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Abstract

Our main contribution in this work concentrates on three objectives: 1) The synthe-

sis of high gain observers for a class of uniformly observable nonlinear systems with

sampled output and estimation of the high gain of the continuous–discrete time observer

that corresponds to the minimum value of the cost function by using metaheuristic

algorithms (BBO, PSO and GA). 2) Combination of PSO with Proportional-Derivative

(PD) and Proportional-Integral-Derivative (PID) to design more efficient PD and PID

controllers for robotic manipulators. Two PSO approaches were used: PSOCIW and

PSOVIW. These approaches allow optimizing the controller parameters Kp (proportional

gain), Ki (integral gain), and Kd (derivative gain) to achieve better performances. The

proposed algorithms are performed in two steps: (1) First, PD and PID parameters are

offline optimized by the PSO algorithm. (2) Second, the obtained optimal parameters

are fed in the online control loop. Stability of the proposed scheme is established using

the Lyapunov stability theorem, where we guarantee the global stability of the resulting

closed-loop system, in the sense that all signals involved are uniformly bounded. 3)

Proposition of an adaptive interval valued fuzzy controller for high performance direct

vector-controlled induction motor drive. An interval valued controller compared with a

type-1 fuzzy controller has the advantage that it can take into account the linguistic

uncertainties present in the rules of the estimated models.
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Résumé

Notre principale contribution dans ce travail se concentre sur trois objectifs: 1) La

synthèse d’observateurs à grand gain pour une classe de systèmes non linéaires

uniformément observables avec une sortie échantillonnée et l’estimation de la valeur

du grand gain de l’observateur continu-discret qui correspond à la valeur minimale

de la fonction objective en utilisant des algorithmes métaheuristiques (BBO, PSO

et GA). 2) Combinaison du PSO avec le contrôleur Proportionnel-Dérivé (PD) et

Proportionnel-Intégral-Dérivé (PID) pour concevoir des contrôleurs PD et PID plus

efficaces pour les manipulateurs robotiques. Deux approches PSO ont été utilisées:

PSOCIW et PSOVIW. Ces approches sont utilisées pour optimiser les paramètres du

contrôleur Kp (gain proportionnel), Ki (gain intégral) et Kd (gain dérivé) pour obtenir

de meilleures performances. Les algorithmes proposés sont exécutés en deux étapes:

(1) Premièrement, les paramètres PD et PID sont optimisés hors ligne par l’algorithme

PSO. (2) Deuxièmement, les paramètres optimaux obtenus sont ensuite introduits dans

la boucle de contrôle en ligne. La stabilité du schéma proposé est établie en utilisant le

théorème de stabilité de Lyapunov, où nous garantissons la stabilité globale du système

en boucle fermée, dans le sens où tous les signaux impliqués sont uniformément bornés.

3) Proposition d’un contrôleur flou adaptatif à valeur d’intervalle pour l’entraînement

de moteur à induction à commande vectorielle directe à hautes performances. Un

contrôleur à valeurs d’intervalle par rapport à un contrôleur flou de type-1 a l’avantage

de pouvoir prendre en compte les incertitudes linguistiques présentes dans les règles des

modèles estimés.
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GENERAL INTRODUCTION

A system is a combination of elements or parts which is considered as a single

structure. These parts are generally defined with a particular set of variables,

called the states of the system that completely determine the behavior of the system

at a specific time. A dynamical system is a system which state changes with time.

Specifically, the state of a dynamical system can be considered as an information storage

or memory of past system events. The set of states of a dynamical system must be

enough rich to completely determine the behavior of the system for any future time.

Hence, a dynamical system consists of a set of possible states in a given space, together

with a rule that determines the current state of the system in terms of past states.

A nonlinear system is a system that cannot be described by linear differential

equations with constant coefficients. It is a set of nonlinear differential or difference

equations, describing the temporal evolution of the variables constituting the system.

This definition explains the complexity and diversity of nonlinear systems and the

methods that apply to them. The modeling of nonlinear system depends on the physical

nature of the system but also on the simplifying assumptions that it is possible to make.

Metaheuristic algorithms are computational intelligent models that have a wide

range of applications in different fields of applied mathematics, engineering, and other

sciences. A metaheuristic is a natural-inspired algorithm that contains a set of methods

especially used for sophisticated solving optimization problems such as performance

amelioration.

Metaheuristic algorithms like Genetic Algorithms (GAs), Particle Swarm Opti-

mization (PSO), and Biogeography-Based Optimization (BBO) are used for solving

difficult optimization problems. The best solution is obtained throughout some parallel

calculations on biological, animal or biogeographical populations.

A genetic algorithm is the most popular technique in evolutionary computation
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research and a heuristic method based on “Survival of the fittest”. GAs are a sub-

class of Evolutionary Algorithms (EAs) [1], they are inspired by natural selection and

evolutionary genetics. GA was discovered as a useful tool for search and optimization

problems.

Particle swarm optimization is one of the metaheuristic algorithms and a population-

based stochastic optimization technique proposed in 1995 [2]. The aim of PSO is to

search for the optimal solution in the search space. Its main idea is based on swarm

intelligence. It uses two simple equations to explain the social attitude between a group

of animals (fish, birds, etc.) [3, 4, 5, 6].

Biogeography based optimization is a biogeographical metaheuristic algorithm

proposed in 2008 [7]. BBO is a new population based evolutionary algorithm and is

based on an old theory of island biogeography that describes how biological species are

distributed geographically. This method was inspired by the biogeographical concept of

speciation or the evolution of new species, migration of species between islands and

the extinction of species. An important study was performed in [8] where the authors

provide a comparative study of these metaheuristic algorithms with all details of their

overheads and complexities.

System states are very crucial in automatic control and their knowledge is essential

for the implementation of control laws (state feedback or output feedback) and delivering

relevant information on the state operation of the process. Usually, states are measured

by sensors placed on the system. However, the system cost, volume and weight are

augmented; also, the reliability of the whole system decreases with hard surroundings

circumstances. Moreover, from a practical point of view, it is often very difficult to

have access to all states in the cases when it is not always possible to reach them.

Therefore, the necessity to use a supplementary dynamic system, called observer, which

is responsible for estimating the state of the system is essential. Observers are excellent

alternatives to physical sensors. Observer synthesis uses the relative data system, i.e.,

its dynamic model, its inputs and its measured outputs.

First articles dealing with the synthesis of observers for linear systems were published

in the early 1960s by Kalman [9] and later by Luenberger [10], while a design of nonlinear

observers began in the 1970s. These last years, designs of state observers have strongly

mobilized the scientific community [11, 12, 13, 14]. An observer is a dynamic system

2



GENERAL INTRODUCTION

either in continuous or discrete time that calculates the current states of a system from

previous information considering both inputs and outputs of the system.

Among the most important observers that we can find in the literature is the high

gain observer which has some advantages such as: (1) Design simplicity (2) Global or

semi-global stability for large class of systems which means that their use can provide

stability for any arbitrarily chosen initial conditions (3) Relatively fast (4) Robustness

to modeling uncertainties and external disturbances. On the other side, there are some

drawbacks of the high gain observers as their sensitivity to measurement noise and

they suffer from the peaking phenomenon due to the high gain which produces an

initial sharp spike in the response of the state estimates. This phenomenon can cause

instability for some types of systems. For more details an interesting survey concerning

high gain observers in feedback control can be found in [15].

The first contribution presented in this thesis is the application the above mentioned

metaheuristic algorithms to adjust the high gain parameters of the continuous–discrete

time observer in order to find the optimal estimation states. The framework of the

proposed method is constituted of two steps. First, we present an optimized high gain

structure which works in an offline manner which allows finding the optimal values of

the high gain parameter. Second, obtained high gain value from step one is injected

into the feedback linearization control loop running online for state estimation. The

efficiency of optimization methods is investigated by presenting a short comparative

study between BBO, PSO and GAs.

For decades, PD and PID controllers are the most widely used technique for

controlling industrial processes. In this work, we introduce a new alternative to tune PD

and PID parameters based on PSO optimization algorithm by optimizing the objective

function defined by Mean Absolute Error (MAE). Minimizing the MAE is usually

considered as a good performance index designing, and its optimization will adjust PD

and PID parameters Kp, Ki and Kd. Note that optimization process is constrained in

order to guarantee the stability of the system by using Lyapunov stability method. In

this investigation we propose an alternative for the adaptation and optimization of Kp,

Ki and Kd. For this propose we suggest to combine PSO with PID and PD in order to

improve their performance.

The second contribution given in this dissertation concerns the optimization of PD
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and PID parameters using PSO algorithm. Inertia weight is a crucial parameter of the

PSO algorithm which allows controlling its convergence. Two different inertia weights

are considered in this paper: Constant Inertia Weight (CIW), and Variable Inertia

Weight (VIW) which give us two strategies PSOCIW and PSOVIW. The aim of this

investigation is to apply these two strategies for the optimization of PID (PD) free

parameters to control a robotic system.

In the past decade, fuzzy logic control (FLC) strategy has been the focus of many

studies and research for the control of nonlinear systems [16, 17, 18, 19]. One of the

advantages of the fuzzy based control is that linguistic information can be directly

incorporated into the controller without need an accurate mathematical model of the

plant. Though, in presence of parameters variation of the plant, recourse to adaptive

control is in most cases unavoidable. Adaptive fuzzy concept combines the robustness of

fuzzy logic systems and the adaptation capabilities of adaptive control. Adaptive fuzzy

controllers (AFC) provided an attracting approach to obtain the fuzzy parameters of a

FLC by using a tuning algorithm. Model reference adaptive fuzzy control (MRAFC)

technique has been applied usefully to control induction motor drives [20, 21, 22].

Type-2 fuzzy logic is an extension of type-1 fuzzy logic; it was introduced by

Jerry M. Mendel [23] as an efficient tool which can outperform type-1 fuzzy logic in

many situations, especially when uncertainties are present. Type-2 fuzzy logic was

applied in many engineering areas, and the first application in adaptive control was

proposed in [24, 25] where the authors gave how a type-2 fuzzy system can be used

as a control system. Two approaches may be considered to reduce the computational

burden while preserving the performance and the advantages of a type-2 fuzzy system:

1) Using a faster type-reduction method. Several algorithms are being developed for

this purpose, including the modified enhanced Karnik-Mendel (MEKM) method [26],

enhanced Karnik-Mendel (EKM) method, the enhanced iterative algorithm with stop

condition (EIASC) method and many other methods reported in [27]. 2) Using a simple

architecture with a reduced number of membership functions and rules.

The third contribution to this work is the development of a new indirect adaptive

type-2 fuzzy controller (IAFC) for induction motors based on MEKM algorithm. The

proposed scheme is based on the use of two controllers, the first one determines the

feedback control by using type-2 fuzzy logic systems, and the second one generates
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the supervisory control (SC) action to stabilize the whole system when it tend to be

unstable.

This thesis is composed of six chapters organized as follows:

The first chapter presents the general notions, stability and the dynamic models

of nonlinear systems (the robot manipulator and the inverted pendulum-cart system).

In the second chapter we present observers design precisely the continuous-time

high gain and the continuous discrete-time high gain observers of a class of MIMO

nonlinear systems.

In the third chapter we present metaheuristic algorithms and the theory of

optimization methods used in the present study.

The fourth chapter of this thesis presents the results of observer’s high gain

optimization by metaheuristic algorithms.

The fifth chapter presents the results of estimating the controller parameters Kp,

Ki and Kd by metaheuristic algorithms to achieve better performances.

In the sixth chapter we present an indirect adaptive control based on type-2 fuzzy

controller, with supervisory control to stabilize the nonlinear dynamical system.

Finally, we conclude this dissertation with some conclusions.
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1.1 Introduction

A nonlinear system is a system that is not linear. it is a system which output is not

directly proportional to its input due to the interconnections and interdependencies

within the system. Nonlinear systems theory is a modeling framework for describing

nonlinear phenomena. There is not a general theory for these systems, but several

methods were adapted to certain classes of nonlinear systems. Dynamic models are

essential for understanding the nonlinear system dynamics in open-loop or for closed-

loop control. These models are either derived empirically from data or from more
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fundamental relationships that rely on knowledge of the process.

Stability theory is crucial in dynamics and control systems. The stability of a

dynamical system means that the system outputs and its internal signals are bounded

within admissible limits or, the system outputs tend to an equilibrium state. A number

of more accurate stability concepts, such as asymptotic stability, exponential stability,

and global asymptotic stability.

Dynamic model determines the mathematical model which relates the input variables

to the output variables. In general, such mathematical representation of the system

is realized by ordinary differential equations. The system’s mathematical model is

obtained typically via one of the two following techniques.

• Analytical this procedure is based on physical laws of the system’s motion. This

methodology has the advantage of yielding a mathematical model as precise as is

wanted.

• Experimental this procedure requires a certain amount of experimental data

collected from the system itself. Typically one examines the system’s behavior

under specific input signals. The model so obtained is in general more imprecise

than the analytic model since it largely depends on the inputs and the operating

point. However, in many cases it has the advantage of being much easier and

quicker to obtain.

This chapter presents the general concepts of nonlinear systems, stability theory and

finally dynamic models of a manipulator robot and an inverted pendulum-cart system).

10
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1.2 General notions of nonlinear systems

1.2.1 Nonlinear systems

Nonlinear systems can be modeled by a finite number of first-order ordinary differ-

ential equations [1]:
ẋ1 = f1 (t, x1, . . . , xn, u1, . . . , up)

ẋ2 = f2 (t, x1, . . . , xn, u1, . . . , up)
...

ẋn = fn (t, x1, . . . , xn, u1, . . . , up)

y = h (t, x1, . . . , xn, u1, . . . , up)

(1.1)

where

ẋi denotes the derivative of xi, with respect to the time variable t;

u1, . . . , up are specified input variables;

x1, . . . , xn the state variables;

y is the system output.

The n first-order differential equations (1.1) can be expressed as one n-dimensional

first-order vector differential equation called the state equation:

ẋ = f (x, t, u)

y = h (t, x, u)
(1.2)

where

x =


x1
...

xn

, u =


u1
...

up

, f (t, x, u) =


f1 (t, x, u)
...

fn (t, x, u)


Equations (1.2) is called the state model.

Special Cases:

• An important special case of equation (1.2) is when the input u is identically zero.

In this case, the equation takes the form

ẋ = f (x, t, 0) = f (x, t) (1.3)

This equation is referred to as the unforced state equation.

11
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• The second special case is obtaind when f(x, t) is not a function of time. In this

case, the equation is as follows:

ẋ = f (x) (1.4)

in this case the system is said to be autonomous. Autonomous systems are

invariant to shifts in the time origin in the sense that changing the time variable

from t to τ = t − α does not change the right-hand side of the state equation.

Otherwise, the system is called nonautonomous.

1.2.2 Equilibrium points of a nonlinear system

The equilibrium point is a crucial principle when dealing with the state equation.

Definition 1.2.2.1. point x = xe in the state space is said to be an equilibrium point

of the autonomous system

ẋ = f (x)

if it has the property that whenever the state of the system starts at xe, it remains at xe

for all future time.

According to this definition, the equilibrium points of (1.4) are the real roots of the

equation f (xe) = 0.

1.3 Stability of a nonlinear system

The analysis of the behavior of nonlinear systems, especially in the vicinity of the

equilibrium points, is the study of their stability [2].

Definition 1.3.0.1. If the system is initially "slightly" disturbed from its point of

equilibrium the system remains "close" to this point of equilibrium.

In the sense of studying local or global stability, there are two methods, namely:

• Phase plane

• Lyapunov stability

12
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Figure 1.1: Illustration of stability and instability.

1.3.1 Phase plane

Phase plane analysis is a graphical method for studying second-order systems. The

fundamental concept of the method is to generate motion trajectories corresponding to

different initial conditions, and then look at the qualitative features of the trajectories.

The phase plane method is described by

ẋ1 = f1 (x1, x2) (1.5)

ẋ2 = f2 (x1, x2) (1.6)

where

x1 and x2 are the states of the system;

f1, and f2 are nonlinear functions of the states.

Due to initial conditions x(0) = x0, Equations (1.5 and 1.6) define a solution x(t).

With time t ∈ [0, ∞), the solution x(t) can be represented geometrically as a curve in

the phase plane. Such a curve is called a phase plane trajectory. A family of phase

plane trajectories corresponding to different initial conditions is called a phase portrait

of a system.

1.3.2 Lyapunov stability

System stability is distinguished by analyzing the response of a dynamical system

to small disturbances in the system states. The most full contribution to the stability

analysis of nonlinear dynamical systems was introduced in the late nineteenth century

by the Russian mathematician A.M . Lyapunov in his work entitled The General

Problem of the Stability of Motion [3, 4].

13
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Definition 1.3.2.1. A system is stable in the Lyapunov sense, if ∀ε ≻ 0, ∃δ ≻ 0 such

as ∥x0∥ ≺ δ ⇒ ∥x (t)∥ ≺ ε.

This definition means that, regardless of the requirement ball of size ε, it is always

possible to choose a certain sub-ball of size δ such that, for all the initial conditions

included in this sub-ball, the resulting trajectories will be, at all times, included in the

size ε requirement ball.

Definition 1.3.2.2. A system is unstable in the sense of Lyapunov when it is not stable

in the sense of definition (1.3.2.1).

Figure 1.2: Unstable system (in the left), Stable system (in the right).

1.3.3 Lyapunov stability theory

We consider the general nonlinear autonomous dynamical system [5]

ẋ (t) = f (x (t)) , x (0) = x0, t ∈ [0, τ) (1.7)

where

0 ≤ τ ≤ ∞;

x (t) ∈ D ⊆ ℜn: is the system state vector;

D is an open set with 0 ∈ D;

f : D → ℜn is continuous on D. We assume that for every initial condition x (0) ∈ D

and every τ ≻ 0, the dynamical system (1.7) possesses a unique solution x : [0, τ) → D

on the interval [0, τ).

Definition 1.3.3.1. i) The zero solution x (t) ≡ 0 to (1.7) is Lyapunov stable if,

for all ε ≻ 0, there exists δ = δ (ε) ≻ 0 such that if ∥x (0)∥ ≺ δ, then ∥x (0)∥ ≺ ε,

t ≥ 0 (see Figure 1.3).
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ii) The zero solution x (t) ≡ 0 to (1.7) is locally asymptotically stable if it is Lyapunov

stable and there exists δ ≻ 0 such that if ∥x (0)∥ ≺ δ, then lim
t→∞

x (t) = 0 (see

Figure 1.4).

iii) The zero solution x (t) ≡ 0 to (1.7) is globally asymptotically stable if it is Lyapunov

stable and for all x (0) ∈ ℜn, lim
t→∞

x (t) = 0.

iv) Finally, the zero solution x (t) ≡ 0 to (1.7) is unstable if it is not Lyapunov stable.

Figure 1.3: Lyapunov stability. Figure 1.4: Asymptotic stability.

Figure 1.5 shows the asymptotic stability, Lyapunov stability, and instability notions

of an equilibrium point. Clearly, exponential stability implies asymptotic stability and

asymptotic stability implies Lyapunov stability.

Figure 1.5: Asymptotic stability, Lyapunov stability, and unstability of an equilibrium
point.
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Theorem 1: Lyapunov’s theorem

Consider the nonlinear dynamical system (1.7) and assume that there exists a

continuously differentiable function V : D → ℜ such that

V (0) = 0 (1.8)

V (x) ≻ 0, x ∈ D, x ̸= 0 (1.9)

V ′ (x) f (x) ≤ 0, x ∈ D (1.10)

Then the zero solution x (t) ≡ 0 of (1.7) is Lyapunov stable.

If, in addition,

V ′ (x) f (x) ≺ 0, x ∈ D, x ̸= 0 (1.11)

Then the zero solution x (t) ≡ 0 to (1.7) is asymptotically stable.

Finally, if there exist scalars α, β, ε ≻ 0, and p ≥ 1, such that V : D → ℜ satisfies

α∥x∥p ≤ V (x) ≤ β∥x∥p, x ∈ D (1.12)

V ′ (x) f (x) ≤ −εV (x) , x ∈ D (1.13)

Then the zero solution x (t) ≡ 0 of (1.7) is exponentially stable.

1.4 Dynamic models of robotic systems

The dynamic model of robot manipulators is typically derived in the analytic form,

that is, using the laws of physics. Due to the mechanical nature of robot manipulators,

the laws of physics involved are basically the laws of mechanics.

Robot manipulators are articulated mechanical systems composed of links connected

by joints as illustrated in Figure 1.6. The joints are mainly of two types: revolute and

prismatic [6].

On the other hand, from a dynamical systems viewpoint, an n DOF system may be

considered as a multivariable nonlinear system. The term "multivariable" denotes the

fact that the system has multiple (e.g. n) inputs (the forces and torques τ applied to

the joints by the electromechanical, hydraulic or pneumatic actuators) and, multiple

(2n) state variables typically associated to the n positions q, and n joint velocities q̇. In
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Figure 1.6: Diagram of an n DOF robot manipulator.

Figure 1.7 we depict the corresponding block-diagram assuming that the state variables

also correspond to the outputs.

Figure 1.7: The input–output diagram of a robot manipulator.

1.4.1 Lagrange’s equations of motion

One of the most common procedures followed in the computation of the dynamic

model for robot manipulators, in closed form (i.e. not numerical), is the method which

relies on the so-called Lagrange′s equations of motion which was first reported in

1788.

The use of Lagrange’s equations requires the notion of two important concepts: kinetic

and potential energies.

Consider the robot manipulator with n links depicted in Figure 1.6. The total

energy E of a robot manipulator of n DOF is the sum of the kinetic and potential

energy functions, K and P respectively, i.e.

17
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E (q, q̇) = K (q, q̇) + P (q)

where q = [q1, . . . , qn]T .

The Lagrangian L (q, q̇) of a robot manipulator of n DOF is the difference between its

kinetic energy K and its potential energy P , that is,

L (q, q̇) = K (q, q̇) − P (q) (1.14)

The Lagrange equations of motion for a manipulator of n DOF, are given by

d

dt

[
∂L (q, q̇)

∂q̇

]
− ∂L (q, q̇)

∂q
= τ

or in the equivalent form by

d

dt

[
∂L (q, q̇)

∂q̇i

]
− ∂L (q, q̇)

∂qi

= τi i = 1, . . . , n (1.15)

where τi correspond to the external forces and torques (delivered by the actuators).

The use of Lagrange’s equations in the derivation of the robot dynamics can be reduced

to four main stages:

1) Computation of the kinetic energy function K (q, q̇).

2) Computation of the potential energy function P (q).

3) Computation of the Lagrangian (1.14) L (q, q̇).

4) Computation of the Development of Lagrange’s equations (1.15).

1.4.2 Dynamics of a two-link planar RR arm

We present in what follow an example of a Two-Link Planar RR Arm (2 DOF)

shown in Figure 1.8 that illustrate the process of obtaining the robot dynamics by the

use of Lagrange’s equations of motion.

To determine its dynamics, examine Figure 1.8, where we have assumed that the link

masses are concentrated at the ends of the links. The joint variable is [7]:

q =
[

θ1 θ2

]T

(1.16)

and the generalized force vector is

τ =
[

τ1 τ2

]T

(1.17)

with τ1, and τ2 torques supplied by the actuators.
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Figure 1.8: Two-link planar RR Arm.

a. Kinetic and potential energy

For link 1 the kinetic and potential energies are

K1 = 1
2m1a

2
1θ̇

2
1 (1.18)

P1 = m1ga1 sin θ1 (1.19)

For link 2 we have

x2 = a1 cos θ1 + a2 cos (θ1 + θ2) (1.20)

y2 = a1 sin θ1 + a2 sin (θ1 + θ2) (1.21)

ẋ2 = −a1θ̇1 sin θ1 − a2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2) (1.22)

ẏ2 = a1θ̇1 cos θ1 + a2
(
θ̇1 + θ̇2

)
cos (θ1 + θ2) (1.23)

so that the velocity squared is

v̇2 = ẋ2
2 + ẏ2

2

= a2
1θ̇

2
1 + a2

2

(
θ̇1 + θ̇2

)2
+ 2a1a2

(
θ̇2

1 + θ̇1θ̇2
)

cos θ2

(1.24)

Therefore, the kinetic energy for link 2 is

K2 = 1
2m2v

2
2

= 1
2m2a

2
1θ̇

2
1 + 1

2m2a
2
2

(
θ̇1 + θ̇2

)2
+ m2a1a2

(
θ̇2

1 + θ̇1θ̇2
)

cos θ2

(1.25)

The potential energy for link 2 is

P2 = m2gy2

= m2g [a1 sin θ1 + a2 sin (θ1 + θ2)]
(1.26)
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b. Lagrange’s equation

The Lagrangian for the entire arm is

L = K − P = K1 + K2 − P1 − P2

= 1
2 (m1 + m2) a2

1θ̇
2
1 + 1

2m2a
2
2

(
θ̇1 + θ̇2

)2

+m2a1a2
(
θ̇2

1 + θ̇1θ̇2
)

cos θ2

− (m1 + m2) ga1 sin θ1 − m2ga2 sin (θ1 + θ2)

(1.27)

The terms needed for (1.15) are

∂L

∂θ̇1
= (m1 + m2) a2

1θ̇1 + m2a
2
2

(
θ̇1 + θ̇2

)
+ m2a1a2

(
2θ̇1 + θ̇2

)
cos θ2

d

dt

∂L

∂θ̇1
= (m1 + m2) a2

1θ̈1 + m2a
2
2

(
θ̈1 + θ̈2

)
+ m2a1a2

(
2θ̈1 + θ̇2

)
cos θ2

−m2a1a2
(
2θ̇1θ̇2 + θ̇2

2

)
sin θ2

∂L

∂θ1
= − (m1 + m2) ga1 cos θ1 − m2ga2 cos (θ1 + θ2)

∂L

∂θ̇2
= m2a

2
2

(
θ̇1 + θ̇2

)
+ m2a1a2θ̇1 cos θ2

d

dt

∂L

∂θ2
= m2a

2
2

(
θ̈1 + θ̈2

)
+ m2a1a2θ̈1 cos θ2 − m2a1a2θ̇1θ̇2 sin θ2

∂L

∂θ2
= −m2a1a2

(
θ̇2

1 + θ̇1θ̇2
)

sin θ2 − m2ga2 cos (θ1 + θ2)

Finally, according to Lagrange’s equation, the arm dynamics are given by the two

coupled nonlinear differential equations

τ1 = [(m1 + m2) a2
1 + m2a

2
2 + 2m2a1a2 cos θ2] θ̈1

+ [m2a
2
2 + m2a1a2 cos θ2] θ̈2 − m2a1a2

(
2θ̇1θ̇2 + θ̇2

2

)
sin θ2

+ (m1 + m2) ga1 cos θ1 + m2ga2 cos (θ1 + θ2)

(1.28)

τ2 = [m2a
2
2 + m2a1a2 cos θ2] θ̈1 + m2a

2
2θ̈2 + m2a1a2θ̇

2
1 sin θ2

+m2ga2 cos (θ1 + θ2)
(1.29)
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c. Manipulator dynamics

Writing the arm dynamics in vector form yields

M (q)

 θ̈1

θ̈2

 +

 m2a1a2
(
2θ̇1θ̇2 + θ̇2

2

)
sin θ2

−m2a1a2θ̇
2
1 sin θ2


−

 (m1 + m2) ga1 cos θ1 + m2ga2 cos (θ1 + θ2)

m2ga2 cos (θ1 + θ2)


=

 τ1

τ2


(1.30)

where

M (q) =

 m11 m12

m21 m22

 (1.31)

with
m11 = (m1 + m2) a2

1 + m2a
2
2 + 2m2a1a2 cos θ2

m12 = m21 = m2a
2
2 + m2a1a2 cos θ2

m22 = m2a
2
2

These manipulator dynamics are in the standard form

M (q) q̈ + C (q, q̇) + G (q) = τ (1.32)

with M (q) the inertia matrix, C (q, q̇) the Coriolis/centripetal vector, and G (q)

the gravity vector.

d. State space modeling

A state space formulation of the system (see Figure 1.8) can be obtained by

choosing a vector state

X =



x1

x2

x3

x4


=



θ1

θ̇1

θ2

θ̇2


⇒ Ẋ =



ẋ1

ẋ2

ẋ3

ẋ4


=



x2

ẍ1

x4

ẍ3
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where

 ẍ1

ẍ3

 = M−1



 −m2a1a2 (2x2x4 + x2
4) sin x3

m2a1a2x
2
2 sin x3


+

 (m1 + m2) ga1 cos x1 + m2ga2 cos (x1 + x3)

m2ga2 cos (x1 + x3)




+M−1

 τ1

τ2


(1.33)

with
m11 = (m1 + m2) a2

1 + m2a
2
2 + 2m2a1a2 cos x3

m12 = m21 = m2a
2
2 + m2a1a2 cos x3

m22 = m2a
2
2

Simulations of positions tracking, speeds, errors and phases plane of the first and the

second joint by the feedback linearization method are shown in Figure 1.9, Figure 1.10,

Figure 1.11 and Figure 1.12.

Figure 1.9: Positions tracking by feedback linearization.
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Figure 1.10: Speeds by feedback linearization.

Figure 1.11: Errors by feedback linearization.
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Figure 1.12: Phases plane by feedback linearization of the first and the second joint.

1.4.3 Dynamic model of the inverted pendulum-cart systems

Often inverted pendulums (1 DOF) are considered in combination with moving

carts. The system of a single pendulum installed on a cart is drawn in Figure 1.13.

Figure 1.13: An inverted pendulum-cart system.

The dynamical model of the cart and the pendulum is often obtained by applying

force analysis using free body diagrams and Newton’s second law F = ma or the
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Lagrangian approach.

It is assumed that the pendulum rod is mass-less, and the hinge is frictionless. In such

assumption, the whole pendulum mass is concentrated in the centre of gravity (COG)

located at the center of the pendulum ball. For this case, the moment of inertia of the

pendulum about its center of gravity is small (we assume I = 0). The cart mass and

the ball point mass at the upper end of the inverted pendulum are denoted as M and

m, respectively. There is an externally x-directed force on the cart, u(t), and a gravity

force acts on the point mass at all times. The coordinate system considered is shown in

Figure 1.10, where x(t) represents the cart position, and θ(t) is the tilt angle referenced

to the vertically upward direction [8]. ẋ and θ̇ represent velocity of the cart along the

horizontal axis and angular velocity of the rod around the rod-cart connection point,

respectively. Here (see 1.15),

τ1 = u, τ2 = 0 (1.34)

The total kinetic energy of the pendulum–cart system can be written as

K = 1
2Mẋ2 + 1

2m
[

d
dt

(x + l sin θ)
]2

+ 1
2m
[

d
dt

(l cos θ)
]2

= 1
2Mẋ2 + 1

2m
(
ẋ + lθ̇ cos θ

)2
+ 1

2m
(
−lθ̇ sin θ

)2

= 1
2 (M + m) ẋ2 + mlẋθ̇ cos θ + 1

2ml2θ̇
2

(1.35)

The total potential energy of the system, using the bottom of the pendulum rest position

as the vertical reference point, can be written as

P = mgl cos θ (1.36)

Therefore, the Lagrangian equation is given by

L = 1
2 (M + m) ẋ2 + mlẋθ̇ cos θ + 1

2ml2θ̇2 − mgl cos θ (1.37)

Substitute (1.37) into (1.15), we obtain [9]

(M + m) ẍ + mlθ̈ cos θ − mlθ̇
2 sin θ = u

mẍ cos θ + mlθ̈ − mg sin θ = 0
(1.38)

The system model can be represented as follows

ẍ = mlθ̇
2 sin θ − mg sin θ cos θ + u

l (M + m − mcos2θ)

θ̈ = −mlθ̇
2 sin θ cos θ + Mg sin θ + mg sin θ − u cos θ

l (M + m − mcos2θ)

(1.39)
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• State space equations

Consider the state variables: x1 = θ and x2 = θ̇

The state space equations for the inverted pendulum system can be written as

ẋ1 = x2

ẋ2 = −mlx2
2 cos x1 sin x1 + Mg sin x1 + mg sin x1

l (M + m − mcos2θ) +
− cos x1

l (M + m − mcos2θ)u

y = x1

(1.40)

Simulations of the tracking position, speed, error and phase plane by feedback

linearization method are shown in Figure 1.14, Figure 1.15, Figure 1.16 and Figure 1.17.

Figure 1.14: Tracking position by feedback linearization.

1.4.4 Three-phase induction motor

The three-phase induction motor (IM) was invented by Mikhail Dolivo-Dobrovolsky

in 1889 [10]. Later, the squirrel-cage rotor was introduced by the same person. Induction

motors have higher power densities compared to DC motors, and They are mechanically

more robust which makes them the perfect motor in many applications.
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The three-phase induction motor is an electromechanical system allowing the con-

version of mechanical energy into electrical energy (generator mode) and the conversion

of electrical energy into mechanical energy (motor mode). It consists of a stationary

part, the stator, and a rotating part, the rotor. A stator with a three-phase distributed

stator winding is shown in Figure 1.18.

Figure 1.15: Speed by feedback linearization.

Figure 1.16: Error by feedback linearization.
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Figure 1.17: Phase plane.

Figure 1.18: Illustration of the stator of an induction motor.

1.4.4.1 Operating principle

What allows the rotor to turn is the principle of rotating magnetic fields produced

by alternating voltages. Three windings are arranged in the stator at 120◦ to each

other, once powered three independent magnetic fields are created. The magnetic field

rotating at a speed of rotation which is called speed of synchronism:

Ωs = ωs

p
= 60fs

p
(tr/ min) (1.41)

where

fs : three-phase mains voltage frequency [Hz];
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p : the number of pole pairs.

The rotor turns in the same direction as the rotating field, its speed of rotation is

Figure 1.19: Diagram illustrating the operating principle of a three-phase induction
motor.

slightly lower than that of the rotating field (Ω ≺ Ωs) [11].

Indeed, there is therefore always a difference in rotational speed between the stator and

the rotor. This difference is called the slip (g) of the rotational speed of the rotor (Ω)

compared to that of the rotating field (Ωs) which characterizes asynchronous operation

and has no unit:

g = Ωs − Ω
Ωs

(1.42)

with: Ω = ω
p
;

ω: rotor pulsation;

ωs: stator pulsation;

Ω: angular rotational speed of the rotor;

Ωs: angular speed of rotation of the rotating stator field.

1.4.4.2 Dynamic model

The dynamic modelling sets all the differential voltage, currents and flux linkages

between the stationary stator as well as the moving rotor.

whether a three-phase induction motor with the rotor and the stator represented

schematically by Figure 1.20 and whose phases are respectively marked a, b, c and A,

B, C. the electrical angle θ, variable as a function of time, defines the instantaneous
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relave position between the magnetic axes of phases a and A chosen as deference axes

[12].

Figure 1.20: Schematic representation of a three-phase induction motor.

The equations of the machine are written as follows:

• Electrical equations

By application of Faraday’s law to each winding we have:

V = RI + dϕ

dt
(1.43)

for all the phases of the machine represented by Figure 1.20, we deduce that:

For the stator:


VAs

VBs

VCs

 =


Rs 0 0

0 Rs 0

0 0 Rs




IAs

IBs

ICs

+
(

d

dt

)
ϕAs

ϕBs

ϕCs

 (1.44)

For the rotor:


Var

Vbr

Vcr

 =


Rr 0 0

0 Rr 0

0 0 Rr




Iar

Ibr

Icr

+
(

d

dt

)
ϕar

ϕbr

ϕcr

 =


0

0

0

 (1.45)

30



CHAPTER 1. STABILITY AND DYNAMICS OF ROBOTIC SYSTEMS

with

V , I, and ϕ: are voltage, current and flux respectively;

Rs and Rr: are the stator resistance and the rotor resistance, respectively.

• Flux equations

The totalized fluxes coupled with the stator and rotor phases are expressed in

matrix form as follows:

[ϕABCs] = [Ls] [IABCs] + [Msr] [Iabcr] (1.46)

[ϕabcr] = [Lr] [Iabcr] + [Mrs] [IABCs] (1.47)

where

[Ls] =


ls ms ms

ms ls ms

ms ms ls

 , [Lr] =


lr mr mr

mr lr mr

mr mr lr

 (1.48)

Due to the symmetry of the machine, we have:

[Msr] = [Mrs]T = M0


cos θ cos

(
θ + 2π

3

)
cos

(
θ − 2π

3

)
cos

(
θ − 2π

3

)
cos θ cos

(
θ + 2π

3

)
cos

(
θ + 2π

3

)
cos

(
θ − 2π

3

)
cos θ

 (1.49)

with

ls, (lr): stator self inductance (rotor);

ms, (mr): mutual inductance between two stator windings (rotor);

M0: maximum mutual inductance between a stator winding and a rotor winding.

Finally we get:

[VABCs] = [Rs] [IABCs] + d

dt
([Ls] [IABCs] + [Msr] [Iabcr]) (1.50)

[Vabcr] = [Rr] [Iabcr] + d

dt
([Lr] [Iabcr] + [Mrs] [IABCs]) (1.51)

• Mechanical equations

By applying the fundamental principle of dynamics we obtain:

J
dΩ
dt

= Cem − fvΩ − Cr (1.52)
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where

Cem: electromagnetic torque;

J dΩ
dt

: inertia torque of the rotating masses referred to the diameter of the rotor;

fvΩ: Viscous friction torque;

Cr: resistant torque [N.m];

J : total motor load inertia [Kg.m2];

ω: mechanical speed of rotation ω = ω
p

[rad/s];

p: number of pole pairs of the motor;

fv: viscous friction coefficient [N.m/rad/s].

1.4.4.3 Machine model in axis system (d, q)

The set of previous equations (1.50), (1.51), and (1.52) reveal difficulties for analytical

resolution because the trigonometric terms of the matrix of mutual inductances [Msr]

vary according to the position θ. Solving this system of equations therefore comes up

against insurmountable difficulties. This leads to the use of Park’s transformation,

which will make these terms independent of position and obtain a system of equations

with constant coefficients which will facilitate its resolution [13].

• Park Transform

The Park transform is a mathematical tool used to achieve a change of reference

in a two-phase or three-phase axis system. It is generally used to go from a fixed

frame linked to the stator of an electric machine to a rotating frame linked to its

rotor or to the magnetic field (see Figure 1.21). A matrix P (θobs) called Park,

ensures this passage:  Xd

Xq

 = P (θobs)


Xa

Xb

Xc

 (1.53)

with

P (θobs) =
√

2
3

 cos (θobs) cos
(
θobs − 2π

3

)
cos

(
θobs − 4π

3

)
− sin (θobs) − sin

(
θobs − 2π

3

)
− sin

(
θobs − 4π

3

)
 (1.54)
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The inverse transformation is given by:

P −1 (θobs) = P T (θobs) =
√

2
3


cos (θobs) − sin (θobs)

cos
(
θobs − 2π

3

)
− sin

(
θobs − 2π

3

)
cos

(
θobs − 4π

3

)
− sin

(
θobs − 4π

3

)

 (1.55)

Figure 1.21: Perform transformation from three-phase (ABC) to (dq) rotating reference
frame.

The angle θ corresponds to the position of the coordinate system chosen for the

transformation with:

• θobs = 0 reference linked to the stator;

• θobs = θs reference linked to the rotating field;

• θobs = θ reference linked to the rotor.

• Choice of the referential

There are different possibilities for choosing the orientation of the coordinate

system (d, q) which generally depends on the objectives of the application.

Depending on the choice of angular speed ωobs = dθobs

dt
, we obtain the following

three frames of reference:
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∗ dθobs

dt
= ωobs = 0: reference related to the stator.

∗ dθobs

dt
= ωobs = ω: reference related to the rotor.

∗ dθobs

dt
= ωobs = ωs: reference related to the rotating field.

The design of vector control by flux orientation requires the last choice. The

advantage of using this reference is to have constant quantities in steady-state, it

is then easier to regulate it.

For a reference frame related to the rotating field we have:
dθs

dt
= ωobs = ωs

dθr

dt
= ωobs − ω = ωs − ω = ωgl

(1.56)

The equations of stator and rotor voltages are written in Park’s reference frame

by: 

Vds = RsIds + dϕds

dt
− ωsϕqs

Vqs = RsIqs + dϕqs

dt
+ ωsϕds

0 = RrIdr + dϕdr

dt
− (ωs − ω) ϕqr

0 = RrIqr + dϕqr

dt
− (ωs − ω) ϕdr

(1.57)

The components of stator and rotor fluxes are expressed by:

ϕds = LsIds + LmIdr

ϕqs = LsIqs + LmIqr

ϕdr = LrIdr + LmIds

ϕqr = LrIqr + LmIqs

(1.58)

The different expressions of the electromagnetic torque are expressed by the

following equations as a function of the stator and rotor flux, and currents. The

choice of which one to use depends on the chosen state vector.

Cem = ϕdsIqs − ϕqsIds

Cem = p (ϕqrIdr − ϕdrIqr)

Cem = pLm (IqsIds − IdsIqr)

Cem = pLm

Lr
(ϕdrIqs − ϕqrIds)

(1.59)

1.4.4.4 State space representation

The induction motor can be modeled in the state space by a differential equations

system of order 4 and a mechanical equation. By replacing the expression (1.58) in the
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equation (1.57) and after a long calculation we obtain the following system of equations:

dIds

dt
= −

(
1

σTs
+ 1−σ

σTr

)
Ids + ωsIqs + 1−σ

σLmTr
ϕdr + 1−σ

σLm
pΩϕqr + 1

σLs
Vds

dIqs

dt
= −ωsIds −

(
1

σTs
+ 1−σ

σTr

)
Iqs − 1−σ

σLm
pΩϕdr + 1−σ

σLmTr
ϕqr + 1

σLs
Vds

dϕdr

dt
= Lm

Tr
Ids − 1

Tr
ϕdr + (ωs − pΩ) ϕqr

dϕqr

dt
= Lm

Tr
Iqs + (ωs − pΩ) ϕdr − 1

Tr
ϕqr

(1.60)

with

σ =
(
1 − L2

m

LsLr

)
: is the dispersion coefficient;

Ts = Ls

Rs
: stator time constant;

Tr = Lr

Rr
: rotor time constant.

The general form of the equation of state space of the system is uniform and is written

as follows:  Ẋ = AX + BU

Y = CX
(1.61)

where

X: is the state vector;

A: system state evolution matrix;

B: system control matrix;

U : control vector;

Y : output matrix;

C: output vector.

The model of the machine in the frame (d, q) linked to the rotating field for a vector of

state X = [Ids, Iqs, ϕdr, ϕqr]T and of control voltage U = [Vds, Vqs]T is then defined by

the triplet of the matrices A, B, C as follows:

A =



−
(

1
σTs

+ 1−σ
σTr

)
ωs

1−σ
σLmTr

1−σ
σLm

pΩ

−ωs −
(

1
σTs

+ 1−σ
σTr

)
− 1−σ

σLm
pΩ 1−σ

σLmTr

Lm

Tr
0 −1

Tr
(ωs − pΩ)

0 Lm

Tr
− (ωs − pΩ) −1

Tr



B =



1
σLs

0

0 1
σLs

0 0

0 0


, C =

 1 0 0 0

0 1 0 0
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The output vector is defined by:

Y = [Ids, Iqs]T

1.5 Conclusion

In this chapter, we have described the nonlinear systems and their basic concepts.

We have also studied the stability of a nonlinear system. In terms of stability, a

system nonlinear is described as stable if starting the system somewhere near its desired

operating point means that it will stay around the point ever after, that’s why we

have presented theorems related to the Lyapunov stability of the nonlinear dynamical

systems. On the other hand, the dynamics model of the robot manipulator and the

inverted pendulum-cart system have been discussed by the Lagrange equations of motion

approach based on the Lagrange formulation, where the state spaces of both systems

associated with these equations are described. To conclude, we have confirmed this by

simulating tracking position, speed, error, and phase plane. Also the modeling of the

induction motor was presented in the reference (d, q). This modeling is linked to the

rotating field. The model presented has been given in a general two-phase benchmark in

order to reduce its complexity. A so-called Park transformation was used to transform

the three-phase machine into an equivalent two-phase machine.
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2.1 Introduction

An observer or state reconstructor is a continuous or discrete-time dynamic system

that calculates the estimations of current values of a system from previous information

considering both inputs and outputs of the system. The observer is ,therefore, considered

as a software sensor and its implementation allow the use of a minimum of physical

sensor, or information redundancy, or diagnostics. In addition, it makes it possible to

estimate quantities that are difficult to access or even not measurable. During the last
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decades, observer synthesis has undergone a very rapid increase for both linear ([1, 2])

and nonlinear systems ([3, 4, 5, 6, 7, 8, 9, 10]) with several different approaches. Over

the last decades, observers have been one of the most interesting and investigated topics

in the nonlinear systems community. In the observer theory, a key role is played by the

high gain observers.

This chapter presents the objectives, principle and classification of observes and

describes the design of the continuous-time high gain and discrete-time high gain

observer for nonlinear systems.

2.2 Objectives of observers

An observer is a dynamic system that can be called a computing sensor because

it is often installed on a calculator in order to reconstitute or estimate in real time

the current state of a system; from available measurements; system inputs and prior

knowledge of the model and system outputs. It allows us to follow the evolution of the

condition as information about the system.

The need for internal information can be motivated by various objectives:

• Monitoring (fault detection) of the process through the differences between

the behavior of the observer and that of the process.

• Modeling (identification) of the process by estimating constant quantities that

define the model parameters.

• Control of the process which necessarily requires knowledge of its internal state.

All of these objectives are actually needed when trying to keep a system under

control, as illustrated in Figure 2.1 [11].

2.3 Observers principle

The objective of an observer is to reconstruct quantities of which we cannot or do

not wish to measure the state by a direct method (see Figure 2.2).

From this functional diagram of an observer (see Figure 2.3), we can implement

all types of observers, their difference being only in the synthesis of the gain matrix L
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Figure 2.1: Observer: the essential part in the control.

Figure 2.2: Principle of a state observer.

which must be adapted to the properties of the system whose we want to observe the

states.

2.4 Classification of observers

There are many observation techniques. They differ depending on the environment

considered (deterministic or stochastic), the nature of the system considered (linear

or nonlinear), and finally, depending on the number of states to be observed (reduced

order observers and full order observers). For reduced order observers we observe only
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Figure 2.3: Functional diagram of an observer.

part of the state vector while for full order observers we observe the entire state vector.

In fact, whatever the classification criterion to consider, observers generally classified

into two large families: deterministic and stochastic.

2.4.1 Deterministic observers

They are the observers who do not take into account the noise of measurements and

the random fluctuations of state variables: the environment is deterministic. These

observers are therefore characterized most of the time by sensitivity to disturbances

and parametric variations. Among these observers we can cite the Luenberger observer,

adaptive observer and the MRAS observer.

2.4.1.1 Luenberger observer

This observer makes it possible to reconstitute the state of an observable system

from the measurement of its inputs and outputs. It also allows the estimation of variable

or unknown parameters of a system. It is often used in feedback control, where the

state vector is not known. Its operation is illustrated in the Figure 2.3.
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The different quantities mentioned in Figure 2.3 represent:

u: input vector of the real system and of the observer;

x: state vector made up of the quantities to be observed;

y: output vector whose components are measurable;

x̂ and ŷ: are respectively the estimate of the state and output vectors x, y, respectively.

In order to illustrate the principle of an observer, we consider a system described by

the following equations of state: ẋ (t) = Ax(t) + Bu(t)

y (t) = Cx(t)
(2.1)

The observer represents a copy of the original system plus a gain term. So, it is

described as follows: 
˙̂x (t) = Ax̂(t) + Bu(t) + Lε

ŷ (t) = Cx̂(t)
(2.2)

The output vector y is compared to the equivalent vector given by the observer

to ensure closed-loop operation. Thus, we define a variable which is the error of the

observation ε = y(t) − ŷ(t). This later is multiplied by the matrix L and sent to the

input of the observer to influence the estimated states x̂. For a judicious choice of the

matrix of gains L, one can modify the dynamics of the observer (which depends on

the eigenvalues of the matrix [A − LC]), and consequently make evolve the speed of

convergence of the error towards zero.

The dynamics of the estimation error; e(t) = x(t) − x̂(t) has the expression:

ė (t) = (A − LC) e(t) (2.3)

2.4.1.2 Adaptive observer

An adaptive observer is composed of a state observer of a model whose parameters

are unknown and an algorithm for online adaptation of these model parameters.

The structure of the adaptive observer is shown in Figure 2.4

2.4.1.3 ARMS observer (Adaptive Reference Model System)

The MRAS (Adaptive Reference Model System) is based on the comparison of the

outputs of two estimators. The first, which does not introduce the quantity to be
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Figure 2.4: Structure of the adaptive observer.

estimated, is called the reference model and the second is the adjustable model. The

error between these two models drives an adaptation mechanism. The latter is used in

the adaptive model (see Figure 2.5).

Figure 2.5: Diagram of the MRAS observer.

2.4.2 Stochastic observers

Stochastic observers give an optimal estimate of states based on stochastic criteria.

Their observations are based on the presence of noise in the system. Among these

observers, we cite the Kalman filter. This observer is characterized by taking into

account measurement and state noises by stochastic algorithms tending to minimize

the variance of the estimation error.

2.4.2.1 Kalman filter

The Kalman filter, introduced by Rudolf Emil Kalman in 1960, is one of the

most interesting mathematical developments in linear estimation theory. It is a state

reconstructor in a stochastic environment, when the variances of the noises are known,

it is a linear estimator minimizing the variance of the estimation error. The applications

of the Kalman filter are numerous. The Kalman filter makes it possible to give an
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estimate of the state of the system from a priori information on the evolution of this

state (model) and real measurements. It will be used to estimate unknown initial

conditions, predict trajectories, locate machines, implement control laws, etc [12].

2.4.2.2 Extended Kalman Filter (EKF)

The Kalman filter described previously is limited to linear systems. However,

most physical systems are nonlinear. This nonlinearity can be associated with the

process model, the observation model or both. The extended Kalman filter is a nonlinear

extension of the conventional Kalman filter, which was developed specifically for systems

with nonlinear dynamic models.

The EKF algorithm can also be decomposed into two phases: the prediction phase

and the correction phase. We can schematize the extended Kalman filter by the following

Figure 2.6:

Figure 2.6: Block diagram of an Extended Kalman Filter.

2.5 Continuous-time high gain observer

2.5.1 Introduction

The high gain observer, initiated around the 1990s [13], has been proposed for

nonlinear systems that can be put into the uniformly observable canonical form. Its

advantage compared to the other observers previously developed is that it takes into

account all the nonlinearities and nonstationarity of the systems. In addition, the

nonlinearities can depend on the states, but must have a lower triangular structure.
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The observer guarantees a good estimation of the states and the adjustment of the

correction term is ensured with a single synthesis parameter.

2.5.2 Preliminary study

Definition 2.5.2.1. : Diffeomorphism

A system is said to be diffeomorphic to another system if there is a differentiable bijective

application from one set to another whose reciprocal bijection is also differentiable. This

application allows to rewrite the system in a particular form.

Consider the MIMO systems and diffeomorphism to the following system: ẋ (t) = Ax(t) + φ (u(t), x(t))

y (t) = Cx(t) = x1(t)
(2.4)

With

x =



x1

x2

...

xq


; φ (u, x) =



φ1 (u, x1)

φ2 (u, x1, x2)
...

φq−1 (u, x1, . . . , xq−1)

φq (u, x1, . . . , xq)



A =



Op Ip Op Op

... . . . Ip

Op
. . . . . . Op

Op
. . . Ip

Op . . . Op Op


; C = [Ip, Op, . . . , Op]

(2.5)

The state x (t) ∈ ℜn; the xj ∈ ℜp, j = {1, . . . , q} are state blocks ;

the input vector u (t) ∈ U a compact subset of ℜs;

y ∈ ℜp is the output available at all times t.

The system (2.4) is very special because the states xj have all the same size p. The

total dimension is n = p × q. Referring to the work of [14], the system (2.4) is put into

the Brunovski’s canonical form.

Definition 2.5.2.2. : Observability

A system is said to be observable when all the states can be reconstructed from the

knowledge of its inputs and outputs.
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The concept of observability was introduced by Kalman for linear systems (see

[15]).

Definition 2.5.2.3. : : Uniform observability

A system is uniformly observable if it is observable for any input.

We note that the class of uniformly observable systems is the natural extension of

the class of linear systems.

The observation problem for dynamical systems can be interpreted as a trajectory

tracking problem. The condition of which to fulfill to ensure convergence is described

by the following property:

Property 1: Convergence condition of an observer

For a system (see 2.4) whose state vector is x(t), the essential property that must

fill the observer (see 2.9) is:

lim
t→∞

∥x̂(t) − x(t)∥ = 0 (2.6)

This property ensures an asymptotic convergence towards zero of the observation

error.

2.5.3 Continuous-time high gain observer design

In [16] the author has proposed a high gain observer for a class of nonlinear systems

having a triangular structure. This observer converges exponentially and guarantees

the robustness of the estimations despite the presence of disturbances and measurement

noise.

Consider the following class of multivariable (MIMO) nonlinear systems that are

diffeomorphic and uniformly observable: ẋ (t) = Ax (t) + φ (u (t) , x (t)) + βε (t)

y (t) = Cx (t) + ω (t) = x1 (t) + ω (t)
(2.7)
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with

x =



x1

x2

...

xq


; φ (u, x) =



φ1 (u, x1)

φ2 (u, x1, x2)
...

φq−1 (u, x1, . . . , xq−1)

φq (u, x1, . . . , xq)



A =



Op Ip Op Op

... . . . Ip

Op
. . . . . . Op

Op
. . . Ip

Op . . . Op Op


; B =



Ip

Op

...

Op


; C = [Ip, Op, . . . , Op]

(2.8)

xi ∈ ℜp are the state variables for i ∈ [1, q];

u(t) ∈ U in ℜm is the system input;

y ∈ ℜp is the system output;

ω(t) the measurement noise;

ε : ℜ+ → ℜp is an unknown function describing the system uncertainties and may

depend on the state, the input and uncertain parameters.

The associated continuous-time observer is proposed in [17] as follows:

˙̂x (t) = Ax̂ (t) + φ (u (t) , x̂ (t)) − θ∆−1
θ K (Cx̂ (t) − y (t)) (2.9)

where

x̂ =



x̂1

x̂2

...

x̂q


∈ ℜn; K =



K1

K2

...

Kq


∈ ℜn is the gain matrix chosen such that the matrix

Ā
∆= A − KC is Hurwitz, there exist a positive definite symmetric matrix P and a

positive real µ such that:

PĀ + ĀT P ≤ −2µIn (2.10)

∆θ is a diagonal matrix defined as follows:

∆θ = diag(Ip,
1
θ

Ip, . . . ,
1

θ(q−1) Ip)
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θ ≥ 1 is a scalar design parameter which makes it possible to determine the speed of

convergence of the estimates.

The synthesis of the proposed observer necessitates some of the following assumptions:

A1. The state x(t) is bounded, i.e. there exists a compact set Ω ∈ ℜn such that ∀t ≥ 0,

x (t) ∈ Ω.

A2. The functions φi for i ∈ [1, q] are Lipschitz with respect to x uniformly in u, i.e.

∀ρ ≻ 0; ∃L ≻ 0; ∀u s.t. ∥u∥ ≤ ρ;

∀ (x, x̄) ∈ Ω × Ω : ∥φi(u, x) − φi(u, x̄)∥ ≤ L ∥x − x̄∥.

A3. The unknown function ϵ is essentially bounded, i.e.

∃δε ≻ 0; sup
t≥0

Ess ∥ε (t)∥ ≤ δε.

A4. The noise signal ω is essentially bounded, i.e.

∃δω ≻ 0; sup
t≥0

Ess ∥ω (t)∥ ≤ δω.

2.6 Continuous discrete-time high-gain observer

2.6.1 Introduction

The objective of this section consists to determine a state observer that guarantees

the robustness of the estimates despite the discretization of the measurements and the

presence of disturbances and uncertainties. We, therefore, seek to reconstruct all the

states of the continuous system from the measurements available at sampling instants

tk. For the synthesis, we base on the elements of the theory of the continuous high gain

observer and we use the approach of Lyapunov to prove the exponential convergence of

the proposed observer.

Consider the MIMO uniformly observable and diffeomorphic nonlinear systems to

the following system: ẋ (t) = Ax (t) + φ (u (t) , x (t)) + βε (t)

y (tk) = Cx (tk) + ω (tk) = x1 (tk) + ω (tk)
(2.11)

where the state x (t) ∈ ℜn, the input vector u (t), the matrix A and the Lipschitzian

function φ (u (t) , x (t)), ω, ϵ are defined in (2.7), (2.8), and y (tk) is the output measured
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at time tk, satisfying the following inequality:

0 ≤ t0 ≺ · · · ≺ tk ≺ tk+1 ≺ · · · avec lim
k→∞

tk = ∞ (2.12)

Define the interval between two measurement instants bounded by τm and τM :

0 < τm ≤ τk = tk+1 − tk ≤ τM , ∀k ≥ 0 (2.13)

2.6.2 Preliminary study

Definition 2.6.2.1.

• τM denotes the maximum admissible value of the sampling period (2.13) for which

the exponential convergence towards zero of the observation error is guaranteed.

• τm denotes the minimum value of the sampling period.

0 < τm ≤ τk = tk+1 − tk ≤ τM

2.6.3 Continuous discrete-time high gain observer design

We add the following hypothesis on the boundedness of the noise samples ω (tk):

A5. For all tk, the samples ω (tk) are bounded by δω where δω is the essential bound

given by Assumption A4.

The dynamics of the continuous-discrete observer proposed for the class of systems

(2.11) is written as follows [17]:

˙̂x (t) = Ax̂ (t) + φ (u (t) , x̂ (t)) − θ∆−1
θ Ke−θk1(t−tk)

× (Cx̂(tk) − y (tk)), t ∈ [tk, tk+1[
(2.14)

where

x̂ =


x1

...

xq

, K =


k1Ip

...

kqIp

 is the gain matrix where the ki’s, i = 1, . . . , q are chosen

such that the matrix Ā
∆= A − KC is Hurwitz.

∆θ is the diagonal matrix defined before with θ ≥ 1.
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The observer contains an exponential function varying in time independently of the

error which is updated only at the sampling instants tk. For the convergence, if the

maximum allowable value of the sampling period satisfies a certain condition then the

observer converges exponentially to 0 [17].

2.7 Conclusion

In this chapter, we have presented the continuous-time high gain and the continuous

discrete-time high gain observers for a class of uniformly observable MIMO nonlinear

systems with the presence of disturbances and uncertainties. The gain of the observer

will be determined by an optimization algorithm which will be mentioned in the next

chapter.
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3.1 Introduction

Metaheuristic algorithms have found many applications in different fields of applied

mathematics, engineering and other sciences. A metaheuristic is an algorithm

inspired by nature that contains a set of methods, which include evolutionary algorithms,

to solve known problems as performance improvement. Metaheuristics are based of

principles, which make possible the design of solution algorithms. Optimization is the

act of obtaining the best result; which gives the maximum or minimum value of a

function; under given circumstances.

This chapter provides a brief overview of metaheuristic optimization algorithms

called GA, PSO and BBO.
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3.2 Optimization

Optimization is a very important tool in engineering; it is the act of obtaining the

best result under given circumstances such as design, construction or maintenance. Op-

timization is the organized search for such designs and operating modes. It determines

the set of actions or elements that must be implemented to achieve optimized systems.

In the simplest case, optimization seeks the maximum or minimum value of an objective

function corresponding to variables defined in a feasible range or space. More generally,

optimization is the search of the set of variables that produces the best values of one or

more objective functions while complying with multiple constraints. A single-objective

optimization model embodies several mathematical expressions including an objective

function and constraints as follows:

Optimize f(X), X = (x1, x2, . . . , xi, xN) (3.1)

subject to

gj(X) ≺ bj, j = 1, 2, . . . , m (3.2)

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , N (3.3)

where

f(x) is the objective function;

X is a set of decision variables xi that constitutes a possible solution to the optimization

problem;

xi is the ith decision variable;

N is the number of decision variables that determines the dimension of the optimization

problem;

gj is the jth constraint;

bj is a constant of the jth constraint;

m is the total number of constraints;

x
(L)
i is the lower bound of the ith decision variable;

and x
(U)
i is the upper bound of the ith decision variable.

The term optimisation refers to both minimisation and maximisation tasks. A task

involving the maximisation of the function f is equivalent to the task of minimising −f
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(see Figure 3.1), therefore the terms minimisation, maximisation and optimisation are

used interchangeably.

Figure 3.1: Minimum of f(x) is same as maximum of −f(x).

3.2.1 Stochastic optimization

Stochastic optimization using meta-heuristics is well adapted for solving problems

for which it is difficult to find a global optimum or good local optima using classical

methods. This type of optimization has three characteristics that are often decisive in

global optimization:

• Optimization using metaheuristics does not require us to know the gradient of

the function to be minimized, the only constraint being that we must be able to

evaluate the latter, which can therefore have any form;

• It is not necessary to use a “good” initial point, the initialization being carried

out at random in the search space;

• Finally, this type of optimization is stochastic, which makes it possible to overcome

the combinatorial explosion of possibilities and limits trapping in the local optima.

3.2.2 Objective function

The objective function constitutes the goal of an optimization problem. That goal

could be maximized or minimized by choosing variables, or decision variables for the
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set of parameters that satisfy all constraints is called a feasible solution. Feasible

solutions with objective function values as good as the values of any other feasible

solutions are called optimal solutions [1].

3.2.3 Decision variables

The decision variables determine the value of the objective function. In each

optimization problem we search for the decision variables that yield the best value of

the objective function or optimum.

3.2.4 Decision space

The set of decision variables that satisfy the constraints of an optimization problem

is called the feasible decision space. In an N -dimensional problem, each possible

solution is an N -vector variable with N elements. Each element of this vector is a

decision variable. Optimization algorithms search for a point (i.e., a vector of decision

variables) or points (i.e., more than one vector of decision variables) in the decision

space that optimizes the objective function.

3.2.5 Local and global optima

It has been established that a well-defined optimization problem has a well defined

decision space. Each point of the decision space defines a value of the objective func-

tion. A local optimum refers to a solution that has the best objective function in its

neighborhood. In a one-dimensional optimization problem, a feasible decision variable

X∗ is a local optimum of a maximization problem if the following condition holds:

f (X∗) ≥ f (X) , X∗ − ε ≤ X ≤ X∗ + ε (3.4)

In a minimization problem the local optimum condition becomes

f (X∗) ≤ f (X) , X∗ − ε ≤ X ≤ X∗ + ε (3.5)

where

X∗ is a local optimum;

ε is the limited length in the neighborhood about the local optimum X∗.
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Figure 3.1 illustrates global and local optima for a one-dimensional maximization

problem.

L1, L2, and L3 in Figure 3.2 are local optima, and G denotes the global optimum with

the largest value of the objective function.

Figure 3.2: Schematic of global and local optimums in a one-dimensional maximizing
optimization problem.

3.3 Metaheuristic algorithms

3.3.1 Definition of metaheuristics and algorithms

The words meta and heuristic both have their origin in the old Greek: meta

means upper level, and heuristic denotes the art of discovering new strategies [2]. The

term metaheuristic was coined by Glover in 1986 [3] to refer to a set of methodologies

conceptually ranked above heuristics in the sense that they guide the design of heuristics.

A metaheuristic is a higher level procedure or heuristic designed to find, generate, or

select a lower level procedure or heuristic (partial search algorithm) that may provide a

sufficiently good solution to an optimization problem. By searching over a large set of

feasible solutions, metaheuristics can often find good solutions with less computational

effort than calculus-based methods, or simple heuristics.

An algorithm refers to a sequence of operations that are performed to solve a problem.

Algorithms are made of iterative operations or steps that are terminated when a stated
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convergence criterion is reached. Each step may be refined into more refined detail in

terms of simple operations. Figure 3.3 shows a general schematic of an algorithm [4].

Figure 3.3: General schematic of a simple algorithm; K denotes the counter of iterations.

3.3.2 Modern metaheuristics of optimization

In recent years, some optimization methods that are conceptually different from

the traditional mathematical programming techniques have been developed. These

methods are labeled as modern or nontraditional methods of optimization. Most of

these methods are based on certain characteristics and behavior of biological. The

following metaheuristics are described in this part:

• Genetic algorithms

• Particle swarm optimization

• Biogeography-Based Optimization
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3.3.2.1 Genetic algorithm

Genetic algorithm (GA) was invented by J. Holland and developed this idea in his

book “Adaptation in natural and artificial systems” in 1975 [5]. Also, John Holland

introduced the term genetic algorithm. Thus, a genetic algorithm is a technique for

simulating the natural process of microscopic evolution and adaptation specific to

biological systems [6]. He described how to apply the principles of natural evolution

to optimization problems and built the first Genetic Algorithms. Holland’s theory

has been further developed and now Genetic Algorithms stand up as a powerful tool

for solving search and optimization problems. Genetic algorithms are based on the

principle of genetics and evolution.

GA operates with a collection of chromosomes, called a population of individuals

(where each individual in the population represents a candidate solution to the opti-

mization problem). The population is normally randomly initialized. As the search

evolves, the population includes fitter and fitter solutions, and eventually, it converges,

meaning that it is dominated by a single solution. Holland also presented proof of

convergence to the global optimum where chromosomes are binary vectors. In the most

general case, the fitness of an individual determines the probability of its survival for

the next generation [7].

GA uses three (genetic) operations to generate new solutions from existing ones :

crossover, mutation and inversion.

• Crossover is a genetic operation that can be described as exchanging two chromo-

somes, called parents, together to form new chromosomes, called offspring.

• Mutation is a random change into characteristics of chromosomes. It’s generally

applied at the gene level.

• Inversion is a genetic operation that produces a change in the concatenation of

the genes in a certain area of chromosome, so that the new gene sequence (series)

is inverted with respect to the initial sequence.

The genetic algorithm loops are an iteration process to make the population evolve.

Each consists of the following steps:
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• Selection The first step consists in selecting individuals for reproduction. This

selection is done randomly with a probability depending on the relative fitness

of the individuals so that best ones are often chosen for reproduction than poor

ones.

• Reproduction In the second step, offspring is bred by the selected individuals.

For generating new chromosomes, the algorithm can use both recombination and

mutations.

• Evaluation Then the fitness of the new chromosomes is evaluated.

• Replacement During the last step, individuals from the old population are killed

and replaced by the new ones.

Figure 3.4 shows the simplified iterative operation of a genetic algorithm that works

through a simple cycle of steps [8]:

Figure 3.4: General operation of a GA.

3.3.2.2 Particle swarm optimization algorithm

Particle swarm optimization (PSO) is an evolutionary computation technique in-

spired by social behavior of groups like bird flocking (Figure 3.5), fish schooling (Fig-

ure 3.6) or colonies of insects (Figure 3.7); because it is known that a group can

effectively achieve an objective by using the common information of every element.

PSO algorithm was first introduced in 1995 by Eberhart and Kennedy [9, 10] as an
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alternative to population based search approaches (like genetic algorithms) in order to

solve optimization problems.

Figure 3.5: A flock of birds. Figure 3.6: A school of fish.

Figure 3.7: The path of the ants.

In this algorithm the elements of the population are called particles, and each

particle (a bird or a fish) is a candidate for the solution. Each particle is considered as a

moving point in the N -dimensional search space with a certain velocity. The velocity of

each particle is constantly adjusted according to its own experience and the experience

of its companions hopping to fly towards better solution area.The displacement of a

particle is influenced by three components (Figure 3.8) [11]:

• A physical component the particle tends to follow its current direction of displace-

ment;

• A cognitive component the particle tends to move towards the best site by which

it has already passed;

• A social component the particle tends to rely on the experience of its congeners

and, thus, to move towards the best site already reached by its neighbors.

In PSO, each state of particle presents a position and velocity, which is initialized

with a population generation by a random process. Note that each particle is described

by three features:
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Figure 3.8: Displacement of a particle.

xi
k: ith particle vector position at time k;

vi
k: ith particle velocity at time k, which represents the search direction and used to

update the position vector;

f (xi
k): fitness or objective, determines the best position of each particle over time.

Mathematically, the particle velocities are updates according to the following equations:

vi
k+1 = wvi

k + c1rand(pi − xi
k) + c2rand(pg

k − xi
k) (3.6)

where

vi
k+1: the new velocity;

w: the inertia factor;

c1: positive constant (self confidence);

c2: positive constant (swarm confidence);

g: represents the index of best particle among all the particles in the population;

pi ith: particle best position (the best position in the swarm);

pg
k: particle best global position (best particle among all the particles in the population)

until time k (so, pg will be the last best global position);

rand: is a random number uniformly distributed in [0, 1].

Particle positions are the updates by velocity (3.6) as

xi
k+1 = xi

k + vi
k+1 (3.7)

The PSO principle consists of, at each time step, regulating the velocity and location of
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each particle toward its pi and pg locations according to equations (3.6) and (3.7) until

a maximum change in the fitness function will be smaller than a specified tolerance ε

which gives us the following stopping criteria (3.8):
∣∣∣f (pg

k+1

)
− f (pg

k)
∣∣∣ ≤ ε (3.8)

The PSO algorithm flowchart is shown in Figure 3.9.

Figure 3.9: PSO algorithm flowchart.

3.3.2.3 Biogeography-based optimization

Biogeography-Based Optimization technique (BBO) is a novel biological optimiza-

tion technique and one of the metaheuristic algorithms which simulates the biogeography

of nearby islands. Each island has a high suitability index (HSI) which determines the

number of species (Si) that will be able to live there. Mathematical models of BBO

describe how species migrate from one island (habitat) to another, how new species arise

and how species become extinct. It is inspired by mathematical models of biogeography

and the first original was introduced by Dan Simon in 2008 [12].
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A good habitat has a high HSI, while a poor habitat has a low HSI. This means

that good habitats have more good aspects than the poor ones. Habitats with high HSI

have a high immigration rate due to their good aspects, whereas poor habitats have a

low immigration rate but a high emigration rate, unlike good ones. The migration rates

are directly related to the number of species in a habitat. So, a habitat with many

species has a high emigration rate, because it is almost saturated, while habitats with

few species have high immigration rate because do not have good conditions to live in.

This migration process increases the diversity of the habitat and the miscegenation and

contributes to the species information sharing and the mutation probability. Figure 3.10

represents emigration and immigration as a function of the number of species. In

Figure 3.10, I and E represent the maximum rates of immigration and emigration,

respectively, and S denotes the number of species [13].

Figure 3.10: Emigration and immigration rates.

• BBO algorithm

The basic algorithm of BBO is as follows:

– Step 1: Initialize the parameters used in the algorithm: Smax maximum

number of species, E emigration rate, I the immigration rate, and mmax the

maximum mutation rate.

– Step 2: Calculate the probability for each value of the number of species as

follows:

Pj = 1
Smax

(3.9)
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where

j = 1, ... , Smax and P is the probability for the jth habitat.

– Step 3: Generate an initial random set of habitats according to the constraints

of the problem.

– Step 4: Start the loop:

∗ (4.i) Generate the immigration and emigration rates:

λj = I
(

1 − j

Smax

)
(3.10)

µj = E
j

Smax
(3.11)

where

λj and µj are the immigration and the emigration rates for the jth

habitat.

∗ (4.ii) Calculate the derivative probability:

•
P
s

= − (λs + µs) Ps + µs+1Ps+1 s = 0
•
P
s

= − (λs + µs) Ps + λs−1Ps−1 + µs+1Ps+1 1 ≤ s ≺ Smax
•
P
s

= − (λs + µs) Ps + λs−1Ps−1 s = Smax

(3.12)

∗ (4.iii) Update the probability:

Pj = Pj +
•

Pj dt (3.13)

Pj = Pj

Smax∑
i=0

Pi

(3.14)

where

dt is the derivative step.

∗ (4.iv) Use the immigration and emigration rates to modify each habitat

and probabilistically mutate the individuals.

∗ (4.v) Evaluate the habitats to make sure that the constraints of the

problem are satisfied.

∗ (4.vi) Calculate the fitness of each habitat and return to the beginning

of the loop until a stopping criterion is achieved.

The BBO algorithm flowchart is shown in Figure 3.11.
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Figure 3.11: BBO algorithm flowchart.

3.4 Conclusion

This chapter is intended to provide an overview of metaheuristic algorithms and

the theory of optimization methods that will be used later, namely genetic algorithm,

particle swarm optimization and biogeography-based optimization.
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4.1 Introduction

The high gain observer is one of the most important observers in the literature. It

has been used extensively in the design of output feedback control of nonlinear

systems, which is responsible for estimating the system states. It has several advantages,

including: stability and robustness against modeling errors and external disturbances.

This chapter presents the simulation results of optimization methods that are applied

on nonlinear dynamical system (the two link robot) to estimate the observer’s high

gain.
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4.2 Learning observer parameters and control

To apply high gain observer, its parameters have to be determined which is a difficult

task especially that the stochastic properties of the corresponding noises disturbing the

robot are unknown. To avoid this difficulty, the high gain value will be considered as a

free parameter to be tuned. In the literature, this parameter was determined manually by

a constrained free choice. In this thesis, we propose to do a tuning for these parameters.

The simplest tuning can be released by trial and error method which is a very laborious

task. To surmount this problem and to avoid trial and error, we propose to tune these

parameters by BBO algorithm. The framework of the method is constituted of two steps.

1) In the first step represented in Figure 4.1, we present a BBO-HG structure which

works in an offline manner and allows finding the optimal value of the gain.

2) In the second step, obtained parameter value from step 1 is injected into the

estimation-control loop running online to control the two link robot.

The framework of the BBO-HG parameter estimation system is illustrated in

Figure 4.1. The system input u = [τ1, τ2] and the measured response y = [θ1, θ2] are

used by the high gain observer, where input u is applied to both two link robot and

high gain observer. Actual (measured) angles of the robot and estimated angles of HG

observer are set to be inputs to a performance evaluator through a comparator. Note that

the optimization will be impossible if the angles cannot be measured. The performance

evaluator calculates the fitness function which is a mean square error (MSE) criterion

between y and ŷ. Then, obtained MSE will be applied to the BBO optimizer. Based on

MSE values, BBO optimizer will calculate and optimize the unknown parameters gain

observer by updating the solutions according to BBO algorithm to provide better sets.

The new solutions are then used for the adaptation of the HG observer for the next

iteration until a preset number of iterations have been reached, and then optimal values

of the gain are obtained. Finally, optimized values are injected into HG observer running

online to estimate the robot states. Note that the BBO-HG algorithm is implemented

offline because BBO needs several iterations to obtain acceptable solutions. For each

iteration, BBO-HG estimator has to be executed once; consequently, the BBO-HG
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must be executed several times allowing the optimization of the parameters from each

measurement.

Figure 4.1: Framework of the proposed state observer optimization with feedback
linearization.

4.2.1 Controller design

For control purposes, system (2.11) in chapter 2 can be rewritten as an nth order

nonlinear dynamical system represented in the controllable canonical form:



ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x1, x2, ..., xn) + g(x1, x2, ..., xn)u

y = x1

(4.1)

or, equivalently  x(n) = f(x1, x2, ..., xn) + g(x1, x2, ..., xn)u

y = x
(4.2)
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where f and g are real continuous functions, u ∈ ℜ and y ∈ ℜ are the input and output

of the system, respectively. We assume that the state vector x = (x1, x2, ..., xn)T =

(x, ẋ, ..., x(n−1))T ∈ ℜn is not available for measurement. The controllability of (4.2)

requires that g(x) ̸= 0 for all x in certain controllability region Uc ⊂ ℜn. Since g(x) is

continuous, without loss of generality, we assume that 0 < g(x) < ∞ for all x ∈ Uc. In

addition, we assume that the functions f and g are bounded. The control objective is

to find a feedback control law u = u(x) such that to make the state x(t) track a given

desired bounded reference trajectory y
m

(t) =
(
ym(t), ẏm(t), ..., y(n−1)

m (t)
)T

. But since

x(t) is not available, it will be replaced by its estimate x̂(t). Therefore, the control law

becomes u = u(x̂), where x̂(t) is the state estimate provided by high gain observer.

System of the form (4.2) can be then controlled by the so-called feedback linearization

method [1, 2]. In this method, f(x̂(t)) and g(x̂(t)) are used to construct the following

feedback controller:

u = u(x̂) = 1
g(x̂)

[
−f(x̂) + y(n)

m (t) + kT e
]

(4.3)

where e = e(t) ∆= ym(t) − y(t) is the tracking error e = e(t) ∆= (e, ė, ..., e(n−1))T , and

k
∆= (kn, ..., k2, k1)T ∈ ℜn is chosen such that all roots of the polynomial h(s) ∆=

sn + k1s
n−1 + ... + kn are in the open left-half of the complex plane. Applying the

control law (4.3) to the system (4.2) we obtain the following error dynamics

e(n) + k1e
(n−1) + ... + kne = 0 (4.4)

where the main objective of the control is lim
t→∞

e(t) = 0. However, construction of

estimation x(t) by the high gain observer can gives us good values for f(x̂) and g(x̂)

which will allow the construction of the control law (4.3).

4.3 Experimentations and simulation results

Throughout this section, experimental simulations are performed on an Intel® Core™ i7−

7500U CPU@2.70GHz 2.90GHz under Matlab R2018b environment. Note that all of

our codes are written in Matlab language in M-files with time step size 2.5e−04s.

The effectiveness of the proposed method is tested on a highly nonlinear dynamical

system: The two link robot. This system is naturally unstable and has to be persistently
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balanced by control actions to hold it in stable positions. The control is guaranteed by

a feedback linearization control technique.

Figure 4.2: Two-link planar RR arm.

The used two link robot manipulator is shown in Figure 4.2. Its dynamic is given

by the following differential equation [3, 4]:

H (q) q̈ + C (q, q̇) q̇ + g (q) = τ (4.5)

Where H (q) =

 h11 h12

h21 h22

 is symmetric, positive definite mass matrix such that

h11 = (m1 + m2) a2
1 + m2a

2
2 + 2m2a1a2 + cos θ2

h12 = h21 = m2a
2
2 + m2a1a2 cos θ2

h22 = m2a
2
2

The parameters mi and ai, i = 1, 2 are masses and lengths of the robot taken

m1 = m2 = 1 kg and a1 = a2 = 1 m.

τ =
[

τ1 τ2

]T

is the vector of joint torques supplied by the actuators;

q =
[

θ1 θ2

]T

is the vector of joint displacements;

C (q, q̇) =

 −2m2a1a2θ̇2 sin θ2 −m2a1a2θ̇2 sin θ2

m2a1a2θ̇1 sin θ2 0

 is the Centrifugal and Coriolis

forces matrix;

g (q) =

 (m1 + m2) ga1θ1 + m2ga2 cos (θ1 + θ2)

m2ga2 cos (θ1 + θ2)

 is the gravitational forces matrix

with g = 9.8 m/s2 is the acceleration due to gravity.

The state variables are chosen to be: x1 = θ1, x2 = θ̇1, x3 = θ2 and x4 = θ̇2

Parameters of equation (2.11) in chapter 2 are defined as follows:
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x1 =

 x1

x3

, x2 =

 x2

x4

, φ2 =

 φ2 (u, x1 (t) , x2 (t))

φ4 (u, x1 (t) , x2 (t))

, ε =

 ε1

ε2

 =

 0

0

;

φ2 =

 φ2 (u, x1 (t) , x2 (t))

φ4 (u, x1 (t) , x2 (t))

 = M−1 [−Cq̇ − G] + M−1

 τ1

τ2

;

M (q) =

 m11 m12

m21 m22


with

m11 = (m1 + m2) a2
1 + m2a

2
2 + 2m2a1a2 + cos x3

m12 = m21 = m2a
2
2 + m2a1a2 cos x3

m22 = m2a
2
2

In order of the matrix A − KC to take all its eigenvalues −1; we determined the gain

of the observers (2.14) in chapter 2 as K1 = 2I2 and K2 = I2.

Initial conditions have been initialized as follows:

• Robot state initial conditions: x1 (0) = x2 (0) = x3 (0) = x4 (0) = 0 rad.

• Estimator initial conditions: x̂1 (0) = 0.1 rad, x̂2 (0) = 0 rad, x̂3 (0) = 0.2 rad

and x̂4 (0) = 0 rad.

Reference input trajectories are supposed to be a sinusoidal with amplitude 0.1 rad for

the first joint and a step input with amplitude 0.3 rad for the second joint as shown in

Figure 4.3.

Two cases of experimentations are treated:

1. without stochastic perturbations (noise free case).

2. with stochastic perturbations (noisy output case).

In our experimentations, the two-link robot is controlled by a feedback linearization

controller for which the state vector is estimated by a high gain observer. High

gain observer parameter is optimized under the two cited environments. Note that

optimization process is done during an off-line phase.

We give in Figures 4.4 and 4.5 simulation results of estimation errors that show the

influence of the observer gain and the nature of the observer (continuous time or

continuous-discrete time). In Figure 4.4, we see that observation errors are less in the
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Figure 4.3: Input reference trajectories.

case when the gain is high (estimation errors decrease when θ increases). Likewise,

in Figure 4.5 we notice that the obtained errors are smaller in the case of continuous

observer (estimation errors provided by the continuous-discrete time observer are bigger

than those of continuous-time observer). By this comparison, we confirm that the

continuous-discrete time observer will be equivalent to the continuous-time observer

when the sampling period tends to zero. The same fact is obtained with the second

error e2 of the second articulation.

Figure 4.4: Influence of the observer gain on the estimation error e1 of the first joint.
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Figure 4.5: Superposition of estimation errors e1 with continuous time and continuous-
discrete time observers.

A. The noise-free case

Note that the observer gain value can be chosen arbitrary (by trial and error method)

in its solution region. In this situation we say that the high gain θ is un-optimized.

The key problem of this choice is that it affects greatly the estimation result. The

un-optimized high gain θ obtained by trial and error is posted in Table 4.1.

Table 4.1: Un-optimized high gain for robot manipulator for noise free case.

Sampling period (Ts) θun−optimized MSE

0.01 10 8.8129e-03
50 4.0549e-03

Table 4.1 shows chosen parameters values with their resultant Mean Square Error,

obtained by a trial and error method. The manual choice is easy to perform, but the

method takes longtime to find good values. Therefore, to obtain reasonable estimation,

an experienced expert has to do a great effort because it is difficult to infer a correlation

between the values of the chosen parameter and the best state estimation. We denote

good MSE performance for the second choice in the table. Notice that if these parameters

are poorly chosen, this can cause big errors in the estimation. The corresponding results

77



CHAPTER 4. METAHEURISTIC OPTIMIZATION OF HIGH GAIN OBSERVER

of joint positions for joint 1 and 2 are presented in Figures 4.6 and 4.7, and their

respective errors are shown in Figures 4.8 and 4.9.

Figure 4.6: Tracking position of the first joint for sampled outputs with gain θ = 50
and sampling time Ts = 0.01 sec.

Figure 4.7: Tracking position of the second joint for sampled outputs with gain θ = 50
and sampling time Ts = 0.01 sec.

In what follows, we will consider the optimization of the free parameter of the

observer. The corresponding optimized high gain θ obtained by algorithms BBO, GA

and PSO are presented in Table 4.2. The sampling period was chosen to be Ts = 0.01 sec.
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Figure 4.8: Estimation error e1 of the first joint for sampled outputs with gain θ = 50
and sampling time Ts = 0.01 sec.

Figure 4.9: Estimation error e2 of the second joint for sampled outputs with gain θ = 50
and sampling time Ts = 0.01 sec.

Notice that the best estimation of the gain is θ = 100 obtained in case 2 by BBO

algorithm (see MSE = 3.2608e−03s) which leads to the most good estimates for system

state variables. Simulation result of the first and second joint positions are presented in

Figures 4.10 and 4.11, respectively. We denote that in both cases the tracking between

the actual position and the estimated one is very acceptable.
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Table 4.2: Optimized high gain for robot manipulator for noise free case.

Sampling
period (Ts)

Optimization
method Case number of

iterations (I) θoptimized MSE

0.01

BBO 1 10 97.1760 3.3519e-03
2 30 100 3.2608e-03

GA 3 10 94.999 3.8003e-03
4 30 95.8820 3.7805e-03

PSO 5 10 86.6576 3.6658e-03
6 30 92.6146 3.5846e-03

Figure 4.10: Tracking position of the first joint for sampled outputs with gain θBBO = 100
and sampling time Ts = 0.01 sec.

Figure 4.11: Tracking position of the second joint for sampled outputs with gain
θBBO = 100 and sampling time Ts = 0.01 sec.

B. The noisy outputs case

In this case, Gaussian noise with variance equal to 0.01 and a zero mean is added to

the system output (see equation (2.11) in chapter 2).
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As previously, we will present two cases, the un-optimized case and the optimized

case. We give in Table 4.3, some un-optimized values of θ with their performances.

As in the un-optimized case, in the optimized case, the high gain θ is optimized by

GA, PSO and BBO algorithms in order to improve the results obtained in Table 4.3.

Optimized parameter values are given in Table 4.4, for two different sampling periods

(Ts = 0.01 sec and Ts = 0.1 sec). Also, we see that the best value of θ is obtained with

BBO algorithm given in case 2 (Ts = 0.01 sec) and case 8 (Ts = 0.1 sec). Notice that

optimized θ values are lower than values obtained in the noise-free case due to the

introduced stochastic environment (noise).

Simulation results relative to BBO learning for the robot joints positions are shown

in Figures 4.12, 4.13, 4.14 and 4.15. In Figures 4.12 and 4.13, the estimation results

are relative to sampling period Ts = 0.01 sec, and in Figure 4.14 and 4.15 results are

relative to Ts = 0.1 sec. We denote that in both cases the tracking between the actual

positions and the estimated ones is very acceptable.

Table 4.3: Un-optimized high gain for robot manipulator for noisy outputs case.

Sampling period (Ts) θun−optimized MSE

0.01 5 6.0319e-02
15 4.1121e-02

0.1 5 7.8154e-02
15 5.6979e-02

Table 4.4: Optimized high gain for robot manipulator for noisy outputs case.

Sampling
period (Ts)

Optimization
method Case number of

iterations θoptimized MSE

0.01

BBO 1 10 23.2898 1.1161e-02
2 30 21.7166 1.0641e-02

GA 3 10 24.7890 1.1550e-02
4 30 23.8950 1.1479e-02

PSO 5 10 24.0878 1.1459e-02
6 30 24.4772 1.1214e-02

0.1

BBO 7 10 9.6712 5.1673e-02
8 30 7.4206 5.0068e-02

GA 9 10 9.0800 5.3148e-02
10 30 7.3160 5.2693e-02

PSO 11 10 8.3325 5.2151e-02
12 30 8.2878 5.2009e-02
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Figure 4.12: Tracking position of the first joint for sampled outputs with gain θBBO =
21.7166 and sampling time Ts = 0.01 sec for the noisy case.

Figure 4.13: Tracking position of the second joint for sampled outputs with gain
θBBO = 21.7166 and sampling time Ts = 0.01 sec for the noisy case.

To confirm the efficiency of the proposed observer, we present in the following a

statistical comparison between the best obtained results between the un-optimized and

the optimized parameters. As a statistical analysis tool, we are going to use the error

bars for the estimated states to evaluate the accuracy of the estimation quality. This

technique is a graphical representation of the variability of the estimated variables on

graphs to indicate the estimation uncertainty and provides a general idea of the precision

of the estimation values. If the bars are large, this means we have bad estimation (high

variability or high uncertainty), contrary, if the bars are narrow, then the estimation

quality is better (less uncertainty).

We present in Figures 4.16 and 4.17 error bars comparison between the un-optimized
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Figure 4.14: Tracking position of the first joint for sampled outputs with gain θBBO =
7.4206 and sampling time Ts = 0.1 sec for the noisy case.

Figure 4.15: Tracking position of the second joint for sampled outputs with gain
θBBO = 7.4206 and sampling time Ts = 0.1 sec for the noisy case.

and the optimized states of the first and the second joints of the robot using parameter

θun−optimized = 15, θBBO optimized = 21.7166. Notice that these parameter values are

relative to the noisy case, and they are the best ones for the un-optimized and optimized

cases. Figures 4.16 and 4.17 suggest clearly that widths of the error bars for the BBO

method are the narrowest and more centered compared to the un-optimized case, which

asserts optimization efficiency.

In Figures 4.18 and 4.19 we present error bars comparison between GA method and

BBO method using the best parameters for both cases θGA optimized = 23.8950 and

θBBO optimized = 21.7166. Error bars in Figure 4.18 and 4.19 confirm the efficiency of

BBO method compared to GA method where we notice that BBO estimation variance
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is tighter and well centered.

Figures 4.20 and 4.21 show error bars comparison between PSO and BBO meth-

ods considering the best parameters for both cases θP SO optimized = 24.4772 and

θBBO optimized = 21.7166. Notice that the bars for the estimation in this case con-

firm again the superiority of BBO method compared to PSO method (small estimation

variance and good centering). We confirm by this short comparative study that BBO

algorithm preserves its superiority compared to PSO and GA for the optimization of

high gain observers for the estimation of state vector of a two link robotic manipulator.

Figure 4.16: Error bar comparison of estimation variability of the first joint for Ts =
0.01 sec (θun−optimized = 15, θBBO optimized = 21.7166).

Figure 4.17: Error bar comparison of estimation variability of the second joint for
Ts = 0.01 sec (θun−optimized = 15, θBBO optimized = 21.7166).
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Figure 4.18: Error bar comparison of estimation variability of the first joint for Ts =
0.01 sec (θGA optimized = 23.8950, θBBO optimized = 21.7166).

Figure 4.19: Error bar comparison of estimation variability of the second joint for
Ts = 0.01 sec (θGA optimized = 23.8950, θBBO optimized = 21.7166).

4.4 Conclusion

In this chapter, the observer gain has been optimized by a relatively new optimization

method called biogeography-based optimization that is employed to find the optimal

estimation of the system states. System states were used to generate control actions via

a feedback linearization controller. The efficiency of the proposed method was proved

on a highly nonlinear and multi input multi output dynamical system which is the two

link robot manipulator. Simulation results show that the optimal estimations obtained

by BBO are much better than the best solutions obtained by PSO and GA algorithms.
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Figure 4.20: Error bar comparison of estimation variability of the first joint for Ts =
0.01 sec (θP SO optimized = 24.4772, θBBO optimized = 21.7166).

Figure 4.21: Error bar comparison of estimation variability of the second joint for
Ts = 0.01 sec (θP SO optimized = 24.4772, θBBO optimized = 21.7166).
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5.1 Introduction

The most popular controllers used in industrial control processes are proportional-

integral-derivative (PID) and proportional-derivative (PD) controllers because of

their simple structures and robust performance. However, successful applications of

PD and PID controllers require a satisfactory tuning of parameters according to the

dynamics of the process.

This chapter presents the simulation results of optimization methods that are applied

to a two link robot to estimate parameters of PD and PID controllers.
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5.2 PD and PID controller

In the literature we can find different types of controllers like PD and PID where

they were designed to stabilize dynamical systems. PD is one of the most important

controllers and it is extensively used in different industry areas. PID is a combination of

proportional, derivative and integral actions. It is an important element for distributed

process control systems. Modern PID controllers are endowed with adaptive systems

which can tune their free parameters. Note that PID controller acts in a very smooth

and progressive manner, making sharp changes to consider the small deviations to

correct rapid perturbations. Note also that PD and PID controllers are able to achieve

the position control objective for robotic systems by calculating the error between

the measured and the desired variables and minimizing the error by adjusting their

parameters [1].

5.2.1 PD and PID controllers design

PD and PID parameters are chosen according to the system to be considered. Thus,

their optimal values are very necessary to guarantee the desired performance.

A. Design of PD controller

PD controller framework is shown in Figure 5.1, where its control action is defined

to be
τ = Kp (qd − q) + Kd (q̇d − q̇) + g(q)

= Kpe + Kdė + g(q)
(5.1)

where qd is the desired position vector; q̇d the desired velocity vector; g(q) the gravity

forces e = qd − q the position error vector and ė = q̇d − q̇ is velocity error vector.

Note that qd and q̇d are compared to the actual position q and the actual velocity q̇,

respectively; and then the differences are multiplied by a position gain Kp and a velocity

gain Kd to generate the control torque (5.1).

Note that an asymptotic tracking of the desired position is assured by law (5.1). Let

the following Lyapunov function candidate [2]:

ν = 1
2 q̇T H(q)q̇ + 1

2eT Kpe (5.2)
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Figure 5.1: Structure of PD controller.

Lyapunov function (5.2) represents the total energy of the manipulator and it is always

positive or equal to zero due to the positiveness of matrices H(q) and Kp. The time

derivative of v is

ν̇ = q̇T H(q)q̈ + 1
2 q̇T Ḣ(q)q̇ − q̇T Kpe (5.3)

Combining (4.5) in chapter 4 and (5.3) gives

ν̇ = q̇T (τ − C (q, q̇) q̇ − g(q)) + 1
2 q̇T Ḣ(q)q̇ − q̇T Kpe

= q̇T (τ − g(q) − Kpe) + 1
2 q̇T

(
Ḣ(q) − 2C (q, q̇)

)
q̇

= q̇T (τ − g(q) − Kpe)

(5.4)

where we have used the fact that Ḣ − 2C is skew symmetric. Substituting PD control

law (5.1) into (5.4) gives

ν̇ = −q̇T Kdq̇ ≤ 0 (5.5)

The above analysis show that v decreases as long q̇ is nonzero. In the case of v̇ = 0,

(5.5) then implies that q̇ ≡ 0 and hence q̈ ≡ 0. Using the dynamical equation (4.5) in

chapter 4 and the PD control (5.1) we obtain:

H(q)q̈ + C(q, q̇)q̇ + g(q) = Kpe − Kdq̇ + g(q) (5.6)

then Kpe ≡ 0 and because Kp is nonsingular, we have e ≡ 0.

Therefore, control how (5.1) applied to the system (4.5) in chapter 4 achieves global

asymptotic stability and the robot is therefore well-stabilized by the addition of PD-type

control law.
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B. Design of PID controller

A PID torque control for the robot manipulator (4.5) in chapter 4 is shown in Figure

5.2 and given by

τ = Kp (qd − q) + Ki

∫
(qd − q) dt + Kd (q̇d − q̇) + g(q)

= Kpe + Ki

∫
e dt − Kdq̇ + g(q)

(5.7)

where Kp, Ki and Kd are the PID parameters to be tuned to achieve an accepted level

of performance.

Figure 5.2: Structure of PID controller.

The kinetic energy of the manipulator is the scalar function which is represented in

terms of the generalized coordinates and their derivatives as

K = 1
2 q̇T H(q)q̇ (5.8)

The potential energy is expressed in terms of the generalized coordinates using the

relationship

P = qT rcm (5.9)

where rc ∈ ℜn; m denotes the mass. Defining q̇ = ω where ω ∈ ℜn; denotes the angular

velocity vector.

Let rewrite (4.5) in chapter 4 as

ω̇ = −H(q)−1 [C(q, ω)ω + g(q) − τ ] (5.10)

The PID control function (5.7) becomes

τ = Kp(qq − q) + Ki

∫
(qq − q) dt − Kdω + g(q) (5.11)
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Equation (5.1) imply that the resulting system is expressed as

ω̇ = −H(q)−1(C(q, ω)ω − Kp(qq − q) − Ki

∫
(qq − q) dt + Kdω + g(q)) (5.12)

Let the following Lyapunov function candidate

ν (q, ω) = 1
2qT Kqq + qT Kqωω + 1

2ωT H(q)ω + qT rcm (5.13)

where Kp ∈ ℜn×n and Kqω ∈ ℜn×n are positive-definite matrices.

The time derivative of v is

ν̇ (q, ω) = q̇T Kqq + q̇Kqωω + qT Kqωω̇ + ω̇T H(q)ω + 1
2ωT Ḣ(q)ω + rcm (5.14)

According to (5.12), (5.14) and because H(q) is positive definite matrix, therefore it

follows at once that v̇(q, ω) is negative definite.

5.3 Proposed method

The PID or PD problematic is that its control is greatly affected by the parameters

Kp, Ki and Kd. Bad choice for these parameters will make the result of tracking

divergent or will give large errors. To surmount this difficulty and to obtain the best

performances, Kp, Ki and Kd have to be considered as free parameters to be adapted.

The tuning of Kp, Ki and Kd will affect both the transient time interval and steady-state

operation of the response.

PID or PD parameters have to be optimized with a very high accuracy in order to

obtain precise response. This task is very difficult due to the probable unknown system

dynamics. To elucidate this problematic, controller parameter must be considered as

free parameters to be adjusted. In the literature, the considered parameters were first

tuned or adjusted by trial and error method which was a very hard task which takes

long time. In order to surmount this difficulty and to avoid trial and error method,

PSO with Variable Inertia Weight w, in which it will be decreased linearly with the

iteration number (PSOVIW) technique was used to tune and optimize the controller

parameters automatically.

In this section, we propose a new alternative for the adaptation and optimization of

Kp, Ki and Kd based on the PSOVIW algorithm in order to eliminate the steady-state

error, reduce the overshoot amplitude and decrease the rise time. For this purpose,
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we suggest to combine PSOVIW optimization with PID or PD in order to design an

efficient PID (PD) for tow link robot manipulator. The framework of the proposed

method is made of two steps. In the first step represented in Figure 5.3, we present

a PSOVIW-PID (PD) combination working in an offline way to optimize the optimal

values of Kp, Ki and Kd. In the second step, we take the optimized quantities from step

one and insert them into the online PID (PD) controller of tow link robot manipulator

parameters.

The structure of the PSOVIW-PID (PD) parameter optimization system is illustrated

in Figure 5.3. We consider that the input of the system is the vector r (t) =
[

θd1 θd2

]T

and the measured response is y =
[

θ1 θ2

]T

obtained by an angle sensor (encoder).

Note that the error between r and y is set to be an input for the PID (PD) as well

as the optimized parameters Kp, Ki and Kd. Actual tracking errors are used by the

performance evaluator. The performance evaluator estimates the objective function

which is a Mean Absolute Error (MAE) criterion between the actual output and the

desired reference input defined in what follows

MAE = 1
N

(
N∑

k=1

2∑
i=1

|ei,k|
)

. (5.15)

where i = 1, 2 is the number of robot articulations and N is the number of data

samples, such that:

e1 = {θ1d(k) − θ1(k)} is the output error of the first articulation;

e2 = {θ2d(k) − θ2(k)} is the output error of the second articulation.

Based on MAE values, PSOVIW optimizer will estimate the unknown PID (PD) free

parameters by updating the solutions according to PSO algorithm.

The framework of Figure 5.3 will be repeated until a preset number of iterations

will be accomplished and then optimal values of PID parameters are obtained. Note

that the first step in the proposed algorithm is carried out in an offline manner. This is

caused due the fact that PSOVIW requires several repetitions to obtain the optimal

solutions. For each iteration, the whole framework of Figure 5.3 is executed one time

on the entire time interval; consequently, this structure has to be executed several times

which will allow PID free parameters to be adjusted in each iteration.
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Figure 5.3: Block diagram of PSO-PID.

5.3.1 Simulation example

The Particle Swarm Optimization Algorithm (PSO) is combined with Proportional-

Derivative (PD) and Proportional-Derivative-Integral (PID) to design more efficient PD

and PID controllers for robotic manipulators. PSO is used to optimize the controller

parameters Kp (proportional gain), Ki (integral gain) and Kd (derivative gain) to

achieve better performances. The proposed algorithm is performed in two steps: (1)

First, PD and PID parameters will be optimized in an offline manner by the PSO

algorithm. (2) Second, the optimal parameters values are injected in the online control

loop.

To verify the effectiveness of the proposed method, a two link robot manipulator

with two Revolute joints (RR) shown in Figure 4.2 in chapter 4 will be considered. The

block diagram of the control loop under optimization is shown in Figure 5.3.

For simulation purposes we take m1 = m2 = 1 kg and a1 = a2 = 1 m. Since the

dynamic of the considered system is two dimensional, therefore the joint variable and

the generalized force vector will be defined by q =
[

θ1 θ2

]T

and τ =
[

τ1 τ2

]T

,

respectively, with τ1 and τ2 are the torques supplied by the actuators. Note that all

of our codes are written in Matlab language in M-files with sampling period 10−3 s.

For comparison purposes, the optimization performances are evaluated using the MAE

criterion.
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In fact, it is not simple to deduce exact values for Kp, Ki, and Kd giving the best

performances. This will be solved in what follows by using our PSO-PD and PSO-PID

which will allow us to obtain better results with higher precision than the classical trial

and error method. It should be noted that the convergence of the PSO method to the

optimal solution depends on the parameters c1, c2 and w. According to our tests, c1

and c2 best values lie in the interval [0.5, 1.05]; and w ∈ [0.3, 1].

In this investigation two strategies are used for the computation of the inertia weight w

to evaluate the performance of parameters. The inertia weight is introduced into the

equation to balance between the capacities of the global search and the local search, as

it is one of the important factors for the PSO’s convergence which directly affects the

percentage of previous velocities on the current velocity at the current time step for

both strategies: (1) PSO with constant inertia weight w (PSOCIW), in which it will be

fixed at 0.9, this high value will force the particles to fly with a significant influence

of the previous velocity. Note that this method is characterized by an increase in the

convergence speed of PSO algorithm and a large inertia weight factor provides PSO a

global optimum. (2) PSO with variable inertia weight (PSOVIW) was introduced in

PSO’s equations in order to improve the performance of PSO (according to equation

5.16), in which it will be decreased linearly with the iteration number to a small value.

With this low value of w, current velocity will contribute more to the particle’s trajectory

and provides PSO a local optimum, in contrast to the first strategy. For high values of

inertia weight, the global search capability is powerful but the local search capability is

powerless. Likewise, when inertia weight is lower, the local search capability is powerful,

and the global search capability is powerless. This balancing improves the performance

of PSO.

wk = wmax − wmax − wmin

N
k (5.16)

where wmax = 1 and wmin = 0.3 are the initial and final values of the inertia weight,

respectively, and N is the maximum number of iterations used in PSO.

Note that, in this case excellent results will be obtained as will be shown later.

The PSO Parameters of the two strategies PSOCIW and PSOVIW are summarized in

Table 5.1 and Table 5.2.

The best fitness functions (MAEs) and their corresponding optimized controllers

gain parameters (Kp , Ki and Kd) obtained by our proposed approaches (combination
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Table 5.1: Parameters of the PSOCIW algorithm.

Designation Variable Value
Number of particles in a group N 20

Number of iterations I 40, 50, 60, 100
Inertia weight factor w 0.9

Acceleration constants c1, c2 0.5

Table 5.2: Parameters of the PSOVIW algorithm.

Designation Variable Value
Number of particles in a group N 20

Number of iterations I 40, 50, 60, 100
Minimum inertia weight factor wmin 0.3
Maximum inertia weight factor wmax 1

Acceleration constants c1, c2 1.05

PSO-PD and PSO-PID) (see Figure 5.3) are reported in Table 5.3 and Table 5.4,

respectively.

Table 5.3: Optimized parameters and their performances for PD controller using PSO.

Optimization Case I Kp1 Kd1 Kp2 Kd2 MAE
method

PSOCIW

1 40 553.5999 88.3948 376.4420 37.3761 1.0737e-05
2 50 556.1911 87.0808 369.5691 31.2962 9.7914e-06
3 60 558.1911 87.0808 369.5691 31.2962 1.3111e-06
4 100 558.1911 87.0808 369.5691 31.2962 1.3111e-06

PSOVIW

5 40 521.1328 51.3526 544.2311 75.9123 6.6234e-06
6 50 597.0536 62.0977 560.3582 67.0380 1.5341e-06
7 60 816.1067 89.9357 418.7053 43.7568 6.0632e-10
8 100 663.2064 113.7360 695.1595 105.5423 1.5916e-14

Optimization results show that the method is able to find the optimal solution and

reduce the error efficiently within 100 iterations. We note that the best value of MAE

which corresponds to the best estimate of PD and PID gain parameters are given in

case 8 of Table 5.3 and case 7 of Table 5.4, respectively.

The convergence of the fitness functions are shown in Figure 5.4 and Figure 5.5 for

PD and PID controllers; respectively, where we notice that the MAE is decreased at

most after 10 iterations, which confirms the convergence and the stability of optimization

process.
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Figure 5.4: Evolution of the fitness function relative to PD (case of 8 iterations in
Table 5.3).

Figure 5.5: Evolution of the fitness function relative to PID (case of 8 iterations in
Table 5.4).

Simulation results for PD controller are shown in Figure 5.6 where we can see clearly that

the performances of PSOVIW are better than those of PSOCIW for both cases constant

desired trajectory (Figure 5.6(a)) and sinusoidal desired trajectory (Figure 5.6(b)).

We also present in Figure 5.7 and Figure 5.8 the corresponding tracking error and

control action relative to the first articulation. Remark that the tracking error converges
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exponentially to zero.

Same interpretation for PID controller (see Figure 5.9) in which we visualize also an

excellent perturbation rejection performance. Note that the perturbation was applied

at t = 5 s with amplitude 5N . The corresponding tracking error and control action

relative to the first articulation of the robot are presented in Figure 5.10 and Figure 5.11

where we denote perfect performances.

(a)

(b)

Figure 5.6: PD Positions tracking with the best optimized parameters (a) Constant
desired trajectory (b) Sinusoidal desired trajectory.
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Figure 5.7: Tracking position error e1 of the first articulation.

Figure 5.8: Input control action u1 of the first articulation.

To validate the proposed approach, we will present in what follows a short compara-

tive study in which we compare the introduced method with Genetic Algorithm.

Genetic Algorithm will play now the same role as PSO, which means that we replace

in Figure 5.3 the PSO block by a GA block. For this purpose, GA will estimate and

optimize the controller parameters in two steps as in the case of PSO.
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(a)

(b)

Figure 5.9: PID Positions tracking and perturbation rejection with the best optimized
parameters: Constant desired trajectory (a); Sinusoidal desired trajectory (b).

The parameters of GA are chosen as shown in Table 5.5 where we have selected different

generations I = 40, 50, 60, 100 with the following parameters: population size N = 20,

mutation probability M = 0.2 and crossover probability C = 0.5.

GA fitness functions evolution are presented in Figure 5.12 and Figure 5.13 for PD and

PID controllers; respectively, where we notice that the MAE is converged in 20 itera-

tions max, contrary to PSO case which converges in 10 iterations max (see Figure 5.4,
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Figure 5.10: Tracking position error e1 of the first articulation.

Figure 5.11: Input control action u1 of the first articulation.

Figure 5.5, Figure 5.12 and Figure 5.13) which confirm that PSO is faster than GA.

Note also that both PSO methods (PSOCIW and PSOVIW) give more accurate results

compared to GA method (see Table 5.3, Table 5.6, Table 5.4 and Table 5.7).

By this short comparative study, we confirm the effectiveness of the proposed method

and its superiority in speed convergence high resolution (see Figure 5.14, Figure 5.15,

Figure 5.16, Figure 5.17, Figure 5.18 and Figure 5.19).
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Table 5.5: Parameters of the genetic algorithm.

Designation Variable Value
Population size N 20

Generations I 40, 50, 60, 100
Mutation probability M 0.2
Crossover probability C 0.5

Table 5.6: Optimized parameters and their performances for PD controller using GA.

Optimization Case I Kp1 Kd1 Kp2 Kd2 MAE
method

GA

1 40 64.6040 28.6951 46.9204 10.1212 1.8757e-04
2 50 76.2287 30.2603 74.9499 13.9796 6.3897e-05
3 60 52.9399 23.6698 79.5247 14.4101 9.3264e-05
4 100 89.0021 30.7783 49.2828 1.3190 9.9626e-05

Table 5.7: Optimized parameters and their performances for PID controller using GA.

Optimi- Case I Kp1 Ki1 Kd1 Kp2 Ki1 Kd2 MAE
zation

method

GA

1 40 45.9883 3.7957 23.2161 44.7578 10.5608 2.2023 1.0940e-03
2 50 77.2967 7.7502 30.5331 64.3610 49.7162 5.1843 3.3240e-03
3 60 77.6165 7.5343 32.2968 87.5616 19.1396 3.1810 8.7338e-04
4 100 110.8116 15.3839 33.3837 75.5687 22.9882 3.9823 1.5665e-04

To confirm the efficiency of the proposed control, we present in the following a

statistical comparison between the best obtained results of PSOVIW and GA for PID

case. As a statistical analysis tool, we are going to use the error bars for the optimized

parameters to evaluate the accuracy of the control quality. This technique is a graphical

representation of the variability of the optimized parameters (on graphs) to indicate the

uncertainty and provides a general idea of the tracking precision. If the bars are large,

this means we have bad optimization (high variability or high uncertainty), contrary, if

the bars are narrow, then the optimization quality is better (less uncertainty).

We present in Figure 5.20 and Figure 5.21 error bars comparison between the

PSOVIW and GA of the first and the second joints of the robot using the best parameters

given in the last line in Table 5.4 for PSOVIW case and the best parameters given in

the last line in Table 5.7 for GA case. For this purpose, we introduce state random
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Figure 5.12: Evolution of the fitness relative to PD (case 4 iterations in Table 5.6).

Figure 5.13: Evolution of the fitness relative to PID (case 4 iterations in Table 5.7).

noise n(t) with variance one and mean value zero i.e., n(t) ∼ N(0, 1). Figure 5.20 and

Figure 5.21 suggest clearly that widths of the error bars for the PSOVIW method are

the narrowest and more centered compared to the GA case. Error bars in Figure 5.20

and Figure 5.21 confirm the efficiency of PSOVIW method compared to GA method

where we notice that PSOVIW tracking variance is tighter and well centered.
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(a)

(b)

Figure 5.14: PD Positions tracking with the best optimized parameters: Constant
desired trajectory (a); Sinusoidal desired trajectory (b).

5.4 Conclusion

In this chapter, PD and PID gains have been adjusted by particle swarm optimization.

The introduced algorithm was tested on the control of a two link robot manipulator.

Simulation results show that the method gives an excellent performance. Also, the

effectiveness of the approach was confirmed by a short comparative study in which we
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found that it outperforms the genetic algorithm technique for this type of applications,

where the resulting estimates are more precise and the optimization is faster than GA.

Furthermore, we concluded that the PSOVIW approach, which used variable inertia

weight, performed better results than GA and PSOCIW.

Figure 5.15: Tracking position error e1 of the first articulation.

Figure 5.16: Input control action u1 of the first articulation.
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(a)

(b)

Figure 5.17: PID Positions tracking and perturbation rejection with the best optimized
parameters: Constant desired trajectory (a); Sinusoidal desired trajectory (b).
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Figure 5.18: Tracking position error e1 of the first articulation.

Figure 5.19: Input control action u1 of the first articulation.
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Figure 5.20: Error bar comparison of tracking variability of the first joint.
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Figure 5.21: Error bar comparison of tracking variability of the second joint.
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6.1 Introduction

In this chapter, we develop an indirect adaptive control approach based on type-2

fuzzy logic, to control the nonlinear dynamic system defined in chapter 1. In this

chapter, we have presented an indirect adaptive control structure, where the fuzzy

system was used as a fuzzy model to identify the system to be controlled. Another

supervisor regulator is added to stabilize the closed loop system once it tends to

destabilize [1].
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6.2 Induction motor and vector control

The dynamic behaviour of an induction machine in dq synchronous reference is

described by:

dids

dt
= 1

σLs

(−(Rs + (Lm

Lr

)2Rr)ids + σLsωsiqs + LmRr

L2
r

ϕdr + Lm

Lr

ϕqrωr + uds) (6.1)

diqs

dt
= 1

σLs

(−σLsωsids − (Rs + (Lm

Lr

)2Rr)iqs − Lm

Lr

ϕdrωr + LmRr

L2
r

ϕqr + uqs) (6.2)

dϕdr

dt
= Lm

Tr

ids − ϕdr

Tr

+ (ωs − ωr)ϕqr (6.3)

dϕqr

dt
= Lm

Tr

iqs − ϕqr

Tr

− (ωs − ωr)ϕdr (6.4)

dωr

dt
= p

J
Te − B

J
ωr − p

J
TL (6.5)

where uds, uqs are d− and q−axis stator voltages; ids, iqs are d− and q−axis stator

currents; ϕdr, ϕqr are d− and q−axis rotor flux linkages; ωs, ωr are stator angular

frequency and rotor electrical angular speed; Rs, Rr are stator and rotor resistances; Ls,

Lr and Lm are stator inductance, rotor inductance and mutual inductance; Tr = Lr/Rr

is the rotor time constant; σ is the total leakage factor σ = 1 − L2
m/(LsLr); Te, TL

are electromagnetic torque and load torque; p is the number of poles; J is the inertial

moment of the motor; and B is viscous friction coefficient. The produced electromagnetic

torque can be written in terms of stator currents and rotor fluxes as:

Te = pLm

Lr

(iqsϕdr − idsϕqr) (6.6)

The decoupling control of torque and rotor flux can be obtained using the vector

control technique [2, 3]. In the rotor flux oriented vector, the flux is oriented to the

d−axis, so that ϕqr = 0, and kept at a constant rated value ϕdr = ϕr. At steady-state,

slip angular frequency can be expressed as:

ωsl = ωs − ωr = LmRriqs

Lrϕr

(6.7)

the generated motor torque Te (6.6) is reduced to a linear function of the torque current

component iqs:

Te = pLmϕr

Lr

iqs (6.8)
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the application of vector control in the current model of IM leads to the following

equations:
dϕr

dt
= −ϕr

Tr

+ Lm

Tr

ids (6.9)

dN

dt
= −B

J
N + 30pLmϕr

πJLr

iqs − 30
πJ

TL (6.10)

where ϕr is the rotor flux, N is the motor speed expressed in revolution per minute and

(ids, iqs) are the components of stator current.

6.3 Problem formulation

Consider the first order nonlinear dynamical system of the form: ẋ = f(x) + g(x)u + d

y = x
(6.11)

The control objective is to find a feedback control law u such that to make the state x (t)

track a given desired bounded reference trajectory ym (t). It is known that if the plant

model is not known, it is intuitively reasonable to replace it by an estimated model

and use this model for designing the controller. This is the basic idea of an indirect

adaptive controller, in which the controller is designed based on an estimated model of

the plant assuming this model is the true model of the plant, and the estimated model

parameters are updated by an on-line algorithm. If the plant dynamics of (6.11) is

known, i.e., f and g are known and the system is free of external disturbance d, we can

solve the control problem stated above by the so-called feedback linearization method.

In this method, f and g are used to construct the following feedback controller:

u = 1
g(x) [−f(x) + ẏm(t) + ke] (6.12)

where e = e(t) = ym(t) − y(t) is the tracking error, and k is chosen such that the root

of the polynomial h(s) = s + k is in the open left-half of the complex plane. Applying

the control law given in (6.12) to the system given in (6.11) we obtain the following

error dynamics:

ė + ke = 0 (6.13)

where the main objective of the control is lim
t→∞

e(t) = 0. However, since f and g

are unknown, we cannot use them for constructing the control law given by (6.12).
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Therefore, in the following, we replace them by their estimates f̂ and ĝ to construct an

adaptive controller:

uc = uc(x/θf , θg) = 1
ĝ(x/θg)

[
−f̂(x/θf ) + ẏm(t) + ke

]
(6.14)

where θf and θg are parameters of the approximating systems f̂ and ĝ, respectively.

Figure 6.3 shows a bloc diagram of control structure based on IFOC induction motor

fed by a current-controlled PWM voltage-source inverter. The procedure of hysteresis

current control used here consists of a comparison between the current errors against

a fixed hysteresis band. The system uses two control loops: flux control and speed

control to yield Ids and Iqs which represent the controlled flux and torque components

respectively. In order to maintain the stator current in acceptable range, the current

inputs (Ids, Iqs) are transformed into limited inputs (I∗
ds, I∗

qs). The instantaneous three-

phase reference current (i∗
as, i∗

bs, i∗
cs) is obtained from the dq stator current (I∗

ds, I∗
qs) by

applying the inverse Park transform.

 

Figure 6.1: Input interval valued MF.
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6.4 Type-2 fuzzy logic system design

Figure 6.1 depicts the structure of a type-2 FLS; it is quite similar to a type-1 FLS,

the only difference being that the antecedent and/or consequent sets in a type-2 FLS

are type-2. There are five principal parts in a type-2 FLS: fuzzifier, rule base, inference

engine, type-reducer and defuzzifier. The type-2 fuzzy rule base consists of a collection

of IF − THEN rules in the following form:

Ri : IF x1 is F̃ i
1 and ...and xn is F̃ i

n, THEN y is G̃i (6.15)

where F̃ i
j are antecedent type-2 sets (j = 1, 2, ..., n), y ∈ Y is the output, Gi are

consequent type-2 sets, and i = 1, 2, ..., M , and M is the total number of rules.

In an interval type-2 FLS with meet under minimum or product t − norm, the firing

interval W i = [wi, w̄i] of the rule is an interval type-1 set, which is determined by its

left-most and right-most points wi and w̄i such that:

wi = uF̃ i
1
(x1) ∗ · · · ∗ uF̃ i

n
(xn) (6.16)

w̄i = µ̄F̃ i
1
(x1) ∗ · · · ∗ µ̄F̃ i

n
(xn) (6.17)

Figure 6.2: The structure of a type-2 FLS, with its two outputs: type reduced set and
crisp defuzzified value.

Type reduction was proposed by Karnik and Mendel [4]. It is an extension of

type-1 defuzzification method. There exist many kinds of type-reduction [5, 6, 7, 8], and

in our work we propose the introduction of MEKM type-reduction method proposed
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in [4] in the control framework. Let’s call centre of sets (cos) the output result of the

type reduction process. In this paper, we propose to apply type-2 FLSs to obtain

the estimates f̂ and ĝ for each of flux and speed controllers. The antecedent type-2

membership functions µF̃ i
j

will be fixed as shown in Figure 6.2, and the consequent sets

which are the adjustable parameters will be considered as type-1 centroids. Since f̂ and

ĝ are type-2 fuzzy logic systems, their output sets (type-reduced sets) F̃cos and G̃cos

calculated by the centre of sets method will be given as follows:

F̂cos(θ1
f , ..., θM

f , W 1
f , ..., W M

f ) =
∫
θ1

f

...
∫

θM
f

∫
w1

f

...
∫

wM
f

1/

M∑
i=1

wi
fθi

f

M∑
i=1

wi
f

(6.18)

Ĝcos(θ1
g , ..., θM

g , W 1
g , ..., W M

g ) =
∫
θ1

g

...
∫

θM
g

∫
w1

g

...
∫

wM
g

1/

M∑
i=1

wi
gθi

g

M∑
i=1

wi
g

(6.19)

where wi
f and wi

g are the firing intervals corresponding to the ith rule of the type-2 FSs

f̂ and ĝ, respectively, θi
f and θi

g are the free parameters of the type-2 FSs θi
f and θi

g,

respectively. Since each set on the right-hand side of (6.18) and (6.19) is an interval

type-1 set, hence F̃cos and G̃cos are also an interval type-1 sets. So, to find F̃cos and

G̃cos, we just need to compute the two end points of these intervals.

 

Figure 6.3: Antecedent type-2 membership functions.
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In [9, 10] only one type-1 vector of fuzzy basis functions ξ (x) was used to obtain

f̂ and ĝ simultaneously. Unfortunately, this does not carry over to type-2 FLSs, due

to that type-reduction will give for each f̂ and ĝ two different vectors of fuzzy basis

functions. Next we will show how type-2 fuzzy logic will associate with every f̂ and ĝ

a self vector of fuzzy basis functions ξf (x) and ξg (x), respectively. For any value of

f̂ ∈ F̂cos and for any value of ĝ ∈ Ĝcos, f̂ and ĝ can be represented as:

f̂ =

M∑
i=1

wi
fθi

f

M∑
i=1

wi
f

, ĝ =

M∑
i=1

wi
gθi

g

M∑
i=1

wi
g

(6.20)

The maximum values of f̂ and ĝ are f̂r and ĝr respectively, and the minimum values of

f̂ and ĝ are f̂l and ĝl respectively. In the centre of sets (cos)-type reduction method

Karnik and Mendel [7] have shown that the two end points of F̃cos, f̂l and f̂r depend

only on a mixture of wi
f or w̄i

f values, since wi
f ∈ [wi

f , w̄i
f ]. In the same manner, the

two end points of G̃cos, ĝl and ĝr depend only on a mixture of wi
g or w̄i

g values, since

wi
g ∈ [wi

g, w̄i
g]. In this case, f̂l, f̂r, ĝl and ĝr can each be represented as a vector of fuzzy

basis functions (FBF) expansion, i.e.,

f̂l =

M∑
i=1

wi
flθ

i
f

M∑
i=1

wi
fl

=
M∑

i=1
θi

fξi
fl = θT

f ξ
fl

(x) (6.21)

where wi
fl is the firing strength membership (either wi

f or w̄i
f) contributing to the

left-most point f̂l, s.t:

ξi
fl =

wi
fl

M∑
i=1

wi
fl

(6.22)

are the components of the first FBF vector ξ
fl

(x) of f̂ , i.e., ξT
fl

(x) = [ξ1
fl, ..., ξM

fl ] and

θT
f = [θ1

f , ..., θM
f ] is the parameter vector of the type-2 FLS f̂ . Similarly,

f̂r =

M∑
i=1

wi
frθ

i
f

M∑
i=1

wi
fr

=
M∑

i=1
θi

fξi
fr = θT

f ξ
fr

(x) (6.23)

where wi
fr denotes the firing strength membership grad contributing to the right-most

point f̂r and:

ξi
fr =

wi
fr

M∑
i=1

wi
fr

(6.24)
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are the components of the second FBF vector ξ
fr

(x) of f̂ , i.e., ξT

fr
(x) = [ξ1

fr, ..., ξM
fr ].

Similarly, we have for ĝ two FBF vectors ξT
gl

(x) = [ξ1
gl, ..., ξM

gl ] and ξT
gr

(x) = [ξ1
gr, ..., ξM

gr ]

such that:

ĝl =

M∑
i=1

wi
glθ

i
g

M∑
i=1

wi
gl

=
M∑

i=1
θi

gξi
gl = θT

g ξ
gl

(x) (6.25)

ĝr =

M∑
i=1

wi
grθ

i
g

M∑
i=1

wi
gr

=
M∑

i=1
θi

gξi
gr = θT

g ξ
gr

(x) (6.26)

where θT
g = [θ1

g , ..., θM
g ] is the parameter vector of the type-2 FLS ĝ,

ξi
gl =

wi
gl

M∑
i=1

wi
gl

, ξi
gr =

wi
gr

M∑
i=1

wi
gr

(6.27)

To obtain a crisp outputs from the type-2 FLSs f̂ and ĝ, we must defuzzify the

type-reduced sets F̃cos and G̃cos. Since these type reduced sets are interval sets, therefore,

the defuzzified output of f̂ will be the average of f̂l and f̂r, and the defuzzified output

of ĝ will be the average of ĝl and ĝr i.e.,

f̂ = f̂ l + f̂ r

2 , ĝ = ĝl + ĝr

2 (6.28)

Replacing (6.21), (6.23), (6.25), and (6.26) into (6.28) we obtain:

f̂ =
θT

f ξ
fl

+ θT
f ξ

fr

2 = θT
f

[
ξ

fl
+ ξ

fr

2

]
= θT

f ξ
f
() (6.29)

ĝ =
θT

g ξ
gl

+ θT
g ξ

gr

2 = θT
g

[
ξ

gl
+ ξ

gr

2

]
= θT

g ξ
g
() (6.30)

where ξ
f

=
(
ξ

fl
+ ξ

fr

)/
2 is the average FBF vector of f̂ and ξ

g
=
(
ξ

gl
+ ξ

gr

)/
2 is the

average FBF vector of ĝ. In order to compute ξ
fl

and ξ
fr

(ξ
gl

and ξ
gr

), we need to

compute wi
fl and wi

fr,i = 1, 2, ..., M (wi
gl and wi

gr,i = 1, 2, ..., M). This can be done

using the computational method given in [11, 12]. The crisp values of f̂ and ĝ can be

obtained either by (6.28), or by using the FBFs ξ
f

(x) and ξ
g

(x), respectively, as shown

in (6.29) and (6.30). Recall that the above method is applied independently to estimate

the functions f̂ and ĝ for both flux and speed models.

118



CHAPTER 6. INDIRECT ADAPTIVE CONTROL

6.5 Adaptive control structure

In this section, we will develop the IAC-based type-2 fuzzy controller with supervisory

control scheme. Applying (6.11) to (6.14) and after straightforward manipulation, we

obtain the error equation:

e = −ke +
(
f̂(x/θf ) − f(x)

)
+
(
ĝ(x/θg) − g(x)

)
uc − d (6.31)

we know that there exists a unique positive constant p which satisfies the Lyapunov

equation:

−kp − pk = −q (6.32)

where q is an arbitrary positive constant. Let Ve = 1
2pe2, then using (6.31) and (6.32)

we have:

V̇e = −1
2qe2 + pe[

(
f̂(x/θf ) − f(x)

)
+
(
ĝ(x/θg) − g(x)

)
uc − d] (6.33)

then, we must have V̇e ≤ 0 when Ve is greater than a large constant Ṽ , however, from

(6.33) we see that it is very difficult to design the uc such that the last term of (6.33) is

less than zero. We solve this problem by appending another control term (supervisory

control) us to the uc. So, the final control becomes

u = uc + us (6.34)

this additional control term is called a supervisory control. The purpose of this

supervisory control us is to force V̇e ≤ 0 when Ve ≥ Ṽ . Substituting (6.34) into

(6.11) and after some manipulations to force V̇e to be negative, we obtain the following

supervisory control:

us =



sgn(eT Pbc) 1
gL(x)

[∣∣∣f̂ ∣∣∣+ fU + |ĝuc| +
∣∣∣gUuc

∣∣∣+ dm

]
if Ve ≥ Ṽ

0

if Ve < Ṽ

(6.35)

where fU(x) an upper bound of f , gU(x) and gL(x) are an upper and an lower bounds

of g, respectively and dm is the upper bound of a perturbation d. Next, we replace f̂

and ĝ by the type-2 fuzzy logic systems given in (6.29) and (6.30). In order to adjust
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the parameters θf and θg in the type-2 fuzzy logic systems, we derive the following

adaptive laws:

θ̇f = −γ1epξ
f
(x) (6.36)

θ̇g = −γ2epξ
g
(x)uc (6.37)

6.6 Simulation results

To prove the effectiveness of the developed controller, simulations on an IM have

been carried out. The overall control system which has been simulated is shown in

Figure 6.3. The three-phase induction motor is characterized by the parameters shown

in Table 6.1. The current-controlled inverter is fed by 514 V DC voltages, and the

hysteresis bandwidth of stator current is fixed to 0.1A. We admit that the influence of

the flux on the dynamic of the speed is neglected. In this case, the bounds fU , gU and

gL for each controller are chosen in according with (6.9) and (6.10) as follows:

• Speed controller bounds:

fu = f

J
N, gu = 1.1g′, gL = 0.9g′ with g′ = 30pLmϕref

r

πJLr

(6.38)

• Flux controller bounds:

fu = 1.1ϕest
r

Tr

, gu = 1.1g′′, gL = 0.9g′′ with g′′ = Lm

Tr

(6.39)

The desired flux and speed tracking are involved with regulator coefficients tuned

by trial and error to the values given in Table 6.2. The speed response and the speed

reference (1000rpm) are depicted in Figure 6.4(a), which shows good performances in

tracking and an excellent load charge rejection caused by the applied load torque shown

in Figure 6.4(b). The corresponding electromagnetic torque response is generated, as

shown in Figure 6.4(c), to compensate the load charge and to keep speed regulation,

see also current of phase an in Figure 6.4(d). Figure 6.4(e)-(f), it can be seen that the

flux is well oriented along the d−axis of the synchronous frame and controlled to have

a constant value.

In spite of these sudden changes, the controllers continue to work very well, where we

see in Figure 6.5(a)-(b) the speed and flux tracking errors converge to zero in the steady
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Table 6.1: Parameters of the used machine.

Induction Motor 1.5 kW , 220/380 V , 50 HZ
Rr 4.750 Ω
Rs 4.750 Ω
Lr 0.374 H
Ls 0.374 H
Lm 0.158 H
B 0.070 N m s
J 0.021 Kg m2

P 2

Table 6.2: Regulator parameters.

q k p Mf Mg γf γg Vt

Flux controller 10 80 0.00625 15 4 3.75 0.4 0.0001
Speed controller 10 50 0.1 400 640 4 6.4 0.1

Figure 6.4: Speed responses and flux responses of IM, (a) Motor speed, (b) Applied
load torque, (c) Electromagnetic torque, (d) Phase current, (e) Rotor flux, (f) d and q
fluxes.

states. It’s clear from Figure 6.5(c)-(d) that the supervisory control actions of the

two controllers were activated many times in order to stabilize the closed-loop system.
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Simulation results show that the speed and flux type-2 AFC yield excellent dynamic

performances for an induction motor drive and they assure the insensitivity to the

working conditions. In order to evaluate the insensitivity to the parameters variations

of the proposed controller, we keep the same load torque shown in Figure 6.4(b) and at

the same time.

We increase the rotor resistance values with 50% at time 1 sec and 100% at time

2 sec as shown in Figure 6.6(a). It is clearly shown from Figure 6.6(b)-(c) that the

speed and its corresponding tracking errors converge to zero and stay small. Note also

that fluxes responses are very satisfactory as shown in Figure 6.6(d)-(f). To evaluate

the performances of our approach, we will compare it with two other techniques:

an optimized PID controller and a type-1 version of the proposed method. The

parameters of the PID controller (Kp, Kd and Ki) are optimized by particle swarm

optimization (PSO) technique as explained in [13]. During optimization simulations,

swarm populations are set to 20 particles and its coefficients w, c1 and c2 are set to 0.8,

1 and 1.5, respectively [13].

Figure 6.5: Errors of tracking of speed and flux with their corresponding command
laws, (a) Error of speed (b) Error of flux (c) Stator q current (d) Stator d current.
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Figure 6.6: Tests of robustness under parametric variations, (a) Rotor resistance
variation, (b) Speed of the rotor, (c) Error of the speed, (d) Rotor flux, (e) d and q
fluxes, (f) Flux tracking error.

The type-1 version of our type-2 adaptive fuzzy controller is obtained just by

eliminating the lower membership functions form the type-2 membership functions

represented in Figure 6.4 which gives us a type-1 membership functions, and then the

type reducer bloc is eliminated as shown in Figure 6.2. Note that the presented type-2

fuzzy adaptive controller gives more accurate rotor speed compared to the PID and the

type-1 fuzzy controllers as shown in Figure 6.7. For quantitative comparison purposes,

the performance of the proposed method is evaluated by using the MSE (mean square

error) criterion between the reference speed N ref and the actual rotor speed N as

follows:

MSE(speed) = 1
K

K∑
i=1

(
N − N ref

)2
(6.40)

We show in Table 6.3 the corresponding MSEs (speed) for the three controllers

where we confirm the superiority with respect to precision of the proposed controller

over the PID and type-1 fuzzy controller. To compare the amount of energy needed by

the three controllers, let’s define the MSE of the torque with respect to zero torque as
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follows:

MSE(torque) = 1
K

K∑
i=1

(Te − 0)2 = 1
K

K∑
i=1

Te
2 (6.41)

The formula (6.41) can be used as a measure of the control effort. According to

(6.41), we see in Table 6.3 that the motor torque reach its minimum values with our

type-2 fuzzy controller, which is a proof that our proposed controller can achieve better

performances (MSE speed) with minimum energy (MSE torque). To confirm more

the efficiency of the proposed method, let’s check it with a very big challenge which

is the zero speed (low speed) tracking. In this case, a reference speed of 20 rpm is

applied, and the obtained results are depicted in Figure 6.8, where we clearly see the

high performances of the type-2 fuzzy adaptive controller over its type-1 counterpart

and the PID controller (very big ripples in the case of PID and type-1 fuzzy controllers

but small ripples with the type-2 fuzzy controller). This fact is confirmed numerically

in Table 6.4.

Figure 6.7: Superposition of the speed responses of PID, Ordinary FLC and IVFLC
controllers.

Table 6.3: Comparison between PID, ordinary FLC and IVFLC.

PID Type-1 Typ-2
MSE (Speed) 6.7135e+06 2.6960e+06 8.3731e+05
MSE (Torque) 8.8842e+06 8.1005e+06 8.0135e+05
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Figure 6.8: Superposition of the speed responses of PID, ordinary FLC and IVFLC in
low speed case.

Table 6.4: Comparative table in low speed.

PID Type-1 Typ-2
MSE (low Speed) 3.6215e+04 1.7925e+04 1.0466e+03

6.7 Conclusion

In this chapter, an indirect adaptive fuzzy controller based on type-2 fuzzy systems

with a supervisory controller has been designed and applied to the control of an induction

motor drive. Based on Lyapunov synthesis approach, the free parameters of the type-2

fuzzy adaptive controller can be tuned on-line by an adaptive law. It has been shown

that the proposed controller can provide the properties of insensitivity to uncertainties

and external disturbances. Simulation results showed that our proposed approach is

very effective to control an induction motor. The superiority of our algorithm over other

techniques like PID control and the type-1 fuzzy adaptive controller was confirmed by

a short comparative study.
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GENERAL CONCLUSION

The work presented in this dissertation included three major contributions:

1) The synthesis of observers for a class of uniformly observable nonlinear systems

with sampled output. We have shown that the state of the system can be estimated

with a continuous discrete-time high gain observer whereas the observer gain has been

optimized by metaheuristic optimization. We have proved the convergence of this

observer in the disturbance and the uncertain environments.

2) A metaheuristic optimization method using particle swarm optimization for the

adjustment of PD and PID gains. Two PSO approaches were used: PSOCIW and

PSOVIW. In this technique, the algorithms were combined with PID and PD controllers

for the purpose of improving controller effectiveness. The approaches were designed to

optimize offline controller parameters. After that, optimal optimized parameters were

injected into the online control loop. The introduced algorithms were validated on the

control of a two link robot manipulator.

3) Apply an indirect adaptive fuzzy controller based on type-2 fuzzy systems with a

supervisory controller to the control of the nonlinear system.

In chapter I, we have described the nonlinear systems and have presented the basic

concepts and theorems related to Lyapunov which garantee systems stability.

In chapter II we have described the continuous-time high gain and the continuous

discrete-time high gain observers for a class of uniformly observable MIMO nonlinear

systems with the presence of disturbances and uncertainties.

In chapter III we have briefly described the principle of genetic algorithms, particle

swarm optimization algorithm, and biogeography-based optimization algorithm, which

allow providing a sufficiently good solution to an optimization problem.

In chapter IV the observer gain has been optimized by biogeography-based opti-

mization for the estimation of the states used in feedback linearization controller for

128



GENERAL CONCLUSION

the control of two link robot manipulator. Simulation results showed that the optimal

estimations obtained by BBO are much better than the best solutions obtained by PSO

and GA algorithms.

In chapter V two strategies of PSO algorithm has been used for the adaptation

of PI and PID free parameters: PSOVIW and PSOCIW. The obtained results with

PSOVIW strategy show its superiority and efficiency over PSOCIW.

In chapter VI, an indirect adaptive fuzzy controller based on type-2 fuzzy systems

with a supervisory controller has been presented in order to control the dynamical

nonlinear system induction motor drive. The indirect fuzzy adaptive controller was

constructed from a collection of fuzzy IF-THEN rules whose parameters have been

adjusted on-line by an appropriate laws adaptation. It has made according to the

synthesis of Lyapunov to guarantee the stability of closed-loop system. Simulation

results of an induction motor have been performed to study the efficiency of the proposed

method and the superiority of our algorithm. Comparisons with PID control and the

type-1 adaptive controller show that the results are very efficient and achieve good

performances.
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PERSPECTIVE

Our future perspectives are to extend this work for unknown nonlinear systems

when f and g are not known.

1) Use fuzzy estimation for the unknown functions f and g.

2) Apply machine learning to enhance the obtained performances.
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