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Introduction

Fuzzy theory plays an essential role in science and engineering. Several problems arise in
a variety of scientific domains, including engineering, biological, and physical problems.
Fuzzy integral and integro-differential equations can be used to model these situations. It
is necessary to solve many fuzzy integro-differential equations numerically.

To introduce novel computational approach on fuzzy triangular numbers for the pur-
pose of implementing fuzzy arithmetic calculus, the authors of [28] used the extension
principle approximation based on product and Lukasiewicz t-norms.

We are accustomed to working with differential equations, but as we already know,
they are not always difficult to train. Integral equations are a special variant of equation
that is distinguished by its ease of solution and greater relevance to design phenomena.
Integral equations are exciting in science. They are among mathematics’ most important
branches. They are known to impact various fields of applied mathematics and physics.
Indeed, most models developed from industrial engineering and anatomy and physiology
problems are best treated when presented as integral equations. Integral equation methods
are particularly well suited to solving infinite news problems or where the boundaries are
mobile or unknown. These methods are also exact.

Integral equations are equations in which the unknown function is placed under the
integral sign. These are their typical forms:

ˆ
Ω

ψ(s, ϕ(τ))dτ = g(s)

αϕ(s)+β

ˆ
Ω

ψ(s, ϕ(τ))dτ = g(s),

where ϕ is the unknown function, g is the known function called the right hand side and
ψ(., .) is called the kernel.

Bernoulli applied integral equations for the first time around 1730 to examine the
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2 Introduction

oscillations of a stretched cord. Nevertheless, Paul du Bois-Reymond was the first to use
the term integral equation in 1888.

Numerous technical and theoretical studies can be formulated using differential equa-
tions or integral equations, particularly the values specific to the thermoplastic or the
dynamics of structures. (see, [6, 7, 8, 16, 18, 19, 20, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58]). When integral equations are utilized, the boundary conditions
are taken into account. The domain of integral equations is meant to be broader than that
of differential equations. In fact, a differential equation containing an integral operation
would be an integro-differential equation only; the differentiation operation disappears in
front of the new operation, exactly in the same way that the solution of ordinary, algebraic,
or transcendental equations comes after the differentiation operation; there is no reason to
fear ambiguity.

In recent decades, the fields of fuzzy integral equations and fuzzy differential equa-
tions have grown rapidly. The fuzzy differential and integral equations are critical. In
control theory, they have significant theoretical and practical value.

The aim of [30] is to introduce a new computational strategy as well as a kernel that
reproduces the Hilbert space method is used to solve a system of fuzzy Volterra integro-
differential equations via the Gram-Schmidt orthogonalization process. The authors of
[78] exploited GH-differentiability of the first and second derivatives to convert a second-
order implicit form of nonlinear fuzzy Volterra integro-differential equation into four dif-
ferent types of nonlinear integral equations.

The paper [41] aims to demonstrate a differential arithmetic in a quasilinear metric
space. The authors applied derivative concepts in a more general way. In their paper,
the researchers presented a new method of computing derivatives for quasilinear metric
functions via the Hukuhara difference entirely.

The homotopy analysis approximation was proposed in [59] to solve a class of fuzzy
linear Fredholm integral problem. In [63], the authors show that there is only one and
unique solution to the fuzzy integral equation of Volterra type. The purpose of [25] is to
approach the solution of the fuzzy differential and integral equations with arbitrary ker-
nels. The authors used enough conditions to assure that the proposed methods converged.

The goal of [68] is to present a practical iterative procedure of successive approaches
for numerically solving fuzzy two-dimensional integral equations of Hammerstein type
using an ideal quadrature formula for Lipschitz-type fuzzy functions of two-dimensional
type. A nonlinear fuzzy Hammerstein integral equations of Volterra type with constant
delay has been examined in [69] by using Bernoulli wavelet approximation. A fuzzy
nonlinear Hammerstein integral equation of Fredholm type has been considered in [79]
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by using an iterative numerical algorithm via the three-point quadrature formula.

The purpose of this thesis is to develop new methods for solving fuzzy integral and
integro-differential equations.

The following is how the thesis is structured: To begin, in the first chapter, we present
some fuzzy analysis concepts.

In Chapter 2, we demonstrate the existence of a solution for two classes of fuzzy
Fredholm integro-differential systems. First, we use fixed point theory, the successive it-
eration method, and Gronwall’s inequality to investigate a system of Volterra type integro-
differential equations. Second, we investigate a system of integro-differential equations
of the Fredholm type.

This third chapter presents and defends a practical method for solving fuzzy singular
integro-differential equations. First, we show that solutions to two types of fuzzy singu-
lar integro-differential equations exist and are unique using different techniques: Picard’s
theorem for logarithmic kernels and Arzelà–Ascoli theorem for Cauchy ones. Then, using
airfoil polynomials, we present a collocation method for numerically solving the current
problems. We also look at the solutions to the approximate equations and introduce the
concept of error analysis. We obtain two systems of linear equations using new proce-
dures. These are the issues to be investigated. Finally, we use numerical examples to
demonstrate the precision of the proposed approach.

Various arithmetic operations on intuitionistic fuzzy numbers are discussed in Chapter
4. We present some arithmetic operations as well as some differentiability properties for
intuitionistic fuzzy functions. The average of (τ1, τ2)-cut method is also used to define
the de-i-fuzzification of the corresponding intuitionistic fuzzy solution. We investigate
intuitionistic fuzzy integral equations.



Chapter 1

Fuzzy Analysis

This chapter provides basic mathematical background on fuzzy analysis concepts.

Given a reference set X, one can indicate which elements of X belong to a certain
class of X and which do not. This class is then a subset of X ( in the usual sense of set
theory), it is qualified as classical or ordinary in the sequel.
If the membership of certain elements of X to a class is not absolute, we can indicate to
what degree each element belongs to this class. This is then a fuzzy subset of X.

Definition 1.1 ([74, 75, 76]) A classical subset A of X is defined by a characteristic

function χA which takes the value 0 for the elements of X not belonging to A and the

value 1 for those which belong to A :

χA : X → [0, 1].

A fuzzy subset A is a classical subset of X in the particular case where fA only takes

values equal to 0 or 1. A classical subset is therefore a particular case of a fuzzy subset.

The extreme cases of a fuzzy subset of X are respectively X itself, associated with

a membership function fX taking the value 1 for all elements of X , and the empty set,

associated with a membership function null on all X.

We often adopt tthe notation to represent the fuzzy subset A, which indicates for any

element x of X its degree fA(x) of membership in A :

A =
∑
x∈X

fA(x)/x, if X is finite,

4
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A =

ˆ
x

fA(x)/x, if X is infinite.

To be able to easily describe a fuzzy subset A of X, we use some of its characteristics,
essentially those which show to what extent it differs from a classical subset of X.

The first of these characteristics is the support of A, that is to say the set of elements
of X which belong, at least a little, to A. it is denoted supp(A) and it is the part of X on
which the membership function of A is not zero:

supp(A) = {x ∈ X; fA(x) 6= 0}

The second characteristic of A is its height, denoted h(A), that is to say the strongest
degree with which an element of X belongs to A. It is the greatest value taken by its
membership function:

h(A) = sup
x∈X

fA(x).

An important family of fuzzy subsets, which is used in possibility theory, corresponds
to those which are normalized, i.e. for which there exists at least one element of X
belonging absolutely ( with a degree 1 ) to A.More precisely, A is normalized if its height
h(A) is equal to 1.

The set of all elements belonging absolutely ( with degree 1 ) to A is called the kernel of
A and denoted ker(A) :

ker(A) = {x ∈ X; fA(x) = 1}.

If A is an ordinary subset of X, it is normalized and it is identical to its support and
its kernel.

A last characteristic of the fuzzy subset A of X ( when X is finite ) is its cardinality,
evaluating the global degree with which the elements of X belong to A. It is defined by:

IfA is an ordinary subset ofX, its ccardinality is the number of elements that compose
it, according to the classical definition.

Let be consider the interval I := [−1, 1].

Definition 1.2 ([76]) A fuzzy number ρ is a function from R to [0, 1] that meets the fol-
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lowing requirements:

(i) The function ρ is normal, in other words, ∃ t0 ∈ R : ρ (t0) = 1;

(ii) The function ρ is a convex fuzzy set, specifically,

∀s, t ∈ R,∀λ ∈ [0, 1] : ρ (λs+ (1− λ) t) ≥ min {ρ (s) , ρ (t)});

(iii) The function ρ is upper semi-continuous on R;

(iv) The closure {s ∈ R : ρ (s) > 0} is a compact set.

Denoting by F the set of all fuzzy numbers.

Definition 1.3 ([76]) Given ρ ∈ F , the r-cut of ρ is defined by

[ρ]r := {s ∈ R : ρ(s) ≥ r} ,

with

[ρ]0 := {s ∈ R : ρ(s) > 0}.

We note that for all ρ1, ρ2 ∈ F we have ρ1 equal ρ2 if and only if [ρ1]r = [ρ2]r.

A fuzzy number can be represented as parametric form as follows:

[ρ]α = [ρ, ρ]

for some two functions ρ, ρ : I −→ R such that

1. The function ρ is a left continuous function bounded with a non-decreasing value;

2. The function ρ is a right continuous bounded function with a non-increasing value;

3. ∀τ ∈ I : ρ(τ) ≤ ρ(τ).

For two arbitrary fuzzy numbers ρ1 := [ρ1, ρ1] and ρ2 := [ρ2, ρ2], we define the following
arithmetic operations: addition, scalar product, respectively in the following manner

(ρ1 + ρ2) = ρ1 + ρ2, (ρ1 + ρ2) = ρ1 + ρ2,

kρ1 = kρ1, kρ1 = kρ1 for k ≥ 0,

kρ1 = kρ1, kρ1 = kρ1 for k ≤ 0.
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Definition 1.4 ([74, 75, 76]) Let ρ1 := [ρ1, ρ1] and ρ2 := [ρ2, ρ2] two fuzzy numbers. The

Hausdorff distance between ρ1 and ρ2 is determined by

D (ρ1, ρ2) = sup
0≤τ≤1

max
{∣∣ρ2(τ)− ρ1(τ)

∣∣ , |ρ2(τ)− ρ1(τ)|
}
.

Theorem 1.1 ([74, 75, 76]) The Hausdorff distance fulfills the following characteristics:

1. The metric space (F , D) is complete;

2. ∀ρ1, ρ2, σ ∈ F , D(ρ1 + σ, σ + ρ2) = D (ρ1, ρ2);

3. ∀ρ1, ρ2, σ1, σ2 ∈ F , D(ρ1 + σ1, ρ2 + σ2) ≤ D (ρ1, ρ2) +D (σ1, σ2);

4. ∀ρ1, ρ2 ∈ F , D(ρ1 + ρ2, 0̃) ≤ D(ρ1, 0̃) +D(ρ2, 0̃);

5. ∀ρ1, ρ2 ∈ F , k ∈ R, D(kρ1, kρ2) = |k|D (ρ1, ρ2);

6. ∀ρ ∈ F , k1, k2 ∈ R, with k1.k2 ≥ 0, we have D(k1ρ, k2ρ) = |k1 − k2|D(ρ, 0̃),

where 0̃ := χ{0}.

Denoting by F the set of all fuzzy-number function over I:

F := {ϕ : I → F} .

Definition 1.5 ([75, 79]) A function ϕ ∈ F is called continuous in s0 ∈ I if,

∀ε > 0 ∃ δ > 0 : D(ϕ(s), ϕ(s0)) < ε whenever s ∈ I and |s− s0| < δ.

If ϕ is continuous at each s0 ∈ I, we call it fuzzy continuous on I, we denote by CF the

space of all such functions.

Remark 1.1 ([75, 79])

1. A function ϕ ∈ F is referred to as bounded fuzzy function if and only if there is

M ≥ 0 in order for all t ∈ I, we have D(ϕ(t), 0̃) ≤M . We denote by BF the space

of all such functions.

2. We note that CF ⊂ BF.
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3. For any ϕ ∈ F, the functions ϕ
α
(.), ϕ̄α(.) : I → R are defined for all α ∈ [0, 1].

These functions are said the left and right α−level functions of ϕ.

Definition 1.6 ([13, 79]) Let ϕ ∈ BF. Define the modulus of oscillation ωI(ϕ, .) : R+ →
R+ of ϕ on I as follows

ωI(ϕ, δ) := sup{D(ϕ(s), ϕ(t)) : s, t ∈ I : |s− t| ≤ δ}.

If ϕ ∈ CF, then ωI(ϕ, δ) is known as ϕ’s uniform modulus of continuity.

Theorem 1.2 ([13, 79]) The modulus of continuity has the following properties:

1. ∀s, t ∈ I : D(ϕ(s), ϕ(t)) ≤ ωI(ϕ, |s− t|);

2. The function ωI(ϕ, δ) is increasing of δ;

3. ωI(ϕ, 0) = 0;

4. ∀δ1, δ2 ≥ 0 : ωI(ϕ, δ1 + δ2) ≤ ωI(ϕ, δ1) + ωI(ϕ, δ2);

5. ∀δ > 0 ∀n ∈ N : ωI(ϕ, nδ) < nωI(ϕ, δ);

6. ∀δ, λ ≥ 0 : ωI(ϕ, λδ) ≤ (λ+ 1)ωI(ϕ, δ);

7. If J ⊆ I, then ωJ (ϕ, δ) ≤ ωI(ϕ, δ).

Definition 1.7 ([29, 23, 61]) Let f : [a, b] → F , for each partition P := {t0, · · · , tn} of

[a, b] and for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n assume

RP =
n∑
i=1

f(ξi)(ti − ti−1),

ˆ b

a

f(x)dx = lim
∆→0

RP ,

where

∆ := max{|ti − ti−1|, i = 1, · · · , n}

provided that this limit exists in the metric D.

If the fuzzy function f(.)is continuous in the metric D , its definite integral exists and

also,

(

ˆ b

a

f(t;α)dt) =

ˆ b

a

f(t;α)dt and (

ˆ b

a

f(t;α)dt) =

ˆ b

a

f(t;α)dt.
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Lemma 1.1 ([61, 74]) If f, g are Henstock integrable functions and if the function given

by D(f(.), g(.)) is Lebesgue integrable, then

D((FH)

ˆ b

a

f(t)dt, (FH)

ˆ b

a

g(t)dt) ≤ (L)

ˆ b

a

D(f(t), g(t))dt.

Definition 1.8 ([13, 79]) For L ≥ 0, a function f : [a, b]→ F is L−Lipschitz if

D(f(s), f(t)) ≤ L|s− t|

for any s, t ∈ [a, b].

Now, we recall the Hukuhara difference (H-difference) definition given in [15]. To
this end, let ρ1, ρ2 ∈ F . The H-difference has been introduced as a set σ for which
ρ1 	H ρ2 = σ ⇐⇒ ρ1 = ρ2 + σ. The H-difference is unique, but it does not always exist
(a necessary condition for ρ1 	H ρ2 to exist is that ρ1 contains a translate c+ ρ2 of ρ2). A
generalization of the Hukuhara definition is intended to remedy this situation.

Definition 1.9 ([15, 75]) The generalized Hukuhara difference between two fuzzy num-

bers ρ1, ρ2 ∈ F is defined as follows: ρ1 	gH ρ2 = σ ⇐⇒

{
(i)ρ1 = ρ2 + σ;

or(ii)ρ2 = ρ1 + (−σ).

In terms of the α−levels, we have [ρ1 	gH ρ2]α = [min{ρ1(α) − ρ2(α), ρ1(α) −
ρ2(α)},max{ρ1(α) − ρ2(α), ρ1(α) − ρ2(α)}] and if the H-difference exists, then ρ1 	H
ρ2 = ρ1 	gH ρ2; the conditions for the existence of σ = ρ1 	gH ρ2 ∈ F are

case(i) =


σ(α) = ρ1(α)− ρ2(α) and σ(α) = ρ1(α)− ρ2(α),∀ ∈ [0, 1];

with σ(α) increasing, σ(α) decreasing, σ(α) ≤ σ(α).

case(ii) =


σ(α) = ρ1(α)− ρ2(α) and σ(α) = ρ1(α)− ρ2(α),∀ ∈ [0, 1];

with σ(α) increasing, σ(α) decreasing, σ(α) ≤ σ(α).

It is easy to show that (i) and (ii) are both valid if and only if σ is a crisp number. In the

fuzzy case, it is possible that the gH-difference of two fuzzy numbers does not exist. To

address this shortcoming, a new difference between fuzzy numbers was proposed in [15].

Definition 1.10 ([42, 61]) Let f : [a, b]→ F . Fix s0 ∈ [a, b]. We say f is differentiable at

s0, if there exists an element f
′
(s0) ∈ F such that, the Hukuhara difference (H- difference)

f(s0 + h)	 f(s0), f(s0)	 f(s0 − h) exist and the limits ( in the metric D ) presents as

follows:

lim
h→0+

f(s0 + h)	 f(s0)

h
= lim

h→0+

f(s0)	 f(s0 − h)

h
= f

′
(s0)
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Definition 1.11 ([31]) Let f : (a, b) → F and s ∈ (a, b). We say that f is strongly

generalized differentiable at s0, if there exists an element f ′(s0) ∈ F , such that

(i) For all h > 0 sufficiently small, ∃f(s0 + h) 	 f(s0), ∃f(s0) 	 f(s0 − h)and the

following limits hold:

lim
h→0

f(s0 + h)	 f(s0)

h
= lim

h→0

f(s0)	 f(s0 − h)

h
= f

′
(s0)

or

(ii) for all h > 0 sufficiently small, ∃f(s0) 	 f(s0 + h), ∃f(s0 − h) 	 f(s0) and the

following limits hold:

lim
h→0

f(s0)	 f(s0 + h)

−h
= lim

h→0

f(s0 − h)	 f(s0)

−h
= f

′
(s0)

or

(iii) For all h > 0 sufficiently small, ∃f(s0 + h)	 f(s0), ∃f(s0 − h)	 f(s0) and the

following limits hold:

lim
h→0

f(s0 + h)	 f(s0)

h
= lim

h→0

f(s0 − h)	 f(s0)

−h
= f

′
(s0)

or

(iv) for all h > 0 sufficiently small, ∃f(s0) 	 f(s0 + h), ∃f(s0) 	 f(s0 − h) and the

following limits hold:

lim
h→0

f(s0)	 f(s0 + h)

−h
= lim

h→0

f(s0)	 f(s0 − h)

h
= f

′
(s0).

Definition 1.12 Let f : (a, b) → F . We say f is (i)-differentiable on (a, b) if f is differ-

entiable in the sense (i) of Definition 1.11 and similarly for (ii), (iii) and (iv) differen-

tiability.

Theorem 1.3 ([13, 61]) Let f : [a, b] → F be a bounded and Henstock integrable func-

tion. Then for any partition a = s0 < s1 < · · · < sn = b and ζi ∈ [si−1, si], we have

D((FH)

ˆ b

a

f(t)dt,
n∑
i=1

(si − si−1)f(ζi)) ≤
n∑
i=1

(si − si−1)ω[si−1,si](f, si − si−1).

Particular election of the point ζi leads to the following result.
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Here, we present the quadrature rules obtained in [13], which contain as particular

cases with the three point, middle point and trapezoidal rules.

Corollary 1.1 ([13, 61]) Let f : [a, b] → F be a bounded and Henstock integrable

function. Then:

1. D((FH)
´ b
a
f(t)dt, (b− a)f( (a+b)

2
)) ≤ (b−a)

2
ω[a,b](f,

(a−b)
2

);

2. D((FH)
´ b
a
f(t)dt, (a−b)

2
[f(a) + f(b)] ≤ (b−a)

2
ω[a,b](f,

(b−a)
2

),

3. D((FH)
´ b
a
f(t)dt, (b−a)

6
[f(a) + 4f( (a+b)

2
) + f(b)]) ≤ 3(b− a)ω[a,b](f,

(b−a)
6

).

Let (X ;D) be a metric space. Consider the operator T : X → X and the following
fixed points set FT of T

FT := {x ∈ X , T (x) = x} .

Define the iterate operators of T as follows

T 0 := IX , T 1 := T, and T n+1 := TT n, for all n ∈ N.

Following are the definitions for the Picard, c-Picard, and weakly Picard operators.

Definition 1.13 ([23]) We say that T is Picard operator if there exists x∗ ∈ X such that:

(a) FT = {x∗};

(b) The sequence (T n(x0))n∈N converges to x∗, for all x0 ∈ X .

Definition 1.14 ([23]) We say that T is c-Picard operator if T is Picard operator and

d(x, x∗) ≤ cd(x, T (x)), for all x ∈ X , with c > 0.

Definition 1.15 ([23]) We say that T is weakly Picard operator if the sequence (T n(x))n∈N

converges to x for all x ∈ X , moreover, the limit x is a fixed point of T .

Theorem 1.4 (Contraction Principle).([23]) We assume that T : X → X is an α−contraction

(α < 1). Subject to these conditions, we have:

(i) FT = {x∗};

(ii) x∗ = lim
n→∞

T n(x0), for all x0 ∈ X ;
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(iii) D(x∗, T n(x0)) ≤ αn

1−αD(x0, T (x0)).

Definition 1.16 ([4]) We assume thatX is a Banach space. We say that T is compact, if it

maps bounded sets of X into relatively compact sets. Moreover, T is said to be completely

continuous, if it is continuous and compact.

In the special case, where X = CF; we use the Arzela-Ascoli’s Theorem to demonstrate
the compactness of T.

Theorem 1.5 ([4]) A family of continuous functions on I is compact in CF if and only if

it’s equicontinuous and uniformly bounded.

The Schauder’s fixed point Theorem is presented at the end of this section.

Theorem 1.6 ([4]) Let X be a Banach space with a closed convex subset K. If T : X →
X is continuous and K = T (K) is compact, then T has a fixed point in K.



Chapter 2

On the existence and uniqueness of
solutions to two fuzzy
integro-differential systems

In recent decades, the fields of fuzzy integral equations and fuzzy differential equations
have grown rapidly. The fuzzy differential and integral equations are critical. In control
theory, they have significant theoretical and practical value.

In this chapter, we prove some results concerning the existence of a solution of two
classes of fuzzy Fredholm integro-differential systems. First we examine a system of
Volterra type integro-differential equations using fixed point theory, the successive iter-
ation method, and Gronwall’s inequality. Second, we investigate a system of Fredholm
type integro-differential equations.

Let us begin by recalling the concept of vector-valued metric spaces, (see [2]).
Let X be a nonempty set. A mapping Dv : X ×X → Rn

+ is called a vector-valued metric
on X if the following conditions are satisfied:

1. Dv(x, y) = 0n ∈ Rn
+ ⇔ x = y, for all x, y ∈ X;

2. Dv(x, y) = Dv(y, x), for all x, y ∈ X;

3. Dv(x, y) ≤ Dv(x, z) +Dv(z, y), for all x, y, z ∈ X;

The following are examples of vector-valued metrics:

Example 2.1 Let X := (C[a, b])2 and D′ : ((C[a, b])2 × (C[a, b])2) → R2
+, defined

13
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for all x = (x1, x2), y = (y1, y2) ∈ (C[a, b])2 by

D′(x, y) :=

(
max
t∈[a,b]

|x1(t)− y1(t)|, max
t∈[a,b]

|x2(t)− y2(t)|
)
.

Example 2.2 Let X := (C[a, b])2 and Λ′ : ((C[a, b])2 × (C[a, b])2) → R2
+, defined

by Λ′(x, y) :=

((´ b
a
|x1(t)− y1(t)|2dt

) 1
2
,
(´ b

a
|x2(t)− y2(t)|2dt

) 1
2

)
, for all x =

(x1, x2), y = (y1, y2) ∈ (C[a, b])2. A nonempty set X endowed with a vector-valued

metric D′ is also called a Rn
+−metric space and it is denoted by the pair (X,D′).

The notions of convergent sequence, Cauchy sequence, completeness, open and closed
subset, etc. are similar to those described for conventional metric spaces.

2.1 Fuzzy Volterra integro-differential system

This section addresses the fuzzy Volterra integro-differential equation system of the form

U ′(s) = F (s, U(s)) +
ś

a

K(s, t, U(t))dt, s ∈ J = [a, b],

U(a) = U0,
(2.1)

where the fuzzy functions are given by:

U ′(s) := [u
′

1(s), · · · , u′n(s)]T ,

U(s) := [u1(s), · · · , un(s)]T ,

K(s, t, U(t)) := [k1(s, t, u1(t), · · · , un(t)), · · · , kn(s, t, u1(t), · · · , un(t))]T ,

F (s, U(s)) := [f1(s, , u1(s), · · · , un(s)), · · · , fn(s, , u1(s), · · · , un(s))]T ,

U(a) := [u0,1, · · · , u0,n]T ,

Furthermore, F , K are a known functions in C(J × Fn,Fn) and C(J × J × Fn,Fn),
respectively, while U is the unknown.

The purpose of this work is to prove that the problem (2.1) has a solution U ∈
C1(J ,Fn). In order to accomplish this goal, it is important to present some definitions
for the function U ∈ C1(J ,Fn).

Definition 2.1 1. The function U is called a proper solution of (2.1) if it is either (i)

or (ii)-differentiable on J . Moreover, U ′ is also a solution of (2.1).
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2. The function U is called a mixed solution of (2.1) if J is partitioned into a finite

number of nonempty sub-intervals such that on some of them, U is (i)-differentiable

and on remainders (ii)-differentiable and also it satisfies (2.1).

As in [5], we have the following Lemma:

Lemma 2.1 The problem (2.1) is equivalent to one of the following fuzzy integral equa-

tions system

(E1)

U(s) = U0 +

sˆ

a

F (t, U(t))dt+

sˆ

a

tˆ

a

K(t, τ, U(τ))dτdt, s ∈ J ,

if U is (i)-differentiable;

(E2)

U(s) = U0 	 (−1)

sˆ

a

F (t, U(t))dt	 (−1)

sˆ

a

tˆ

a

K(t, τ, U(τ))dτdt s ∈ J ,

if U is (ii)-differentiable;

(E3)

U(s) =


U0 +

ś

a

F (t, U(t))dt+
ś

a

t́

a

K(t, τ, U(τ))dτdt, s ∈ [a, c],

U(c)	 (−1)
ś

c

F (t, U(t))dt	 (−1)
ś

c

t́

a

K(t, τ, U(τ))dτdt, s ∈ [c, b],

if there exists a point c ∈ (a, b) such thatU is (i)-differentiable on [a, c] and (ii)-differentiable

on [c, b].

Let us consider the nonlinear mappings A : C(J ,Fn)→ C(J ,Fn), corresponding with
(E1) in Lemma 2.1. Define

(AΦ) (s) := U0 +

sˆ

a

F (t,Φ(t))dt+

sˆ

a

tˆ

a

K(t, τ,Φ(τ))dτdt, s ∈ J .

where, (AΦi) (s) = u0i+
ś

a

fi(t, ϕ1(t), · · · , ϕn(t))dt+
ś

a

t́

a

ki(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt, i =

1, · · · , n, with Φ = [ϕ1, · · · , ϕn]t.
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Lemma 2.2 If the valued functions K : J ×J ×Fn → Fn and F : J ×Fn → Fn are

continuous and bounded. Then, A is compact.

Proof : Let Φ be an arbitrary bounded set in C(J ,Fn). We will prove that AΦ is
relatively compact.

Since fi and ki are bounded, there exist Mi, Ni ≥ 0 such that

D(fi(t, ϕ1(t), · · · , ϕn(t)), 0̃) ≤Mi, for all t ∈ J, i = 1, · · · , n,

and

D(ki(t, τ, ϕ1(τ), · · · , ϕn(τ)), 0̃) ≤ Ni, for all t, τ ∈ J, i = 1, · · · , n.

Assume that s1 ≥ s2. So,

Dv ((AΦ) (s1), (AΦ) (s2)) =


D ((AΦ1) (s1), (AΦ1) (s2))

...
D ((AΦn) (s1), (AΦn) (s2))



=



D(u01 +
s1́

a

f1(t, ϕ1(t), · · · , ϕn(t))dt+
s1́

a

t́

a

k1(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt,

u01 +
s2́

a

f1(s, ϕ1(t), · · · , ϕn(t))dt+
s2́

a

t́

a

k1(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt)

...

D(u0n +
s1́

a

fn(t, ϕ1(t), · · · , ϕn(t))dt+
s1́

a

t́

a

kn(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt,

u0n +
s2́

a

fn(t, ϕ1(t), · · · , ϕn(t))dt+
s2́

a

t́

a

kn(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt)
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≤



D(
s1́

a
f1(t, ϕ1(t), · · · , ϕn(t))dt,

s2́

a
f1(t, ϕ1(t), · · · , ϕn(t))dt)

+D(
s1́

a

t́

a
D(k1(t, τ, ϕ1(τ), · · · , ϕn(τ)), )dτdt,

s2́

a

t́

a
D(k1(t, τ, ϕ1(τ), · · · , ϕn(τ)))dτdt)

...

D(
s1́

a
fn(t, ϕ1(t), · · · , ϕn(t))dt,

s2́

a
fn(t, ϕ1(t), · · · , ϕn(t))dt)

+D(
s1́

a

t́

a
D(kn(t, τ, ϕ1(τ), · · · , ϕn(τ)), )dτdt,

s2́

a

t́

a
D(kn(t, τ, ϕ1(τ), · · · , ϕn(τ)))dτdt)



≤


D(

s1́

s2

f1(t, ϕ1(t), · · · , ϕn(t))dt, 0̃) +D(
s1́

s2

t́

a
D(k1(t, τ, ϕ1(τ), · · · , ϕn(τ)), )dτdt, 0̃)

...

D(
s1́

s2

fn(t, ϕ1(t), · · · , ϕn(t))dt, 0̃) +D(
s1́

s2

t́

a
D(kn(t, τ, ϕ1(τ), · · · , ϕn(τ)), )dτdt, 0̃)



≤



s1́

s2

D(f1(t, ϕ1(t), · · · , ϕn(t)), 0̃)dt+
s1́

s2

t́

a
D(D(k1(t, τ, ϕ1(τ), · · · , ϕn(τ)), 0̃)dτdt

...
s1́

s2

D(fn(t, ϕ1(t), · · · , ϕn(t)), 0̃)dt+
s1́

s2

t́

a
D(D(kn(t, τ, ϕ1(τ), · · · , ϕn(τ)), 0̃)dτdt



≤


(s1 − s2)M1

...

(s1 − s2)Mn

+


(s1 − s2)(b− a)N1

...

(s1 − s2)(b− a)Nn



= (s1 − s2)


M1

...

Mn

+ (s1 − s2)(b− a)


N1

...

Nn


≤ (s1 − s2)[M + (b− a)N ],

where

M :=


M1

...

Mn

 , and N =


N1

...

Nn

 .
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We have to prove the uniformly boundedness of

Dv

(
(AΦ) (s), 0̃n

)
=


D
(
(Aϕ1) (s), 0̃

)
...

D
(
(Aϕn) (s), 0̃

)
 =

=


D(u01 +

ś

a
f1(t, ϕ1(t), · · · , ϕn(t))dt+

ś

a

t́

a
k1(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt, 0̃)

...

D(u0n +
ś

a
fn(t, ϕ1(t), · · · , ϕn(t))dt+

ś

a

t́

a
kn(t, τ, ϕ1(τ), · · · , ϕn(τ))dτdt, 0̃)



≤


D(u01 , 0̃) +

ś

a
D(f1(t, ϕ1(t), · · · , ϕn(t)), 0̃)dt+

ś

a

t́

a
D(k1(t, τ, ϕ1(τ), · · · , ϕn(τ)), 0̃)dτdt

...

D(u0n , 0̃) +
ś

a
D(fn(t, ϕ1(t), · · · , ϕn(t)), 0̃)dt+

ś

a

t́

a
D(kn(t, τ, ϕ1(τ), · · · , ϕn(τ)), 0̃)dτdt



≤


D(u01 , 0̃)

...

D(u0n , 0̃)

+ (b− a)




M1

...

Mn

+ (b− a)


N1

...

Nn




≤ W + (b− a)(M + (b− a)N),

where

W :=


D(u01 , 0̃)

...

D(u0n , 0̃)

 , and 0̃n :=


0̃
...

0̃

 .
�

We will prove the following Theorem:

Theorem 2.1 Let fi : J × Fn → F and ki : J × J × Fn → F , for all i = 1, .., n

be bounded continuous functions. Then the problem (2.1) has at least a proper solution

which is (i)-differentiable on J . Moreover, if fi and ki are Lipschitz continuous relative

to their last argument, for all i = 1, .., n, i.e. there exist the real numbers Lij, Cij >
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0 i, j = 1, .., n, such that for all s, t ∈ I, ui, vi ∈ F , i = 1, .., n, we have

D(fi(s, u1, · · · , un), fi(s, v1, · · · , vn) ≤ Li1D(u1, v1) + · · ·+ LinD(un, vn),

D(ki(s, t, u1, · · · , un), ki(s, t, v1, · · · , vn) ≤ Ci1D(u1, v1) + · · ·+ CinD(un, vn).

Then, the proper solution of the problem (2.1) is unique on J .

Proof : Let us define the closed and convex ball of C(J ,Fn).

B := {U ∈ C(J ,Fn) : D∗v
(
U, 0̃n

)
≤ W + (b− a) (M + (b− a)N)}, where

D∗v
(
U, 0̃n

)
= sup

s∈J
Dv

(
U(s), 0̃n

)
From Lemma 2.2, we deduce the continuity and compactness of K : J ×J ×Fn → Fn.

In order to use Schauder’s fixed point Theorem, we have to show that AB ⊆ B.

Or equivalently,

Dv(AU(s), 0̃n) ≤ W + (b− a) (M + (b− a)N) , for all U ∈ B.

So,

D∗v(AU, 0̃n) ≤ W + (b− a) (M + (b− a)N) .

Thus, we conclude that AU ∈ B.

From fixed point Theorem, A has at least one fixed point U, corrresponding to proper
solution of (2.1) .

We have to prove uniqueness of solution, let U, V ∈ C(J ,Fn) are two solutions of
(2.1). Then,

Dv (U(s), V (s)) =



D(u01 +
ś

a
f1(t, u1(t), · · · , un(t))dt+

ś

a

t́

a
k1(t, τ, u1(τ), · · · , un(τ))dτdt,

u01 +
ś

a
f1(t, v1(t), · · · , vn(t))dt+

ś

a

t́

a
k1(t, τ, v1(τ), · · · , vn(τ))dτds)

...

D(u0n +
ś

a
fn(t, u1(t), · · · , un(t))dt+

ś

a

t́

a
kn(t, τ, u1(τ), · · · , un(τ))dτdt,

u0n +
ś

a
fn(t, v1(t), · · · , vn(t))dt+

ś

a

t́

a
kn(t, τ, v1(τ), · · · , vn(τ))dτdt))
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≤


ś

a
D(f1(t, u1(t), · · · , un(t)), f1(t, v1(t), · · · , vn(t)))dt

...
ś

a
D(fn(t, u1(t), · · · , un(t)), fn(t, v1(t), · · · , vn(t)))dt



+


ś

a

t́

a
D(k1(t, τ, u1(τ), · · · , un(τ)), k1(t, τ, v1(τ), · · · , vn(τ)))dτdt

...
ś

a

t́

a
D(kn(t, τ, u1(τ), · · · , un(τ)), kn(t, τ, v1(τ), · · · , vn(τ)))dτdt



≤


ś

a

n∑
j=1

L1jD(uj(t), vj(t))dt

...
ś

a

n∑
j=1

LnjD(uj(t), vj(t))dt

+



ś

a

t́

a

n∑
j=1

C1jD(uj(τ), vj(τ))dτdt

...
ś

a

t́

a

n∑
j=1

CnjD(uj(τ), vj(τ))dτdt



≤


n∑
j=1

L1j

ś

a
D(uj(t), vj(t))dt

...
n∑
j=1

Lnj
ś

a
D(uj(t), vj(t))dt

+



n∑
j=1

C1i

t́

a

ś

a
D(uj(t), vj(t))dtdτ

...
n∑
j=1

Cnj
t́

a

ś

a
D(uj(t), vj(t))dtdτ



≤


n∑
j=1

(
L1j + C1j(b− a)

) ś

a
D(uj(t), vj(t))dt

...
n∑
j=1

(
Lnj + Cnj(b− a)

) ś

a
D(uj(t), vj(t))dt .


The Gronwall’s inequality for the relation

Dv(U(s), V (s)) ≤


n∑
j=1

(
L1j + C1j(b− a)

) ś

a
D(uj(t), vj(t))dt

...
n∑
j=1

(
Lnj + Cnj(b− a)

) ś

a
D(uj(t), vj(t))dt


implies that Dv(U(s), V (s)) ≤ 0 on the interval J . Thus, U(s) = V (s), for all s ∈ J . �
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Theorem 2.2 Let fi : J × Fn → F and ki : J × J × Fn → F , i = 1, .., n be

bounded continuous and Lipschitz continuous functions as mentioned in Theorem 2.1. Let

the sequence Un : J → Fn defined by U0(s) = U0 and

Un+1(s) = U0 	 (−1).

ˆ s

a

F (t, Un(t))dt	 (−1).

ˆ s

a

ˆ t

a

K(t, τ, Un(τ))dτdt, n ∈ N.

Then, the problem (2.1) has a unique proper solution which is (ii)-differentiable on J .
Furthermore, the successive iteration

U0(s) = U0,

Un+1(s) = U0 	 (−1).
´ s
a
F (t, Un(t))dt	 (−1).

´ s
a

´ t
a
K(t, τ, Un(τ))dτdt,

(2.2)

converges to this solution, where U0(s) = U0 =


u01
...

u0n

 , and Un =


un1

...

unn

 .

Proof : We have

U1 =


u11
...
u1n

 , U0 =


u01
...
u0n

 .
Hence

Dv (U1, U0) =

=


D(u01 	 (−1)

ś

a
f1(t, u01(t), · · · , u0n(t))dt	 (−1)

ś

a

t́

a
k1(t, τ, u01(τ), · · · , u0n(τ))dτdt, u01)

...

D(u0n 	 (−1)
ś

a
fn(t, u01(t), · · · , u0n(t))dt	 (−1)

ś

a

t́

a
kn(t, τ, u01(τ), · · · , u0n(τ))dτdt, u0n)
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≤


ś

a
D(f1(t, u01(t), · · · , u0n(t)), 0̃)dt

...
ś

a
D(fn(t, u01(t), · · · , u0n(t)), 0̃)dt

+


ś

a

t́

a
D(k1(t, u01(τ), · · · , u0n(τ)), 0̃)dτdt

...
ś

a

t́

a
D(kn(t, u01(τ), · · · , u0n(τ)), 0̃)dτdt



≤


M1(s− a)

...

Mn(s− a)

+


(s−a)2

2! N1

...
(s−a)2

2! Nn

 .

Moreover,

Dv (Un+1(s), Un(s)) =


D(un+11(s), un1(s))

...

D(un+1n(s), unn(s))



≤



D(u01 	 (−1)
´ s
a f1(t, un1(t), · · · , unn(t))dt	

(−1)
´ s
a

´ t
a k1(t, τ, un1(τ), · · · , unn(τ))dτdt,

u01 	 (−1)
´ s
a f1(t, un−11(t), · · · , un−1n(t))dt	

(−1)
´ s
a

´ t
a k1(t, τ, un−11(τ), · · · , un−1n(τ))dτdt)

...

D(u0n 	 (−1)
´ s
a fn(t, un1(t), · · · , unn(t))dt	

(−1)
´ s
a

´ t
a kn(t, τ, un1(τ), · · · , unn(τ))dτdt,

u0n 	 (−1)
´ s
a fn(t, un−11(t), · · · , un−1n(t))dt	

(−1)
´ s
a

´ t
a kn(t, τ, un−11(τ), · · · , un−1n(τ))dτdt)
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≤


´ s
a D(f1(t, un1(t), · · · , unn(t)), f1(t, un−11(t), · · · , un−1n(t)))dt

...´ s
a D(fn(t, un1(t), · · · , unn(t)), fn(t, un−11(t), · · · , un−1n(t))dt



+


´ s
a

´ t
a D(k1(t, τ, un1(τ), · · · , unn(τ)), k1(t, τ, un−11(τ), · · · , un−1n(τ))dτdt

...´ s
a

´ t
a D(kn(t, τ, un1(τ), · · · , unn(τ)), kn(t, τ, un−11(τ), · · · , un−1n(τ)))dτdt



≤


´ s
a

n∑
j=1

L1jD(unj (t), un−1j (t))dt

...´ s
a

n∑
j=1

LnjD(unj (t), un−1j (t))dt

+


´ s
a

´ t
a

n∑
j=1

C1jD(unj (τ), un−1j (τ))dτdt

...´ s
a

´ t
a

n∑
j=1

CnjD(unj (τ), un−1j (τ))dτdt



Dv(Un+1(s), Un(s)) ≤


n∑
j=1

L1j

´ s
a D(unj (t), un−1j (t))dt

...
n∑
j=1

Lnj
´ s
a D(unj (t), un−1j (t))dt



+


n∑
j=1

C1j

´ t
a

´ s
a D(unj (t), un−1j (t))dtdτ

...
n∑
j=1

Cnj
´ t
a

´ s
a D(unj (t), un−1j (t))dtdτ

 .

Also,

Dv(Un+1(s), Un(s)) ≤


n∑
j=1

(L1j + C1j(b− a))
´ s
a D(unj (t), un−1j (t)))dt

...
n∑
j=1

(Lnj + Cnj(b− a))
´ s
a D(unj (t), un−1j (t)))dt



≤


n∑
j=1

(L1j + C1j(b− a))n
[

(s−a)n+1

(n+1)! M1 + (s−a)n+2

(n+2)! N1

]
...

n∑
j=1

(Lnj + Cnj(b− a))n
[

(s−a)n+1

(n+1)! Mn + (s−a)n+2

(n+2)! Nn

]
 .



24 Chapitre 2 : Fuzzy Volterra integro-differential system

This shows that (Un)n≥0 is a Cauchy sequence in C(J ,Fn). Thus, there exists U ∈ C(J ,Fn)

such that (Un)n≥0 converges to U.

Now, we show that U is a solution of the problem (2.1). We have
D
(
u1(s) + (−1)

´ s
a f1(t, u1(t), · · · , un(t))dt+ (−1)

´ s
a

´ t
a k1(t, τ, u1(τ), · · · , un(τ))dτdt, u01

)
...

D
(
un(s) + (−1)

´ s
a fn(t, u1(t), · · · , un(t))dt+ (−1)

´ s
a

´ t
a kn(t, τ, u1(τ), · · · , un(τ))dτdt, u0n

)


=



D
(
u1(s) + (−1)

´ s
a f1(t, u1(t), · · · , un(t))dt+ (−1)

´ s
a

´ t
a k1(t, τ, u1(τ), · · · , un(τ))

)
dτdt,

un+11(s) + (−1)
´ s
a f1(t, un1(t), · · · , unn(t))dt) + (−1)

´ s
a

´ t
a k1(t, τ, un1(τ), · · · , unn(τ))

)
dτdt

...

D
(
un(s) + (−1)

´ s
a fn(t, u1(t), · · · , un(t))dt+ (−1)

´ s
a

´ t
a kn(t, τ, u1(τ), · · · , un(τ))dτdt,

un+1n(s) + (−1)
´ s
a fn(t, un1(t), · · · , unn(t))dt+ (−1)

´ s
a

´ t
a kn(t, τ, un1(τ), · · · , unn(τ))

)
dτdt



≤



D
(
u1(s), un+11(s)

)
+
´ s
a D

(
f1(t, u1(t), · · · , un(t)), f1(s, un1(t), · · · , unn(t))

)
dt +

´ s
a

´ t
a D
(
k1(t, τ, u1(τ), · · · , un(τ)), k1(t, τ, un1(τ), · · · , unn(τ))

)
dτdt

...

D
(
un(s), un+1n(s)

)
+
´ s
a D

(
fn(t, u1(t), · · · , un(t)), fn(t, un1(t), · · · , unn(t))

)
dt +

´ s
a

´ t
a D
(
kn(t, τ, u1(τ), · · · , un(τ)), kn(t, τ, un1(τ), · · · , unn(τ))

)
dτdt



≤



D
(
u1(s), un+11(s)

)
+
´ s
a

[
L11D

(
u1(t), un1(t)

)
+ · · ·+ L1nD

(
un(t), unn(t)

)]
dt+

´ s
a

´ t
a

[
C11D

(
u1(τ), un1(τ)

)
+ · · ·+ CnnD

(
un(τ), unn(τ)

)]
dτdt

...

D
(
un(s), un+1n(s)

)
+
´ s
a D

[
Ln1D

(
u1(t), un1(t)

)
+ · · ·+ Lnn

(
un(t), unn(t)

)]
dt+

´ s
a

´ t
a

[
Cn1D

(
u1(τ), un1(τ)

)
+ · · ·+ CnnD

(
un(τ), unn(τ)

)]
dτdt


.

The right-hand side tends to 0̃ as n→∞. Hence,

ui(s) + (−1)

ˆ s

a
fi(t, u1(t), · · · , un(t))dt+ (−1)

ˆ s

a

ˆ t

a
ki(t, τ, u1(τ), · · · , un(τ))dτdt = u0i .
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The uniqueness is proven by using Gronwall’s inequality, which is similar to the proof of Theorem

2.1. �

Now, we prove the following Theorem:

Theorem 2.3 Let fi : J ×Fn,Fn and ki : J ×J ×Fn → Fn, i = 1, · · · , n be bounded

continuous functions. Let U
¯

be a solution of the problem (2.1) on [a, c] which is (i)-

differentiable. Assume that the functions fi : [c, b]×Fn → F and ki : [c, b]×[c, b]×Fn →
F , i = 1, .., n are Lipschitz continuous relative to their last argument. In addition, the

sequence

U0(s) = U
¯

(c),

Un+1(s) = U
¯

(c)	 (−1).

ˆ s

c

F (t, Un(t))dt	 (−1).

ˆ s

c

ˆ c

a

K(t, τ,U
¯

(τ))dτdt

	 (−1)

ˆ s

c

ˆ t

c

K(t, τ, Un(τ))dτdt, n ∈ N

is well-defined. Then, the problem 2.1 has a mixed solution.

Proof : Because all of the conditions of Theorem 2.1 are satisfied on [a, c], there
exists a U

¯
solution to the problem (2.1) on [a, c]. We show that the introduced sequence

in the Theorem is a Cauchy sequence in C([c, b],Fn).

D′(U1(s), U0(s)) =


D
(

u
¯11

(s), u
¯01

)
...

D
(

u
¯1n

(s), u
¯0n

)
 =


D
(

u
¯01 	 (−1)

´ s
c f1(s, u

¯1(t), · · · , u
¯n

(t))dt	 (−1)
´ s
c

´ t
a k1(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt, u
¯01

)
...

D
(

u
¯0n 	 (−1)

´ s
c fn(s, u

¯1(t), · · · , u
¯n

(t))dt	 (−1)
´ s
c

´ t
a kn(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt, u
¯0n

)
 ≤


´ s
c D

(
f1(t, u

¯1(t), · · · , u
¯n

(t)), 0̃
)
dt+

´ s
c

´ t
a D
(
k1(t, τ, u

¯1(τ), · · · , u
¯n

(τ)), 0̃
)
dτdt

...´ s
c D

(
fn(t, u

¯1(t, · · · , u
¯n

(t)), 0̃
)
dt+

´ s
c

´ t
a D
(
kn(t, τ, u

¯1(τ), · · · , u
¯n

(τ)), 0̃
)
dτdt
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≤


´ s
c M1dt

...´ s
c Mndt

+


´ s
c

´ t
a N1dτdt

...´ s
c

´ t
a Nndτdt



=


´ s
c M1dt

...´ s
c Mndt

+


´ s
c

´ c
a N1dτdt+

´ s
c

´ t
c N1dτdt

...´ s
c

´ c
a Nndτdt+

´ s
c

´ t
c Nndτdt



≤


M1(s− c)

...

Mn(s− c)

+


N1(s− c)(c− a) +N1(s− c)(t− c)

...

Nn(s− c)(c− a) +Nn(s− c)(t− c)



≤


M1 +N1(t− a)

...

Mn +Nn(t− a)

 (s− c).

We will continue this pattern for n ∈ N, to obtain

Dv (Un+1(s), Un(s)) =


D
(
un+11(s), un1(s)

)
...

D
(
un+1n(s), unn(s)

)
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≤



D
(
u01(s)	 (−1)

´ s
c f1(t, un1(t), · · · , unn(t))dt)

	(−1)
´ s
c

´ t
c k1(t, τ, un1(τ), · · · , unn(τ))dτdt,

u01(s)	 (−1)
´ s
c f1(t, un−11(t), · · · , un−1n(t))dt)

	(−1)
´ s
c

´ t
c k1(t, τ, un−11(τ), · · · , un−1n(τ))dτdt

)
...

D
(
u0n(s)	 (−1)

´ s
c fn(t, un1(t), · · · , unn(t))dt)

	(−1)
´ s
c

´ t
c kn(t, τ, un1(τ), · · · , unn(τ))dτdt,

u0n(s)	 (−1)
´ s
c fn(t, un−11(t), · · · , un−1n(t))dt)

	(−1)
´ s
c

´ t
c kn(t, τ, un−11(τ), · · · , un−1n(τ))dτdt

)



≤



´ s
c D

(
f1(t, un1(t), · · · , unn(t)), f1(t, un−11(t), · · · , un−1n(t))

)
dt+

´ s
c

´ t
c D
(
k1(t, τ, un1(τ), · · · , unn(τ)), k1(t, τ, un−11(τ), · · · , un−1n(τ))

)
dτdt

...´ s
c D

(
fn(t, un1(t), · · · , unn(t)), fn(t, un−11(t), · · · , un−1n(t))

)
dt+

´ s
c

´ t
a D
(
kn(t, τ, un1(τ), · · · , unn(τ)), kn(t, τ, un−11(τ), · · · , un−1n(τ))

)
dτdt



≤



´ s
c

[
L11D

(
un1(t), un−11(t)

)
+ · · ·+ L1nD

(
unn(t), un−1n(t)

)]
dt+

´ s
c

´ t
c

[
C11D

(
un1(τ), un−11(τ)

)
+ · · ·+ C1nD

(
unn(τ), un−1n(τ)

)]
dτdt

...´ s
c D

[
Ln1D

(
un1(t), un−11(t)

)
+ · · ·+ LnnD

(
unn(t), un−1n(t)

)]
dt+

´ s
c

´ t
c

[
Cn1D

(
un1(τ), un−11(τ)

)
+ · · ·+ CnnD

(
unn(τ), un−1n(τ)

)]
dτdt
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Dv(Un+1(s), Un(s)) ≤



´ s
c

[
L11D

(
un1(t), un−11(t)

)
+ · · ·+ L1nD

(
unn(t), un−1n(t)

)]
dt+

´ t
c

´ s
c

[
C11D

(
un1(t), un−11(t)

)
+ · · ·+ C1nD

(
unn(t), un−1n(t)

)]
dtdτ

...´ s
c D

[
Ln1D

(
un1(t), un−11(t)

)
+ · · ·+ LnnD

(
unn(t), un−1n(t)

)]
dt+

´ t
c

´ s
c

[
Cn1D

(
un1(t), un−11(t)

)
+ · · ·+ CnnD

(
unn(t), un−1n(t)

)]
dtdτ



≤


[
L11 + C11(b− a)

] ´ s
c D

(
u1n(t), u1n−1(t)

)
dt+ · · ·+

[
L1n + C1n(b− a)

] ´ s
c D

(
unn(t), unn−1(t)

)]
dt

...[
Ln1 + Cn1(b− a)

] ´ s
c D

(
u1n(t), u1n−1(t)

)
dt+ · · ·+

[
Lnn + Cnn(b− a)

] ´ s
c D

(
unn(t), unn−1(t)

)]
dt

 .
Also,

Dv(Un+1(s), Un(s)) ≤ (s− c)n+1

(n+ 1)!


(
M1 +N1(b− a)

)∑n
j=1

(
L1j + C1j(b− a)

)n
...(

Mn +Nn(b− a)
)∑n

j=1

(
Lnj + Cnj(b− a)

)n
 .

This proves that (Un)n≥0 is a Cauchy sequence in C([c, b],Fn). Then, there exists Ū ∈
C([c, b],Fn) such that (Un)n≥0 converges to Ū .

We claim that Ū satisfies the integral equation:

Ū + (−1)
( ˆ s

c
f1(t, ū1(t), · · · , ūn(t))dt+

ˆ s

c

ˆ t

c
k1(t, τ, ū1(τ), · · · , ūn(τ))dτdt

+

ˆ s

c

ˆ c

a
k1(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt
)

= U
¯
(c)
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We have to prove


ū1(s)

...

ūn(s)

 +



(−1)
( ´ s

c f1(t, ū1(t), · · · , ūn(t))dt+
´ s
c

´ t
c k1(t, τ, ū1(τ), · · · , ūn(τ))dτdt+

´ s
c

´ c
a k1(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt
)

...

(−1)
( ´ s

c fn(t, ū1(t), · · · , ūn(t))dt+
´ s
c

´ t
c kn(t, τ, ū1(τ), · · · , ūn(τ))dτdt+

´ s
c

´ c
a kn(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt
)



=


u
¯01(c)

...

u
¯0n(c)

 . (2.3)

To prove the assertion, we have

D
(
ū1(s) + (−1)

( ´ s
c f1(t, ū1(t), · · · , ūn(t))dt+

´ s
c

´ t
c k1(t, τ, ū1(τ), · · · , ūn(τ))dτdt+

´ s
c

´ c
a k1(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt
)
, u

¯01(c)
)

...

D
(
ūn(s) + (−1)

( ´ s
c fn(t, ū1(t), · · · , ūn(t))dt+

´ s
c

´ t
c kn(t, τ, ū1(τ), · · · , ūn(τ))dτdt+

´ s
c

´ c
a kn(t, τ, u

¯1(τ), · · · , u
¯n

(τ))dτdt
)
, u

¯0n(c)
)



≤



D
(
ū1(s), un+11(s)

)
+
( ´ s

c

[
L11D

(
ū1(t), un1(t)

)
+ · · ·+ L1nD

(
ūn(τ), unn(t)

)]
dt+

( ´ s
c

´ t
c

[
C11D

(
ū1(t), un1(τ)

)
+ · · ·+ C1nD

(
ūn(τ), unn(τ)

)]
dτdt

...

D
(
ūn(s), un+1n(s)

)
+
( ´ s

c

[
Ln1D

(
ū1(t), un1(t)

)
+ · · ·+ LnnD

(
ūn(t), unn(t)

)]
dt+

( ´ s
c

´ t
c

[
Cn1D

(
ū1(τ), un1(τ)

)
+ · · ·+ CnnD

(
ūn(τ), unn(τ)

)]
dτdt


.

As n→∞, the last term tends to zero. Consequently, Ū satisfies the (2.3) for all s ∈ [c, b]. �
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2.2 Fuzzy Fredholm integro-differential system

This section examines the fuzzy Fredholm integro-differential system of the form:

Φ′(s)− λ
ˆ 1

−1

K(s, t)Φ(t)dt = G(s), −1 < s < 1, (2.4)

where

Φ′(s) = [ϕ
′

1(s), · · · , ϕ′n(s)]t,

Φ(s) = [ϕ1(s), · · · , ϕn(s)]t,

K(s, t) = [kij(s, t)]; i, j = 1, · · · , n,

G(s) = [g1(s), · · · , gn(s)]t,

subject to
ϕi(−1) = ϕ0i, for all i = 1, · · · , n.

Theorem 2.4 Assume that

∀εi > 0, ∃δ > 0, ∀s1, s2 ∈ [a, b] with |s1−s2| ≤ δ : D(kij(t, τ)ϕj(τ), 0̃) <
εi

2nδ
, i = 1, · · · , n,

∀i = 1, · · · , n, ∃αi > 0 : D(gi(t), 0̃) ≤ ε′i
δ

and

∀i = 1, · · · , n, ∃Mij > 0 : D(kij(t, τ)ϕj(τ), kij(t, τ)ψj(τ)) ≤MijD
∗(ϕj, ψj), j = 1, · · · , n.

Then, the problem (2.4) has a unique continuous solution Φ∗ ∈ (C(I))n, where

Φ∗(s) = [ϕ∗1(s), · · · , ϕ∗n(s)]t.

Proof : The system (2.4) reads as
ϕ
′
1(s)− λ

n∑
j=1

´ 1

−1
k1j(s, t)ϕj(t)dt = g1(s),

...

ϕ
′
n(s)− λ

n∑
j=1

´ 1

−1
knj(s, t)ϕj(t)dt = gn(s).
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Hence

´ s
−1
ϕ
′
1(t)dt− λ

n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt =

´ s
−1
g1(t)dt,

...´ s
−1
ϕ
′
n(t)dt− λ

n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt =

´ s
−1
gn(t)dt,

and hence
ϕ1(s) = ϕ01 + λ

n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s
−1
g1(t)dt,

...

ϕn(s) = ϕ0n + λ
n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s
−1
gn(t)dt.

(2.5)

The system (2.4) is equivalent to

Φ(s) = Φ0 + λ

ˆ s

−1

ˆ 1

−1

K(t, τ)Φ(τ)dτdt+

ˆ s

−1

G(t)dt, −1 < s < 1.

Letting

(AΦ)(s) := Φ0 + λ

ˆ s

−1

ˆ 1

−1

K(t, τ)Φ(τ)dτdt+

ˆ s

−1

G(t)dt, −1 < s < 1,

where
(Aϕ1)(s) = ϕ01 + λ

n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s
−1
g1(t)dt,

...

(Aϕn)(s) = ϕ0n + λ
n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s
−1
gn(t)dt.

We consider the metric Dv : Fn ×Fn → Rn
+, where

Dv(Φ(s),Ψ(s)) =


D(ϕ1(s), ψ1(s))
...
D(ϕn(s), ψn(s))

 .
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We have to prove that A((C(I))n) ⊂ (C(I))n. To this aim, for all Φ,Ψ ∈ (C(I))n, and
s1, s2 ∈ I, with s1 > s2, we have

Dv((AΦ)(s1), (AΦ)(s2)) =


D((Aϕ)1(s1), (Aϕ)1(s2))

...
D((Aϕ)n(s1), (Aϕ)n(s2))



=



D(ϕ01 + λ
n∑
j=1

´ s1
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s1
−1
g1(t)dt,

ϕ01 + λ
n∑
j=0

´ s2
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s2
−1
g1(t)dt)

...

D(ϕ0n + λ
n∑
j=1

´ s1
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s1
−1
gn(t)dt, ϕ0n+

+λ
n∑
j=0

´ s2
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s2
−1
gn(t)dt)



=


D(λ

n∑
j=1

´ s1
s2

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s1
s2
g1(t)dt, 0̃)

...

D(λ
n∑
j=1

´ s1
s2

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s1
s2
gn(t)dt, 0̃))



≤


λ

n∑
j=1

´ s1
s2

´ 1

−1
D(k1j(t, τ)ϕj(τ), 0̃)dτdt+

´ s1
s2
D(g1(t), 0̃)dt

...

λ
n∑
j=1

´ s1
s2

´ 1

−1
D(knj(t, τ)ϕj(τ), 0̃)dτdt+

´ s1
s2
D(gn(t), 0̃)dt



≤


2λ(s1 − s2)

n∑
j=1

ε1
2nδ

+ (s1 − s2)
ε
′
1

δ

...

2λ(s1 − s2)
n∑
j=1

εn
2nδ

+ (s1 − s2) ε
′
n

δ
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≤ λ


ε1
...
εn

+


ε
′
1

...
ε
′
n


≤ λε+ ε′,

where

ε = [ε1, · · · , εn]t,

ε′ = [ε′, · · · , ε′]t.

Thus, the operator A is uniformly continuous. It follows A((C(I))n) ⊂ (C(I))n.

Now, we will examine the continuous of A on (C(I))n. Let Φ,Ψ ∈ (C(I))n, s ∈ I.
In fact,

Dv((AΦ)(s), (AΨ)(s)) =


D((Aϕ1)(s), (Aψ1)(s))

...
D((Aϕn)(s), (Aψn)(s))



=



D(ϕ01 + λ
n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ϕj(τ)dτdt+

´ s
−1
g1(t)dt,

ϕ01 + λ
n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ψj(τ)dτdt+

´ s
−1
g1(t)dt)

...

D(ϕ0n + λ
n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ϕj(τ)dτdt+

´ s
−1
gn(t)dt,

ϕ0n + λ
n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ψj(τ)dτdt+

´ s
−1
gn(t)dt)



≤


λ

n∑
j=1

´ s
−1

´ 1

−1
D(k1j(t, τ)ϕj(τ), k1j(t, τ)ψj(τ))dτdt

...

λ
n∑
j=1

´ s
−1

´ 1

−1
D(knj(t, τ)ϕj(τ), knj(t, τ)ψj(τ))dτdt
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D∗v(AΦ, AΨ) ≤ 2λδ


M11 · · · M1n

... . . . ...
Mn1 · · · Mnn




D∗(ϕ1, ψ1)
...
D∗(ϕn, ψn)

 .

Thus, A is continuous.

Now, in order to prove the compactness of the operator A, we use the Arzelà-Ascoli
theorem.

Let F := {ϕim, n ∈ N; ∀i = 1, · · · , n} be a bounded set of (C(I))n with the constant
c.

So, ∀i = 1, · · · , n, ∃ci > 0;∀m ∈ N, ||ϕim(.)||F ≤ ci, where

Φm = [ϕ1m, · · · , ϕnm]t, and

||Φm(.)||v =


||ϕi1(.)||F

...
||ϕin(.)||F

 = Dv(Φm, 0̃m) =


D(ϕi1, 0̃)

...
D(ϕim, 0̃)

 ,
and hence

Dv(0̃, (AΦm)(s)) =


D(0̃, (Aϕ1m)(s))

...
D(0̃, (Aϕnm)(s))



=


D(0̃, ϕ01 + λ

n∑
j=1

´ s
−1

´ 1

−1
k1j(t, τ)ϕjm(τ)dτdt+

´ s
−1
g1(t)dt)

...

D(0̃, ϕ0n + λ
n∑
j=1

´ s
−1

´ 1

−1
knj(t, τ)ϕjm(τ)dτdt+

´ s
−1
gn(t)dt)



≤


D(0̃, ϕ01) + λ

n∑
j=1

´ s
−1

´ 1

−1
D(0̃, k1j(t, τ)ϕjm(τ))dτdt+

´ s
−1
D(0̃, g1(t))dt)

...

D(0̃, ϕ0n) + λ
n∑
j=1

´ s
−1

´ 1

−1
D(0̃, knj(t, τ)ϕjm(τ))dτdt+

´ s
−1
D(0̃, gn(t))dt)





2.2 – Fuzzy Fredholm integro-differential system 35

≤


D(0̃, ϕ01) + 4λ

n∑
j=1

ε1
2nδ

+ 2
ε
′
1

δ

...

D(0̃, ϕ0n) + 4λ
n∑
j=1

εn
2nδ

+ 2 ε
′
n

δ



≤


D(0̃, ϕ01)
...
D(0̃, ϕ0n)

+
2λ

δ


ε1
...
εn

+
2

δ


ε
′
1

...
ε
′
n



Thus, A(F ) is bounded.

We prove that A(F ) is equicontinuous, that is

∀ε > 0 ∃δ > 0; ∀s1, s2 ∈ I, AΦm ∈ A(F ) : |s1−s2| < δ ⇒ D
′
(AΦm(s1), AΨm(s2)) < ε.

In the same manner as previously, it follows that A(F ) is equicontinuous. Therefore,
according to the Arzelà-Ascoli, A is compact, and so that A from (C(I))n into itself is
completely continuous.

According to Schauder fixed point Theorem the system (2.4) has a continuous solu-
tion. �



Chapter 3

Two classes of fuzzy singular
integro-differential equations

3.1 Introduction

Many studies discuss numerical methods for solving differential and integro-differential
problems (see, [26, 27, 34, 35, 36]). More recently, reference [48] investigated the ap-
proximate solution of Cauchy integro-differential equations using the Legendre projection
approximation. The reference [49] describes a collocation approach for solving logarith-
mic singular integro-differential equations utilizing airfoil polynomials. Refer to [50] as
well. The fundamental idea driving [52] is to use the Kulkarni approach in combination
with Legendre polynomials rather than piecewise ones to extend and improve the results
of [47, 51].

Motivated by the above reasons, this work aims to consider two classes of fuzzy
integro-differential equations, the fuzzy logarithmic integro-differential equation, and the
fuzzy Cauchy one respectively. Firstly, we clearly show that solutions to these equa-
tions exist and are unique. We use Picard’s theorem for the logarithmic fuzzy integro-
differential equation, while Arzelà–Ascoli theorem for the Cauchy one. Secondly, we
introduce a collocation method to solve the considered equations via airfoil polynomi-
als numerically. Also, we show that there are solutions to approximation concerns and
provide error analysis.

36
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3.2 Airfoil polynomials

We recall that in steady or unsteady subsonic flow, the so-referred as airfoil polynomials
are utilized as expansion functions to calculate the pressure on an airfoil. These polyno-
mials play a pivotal part in approximation theory, including in the solution of integral and
integro-differential equations.
The intention of [49] is to establish a collocation method via airfoil polynomials for the
approximate solution of integro-differential equations with a logarithmic kernel in the
classical situation. We demonstrated the existence of a solution to the approximation
equation and conducted an error analysis. This section extends the method and employs
a new procedure to numerically solve two classes of fuzzy singular integro-differential
equations: logarithmic fuzzy integro-differential equations and Cauchy ons.

The airfoil polynomials tn and un of the first and second kind, respectively, are defined
as follows

tn(τ) =
cos[(n+ 1

2
) arccos τ ]

cos(1
2

arccos τ)
, un(τ) =

sin[(n+ 1
2
) arccos τ ]

sin(1
2

arccos τ)
.

3.3 Logarithmic Fuzzy Fredholm integro-differential equa-
tion

Given a real constant λ and a fuzzy continuous function g, consider the problem of deter-
mining a fuzzy function ϕ that satisfies the equation bellow.

ϕ′l(s)−
λ

π

˛ 1

−1

ϕl(t) ln |s− t|dt = gl(s), ϕl(−1) = 0, −1 < s < 1. (3.1)

The above equation is called the fuzzy Fredholm integro-differential equation with a log-
arithmic kernel. We assume λ is negative real throughout the paper. The other case will
be treated similarly. The solution to (3.1) exists and is unique, as demonstrated in the
following Theorem, which is based on Picard’s Theorem. In [61], an overview of the key
results of this Theorem can be found.

Theorem 3.1 Assume that for equation (3.1) the following assumptions hold:

H1. There exists M > 0: D(ϕ(τ) ln |t− τ |, ψ(τ) ln |t− τ |) ≤MD∗(ϕ, ψ) for all

t, τ ∈ I and ϕ, ψ ∈ F, with |λ| < π
4M

;

H2. ∀ε > 0, ∃δ > 0, ∀s1, s2 ∈ I with |s1 − s2| ≤ δ : for all t ∈ I, D(gl(t), 0̃) < ε
δ
;
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H3. D(ϕ(τ) ln |t− τ |, 0̃) < ε
2δ
, for all ϕ ∈ F.

The problem (3.1) then has a continuous solution ϕ∗l ∈ CF(I) that is unique. Moreover,

D(ϕ∗l (s), ϕl,n(s)) ≤

(
4|λ|
π
M
)n

1− 4|λ|
π
M
D∗(ϕl,0, ϕl,1),

whereϕl,n is the approximate solution obtained through successive approaches withϕl,0 =

ϕl(−1) = 0 and

D∗(ϕl,0, ϕl,1) := sup
s∈I

D(ϕl,0(s), ϕl,1(s)).

Proof : Equation (3.1) reads as

ϕ′l(s)−
λ

π

˛ 1

−1

ϕl(t) ln |s− t|dt = gl(s).

This shows that

ϕl(s) =

ˆ s

−1

gl(t)dt+
λ

π

ˆ s

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt.

Letting

(Aϕl)(s) =

ˆ s

−1

gl(t)dt+
λ

π

ˆ s

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt.
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We have to prove that A(CF(I)) ⊂ CF(I). For all ϕl ∈ CF(I), and s1, s2 ∈ I, we have

D((Aϕl)(s1), (Aϕl)(s2)) = D
( ˆ s1

−1

gl(t)dt+
λ

π

ˆ s1

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt,
ˆ s2

−1

gl(t)dt+
λ

π

ˆ s2

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt
)

= D
( ˆ s2

−1

gl(t)dt+
λ

π

ˆ s2

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt

+

ˆ s1

s2

gl(t)dt+
λ

π

ˆ s1

s2

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt,
ˆ s2

−1

gl(t)dt+
λ

π

ˆ s2

−1

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt
)

= D
( ˆ s1

s2

gl(t)dt+
λ

π

ˆ s1

s2

˛ 1

−1

ϕl(τ) ln |t− τ |dτdt, 0̃
)

≤
ˆ s1

s2

D(gl(t), 0̃)dt+
|λ|
π

ˆ s1

s2

˛ 1

−1

D(ϕl(τ) ln |t− τ |, 0̃)dτdt

≤ ε+
|λ|
π
ε

≤ ε
′
.

Thus, the operator Aϕl is uniformly continuous. It follows A(CF(I)) ⊂ CF(I).

We now study the continuous of A on CF(I). For this purpose, let ϕ, ψ ∈ CF(I),
s ∈ I, we have

D
(
(Aϕ)(s), (Aψ)(s)

)
= D

( ˆ s

−1

gl(t)dt+
λ

π

ˆ s

−1

˛ 1

−1

ϕ(τ) ln |t− τ |dτdt,
ˆ s

−1

gl(t)dt

+
λ

π

ˆ s

−1

˛ 1

−1

ψ(τ) ln |t− τ |dτdt
)

=
|λ|
π
D
(ˆ s

−1

˛ 1

−1

ϕ(τ) ln |t− τ |dτdt,
ˆ s

−1

˛ 1

−1

ψ(τ) ln |t− τ |dτdt
)

≤ |λ|
π

ˆ s

−1

˛ 1

−1

D
(
ϕ(τ) ln |t− τ |, ψ(τ) ln |t− τ |

)
dτdt.

Hence

D∗(Aϕ,Aψ) ≤ 2
|λ|
π

(s+ 1)MD∗(ϕ, ψ)

≤ 4|λ|
π
MD∗(ϕ, ψ)

≤ cAD
∗(ϕ, ψ), where cA :=

4|λ|
π
M.
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Thus, A is an cA contraction.

By the contraction principle, the operator A has a unique fixed point ϕ∗, then (3.1) has
a unique continuous solution. Because A is a cA − Picard operator, it has a unique fixed
point ϕ∗, and equation (3.1) has a unique continuous solution. Consequently,

D(ϕ∗l (s), ϕl,n(s)) ≤

(
4|λ|
π
M
)n

1− 4|λ|
π
M
D∗(ϕl,0, ϕl,1).

�

3.4 The approximate solution

We assume that the fuzzy numbers ϕ and g can be represented as parametric forms as
follows:

ϕτ,l(s) = [ϕl(s, τ), ϕl(s, τ)],

gτ,l(s) = [gl(s, τ), gl(s, τ)].

We recall that
ϕ′τ,l(s) = [ϕl

′(s, τ), ϕl
′(s, τ)].

Equation (3.1) can be rewritten in the following form

ϕl
′(s, τ)− λ

π

˛ 1

−1

ϕl(t, τ) ln |s− t|dt = gl(s, τ), −1 < s < 1, (3.2)

ϕl
′(s, τ)− λ

π

˛ 1

−1

ϕl(t, τ) ln |s− t|dt = gl(s, τ), −1 < s < 1. (3.3)

In order to simplify the above integrals, it is tempting to study the sign of the kernel
k(s, t) := ln |s− t| for two cases as follows:
For s ≥ 0, we have

k(s, t) > 0 for t ∈]− 1, s− 1[;

k(s, t) < 0 for t ∈]s− 1, s[∪]s, 1[;

k(s, t) = 0 for t = s− 1.
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For s ≤ 0, we have

k(s, t) > 0 for t ∈]s+ 1, 1[;

k(s, t) < 0 for t ∈]− 1, s[∪]s, s+ 1[;

k(s, t) = 0 for t = s+ 1.

As in [1], letting

ϕcl (s, τ) :=
ϕl(s, τ) + ϕl(s, τ)

2
, ϕdl (s, τ) :=

ϕl(s, τ)− ϕl(s, τ)

2
,

gcl (s, τ) :=
gl(s, τ) + gl(s, τ)

2
, gdl (s, τ) :=

gl(s, τ)− gl(s, τ)

2
.

Lemma 3.1 For s ∈]0, 1[, equation (3.1) can be rewritten as follows:

∂ϕcl (s, τ)

∂s
− λ

π

˛ 1

−1

ϕcl (t, τ) ln |s− t|dt = gcl (s, τ), (3.4)

∂ϕdl (s, τ)

∂s
− λ

π

˛ 1

−1

ϕdl (t, τ) ln |s− t|dt +
2λ

π

ˆ 1

s−1

ϕdl (t, τ) ln |s− t|dt

= gdl (s, τ). (3.5)

Proof : We have

ϕl(s, τ) = ϕcl (s, τ)− ϕdl (s, τ), ϕl(s, τ) = ϕcl (s, τ) + ϕdl (s, τ);

gl(s, τ) = gcl (s, τ)− gdl (s, τ), gl(s, τ) = gcl (s, τ) + gdl (s, τ).

Substituting this into (3.2) and (3.3) respectively, leads to the system

∂ϕcl (s, τ)

∂s
− ∂ϕdl (s, τ)

∂s
− λ

π

ˆ s−1

−1

[
ϕcl (t, τ)− ϕdl (t, τ)

]
ln |s− t|dt

− λ

π

˛ 1

s−1

[
ϕcl (t, τ) + ϕdl (t, τ)

]
ln |s− t|dt

= gcl (s, τ)− gdl (s, τ), (3.6)
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∂ϕcl (s, τ)

∂s
+
∂ϕdl (s, τ)

∂s
− λ

π

ˆ s−1

−1

[
ϕcl (t, τ) + ϕdl (t, τ)

]
ln |s− t|dt

− λ

π

˛ 1

s−1

[
ϕcl (t, τ)− ϕdl (t, τ)

]
ln |s− t|dt

= gcl (s, τ) + gdl (s, τ). (3.7)

By adding the two equations (3.6) and (3.7) together, we get (3.4). Again, by subtracting
the (3.6) from the (3.7) we obtain (3.5). �

Lemma 3.2 For s ∈]− 1, 0], equation (3.1) can be rewritten as follows:

∂ϕcl (s, τ)

∂s
− λ

π

˛ 1

−1

ϕcl (t, τ) ln |s− t|dt = gcl (s, τ), (3.8)

∂ϕdl (s, τ)

∂s
+
λ

π

˛ 1

−1

ϕdl (t, τ) ln |s− t|dt − 2λ

π

ˆ 1

s+1

ϕdl (t, τ) ln |s− t|dt

= gdl (s, τ). (3.9)

Proof : Proceeding as the first case, we obtain the system

∂ϕcl (s, τ)

∂s
− ∂ϕdl (s, τ)

∂s
− λ

π

˛ s+1

−1

[
ϕcl (t, τ) + ϕdl (t, τ)

]
ln |s− t|dt

− λ

π

ˆ 1

s+1

[
ϕcl (t, τ)− ϕdl (t, τ)

]
ln |s− t|dt

= gcl (s, τ)− gdl (s, τ), (3.10)

∂ϕc(s, τ)

∂s
+
∂ϕdl (s, τ)

∂s
− λ

π

˛ s+1

−1

[
ϕcl (t, τ)− ϕdl (t, τ)

]
ln |s− t|dt

− λ

π

ˆ 1

s+1

[
ϕcl (t, τ) + ϕdl (t, τ)

]
ln |s− t|dt

= gcl (s, τ) + gdl (s, τ). (3.11)

Hence, equation (3.8) follows by adding the two equations (3.10) and (3.11) together.
Equation (3.9) succeeds by subtracting the (3.10) from the (3.11). �

We will propose an approximate solution for equation (3.1) via the approximate so-
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lutions for equations (3.4), (3.5), (3.8) and (3.9) respectively. For this purpose, we will
introduce an approximation using the airfoil polynomials of the first kind tn as

ϕcl,n(s, τ) = ω(s)
n∑
i=0

ai,τ ti(s),

ϕdl,n(s, τ) = ω(s)
n∑
i=0

bi,τ ti(s),

where

ω(s) =

√
1 + s

1− s
.

Following ([22]), the formula

(1 + s)t′i(s) = (i+
1

2
)ui(s)−

1

2
ti(s)

gives

∂ϕcl,n(s, τ)

∂s
=

n∑
i=0

ai,τ

{
ω′(s)ti(s) +

ω(s)

1 + s

[
(i+

1

2
)ui(s)−

1

2
ti(s)

]}
,

∂ϕdl,n(s, τ)

∂s
=

n∑
i=0

bi,τ

{
ω′(s)ti(s) +

ω(s)

1 + s

[
(i+

1

2
)ui(s)−

1

2
ti(s)

]}
.

We recall that (cf. [22]),

1

π

˛ 1

−1

√
1 + t

1− t
ti(t) ln |s− t|dt =


ui−1(s)−ui(s)

2i
+ ui(s)−ui+1(s)

2(i+1)
if i 6= 0

− ln 2− s otherwise.
. (3.12)

For s ∈]0, 1[, by using (3.12), we get
a+

0,τA
+
0 (s) +

n∑
i=1

a+
i,τA

+
i (s) = gcl (s, τ),

b+
0,τB

+
0 (s) +

n∑
i=1

b+
i,τ (τ)B+

i (s) = gdl (s, τ),
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with

A+
0 (s) :=

1

ω(s)(1− s)2
t0(s) +

ω(s)

2(1 + s)
[u0(s)− t0(s)] + λ (ln 2 + s) ;

B+
0 (s) := A+

0 (s) +
2λ

π

ˆ 1

s−1

ω(t)t0(t) ln |s− t|dt;

A+
i (s) :=

1

ω(s)(1− s)2
ti(s) +

ω(s)

1 + s

[
(i+

1

2
)ui(s)−

1

2
ti(s)

]
− λ

[
ui−1(s)− ui(s)

2i
+
ui(s)− ui+1(s)

2(i+ 1)

]
;

B+
i (s) := A+

i (s) +
2λ

π

ˆ 1

s−1

ω(t)ti(t) ln |s− t|dt.

For s ∈]− 1, 0[, again, by using (3.12), we get
a−0,τA

+
0 (s) +

n∑
i=1

a−i,τA
+
i (s) = gcl (s, τ),

b−0,τB
−
0 (s) +

n∑
i=1

b−i,τB
−
i (s) = gdl (s, τ),

with

B−0 (s) := A−0 (s)− 2λ

π

ˆ 1

s+1

ω(t)t0(t) ln |s− t|dt;

A−0 (s) :=
1

ω(s)(1− s)2
t0(s) +

ω(s)

2(1 + s)
[u0(s)− t0(s)]− λ (ln 2 + s) ;

B−i (s) := A−i (s)− 2λ

π

ˆ 1

s+1

ω(t)ti(t) ln |s− t|dt;

A−i (s) :=
1

ω(s)(1− s)2
ti(s) +

ω(s)

1 + s

[
(i+

1

2
)ui(s)−

1

2
ti(s)

]
+ λ

[
ui−1(s)− ui(s)

2i
+
ui(s)− ui+1(s)

2(i+ 1)

]
.

The collocation method leads to the following linear systems:
For s ∈]0, 1[, we obtain

a+
0,τA

+
0 (sj) +

n∑
i=1

a+
i,τA

+
i (sj) = gcl (sj, τ),

b+
0,τB

+
0 (sj) +

n∑
i=1

b+
i,τB

+
i (sj) = gdl (sj, τ),
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For s ∈]− 1, 0[, we have
a−0,τA

+
0 (sj) +

n∑
i=1

a−i,τA
+
i (sj) = gcl (sj, τ),

b−0,τB
−
0 (sj) +

n∑
i=1

b−i,τB
−
i (sj) = gdl (sj, τ).

3.5 Cauchy Fuzzy Fredholm integro-differential equation

Let us consider the problem of finding a fuzzy function ϕc such that

ϕ′c(s)−
λ

π

˛ 1

−1

ϕc(t)

s− t
dt = gc(s), ϕc(−1) = ϕc,0, −1 < s < 1, (3.13)

where λ is a know negative constant and gc is a given a fuzzy function.

This equation called Cauchy Fuzzy Fredholm integro-differential equation.

Theorem 3.2 Suppose that:

H4. There exists Mc > 0: D(ϕ(τ)
t−τ ,

ψ(τ)
t−τ ) ≤McD

∗(ϕ, ψ) for all t, τ ∈ I and

ϕ, ψ ∈ F, with |λ| < π
4Mc

;

H5. ∀ε > 0, ∃δ > 0, ∀s1, s2 ∈ I with |s1 − s2| ≤ δ : for all t ∈ I, D(gc(t), 0̃) < ε
δ
;

H6. D(ϕ(τ)
t−τ , 0̃) < ε

2δ
.

Then, problem (3.13) has a unique continuous solution ϕ∗c ∈ CF(I) . Moreover,

D(ϕ∗c(s), ϕc,n(s)) ≤

(
4|λ|
π
Mc

)n
1− 4|λ|

π
Mc

D∗(ϕc,0, ϕc,1),

where ϕc,n is the approximate solution obtained through successive approaches with

ϕc,0 = ϕc(−1) = 0 and

D∗(ϕc,0, ϕc,1) := sup
s∈I

D(ϕc,0(s), ϕc,1(s)).

Proof : Equation (3.13) reads as

ˆ s

−1

ϕ′c(t)dt−
λ

π

ˆ s

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt =

ˆ s

−1

gc(t)dt.
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This shows that

ϕc(s) = ϕc,0 +
λ

π

ˆ s

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s

−1

gc(t)dt.

Letting

Acϕ(s) = ϕc,0 +
λ

π

ˆ s

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s

−1

gc(t)dt.

We have to prove that Ac(CF(I)) ⊂ CF(I). To this goal, for all ϕ ∈ CF(I), and s1, s2 ∈ I,
we have

D(Acϕ(s1), Acϕ(s2)) = D
(
ϕc,0 +

λ

π

ˆ s1

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s1

−1

gc(t)dt, ϕc,0

+
λ

π

ˆ s2

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s2

−1

gc(t)dt
)

= D
(λ
π

ˆ s1

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s1

−1

gc(t)dt,

λ

π

ˆ s2

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

˛ s2

−1

gc(t)dt
)

= D
(λ
π

ˆ s2

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s2

−1

gc(t)dt

+
λ

π

ˆ s1

s2

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s1

s2

gc(t)dt,
λ

π

ˆ s2

−1

˛ 1

−1

ϕc(τ)

t− τ
dτdt

+

ˆ s2

−1

gc(t)dt
)

= D

(
λ

π

ˆ s1

s2

˛ 1

−1

ϕc(τ)

t− τ
dτdt+

ˆ s1

s2

gc(t)dt, 0̃

)
≤ |λ|

π

ˆ s1

s2

˛ 1

−1

D

(
ϕc(τ)

t− τ
, 0̃

)
dτdt+

ˆ s1

s2

D
(
gc(.), 0̃

)
dt

≤ 2
|λ|
π

(s2 − s1)D

(
ϕc(τ)

t− τ
, 0̃

)
+ (s2 − s1)

ε

δ

≤ |λ|
π
ε+ ε

≤ ε
′
.

Thus, the operator Ac is uniformly continuous. It follows Ac(CF(I)) ⊂ CF(I).

We now study the continuous of Ac on CF(I).
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Let ϕ, ψ ∈ CF(I), s ∈ I. We have

D(Acϕ(s), Acψ(s)) = D
(
ϕc,0 +

λ

π

ˆ s

−1

˛ 1

−1

ϕ(τ)

t− τ
dτdt+

ˆ s

−1

gc(t)dt, ϕc,0

+
λ

π

ˆ s

−1

˛ 1

−1

ψ(τ)

t− τ
dτdt+

ˆ s

−1

gc(t)dt
)

≤ |λ|
π

ˆ s

−1

˛ 1

−1

D

(
ϕ(τ)

t− τ
,
ψ(τ)

t− τ

)
dτdt

≤ |λ|
π
Mc

ˆ s

−1

˛ 1

−1

D∗ (ϕ, ψ) dτdt

≤ 2
|λ|
π

(s+ 1)McD
∗ (ϕ, ψ)

≤ 4|λ|
π
McD

∗ (ϕ, ψ) .

Thus, Ac is continuous.

Now, in order to demonstrate the compactness of the operator Ac, we use the Arzelà-
Ascoli theorem.

Le G := {ϕn, n ∈ N} be a bounded set of CF(I).

Hence
∀n ∈ N, ||ϕn(.)||G ≤ K, for some positive constant K,

and hence

||Acϕn(s)||G = D(0̃, Acϕn(s))

≤ D
(

0̃, ϕc,0 +
λ

π

ˆ s

−1

˛ 1

−1

ϕn(τ)

t− τ
dτdt+

ˆ s

−1

gc(t)dt
)

≤ D(0̃, ϕc,0) +
|λ|
π

ˆ s

−1

ˆ 1

−1

D(0̃,
ϕn(τ)

t− τ
)dτdt+

ˆ s

−1

D(0̃, gc(t))dt

≤ D(0̃, ϕc,0) +
|λ|
π

2(s+ 1)D(0̃,
ϕn(τ)

t− τ
) + (s+ 1)D(0̃, gc(t))

≤ D(0̃, ϕc,0) +
2|λ|
π

ε

δ
+ 2

ε

δ
=: α,

so that Ac(G) is bounded.

We prove that Ac(G) is equicontinuous, that is

∀ε > 0 ∃δ > 0; ∀s1, s2 ∈ I, Acϕn ∈ Ac(G) : |s1−s2| < δ ⇒ D
(
(Acϕn)(s1), (Acϕn)(s2)

)
< ε.

Similarly as above, it follows that Ac(G) is equicontinuous. Consequently, following
Arzelà-Ascoli theorem Ac is compact, so that Ac from CF(I) into itself is completely
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continuous.

According to Schauder fixed point theorem equation (3.13) has a unique continuous
solution. �

3.6 The approximate solution

We assume that the fuzzy numbers ϕ and g can be represented as parametric forms as
follows:

ϕτ,c(s) = [ϕc(s, τ), ϕc(s, τ)],

gτ,c(s) = [gc(s, τ), gc(s, τ)].

We recall that
ϕ′τ,c(s) = [ϕc

′(s, τ), ϕc
′(s, τ)].

Problem (3.13) can be rewritten in the following form

∂ϕc(s, τ)

∂s
− λ

π

˛ 1

−1

ϕc(t, τ)

s− t
dt = gc(s, τ), −1 < s < 1,

∂ϕc(s, τ)

∂s
− λ

π

˛ 1

−1

ϕc(t, τ)

s− t
dt = gc(s, τ), −1 < s < 1.

It follows that

∂ϕc(s, τ)

∂s
− λ

π

˛ s

−1

ϕc(t, τ)

s− t
dt− λ

π

˛ 1

s

ϕc(t, τ)

s− t
dt = gc(s, τ), (3.14)

∂ϕc(s, τ)

∂s
− λ

π

˛ s

−1

ϕc(t, τ)

s− t
dt− λ

π

˛ 1

s

ϕc(t, τ)

s− t
dt = gc(s, τ). (3.15)

In order to obtain an explicit system of equations, let us putting

ϕcc(s, τ) :=
ϕc(s, τ) + ϕc(s, τ)

2
, ϕdc(s, τ) :=

ϕc(s, τ)− ϕc(s, τ)

2

gcc(s, τ) :=
gc(s, τ) + gc(s, τ)

2
, gdc (s, τ) :=

gc(s, τ)− gc(s, τ)

2
.
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This Theorem makes it legitimate to apply the collocation method.

Theorem 3.3 The problem (3.13) can be rewritten in the following form:

∂ϕcc(s, τ)

∂s
− λ

π

˛ 1

−1

ϕcc(t, τ)

s− t
dt = gcc(s, τ), (3.16)

∂ϕdc(s, τ)

∂s
− λ

π

˛ 1

−1

ϕdc(t, τ)

s− t
dt+

2λ

π

˛ 1

s

ϕdc(t, τ)

s− t
dt = gdc (s, τ). (3.17)

Proof : We have

ϕc(s, τ) = ϕcc(s, τ)− ϕdc(s, τ), ϕc(s, τ) = ϕcc(s, τ) + ϕdc(s, τ);

gc(s, τ) = gcc(s, τ)− gdc (s, τ), gc(s, τ) = gcc(s, τ) + gdc (s, τ).

Substituting this into (3.14) and (3.15) respectively, yields

∂ϕcc(s, τ)

∂s
− ∂ϕdc(s, τ)

∂s
− λ

π

ˆ s

−1

ϕcc(t, τ)− ϕdc(t, τ)

s− t
dt

− λ

π

˛ 1

s

ϕcc(t, τ) + ϕdc(t, τ)

s− t
dt

= gcc(s, τ)− gdc (s, τ), (3.18)

∂ϕcc(s, τ)

∂s
+
∂ϕdc(s, τ)

∂s
− λ

π

ˆ s

−1

ϕcc(t, τ) + ϕdc(t, τ)

s− t
dt

− λ

π

˛ 1

s

ϕcc(t, τ)− ϕdc(t, τ)

s− t
dt

= gcc(s, τ) + gdc (s, τ), (3.19)

By adding the two equations (3.18) and (3.19) together, we get (3.16). Again, by subtract-
ing the (3.18) from the (3.19) we obtain (3.17). �

We’ll use the approximate solutions for equations (3.16) and (3.17) to give an ap-
proach solution to the equation (3.13). To this end, the airfoil polynomials of the first kind
tn will be used to build an approximation as follows.

ϕcc,n(s, τ) = ω(s)
n∑
i=0

ci,τ ti(s),
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ϕdc,n(s, τ) = ω(s)
n∑
i=0

di,τ ti(s).

By using the formula (cf. [22]),

1

π

˛ 1

−1

√
1 + t

1− t
ti(t)

t− s
dt = ui(s)

we get

n∑
i=0

ci,τ

{
ω′(s)ti(s) +

ω(s)

1 + s
[(i+

1

2
)ui(s)−

1

2
ti(s)] + λui(s)

}
= gcc(s, τ),

n∑
i=0

di,τ

{
ω′(s)ti(s) +

ω(s)

1 + s
[(i+

1

2
)ui(s)−

1

2
ti(s)] + λui(s) +

2λ

π

˛ 1

s

ω(t)ti(t)

s− t
dt
}

= gdc (s, τ).

Thus

n∑
i=0

ci,τ

{
ω′(sj)ti(sj) +

ω(sj)

1 + sj
[(i+

1

2
)ui(sj)−

1

2
ti(sj)] + λui(sj)

}
= gcc(sj, τ),

n∑
i=0

di,τ

{
ω′(sj)ti(sj) +

ω(sj)

1 + sj
[(i+

1

2
)ui(sj)−

1

2
ti(sj)] + λui(sj)

+
2λ

π

˛ 1

sj

ω(t)ti(t)

sj − t
dt
}

= gdc (sj, τ), j = 0, 1, . . . , n.
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3.7 Convergence Analysis

In this section, we prove the convergence analysis of the current approximations. To
accomplish this, we rewrite the obtained equations in operator forms.

Let us define the following operators:

(V ϕ)(s) :=

ˆ s

−1

ϕ(t)dt, ϕ ∈ (CF(I),F);

(Tcϕ)(s) :=
λ

π

˛ 1

−1

ϕ(t)

s− t
dt;

(Tlϕ)(s) :=
λ

π

˛ 1

−1

ϕ(t) ln |s− t|dt;

(V +
l ϕ)(s) :=

2λ

π

ˆ 1

s−1

ϕ(t) ln |s− t|dt;

(V −l ϕ)(s) :=
2λ

π

ˆ 1

s+1

ϕ(t) ln |s− t|dt;

(Vcϕ)(s) :=
2λ

π

˛ 1

s

ϕ(t)

s− t
dt.

Lemma 3.3 Assume that

∃r > 0, ∀s ∈ I; D
(
(V ϕ)(s), 0̃

)
≤ r,

then V is compact from (CF(I),F) into itself.

Proof : We have

D∗(V ϕ, 0̃) = sup
s∈I

D
(
(V ϕ)(s), 0̃

)
≤ r,

so that V is bounded.

Also,

D
(
(V ϕ)(s), (V ψ)(s)

)
= D

( ˆ s

−1

ϕ(t)dt,

ˆ s

−1

ψ(t)dt
)

≤
ˆ s

−1

D
(
ϕ(t), ψ(t)

)
dt.
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Hence

D∗
(
(V ϕ), (V ψ)

)
≤ (s+ 1)D∗

(
ϕ, ψ

)
≤ 2D∗(ϕ, ψ)

< ∞.

Thus, V is continuous.

Letting

Ω := {ϕ ∈ (CF(I),F); ∃Λ > 0 D(ϕ(s), 0̃) ≤ Λ; for all s ∈ I}.

We show that V (Ω) is equicontinuous,

D(V ϕ(s1), V ϕ(s2)) = D(

ˆ s1

−1

ϕ(t)dt,

ˆ s2

−1

ϕ(t)dt)

≤ D(

ˆ s2

−1

ϕ(t)dt+

ˆ s1

s2

ϕ(t)dt,

ˆ s2

−1

ϕ(t)dt)

≤
ˆ s1

s2

D(ϕ(t), 0̃)dt→ 0 as s2 → s1,

so that V (Ω) is equicontinuous.

We prove that V (Ω) is bounded.

D∗
(
(V ϕ), 0̃

)
= sup

s∈I
D(

ˆ s

−1

ϕ(t)dt, 0̃)

≤ sup
s∈I

ˆ s

−1

D(ϕ(t), 0̃)dt

≤ 2Λ,

so that V (Ω) is bounded.

We conclude that V is compact from CF(I) into itself by applying the Arzelà-Ascoli
Theorem. �

Suggest hat functions e0, e1, e2, . . . , en in C0(I) subject to

ej(sk) = δj,k.

Let us consider the projection operators πn from C0(I) into the space of continuous func-
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tions by

πng(x) :=
n∑
j=0

g(xj)ej(x).

Define the operators

Bc,n := V πnTc, Bc := V Tc,

Bl,n := V πnTl, Bl := V Tl,

Sc,n := V πnVc, Sc := V Vc,

S−l,n := V πnV
−
l , S−l := V V −l ,

S+
l,n := V πnV

+
l , S+

l := V V +
l .

Consider the following approximate equations:{
ϕcl,n −Bl,nϕ

c
l,n = V gcl ,

ϕdl,n −Bl,nϕ
d
l,n + S+

l,nϕ
d
c,n = V gdl ,{

ϕcl,n −Bl,nϕ
c
l,n = V gcl ,

ϕdl,n +Bl,nϕ
d
l,n − S−l,nϕ

d
c,n = V gdl ,

and {
ϕcc,n −Bc,nϕ

c
c,n = V gcc,

ϕdc,n −Bc,nϕ
d
c,n + Sc,nϕ

d
c,n = V gdc .

Theorem 3.4 Assume that gcl , g
d
l , g

c
c, g

d
c ∈ CF(I). There exist a positive constants

γcl , γ
d,+
l , γd,−l , γcc , γ

d
c , such that

‖ϕcl,n(., τ)− ϕcl (., τ)‖∞ ≤ γcl ‖ (Bl −Bl,n)ϕcl (., τ)‖∞,

‖ϕdl,n(., τ)− ϕdl (., τ)‖∞ ≤ γd,+l

∥∥∥((Bl −Bl,n)− (S+
l − S

+
l,n)
)
ϕdl (., τ)

∥∥∥
∞
,

‖ϕdl,n(., τ)− ϕdl (., τ)‖∞ ≤ γd,−l

∥∥∥((S−l − S
−
l,n)− (Bl −Bl,n)

)
ϕdl (., τ)

∥∥∥
∞
,

‖ϕdc,n(., τ)− ϕdc(., τ)‖∞ ≤ γcc‖ (Bc −Bc,n)ϕcc(., τ)‖∞,

‖ϕcc,n(., τ)− ϕcc(., τ)‖∞ ≤ γdc

∥∥∥((Bc −Bc,n)− (Sc − Sc,n)
)
ϕdc(., τ)

∥∥∥
∞
,

for n large enough.
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Proof : We recall that ‖πnϕ− ϕ‖∞ → 0, for all ϕ ∈ CF(I). Since V is compact, it
is clear that Bl is compact. It is well-known that the inverse operator (I − Bl,n)−1 exists
and is uniformly bounded for n large enough.

On the other hand,

ϕcl (., τ)− ϕcl,n(., τ) = [V gcl (., τ) +Blϕ
c
l (., τ)]−

[
V gcl (., τ) +Bl,nϕ

c
l,n(., τ)

]
=

[
Blϕ

c
l (., τ)−Bl,nϕ

c
l,n(., τ)

]
=

[
(Bl −Bl,n)ϕcl (., τ)−Bl,n(ϕcl,n(., τ)− ϕcl )(., τ)

]
.

This leads to

(I −Bl,n)(ϕcl (., τ)− ϕcl,n(., τ)) = (Bl −Bl,n)ϕcl (., τ),

so that

ϕcl (., τ)− ϕcl,n(., τ) = (I −Bl,n)−1 [(Bl −Bl,n)ϕcl (., τ)] .

Consequently

‖ϕcl,n(., τ)− ϕcl (., τ)‖∞ ≤ γcl ‖(Bl −Bl,n)ϕcl (., τ)‖∞,

where

γcl := sup
n≥N

∥∥(I −Bl,n)−1
∥∥ ,

which is finite. The other outcomes can be demonstrated in a similar manner to the one
described above. �

Letting

Rd,+
l,n := γd,+l

∥∥∥((Bl −Bl,n)− (S+
l − S

+
l,n)
)
ϕdl (., τ)

∥∥∥
∞
,

Rd,−
l,n := γd,−l

∥∥∥((S−l − S
−
l,n)− (Bl −Bl,n)

)
ϕdl (., τ)

∥∥∥
∞
,

Rd
l,n := max

{
Rd,+
l,n ,R

d,−
l,n

}
.
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Theorem 3.5 The following estimate hold

‖ϕ
l
(., τ)− ϕ

l,n
(., τ)‖∞ ≤ γcl ‖ (Bl −Bl,n)ϕcl (., τ)‖∞ +Rd

l,n,

‖ϕl(., τ)− ϕl,n(., τ)‖∞ ≤ γcl ‖ (Bl −Bl,n)ϕcl‖∞ +Rd
l,n,

‖ϕ
c
(., τ)− ϕ

c,n
(., τ)‖∞ ≤ γcc‖ (Bc −Bc,n)ϕcc(., τ)‖∞

+ γdc

∥∥∥((Bc −Bc,n)− (Sc − Sc,n)
)
ϕdc(., τ)

∥∥∥
∞
,

‖ϕc(., τ)− ϕc,n(., τ)‖∞ ≤ γcc‖ (Bc −Bc,n)ϕcc(., τ)‖∞
+ γdc

∥∥∥((Bc −Bc,n)− (Sc − Sc,n)
)
ϕdc(., τ)

∥∥∥
∞
,

for n large enough.

Proof : To provide the desired results, we take into account that

‖ϕ
l
(., τ)− ϕ

l,n
(., τ)‖∞ = ‖

(
ϕcl (., τ)− ϕdl (., τ)

)
−
(
ϕcl,n(., τ)− ϕdl,n(., τ)

)
‖∞

≤ ‖ϕcl (., τ)− ϕcl,n(., τ)‖∞ + ‖ϕdl (., τ)− ϕdl,n(., τ)‖∞,

‖ϕl(., τ)− ϕl,n(., τ)‖∞ = ‖
(
ϕcl (., τ) + ϕdl (., τ)

)
−
(
ϕcl,n(., τ) + ϕdl,n(., τ)

)
‖∞

≤ ‖ϕcl (., τ)− ϕcl,n(., τ)‖∞ + ‖ϕdl (., τ)− ϕdl,n(., τ)‖∞,

and

‖ϕ
c
(., τ)− ϕ

c,n
(., τ)‖∞ = ‖

(
ϕcc(., τ)− ϕdc(., τ)

)
−
(
ϕcc,n(., τ)− ϕdc,n(., τ)

)
‖∞

≤ ‖ϕcc(., τ)− ϕcc,n(., τ)‖∞ + ‖ϕdc(., τ)− ϕdc,n(., τ)‖∞,

‖ϕc(., τ)− ϕc,n(., τ)‖∞ = ‖
(
ϕcc(., τ) + ϕdc(., τ)

)
−
(
ϕcc,n(., τ) + ϕdc,n(., τ)

)
‖∞

≤ ‖ϕcc(., τ)− ϕcc,n(., τ)‖∞ + ‖ϕdc(., τ)− ϕdc,n(., τ)‖∞.

�
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Letting

dl,n(ϕl,τ ) := γcl ‖ (Bl −Bl,n)ϕcl (., τ)‖∞ +Rd
l,n,

ddc,n(ϕc,τ ) := γcc‖ (Bc −Bc,n)ϕcc(., τ)‖∞ + γdc

∥∥∥((Bc −Bc,n)− (Sc − Sc,n)
)
ϕdc(., τ)

∥∥∥
∞
.

We can now state the key result of convergence analysis is the following corollary.

Corollary 3.1 The following estimate hold

D∗ (ϕl, ϕl,n) ≤ sup
τ
{dl,n(ϕl,τ )} ,

D∗ (ϕc, ϕc,n) ≤ sup
τ
{dc,n(ϕc,τ )} ,

for n large enough.

Proof :

Since

max
{∣∣∣ϕ

l
(s, τ)− ϕ

l,n
(s, τ)

∣∣∣ , ∣∣ϕl(s, τ)− ϕl,n(s, τ)
∣∣} ≤ dl,n(ϕl,τ ),

and since

max
{∣∣∣ϕ

c
(s, τ)− ϕ

c,n
(s, τ)

∣∣∣ , ∣∣ϕc(s, τ)− ϕc,n(s, τ)
∣∣} ≤ dc,n(ϕc,τ ),

we get

sup
−1<s<1

D (ϕl(s), ϕl,n(s)) ≤ dl,n(ϕl,τ ),

sup
−1<s<1

D (ϕc(s), ϕc,n(s)) ≤ dc,n(ϕc,τ ).

Consequently, we obtain the required estimates. �
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3.8 Numerical examples

We give numerical results of two cases, selected integro-differential equations, solved by
the methods of this work in this section to highlight the performance of our methods. Each
table in these numerical computations displays the numerical error of our approximation.
Letting

Ecl,n(τ) :=
∣∣ϕcl (sj, τ)− ϕcl,n(sj, τ)

∣∣ and Edl,n(τ) :=
∣∣ϕdl (sj, τ)− ϕdl,n(sj, τ)

∣∣ ,
and

Ecc,n(τ) :=
∣∣ϕcc(sj, τ)− ϕcc,n(sj, , τ)

∣∣ and Edc,n(τ) :=
∣∣ϕcc(sj, τ)− ϕdc,n(sj, τ)

∣∣ ,
Example 1

To begin, let’s look at the logarithmic fuzzy Fredholm integro-differential equation (??)
with λ = −1 and gl(., τ) such that

ϕl(s, τ) = [τ(s2 − 1), (2− τ)(s2 − 1)].

It follows that

ϕcl (s, τ) = (s2 − 1) and ϕdl (s, τ) = (1− τ)(s2 − 1).

The numerical results for Example 1 are listed in Table (3.1) for τ = 0.1.

n Edl,n(τ) Ecl,n(τ) Edl,n(τ) + Ecl,n(τ)

15 4.248e-3 4.727e-3 8.975e-3
25 1.622e-3 1.802e-3 3.425e-3
35 9.184e-4 1.019e-3 1.938e-3
45 5.056e-4 5.637e-4 1.069e-3
55 4.017e-4 4.448e-4 0.846e-4
65 2.576e-4 3.200e-4 5.776e-4
75 3.780e-4 4.100e-4 7.880e-4
85 2.400e-4 3.880e-4 6.280e-4

100 1.900e-4 2.400e-4 4.300e-4

Table 3.1: Example 1
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Example 2

The following Cauchy Fuzzy Fredholm integro-differential equation is the subject of the
second example. Here, λ = −1 and the function gc(., τ) was chosen in such a way that

ϕc(s, τ) = [τ(s3 − s), (2− τ)(s3 − s)].

This implies that

ϕcc(s, τ) = (s3 − s) and ϕdc(s, τ) = (1− τ)(s3 − s).

The method’s rate of convergence is shown in table (3.2) for τ = 0.1. The results back up
the above-mentioned convergence features.

n Edc,n(τ) Ecc,n(τ) Edc,n(τ) + Ecc,n(τ)

20 4.436e-3 1.329 e-3 5.765e-3
30 2.214e-3 6.630 e-4 2.877e-3
40 1.361e-3 4.049e-4 1.765e-3
50 9.550e-4 2.806e-4 1.235e-3
60 6.495e-4 1.933e-4 8.428e-4
70 5.312e-4 1.425e-4 6.737e-4
80 4.850e-4 1.270e-4 6.120e-4
90 3.080e-4 1.090e-4 4.170e-4

100 1.235e-4 8.990e-5 2.134e-4

Table 3.2: Example 2

3.9 Concluding remarks

To approximate two critical classes of fuzzy singular integro-differential equations with
a logarithmic kernel and a Cauchy one, an efficient collocation approach based on airfoil
polynomials was presented. Other types of equations can be generated and used with the
approach. By presenting actual computational approaches, this work will help clarify the
difference between theoretical fuzzy singular integro-differential equations research and
practical applications currently used in the design of different fuzzy quantum systems.



Chapter 4

Intuitionistic fuzzy integral equations

4.1 Introduction

In this chapter, the term intuitionistic fuzzy set, which is a generalization of the term fuzzy
set introduced by Zadeh [77, 76, 24, 38], is defined.

Nowadays, fuzzy theory and calculus are very popular topics. The papers [12, 72, 3]
discussed various results on intuitionistic fuzzy set theory. In [11], the authors discussed
intuitionistic fuzzy integrals. There are several literature sources where fuzzy integral
equations are solved, such as fuzzy Fredholm integral equation, (see, [25, 37, 25]) and
fuzzy Volterra integral equation, (see, [66, 67, 11])

Fuzzy set theory has long been used to handle fuzzy decision-making problems, but
many researchers have recently taken an interest in intuitionistic fuzzy set (IFS) theory and
applied it to the field of decision making. In cases where existing information is insuffi-
cient for the definition of an inexact concept using a conventional fuzzy set, the concept
of an intuitionistic fuzzy set can be viewed as an alternative approach to acknowledging a
fuzzy set.

Several authors consider intuitionistic fuzzy numbers in various articles and apply
them in various fields. However, the point is that they only considered the intuitionistic
fuzzy number with linear membership and nonmembership functions. However, this is
not always necessary.

In this chapter, we present the various arithmetic operations on intuitionistic fuzzy
numbers. We present all of the arithmetic operations as well as some properties of differ-
entiability for intuitionistic fuzzy functions. The de-i-fuzzification of the corresponding
intuitionistic fuzzy solution is also defined by the average of (τ1, τ2)-cut method. We
examine an intuitionistic fuzzy integral equations.

59
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4.2 Intuitionistic fuzzy analysis

Let X be the universal set.

Definition 4.1 ([62]) An intuitionistic fuzzy set (IFS) A in X is defined by

A := {(s, ρ(s), %(s)), s ∈ X},

where the functions ρ(s), %(s) : X → [0, 1] represent respectively, the degree of member-

ship and degree of non-membership of the element s ∈ X to the set A, which is a subset

of X , and for every s ∈ X , 0 ≤ ρ(s) + %(s) ≤ 1.

For each IFS A in X , we will call

Π(s) = 1− ρ(s)− %(s)

the intuitionistic fuzzy index of s in A. It is evident that

0 ≤ Π(s) ≤ 1, for all s ∈ X.

Definition 4.2 ([62],([43])) An intuitionistic fuzzy set A = {(s, ρ(s), %(s)), s ∈ X}, of

the real line is called an intuitionistic fuzzy number (IFN) if:

(i) A is IF-normal, i.e.there exist at least two points s, s0 ∈ X such that ρ(s) = 1 and

%(s0) = 1,

(ii) ρ is a A is IF- convex, i.e. its membership function ρ is fuzzy convex, i.e.

ρ
(
λs+ (1− λ)s0

)
≥ min

(
ρ(s), ρ(s0)

)
s, s0 ∈ R, λ ∈ [0, 1] ;

and its non-membership function % is fuzzy concave, i.e.

%
(
λs+ (1 + λ

)
s0 ≤ max

(
%(s), %(s0)

)
s, s0 ∈ R, λ ∈ [0, 1]

(iii) ρ is upper semi-continuous and % is lower semi-continuous;

(iv) suppA = {s ∈ X, %(s) < 1} is bounded.
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4.2.1 Arithmetic operations on interval-valued intuitionistic fuzzy num-
bers

Let A = {[a1, a2]; [a′1, a
′
2]} and B = {[b1, b2]; [b′1, b

′
2]} be two interval valued intuitionistic

fuzzy numbers. Then, the following are the various arithmetic operations:

1. Addition:
A+B = {[a1 + b1, a2 + b2]; [a′1 + b′1, a

′
2 + b′2]};

2. Substraction:

A−B = {[a1 − b2, a2 − b1]; [a′1 − b′2, a′2 − b′1]};

3. Multiplication:
A×B = {α; β},

where

α := [min(a1b1, a1b2, a2b1, a2b2),max(a1b1, a1b2, a2b1, a2b2)],

and
β := [min(a′1b

′
1, a
′
1b
′
2, a
′
2b
′
1, a
′
2b
′
2),max(a′1b

′
1, a
′
1b
′
2, a
′
2b
′
1, a
′
2b
′
2)].

4. Division:

AB =
{[

min
(a1

b1

,
a1

b2

,
a2

b1

,
a2

b2

)
,max

(a1

b1

,
a1

b2

,
a2

b1

,
a2

b2

)]
;[

min
(a′1
b′1
,
a′1
b′2
,
a′2
b′1
,
a′2
b′2

)
,max

(a′1
b′1
,
a′1
b′2
,
a′2
b′1
,
a′2
b′2

)]}
.

5. Scalar multiplication: Let k ∈ R. Then,

kA =

{
{[ka1, ka2]; [ka′1, ka

′
2]} if k ≥ 0,

{[ka2, ka1]; [ka′2, ka
′
1]} if k < 0.

More information concerning the arithmetic operations on interval-valued intuitionistic
fuzzy numbers can be found in [73].
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4.2.2 Intuitionistic fuzzy numbers

Definition 4.3 ([43]) A set of (r1, r2)-cuts, generated by IFS A, where r1, r2 ∈ [0, 1] is a

set of fixed numbers such that r1 + r2 ≤ 1 is defined as

Ar1,r2 := {(s, ρ(s), %(s))|s ∈ X ρ(s) ≥ r1, %(s) ≤ r2, r1, r2 ∈ [0, 1]}

(r1, r2)-cuts denoted by Ar1,r2 is defined as the crisp set of elements s wich belong to A,

at least to the degree r1 and which does belong A at most to the degree r2.

Denoting by F i the set of all intuitionistic fuzzy numbers.

Let x, y ∈ F i, if there exists z ∈ F i such that x = y + z then z is called Hukuhara
difference (H-difference) of x and y and is denoted by x	 y.([17])

Definition 4.4 ([17]) Let f : (a, b) → F i and s0 ∈ [a, b]. We say that f is differentiable

at s0, if there exist an element f
′
(s0) ∈ F i, such that

1. For all h > 0 sufficiently near to 0, there exist f(s0 +h)	f(s0), f(s0)	f(s0−h),

and the limits

lim
h→0+

f(s0 + h)	 f(s0)

h
= lim

h→0+

f(s0)	 f(s0 − h)

h
= f

′
(s0)

or

2. for all h < 0 sufficiently near to 0, there exist f(s0 +h)	f(s0), f(s0)	f(s0−h),

and the limits

lim
h→0−

f(s0 + h)	 f(s0)

h
= lim

h→0−

f(s0)	 f(s0 − h)

h
= f

′
(s0).

in the case when f is intuitionistic fuzzy valued function, we have the following theorem

Theorem 4.1 ([17]) Let f : R→ F i be a intuitionistic fuzzy valued function with

(r1, r2)−cut representation

fr1,r2(s) = {f(s, r1), f(s, r2)} = {[f
l
(s, r1), f

r
(s, r1)]; [f l(s, r2), f r(s, r2)]},

for each (r1, r2) ∈ (0, 1). Then we have the following

1. If f is differentiable in the first form (1) in Definition 4.4. Then

f
l
(s, r1), f

r
(s, r1) and f l(s, r2), f r(s, r2)
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are differentiable functions and

f ′r1,r2(s) = {[f ′
l
(s, r1), f ′

r
(s, r1)]; [f

′
l(s, r2), f

′
r(s, r2)]}.

2. If f is differentiable in the second form (2)in Definition 4.4. Then

f
l
(s, r1), f

r
(s, r1) and f l(s, r2), f r(s, r2)

are differentiable functions and

f ′r1,r2(s) = {[f ′
r
(s, r1), f ′

l
(s, r1)]; [f

′
r(s, r2), f

′
l(s, r2)]}.

Theorem 4.2 ([17]) Let f : R → F i be a intuitionistic fuzzy valued function with

(r1, r2)-cut representation

fr1,r2(s) = {f(s, r1), f(s, r2)} = {[f
l
(s, r1), f

r
(s, r1)]; [f l(s, r2), f r(s, r2)]},

for each (r1, r2) ∈ (0, 1). Then we have the following:

1. If f and f ′ are differentiable in the first form (1) or If f and f ′ are differentiable in

the second form (2) in Definition 4.4. Then

f”r1,r2(s) = {{[f ′′
l
(s, r1), f ′′

r
(s, r1)]; [f

′′
l (s, r2), f

′′
r(s, r2)]}}

2. If f is differentiable in the first form (1) and f ′ are differentiable in the second form

(2) or if f is differentiable in the second form (2) and f ′ are differentiable in the

first form (1) in Definition 4.4. Then

f”r1,r2(s) = {[f ′′
r
(s, r1), f ′′

l
(s, r1)]; [f

′′
r(s, r2), f

′′
l (s, r2)]}.

4.2.3 Generalized Hukuhara distance on intuitionistic fuzzy-valued
function

Definition 4.5 [60] Let

xr1,r2 = {x(r1), x(r2)} = {[xl(r1), xr(r1)]; [xl(r2), xr(r2)]}
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and

yr1,r2 = {y(r1), y(r2)} = {[y
l
(r1), y

r
(r1)]; [yl(r2), yr(r2)]}

two intuitionistic fuzzy numbers. The Hausdorff distance between intuitionistic fuzzy num-

bers is given by Di : F i ×F i → R+ ∪ {0} as in

Di(x, y;x, y) = sup
r1,r2

D(x(r1), y(r1);x(r2), y(r2))

= sup
r1,r2

max
{
|xl(r1)− y

l
(r1)|, |xr(r1)− y

r
(r1)|, |xl(r2)− yl(r2)|, |xr(r2)− yr(r2)|

}
,

where D is Hausdorff metric and metric space (F i, Di) is complete, separable, and lo-

cally compact, the following substances for metric Di are tenable:

1. Di(x+ w, y + w;x+ z, y + z) = Di
(
x, y;x, y

)
, for all x, y, x, y, w, z ∈ F i;

2. Di(kx, ky; kx, ky) = |k|Di
(
x, y;x, y

)
, for all x, y, x, y ∈ F i, k ∈ R;

3. Di(xl + xr, yl + y
r
;xl + xr, yl + yr) ≤ Di

(
xl, yl;xl, yl

)
+ Di

(
xr, yr;xr, yr

)
,

for all xl, yl, xl, yl, xr, yr, xr, yr ∈ F
i;

4. Di(xl	xr, yl	yr;xl	xr, yl	yr) ≤ Di
(
xl, yl;xl, yl

)
+Di

(
xr, yr;xr, yr

)
, as long

as xl	xr, yl	yr, xl	xr, yl	yr exists and for all xl, yl, xl, yl, xr, yr, xr, yr ∈ F
i.

4.2.4 Chebyshev polynomials

Definition 4.6 [71] Let x = cos(θ), θ ∈ [0, π]. Then, the n-th degree Chebyshev poly-

nomial Tn(.), n ∈ N, on [−1, 1] is defined by the relation

Tn(x) := cos(nθ), or explicitly, Tn(x) = cos(n arccos(x)).

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) =
1√

1−x2 and the corresponding inner product.

< f, g >=

ˆ 1

−1

w(x)g(x)f(x)dx, where, f, g ∈ L2(−1, 1).

The well-known recursive formula

Tn+1(x) = 2XTn(x)− Tn−1(x), n ∈ N where T0(x) = 1, T1(x) = x

is important for numerical computation of these polynomials. Since it is more convenient

to use range [0, T ] than [−1, 1], we transform [0, T ] into [−1, 1], using linear transfor-
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mation s = 2
T
x − 1, where x ∈ [0, T ], s ∈ [−1, 1]. This leads to a shifted Chebyshev

polynomial (of the first kind) T ∗n(x) of degree n in x on [0, T ] given by

T ∗n(x) = Tn(
2

T
x− 1),

with the corresponding weight function w∗(x) = w( 2
T
x− 1).

Let u(x, y) be a bivariate function defined on [0, T1]× [0, T2]. In the similar way, it can be
expanded using Chebychev polynomials as follows

u(x, y) ' pN,M(u)(x, y) =
N∑
n=0

M∑
m=0

un,mT
∗
n(x)T̄ ∗m(y) = Π(x)tUΠ(y),

where pN,M : C([0, T ] × [0, T ]) 7→ πN × πM , (N,M ∈ N), is an orthogonal projection
and we use− to distinguish the shifted Chebyshev polynomials corresponding to different
intervals. Here, U = (ui,j) is a matrix of size (N + 1)× (M + 1) with the elements

ui,j =
1

γiγ̄j

ˆ T1

0

ˆ T2

0

w∗(x)w̄∗(y)u(x, y)T ∗i (x)T̄ ∗(y)dxdy

' T1T2π
2

4γiγ̄j(N + 1)2

N+1∑
n=0

M+1∑
m=0

u(
T1

2
(xr + 1),

T2

2
(xs + 1))Ti(xr)Tj(xs).

Π(t) = [T ∗0 (t), · · · , T ∗N(t)]t.

Theorem 4.3 [71] Let Π(x) be the vector of shifted Chebyshev polynomials defined above.

Let the (N + 1)× (M + 1) matrix P defined by P :=
´ T

0
Π(s)Π(s)Tds.

Then, the elements of this matrix can be determined by

p00 = T, p11 = T
3
, p10 = p01 = 0,

pij = T
4
( −1−(−1)i+j

(i+j−1)(i+j+1)
), for j = i+ 1, i− 1, i ∈ {1, · · · , N}, and

pij = T
4
( −1−(−1)i+j

(i+j−1)(i+j+1)
) + −1−(−1)|i+j|

(|i+j|−1)(|i+j|+1)
), for j = i+ 1, i− 1, i ∈ {1, · · · , N}.
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4.3 Intuitionistic fuzzy integral equation

Let us consider the following intuitionistic fuzzy integral equation

ϕ(s) = g(s) +

ˆ T

0

h(s, t)ϕ(t)dt, 0 < s, t < T. (4.1)

where h(., .) and g are two known intuitionistic fuzzy numbers, ϕ is unknown intuitionis-
tic fuzzy number.

4.4 The Approximate Solution

As in [71], we suppose that the intuitionistic fuzzy numbers ϕ and g can be described as
described in the following:

ϕτ1,τ2(s) = {ϕ(s, τ1), ϕ(s, τ2)},

= {[ϕ
l
(s, τ1), ϕ

r
(s, τ1)]; [ϕl(s, τ2), ϕr(s, τ2)]}

gτ1,τ2(s) = {g(s, τ1), g(s, τ2)},

= {[g
l
(s, τ1), g

r
(s, τ1)]; [gl(s, τ2), gr(s, τ2)]}.

The equation (4.1) can be represented as follows:

ϕ
l
(s, τ1) = g

l
(s, τ1) +

ˆ T

0

h1(s, t)ϕ
l
(t, τ1)dt+

ˆ T

0

h2(s, t)ϕ
r
(t, τ1)dt, , 0 < s, t < T,

ϕ
r
(s, τ1) = g

r
(s, τ1) +

ˆ T

0

h1(s, t)ϕ
r
(t, τ1)dt+

ˆ T

0

h2(s, t)ϕ
l
(t, τ1)dt, , 0 < s, t < T,

ϕl(s, τ2) = gl(s, τ2) +

ˆ T

0

h1(s, t)ϕl(t, τ2)dt+

ˆ T

0

h2(s, t)ϕr(t, τ2)dt, , 0 < s, t < T,

ϕr(s, τ2) = gr(s, τ2) +

ˆ T

0

h1(s, t)ϕr(t, τ2)dt+

ˆ T

0

h2(s, t)ϕl(t, τ2)dt, , 0 < s, t < T,
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Letting

h1(s, t) =

h(s, t) if h(s, t) > 0

0 otherwise

h2(s, t) =

h(s, t) if h(s, t) < 0

0 otherwise

Thus, [
ϕ
l
(s, τ1)

ϕ
r
(s, τ1)

]
=

[
g
l
(s, τ1)

g
r
(s, τ1)

]
+

ˆ T

0

(
h1 h2

h2 h1

)[
ϕ
l
(t, τ1)

ϕ
r
(t, τ1)

]
dt

and [
ϕl(s, τ1)

ϕr(s, τ1)

]
=

[
gl(s, τ1)

gr(s, τ1)

]
+

ˆ T

0

(
h1 h2

h2 h1

)[
ϕl(t, τ1)

ϕr(t, τ1)

]
dt,

ϕτ1,τ2(s) ≈ {[Πt(s)ΦlΠ(τ1),Πt(s)ΦrΠ(τ1)]; [Πt(s)ΦlΠ(τ2),Πt(s)ΦrΠ(τ2)]}

gτ1,τ2(s) ≈ {[Πt(s)GlΠ(τ1),Πt(s)GrΠ(τ1)]; [Πt(s)GlΠ(τ2),Πt(s)GrΠ(τ2)]}

h1(s, t) ≈ Πt(s)H1Π(t)

h2(s, t) ≈ Πt(s)H2Π(t).

Hence,  Πt(s)ΦlΠ(τ1)

Πt(s)ΦrΠ(τ1)

 =

 Πt(s)GlΠ(τ1)

Πt(s)GrΠ(τ1)

+

ˆ T

0

 Πt(s)H1Π(t) Πt(s)H2Π(t)

Πt(s)H2Π(t) Πt(s)H1Π(t)


 Πt(t)ΦlΠ(τ1)

Πt(t)ΦrΠ(τ1)

 dt (4.2)
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and  Πt(s)ΦlΠ(τ2)

Πt(s)ΦrΠ(τ2)

 =

 Πt(s)GlΠ(τ2)

Πt(s)GrΠ(τ2)

+

ˆ T

0

 Πt(s)H1Π(t) Πt(s)H2Π(t)

Πt(s)H2Π(t) Πt(s)H1Π(t)


 Πt(t)ΦlΠ(τ2)

Πt(t)ΦrΠ(τ2)

 dt. (4.3)

A similar analysis as [71] gives Φl

Φr

 =

 Gl +
´ T

0
H1Π(t)Πt(t)Φldt+

´ T
0
H2Π(t)Πt(t)Φrdt

Gr +
´ T

0
H2Π(t)Πt(t)Φldt+

´ T
0
H1Π(t)ΦrΠ

t(t)Φrdt

 , (4.4)

 Φl

Φr

 =

 Gl +
´ T

0
H1Π(t)Πt(t)Φldt+

´ T
0
H2Π(t)Πt(t)Φrdt

Gr +
´ T

0
H2Π(t)Πt(t)Φldt+

´ T
0
H1Π(t)ΦrΠ

t(t)Φrdt

 . (4.5)

Hence,  Gl

Gr

 =

 (I −H1P ) −H2P

−H2P (I −H1P )


 Φl

Φr

 , (4.6)

and  Gl

Gr

 =

 (I −H1P ) −H2P

−H2P (I −H1P )


 Φl

Φr

 , (4.7)

4.5 Existence and uniqueness

Theorem 4.4 Assume that for equation (4.1) the following assumptions hold:

g
l
, g

r
, gl, gr, h1 and h2 are uniformly continuous with respect to s and there exist
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cl > 0, cr > 0, cl > 0 and cr > 0 such that

|g
l
(s1, τ1)− g

l
(s2, τ1)| ≤ cl|s1 − s2|,

|g
r
(s1, τ1)− g

r
(s2, τ1)| ≤ cr|s1 − s2|,

|gl(s1, τ1)− gl(s2, τ1)| ≤ cl|s1 − s2|,

|gr(s1, τ1)− gr(s2, τ1)| ≤ cr|s1 − s2|,

|h1(s1, t)− h1(s2, t)| ≤ k1|s1 − s2|,

|h2(s1, t)− h2(s2, t)| ≤ k2|s1 − s2|,

|ϕ
l
(s, τ1)| ≤M l, |ϕr(s, τ1)| ≤M r,

|ϕl(s, τ1)| ≤M l, |ϕr(s, τ1)| ≤M r;

|h1(s, t)| ≤M1, |h2(s, t)| ≤M2, M = max{M1,M2}, and 2MT < 1.

Then, the problem (4.1) has a unique continuous solution ϕ∗ ∈ C([0, T ]).

Proof : We have to prove that A(C([0, T ])) ⊂ A(C([0, T ])). To this goal, for all ϕ ∈
A(C([0, T ])), and s1, s2 ∈ [0, T ], we have

DI((Aϕ)τ1,τ2(s1), (Aϕ)τ1,τ2(s2)) =

= sup
τ1,τ2

D((Aϕ)(s1, τ1), (Aϕ)(s2, τ1); (Aϕ)(s1, τ2), (Aϕ)(s2, τ2))

= sup
τ1,τ2

max{|(Aϕ
l
)(s1, τ1)− (Aϕ

l
)(s2, τ1)|, |(Aϕ

r
)(s1, τ1)− (Aϕ

r
)(s2, τ1)|;

|(Aϕl)(s1, τ2)− (Aϕl)(s2, τ2)|, |(Aϕr)(s1, τ2)− (Aϕr)(s2, τ2)|}

≤ sup
τ1,τ2

max{|g
l
(s1, τ1)− g

l
(s2, τ1)|+

ˆ T

0

|h1(s1, t)− h1(s2, t)||ϕl(t, τ1)|dt

+

ˆ T

0

|h2(s1, t)− h2(s2, t)||ϕr(t, τ1)|dt, |g
r
(s1, τ1)− g

r
(s2, τ1)|

+

ˆ T

0

|h1(s1, t)− h1(s2, t)||ϕr(t, τ1)|dt+

ˆ T

0

|h2(s1, t)− h2(s2, t)||ϕl(t, τ1)|dt;

|gl(s1, τ2)− gl(s2, τ2)|+
ˆ T

0

|h1(s1, t)− h1(s2, t)||ϕl(t, τ2)|dt
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+

ˆ T

0

|h2(s1, t)− h2(s2, t)||ϕr(t, τ2)|dt, |gr(s1, τ2)− gr(s2, τ2)|

+

ˆ T

0

|h1(s1, t)− h1(s2, t)||ϕr(t, τ2)|dt+

ˆ T

0

|h2(s1, t)− h2(s2, t)||ϕl(t, τ2)|dt}

≤ sup
τ1,τ2

max{cl|s1 − s2|+
ˆ T

0

k1|s1 − s2||ϕl(t, τ1)|dt+

ˆ T

0

k2|s1 − s2||ϕr(t, τ1)|dt,

cr|s1 − s2|+
ˆ T

0

k1|s1 − s2||ϕr(t, τ1)|dt+

ˆ T

0

k2|s1 − s2||ϕl(t, τ1)|dt;

cl|s1 − s2|+
ˆ T

0

k1|s1 − s2||ϕl(t, τ2)|dt+

ˆ T

0

k2|s1 − s2||ϕr(t, τ2)|dt,

cr|s1 − s2|+
ˆ T

0

k1|s1 − s2||ϕr(t, τ2)|dt+

ˆ T

0

k2|s1 − s2||ϕl(t, τ2)|dt}

≤ sup
τ1,τ2

max{cl|s1 − s2|+ Tk1M l|s1 − s2|+ Tk2M r|s1 − s2|,

cr|s1 − s2|+ Tk1M r|s1 − s2|+ Tk2M l|s1 − s2|;

cl|s1 − s2|+ Tk1M l|s1 − s2|+ Tk2M r|s1 − s2|,

cr|s1 − s2|+ Tk1M r|s1 − s2|+ Tk2M l|s1 − s2|}

≤ sup
τ1,τ2

max{cl + Tk1M l + Tk2M r, cr + Tk1M r + Tk2M l;

cl + Tk1M l + Tk2M r, cr + Tk1M r + Tk2M l}|s1 − s2|

Thus, the operator A is uniformly continuous. It follows A(C([0, T ])) ⊂ C([0, T ]).

We now study the continuous of A on C([0, T ]). Let ϕ, ψ ∈ C([0, T ]), s ∈ [0, T ]. We
have

DI((Aϕ)τ1,τ2(s), (Aψ)τ1,τ2(s)) = sup
τ1,τ2

D((Aϕ)(s, τ1), (Aψ)(s, τ1); (Aϕ)(s, τ2), (Aψ)(s, τ2))

≤ sup
τ1,τ2

max{|(Aϕ)
l
(s, τ1)− (Aψ)

l
(s, τ1)|, |(Aϕ)

r
(s, τ1)− (Aψ)

r
(s, τ1)|;

|(Aϕ)l(s, τ2)− (Aψ)l(s, τ2)|, |(Aϕ)r(s, τ2)− (Aψ)r(s, τ2)|}
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≤ sup
τ1,τ2

max{
ˆ T

0

|h1(s, t)||ϕ
l
(t, τ1)− ψ

l
(t, τ1)|dt+

ˆ T

0

|h2(s, t)||ϕ
r
(t, τ1)− ψ

r
(t, τ1)|dt,

ˆ T

0

|h1(s, t)||ϕ
r
(t, τ1)− ψ

r
(t, τ1)|dt+

ˆ T

0

|h2(s, t)||ϕ
l
(t, τ1)− ψ

l
(t, τ1)|dt;

ˆ T

0

|h1(s, t)||ϕl(t, τ2)− ψl(t, τ2)|dt+

ˆ T

0

|h2(s, t)||ϕr(t, τ2)− ψr(t, τ2)|dt,
ˆ T

0

|h1(s, t)||ϕr(t, τ2)− ψr(t, τ2)|dt+

ˆ T

0

|h2(s, t)||ϕl(t, τ2)− ψl(t, τ2)|dt}

≤ sup
τ1,τ2

max{M1T sup
t
|ϕ
l
(t, τ1)− ψ

l
(t, τ1)|+

M2T sup
t
|ϕ
r
(t, τ1)− ψ

r
(t, τ1)|,

M1T sup
t
|ϕ
r
(t, τ1)− ψ

r
(t, τ1)|+

M2T sup
t
|ϕ
l
(t, τ1)− ψ

l
(t, τ1)|;

M1T sup
t
|ϕl(t, τ2)− ψl(t, τ2)|+

M2T sup
t
|ϕr(t, τ2)− ψr(t, τ2)|,

M1T sup
t
|ϕr(t, τ2)− ψr(t, τ2)|+

M2T sup
t
|ϕl(t, τ2)− ψl(t, τ2)|}

≤ 2MT sup
t
Di(ϕτ1,τ2(t), ψτ1,τ2(t))

DI∗(Aϕτ1,τ2 , Aψτ1,τ2) ≤ 2MTDI∗(ϕτ1,τ2 , ψτ1,τ2)

Thus, A is a contraction.

By the contraction principle, the operator A has a unique fixed point ϕ∗, then (4.1) has
a unique continuous solution. �



Conclusions and perspectives

In this dissertation, we have presented some modified methods for solving certain classes
of fuzzy Fredholm integral and integro-differential equations, and we highlight our results
with numerical examples.

Our work aims to develop an approximation for fuzzy linear integral and integro-
differential equations using collocation methods based on some orthogonal polynomials.
This work can be extended to fuzzy nonlinear integral and integro-differential equations
as well as other fuzzy singular integral equation classes.

To determine, as a future project, the conditions under which the previous methods
could be applied to fuzzy Volterra integral equations of the third kind. These techniques
can also be used with nonlinear integrals and integro-differential equations, but some
modifications are required.

Precisely, we aim to approximate the solution of fuzzy integral equations of the type :

αϕ(s)− β
m∑
k=1

ˆ s

a

Hk(s, t, ψ(t))ϕ(t)dt = g(s), m ∈ N∗, a ≤ s ≤ b,

αϕ(s)− β
m∑
k=1

ˆ s

a

Hk(s, t, ψ(t)) ln |s− t|h(s, t)ϕ(t)dt = g(s), m ∈ N∗, a ≤ s ≤ b,

αϕ(s)− β

π

ˆ 1

0

h(s, t)k(s, t, ψ(t))

s− t
ϕ(t)dt = g(s), , 0 ≤ s ≤ 1.
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