish the inviscid limit of the Navier-Stokes equations toward Euler equations and we
evaluate the rate of convergence. In the forth chapter we treat the global well-posedeness of
Euler-Boussinesq system with fractional dissipation and initial data lying in critical Besov spaces.
The proof of this result is based on the commutator term coming from the commutation between
the fractional laplacian and the regularized flows, afterward the smoothing effects of the

transport-diffusion equation governing the evolution of the temperature.



