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Notations

To simplify exposition of the material in this thesis and to keep compactness of presentation the
following notations will be used. Let H,U,V be real separable Hilbert spaces.

L(U,H) The space of linear operators from U to H.

L (U,H) The space of bounded linear operators form U to H.

L (H) The space of bounded linear operators form H to H.

L1(H) The space of all nuclear operators from H to H.

L 0
2 (K0,H) denote the sapce of all Hilbert-Schmidt operators from K0 to H.

‖ · ‖ The norm in H.

〈., .〉 The inner product in H.

P� 0 P ∈L (H) is positive (〈Pz,z〉> 0, for all z ∈ H,z 6= 0).

P� 0 P ∈L (H) is nonnegative (〈Pz,z〉 ≥ 0, for all z ∈ H).

P� 0 P ∈L (H), 〈Pz,z〉> γ‖z‖2, γ > 0 for all z ∈ H,z 6= 0).

L+(H) The set of self-adjoint linear bounded operators P ∈L (H) such
that P� 0

Lip(Y,U) The set of Lipschitzian functions ∆ : Y −→U .

Lp((0,T ),H), p≥ 1 The space of functions f (t) with
∫ T

0
‖ f (t)‖pdt <+∞.

C1((0,T ),H) The space of strongly continuously differentiable functions on
(0,T ) with values in H.

5
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L2(Ω,H) The space of square integrable H-valued functions on the proba-
bility space (Ω,F ,P)

L2
w(R+,L2(Ω,H)) The space of predictable stochastic processes z(t) = (z(t))t∈R+

with respect to the σ−algebras {Ft}t∈R+ ⊂F satisfying

‖z‖2
L2

w
= E

∫ +∞

0
‖z(t)‖2

Hdt =
∫ +∞

0
E(‖z(t)‖2)dt <+∞

E(x) The expectation of x.

On the stability radius of infinite dimensional stochastic systems Amira Kameche



Introduction

Stochastic equations in infinite dimension are natural generalizations of stochastic differential
equations and their theory has motivations coming both from mathematics and the natural
sciences: physics, chemistry and biology (see e.g. [13]). Stochastic stability for stochastic
equations in Hilbert spaces has been studied extensively in the literature (see e.g [5, 6, 7, 42]).

In engineering, physics and economics, many dynamical systems involving stochastic process
and random noise are often modeled by stochastic models. The stochastic effects of these models
are then used to describe the uncertainty about the dynamic system parameters.

Modeling of any practical system for control design invariably involves uncertainty. Since the
exact model of a process may be difficult or even impossible to determine, the logical approach is
to design a control strategy based on a suitable nominal (i.e., most likely) model. Once a system
has been identified and a nominal model established along with the availability of an associated
uncertainty description, there are two main tasks to achieve. The first task is the analysis of
the uncertain system, then the following issue arise naturally and concerns the question of
robustness analysis. A system is said to be robustly stable if it can sustain stability in spite of
suffering from uncertainty. The main question combining the overall problem is: What is the
measure of the maximum uncertainty that a system can tolerate and still sustain stability and
performance? Alternatively, given the size of the uncertainty, one might wish to study the effect
of the uncertainty on the stability and performance of a system.

Robust control has been studied in extensive works due to its applications in many industrial
control problems, e.g. power electronics systems, flight control systems , motion control systems
and networked control systems. Indeed, a control law is typically designed from an idealized
and simplified model of the applied control system. The potential problem of controller without
considering the uncertainties is that closed-loop systems performance and stability are easier to
be affected, which indicates that the controller is not robust enough to suppress the introduced
disturbances. The goal of a robust control is therefore, to generate a suitable control law to
overcome the imperfection of a model and assuring a certain performance level against the
presence of uncertainties or external disturbances.

The aspect of developing measures of stability robustness for linear uncertain systems with
state space description has received significant attention in system and control theory. These
measures can be characterized by the stability radius. The problem of evaluating and calculating
this stability radius is of great importance, from both theoretical and practical points of view and
has attracted a lot of attention from researchers see [1, 14, 30, 34, 37, 38, 39, 51].

Stability radii for linear state space systems subjected to structured perturbations have been
introduced in [27]. The authors considered continuous finite dimensional systems subjected to
deterministic perturbations. They established characterizations of the stability radius in terms of
a Riccati equation. El Bouhtouri and Pritchard used the framework of stability radii to analyse
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robust stability and robust stabilization of linear systems subjected to stochastic perturbations
[15] [16].

Hinrichsen and Pritchard [29] obtained lower bounds and the perturbations which guarantee
the stability of a linear system which is subjected to deterministic and stochastic perturbations.

El Bouhtouri, Hinrichsen and Pritchard [17] considered stochastic linear systems subjected
to stochastic perturbation. For which they established lower bounds for stochastic perturbation.
Authors in [35], considered continuous infinite dimensional systems subjected to stochastic
multi-perturbations. They derived a lower bounds for the(supremal) stability radii.

If both the deterministic and the stochastic parameters are perturbed the stability radius
problem is more complicated and at present it is far from been resolved. The results established
in the finite dimensional case yield only conservative estimate.

Our first purpose in this thesis is to study the stability radii framework robust stability and
robust stabilization of a class of infinite dimensional linear deterministic or stochastic systems
subjected to deterministic and�or stochastic purpose.

The second objective of our research concerns the study of the stability behavior of an
abstract semilinear stochastic evolution equation with an infinite memory that includes several
equations coming from elasticity such as the wave and Petrovsky equations in the presence
of additive noise. More specifically, we are concerned with the following stochastic evolution
equationutt +Au(t)−

∫ +∞

0
h(s)Aαu(t− s)ds+ f (u(t)) = σ(t)Wt(t) t,s in[0,+∞[,

u(−t) = u0(t), ut(0) = u1.
(0.1)

When σ ≡ 0 and α = 1, problem (0.1) has been considered in a series of papers, most of
them adressed the issues of the global existence of the solutions and their stability. Regarding
the stability property, we can state [3, 4, 8, 20, 21, 25, 49] and the references therein. In [12], the
author considered a second-order evolution with infinite memory of the form

utt(t)+Au(t)−
∫ +∞

0
h(s)Au(t− s)ds = 0 in [0,+∞[, (0.2)

and proved that the solutions decay to 0 as t tends ∞ but no explicit rate of the decay was
given. Later, it was shown that the solutions decay exponentially if the kernel function h decays
exponentially and polynomially if h does, see for instance [24]. Messaoudi [44] generalized this
result by introducing new conditions on the function h that leads to a general decay of solutions
where the exponential, or polynomial decay rates are considered as special cases. In fact, he
studied a wave equation with finite memory of the form

utt(x, t)−∆u(x, t)−
∫ t

0
h(t− s)∆u(x,s)ds = 0, (0.3)

together with Dirichlet boundary condition in Ω × [0,+∞[ where Ω is a bounded domain in Rn,
n≥ 1, and proved, under the condition

h′(t)≤−ξ(t)h(t), ∀t ∈ R+, (0.4)

where ξ :R+→R+ is a non-increasing differentiable function, that the solution has the following
decay property

‖u(t)‖ ≤ k1exp
(
− k2

∫ t

0
ξ(s)ds

)
, ∀t ∈ R+, (0.5)

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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for some positive constants k1 and k2. As was mentioned, the above stability estimate recover
the usual exponential and polynomial decay rates.

A few works studied stability problems for stochastic evolution equations with memory, see
[31, 41, 52]. In [52], the authors showed the existence and uniqueness of solution for a class
of stochastic wave equations with memory and they obtained a decay estimate of the energy
function. Liang and Gao [41] considered a nonlinear stochastic viscoelastic wave equation with
linear damping. By an appropriate energy inequality and estimations, they showed that the local
solution of the stochastic equations will blow up with positive probability or explosive in L2
sense under some sufficient conditions. Yang et al [31] proved global existence and asymptotic
stability for the solution of a second order quasilinear stochastic viscoelastic evolution equation
with memory.

The main aim is to address the global well-posedness and to study the stability of the global
solution of (0.1). Regarding the stability problem, we use the general assumption (0.4) but
we do not require that the function ξ to be decreasing which improves many results such as in
[22, 43, 45, 46, 47]. It is worth to note that this general condition has never been employed for
the stability of stochastic evolution systems.

The monograph is organized in five chapters that are structured as follows.
Chapter 1
In this chapter we survey the necessary notations and the main tools needed throughout this

thesis. We firstly introduce some basic definitions and preliminaries in stochastic differential
equations in Hilbert spaces. Then, we give concepts of solutions of deterministic and stochastic
systems.

Chapter 2
This chapter studies the stability radius of deterministic systems subjected to both determin-

istic and stochastic perturbations.
First we establish characterizations of the stability radius, then we consider the maximization

problem. We investigate controlled systems with bounded an unbounded input operator. The
results are giving in terms of Lyapunov and Riccati equations.

Chapter 3
The goal of this chapter is to study the stability radius and its maximization for stochastic

systems subjected to stochastic perturbations. The results are giving in terms of Lyapunov and
Riccati stochastic equations.

Chapter 4
This chapter considers the general case. It deals with stochastic systems subjected to both

deterministic and stochastic perturbations. We establish robustness results via a linear operator
inequality.

Chapter 5
This chapter presents an important contribution on the stability of solutions for a class of

stochastic equations with infinite memory. We generalize the works [31, 41, 52] by establishing
a general stability result that allows a larger class of relaxation functions and improves many
previous works.

We illustrate the methods developed in the thesis on several examples of stochastic partial
differential equations.

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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Stochastic differential equations in infinite dimension

In this chapter we introduce some basic definitions and state known results needed in our exposi-
tion. Definitions and results on stochastic processus are recalled in section 1.1. For a substantial
treatment of these results see the monographs [13], [42]. Then, we recall some concepts from
control theory of linear deterministic systems in Hilbert spaces. In particular, exponential stabil-
ity, stabilization, Lyapunov and Riccati equations. Infinite dimensional stochastic equations are
considered. Concepts of strong and mild solutions, immportant stochastic stability theorems are
presented. Finally, we present some useful inequalities.

1.1 Nuclear and Hilbert-Schmidt operators

Let E ,G be Banach spaces and letL (E ,G) be the Banach spaces of all linear bounded operators
from E into G endowed with the usual supremum norm. We denote by E ∗ and G∗ the dual
spaces of E and G respectively. An element T ∈L (E ,G)is said to be a nuclear operator if there
exist two sequences {a j} ⊂G, {b j} ⊂ E ∗ such that

∞

∑
j=1
‖a j‖.‖b j‖<+∞

and T has the representation

T x =
∞

∑
j=1

a jb j(x), x ∈ E

The space of all nuclear operators from E into G, endowed with the norm

‖T‖1 = in f
{ ∞

∑
j=1
‖a j‖.‖b j‖ : T x =

∞

∑
j=1

a jb j(x), x ∈ E
}

is a Banach space , and will be denoted L1(E ,G) . Let K be another Banach space; it is clear
that if T ∈L1(E ,G) and S ∈L (G,K) then T S ∈L1(E ,K) and ‖T S‖1 ≤ ‖T‖‖S‖1.

Let H be a separable Hilbert space and let {ek} be a complete orthonormal system in H. If
T ∈L (H,H) then we define trace of T :

TrT =
∞

∑
j=1
〈Te j,e j〉

10
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Proposition 1.1.1 [13]

If T ∈L1(H) then TrT is a well-defined number independent of the choice of the orthonormal
basis {ek}.

Proposition 1.1.2 [13]

A nonnegative operator T ∈L (H) is nuclear if and only if for an orthonormal basis {ek} on H

∞

∑
j=1
〈Te j,e j〉 ≤+∞

Moreover in this case TrT = ‖T‖1.

Let E and F be two separable Hilbert spaces with complete orthonormal bases {ek} ∈H,{ f j}⊂ F.
A linear bounded operator T : H→ E is said to be Hilbert-Schmidt if

∞

∑
k=1
|Tek|2 < ∞

The definition of Hilbert-Schmidt operator, and the number

‖T‖2 =
( ∞

∑
k=1
|Tek|2

) 1
2

are independent of the choice of the basis {ek}

Proposition 1.1.3 [13]

LetE ,F,G be separable Hilbert spaces. If T ∈L2(E ,F) and S ∈L2(F,G), then ST ∈L1(E ,G)
and

‖ST‖1 ≤ ‖T‖2‖S‖2

1.2 Hilbert space valued Wiener processes

A measurable space is a pair (Ω,F ) where Ω is a set and F is a σ-field, also called a σ-
algebra, of subsets of Ω. This means that the family {F} contains the set Ω and is closed
under the operation of taking complements and countable unions of its elements. If (Ω,F )
and (S,S ) are two measurable spaces, then a mapping ξ from Ω into S such that the set
{ω ∈ Ω : ξ(ω) ∈ A} = {ξ ∈ A} belongs to F for arbitrary A ∈ S is called a random variable
from (Ω,F ) into (S,S ).

A probability measure on a measurable space (Ω,F ) is a σ-additive function P from F into
[0,1] such that P(Ω) = 1. The triplet (Ω,F ,P) is called a probability space. If (Ω,F ,P) is a
probability space, we set

F = {A⊂ Ω : ∃B,C ∈F ,B⊂ A⊂C,P(B) = P(C)}

Then F is a σ-field, called the completion of F . If F =F , the probability space (Ω,F ,P) is
said to be complete.

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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Let (Ω,F ,P) denote a complete probability space. A family {Ft} , t ≥ 0, for which all the
Ft are sub- σ-fields of F and form an increasing family of σ-fields, is called a filtration if
Fs ⊂Ft ⊂F for s≤ t.

We assume that the probability space (Ω,F ,P) is equipped with a filtration {Ft}t≥0 such
that F0 contains all sets of P-measure zero. We consider two Hilbert spaces K and H, and
a symmetric nonnegative operator Q ∈ L1(K). If TrQ < +∞, then there exists a complete
orthonormal system {ek}k≥1 in K, and a bounded sequence of positive real numbers {λk}k≥1
such that

Qek = λkek, k = 1,2, · · ·

Definition 1.2.1 ( H-valued Q-Wiener process) [53]

A H-valued stochastic process {w(t)}t≥0, is called a Q-Wiener process if

(a) . w(0) = 0,

(b) . w(t) has continuous trajectories,

(c) . w(t) has independent increments,

(d) . E(w(t)) = 0 and Cov(w(t)−w(s)) = (t− s)Q, for all t ≥ s≥ 0, where Cov(x) denotes
the covariance operator of x ∈ H.

If the covariance Q is the identity operator I, then the Wiener process {w(t)}t ≥ 0 is called
a cylindrical Wiener process in H.

Proposition 1.2.1 [53]

Assume that {w(t)}t≥0 is a Q-Wiener process with TrQ <+∞. Then the following statements
hold:

{w(t)}t≥0 is a Gaussian process on H and

E(w(t)) = 0, Cov(w(t)) = tQ, t ≥ 0 (1.1)

For arbitrary t ≥ 0,{w(t)} has the expansion

w(t) =
∞

∑
j=1

√
λ jβ j(t)e j (1.2)

where
β j(t) =

1√
λ j

〈
w(t),e j

〉
, j = 1,2, · · · (1.3)

are real valued Brownian motions mutually independent on (Ω,F ,P) and the series in
(1.2) is convergent in L2(Ω,F ,P).

Theorem 1.2.1 ( Stochastic Fubini Theorem )[35]
Let (H,Ω,µ) be a measurable space and

(
Φ(t,x)(t,x)∈[0,T ]×H

)
be a L 0

2 -valued stochastic
process. Assume that ∫

H

∫ T

0
‖Φ(s,x)‖2

L 0
2
dsµ(dx)<+∞, (1.4)

On the stability radius of infinite dimensional stochastic systems Amira Kameche



1.3. SEMIGROUP APPROACH OF EVOLUTION EQUATIONS 13

then with probability one∫
H

(∫ T

0
Φ(s,x)dw(s)

)
µ(dx) =

∫ T

0

(∫
H
Φ(s,x)µ(dx)

)
dw(s). (1.5)

Lemma 1.2.1 (Burkholder-Davis-Gundy)[13]
For arbitrary p≥ 0, then there exists a constant Cp > 0, dependent only on p such that for

any T ≥ 0,

E

{
sup

0≤t≤T

∥∥∥∥∫ t

0
Φ(s,ω)dw(s)

∥∥∥∥p

H

}
≤CpE

{∫ T

0
‖Φ(s,ω)‖2

L 0
2
ds
} p

2

. (1.6)

Theorem 1.2.2 (Itô Formula)[19]
Let Q be a symmetric nonnegative trace-class operator on a separable Hilbert space K,

and let {wt}0≤t≤T be a Q-Wiener process on a filtered probability space (Ω,F ,{Ft}0≤t≤T ,P).
Assume that a stochastic process X(t),0≤ t ≤ T , is given by

x(t) = x(0)+
∫ t

0
Ψ(s)ds+

∫ t

0
Φ(s)dws (1.7)

where x(0) is anF0-measurable H-valued random variable, Ψ(s) is an H-valuedFs-measurable
P-a.s. Bochner-integrable process on [0,T ],∫ T

0
‖Ψ(s)‖Hds < ∞ P−a.s,

and Φ ∈L 0
2− valued process stochastically integrable in [0,T ].

Assume that a function F : [0,T ]×H→R is such that F is continuous and its Fréchet partial
derivatives Ft ,Fx,Fxx are continuous and bounded on bounded subsets of [0,T ]×H. Then the
following Itô’s formula holds:

F(t,x(t)) =F(0,x(0))+
∫ t

0
(Fx(s,x(s)),Φ(s)dw(s)〉H

+
∫ t

0

{
Ft(s,x(s))+ 〈Fx(s,x(s)),Ψ(s)〉H

+
1
2

Tr
[
Fxx(s,x(s))

(
Φ(s)Q1/2

)(
Φ(s)Q1/2

)∗]}
ds

P-a.s. for all t ∈ [0,T ].

1.3 Semigroup approach of evolution equations

Let H be a real separable Hilbert space. We recall at first the definition of a semigroup.

Definition 1.3.1 [33]

A strongly continuous semigroup is an operator-valued function S(t) from R+to L (H) that
satisfies the following properties:

S(t + s) = S(t)S(s) for any s, t ≥ 0,

S(0) = IH ,

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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‖S(t)z− z‖→ 0 as t→ 0+, for any z ∈ H.

We shall use the standard abbreviation C0-semigroup for a strongly continuous semigroup.

Example 1.3.1 [33]

Let A ∈L (H), then

S(t) = eAt =
∞

∑
n=0

(At)n

f act(n)

is a C0-semigroup.

Theorem 1.3.1
Let S(t) be a C0-semigroup. Then

It exist constants ω≥ 0 and M ≥ 1 such that

‖S(t)‖ ≤Meωt , for 0≤ t ≤ ∞ (1.8)

For each x ∈ H, t −→ S(t)x is a continuous function from [0,∞) into H.

For x ∈ D(A),S(t)x ∈ D(A) and

d
dt

S(t)x = AS(t)x = S(t)Ax (1.9)

The domain of A is dense in X and A is a closed linear operator.

If B is a bounded linear operator on H, then A+B is the infinitesimal generator of a C0−
semigroup T (t) on H satisfying

‖T (t)‖ ≤Me(ω+M‖B‖)t , t ≥ 0.

.

Theorem 1.3.2
If A is the infinitesimal generator of a C0-semigroup S(t) on H, then

for every x ∈ D(A) the abstract Cauchy problem:{
ut(t) = Au(t),0 < t < T,
u(0) = x, (1.10)

has a unique strong solution given by u(t) = S(t)x.

for all x ∈ H the abstract Cauchy problem (1.10) has a unique weak solution given by
u(t) = S(t)x.

Remark 1.3.1
If ω = 0 in (1.8) then the corresponding semigroup is uniformly bounded. If moreover M = 1
then (S(t))t≥0 is called a C0-semigroup of contractions.

Definition 1.3.2 [33]

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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An analytic semigroup on a Hilbert space H is a family of continuous linear operators on
H,(S(t))t≥0, satisfying

. S(0) = IH and S(t + s) = S(t)S(s) for any s, t > 0.

The map t→ S(t)z is real analytic on 0 < t < ∞ for all z ∈ H.

limt→0+ S(t)z = z, for any z ∈ H.

Asume that A generates an exponentinlly stable analytic semigroup and the spectrum of A
lies entirely in the (open) left half-plane. For any β ∈ (0,1), we define

(−A)−β =− 1
2πi

∫
Γ

λ
−β(λ+A)−1dλ

where Γ is a curve from ∞e−iθ to ∞eiθ,θ ∈ (π/2,π/2+b) for some b > 0, such that the spectrum
of −A lies to the right and the origin lies to the left of Γ . It can be shown that (−A)−β is bounded
and one-to-ane. The arverse (−A)β of (−A)−β is called fractional power of −A with domnin
D
(
(−A)β

)
.

We conclude this section with some results relating (−A)α and the analytic semigroup S(t)

Theorem 1.3.3 [53]

Let A be the inftenitesimal generator of an exponentially stable analytic semigromp S(t).
For any 0 < β < 1, the following equality holds:

S(t) : H→ D
(
(−A)β

)
for every t > 0 and α > 0

For every x ∈ D
(
(−A)β

)
we have

S(t)(−A)βx = (−A)βS(t)x, t > 0

For every t > 0 the operator (−A)βS(t) is bounded. There exist numbers Mβ > 0,γ > 0
such that

‖(−A)βS(t)‖ ≤Mβt−βe−γt

Let0 < β≤ 1, and x ∈ D
(
(−A)β

)
then

‖S(t)x− x‖ ≤CβtN
∥∥∥(−A)β

∥∥∥
1

t > 0

where Cβ > 0 is a constant dependent on β.

1.4 Stability of infinite dimensional differential equations

Consider in the Hilbert H space, the differential equation

dz(t)
dt

= Az(t), (1.11)

where A is an unbounded operator with domain D(A)⊂ H. Suppose that the above diferential
equation subject to the condition z(0) = z0 is uniquely solvable and that z≡ 0 is an equilibrium
point for (1.11).

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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Definition 1.4.1
Assume that A is the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0 on
H. We say that the C0-semigroup (S(t))t≥0 is exponentially stable if there exist two positive
constants M and ω such that

‖S(t)z‖H ≤Me−ωt‖z‖H , t > 0, z ∈ H

Theorem 1.4.1
Suppose that A is the infinitesimal generator of the C0− semigroup S(t) on the Hilbert space H.
The following statements are equivalent.

S(t) is exponentially stable,

There exists a self-adjoint nonnegative operator P ∈L (H) which satisfies the Lyapunov
equation

〈Az,Pz〉+ 〈Pz,Az〉=−〈z,z〉 for all z ∈ D(A)

For every z ∈ H there exists a positive constant γz > 0 such that∫ +∞

0
‖S(t)z‖2dt ≤ γz

Explicit formula for the solution of the Lyapunov equation is given in the following lemma in .

Lemma 1.4.1 [33]

Let S(t) be an exponentially stable semigroup on H with infinitesimal generator A and let
Q ∈ L(H) be a nonnegative operator. Then the operator P defined by

Pz =
∫ +∞

0
S∗(t)QS(t)zdt

is well-defined, nonnegative and satisfies the equation

〈Az,Pz〉+ 〈Pz,Az〉+ 〈Qz,z〉= 0 for all z ∈ D(A) (1.12)

Conversely, if P is self-adjoint and satisfies the equation (1.12), P is represented by the above
integral.

Let U and V be Hilbert spaces and B,C,R linear bounded operators belonging respectively
to the spaces L (U,H),L (H,V ) and L (U,U), where R is assumed to be an invertible positive
operator. Consider the system

dz(t)
dt

= Az(t)+Bu(t),z(0) = z0 ∈ H

where A is the infinitesimal generator of a C0 - semigroup S(t), t > 0, on the Hilbert space H
and u ∈L 2(0,∞;U). We recall now the definitions of the stabilizability and detectability.

Definition 1.4.2
If there exists an F ∈L (H,U) such that A+BF generates an exponentially stable C0-semigroup
SBF(t), then we say that (A,B) is exponentially stabilizable.

Definition 1.4.3

On the stability radius of infinite dimensional stochastic systems Amira Kameche
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If there exists L ∈L (V,H) such that A+LC generates an exponentially stable C0-semigroup
SLC(t), then we say that (A,C) is exponentially detectable.

Theorem 1.4.2
If the pair (A,C) is detectable then the Riccati equation

〈Az,Pz〉+ 〈Pz,Az〉−
〈
PBR−1B∗Pz,z

〉
+ 〈Cz,Cz〉= 0,z ∈ D(A), (1.13)

has at most one nonnegative solution and if P is the solution then the operator A−BR−1B∗P
is stable. If, in addition, the pair (A;B) is stabilizable then the equation (1.13) has exactly one
solution.

1.5 Semigroup approach and mild solutions of stochastic dif-
ferential equations

Let
(
Ω,F ,{Ft}t≥0 ,P

)
a complet probability space. In this section, we consider the following

semilinear stochastic differential equation on I = [0,T ],T ≥ 0,{
dx(t) = (Ax(t)+F(t,x(t)))dt +G(t,x(t))dw(t),
x(0) = x0 ∈ H (1.14)

where A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, of bounded linear operators
on the Hilbert space H. The coefficients F and G are two nonlinear measurable mappings
from [0,T ]×H→H and [0,T ]×H→L (K,H), respectively, satisfying the following Lipschitz
continuity conditions:

‖F(t,y)−F(t,z)‖H ≤ α(T )‖y− z‖H , α(T )> 0,y,z ∈ H, t ∈ [0,T ],
‖G(t,y)−G(t,z)‖L 0

2
≤ β(T )‖y− z‖H , β(T )> 0,y,z ∈ H, t ∈ [0,T ].

(1.15)

Definition 1.5.1
A stochastic process {x(t)}t∈I , is called a strong solution of equation (1.14) if

x(t) ∈ D(A),0≤ t ≤ T , almost surely and is adapted to Ft , t ∈ I;

x(t) is continuous in t ∈ I almost surely. For arbitrary 0≤ t ≤ T ,

P
{

ω :
∫ t

0
‖x(s,ω)‖2

Hds < ∞

}
= 1

and
x(t) = x0 +

∫ t

0
(Ax(s)+F(s,x(s))ds+

∫ t

0
G(s,x(s))dw(s).

for any x0 ∈ D(A) almost surely.

In most situations, one finds that the concept of strong solution is too limited to include
important examples. There is a weaker concept, mild solution, which is found to be more
appropriate for practical purposes.
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Definition 1.5.2
A stochastic process {x(t)}t∈I , define on

(
Ω,F ,{Ft}t≥0 ,P

)
is called a mild solution of equation

(1.14) if

x(t) is adapted to Ft , t ≥ 0;

For arbitrary 0≤ t ≤ T ,

P
{

ω :
∫ t

0
‖x(s,ω)‖2

Hds < ∞

}
= 1,

and
x(t) = S(t)x0 +

∫ t

0
S(t− s)F(s,x(s))ds+

∫ t

0
S(t− s)G(s,x(s))dw(s),

for any x0 ∈ H almost surely.

1.6 Stability of stochastic equations

Assume a complete probability space (Ω,F ,P), equipped with a normal filtration {Ft}t≥0 with
respect to which {wt}t≥0, is some given Q Wiener process with TrQ < ∞ in the Hilbert space K.
Consider the following linear stochastic integral equation on the Hilbert space H{

x(t) = T (t)x0 +
∫ t

0 T (t− s)B(x(s))dw(s),
x(0) = x0 ∈ H

(1.16)

where T (t), t ≥ 0, is a strongly continuous semigroup with its infinitesimal generator A on the
Hilbert space H and B ∈L (K,H)). From Theorem 1.3.4 [42] that the equation (1.16) has a
unique (mild) solution xt ∈C

(
0,∞;L2(Ω;H)

)
, t ≥ 0.

Theorem 1.6.1 [42]

Suppose x(t), t ≥ 0, is the unique solution of (1.16) with initial datum x0 ∈H. Then the following
statements are equivalent:

The solution x(t), t ≥ 0, satisfies∫
∞

0
E‖x(t)‖2

H dt < ∞ for x0 ∈ H

There exists a nonnegative, self-adjoint operator P ∈L (H) such that

2〈Ax,Px〉H + 〈∆(P)x,x〉H =−〈x,x〉H for any x ∈ D(A),

where 〈∆(P)x,x〉H = Tr{B∗(x)PB(x)Q}.

There exist positive numbers M ≥ 1,µ > 0 such that for all t ≥ 0,

E‖x(t)‖2
H ≤M · e−µt ‖x0‖2

H

Remark 1.6.1
If ∫

∞

0
E‖x(t)‖2

H dt < ∞ for x0 ∈ H

we said that the system (1.16) is L2-stable.
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1.7 Some useful Inequalities

Young’s inequality
Let a,b and p be fixed positive constants and m,n≥ 1, 1

m + 1
n = 1. Then we have the inequality

ab≤ pmam

m
+

bn

npn .

Jensen’s inequality
Let (Ω,F ,µ) be a measure space, such that µ(Ω) = 1. If g is a real-valued function that is

µ-integrable, and if it is a convex function on the real line, then

ϕ

(∫
Ω

gdµ
)
≤

∫
Ω

ϕ◦gdµ.

In real analysis, we may require an estimate on ϕ

(∫ b
a g(x)dx

)
where a,b are real numbers, and

g is a non-negative real-valued function that is Lebesgue-integrable. In this case, the Lebesgue
measure of [a,b] don’t need to be unity. However, by integration by substitution, the interval can
be rescaled so that it has measure unity. Then Jensen’s inequality can be applied to get

ϕ

(∫ b

a
g(x)dx

)
≤ 1

b−a

∫ b

a
ϕ((b−a)g(x))dx.

Hölder’s inequality
Let 1 < p < ∞ and 1 < q < ∞ be real values, such that 1

p +
1
q = 1. If f (·) ∈ Lp(X) and

g(·) ∈ Lq(X) then f (·)g(·) ∈ L1(X) and

∫
X
‖ f (x)g(x)‖m(dx)≤

(∫
X
‖ f (x)‖pm(dx)

)1/p

·
(∫

X
‖g(x)‖qm(dx)

)1/q

= ‖ f (x)‖p‖g(x)‖q.

In particular, if p = q = 2, Hölder’s inequality is the so-called Schwarz’s inequality.
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Robust stability and robust stabilization of systems
subjected to stochastic and deterministic perturba-
tions

2.1 Introduction

Our objective in this chapter is to establish characterizations of the stability radius for an infinite
dimensional system subjected to both deterministic and stochastic perturbations.
Firstly, we give the system description, then we define the stability radius. We establish some
results which enables us to derive bounds for the stability radius. We end with an example to
illustrate the theory.
Secondly, we investigate the robust stabilization problem. First, we give conditions providing
the stability of the parameterized system. Then, we investigate the maximization of the stability
radius by state feedback. We establish conditions for the existence of suboptimal controllers.
Using these conditions we characterize the supreme achievable stability radius via an infinite
dimensional Riccati equation.

2.2 Robust stability

2.2.1 System description
Let A be the infinitesimal generator of an exponentially stable semigroup S(t) on a real separable
Hilbert space H. Moreover, let B ∈L (U1,H), D ∈L (U2,H) and E ∈L (H,Y ). Consider the
nominal system {

dx(t) = Ax(t)dt, t > 0,
x(0) = x0,

(2.1)

and assume that (2.1) is subjected to structured perturbations as follows
dx(t) = Ax(t)dt +B∆1(Ex(t))dt +D∆2(Ex(t))dw(t), t > 0,
x(0) = x0,
‖∆‖< σ,

(2.2)

20
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where x0 varies in H, ∆1,∆2 are unknown Lipschitzian nonlinearities, {w(t)}t∈R+ is a real
Wiener process on a probability space ( Ω , F , P ) equipped with a filtration {Ft}t≥0 ⊂ F ,
θ > 0 denotes the variance of {w(t)}t∈R+ .
The disturbance ∆1 varies in Lip(Y,U1), (B,E) determines the structure of the deterministic
perturbation.
The disturbance ∆2 varies in Lip(Y,U2), (D,E) determines the structure of the stochastic pertur-
bation.
The size of each ∆i ∈ Lip(Y,Ui), i = 1,2, is measured by the Lipschitz norm

‖∆‖Lip = in f{γ > 0;∀y, ŷ ∈ Y : ‖∆(y)−∆(ŷ)‖U ≤ γ‖y− ŷ‖Y}.

Set
∆= (∆1,∆2),‖∆‖= max{‖∆1‖,‖∆2‖}.

Definition 2.2.1
The stability radius of A with respect to the perturbations structures (D,E),(B,E) and the Wiener
process {w(t)}t∈R+ is

rw(A,D,B,E) = in f
{
‖∆‖;∆i ∈ Lip(Y,Ui), i = 1,2 such that (2.2) is not L2− stable

}
.

2.2.2 Characterizations of the stability radius
The approach used in this work to characterize the stochastic and deterministic stability radius
rw(A,D,B,E) is based on the following lemma.

Lemma 2.2.1
Suppose that E ∈L (H,Y ) and

y(t) = ES(t)x0 +
∫ t

0
ES(t− τ)Bυ1(τ)dτ+

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)

where υi ∈ L2
w(R+,L2(Ω,Ui)), i ∈ {1,2}. Then y(.) ∈ L2

w(R+,L2(Ω,Y )).

Proof.
We have

‖y(t)‖2 = 〈y(t),y(t)〉

=
〈

ES(t)x0 +
∫ t

0
ES(t− τ)Bυ1(τ)dτ+

∫ t

0
ES(t− τ)Dυ2(τ)]dw(τ),ES(t)x0

+
∫ t

0
ES(t− τ)Bυ1(τ)dτ+

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)

〉
.

Set
G1 = ES(t− τ)Bυ1(τ).

G2 = ES(t− τ)Dυ2(τ)).

Using Theorem 6.12 in [19], we get :

E
(
‖y(t)‖2

)
= ‖ES(t)x0‖2 +E

(
‖
∫ t

0
G1(τ)dτ‖2

)
+θ

∫ t

0
E
(
‖G2(τ)‖2

)
dτ

+ 2
〈

ES(t)x0,E
(∫ t

0
G1(τ)dτ

)〉
,
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then∫ +∞

0
E
(
‖y(t)‖2

)
dt =

∫ +∞

0
‖ES(t)x0‖2dt +

∫ +∞

0
E
(
‖
∫ t

0
G1(τ)dτ‖2

)
dt

+ θ

∫ +∞

0

∫ t

0
E
(
‖G2(τ)‖2

)
dτdt +2

∫ +∞

0

〈
ES(t)x0,E

(∫ t

0
G1(τ)dτ

)〉
dt.

Consider

T1 =
∫ +∞

0
‖ES(t)x0‖2dt

T2 =
∫ +∞

0
E
(
‖
∫ t

0
G1(τ)dτ‖2

)
dt

T3 = θ

∫ +∞

0

∫ t

0
E
(
‖G2(τ)‖2

)
dτdt

T4 = 2
∫ +∞

0

〈
ES(t)x0,E

(∫ t

0
G1(τ)dτ

)〉
dt.

Since S(t) is an exponentially stable semigroup, there exist postive canstant ω and M such
that :

‖S(t)‖ ¶Me(−2ωt), t ≥ 0.

Thus

T1 ≤
∫ +∞

0
Me(−2ωt)‖Ex0‖2dt

≤ M‖Ex0‖2
∫ +∞

0
e(−2ωt)dt

≤ M‖Ex0‖2

2ω
.

Since E is a bounded operator, it follows that

T1 ≤M1‖x0‖2, M1 > 0. (2.3)

For T2 we have

T2 =
∫ +∞

0
E‖

∫ t

0
ES(t− τ)Bυ1(τ)‖2dτdt

≤
∫ +∞

0
E
∫ t

0
‖E‖2‖S(t− τ)‖2‖Bυ1(τ)‖2dτdt

≤
∫ +∞

0

∫ t

0
E‖E‖2‖S(t− τ)‖2‖Bυ1(τ)‖2dτdt

≤
∫ +∞

0

∫ t

0
E[‖B‖2‖E‖2Me−2ω(t−τ)‖υ1(τ)‖2]dτdt

≤ ‖B‖2‖E‖2M
∫ +∞

0

∫ t

0
E[e−2ωte2ωτ‖υ1(τ)‖2]dτdt

≤ ‖B‖2‖E‖2M
∫ +∞

0

∫ t

0
e−2ωte2ωτE(‖υ1(τ)‖2)dτdt.

Since B and E are bounded operators, we get

T2 ≤M2

∫ +∞

0

∫ t

0
e−2ωte2ωτE(‖υ1(τ)‖2)dτdt.
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Using Fubini Theorem, we obtain

T2 ≤ M2

∫ +∞

0

∫ +∞

τ

e2ωτE
(
‖υ1(τ)‖2

)
e−2ωtdtdτ

≤ M2

∫ +∞

0
e2ωτE

(
‖υ1(τ)‖2

)(∫ +∞

τ

e−2ωtdt
)

dτ

≤ M2

∫ +∞

0
e2ωτE(‖υ1(τ)‖2)[

−1
2ω

e−2ωt ]+∞
τ dτ

≤ M2

2ω

∫ +∞

0
e2ωτE(‖υ1(τ)‖2)e−2ωτdτ

≤ M3‖υ1(.)‖2
L2

w
,

hence
T2 ≤M3‖υ1(.)‖2

L2
w
, M3 > 0. (2.4)

For T3 we have

T3 = θ

∫ +∞

0

∫ t

0
E‖G2(τ)dτ‖2dt

≤ θ

∫ +∞

0

∫ t

0
E‖E‖2‖S(t− τ)‖2‖Dυ2(τ)‖2dτdt

≤ θ

∫ +∞

0

∫ t

0
E
[
‖D‖2‖E‖2Me−2ω(t−τ)‖υ2(τ)‖2

]
dτdt

≤ θ‖D‖2‖E‖2M
∫ +∞

0

∫ t

0
E
[
e−2ωte2ωτ‖υ2(τ)‖2

]
dτdt

≤ θ‖D‖2‖E‖2M
∫ +∞

0

∫ t

0
e−2ωte2ωτE

(
‖υ2(τ)‖2

)
dτdt.

Using Fubini Theorem we get

T3 ≤ M4

∫ +∞

0

∫ +∞

τ

e2ωτE
(
‖υ2(τ)‖2

)
e−2ωtdtdτ

≤ M4

∫ +∞

0
e2ωτE(‖υ1(τ)‖2)

(∫ +∞

τ

e−2ωtdt
)

dτ

≤ M4

∫ +∞

0
e2ωτE(‖υ1(τ)‖2)[

−1
2ω

e−2ωt ]+∞
τ dτ

≤ M4

2ω

∫ +∞

0
e2ωτE(‖υ1(τ)‖2)e−2ωτdτ

≤ M4

2ω

∫ +∞

0
E
(
‖υ2(τ)‖2

)
dτ,

hence
T3 ≤

M4

2ω
‖υ2(.)‖2

L2
w
, M4 > 0. (2.5)
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For T4 we have

T4 = 2
∫ +∞

0

〈
ES(t)x0,E

(∫ t

0
ES(t− τ)Bυ1(τ)dτ

)〉
dt

≤
∫ +∞

0
(‖ES(t)x0‖2 +‖E

(∫ t

0
ES(t− τ)Bυ1(τ)dτ

)
‖2
)

dt

≤
∫ +∞

0
‖ES(t)x0‖2dt +

∫ +∞

0
‖E
(∫ t

0
ES(t− τ)Bυ1(τ)dτ

)
‖2dt

≤
∫ +∞

0
‖ES(t)x0‖2dt +

∫ +∞

0
E‖

∫ t

0
ES(t− τ)Bυ1(τ)dτ‖2dt

≤ M1‖x0‖2 +M3‖υ1(.)‖2
L2

w
,

hence
T4 ≤M1‖x0‖2 +M3‖υ1(.)‖2

L2
w
. (2.6)

Using (2.3) , (2.4) , (2.5) and (2.6) we get

‖y(.)‖2
L2

w
≤ 2M1‖x0‖2 +2M3‖υ1(.)‖2

L2
w
+

M4

2ω
‖υ2(.)‖2

L2
w
,

from which we deduce that ∫ +∞

0
E‖y(t)‖2dt <+∞.

The second lemma will be given in terms of the input-output operator

L : L2
w(R

+,L2(Ω,U))→ L2
w(R

+,L2(Ω,Y ))

defined by

Lυ(t) =
∫ t

0
ES(t− τ)Bυ1(τ)dτ+

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ), (2.7)

where U =U1×U2, υ = (υ1,υ2), υ1 ∈U1 and υ2 ∈U2.

Lemma 2.2.2
The input-output operator defined by (2.7) has the operator norm

‖L‖= [θ‖D∗PD‖+‖B∗PB‖]
1
2 , (2.8)

where P satisfies the Lyapunov equation

2〈Px,Ax〉+ 〈Ex,Ex〉= 0, x ∈ D(A). (2.9)

Proof.
Let υ ∈ L2

w(R+,L2(Ω,U)). For t > 0, we have

‖Lυ(t)‖2 = ‖
∫ t

0
ES(t− τ)Bυ1(τ)dτ+

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)‖2

= ‖
∫ t

0
ES(t− τ)Bυ1(τ)dτ‖2 +‖

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)‖2

+ 2
〈∫ t

0
ES(t− τ)Bυ1(τ)dτ,

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)

〉
,
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hence

‖Lυ(.)‖2
L2

w
=

∫ +∞

0
E
(
‖
∫ t

0
ES(t− τ)Bυ1(τ)dτ‖2 +‖

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)‖2

)
dt.

Set

J1 =
∫ +∞

0
E‖

∫ t

0
ES(t− τ)Bυ1(τ)dτ‖2dt.

J2 =
∫ +∞

0
E‖

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)‖2dt.

We have

J1 =
∫ +∞

0
E‖

∫ t

0
ES(t− τ)Bυ1(τ)dτ‖2dt

≤
∫ +∞

0
E
∫ t

0
‖ES(t− τ)Bυ1(τ)‖2dτdt

≤ 2
∫ +∞

0
E
∫ t

0
〈ES(t− τ)Bυ1(τ),ES(t− τ)Bυ1(τ)〉dτdt

≤
∫ +∞

0
E
∫ t

0

〈
Bυ1(τ),S∗(t− τ)E∗ES(t− τ)Bυ1(τ)

〉
dτdt.

Using Fubini Theorem, we get

J1 ≤
∫ +∞

0
E
∫ +∞

τ

〈
Bυ1(τ),S∗(t− τ)E∗ES(t− τ)Bυ1(τ)

〉
dtdτ

≤
∫ +∞

0
E
〈

Bυ1(τ),
∫ +∞

τ

S∗(t− τ)E∗ES(t− τ) dt Bυ1(τ)
〉

dτ

≤
∫ +∞

0
E
〈

Bυ1(τ),PBυ1(τ)
〉

dτ.

For J2, we have

J2 =
∫ +∞

0
E‖

∫ t

0
ES(t− τ)Dυ2(τ)dw(τ)‖2dt

=
∫ +∞

0
θ

∫ t

0
E‖ES(t− τ)Dυ2(τ)‖2dτdt

= θ

∫ +∞

0

∫ t

0
E〈ES(t− τ)Dυ2(τ),ES(t− τ)Dυ2(τ)〉dτdt

= θ

∫ +∞

0

∫ t

0
E
〈

Dυ2(τ),S∗(t− τ)E∗ES(t− τ)Dυ2(τ)
〉

dτdt.

Using Fubini Theorem, we get

J2 = θ

∫ +∞

0
E
〈

Dυ2(τ),
∫ +∞

τ

S∗(t− τ)E∗ES(t− τ)dtDυ2(τ)
〉

dτ

= θ

∫ +∞

0
E
〈

Dυ2(τ),PDυ2(τ)
〉

dτ.
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Therefore

‖Lυ(.)‖2
L2

w
≤

∫ +∞

0
E〈Bυ1(τ),PBυ1(τ)〉dτ+θ

∫ +∞

0
E
〈

Dυ2(τ),PDυ2(τ)
〉

dτ

≤
∫ +∞

0
E‖B∗PB‖ ‖υ1(τ)‖2dτ+θ

∫ +∞

0
E‖D∗PD‖ ‖υ2(τ)‖2dτ

≤
∫ +∞

0
E((‖B∗PB‖+θ‖D∗PD‖)‖υ(τ)‖2)dτ

≤ (‖B∗PB‖+θ‖D∗PD‖)
∫ +∞

0
E(‖υ(τ)‖2)dτ

≤ (‖B∗PB‖+θ‖D∗PD‖)‖υ(.)‖2
L2

w

where ‖υ‖= max(‖υ1‖,‖υ2‖). We deduce that

‖L‖L2
w
≤ (‖B∗PB‖+θ‖D∗PD‖)

1
2 .

Now we will show that there exists υ
′ ∈ L2

w(R
+,L2(Ω,U)) such that

‖Lυ
′
(.)‖L2

w
= (‖B∗PB‖+θ‖D∗PD‖)

1
2 .

Assume that

‖D∗PD‖U = 〈υ0
2,D

∗PDυ0
2〉 /‖υ0

2‖U = 1.

‖B∗PB‖U = 〈υ0
1,B
∗PBυ0

1〉 /‖υ0
1‖U = 1.

Define ψ1, ψ2 as follows

ψ1(.) = β(.)υ0
1, ψ2(.) = β(.)υ0

2

where β(.) ∈ L2(R+,R), and |β(.)|L2(R+,R) = 1
Then

‖ψ1(.)‖2
L2

w
=

∫ +∞

0
E‖ψ1(τ)‖2dτ

= ‖υ0
1‖2

∫ +∞

0
|β(τ)|2dτ

= ‖υ0
1‖2 = 1,

and

‖ψ2(.)‖2
L2

w
=

∫ +∞

0
E‖ψ2(.)‖2dτ

= ‖υ0
2‖2

∫ +∞

0
|β(τ)|2dτ

= ‖υ0
2‖2 = 1.

On the stability radius of infinite dimensional stochastic systems Amira Kameche



2.2. ROBUST STABILITY 27

For ψ = (ψ1,ψ2), we have

‖Lψ(.)‖2
L2

w
=

∫ +∞

0
E〈Bψ1(τ),PBψ1(τ)〉dτ+θ

∫ +∞

0
E
〈

Dψ2(τ),PDψ2(τ)
〉

dτ

=
∫ +∞

0
E
〈

β(τ)υ0
1,B
∗PBβ(τ)υ0

1

〉
dτ+θ

∫ +∞

0
E
〈

β(τ)υ0
2,D

∗PDβ(τ)υ0
2

〉
dτ

= ‖B∗PB‖2
∫ +∞

0
‖β(τ)‖2dτ+‖D∗PD‖2

θ

∫ +∞

0
|β(τ)|2dτ

= ‖B∗PB‖2 +θ‖D∗PD‖2.

Therefore
‖Lψ(.)‖L2

w
= [‖B∗PB‖2 +θ‖D∗PD‖2]

1
2 ,

which concludes the proof.

The main result of this section is giving in the following theorem.

Theorem 2.2.1
Let σ > 0. Suppose that there exists P ∈ L+(H) satisfying

2〈Px,Ax〉+ 〈Ex,Ex〉= 0, x ∈ D(A), (2.10)

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0, (2.11)

then rw(A,B,D,E)≥ σ.

Proof. Let∆1 ∈ Lip(Y,U1) and∆2 ∈ Lip(Y,U2) such that ‖∆‖Lip < σ where∆= (∆1,∆2). Let
x(t) the solution of the system (2.2).

Set y(t) = Ex(t). We have

y(t) = ES(t)x0 +
∫ t

0
ES(t− τ)B∆1(Ex(τ))dτ+

∫ t

0
ES(t− τ)D∆2(Ex(τ))dw(τ). (2.12)

For T > 0, define the truncation

u1
T ∈ L2

w(R
+,L2(Ω,U1)),

and
u2

T ∈ L2
w(R

+,L2(Ω,U2)),

by

u1
T (t) =

{
u1(t) =∆1(y(t)) i f t ∈ [0,T ],
0 i f t > T, (2.13)

and

u2
T (t) =

{
u1(t) =∆2(y(t)) i f t ∈ [0,T ],
0 i f t > T. (2.14)

Then

‖u1
T (.)‖ =

∫ +∞

0
E(‖u1

T (t)‖)2dt

=
∫ T

0
E(‖∆1y(t)‖)2dt

≤ ‖∆1‖2
∫ T

0
(E(‖y(t)‖)2)dt,
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and

‖u2
T (.)‖2

L2
w

=
∫ +∞

0
E(‖u2

T (t)‖)2dt

=
∫ T

0
E(‖∆2y(t)‖)2dt

≤ ‖∆2‖2
Lip

∫ T

0
(E(‖y(t)‖)2)dt.

For uT = (u1
T ,u

2
T ), we get

‖uT (.)‖2
L2

w
≤ ‖∆‖2

Lip

∫ T

0
E(‖y(t)‖)2dt. (2.15)

Set
yT (t) = ES(t)x0 +LuT (t), t > 0. (2.16)

From (2.12) - (2.16), we get(∫ T

0
E‖y(t)‖2dt

) 1
2

≤ ‖yT (.)‖L2
w

≤ M
∫ +∞

0
e(−2ωt)dt‖Ex0‖+‖L‖‖uT (.)‖L2

w
.

Thus(∫ T

0
E‖y(t)‖2dt

) 1
2

≤M
∫ +∞

0
e(−2ωt)dt‖Ex0‖+‖L‖‖∆‖Lip

(∫ T

0
E‖y(t)‖2dt

) 1
2

. (2.17)

Condition (2.11) implies that

1−σ2[θ‖D∗PD‖+‖B∗PB‖]≥ 0.

Thus

[θ‖D∗PD‖+‖B∗PB‖]≤ σ−2.

By the previous lemma, it follows that

‖L‖2 ≤ σ−2.

Now since ‖∆‖Lip <σ, the operator L∆ is a contraction on L2
w(R+,L2(Ω,Y )) with β= ‖L‖‖∆‖<

1. From (2.17) we get (∫ T

0
E‖y(t)‖2dt

) 1
2

≤ (1−β)−1Me(−2ωt)‖Ex0‖,

for all T > 0. Therefore y ∈ L2
w(R+,L2(Ω,Y )) and u1 = ∆1(y) ∈ L2

w(R+,L2(Ω,U1)),u2 =
∆2(y) ∈ L2

w(R+,L2(Ω,U2)).
By Lemma 2.2.1, the solution x(.) belongs to L2

w(R+,L2(Ω,H)). We conclude then that
rw(A,B,D,E)≥ σ.

As a consequence of this Theorem we have the following corollary which enables us to
obtain a lower bound for the stability radius.
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Corollary 2.2.1
Suppose that there exists P ∈L+(H) a solution of the Lyapunov equation (2.10). Then

rw(A,B,D,E))≥
[
(θ‖D∗PD‖+‖B∗PB‖)

]− 1
2
. (2.18)

Proof.

1. if ‖D∗PD‖= 0 and ‖B∗PB‖= 0, then

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]> 0, f or all σ > 0.

From the above Theorem, it follows that

rw(A,B,D,E)≥ σ, f or all σ > 0.

From which we deduce that rw(A,B,D,E) = +∞.

2. Assume that ‖D∗PD‖= 0 and ‖B∗PB‖ 6= 0. We have

‖u‖2− ((‖B∗PB‖)−1
2 )2〈B∗PBu,u〉 ≥ 0, for all u ∈U1.

By the previous Theorem we deduce that

rw(A,B,D,E)≥ (‖B∗PB‖)
−1
2 .

Therefore

rw(A,B,D,E)≥
(
‖B∗PB‖+θ‖D∗PD‖

)−1
2
.

3. Assume that ‖B∗PB‖= 0 and ‖D∗PD‖ 6= 0. We have

‖u‖2−‖D∗PD‖−1〈D∗PDu,u〉 ≥ 0

for all u ∈U2. Hence

‖u‖2−
((

θ‖D∗PD‖
)−1

2
)2

θ〈D∗PDu,u〉 ≥ 0 for all u ∈U2.

By the previous Theorem we deduce that

rw(A,B,D,E)≥
(

θ‖D∗PD‖
)−1

2
.

Therefore
rw(A,B,D,E)≥ (‖B∗PB‖+θ‖D∗PD‖)

−1
2 .

4. Assume that ‖B∗PB‖ 6= 0 and ‖D∗PD‖ 6= 0.

By the previous Theorem we deduce that

rw(A,B,D,E)≥ (‖B∗PB‖+θ‖D∗PD‖)
−1
2 .
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In the following result we give a characterization of the stability radius in terms of the
Lyapunov inequality.

Corollary 2.2.2
Suppose that there exists P ∈ L(H+) satisfying

2〈Px,Ax〉+ 〈Ex,Ex〉 ≤ 0, x ∈ D(A). (2.19)

1−σ2[θ‖D∗PD‖+‖B∗PB‖]≥ 0,(
resp.1−σ2[θ‖D∗PD‖+‖B∗PB‖]> 0

)
.

(2.20)

Then rw(A,B,D,E)≥ σ,
(
resp.rw(A,B,D,E)> σ

)
.. In this case the Lyapunov equation (2.10)

has a solution P0 ∈ L(H+) such that P� P0.

Proof. Because S(t) is exponentially stable there exists a solution P0 of the Lyapunov equation
(2.10). Set X = P−P0, then

2〈Xx,Ax〉 ≤ 0, x ∈ D(A).

Applying Lemma 2.1 in [10] we obtain that X � 0, thus P� P0.
Using condition (2.20), it follows that

0 < 1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≤ 1−σ

2[θ‖D∗P0D‖+‖B∗P0B‖].

Hence conditions (2.10) and (2.11) are satisfied. By applying Theorem 2.2.1 we deduce that
rw(A,B,D,E)≥ σ.

Remark 2.2.1
In the particular case where B = 0, we obtain the same results established in [35],

rw(A,(D,E))≥
(

θ‖D∗PD‖
)− 1

2
.

2.2.3 Example
Consider the system

dy(t) =
∂2y(x, t)

∂x2 dt + c1y(x, t)dt + c2y(x, t)dw(t) ,0 < x < 1, t > 0,

y(x,0) = y0(x), 0 < x < 1,
y(0, t) = y(1, t), t > 0.

(2.21)

To put the problem (2.21) into the abstract setting we introduce the self-adjoint operator Ah = d2h
dx2

in the real Hilbert space H = L2(0,1) with D(A) = H1
0 (0,1)∩H2(0,1) The operator A generates

an exponentially stable semigroup S(t). The eigenvalues and the eigenvectors of A are given by
[9]

λn =−n2π2, ψn(x) =
√

2sin(nπx),n≥ 1.

On the stability radius of infinite dimensional stochastic systems Amira Kameche



2.2. ROBUST STABILITY 31

Setting B = IL2(0,1), D = IL2(0,1), ∆1 = c1 ∈R, ∆2 = c2 ∈R, E = IL2(0,1) such that Ez = z. In the
abstract from system (2.21) can be presented as follows{

dz(t) = Az(t)dt +B∆1(Ez(t))dt +D∆2(Ez(t))dw(t),
z(0) = z0.

(2.22)

The Lyapunov equation corresponding to this system is

2〈Pz,Az〉+ 〈Ez,Ez〉= 0,z ∈ D(A). (2.23)

Suppose we can express the solution P of (2.23) by

Pz =
+∞

∑
n,i=1

Pin〈z,ψn〉ψi, z ∈ H. (2.24)

Then since

Az =
+∞

∑
n=1

λn〈z,ψn〉ψn, z ∈ D(A). (2.25)

It follows that
〈Pz,Az〉 = ∑

+∞

i,n=1 Pinλn〈z,ψn〉2. (2.26)

For the second term of the Lyapunov equation (2.23) we have

〈Ez,Ez〉= ‖z‖2.

Equation (2.23) is then equivalent to

2∑
+∞

i,,n=1 Pinλn〈z,ψn〉2 +‖z‖2 = 0

Assume that Pin = 0 for i 6= n. For z = ψk,k ≥ 1, we get

2Pkkλk +1 = 0.

From which we obtain

Pkk =− 1
2λk

.

We deduce that the solution of (2.23) is given by

Pz =
+∞

∑
k=1

Pk〈z,ψk〉ψk,z ∈ H

where
Pk =

1
2k2π2 , k ≥ 1.

We have

‖B∗PB‖U1 = ‖P‖=
+∞

∑
k=1

Pk =
+∞

∑
k=1

1
2k2π2 ,

‖D∗PD‖U2 = ‖P‖=
+∞

∑
k=1

Pk =
+∞

∑
k=1

1
2k2π2 .

But
+∞

∑
k=1

1
k2π2 =

1
π2

+∞

∑
k=1

1
k2 =

1
6
.

Therefore
‖B∗PB‖= 1

12
and ‖D∗PD‖= 1

12
,

thus
[‖B∗PB‖+‖D∗PD‖]−1 = 6.

Set c = max{c1,c2}. We deduce that the system (2.21) is stable for all c <
√

6.

On the stability radius of infinite dimensional stochastic systems Amira Kameche



2.3. ROBUST STABILIZATION 32

2.3 Robust stabilization

2.3.1 Robust stabilization with bounded input operator
In this section we consider the controlled system{

dx(t) = Ax(t)dt +B∆1(Ex(t))dt +D∆2(Ex(t))dw(t)+B0u(t)dt, t > 0,
x(0) = x0,

(2.27)

where u takes its values in the real separable Hilbert space Z, B0 ∈ L (Z,H). In addition we
assume that (A,B0) is stabilizable.
Our aim is to characterize the supremum of the stability radii which can be achieved by linear
state feedback u = Fx, where F ∈L (H,Z).
Let

Z =

{
F ∈L (H,Z);A+B0F is the in f initesimal

generator o f an exponentially stable semigroup SF(t)

}
.

and define
rw(A,D,B,E) = sup

{
rw(A+B0F,D,B,E); F ∈F

}
.

For F ∈Z , ε > 0, consider the Lyapunov inequality

2〈P(A+B0F)x,x〉+ 〈Ex,Ex〉+ ε2〈Fx,Fx〉 ≤ 0, x ∈ D(A). (2.28)

In order to establish conditions for the existence of suboptimal controllers u(t) = Fx(t) such
that F ∈Z and σ≤ rw(A+B0F,D,B,E) , for σ > 0, we need the following Lemmas.

Lemma 2.3.1
Let ε > 0. If there exists P ∈ L+(H) such that

2〈Px,(A− ε−2B0B∗0P)x〉+ ε−2〈PB0B∗0Px,x〉+ 〈Ex,Ex〉 ≤ 0, x ∈ D(A), (2.29)

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0, (2.30)

then Aε = A− ε−2B0B∗0P generates an exponentially stable semigroup and σ≤ rw(Aε,D,B,E).

Proof.
Consider the initial value problem{ d

dt x(t) = Aεx(t), t ∈ R+
x(0) = x0, x0 ∈ H.

(2.31)

For x0 ∈ D(Aε),V (x) = 〈x,Px〉 is differentiable and

d
dt

V (x(t)) = 2〈PAεx,x〉

From the inequality (2.29) we obtain

d
dtV (x(t)) ≤ −ε−2〈PB0B∗0Px,x〉−〈Ex,Ex〉 ≤ −ε−2〈PB0B∗0Px,x〉.

Thus ∫ T

0

d
dt

V (x(t))dt ≤ −ε−2
∫ T

0
〈PB0B∗0Px,x〉dt,
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Hence

V (x(T ))−V (x(0)) ≤ −ε−2
∫ T

0
‖B∗0Px(t)‖2dt.

Using the fact that P� 0 we get

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤V (x0), f or all T > 0.

Therefore

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤ k‖x0‖2.

which implies that B∗0Px(t) ∈ L2(R+,Z). The solution x(t) of the system (2.31) is given by

x(t) = S(t)x0− ε
−2

∫ t

0
S(t− s)B0B∗0Px(s)ds

We have
‖x(t)‖ ≤ ‖S(t)x0‖+ ε−2

∥∥∫ t
0 S(t− s)B0B∗0Px(s)ds

∥∥
≤ Me−ωt‖x0‖+ ε−2M‖B0‖

∫ t

0
e−ω(t−s)‖B∗0Px(s)‖ds.

from which we get

‖x(t)‖2 ≤ 2M2e−2ωt‖x0‖2 +2ε−4M2‖B0‖2
[∫ t

0
e−ω(t−s)‖B∗0Px(s)‖ds

]2

≤ K1e−2ωt +K2

∫ t

0
e−2ω(t−s)‖B∗0Px(s)‖2ds,

where K1 = 2M2‖x0‖2, K2 = 2ε−4M2‖B0‖2. It follows then that∫ +∞

0
‖x(t)‖2 dt ≤

∫ +∞

0
K1e−2ωtdt +

∫ +∞

0
K2

∫ t

0
e−2ω(t−s)‖B∗0Px(s)‖2dsdt.

Thus ∫ +∞

0
‖x(t)‖2 dt ≤ K1

2ω
+

∫ +∞

0
K2e2ωs‖B∗0Px(s)‖2

(∫ +∞

s
e−2ωtdt

)
ds.

which implies that ∫ +∞

0
‖x(t)‖2 dt ≤ K1

2ω
+ K2

2ω

∫ +∞

0
‖B∗0Px(s)‖2ds.

Since B∗0Px(t) ∈ L2(R+,Z), we deduce that x(t) belongs to the space L2(R+,H). Applying
Corollary 2.2.2 with

Fε =−ε
−2B∗0P ∈Z

we get that σ≤ rw(Aε,D,B,E).

Lemma 2.3.2
Let ε > 0 and F ∈ Z . If the inequality (2.28) has a solution P1 ∈ L+(H) satisfying condition
(2.30) then F1 = −ε−2B∗0P1 ∈ Z and σ ≤ rw(A+B0F1,D,B,E). Moreover, there exists P2 ∈
L+(H) such that

2〈P2(A+B0F1)x,x〉+ 〈Ex,Ex〉+ ε
−2 〈P1B0B∗0P1x,x〉= 0,

x ∈ D(A),

1−σ
2[θ‖D∗P2D‖+‖B∗P2B‖]≥ 0.

P2 � P1
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Proof.
Set F

′
= εF + ε−1B∗0P1, then

〈F
′
x,F

′
x〉− ε

−2〈B∗0P1x,B∗0P1x〉= ε
2〈Fx,Fx〉+2〈B∗0P1x,Fx〉.

Since P1 is a solution of the inequality (2.28) it follows that

2〈P1Ax,x〉+ 〈Ex,Ex〉− ε−2〈B∗0P1x,B∗0P1x〉+ 〈F ′x,F ′x〉 ≤ 0. (2.32)

Set A0 = A+B0F1 where F1 =−ε−2B∗0P1, then

2〈P1A0x,x〉+ 〈Ex,Ex〉+ ε
−2 〈P1B0B∗0P1x,x〉 ≤ 0. (2.33)

Applying Lemma 2.3.1 we conclude that F1 ∈Z and σ≤ rw(A0,D,B,E).
Now since P1 is a solution of the inequality (2.33), then it satisfies the following inequality

2〈P1A0x,x〉+
〈

Êx, Êx
〉
≤ 0,

where

Ê =

(
E

ε−1B∗0P1.

)
By Corollary 2.2.2 there exists P2 ∈ L+(H) such that

2〈P2A0x,x〉+
〈

Êx, Êx
〉
= 0,

with P2 � P1. Therefore

2〈P2A0x,x〉+ ε
−2 〈x,P1B0B∗0P1x〉+ 〈Ex,Ex〉 ≤ 0

and
1−σ

2[θ‖D∗P2D‖+‖B∗P2B‖]≥ 0.

Applying this Lemma iteratively we show in the following Theorem that there exists P ∈
L+(H) such that

2〈Ax,Px〉+ 〈Ex,Ex〉− ε
−2 〈x,PB0B∗0Px〉= 0, x ∈ D(A) (2.34)

Theorem 2.3.1
Let F ∈Z . Suppose that there exist ε > 0 such that the Lyapunov inequality (2.28) has a solution
P0 ∈ L+(H) which satisfies condition (2.30) then the Riccati equation (2.34) has a solution
P ∈ L+(H) satisfying

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0,

Fε =−ε
−2B∗0P ∈Z ,

σ≤ rw(A− ε
−2B0B∗0P,D,B,E).
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Proof.
Applying the above Lemma iteratively we construct a sequence of linear operators (Pk)k∈N ∈

L+(H) which satisfies

2〈Pk+1Akx,x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PkB0B∗0Pkx〉= 0,

x ∈ D(A),

1−σ
2[θ‖D∗Pk+1D‖+‖B∗Pk+1B‖]≥ 0,

Pk+1 � Pk,

where P1 is a solution of the inequality (2.28) and Ak = A− ε−2B0B∗0Pk.
Let P = limk→+∞ Pk then

2〈PAεx,x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PB0B∗0Px〉= 0, x ∈ D(A),

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0,

where Aε = A− ε−2B0B∗0P.
Using Lemma 2.3.2 we deduce that Fε =−ε−2B∗0P ∈Z and σ≤ rw(A−ε−2B0B∗0P,D,B,E).
Finally since

2〈PAεx,x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PB0B∗0Px〉= 2〈PAx,x〉+ 〈Ex,Ex〉− ε

−2 〈x,PB0B∗0Px〉 ,

then P satisfies the Riccati equation (2.34).

Proposition 2.3.1
Let σ,ε > 0. Suppose that the Riccati equation (2.34) has a solution P ∈ L+(H) such that

1−σ
2[θ‖D∗PD‖+‖B∗0PB‖]≥ 0,

then Fε =−ε−2B∗P ∈Z and σ≤ rw(A+B0Fε,D,B,E).

Proof. Since P is a solution of the Riccati equation (2.34) then

2〈P(A− ε−2B0B∗0P)x,x〉)+ 〈Ex,Ex〉+ ε−2〈x,PB0B∗0Px〉= 0, x ∈ D(A),

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0.

From Lemma 2.3.2 we obtain Fε =−ε−2B∗0P ∈Z and σ≤ rw(A+B0Fε,D,B,E).

As a consequence of the above proposition we characterize the supremal achievable stability
radius via the Riccati equation (2.34) as follows.

Corollary 2.3.1 We have

rw(A,D,B,E)≥ sup
{

σ > 0; there exist ε > 0 such that (2.34)) has a solution
P ∈ L+(H)with 1−σ2(θ‖D∗PD‖+‖B∗PB‖)≥ 0.

}
.
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2.3.2 Robust stabilization with unbounded input operator
In this section we consider the controlled system

dx(t) = Ax(t)dt +B∆1(Ex(t))dt +D∆2(Ex(t))dw(t)+B0u(t)dt, t > 0,
x(0) = x0 ∈ H,
‖∆‖< σ,

(2.35)

under the asumption that A generates an exponentially stable analytic semigroup S(t) and B0 is
a linear operator from Z to H, (B0 is generally unbounded as an operator from Z to H), such that
(−A)−ηB0 ∈L (Z,H) for some fixed η , 0≤ η < 1

2 .

We assume that (A,B0) is stabilizable.

2.3.2.1 Existence and uniqueness

In this Theorem we establish the existence and uniqueness of the solution to the problem (2.35).

Theorem 2.3.2 For any T > 0, there exists a unique mild solution of the equation (2.35) in
C
(
[0,T ] ,L2 (Ω,H)

)
, satisfying the initial condition x(0) = x0

Proof.
The approach adopted to prove this Theorem is based on the classical fixed point Theorem

for contractions and on the analytic estimates.
Set

χ = C
(
[0,T ] ,L2 (Ω,H)

)
,

and define the corresponding norm by

‖x‖
χ
=

(
sup

t∈[0,T ]
(E‖x(t)‖2)

) 1
2

<+∞.

The solution of the system (2.35) is given by

x(t)= S(t)x0+
∫ t

0
S(t−s)B∆1 (Ex(s))ds+

∫ t

0
S(t−s)D∆2 (Ex(s))dw(s)+

∫ t

0
S(t−s)B0u(s)ds.

We have

x(t) = S(t)x0 +
∫ t

0
S(t− s)B∆1 (Ex(s))ds+

∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

+
∫ t

0
S(t− s)(−A)η (−A)−η B0u(s)ds,

x(t)= S(t)x0+
∫ t

0
S(t−s)B∆1 (Ex(s))ds+

∫ t

0
S(t−s)D∆2 (Ex(s))dw(s)+

∫ t

0
S(t−s)(−A)η B̂0u(s)ds.

where B̂0 = (−A)−η B0 ∈ L(Z,H) .
Let

Υ : χ→ χ

defined by

Υ (x(t)) = S(t)x0 +
∫ t

0
S(t− s)B∆1 (Ex(s))ds

+
∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)+

∫ t

0
S(t− s)(−A)η B̂0u(s)ds.
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In order to establish existence and uniqueness for (2.35), we proceed in three steps.
Step 1: Υ is well defined as a mapping from χ to χ.

Since (S(t))t≥0 is an analytic exponentially stable semigroup there exist positive constants
M, Mη, η and ω such that

‖S(t)‖ ≤Me−ωt , t > 0 , ω > 0,

and ∥∥(−A)η S(t)
∥∥≤Mηt−ηe−ωt .

Now since B∈ L(U1,H) , D∈ L(U2,H) , E ∈ L(H,Y ), and B̂0 ∈ L(Z,H) there exist constants
m1,m2,m3 and m4 such that

‖B‖L(U1,H) ≤ m1, ‖D‖L(U2,H) ≤ m2, ‖E‖L(H,Y ) ≤ m3 and
∥∥∥B̂0

∥∥∥
L(Z,H)

≤ m4.

we have

‖Υ (x(t))‖2 = 〈Υ (x(t)) ,Υ (x(t))〉

=

∥∥∥∥S(t)x0 +
∫ t

0
S(t− s)B∆1 (Ex(s))ds+

∫ t

0
S(t− s)(−A)η B̂0u(s)ds

∥∥∥∥2

+ 2
〈

S(t)x0,
∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

〉
+ 2

〈∫ t

0
S(t− s)B∆1 (Ex(s))ds,

∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

〉
+

∥∥∥∥∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

∥∥∥∥2

+ 2
〈∫ t

0
S(t− s)D∆2 (Ex(s))dw(s) ,

∫ t

0
S(t− s)(−A)η B̂0u(s)ds

〉
.

We have

E
(〈∫ t

0
S(t− s)D∆2 (Ex(s))dw(s) ,S(t)x0

〉)
= 0

E
(〈∫ t

0
S(t− s)D∆2 (Ex(s))dw(s),

∫ t

0
S(t− s)B∆1 (Ex(s))ds

〉)
= 0

E
(〈∫ t

0
S(t− s)D∆2 (Ex(s))dw(s) ,

∫ t

0
S(t− s)(−A)η B̂0u(s)ds

〉)
= 0

Let G2 (s) = S(t− s)D∆2 (Ex(s)). By Burkholder-Davis-Gundy inequality, there exist positive
constants c2 such that

E

(∥∥∥∥∫ t

0
G2 (s)dw(s)

∥∥∥∥2
)
≤ c

∫ t

0
E‖G2 (s)‖2 ds.

Then

E
(
‖Υ (x(t))‖2

)
= E

(∥∥∥∥S(t)x0 +
∫ t

0
S(t− s)B∆1 (Ex(s))ds+

∫ t

0
S(t− s)(−A)η B̂0u(s)ds

∥∥∥∥2
)

+ E

(∥∥∥∥∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

∥∥∥∥2
)
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E
(
‖Υ (x(t))‖2

)
≤ 3‖S(t)x0‖2 +3E

(∥∥∥∥∫ t

0
S(t− s)B∆1 (Ex(s))ds

∥∥∥∥2
)

+ 3
∥∥∥∥∫ t

0
S(t− s)(−A)η B̂0u(s)ds

∥∥∥∥2

+ c
∫ t

0
E‖S(t− s)D∆2 (Ex(s))dw(s)‖2

≤ 3M2e−2ωt ‖x0‖2 +3
∫ t

0
M2m2

1K2
1 m2

3e−2ω(t−s)E‖x(s)‖2

+ 3
∫ t

0
M2

ηm2
4 (t− s)−2η e−2ω(t−s) ‖u(s)‖2 ds

+ c
∫ t

0
M2m2

2K2
2 m2

3e−2ω(t−s)E‖x(s)‖2 ds.

By Hölder inequality we obtain

E
(
‖Υ (x(t))‖2

)
≤ 3M2e−2ωt ‖x0‖2 +(3M2m2

1K2
1 m2

3 + cM2m2
2K2

2 m2
3)

∫ t

0
e−2ω(t−s)E‖x(s)‖2 ds

+ 3M2
ηm2

4

∫ t

0
(t− s)−2η e−2ω(t−s)ds

∫ t

0
‖u(s)‖2 ds.

But ∫ t

0
(t− s)−2η e−2ω(t−s)ds≤ 1

1−2η
T 1−2η

Then

E
(
‖Υ (x(t))‖2

)
≤ 3M2e−2ωt ‖x0‖2 +(3M2m2

1K2
1 m2

3

+ c2M2m2
2K2

2 m2
3)

1− e−2ωt

2ω
sup

s∈[0,T ]
E‖x(s)‖2

+ 3M2
ηm2

4
1

1−2η
T 1−2η(‖u(.)‖2)L2.

We conclude that Υ is well defined on χ.

Step 2: Now we show that Υ maps χ into χ.
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For h ∈ [0,T ] and t ∈ [0,T −h], we have

Υ (x(t +h))−Υ (x(t)) = S(t +h)x0 +
∫ t+h

0
S(t +h− s)D∆2 (Ex(s))dw(s)

+
∫ t+h

0
S(t +h− s)B∆1 (Ex(s))ds+

∫ t+h

0
S(t +h− s)(−A)η B̂0u(s)ds

− (S(t)x0 +
∫ t

0
S(t− s)D∆2(Ex(s))dw(s)+

∫ t

0
S(t− s)B∆1(Ex(s))ds

+
∫ t

0
S(t− s)(−A)ηB̂0u(s)ds)

= (S(t +h)x0−S(t)x0)+
∫ t

0
S(t +h− s)D∆2 (Ex(s))dw(s)

+
∫ t

0
S(t +h− s)B∆1 (Ex(s))ds−

∫ t

0
S(t− s)B∆1 (Ex(s))ds

+
∫ t

0
S(t +h− s)(−)η B̂0u(s)ds−

∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)

−
∫ t

0
S(t− s)(−A)η B̂0u(s)ds+

∫ t+h

t
S(t +h− s)B∆1 (Ex(s))ds

+
∫ t+h

t
S(t +h− s)D∆2 (Eix(s))dw(s)+

∫ t+h

t
S(t +h− s)(−A)η B̂0u(s)ds

= (S(t +h)x0−S(t)x0)+
∫ t

0
[S(t +h− s)−S(t− s)]D∆2 (Ex(s))dw(s)

+
∫ t

0
[S(t +h− s)−S(t− s)]B∆1 (Ex(s))ds

+
∫ t

0
[S(t +h− s)−S(t− s)] (−A)η B̂0u(s)ds+

∫ t+h

t
S(t +h− s)B∆1 (Ex(s))ds

+
∫ t+h

t
S(t +h− s)D∆2 (Ex(s))dw(s)

+
∫ t+h

t
S(t +h− s)(−A)η B̂0u(s)ds.

Assume that Υ (x(t +h))−Υ (x(t)) = I1 + I2 + I3 + I4 + I5 + I6 + I7 such that

I1 = S(t +h)x0−S(t)x0

I2 =
∫ t

0
(S(t +h− s)−S(t− s))B∆1 (Ex(s))ds

I3 =
∫ t

0
(S(t +h− s)−S(t− s))D∆2 (Ex(s))dw(s)

I4 =
∫ t

0
(S(t +h− s)−S(t− s))(−A)η B̂0u(s)ds

I5 =
∫ t+h

t
S(t +h− s)B∆1 (Ex(s))ds

I6 =
∫ t+h

t
S(t +h− s)D∆2 (Ex(s))dw(s)

I7 =
∫ t+h

t
S(t +h− s)(−A)η B̂0u(s)ds.

Therefore

‖Υ (x(t +h))−Υ (x(t))‖2 = ‖I1 + I2 + I3 + I4 + I5 + I6 + I7‖2
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Let G3 (s) = (S(t +h− s)−S(t− s))D∆2 (Ex(s)). By Burkholder-Davis-Gundy inequality,
there exist positive constants c′ such that

E
(
‖I3‖2

)
= E

(∥∥∥∥∫ t

0
G3 (s)dw(s)

∥∥∥∥2
)
≤ c1

∫ t

0
E‖G3 (s)‖2 ds.

Let g(s) = S(t+h− s)D∆2 (Ex(s)). By Burkholder-Davis-Gundy inequality, there exist positive
constants c” such that

E
(
‖I6‖2

)
= E

(∥∥∥∥∫ t

0
g(s)dw(s)

∥∥∥∥2
)
≤ c2

∫ t

0
E‖g(s)‖2 ds.

Since (S(t))t≥0 is strongly continuous, we have

lim
h→0
‖I1‖= lim

h→0
‖S(t +h)z0−S(t)z0‖= 0, (2.36)

and we have
S(t +h− s) = S(t− s)S(h)

S(t +h− s)−S(t− s) = S(t− s)S(h)−S(t− s) = S(t− s) [S(h)− I]

For I2 we have

E
(
‖I2‖2

)
= E

(∥∥∥∥∫ t

0
(S(t +h− s)−S(t− s))B∆1 (Ex(s))ds

∥∥∥∥2
)

≤ c3

∫ t

0
‖(S(t +h− s)−S(t− s))B∆1 (Ex(s))‖2ds

= c3

∫ t

0
‖(S(t− s) [S(h)− I])B∆1 (Ex(s))‖2 ds

≤ c3

∫ t

0

(
‖S(h)− I‖2 ‖S(t− s)B∆1 (Ex(s))‖2

)
ds

≤ c3

∫ t

0

(
‖S(h)− I‖2 ‖S(t− s)‖2 ‖B‖2 ‖∆1‖2 ‖(Ex(s))‖2

)
ds

≤ c3 ‖S(h)− I‖2
∫ t

0
M2e−2ω(t−s)m2

1K2
1 m2

3

(
‖x(s)‖2

)
ds

≤ c3 ‖S(h)− I‖2 M2m2
1K2

1 m2
3

∫ t

0
e−2ω(t−s)

(
‖x(s)‖2

)
ds

E‖I2‖2 ≤ c3 ‖S(h)− I‖2 M2m2
1K2

1 m2
3

∫ t

0
e−2ω(t−s)E

(
‖x(s)‖2

)
ds.

But ∫ t

0
e−2ω(t−s)ds =

1− e−2ωt

2ω

hence

E‖I2‖2 ≤ 1− e−2ωt

2ω
‖S(h)− I‖2 c3M2m2

1K2
1 m2

3 sup
s∈[0,T ]
E
(
‖x(t)‖2

)
.

Set M2 = c3M2m2
1K2

1 m2
3 then

E‖I2‖2 ≤
(

1− e−2ωt

2ω

)
‖S(h)− I‖2 M2 sup

s∈[0,T ]
E
(
‖x(s)‖2

)
. (2.37)
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For I3 we have∫ t

0
E‖G3 (s)‖2 ds =

∫ t

0
E‖(S(t +h− s)−S(t− s))D∆2 (Ex(s))‖2 ds

=
∫ t

0
E‖(S(t− s) [S(h)− I])D∆2 (Ex(s))‖2 ds

≤
∫ t

0
E
(
‖S(h)− I‖2 ‖S(t− s)D∆2 (Ex(s))‖2

)
ds

≤
∫ t

0
E
(
‖S(h)− I‖2 ‖S(t− s)‖2 ‖D‖2 ‖∆2‖2 ‖(Ex(s))‖2

)
ds

≤ ‖S(h)− I‖2
∫ t

0
M2e−2ω(t−s)m2

2K2
2 m2

3E
(
‖x(s)‖2

)
ds

≤ ‖S(h)− I‖2 M2m2
2K2

2 m2
3

∫ t

0
e−2ω(t−s)E

(
‖x(s)‖2

)
ds

But ∫ t

0
e−2ω(t−s)ds =

1− e−2ωt

2ω

hence ∫ t

0
E‖G3 (s)‖2 ds≤ 1− e−2ωt

2ω
‖S(h)− I‖2 M2m2

2K2
2 m2

3 sup
s∈[0,T ]
E
(
‖x(s)‖2

)
Therefore

c1

∫ t

0
E‖G3 (s)‖2 ds≤

(
1− e−2ωt

2ω

)
‖S(h)− I‖2 c′M2m2

2K2
2 m2

3 sup
s∈[0,T ]
E
(
‖x(s)‖2

)
.

Set M3 = c1M2m2
2K2

2 m2
3 then

c1

∫ t

0
E‖G3 (s)‖2 ds≤M3

(
1− e−2ωt

2ω

)
‖S(h)− I‖2 sup

s∈[0,T ]
E
(
‖x(s)‖2

)

E‖I3‖2 ≤
(

1− e−2ωt

2ω

)
‖S(h)− I‖2 M3 sup

s∈[0,T ]
E
(
‖x(s)‖2

)
. (2.38)

For I4 and applying Hölder inequality, we get

‖I4‖2 =

∥∥∥∥∫ t

0
(S(t +h− s)−S(t− s))(−A)η B̂0u(s)ds

∥∥∥∥2

≤
∫ t

0

∥∥∥(S(t +h− s)−S(t− s))(−A)η B̂0u(s)
∥∥∥2

ds

≤
∫ t

0

∥∥∥(S(t− s) [S(h)− I]) (−A)η B̂0u(s)
∥∥∥2

ds

≤
∫ t

0
‖S(h)− I‖2 .

∥∥S(t− s)(−A)η
∥∥2

.
∥∥∥B̂0

∥∥∥2
ds

∫ t

0
‖u(s)‖2 ds

≤
∫ t

0
‖S(h)− I‖2 M2

η(t− s)−2ηe−2ω(t−s)m2
4ds

∫ t

0
‖u(s)‖2 ds

≤ ‖S(h)− I‖2 M2
ηm2

4

∫ t

0
(t− s)−2ηe−2ω(t−s)ds

∫ t

0
‖u(s)‖2 ds.
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But ∫ t

0
(t− s)−2η e−2ω(t−s)ds≤ 1

1−2η
t1−2η ≤ 1

1−2η
T 1−2η.

Set M4 = M2
ηm2

4

‖I4‖2 ≤ ‖S(h)− I‖2 M4

(
1

1−2η
T 1−2η

)
‖u(.)‖2

L2 (2.39)

for I5 we have

E‖I5‖2 = E
∥∥∥∥∫ t+h

t
S(t +h− s)B∆1 (Ex(s))ds

∥∥∥∥2

≤
∫ t+h

t
E
(
‖S(t +h− s)‖ .‖B‖ .‖∆1‖ .‖(Ex(t))‖2

)
ds

≤
∫ t+h

t
M2e−2ω(t+h−s)m2

1K2
1 m2

3E‖x(s)‖
2 ds

≤ M2m2
1K2

1 m2
3

∫ t+h

t
e−2ω(t+h−s)E‖x(s)‖2 ds.

But ∫ t+h

t
e−2ω(t+h−s)ds =

1− e−2ωt

2ω
.

Or

E‖I5‖2 ds≤M2m2
2K2

2 m2
1

(
1− e−2ωt

2ω

)
sup

s∈[t,t+h]
E‖x(s)‖2 .

Set M5 = M2m2
1K2

1 m2
3 then

E‖I5‖2 ds≤M5

(
1− e−2ωt

2ω

)
sup

s∈[t,t+h]
E‖x(s)‖2

E‖I5‖2 ≤
(

1− e−2ωt

2ω

)
M5 sup

s∈[t,t+h]
E‖x(s)‖2 (2.40)

for I6 we have∫ t+h

t
E‖g(s)‖2 ds =

∫ t+h

t
E‖S(t +h− s)D∆2 (Ex(s))‖2 ds

≤
∫ t+h

t
E
(
‖S(t +h− s)‖ .‖D‖ .‖∆2‖ .‖(Ex(s))‖2

)
ds

≤
∫ t+h

t
M2e−2ω(t+h−s)m2

2K2
2 m2

3E‖x(s)‖
2 ds

≤ M2m2
2K2

2 m2
3

∫ t+h

t
e−2ω(t+h−s)E‖x(s)‖2 ds.

But ∫ t+h

t
e−2ω(t+h−s)ds =

1− e−2ωt

2ω
.

Or ∫ t+h

t
E‖g(s)‖2 ds≤M2m2

2K2
2 m2

1

(
1− e−2ωt

2ω

)
sup

s∈[t,t+h]
E‖x(s)‖2 .
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Therefore

c2

∫ t+h

t
E‖g(s)‖2 ds≤ c2M2m2

2K2
2 m2

3

(
1− e−2ωt

2ω

)
sup

s∈[t,t+h]
E‖x(s)‖2

Set M6 = c2M2m2
2K2

2 m2
3 then

c2

∫ t+h

t
E‖g(s)‖2 ds≤M6

(
1− e−2ωt

2ω

)
sup

s∈[t,t+h]
E‖x(s)‖2

E‖I6‖2 ≤
(

1− e−2ωt

2ω

)
M6 sup

s∈[t,t+h]
E‖x(s)‖2 (2.41)

For I7 and applying Hölder inequality, we get

‖I7‖2 =

∥∥∥∥∫ t+h

t
S(t +h− s)(−A)η B̂0u(s)ds

∥∥∥∥2

≤
∫ t+h

t

∥∥∥S(t +h− s)(−A)η B̂0u(s)
∥∥∥2

ds

≤
∫ t+h

t

∥∥S(t +h− s)(−A)η
∥∥ .∥∥∥B̂0

∥∥∥ds
∫ t+h

t
‖u(s)‖2 ds

≤
∫ t+h

t
M2

η(t +h− s)−2ηe−2ω(t+h−s)m2
4ds

∫ t+h

t
‖u(s)‖2 ds

≤ M2
ηm2

4

∫ t+h

t
(t +h− s)−2ηe−2ω(t+h−s)ds

∫ t+h

t
‖u(s)‖2 ds

≤ M2
ηm2

4

(
1

1−2η

)
h1−2η ‖u(.)‖2

L2 .

Set M7 = M2
ηm2

4 then

‖I7‖2 ≤M2
ηm2

4

(
1

1−2η

)
h1−2η ‖u(.)‖2

L2 (2.42)

Using (2.36), (2.37), (2.38), (2.39), (2.40), (2.41), (2.42), we deduce that

lim
h→0+
E
(
‖(Υx)(t +h)− (Υx)(t)‖2

)
= 0.
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In order to prove the left continuity of Υ we have, for every t ∈ [0,T ], h ∈ [0, t],

(Υx)(t−h)− (Υx)(t) = S(t−h)x0 +
∫ t−h

0
S(t−h− s)D∆2 (Ex(s))dw(s)

+
∫ t−h

0
S(t−h− s)B∆1 (Ex(s))ds+

∫ t−h

0
S(t−h− s)(−A)η B̂0u(s)ds

− (S(t)x0 +
∫ t

0
S(t− s)D∆2 (Ex(s))dw(s)+

∫ t

0
S(t− s)B∆1 (Ex(s))ds

+
∫ t

0
S(t− s)(−A)η B̂0u(s)ds)

= (S(t−h)x0−S(t)x0)+
∫ t−h

0
[S(t−h− s)−S(t− s)]D∆2 (Ex(s))dw(s)

+
∫ t−h

0
[S(t−h− s)−S(t− s)]B∆1 (Ex(s))ds

+
∫ t−h

0
[S(t−h− s)−S(t− s)] (−A)η B̂0u(s)ds−

∫ t

t−h
S(t− s)B∆1 (Ex(s))ds

−
∫ t

t−h
S(t− s)D∆2 (Ex(s))dw(s)−

∫ t

t−h
S(t− s)(−A)η B̂0u(s)ds.

Using as for the right continuity, we get the left continuity

lim
h→0+
E
(
‖(Υx)(t−h)− (Υx)(t)‖2

)
= 0 (2.43)

Step 3: It remains to verify that Υ is a contraction.
Let x1, x2 ∈ χ, then

(Υx1)(t)− (Υx2)(t) = S(t)x0 +
∫ t

0
S(t− s)B∆1 (Ex1(s))ds+

∫ t

0
S(t− s)D∆2 (Ex1(s))dw(s)

+
∫ t

0
S(t− s)(−A)η B̂0u(s)ds−S(t)x0−

∫ t

0
S(t− s)B∆1 (Ex2(s))ds

−
∫ t

0
S(t− s)D∆2 (Ex2(s))dw(s)−

∫ t

0
S(t− s)(−A)η B̂0u(s)ds

=
∫ t

0
S(t− s)D(∆2Ex1(s)−∆2Ex2(s))dw(s)

+
∫ t

0
S(t− s)B(∆1Ex1(s)−∆1Ex2(s))ds.

Then

‖(Υx1)(t)− (Υx2)(t)‖2

=

∥∥∥∥∫ t

0
S(t− s)D(∆2Ex1(s)−∆2Ex2(s))dw(s)+

∫ t

0
S(t− s)B(∆1Ex1(s)−∆1Ex2(s))ds

∥∥∥∥2

≤ 2
∥∥∥∥∫ t

0
S(t− s)D(∆2Ex1(s)−∆2Ex2(s))dw(s)

∥∥∥∥2

+2
∥∥∥∥∫ t

0
S(t− s)B(∆1Ex1(s)−∆1Ex2(s))ds

∥∥∥∥2

.

By Burkholder-Davis-Gundy inequality and the Lipschizianity of ∆i, there exist positive con-
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stants c4 such that

E
(
‖Υ (x1(t))−Υ (x2(t))‖2

)
≤ 2c4

∫ t

0
‖S(t− s)‖2E‖D(∆2 (Ex1(s))−∆2 (Ex2(s)))‖2 ds

+ 2
∥∥∥∥∫ t

0
S(t− s)B(∆1Ex1(s)−∆1Ex2(s))ds

∥∥∥∥2

≤ 2c4M2
∫ t

0
e−2ω(t−s)m2

2K2
2 m2

3 sup
s∈[0,T ]
E‖x1(s)− x2(s)‖2 ds

+ 2M2
∫ t

0
e−2ω(t−s)m2

1K2
1 m2

3 sup
s∈[0,T ]
E‖x1(s)− x2(s)‖2 ds

≤ (2c4M2m2
2K2

2 m2
3 +2M2m2

1K2
1 m2

3)(
1− e−2ωT

2ω
)‖x1(s)− x2(s)‖2

χ
.

Therefore Υ is contractive for enough small T > 0. For large T we can proceed in a usual way
by considering the equation on intervals [0, T̃ ] , [T̃ ,2T̃ ] , ... with T̃ enough small.

2.3.2.2 Maximization of the stability radius

Our aim is to characterize the supremum of the stability radii which can be achieved by linear
state feedback u = Fx, where F ∈L (H,Z).
Let

Z =

{
F ∈L (H,Z);A+B0F is the in f initesimal generator o f an

exponentially stable semigroup SF(t)

}
.

and define
rw(A,D,B,E) = sup

{
rw(A+B0F,D,B,E); F ∈F

}
.

Lemma 2.3.3
Let ε > 0. If there exists P ∈ L+(H) such that

2〈Px,(A− ε−2B0B∗0P)x〉+ ε−2〈PB0B∗0Px,x〉+ 〈Ex,Ex〉 ≤ 0, x ∈ D(A), (2.44)

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0, (2.45)

then Fε =−ε−2B∗0P ∈Z and σ≤ rw(A+B0Fε,D,B,E).

Proof.
From the asumptions made on the operator B and since S(t) is analytic and exponentially

stable, it follows from [40] that A+B0Fε generates an analytic semigroup. Set V (x) = 〈x,Px〉.
Computing

.
V (x(t)) along solution of{ d

dt x(t) = (A− ε−2B0B∗0P)x(t), t ∈ R+,
x(0) = x0, x0 ∈ H.

(2.46)

We get
d
dt

V (x(t)) = 2
〈
P(A− ε

−2B0B∗0P)x,x
〉
.

From the inequality (2.44) we obtain

d
dtV (x(t)) ≤ −ε−2〈PB0B∗0Px,x〉.
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Thus ∫ T

0

d
dt

V (x(t))dt ≤ −ε−2
∫ T

0
〈PB0B∗0Px,x〉dt.

Hence

V (x(T ))−V (x(0)) ≤ −ε−2
∫ T

0
‖B∗0Px(t)‖2dt.

Using the fact that P� 0 we get

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤V (x0), f or all T > 0.

Therefore

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤ k‖x0‖2.

which implies that B∗0Px(t) ∈ L2(R+,Z). The solution x(t) of the system (2.46) is given by

x(t) = S(t)x0− ε
−2

∫ t

0
S(t− s)B0B∗0Px(s)ds

We have

‖x(t)‖ ≤ ‖S(t)x0‖+ ε−2
∥∥∥∥∫ t

0
S(t− s)B0B∗0Px(s)ds

∥∥∥∥
≤ ‖S(t)x0‖+ ε−2

∫ t

0
‖S(t− s)(−A)η‖

∥∥∥B̂0

∥∥∥‖B∗0Px(s)‖ds

≤ Me−wt ‖x0‖+ ε−2
∥∥∥B̂0

∥∥∥Mη

∫ t

0

e−w(t−s)

(t− s)−η
‖B∗0Px(s)‖ .

Then

‖x(t)‖2 ≤ 2M2e−2ωt ‖x0‖2 +2ε−4
∥∥∥B̂0

∥∥∥2
M2

η

∫ t

0

e−2ω(t−s)

(t− s)−2η
‖B∗0Px(s)‖2 ds.

Therefore∫ +∞

0
‖x(t)‖2 dt ≤ 2M2 ‖x0‖2

∫ +∞

0
e−2ωtdt+2ε

−4
∥∥∥B̂0

∥∥∥2
M2

η

∫ +∞

0

∫ t

0

e−2ω(t−s)

(t− s)−2η
‖B∗0Px(s)‖2 dsdt.

(2.47)
By Fubbini theorem we obtain

∫ +∞

0 ‖x(t)‖2 dt ≤ 2M2 ‖x0‖2
∫ +∞

0
e−2ωtdt+2ε−4

∥∥∥B̂0

∥∥∥2
M2

η

∫ +∞

0

∫ +∞

s
‖B∗Px(s)‖2 e−2ω(t−s)

(t− s)−2η
dtds

≤ 2M2 ‖x0‖2

2ω
+2ε−4

∥∥∥B̂0

∥∥∥2
M2

η

∫ +∞

0
‖B∗Px(s)‖2

(∫ +∞

s

e−2ω(t−s)

(t− s)−2η
dt

)
ds.

(2.48)
Since η < 1

2 , there exists K > 0 such that∫ +∞

0
‖x(t)‖2 dt ≤ M2 ‖x0‖2

w
+2ε

−4
∥∥∥B̂
∥∥∥2

M2
ηK

∫ +∞

0
‖B∗0Px(s)‖2 ds.

And since B∗0Px(t) ∈ L2(R+,Z), we deduce that x(.) belongs to the space L2(R+,H). Apply-
ing Corollary 2.2.2 with

Fε =−ε
−2B∗0P ∈Z

we get that σ≤ rw(A+B0Fε,D,B,E).

As for the bounded case, we can obtain the following results.
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Lemma 2.3.4
Let ε > 0 and F ∈Z . If there existe P1 ∈ L+(H) such that

2〈P1(A+B0F)x,x〉+ 〈Ex,Ex〉+ ε2〈Fx,Fx〉 ≤ 0, x ∈ D(A). (2.49)

1−σ
2[θ‖D∗P1D‖+‖B∗P1B‖]≥ 0, (2.50)

then F1 = −ε−2B∗0P1 ∈ Z and σ ≤ rw(A+B0F1,D,B,E). Moreover, there exists P2 ∈ L+(H)
such that

2〈P2(A+B0F1)x,x〉+ 〈Ex,Ex〉+ ε−2 〈P1B0B∗0P1x,x
〉
= 0, x ∈ D(A),

1−σ2[θ‖D∗P2D‖+‖B∗P2B‖]≥ 0.
P2 � P1.

(2.51)

Theorem 2.3.3
Let F ∈Z . Suppose that there exist ε > 0 such that the Lyapunov inequality (2.49) has a solution
P0 ∈ L+(H) which satisfies condition (2.45) then the Riccati equation

2〈Ax,Px〉+ 〈Ex,Ex〉− ε
−2 〈x,PB0B∗0Px〉= 0, x ∈ D(A) (2.52)

has a solution P ∈ L+(H) satisfying

1−σ2[θ‖D∗PD‖+‖B∗PB‖]≥ 0,
Fε =−ε−2B∗0P ∈Z ,
σ≤ rw(A+B0Fε,D,B,E).

(2.53)

Conditions for the existence of suboptimal controllers are given in the following proposition.

Proposition 2.3.2
Let σ,ε > 0. Assume that the Riccati equation (2.52) has a solution P ∈ L+(H) such that

1−σ
2[θ‖D∗PD‖+‖B∗0PB‖]≥ 0,

then Fε =−ε−2B∗P ∈Z and σ≤ rw(A+B0Fε,D,B,E).

Let us now state a corollary of Proposition 2.3.2 for characterizing the supremal achievable
stability radius via the Riccati equation (2.52) as follows.

Corollary 2.3.2 We have

rw(A,D,B,E)≥ sup
{

σ > 0; there exist ε > 0 such that (2.52) has a solution
P ∈ L+(H) with 1−σ2(θ‖D∗PD‖+‖B∗PB‖)≥ 0

}
.

2.3.2.3 Example

Consider the following stochastic parabolic equation with Newman boundary conditions
dy(x, t) = π−2(∂2y(x,t)

∂x2 )dt− y(x, t)dt + c1y(x, t)dt + c2y(x, t)dw(t),
0≤ x≤ 1, 0≤ t ≤ T, c1 ∈ R, c2 ∈ R.
y(x,0) = y0(x),
∂y
∂x(0, t) = u(t), ∂y

∂x(1, t) = 0.

(2.54)
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Consider the operator Ah = π−2 d2h
dx2 −h defined on H = L2(0,1) with

D(A) = {ψ ∈ H2(0,1),
.
ψ(0) =

.
ψ(1) = 0}.

The operator A generates an exponentially stable semigroup S(t), the eigenvalues of A are

λn =−n2−1, n≥ 0.

In addition, the corresponding eigenfunctions are

φ0 = 1 and φn(x) =
√

2cosnπx, for all n≥ 1.

Define the following operators:

D = E = B = I.
∆1 = c1, ∆2 = c2.

B∗0ψ(x) = − 1
π2 ψ(0), with ψ ∈ D(B∗0).

The problem (2.54) takes the following abstract form{
dx(t) = Ax(t)dt +B∆1(Ex(t))dt +D∆2(Ex(t))dw(t)+B0u(t)dt, t > 0,
x(0) = x0.

(2.55)

For this system we have

η =
1
4
+

β

2
, 0 < β <

1
2
.

Note that the corresponding Riccati equation is

2〈AY ,PY 〉+ 〈EY ,EY 〉− ε
−2 〈B∗0PY ,B∗0PY 〉= 0, Y ∈ D(A). (2.56)

Assume that we can express the solution P of (2.54) as

PY =
+∞

∑
n, j=0

Pn j 〈Y ,φn〉φ j, Y ∈ H. (2.57)

Hence

AY =
+∞

∑
n=0

λn 〈Y ,φn〉φn, for Y ∈ D(A),

and hence

〈AY ,PY 〉=
+∞

∑
n=0

λnPnn(〈Y ,φn〉)2.

We have
〈EY ,EY 〉= 〈Y ,EY 〉 ,

Since

B∗0PY = B∗0

(
+∞

∑
n, j=0

Pn j 〈Y ,φn〉φ j

)
=

(
+∞

∑
n, j=0

Pn j 〈Y ,φn〉B∗0φ j

)

= − 1
π2

(
+∞

∑
n, j=0

Pn j 〈Y ,φn〉φ j(0)

)
=−
√

2
π2

(
+∞

∑
n, j=0

Pn j 〈Y ,φn〉

)
.
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We get

〈B∗0PY ,B∗0PY 〉= 2
π4

+∞

∑
n, j=0

+∞

∑
m,k=0

Pn jPmk 〈Y ,φn〉〈Y ,φm 〉

Equation (2.55) takes the form

2
+∞

∑
n=0

Pnnλn 〈Y ,φn〉2 + 〈Y ,Y 〉− 2ε−2

π4

+∞

∑
n, j=0

+∞

∑
m,k=0

Pn jPmk 〈Y ,φn〉〈Y ,φm〉= 0.

For Y = φk, k ∈ N, we obtain

2λkPkk +1− 2ε−2

π4 P2
kk = 0.

Or

−2ε−2

π4 P2
kk +2λkPkk +1 = 0,

we have

∆′ = λ
2
k +

2ε−2

π4 > 0

Then

Pkk =
π4(λk +

√
∆′)

2ε−2 > 0

hence

PY =
+∞

∑
n=0

Pn 〈Y ,φn〉φn, Y ∈ H

where Pn =
π4(λn+

√
∆′)

2ε−2 .
Now we show that

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0, (2.58)

for some σ > 0. We have

1−σ
2[θ
〈D∗PDz,z〉
‖z‖2 +

〈B∗PBz,z〉
‖z‖2 ]≥ 0 ,z 6= 0

⇔ σ
−2 ≥ (θ+1)

〈Pz,z〉
‖z‖2 ,z 6= 0

But

〈Pz,z〉 = 〈∑+∞

n=0 Pn 〈z,φn〉φn,z〉
= ∑

+∞

n=0 Pn 〈z,φn〉〈φn,z〉
= ∑

+∞

n=0 Pn 〈z,φn〉2
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Then

σ
−2 ≥ (θ+1)

〈Pz,z〉
‖z‖2

is equivalent to

σ
−2 ≥ (θ+1)

∑
+∞

n=0 Pn 〈z,φn〉2

‖z‖2

For z = φk, k ∈ N, we obtain

σ−2 ≥ (θ+1)Pk

σ−2 ≥ (θ+1)
π2(λk +

√
∆′)

2ε−2

σ−2 ≥ (θ+1)
π2(λk +

√
λ2

k +
2ε−2

π4 )

2ε−2 ×
(λk−

√
λ2

k +
2ε−2

π4 )

(λk−
√

λ2
k +

2ε−2

π4 )

σ−2 ≥ − (θ+1)

π2(λk−
√

λ2
k +

2ε−2

π4 )

σ−2 ≥ (θ+1)

π2(
√

λ2
k +

2ε−2

π4 −λk)

Let σ such that

σ≤

√
2π2

θ+1

then

σ
2 ≤ 2π2

θ+1
or

σ
−2 ≥ θ+1

2π2

hence
σ
−2 ≥− θ+1

2π2λk

because we have

√
λ2

k +
2ε−2

π4 −λk ≥ 2λk or

1√
λ2

k +
2ε−2

π4 −λk

≤ 1
2λk

then
(θ+1)

π2(
√

λ2
k +

2ε−2

π4 −λk)
≤− θ+1

2π2λk

so

σ
−2 ≥ (θ+1)

π2(
√

λ2
k +

2ε−2

π4 −λk)
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thus for

σ≤

√
2π2

θ+1

the Riccati equation has a solution P with

1−σ
2[θ‖D∗PD‖+‖B∗PB‖]≥ 0

By Corrollary 2.3.2 we get

rw(A,D,B,E)≥

√
2π2

θ+1

On the stability radius of infinite dimensional stochastic systems Amira Kameche



3C
h

ap
te

r

Stability radii of stochastic systems subjected to stochas-
tic perturbation and their optimization

3.1 Introduction

This chapter will investigate the robust stability analysis and the maximization of the stability
radii by state feedback for stochastic systems. For the development of the theory we will follow
the plan of chapter 2. Robust stability conditions for the considered systems are established on
the basis of stochastic Lyapunov equation and some operator inequalities. Section 3 presents
the state-feedback stabilization scheme. Proceeding as in chapter 2, the maximization of the
stability radii is investigated and the results are given via a stochastic Riccati equation. An
illustrative example is presented to demonstrate the effectiveness and applicability of the proposed
methodologies.

3.2 Robust stability

3.2.1 System description
Let A be the infinitesimal generator of an exponentially stable semigroup S(t) on a real separable
Hilbert space H. Moreover let D ∈ L (U,H), A0 ∈ L (H) and E ∈ L (H,Y ). Consider the
stochastic system {

dx(t) = Ax(t)dt +A0x(t)dw1(t), t ≥ 0,
x(0) = x0

(3.1)

Assume that (3.1) is L2− stable subjected to structured pertubations as follows{
dx(t) = Ax(t)dt +A0x(t)dw1(t)+D∆(Ex(t))dw2(t), t ≥ 0,
x(0) = x0,

(3.2)

where x0 varies in H and ∆ is unknown Lipschitzian nonlinear perturbation, {wi(t)}t∈R+, i ∈
{1;2} are independent zero mean real Wiener processes on a probability space ( Ω, F , P )
relative to a family {Ft}t∈R+ of σ− algebras {Ft}t∈R+ ⊂F such that

E(wi(t)−wi(s))
(
w j(t)−w j(s)

)
= δi jθi (t− s) , i, j ∈ {1,2},
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where θi > 0 denotes the variance of {wi(t)}t∈R+, (D,E) determines the structure of the stochas-
tic perturbation.

The disturbance ∆ vary in Lip(Y,U),

The size of ∆ ∈ Lip(Y,U) is measured by the Lipschitz norm

‖∆‖Lip = in f{γ > 0;∀y, ŷ ∈ Y : ‖∆(y)−∆(ŷ)‖U ≤ γ‖y− ŷ‖Y}.

3.2.2 Characterizations of the stability radius
The stability radius of the system (3.1) is defined as follows.

Definition 3.2.1
The stability radius of (3.1) whith respect to the pertubation structure (D,E) and the Wiener
processes {wi(t)}t∈R+; i ∈ {1,2} is

rw(A,(D,E)) = in f{‖∆‖;∆ ∈ Lip(Y,U) such that (3.2) is not L2− stable}.

The approach used in this section to characterize the stability radius rw(A;(D,E)) is based
on the following lemma.

Lemma 3.2.1
Let x(t) the solution of the system{

dx(t) = Ax(t)dt +A0x(t)dw1(t)+Dυ(t)dw2(t), t ≥ 0
x(0) = x0.

(3.3)

Where υ ∈ L2
w(R+,L2(Ω,U)). Set y(t) = Ex(t), then y ∈ L2

w(R+,L2(Ω,Y )) and

‖y‖2
L2

w
≤ ‖P‖.‖x0‖2 +‖D∗PD‖.‖υ‖2

L2
w
,

where P ∈L+(H) is a self-adjoint nonnegative operator satisfying the Lyapunov stochastic
equation

2〈Px,Ax〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉= 0,x ∈ D(A) (3.4)

Proof.
Let x(t) be the solution of the system (3.3). Using Itô formula with

w =

(
w1
w2

)
we get

〈x(t),Px(t)〉 = 〈x(0),Px(0)〉+
∫ t

0
〈Px(τ),(A0x(τ) Dυ(τ))dw(τ)〉

+
∫ t

0
2〈Px(τ),Ax(τ)〉dτ+θ1

∫ t

0
〈A0x(τ),PA0x(τ)〉dτ+θ2

∫ t

0
〈Dυ(τ),PDυ(τ)〉dτ.
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Using Theorem 6.12 in [19], we get

E〈x(t),Px(t)〉 = E〈x(0),Px(0)〉+E
∫ t

0
2〈x(τ),PAx(τ)〉dτ

+ θ1E
∫ t

0
〈A0x(τ),PA0x(τ)〉dτ+θ2E

∫ t

0
〈Dυ(τ),PDυ(τ)〉dτ.

.

Since P is the solution of the Lyapunov equation (3.4), it follows that

2〈Px(t),Ax(t)〉+θ1〈A0x(t),PA0x(t)〉=−〈Ex(t),Ex(t)〉,

hence
2〈Px(t),Ax(t)〉+θ1〈A0x(t),PA0x(t)〉=−〈y(t),y(t)〉,

thus

E〈x(t),Px(t)〉 = E〈x0,Px0〉−E
∫ t

0〈y(τ),y(τ)〉dτ+θ2E
∫ t

0
〈Dυ(τ),PDυ(τ)〉dτ,

therefore

E
∫ t

0
‖y(τ)‖2dτ = 〈x0,Px0〉−E〈x(t),Px(t)〉+θ2E

∫ t

0
〈Dυ(τ),PDυ(τ)〉dτ.

since P� 0 it follows that

E
∫ t

0
‖y(τ)‖2dτ ≤ 〈x0,Px0〉+θ2E

∫ t

0
〈Dυ(τ),PDυ(τ)〉dτ

≤ ‖P‖‖x(0)‖2 +θ2‖D∗PD‖E
∫ t

0
‖υ(τ)‖2

Hdτ,

from which, we get

‖y‖2
L2

w
≤ ‖P‖‖x(0)‖2 +θ2‖D∗PD‖‖υ‖2

L2
w
.

Hence y ∈ L2
w(R+,L2(Ω,H)).

The second lemma will be given in terms of the input-output operator

L : L2
w(R

+,L2(Ω,U))→ L2
w(R

+,L2(Ω,Y ))

defined by

Lυ(t) =
∫ t

0
ES(t− τ)A0x(τ)dw1(τ)+

∫ t

0
ES(t− τ)Dυ(τ)dw2(τ). (3.5)

Lemma 3.2.2
The input-output operator defined by (3.5) has the operator norm

‖L‖= [θ2‖D∗PD‖]
1
2 , (3.6)

where P satisfies the Lyapunov equation (3.4).
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Proof.
Let υ ∈ L2

w(R+,L2(Ω,U)). By the previous Lemma it follows that

‖Lυ‖2
L

ω2
≤ θ2‖D∗PD‖‖υ‖2

L2
w
.

therefore
‖L‖2

L2
w
≤ θ2‖D∗PD‖.

Now we will show that there exists υ
′ ∈ L2

w(R
+,L2(Ω,U)) such that

‖Lυ
′
‖L2

w
= (θ2‖D∗PD‖)

1
2

Let υ0 ∈U , ‖υ0‖U = 1 such that

‖D∗PD‖U = max
‖υ‖=1

〈υ,D∗PDυ〉U = 〈υ0,D∗PDυ
0〉.

Define ψ as follows
ψ(t) = β(t)υ0

where β(.) ∈ L2(R+,R) and |β(.)|L2(R∗,R) = 1.
Then

‖ψ(.)‖2
L2

w
=

∫ +∞

0
E|β(τ)υ0|2dτ

= ‖υ0‖2 ∫ +∞

0 |β(τ)|2dτ

= 1.

(3.7)

Therefore
‖Lψ‖2

L2
w

= θ2

∫ +∞

0
E〈Dψ(τ),PDψ(τ)〉dτ

= θ2

∫ +∞

0
E〈β(τ)υ0(τ),D∗PDβ(τ)υ0(τ)〉dτ

= ‖D∗PD‖θ2

∫ +∞

0
|β(τ)|2dτ

= θ2‖D∗PD‖.

(3.8)

Thus
‖Lψ‖L2

w
= [θ2‖D∗PD‖]

1
2 ,

which concludes the proof.

The main result of this section is giving in the following Theorem.

Theorem 3.2.1
Let σ > 0. Suppose that there exists P ∈ L+(H) satisfying

2〈Px,Ax〉 + θ1〈A0x,PA0x〉+ 〈Ex,Ex〉= 0, x ∈ D(A), (3.9)

1−σ
2
θ2‖D∗PD‖ ≥ 0. (3.10)

then rw(A,D,E)≥ σ.
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Proof.
Let ∆ ∈ Lip(Y,U) such that ‖∆‖Lip < σ. Suppose that P ∈L+(H) is such that (3.9) and

(3.10) hold.
Set y(t) = Ex(t) and u(t) = ∆(y(t)), t > 0, where x(t) is the solution of the system (3.2). We
have

y(t) = ES(t)x0 +
∫ t

0
ES(t− τ)A0x(t)dw1(τ)+

∫ t

0
ES(t− τ)D∆(Ex(τ))dw2(τ). (3.11)

For every T > 0, define the truncation uT ∈ L2
w(R+,L2(Ω,U)) by

uT (t) =
{

u(t) =∆(y(t)) i f t ∈ [0,T ],
0 i f t > T. (3.12)

Then
‖uT (.)‖2

L2
w

=
∫ +∞

0
E(‖uT (t)‖)2dt

=
∫ T

0
E(‖u(t)‖)2dt

=
∫ T

0
E(‖∆y(t)‖)2dt

≤ ‖∆‖2
Lip

∫ T

0
(E(‖y(t)‖)2)dt.

Hence

‖uT (t)‖2
L2

w
≤ ‖∆‖2

Lip

∫ T

0
E(‖y(t)‖)2dt.

Now define yT as the output of the system (A,(D,E)) generated by the input uT with initial
condition x(0) = x0. Then

yT (t) = ES(t)x0 +LuT (t). t ≥ 0. (3.13)

From (3.11) - (3.13), we get(∫ T

0
E‖y(t)‖2dt

) 1
2

≤ ‖yT‖L2
w

≤ M
∫ +∞

0
e(−2ωt)‖Ex0‖dt +‖L‖‖uT‖L2

w
.

(3.14)

Thus(∫ T

0
E‖y(t)‖2dt

) 1
2 ≤

∫ +∞

0
Me(−2ωt)‖Ex0‖dt +‖L‖‖∆‖Lip

(∫ T

0
E‖y(t)‖2dt

) 1
2

(3.15)

Condition (3.10) implies that

‖L‖2 < σ−2

Now since ‖∆‖Lip < σ, the operator L∆ is contraction on L2
w(R+,L2(Ω,Y )) with β = ‖L‖‖∆‖<

1. From (3.15) we get(∫ T

0
E‖y(t)‖2dt

) 1
2 ≤ (1−β)−1

∫ +∞

0
Me(−2ωt)dt‖Ex0‖, for all T > 0.
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Therefore y ∈ L2
w(R+,L2(Ω,Y )) and u =∆(y) ∈ L2

w(R+,L2(Ω,U)).
By lemma 3.2.1, the solution x(.) belongs to L2

w(R+,L2(Ω,H)). We conclude then that

rw(A,(D,E))≥ σ.

As a consequence of this Theorem we have the following Corollary which enables us to
obtain a lower bound for the stability radius.

Corollary 3.2.1
Suppose that there exists P ∈L+(H) a solution of the Lyapunov equation (3.9). Then

rw(A,(D,E))≥ θ2‖D∗PD‖−
1
2 . (3.16)

Proof.

1. If ‖D∗PD‖ = 0, then 1−σ2θ2‖D∗PD‖ > 0, for all σ > 0. From the above Theorem, it
follows that rw(A,(D,A))≥ σ, for all σ > 0. From which we deduce that rw(A,(D,A)) =
+∞.

2. If ‖D∗PD‖ 6= 0, since

‖u‖2−‖D∗PD‖−1〈D∗PDu,u〉 ≥ 0 for all u ∈U.

it follows that

‖u‖2− ((θ2‖D∗PD‖)−1
2 )2θ2〈D∗PDu,u〉 ≥ 0, for all u ∈U.

By the previous Theorem, we deduce that rw(A,(D,E))≥ (θ2‖D∗PD‖)−1
2 .

Corollary 3.2.2
Suppose that there exists P ∈ L(H+) satisfying

2〈Px,Ax〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉 ≤ 0, x ∈ D(A), (3.17)

1−σ2θ2‖D∗PD‖ ≥ 0(
resp.1−σ2θ2‖D∗PD‖> 0.

) (3.18)

Then rw(A,D,E)≥ σ. In this case the Lyapunov equation (3.9) has a solution P0 ∈ L(H+) such
that P� P0.

Proof.
Since (3.1) is L2− stable, there exists a solution P0 of the Lyapunov equation (3.9). Set

X = P−P0, then
2〈Xx,Ax〉 ≤ 0, x ∈ D(A).

Applying Lemma 2.1 in [10] we obtain that X � 0, thus P� P0.
Using condition (3.18), it follows that

1−σ
2
θ2‖D∗PD‖ ≤ 1−σ

2
θ2‖D∗P0D‖.

Hence conditions (3.9) and (3.10) are satisfied. By applying Theorem 3.2.1 we deduce that
rw(A,D,E)≥ σ.

Remark 3.2.1
In the case where A0 = 0, we obtain the same result obtained in [35].
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3.2.3 Example
Consider the stochastic system

dy(t) = [
∂

∂x2 + r0]y(t)dt + r1y(t)dw1(t)+ r2y(t)dw2(t), t > 0,0 < x < π,

y(t,0) = y(t,π) = 0,
y(0,x) = y0(x).

(3.19)

Where r0 < 1 , w1,w2 are independent zero mean real Wiener processes.
To put the problem (3.19) into the abstract setting we introduce the self-adjoint operator Ah =
d2h
dx2 + r0h in the Hilbert space H = L2(0,π) with D(A) = H1

0 (0,π)∩H2(0,π).
Since r0 < 1, A is the infinitesimal generator of an exponentially stable semigroup S(t). The
eigenvalues and the eigenvectors of A are given by [9].

λn =−n2 + r0; ψn(x) =
√

2sin(nx),n≥ 1

A0 = r1I, D = I, ∆ = r2 ∈ R, E = I. In the abstract from system (3.19) can be presented as
follows {

dz(t) = Az(t)dt +A0z(t)dw1(t)dt +D∆2(Ez(t))dw2(t),
z(0) = z0.

(3.20)

The stochastic Lyapunov equation corresponding to this system is

2〈Pz,Az〉+θ1〈A0z,PA0z〉+ 〈Ez,Ez〉= 0.

Setting

Pz =
+∞

∑
k=1

Pk〈z,φk〉φk, Az =
+∞

∑
k=1

λk〈z,φk〉φk

we get

〈Pz,Az〉=
+∞

∑
k=1

Pkλk〈z,φk〉2,

〈A0z,A0z〉= r2
1

+∞

∑
k=1

Pk〈z,φk〉2,

hence

2
+∞

∑
k=1

Pkλk〈z,φk〉2 +θ1r2
1

+∞

∑
k=1

Pk〈z,φk〉2 + 〈z,z〉= 0.

For z = φk we obtain

2Pjλ j +θ1r2
1Pj +1 = 0, j ≥ 1,

therefore
Pj =

1
2( j2− r0)−θ1r2

1
, j ≥ 1.

If θ1r2
1 < 2(1− r0) it follows that Pj > 0, for all j ≥ 1.

For the condition (3.10), we have

I− γ2θ2D∗PD≥ 0
⇔ ∑

+∞

k=1(1− γ2θ2Pk)〈z,φk〉2 ≥ 0, for all z ∈ H.
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For γ2 ≤ 1
θ2

(2(1− r0)−θ1r2
1), the Lyapounov equation has solution P with

I− γ
2
θ2D∗PD≥ 0.

Applying Theorem 3.2.1, we deduce that the system (3.19) is stable if

r2
2 ≤

1
θ2

(2(1− r0)−θ1r2
1).

If [θ1 = θ2 = 1], we get r2
2 ≤ (2(1− r0)− r2

1).

3.3 Robust stabilization

In this section we consider the controlled system{
dx(t) = Ax(t)dt +A0x(t)dw1(t)+D∆(Ex(t))dw2(t)+B0u(t)dt, t > 0,
x(0) = x0.

(3.21)

where u takes its values in the real separable Hilbert space Z, B0 ∈ L (Z,H). In addition we
assume that (A,B0) is stabilizable.
Our aim is to characterize the supremum of the stability radii which can be achieved by linear
state feedback u = Fx, where F ∈L (H,Z).
Let

Z =

{
F ∈L (H,Z);A+B0F is the in f initesimal generator o f an

exponentially stable semigroup SF(t)

}
,

and define
rw(A,D,E) = sup

{
rw(A+B0F,D,E); F ∈F

}
.

For F ∈Z , ε > 0, consider the stochastic Lyapunov inequality

2〈P(A+B0F)x,x〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉,+ε2〈Fx,Fx〉 ≤ 0, x ∈ D(A). (3.22)

In order to establish conditions for the existence of suboptimal controllers u(t) = Fx(t) such
that F ∈Z and σ≤ rw(A+B0F,D,E) , for σ > 0, we need the following Lemmas.

This Lemma is of technical interest.

Lemma 3.3.1
Let ε > 0. If there exists P ∈ L+(H) such that

2〈Px,(A− ε−2B0B∗0P)x〉+θ1〈A0x,PA0x〉+ ε−2〈PB0B∗0Px,x〉+ 〈Ex,Ex〉 ≤ 0, x ∈ D(A).
(3.23)

1−σ
2
θ2‖D∗PD‖ ≥ 0, (3.24)

then Aε = A− ε−2B0B∗0P generates an exponentially stable semigroup and σ≤ rw(Aε,D,E).

Proof.
Consider the initial value problem{ d

dt x(t) = Aεx(t), t ∈ R+
x(0) = x0, x0 ∈ H.

(3.25)
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For x0 ∈ D(Aε),V (x) = 〈x,Px〉 is differentiable and

d
dt

V (x(t)) = 2〈PAεx,x〉 .

From the inequality (3.23) we obtain

d
dt

V (x(t)) ≤ −ε−2〈PB0B∗0Px,x〉−θ1〈A0x,PA0x〉−〈Ex,Ex〉
≤ −ε−2〈PB0B∗0Px,x〉.

Thus ∫ T

0

d
dt

V (x(t))dt ≤ −ε−2
∫ T

0
〈PB0B∗0Px,x〉dt.

Hence

V (x(T ))−V (x(0)) ≤ −ε−2
∫ T

0
‖B∗0Px(t)‖2dt.

Using the fact that P� 0 we get

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤V (x0), f or all T > 0.

Therefore

ε
−2

∫ T

0
‖B∗0Px(t)‖2dt ≤ k‖x0‖2, k > 0.

which implies that B∗0Px(t) ∈ L2(R+,Z). The solution x(t) of the system (3.25) is given by

x(t) = S(t)x0− ε
−2

∫ t

0
S(t− s)B0B∗0Px(s)ds.

We have

‖x(t)‖ ≤ ‖S(t)x0‖+ ε−2
∥∥∥∥∫ t

0
S(t− s)B0B∗0Px(s)ds

∥∥∥∥
≤ Me−ωt‖x0‖+ ε−2M‖B0‖

∫ t

0
e−ω(t−s)‖B∗0Px(s)‖ds,

from which we get

‖x(t)‖2 ≤ 2M2e−2ωt‖x0‖2 +2ε−4M2‖B0‖2
[∫ t

0
e−ω(t−s)‖B∗0Px(s)‖ds

]2

≤ K1e−2ωt +K2

∫ t

0
e−2ω(t−s)‖B∗0Px(s)‖2,ds

where K1 = 2M2‖x0‖2, K2 = 2ε−4M2‖B0‖2. It follows then that∫ +∞

0
‖x(t)‖2 dt ≤

∫ +∞

0
K1e−2ωtdt +

∫ +∞

0
K2

∫ t

0
e−2ω(t−s)‖B∗0Px(s)‖2dsdt.

Thus ∫ +∞

0
‖x(t)‖2 dt ≤ K1

2ω
+

∫ +∞

0
K2e2ωs‖B∗0Px(s)‖2

(∫ +∞

s
e−2ωtdt

)
ds.

Which implies that ∫ +∞

0
‖x(t)‖2 dt ≤ K1

2ω
+ K2

2ω

∫ +∞

0
‖B∗0Px(s)‖2ds.
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Since B∗0Px(t) ∈ L2(R+,Z), we deduce that x(t) belongs to the space L2(R+,H). Applying
Corollary 3.2.2 with

Fε =−ε
−2B∗0P ∈Z

we get that σ≤ rw(Aε,D,E).

Lemma 3.3.2
Let ε > 0 and F ∈ Z . If the inequality (3.22) has a solution P1 ∈ L+(H) satisfying condition
(3.24) then F1 = −ε−2B∗0P1 ∈ Z and σ ≤ rw(A+B0F1,D,B,E). Moreover, there exists P2 ∈
L+(H) such that

2〈P2(A+B0F1)x,x〉+ 〈Ex,Ex〉+θ1〈A0x,P2A0x〉+ ε
−2 〈P2B0B∗0P2x,x〉= 0,

x ∈ D(A),

1−σ
2
θ2‖D∗P2D‖ ≥ 0,

P2 � P1.

Proof.
Set F

′
= εF + ε−1B∗0P1, then

〈F
′
x,F

′
x〉− ε

−2〈B∗0P1x,B∗0P1x〉= ε
2〈Fx,Fx〉+2〈B∗0P1x,Fx〉.

Since P1 is a solution of the inequality (3.22) it follows that

2〈P1Ax,x〉+θ1〈A0x,P1A0x〉+ 〈Ex,Ex〉− ε−2〈B∗0P1x,B∗0P1x〉+ 〈F ′x,F ′x〉 ≤ 0. (3.26)

Set A1 = A+B0F1 where F1 =−ε−2B∗0P1, then

2〈P1A1x,x〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉+ ε
−2 〈P1B0B∗0P1x,x〉 ≤ 0. (3.27)

Applying Lemma 3.3.1 we conclude that F1 ∈Z and σ≤ rw(A1,D,E).
Now since P1 is a solution of the inequality (3.27), then it satisfies the following inequality

2〈P1A1x,x〉+θ1〈A0x,PA0x〉+
〈

Êx, Êx
〉
≤ 0,

where

Ê =

(
E

ε−1B∗0P1

)
By Corollary 3.2.2 there exists P2 ∈ L+(H) such that

2〈P2A0x,x〉+θ1〈A0x,P2A0x〉+
〈

Êx, Êx
〉
= 0

with P2 � P1. Therefore

2〈P2A0x,x〉+ ε
−2 〈x,P1B0B∗0P1x〉+θ1〈A0x,P2A0x〉+ 〈Ex,Ex〉 ≤ 0

and
1−σ

2
θ2‖D∗P2D‖ ≥ 0.

Applying this Lemma iteratively we show in the following Theorem that there exists P ∈
L+(H) such that

2〈Ax,Px〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉− ε
−2 〈x,PB0B∗0Px〉= 0, x ∈ D(A). (3.28)
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Theorem 3.3.1
Let F ∈Z . Suppose that there exist ε > 0 such that the Lyapunov inequality (3.22) has a solution
P0 ∈ L+(H) which satisfies condition (3.24) then the Riccati equation (3.28) has a solution
P ∈ L+(H) satisfying

1−σ
2
θ2‖D∗PD‖ ≥ 0,

Fε =−ε
−2B∗0P ∈Z ,

σ≤ rw(A− ε
−2B0B∗0P,D,E)

Proof.
Applying the above Lemma iteratively we construct a sequence of linear operators (Pk)k∈N ∈

L+(H) which satisfies

2〈Pk+1Akx,x〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PkB0B∗0Pk +1x〉= 0,

x ∈ D(A),

1−σ
2
θ2‖D∗PkD‖ ≥ 0,

Pk+1 � Pk,

where P1 is a solution of the inequality (3.22) and Ak = A− ε−2B0B∗0Pk.
Let P = limk→+∞ Pk then

2〈PAεx,x〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PB0B∗0Px〉= 0, x ∈ D(A),

1−σ
2
θ2‖D∗PD‖ ≥ 0,

where Aε = A− ε−2B0B∗0P.
Using Lemma 3.3.2 we deduce that Fε =−ε−2B∗0P ∈Z and σ≤ rw(A− ε−2B0B∗0P,D,E).
Finally since

2〈PAεx,x〉+ 〈Ex,Ex〉+ ε
−2 〈x,PB0B∗0Px〉

= 2〈PAx,x〉+θ1〈A0x,PA0x〉+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉− ε
−2 〈x,PB0B∗0Px〉 ,

then P satisfies the Riccati equation (3.28).

Proposition 3.3.1
Let σ,ε > 0. Suppose that the Riccati equation (3.28) has a solution P ∈ L+(H) such that

1−σ
2
θ2‖D∗PD‖ ≥ 0

then Fε =−ε−2B∗P ∈Z and σ≤ rw(A+B0Fε,D,E).

Proof.
Since P is a solution of the Riccati equation (3.28) then

2〈P(A− ε−2B0B∗0P)x,x〉)+θ1〈A0x,PA0x〉+ 〈Ex,Ex〉+ ε−2〈x,PB0B∗0Px〉= 0, x ∈ D(A),

1−σ
2
θ2‖D∗PD‖ ≥ 0.

From Lemma 3.3.2 we obtain Fε =−ε−2B∗0P ∈Z and σ≤ rw(A+B0Fε,D,E).

As a consequence of the above proposition we characterize the supremal achievable stability
radius via the Riccati equation (3.28) as follows.

Corollary 3.3.1 We have

rw(A,D,E)≥ sup
{

σ > 0; there exist ε > 0such that (3.28) has
a solution P ∈ L+(H) with 1−σ2θ2‖D∗PD‖ ≥ 0.

}
.
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Stability radii of stochastic systems subjected to stochas-
tic and deterministic perturbations

4.1 Introduction

In this chapter, we consider stochastic systems with stochastic and deterministic uncertainties.
Novel procedure for studying robust stability is presented. A novel characterization of the
stability radius is proposed. The results generalize those of the finite dimensional case (see [17]).
We procced as follows. Section 4.2 contains the mathematical formulation of the problem and
basic definitions. In section 4.3 we establish some results which enable us to derive bounds for
the stability radius. This bound is giving in terms of linear operator inequalities.

4.2 System description

Let A be the infinitesimal generator of an exponentially stable semigroup S(t) on a real separable
Hilbert space Hand A0 ∈L (H).

Consider the stochastic system{
dx(t) = Ax(t)dt +A0x(t)dw(t), t ≥ 0,
x(0) = x0.

(4.1)

Assume that (4.1) is L2 stable and is subjected to structured perturbations as follows{
dx(t) = Ax(t)dt +A0x(t)dw(t)+B∆(Ex(t))dt +D∆(Ex(t))dw(t), t ≥ 0,
x(0) = x0 ∈ H,

(4.2)

where

(H1) D,B ∈L (U,H) and E ∈L (H,Y ).

(H2) ∆ ∈ Lip(Y,U) is an unknown Lipschitzian nonlinear perturbation. The size of ∆ ∈
Lip(Y,U) is measured by the Lipschitz norm

‖∆‖Lip = in f{γ > 0;∀y, ŷ ∈ Y : ‖∆(y)−∆(ŷ)‖U ≤ γ‖y− ŷ‖Y}.
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(H3) {w(t)}t∈R+ is a real Wiener process on a probability space ( Ω , F ,P ) equipped with a
filtration {Ft}t≥0 ⊂F , whith variance θ.

(H4) (B,E) determines the structure of the deterministic perturbation and (D,E) determines the
structure of the stochastic perturbation.

By the asymptions H1 H2, there existe a unique solution x to (4.1) (see Theorem 7 page 186 in
[13]).

4.3 Characterizations of the stability radius

Definition 4.3.1
The stability radius of A whith respect to the perturbation structure (D,B,E) and the Wiener
process {w(t)}t∈R+ is

rw(A,A0,D,B,E) = in f{‖∆‖;∆ ∈ Lip(Y,U) such that (4.2) is not L2− stable}.

Let T > 0 and γ > 0. For υ ∈ L2
w(R+,L2(Ω,U)), consider the following cost functional

J(x0,υ) =
∫ T

0
E[‖Ex(t)‖2− γ

−2‖υ(t)‖2]dt.

where x(t) is the solution of the system{
dx(t) = Ax(t)dt +Bυ(t)dt +A0x(t)dw(t)+Dυ(t)dw(t), t ≥ 0,
x(0) = x0.

(4.3)

The approach used in this section to characterize the stability radius rw(A,D,B,E) is based
on the following Theorem.

Theorem 4.3.1
Let γ > 0. Suppose that there exists P ∈ L+(H) such that M(P)≺ 0, where

M(P) =
(

PA+A∗P+θA∗0PA0 +E∗E PB+θA∗0PD
B∗P+θD∗PA0 −γ−2I +θD∗PD

)
then ‖L‖< γ−1.

Proof.
Let x ∈ D(A) be the solution of the perturbed system (4.3). Using the Itô Formula with

F(t,x(t)) = 〈x(t),Px(t)〉, we get

〈x(T ),Px(T )〉 = 〈x(0),Px(0)〉+2
∫ T

0
〈Px(t),(A0x(t)+Dυ(t))dw(t)〉

+ 2
∫ T

0
〈Px(t),Ax(t)+Bυ(t)〉dt +θ

∫ T

0
〈A0x(t),PA0x(t)〉dt

+ θ

∫ T

0
〈Dυ(t),PDυ(t)〉dt +θ

∫ T

0
〈Dυ(t),PA0x(t)〉dt

+ θ

∫ T

0
〈A0x(t),PDυ(t)〉dt.
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Applying the expectation and using Theorem 6.12 in [19], we get

E〈x(T ),Px(T )〉 = E〈x(0),Px(0)〉+E
∫ T

0
2〈Px(t),Ax(t)〉dt +θE

∫ T

0
〈Dυ(t),PA0x(t)〉dt

+ θE
∫ T

0
〈Dυ(t),PA0x(t)〉dt +E

∫ T

0
2〈Px(t),Bυ(t)〉dt

+ θE
∫ T

0
〈A0x(t),PA0x(t)〉dt +θE

∫ T

0
〈Dυ(t),PDυ(t)〉dt,

.

then

E〈x(T ),Px(T )〉 = 〈x(0),Px(0)〉+E
∫ T

0
〈PAx(t),x(t)〉dt +θE

∫ T

0
〈A∗0PDυ(t),x(t)〉dt

+ θE
∫ T

0
〈D∗PA0x(t),υ(t)〉dt +E

∫ T

0
〈x(t),PBυ(t)〉dt

+ θE
∫ T

0
〈A∗0PA0x(t),x(t)〉dt +θE

∫ T

0
〈D∗PDυ(t),υ(t)〉dt

+ E
∫ T

0
〈A∗Px(t),x(t)〉dt +E

∫ T

0
〈B∗Px(t),υ(t)〉dt,

hence

E〈x(T ),Px(T )〉 = 〈x(0),Px(0)〉+E
∫ T

0
〈(PA+A∗P+θA∗0PA0)x(t),x(t)〉dt

+ E
∫ T

0
〈(PB+θA∗0PD)υ(t),x(t)〉dt +θE

∫ T

0
〈D∗PDυ(t),υ(t)〉dt

+ E
∫ T

0
〈(B∗P+θD∗PA0)x(t),υ(t)〉dt,

therefore

E〈x(T ),Px(T )〉 = 〈x(0),Px(0)〉+E
∫ T

0
〈
(

x(t)
υ(t)

)
,M1(P)

(
x(t)
υ(t)

)
〉dt,

where

M1(P) =
(

PA+A∗P+θA∗0PA0 PB+θA∗0PD
B∗P+θD∗PA0 θD∗PD,

)
thus

J(x0,υ)+E〈x(T ),Px(T )〉−〈x(0),Px(0)〉 = E
∫ T

0
〈
(

x(t)
υ(t)

)
,M1(P)

(
x(t)
υ(t)

)
〉dt +J(x0,υ),

= E
∫ T

0
〈
(

x(t)
υ(t)

)
,

(
PA+A∗P+θA∗0PA0 +E∗E PB+θA∗0PD

B∗P+θD∗PA0 −γ−2I +θD∗PD

)(
x(t)
υ(t)

)
〉dt,

Therefore

J(x0,υ)+E〈x(T ),Px(T )〉−〈x(0),Px(0)〉= E
∫ T

0
〈
(

x(t)
υ(t)

)
,M(P)

(
x(t)
υ(t)

)
〉dt, (4.4)

where

M(P) =
(

PA+A∗P+θA∗0PA0 +E∗E PB+θA∗0PD
B∗P+θD∗PA0 −γ−2I +θD∗PD

)
.

On the stability radius of infinite dimensional stochastic systems Amira Kameche



4.3. CHARACTERIZATIONS OF THE STABILITY RADIUS 66

Since M(P)≺ 0, it follows that

J(x0,υ)+E〈x(T ),Px(T )〉−〈x(0),Px(0)〉< 0

For x(0) = 0 we have Lυ(t) = Ex(t), then

J(x0,υ) =
∫ T

0
E[‖Lυ(t)‖2− γ

−2‖υ(t)‖2]dt,

hence ∫ T

0
E[‖Lυ(t)‖2− γ

−2‖υ(t)‖2]dt <−E〈x(T ),Px(T )〉,

from which we obtain∫ T

0
E‖Lυ(t)‖2dt <

∫ T

0
Eγ
−2‖υ(t)‖2dt−E〈x(T ),Px(T )〉

thus ∫ T

0
E‖Lυ(t)‖2dt <

∫ T

0
Eγ
−2‖υ(t)‖2dt,

or
‖Lυ(t)‖2

L2
w
< γ
−2‖υ(t)‖2

L2
w
,

therefore ‖L‖L2
w
< γ−1.

For the next, we need the following Schur Lemma.

Lemma 4.3.1

Let X =

[
S T

T ∗ Q

]
, where S ∈ L(H), Q ∈L (H) are linear Hermitian operators such that Q

is coercive, and T ∈ L(H) is a linear operator. We have

X � 0⇐⇒ Q� 0 and S−T Q−1T ∗ � 0.

We have the following result.

Corollary 4.3.1
Let γ > 0. Assume that there exists P ∈L+(H) satisfying

Q = γ
−2I−θD∗PD� 0,

and
2〈Px,Ax〉+θ〈PA0x,A0x〉+ 〈Ex,Ex〉
−〈(−Q)−1 (B∗Px+θD∗PA0x) ,(B∗Px+θD∗PA0x)〉< 0, x ∈ D(A).

Then ‖L‖< γ−1.

Proof.
We have Q� 0 and S−T Q−1T ∗ � 0. where

S = −(PA+A∗P+θA∗0PA0 +E∗E),
T = −(PB+θA∗0PD).

(4.5)

Using Shur Lemma, we get M(P) ≺ 0 and from the previous Theorem we conclude that
‖L‖< γ−1.

Now we obtain a bound for the stability radius.
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Theorem 4.3.2 Let γ > 0. Suppose that there exists P� 0 such that M(P)≺ 0 then rω ≥ γ.

Proof.
Let ∆ be such that ‖∆‖< γ. For T ≥ 0, the unique solution of (4.2) with initial condition

x(0) = x0 satisfies

x(T ) = x0 +
∫ T

0
[Ax(t)+B∆(Ex(t))]dt +

∫ T

0
[A0x(t)+D∆(Ex(t))]dw(t).

Set υ(t) =∆(Ex(t)). Since M(P)≺ 0 there exists σ > 0 such that M(P)�−σ2I. By equation
(4.4), we have

J(x0,υ) = 〈x(0),Px(0)〉−E〈x(T ),Px(T )〉+E
∫ T

0
〈
(

x(t)
υ(t)

)
,M(P)

(
x(t)
υ(t)

)
〉dt,

then

J(x0,υ)≤ 〈x(0),Px(0)〉−E〈x(T ),Px(T )〉−
∫ T

0
σ

2E
(
‖x(t)‖2 +‖v(t)‖2)dt,

which implies that

J(x0,υ)≤ 〈x(0),Px(0)〉−E〈x(T ),Px(T )〉−
∫ T

0
σ

2E
(
‖x(t)‖2 +‖v(t)‖2)dt,

hence∫ T

0
E[‖Ex(t)‖2− γ

−2‖∆(Ex(t))‖2]dt ≤ 〈x(0),Px(0)〉−E〈x(T ),Px(T )〉−
∫ T

0
σ

2E‖x(t)‖2dt,

therefore

−〈x(0),Px(0)〉+E〈x(T ),Px(T )〉 ≤
∫ T

0
[γ−2E‖∆(Ex(t))‖2−E‖Ex(t)‖2−σ

2E‖x(t)‖2]dt.

Define the truncation υT ∈ L2
w(R+,L2(Ω,U)) by

υT (t) =
{

v(t) =∆(Ex(t)) i f t ∈ [0,T ],
0 i f t > T, (4.6)

Then
‖υT (t)‖2

L2
w

=
∫ +∞

0
E(‖υT (t)‖)2dt

=
∫ T

0
E(‖υ(t)‖)2dt

=
∫ T

0
E(‖∆Ex(t)‖)2dt

≤ ‖∆‖2
Lip

∫ T

0
(E(‖Ex(t)‖)2)dt.

But
γ
−2E‖∆(Ex(t))‖2 ≤ γ

−2‖∆‖2E‖Ex(t)‖2 ≤ E‖Ex(t)‖2.

Hence

−〈x(0),Px(0)〉+E〈x(T ),Px(T )〉 ≤
∫ T

0
−σ

2E‖x(t)‖2dt.
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Thus ∫ T

0
σ

2E‖x(t)‖2dt ≤ 〈x(0),Px(0)〉−E〈x(T ),Px(T )〉.

Therefore ∫ T

0
σ

2E‖x(t)‖2dt ≤ 〈x(0),Px(0)〉,

or ∫ T

0
E‖x(t)‖2dt ≤ σ

−2‖P‖‖x(0)‖2.

We deduce that ∫
∞

0
E‖x(t)‖2dt ≤ σ

−2‖P‖‖x(0)‖2,

which implies that the solution x(t) belongs to L2
w. We conclude that rω ≥ γ.

Remark 4.3.1
From Theorem 4.3.1 and Theorem 4.3.2, we deduce that

rω ≥ ‖L‖−1

.

Remark 4.3.2
In the case where A0 = 0,B = 0, we obtain the same result obtained in [35].
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New general decay rates of solutions for an abstract
semilinear stochastic evolution equation with an infi-
nite memory

5.1 Introduction

Our interest in this chapter is to analyse the asymptotic stability of the second-order stochastic
evolution equation:utt +Au(t)−

∫ +∞

0
h(s)Aαu(t− s)ds+ f (u(t)) = σ(t)Wt(t) t,s in[0,+∞[,

u(−t) = u0(t), ut(0) = u1,
(5.1)

A : D(A)→ H be a self-adjoint linear positive operator with domain D(A) ⊂ H where(
H,〈., .〉 ,‖.‖

)
is a real Hilbert space and the embedding D(Aγ0) ↪→ D(Aγ1) is compact for any

γ0 > γ1 ≥ 0.
u :R+−→H is the displacement vector, α∈ [0,1], the initial data (u0,u1) are given in suitable

function spaces, h : R+ −→ R+ the kernel of memory term and the function f : D(A
1
2 )−→ H

are subject to some assumptions to be specified later and σ : R+ −→ R+ is a locally Lipschitz
continuous function such that ∫ +∞

0
σ

2(t)dt < ∞. (5.2)

W is a Q-Wiener process in H on some probability space (Ω,F ,P) with the variance operator Q
satisfying

TrQ < ∞,

and {Ft , t ≥ 0} as its natural filtration satisfying the usual conditions. Moreover, we assume that
Q has the following form

Qei = κiei, i = 1,2, ...,

where {κi} are the eigenvalues of Q satisfying ∑
∞
i=1 κi < ∞ and {ei} are the corresponding

eigenfunctions which form an orthonormal base of H. In this case

W (t) =
∞

∑
i=1

κiBi(t)ei,

69



5.2. PRELIMINARIES 70

where {βi(t)} be a sequence of real-valued one dimensional standard Brownian motions mutually
independent over (Ω,F ,P). We first show that the system is well-posed by using the semi-group
theory. Secondly, by assuming the general condition:

h′(t)≤−ξ(t)h(t), ∀t ≥ 0,

where ξ is a positive function which is not necessarily monotone, we establish two stability
results with decay rates depending on α and on the regularity of the initial data. Finally, we give
some applications in order to illustrate our abstract results. This study improves and generalizes
many previous ones in the literature. The chapter is planned as follows. In the first section, we
introduce the needed assumptions and notations. In the next section, we study the well-posedness
of the system. In the section5.4, we investigate the stablity of solution by using Lyapunov
functionals. To illustrate our chapter result, some applications will be given in the last section.

5.2 Preliminaries

We introduce as in [12] the new variable

η(t,s) = u(t)−u(t− s), ∀t,s > 0,

which fulfills
ηt(t,s)+ηs(t,s) = ut(t), ∀t,s > 0,

and so, our problem is equivalent to
utt +Au(t)−h0Aαu(t)+

∫ +∞

0
h(s)Aα

η(t,s)ds+ f (u(t)) = σ(t)Wt(t),

ηt(t,s)+ηs(t,s) = ut(t),
u(−t) = u0(t), ut(0) = u1,

η0 = η(0,s) = u0(0)−u0(s),

(5.3)

where h0 =
∫ +∞

0
h(s)ds<∞.

To establish our main results, we need the following assumptions:
(A1) It exist three fixed positive constants a0, a1 and a2 satisfying

‖u‖2 ≤ a0‖A
α

2 u‖2 ∀u ∈ D(A
α

2 ), (5.4)

‖A
α

2 u‖2 ≤ a1‖A
1
2 u‖2 ∀u ∈ D(A

1
2 ), (5.5)

and
‖A

1
2 u‖2 ≤ a2‖A1−α

2 u‖2 ∀u ∈ D(A1−α

2 ). (5.6)

(A2) The function h : R+→ R+ is integrable, non-increasing and differentiable such that

h(0)> 0 and 1−h0 max(a1,a2) = l > 0. (5.7)

(A3) There exists a C0 function ξ : R+→]0,+∞[ which is not necessarily monotone such that

h′(t)≤−ξ(t)h(t) ∀t ≥ 0, (5.8)
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and
c0 ≤ ξ(t)≤ c1 ∀t ≥ 0, (5.9)

where c0 and c1 are two fixed positive constants.
(A4) The function f : D(A

1
2 )−→ H is a global Lipschitz mapping with f (0) = 0 such that its

potential function F : D(A
1
2 )−→ R+ (i.e DF = f ) satisfies

F(u)≤ 〈 f (u),u〉 . (5.10)

Remark 5.2.1
i. The existence of the constants a0, a1 and a2 is guaranteed by the compactness of the embedding
D(Aγ0) ↪→ D(Aγ1) for any γ0 > γ1 ≥ 0.
ii. The condition 1−h0 max(a1,a2) guarantees the positivity of the energy functional E and the
modified energy functional E∗ defined below.
iii. It follows from (A4) that it exists a fixed positive constant L satisfying

‖ f (u)‖ ≤ L‖u‖ ∀u ∈ D(A
1
2 ). (5.11)

5.3 Well-posedness

In this section, we prove the existence and the uniqueness of solution for the problem (5.3). To
this aim, we define the space

L2
h

(
R+,D(A

α

2 )
)
=

{
η : R+×R+→ D(A

α

2 ),
∫ +∞

0
h(s)‖A

α

2 η(t,s)‖2ds <+∞

}
,

which is a Hilbert space with respect to the following inner product〈
u,v
〉

L2
h

(
R+,D(A

α
2 )
) = ∫ +∞

0
h(s)〈A

α

2 u(s),A
α

2 v(s)〉ds.

Consequently, the space

H = D(A
1
2 )×H×L2

h

(
R+,D(A

α

2 )
)
,

equipped with the inner product

〈U1,U2〉H = 〈u1,u2〉
D(A

1
2 )
−h0〈u1,u2〉D(A

α
2 )
+ 〈v1,v2〉+ 〈η1,η2〉L2

h

(
R+,D(A

α
2 )
). (5.12)

is also Hilbert space
Now, let U(t) = (u,v,η)T , where v = ut . Therefore, our system (5.3) can be rewritten

abstractly as {
dU(t) =

[
AU(t)+G (U(t))

]
dt +σ0(t)dW (t),

U(0) =U0 = (u0,u1,η0)
T ,

(5.13)

where

A

 u
v
η

=


v

−(A−h0Aα)u−
∫ +∞

0
h(s)Aα

η(.,s)ds

v− ∂η

∂s

 ,
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D(A ) =


(u,v,η)T ∈H ,

(A−h0Aα)u+
∫ +∞

0
h(s)Aα

η(.,s)ds ∈ H, v ∈ D(A
1
2 ),

∂η

∂s
∈ L2

h

(
R+,D(A

α

2 )
)
, η(.,0) = 0

 ,

σ0(t) =

 0
σ(t)

0

 ,

and

G (U(t)) =

 0
− f (u(t))

0

 .

The well-posedness result of problem (5.13) is the following:

Theorem 5.3.1
Assume that (5.2), (A1), (A2) and (A4) hold. Then, for any initial datum U0 ∈H , the system
(5.13) has a unique mild solution U ∈C

(
0,T ;Lp(Ω,F ,µ);H

)
.

Proof.
To prove the result given in Theorem 5.3.1 we will apply Theorem 2.1 in [32]. So, it suffices

to show that the linear operatorA generates a linear C0− semigroup {S(t)}t≥0 onH . For that,
let U = (u,v,η)T ∈ D(A ), then

〈AU,U〉H = 〈v,u〉
D(A

1
2 )
−h0〈v,u〉D(A

α
2 )
+

∫ +∞

0
h(s)〈v− ∂η

∂s
,η〉

D(A
α
2 )

ds

−
〈
(A−h0Aα)u−

∫ +∞

0
h(s)Aα

η(s)ds,v
〉
,

thanks to the definition of A
1
2 and A

α

2 , one has

〈AU,U〉H =−
∫ +∞

0
h(s)〈∂η

∂s
,η〉

D(A
α
2 )

ds.

An integration by parts, using the fact that η(0) = 0, gives us

−
∫ +∞

0
h(s)

〈
∂η

∂s
,η
〉

D(A
α
2 )

ds ≤ 1
2

∫ +∞

0
h
′
(s)‖A

α

2 η(s)‖2ds,

from which follows
〈AU,U〉 ≤ 0,

since h is nonincreasing. Consequently, the operatorA is dissipative.
Now, we prove that κI−A is surjective. Given (g1,g2,g3)

T ∈H , we show that there exists
U = (u,v,η)T ∈ D(A ) satisfying

(κI−A )(u,v,η)T = (g1,g2,g3)
T ,

that is, 
κu− v = g1,

κv+(A−h0Aα)u−
∫ +∞

0
h(s)Aα

η(s)ds = g2,

κη− v− ∂η

∂s
= g3.

(5.14)
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Suppose that we have found u. Then, we have

v = κu−g1. (5.15)

Furthermore, one can easily show that Eq.(5.14)3 with η(0) = 0 has a unique solution given by

η(s) = e−κs
∫ s

0
eκy(g3(y)−g1 +κu)dy. (5.16)

Plugging (5.15) and (5.16) into (5.14)2, we can get

(A−Ψ1Aα +Ψ2I)u = g4, (5.17)

where
Ψ1 = h0−κ

∫
∞

0
h(s)e−κs

(∫ s

0
eκy
)

dyds =
∫

∞

0
h(s)e−κsds, Ψ2 = κ

2,

and
g4 = g2 +λg1−

∫
∞

0
h(s)e−λs

∫ s

0
Aαe−λy(g3(y)−g1)dyds.

We should prove that (5.17) has a solution u ∈ D(A
1
2 ) and then replace in (5.15), (5.16) in order

to get that U ∈ D(A ) satisfying (5.14). We have Ψ1 < h0, by (5.7) and (5.5), we conclude that
A−Ψ1Aα is a positive definite operator. Then, taking the duality brackets 〈., .〉

D(A
1
2 )
′×D(A

1
2 )

with

z ∈ D(A
1
2 ), we obtain the following problem which is equivalent to (5.17)

Λ(u,z) = I (z),

where the bilinear form Λ : D(A
1
2 )×D(A

1
2 )→R and the linear form I : D(A

1
2 )→R are defined

by
Λ(u,z) = 〈(A−Ψ1Aα +Ψ2I)u,z〉

D(A
1
2 )
′×D(A

1
2 )
,

and
I (z) = 〈g4,z〉

D(A
1
2 )
′×D(A

1
2 )
.

The bilinear form Λ is continuous and coercive on D(A
1
2 ). Indeed, we have∣∣∣〈A

1
2 u,A

1
2 z
〉∣∣∣−Ψ1

∣∣∣〈A
α

2 u,A
α

2 z
〉∣∣∣+Ψ2〈u,z〉 ≤C‖u‖

D(A
1
2 )
‖z‖

D(A
1
2 )
′ ,

and for z = u ∈ D(A
1
2 ) one can easily verify∣∣∣〈A

1
2 u,A

1
2 u
〉∣∣∣−Ψ1

∣∣∣〈A
α

2 u,A
α

2 u
〉∣∣∣+Ψ2‖u‖2 ≥ (1−aΨ1)

〈
A

1
2 u,A

1
2 u
〉
≥ c‖u‖2

D(A
1
2 )
.

Thus, applying the Lax-Milgram theorem and classical regularity arguments, we conclude that
(5.14) has a unique solution u ∈ D(A

1
2 )) satisfying (5.14). Using (5.16), we obtain that(

(A−A
α

2 )u+
∫ +∞

0
h(s)A

α

2 u(s)ds
)
∈ H.

In conclusion, we have found U = (u,v,η)T ∈D(A ), which verifies (5.14), and thus, κI−A is
surjective for all κ > 0. Then, the Lumer-Phillips Theorem implies thatA is an infinitesimal
generator of a strongly continuous semigroup of contraction {S(t)}t≥0 inH .
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5.4 Stability

In this section, we study the asymptotic behavior of solutions of the system (5.3). We start our
investigation by introducing the following approximating system to system (5.13){

dU(t) = [AU(t)+R(λ)G (U(t))]dt +R(λ)σ0(t)dW (t),
U(0) = R(λ)U0,

(5.18)

where λ ∈ ρ(A ) the resolvent set ofA , R(λ) = λR(λ,A ) and R(λ,A ) is the resolvent ofA
given by R(λ,A ) = (λI−A )−1.

We have the following results regarding the existence and uniqueness of strong solution of
system (5.18) and its relation to the mild solution of system (5.13)

Lemma 5.4.1 [32]

The stochastic differential equation (5.18) has a unique strong solution U(t,λ) which lies in
C
(
0,T ;Lp(Ω,F ,µ);H

)
for all T and p ¾ 2. Moreover, U(t,λ) converges to the mild solution

of (5.13) in C
(
0,T ;Lp(Ω,F ,µ);H

)
as λ→ ∞ for all T and p ¾ 2.

Then, system (5.18) can be rewritten as follows:

du(t) = vdt,

dv(t) =
[
−Au(t)+h0Aαu(t)−

∫ +∞

0
h(s)Aα

η(t,s)ds−R(λ) f (u(t))
]
dt +R(λ)σ(t)dW (t),

dη(t,s) =
[
v(t)− ∂η(t,s)

∂s

]
dt,

ηt(t,s)+ηs(t,s) = v(t),
u(−t) = u0, ut(0) = u1,
η(0,s) = u0(0)−u0(s).

(5.19)
Now, we define the energy functional corresponding to the solution of (5.19) as:

ER(t) =
1
2
‖ut(t)‖2 +

1
2
‖A

1
2 u(t)‖2− h0

2
‖A

α

2 u(t)‖2 +
1
2

∫ +∞

0
h(s)‖A

α

2 η(t,s)‖2ds+R(λ)F(u(t)).

(5.20)
Next, we shall establish a bound on the derivative of the modified energy functional ER. So,

we have the following estimate.

Lemma 5.4.2
Let U(t,λ) be the unique strong solution to the equation (5.18). Then, the corresponding energy
function satisfies the following estimate

d
dt
E(ER(t)) ≤

1
2
E
(∫ +∞

0
h′(s)‖A

α

2 η(t,s)‖2ds
)
+

1
2

+∞

∑
i=1
E
(
κiσ

2(t)〈R(λ)ei,R(λ)ei〉
)
, (5.21)

where E denotes the expectation.

Proof.
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Applying Ito’s formula in the Hilbert space to ‖v(t)‖2, we get

‖v(t)‖2 = ‖v(0)‖2−2
∫ t

0
〈v(s),Au(s)〉ds+2

∫ t

0
〈v(s),h0Aαu(s)〉ds

−2
∫ t

0
〈v(s),

∫ +∞

0
h(s)Aα

η(t,s)ds〉ds+
∫ t

0
〈v(s),R(λ)σ(s)dw(s)〉

+
+∞

∑
i=1

κi

∫ t

0
σ

2(s)〈R(λ)ei,R(λ)ei〉ds−2R(λ)F(u(t)),

(5.22)

that is,

‖v(t)‖2 =‖v(0)‖2 +‖A
1
2 u(0)‖2−h0‖A

α

2 u(0)‖2−‖A
1
2 u(t)‖2 +h0‖A

α

2 u(t)‖2

−2
∫ t

0
〈A

α

2 v(s),
∫ +∞

0
h(s)A

α

2 η(t,s)ds〉dt +
∫ t

0
〈v(s),R(λ)σ(s)dw(s)〉

+
+∞

∑
i=1

κi

∫ t

0
σ

2(s)〈R(λ)ei,R(λ)ei〉ds−2R(λ)F(u(t)).

(5.23)

Using η(t,s) = u(t)−u(t− s), integrating by parts the first integral in (5.23) and then taking the
expectation of both sides of the resulting equation we obtain (5.21) after recalling (5.20).

Remark 5.4.1
Let

SR(t) =
1
2

+∞

∑
i=1
E
(

κi

∫ t

0
σ

2(s)〈R(λ)ei,R(λ)ei〉ds
)
.

Then it follows from (5.2) that
SR(∞) = SR1 < ∞. (5.24)

By integrating (5.21) over (0, t), we get

E(ER(t))≤E(ER1(0))+SR1. (5.25)

Lemma 5.4.3
Let U(t,λ) be a strong solution of (5.18). Then the functional

φ(t) = 〈ut(t),u(t)〉,

satisfies, for all t ≥ 0,

d
dt

φ(t) ≤‖ut‖2− l
2
‖A

1
2 u(t)‖2 +

a2
1h0

2l

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

−R(λ)F(u(t))+ 〈R(λ)σ(t)Wt(t),u(t)〉,
(5.26)

and moreover

d
dt
E
(
φ(t)

)
≤E
(
‖ut‖2)− l

2
E
(
‖A

1
2 u(t)‖2)+ a2

1h0

2l
E
(∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

)
−E
(
R(λ)F(u(t))

)
.

(5.27)
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Proof.
Taking the derivative of φ, we have

d
dt

φ(t) = ‖ut‖2 + 〈utt(t),u(t)〉.

Using (5.18) and the definition of A
1
2 and A

α

2 , we obtain

d
dt

φ(t) = ‖ut(t)‖2−‖A
1
2 u(t)‖2 +h0‖A

α

2 u(t)‖2−
〈∫ +∞

0
h(s)A

α

2 η(t,s)ds,A
α

2 u(t)
〉

−〈R(λ) f (u(t)),u(t)〉+ 〈R(λ)σ(t)Wt(t),u(t)〉.
(5.28)

By Cauchy-Schwarz’s inequality, Young’s inequality and (5.5), it follows that

−
〈∫ +∞

0
h(s)A

α

2 η(t,s)ds,A
α

2 u(t)
〉
≤ l

2a1
‖A

α

2 u(t)‖2 +
a1

2l

(∫ +∞

0

√
h(s)

√
h(s)‖A

α

2 η(t,s)‖ds
)2

≤ l
2
‖A

1
2 u(t)‖2 +

a2
1h0

2l

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds.

Substituting this last estimate into (5.28) and using (5.10), we can get

d
dt

φ(t)≤ ‖ut‖2− l
2
‖A

1
2 u(t)‖2 +

a2
1h0

2l

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

−R(λ)F(u(t))+ 〈R(λ)σ(t)Wt(t),u(t)〉.
(5.29)

Taking the expectation of (5.29), we find the desired result (5.27).

Lemma 5.4.4
Le U(t,λ) be a strong solution of (5.18). Then, the functional

ψ(t) =−〈ut(t),
∫ +∞

0
h(s)η(t,s)ds〉,

satisfies, for any δ1,δ2 > 0, an estimate of the form

d
dt

ψ(t)≤ δ1‖A
1
2 u‖2−

(
h0−δ2

)
‖ut‖2 + c2

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2

− c3

∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2−〈R(λ)σ(t)Wt(t),

∫ +∞

0
h(s)η(t,s)ds〉,

(5.30)

where

c2 = c2(δ1) =

(
2+2a2

1 + ca0a1L2

2δ1
+a1

)
h0, c3 =

h(0)
4a0δ2

.

Moreover

d
dt
E
(
ψ(t)

)
≤ δ1E

(
‖A

1
2 u‖2)− (h0−δ2

)
E
(
‖ut‖2)+ c2E

(∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

)
− c3E

(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
.

(5.31)

On the stability radius of infinite dimensional stochastic systems Amira Kameche



5.4. STABILITY 77

Proof.
A direct computation gives

d
dt

ψ(t) =−〈utt(t),
∫ +∞

0
h(s)η(t,s)ds〉+ 〈ut(t),

∫ +∞

0
h(s)ηs(t,s)ds〉−h0‖ut‖2.

Integrating by parts with respect to s the second term on the right hand side of the above equality
and using the fact that

lim
s→+∞

h(s) = 0,

η(t,0) = 0,

we get

d
dt

ψ(t) =−〈utt(t),
∫ +∞

0
h(s)η(t,s)ds〉−〈ut(t),

∫ +∞

0
h
′
(s)η(t,s)ds〉−h0‖ut‖2.

Using (5.18) and the definition of A
1
2 and A

α

2 , we obtain that

d
dt

ψ(t) =〈A
1
2 u(t),

∫ +∞

0
h(s)A

1
2 η(t,s)ds〉︸ ︷︷ ︸

I1

−h0〈A
α

2 u(t),
∫ +∞

0
h(s)A

α

2 η(t,s)ds〉︸ ︷︷ ︸
I2

−〈R(λ) f (u(t)),
∫ +∞

0
h(s)A

α

2 η(t,s)ds〉︸ ︷︷ ︸
I3

−〈R(λ)σ(t)Wt(t),
∫ +∞

0
h(s)η(t,s)ds〉−〈ut(t),

∫ +∞

0
h
′
(s)η(t,s)ds〉︸ ︷︷ ︸

I4

−h0‖ut‖2+
〈∫ +∞

0
h(s)A

α

2 η(t,s)ds,
∫ +∞

0
h(s)A

α

2 η(t,s)ds
〉

︸ ︷︷ ︸
I5

.

(5.32)

Making use of Cauchy-Schwarz’s inequality, Young’s inequality, (5.4) and (5.5), we get

I1 ≤
δ1

4
‖A

1
2 u(t)‖2 +

h0

δ1

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds, (5.33)

I2 ≤
δ1

a1
‖A

α

2 u(t)‖2 +
a1h0

δ1

∫ +∞

0
h(s)‖A

α

2 η(t,s)‖2ds

≤ δ1

4
‖A

1
2 u(t)‖2 +

a2
1h0

δ1

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds.

(5.34)

I3 ≤
δ1

2a0a1L2‖ f (u(t))‖2 +
ca0a1L2h0

2δ1

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

≤ δ1

2
‖u(t)‖2 +

ca0a1L2h0

2δ1

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

≤ δ1

2
‖A

1
2 u(t)‖2 +

ca0a1L2h0

2δ1

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds,

(5.35)
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I4 ≤ δ2‖ut(t)‖2 +
1

4δ2

(∫ +∞

0

√
−h′(s)

√
−h′(s)‖η(t,s)‖2ds

)2

≤ δ2‖ut(t)‖2− h(0)
4a0δ2

∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds,

(5.36)

and

I5 ≤
(∫ +∞

0

√
h(s)

√
h(s)‖A

α

2 η(t,s)‖ds
)2

≤ a1h0

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds.

(5.37)

Insterting (5.33)-(5.37) into (5.32), we obtain

d
dt

ψ(t)≤ δ1‖A
1
2 u‖2−

(
h0−δ2

)
‖ut‖2 + c2

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2

− c3

∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2−〈R(λ)σ(t)Wt(t),

∫ +∞

0
h(s)η(t,s)ds〉.

(5.38)

The desired estimate follows after taking the expectation of both sides of (5.38).

In order to state our stability results, we distinguish tow cases.

5.4.1 The first case: α = 1

In this subsection we study the stability problem for (0.1) when α = 1. For that, we define a
Lyapunov functional LY as follows

LY (t) = E
(

NER(t)+N1φ(t)+N2ψ(t)
)
,

where N, N1 and N2 are positive constants to be selected later.

Lemma 5.4.5
For a suitable choice of N and Ni, i = 1,2, there exist positive constants c4, c5 and m0 such that
the functional LY satisfies

c4E
(
ER(t)

)
≤LY (t)≤ c5E

(
ER(t)

)
(5.39)

and
d
dt
LY (t)≤−m0E

(
ER(t)

)
+

N
2

+∞

∑
i=1
E
(
κiσ

2(s)〈R(λ)ei,R(λ)ei〉
)
. (5.40)

Proof.
It is not hard to establish (5.39). Then, combining (5.21), (5.27) and (5.31), one has, for all

t ≥ 0,

d
dt
LY (t)≤−

[
N2
(
h0−δ2

)
−N1

]
E(‖ut‖2)−

[
N1l
2
−N2δ1

]
E‖A

1
2 u‖2

−N1E
(
R(λ)F(u(t))

)
+

[
N
2
− c3N2

]
E
(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
+

[
a2

1h0

2l
N1 + c2N2

]
E
(∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

)
+

N
2

+∞

∑
i=1
E
(
κiσ

2(s)〈R(λ)ei,R(λ)ei〉
)
.
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At the first, we take δ2 < h0, and N2 large enough so that

N2
(
h0−δ2

)
−N1 > 0.

As long as N2 is fixed, we pick δ1 sufficiently small such that

N1l
2
−N2δ1 > 0.

Thus, we can find a positive constant m0 such that

d
dt
LY (t)≤−m0E

(
ER(t)

)
+

[
N
2
− c3N2

]
E
(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
+

[
m0 +

a2
1h0

2l
N1 + c2N2

]
E
(∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

)
+

N
2

+∞

∑
i=1
E
(
κiσ

2(s)〈R(λ)ei,R(λ)ei〉
)
,

(5.41)

which, together with the assumption (A3) and (5.9), gives

d
dt
LY (t)≤−m0E

(
ER(t)

)
+m1E

(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
+

N
2

+∞

∑
i=1
E
(
κiσ

2(s)〈R(λ)ei,R(λ)ei〉
)
,

where

m1 =
N
2
− c3N2−

1
c0

(
m0 +

a2
1h0

2l
N1 + c2N2

)
.

Then, we choose N large enough so that

m1 ≥ 0.

This finishes the proof.

To state our stability results, we need the following additional assumption:
(A5) SR(t)≤

c
Nϖ

, ϖ > 1.

Theorem 5.4.1
Assume that (5.2) and (A1)-(A5) are fulfilled. Then, there exist three fixed positive constants b0,
b1 and b2 such that the solution of (0.1) satisfies

E
(
E(t)

)
≤ b0exp

(
−b1

∫ t

0
ξ(s)ds

)
+b2S1, (5.42)

where

E(t) =
1
2
‖ut(t)‖2 +

1
2
‖A

1
2 u(t)‖2− h0

2
‖A

1
2 u(t)‖2 +

1
2

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

+F(u(t)),

S(t) =
1
2

+∞

∑
i=1
E
(

κi

∫ t

0
σ

2(s)〈ei,ei〉ds
)
,

and by (5.2)
S(∞) = S1 < ∞.
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Proof.
Because of lemma 5.4.1 and the dominated convergence theorem, it is sufficient to prove the

result for the strong solution. It follows from (5.40) that

d
dt

(
LY − N

2
SR

)
(t)≤−m0E

(
ER(t)

)
,

and so
d
dt

(
LY − N

2
SR

)
(t)≤−m0

(
E
(
ER
)
− N

2c5
SR

)
(t),

using (5.39) and (5.9), we can get

d
dt

(
LY − N

2
SR

)
(t)≤−b1ξ(t)

(
LY − N

2
SR

)
(t),

where b1 =
m0

c0c5
. Thanks to (A5), we have that (LY − N

2 SR)(t) > 0, for all t ≥ 0. Then, an
integration over (0, t) gives(

LY − N
2

SR

)
(t)≤LY (0)exp

(
−b1

∫ t

0
ξ(s)ds

)
,

which, together with (5.24), implies

LY (t)≤LY (0)exp
(
−b1

∫ t

0
ξ(s)ds

)
+

N
2

SR1.

This gives us when combined with (5.39)

E
(
ER(t)

)
≤ b0exp

(
−b1

∫ t

0
ξ(s)ds

)
+b2SR1,

where b0 =
LY (0)

c4
and b2 =

N
2c4

.

5.4.2 The second case: 0≤ α < 1

Here in this subsection we investigate the asymptotic stability of system (0.1) with f ≡ 0 in case
when 0≤ α < 1. So, we have the following linear system{

dU(t) =AU(t)dt +σ0(t)dW (t),
U(0) =U0.

(5.43)

Assume that U0 ∈ D(A ), hence by Theorem 3.2 pp 81 in [19], the system (5.43) has a unique
strong solution. Defining then a modified energy functional corresponding to the solution of
(5.43) by

E∗(t) =
1
2
‖A

1−α

2 ut(t)‖2 +
1
2
‖A1−α

2 u(t)‖2− h0

2
‖A

1
2 u(t)‖2 +

1
2

∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds.

(5.44)
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Lemma 5.4.6
Let U be a strong solution of (5.43). Then, the modified energy functional satisfies the following
estimate

d
dt
E(E∗(t)) ≤ 1

2
E
(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
+

1
2

+∞

∑
i=1
E
(

λi
〈
A

1−α

2 ei,A
1−α

2 ei
〉
σ

2(t)
)
.

(5.45)

Proof.
Applying Itô’s formula to ‖A 1−α

2 v(t)‖2 and proceeding in the same way as in the proof of
Lemma 5.4.2 we obtain (5.45).

Remark 5.4.2
Define

Z(t) =
1
2

+∞

∑
i=1
E
(

κi

∫ t

0

〈
A

1−α

2 ei,A
1−α

2 ei
〉
σ

2(s)ds
)
.

Then, it results from (5.2) that
Z(∞) = Z1 < ∞, (5.46)

and so
E(E∗(t)) ≤E(E∗(0))+Z1. (5.47)

The stability result in the case of 0≤ α < 1 is given by the following Theorem.

Theorem 5.4.2
Assume that (5.2), (A1)-(A3) and (A5) are fulfilled. Then, there exist two fixed positive constants
b3 and b4 such that the solution of (0.1) satisfies

E
(
E(t)

)
≤
(

b3 +b4
(
S1 +Z1

))(∫ t

0
ξ(s)ds

)−1

+S1. (5.48)

Proof.
As usual, our proof is based on the construction a Lyapunov functional LY 1 given by

LY 1(t) = E
(

N
(
E +E∗

)
(t)+N1φ(t)+N2ψ(t)

)
.

Before going further, it should be noticed that LY 1 and E(E1) are not equivalent. Then,
gathering the estimates (5.21), (5.27), (5.31) and (5.45), we obtain, for all t ≥ 0, that

d
dt
LY 1(t)≤−

[
N2
(
h0−δ3

)
−N1

]
E(‖ut‖2)−

[
N1l
2
−N2δ1

]
E‖A

1
2 u‖2

+

[
N
2
− c3N2

]
E
(∫ +∞

0
h′(s)‖A

1
2 η(t,s)‖2ds

)
+

N
2
E
(∫ +∞

0
h′(s)‖A

α

2 η(t,s)‖2ds
)

+

[
a2

1h0

2l
N1 + c′2N2

]
E
(∫ +∞

0
h(s)‖A

1
2 η(t,s)‖2ds

)
+

N
2

+∞

∑
i=1
E
(
κi〈ei,ei〉σ2(t)

)
+

N
2

+∞

∑
i=1
E
(

κi
〈
A

1−α

2 ei,A
1−α

2 ei
〉
σ

2(t)
)
,
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where δ3 = δ2
2 and c′2 = c′2(δ3) =

(
1+a2

1
δ3

+ a1

)
h0. Choosing N, N1 and N2 as in the proof of

(5.40), we get
d
dt
LY 1(t)≤−m0E

(
E(t)

)
+

N
2

+∞

∑
i=1
E
(
κi〈ei,ei〉σ2(t)

)
+

N
2

+∞

∑
i=1
E
(

κi
〈
A

1−α

2 ei,A
1−α

2 ei
〉
σ

2(t)
)
,

(5.49)

that is,
d
dt
LY 1(t)≤−m0

(
E
(
E(t)

)
−S(t)

)
+

N
2

+∞

∑
i=1
E
(
κi〈ei,ei〉σ2(t)

)
+

N
2

+∞

∑
i=1
E
(

κi
〈
A

1−α

2 ei,A
1−α

2 ei
〉
σ

2(t)
)
,

the integration over (0, t) yields

m0

∫ t

0

(
E
(
E(r)

)
−S(r)

)
dr ≤LY 1(0)+

N
2

S(t)+
N
2

Z(t). (5.50)

Thanks to (A5) and (5.21), the functional E
(
E(t)

)
−S(t))> 0 is non-increasing. And so

m0(E
(
E(t)

)
−S(t))t ≤ m0

∫ t

0
(E
(
E(r)

)
−S(r))dr, (5.51)

By (5.9), one has

m0

c1
(E
(
E(t)

)
−S(t))

∫ t

0
ξ(r)dr ≤ m0

c1
(E
(
E(t)

)
−S(t))

∫ t

0
c1dr

= m0(E
(
E(t)

)
−S(t))t.

(5.52)

Collecting Eqs (5.50)-(5.52) leads to

m0

c1
(E
(
E(t)

)
−S(t))

∫ t

0
ξ(r)dr ≤LY 1(0)+

N
2

S(t)+
N
2

Z(t),

that is,

E
(
E(t)

)
≤ c1

m0

(
LY 1(0)+

N
2

S(t)+
N
2

Z(t)
)(∫ t

0
ξ(r)dr

)−1

+S(t),

using then (5.24) and (5.46) we obtain (5.48) with b3 =
c1LY 1(0)

m0
and b4 =

c1N
2m0

. That concludes
the proof.

5.5 Applications

5.5.1 Wave equation
Let Ω be an open bounded domain in Rn, n≥ 1, with smooth boundary Γ . Our result (5.42) is
valid for the following wave equation with Dirichlet boundary condition:

utt−∆u+
∫ +∞

0
h(s)∆u(x, t− s)ds+ f (u) = σ(x, t)Wt(x, t) in Ω×R∗+,

u = 0 in ∂Ω×R+,
u(x,−t) = u0(x, t), ut(x,0) = u1 in Ω,
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which is (0.1) with H = L2(Ω), A =−∆, D(A) = H2(Ω)∩H1
0 (Ω) and α = 1 .

The same result be can obtained for the following Petrovsky equation with Dirichlet and
Neumann boundary conditions:

utt +∆
2u−

∫ +∞

0
h(s)∆u(x, t− s)ds+ f (u) = σ(x, t)Wt(x, t) in Ω×R∗+,

u =
∂u
∂ν

= 0 in ∂Ω×R+,

u(x,−t) = u0(x, t), ut(x,0) = u1 in Ω,

which is (0.1) with H = L2(Ω), A =∆2, D(A) = H4(Ω)∩H2
0 (Ω) and α = 1

2 .

5.5.2 Coupled wave–wave system
One can derive the stability estimate obtained in (5.48) for the following system

ytt−∆y+
∫ +∞

0
h(s)∆y(x, t− s)ds+ z = σ(x, t)Wt(x, t) in Ω×R+,

ztt−∆z+
∫ +∞

0
h(s)∆z(x, t− s)ds+ y = σ(x, t)W̃t(x, t) in Ω×R+,

y = z = 0 in ∂Ω×R+,
y(x,−t) = y0(x, t), yt(x,0) = y1 in Ω,

z(x,−t) = z0(x, t), zt(x,0) = z1 in Ω.

which is (0.1) with H = L2(Ω)× L2(Ω), A =

[
−∆ 0

0 −∆

]
, D(A) =

(
H2(Ω)∩H1

0 (Ω)
)
×(

H2(Ω)∩H1
0 (Ω)

)
, D(A

1
2 ) = H1

0 (Ω)×)H1
0 (Ω), and α = 1 .
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Conclusion

The objective of this thesis is to investigate the stability of some stochastic infinite dimensional
control systems. The background of differential equations in Hilbert space has been reviewed
in Chapter 1. Some results on the stability of deterministic and stochastic equations have been
presented. Robust stability analysis and synthesis for uncertain systems have been presented
in Chapters 2, 3 and 4. Using the stability radius approach some improved stability conditions
are established by utilizing deterministic and stochastic Lyapunov equations. State-feedback
stabilization conroller which can achieve better system performances, are presented. The results
are given via the solution of Riccati equations satisfying some operator inequalities. Chapter 5
considered an abstract semilinear stochastic evolution equation of second-order with an infinite
memory term described by (0.1). We established existence and uniqueness of mild solution by
means of semi-group theory. Also, we studied the asymptotic behavior of the solution where the
obtained decay rates depend on the regularity of the solution, the exponent α and the nonlinearity
f . In fact we proved that if α = 1 then the mild solution of (5.3) has a general decay rate whereas
if 0 < α < 1 we were able to obtain a weaker rate of decay for the strong solution of (0.1) with
f ≡ 0 only.

Comments and open problems

Many questions remain to be solved. The first group of questions is for the robust stability
problem:

1. The first question is the generalization of the results to the multipertubations case.

2. The theory developed assume that the operators defining the perturbations structure are
bounded. However, often this class is too restrictive. Perturbed stochastic partial differ-
ential equations with boundary noise can not be considered. Consequently, it is of great
practical significance to apply the developed methodology to systems with unbounded
structure perturabtions.

3. Important results on the stability radius for finite dimensional jump linear systems where
derived in [14]. The future work will focus on the extension of their results to infinite
dimensional jump linear systems.

4. It is important to develop the counterparts of the obtained results for infinite dimensional
discrete time systems..

5. Another possible direction for a future work is a transfer of the results presented in this
thesis to time-varying and time-delay systems.
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Another group of problems for abstract stochastic equations with infinite memory:

1. As it can be noticed from Section 5.4, it is a very interesting open problem to study
stabillity problems for (5.3) when 0≤ α < 1 and f 6= 0.

2. Another interesting problem concerns the stability of wave equations with boundary
memory and internal stochastic terms, or conversely.

3. In [23], Guesmia considered the problem of stabilization for two linear wave equations
with infinite memory in which he showed that the corresponding solutions are stable under
a very much larger class of relaxation functions. To be specific, he assumed that the kernel
function h satisfies for any t ≥ 0:

h′(t)≤−ξ(t)G(h(t)), (5.53)

where ξ : R+ −→ R∗+ is a C0 non-increasing function, G : R+ −→ R+ is an increasing
convex function with G(0) = G′(0) = 0 and, he gave general and explicit formulas for the
decay rates of solutions in terms of ξ and G. Motivated by this study, it is an important
open problem to consider (5.3)) with the general condition (5.53).
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Abstract 
This thesis deals with stochastic differential equations in infinite dimensional spaces. It 

mainly focuses on two issues. 

The first issue is the analysis of robust stability and robust stabilization for stochastic 

differential equations with uncertainties. Characterizations of the stability radius are derived 

in terms of some Lyapunov equations. The maximization of the stability radius by state 

feedback is investigated. The supremal achievable stability radius is characterized via the 

resolution of a Riccati equation and some linear operator inequalities.  

The second issue is about the analysis of the stability behavior of a semi-linear abstract 

stochastic evolution equation with an infinite memory. Existence and uniqueness of mild 

solution are established by means of semi-group theory, and the asymptotic behavior is 

studied. 

Key-words: Stochastic evolution equations,Stabilityy radius, Robust stability, Robust 

stabilization, Riccati equation, Decay rate, Infinite memory. 

 

Résumé 
Cette thèse traite des équations différentielles stochastiques dans des espaces de dimension 

infinie. Elle se concentre principalement sur deux problèmes. 

Le premier problème est l'analyse de la stabilité robuste et de la stabilisation robuste pour les 

équations différentielles stochastiques avec incertitudes. Des caractérisations du rayon de 

stabilité sont dérivées en termes de certaines équations de Lyapunov. La maximisation du 

rayon de stabilité par retour d'état est étudiée. Le rayon de stabilité suprême réalisable est 

caractérisé par la résolution d'une équation de Riccati et de certaines inégalités d'opérateurs 

linéaires. 

Le deuxième problème porte sur l'analyse du comportement de stabilité d'une équation 

d'évolution stochastique abstraite semi-linéaire à mémoire infinie. L'existence et l'unicité de la 

solution faible sont établies au moyen de la théorie des semi-groupes, et le comportement 

asymptotique est étudié. 

Mots-clés:  Équations d'évolution stochastique, Rayon de stabilité, Stabilité robuste, 

Stabilisation robuste, Équation de Riccati, Taux de décroissance, Mémoire infinie. 

 

 الملخص
التفاضلية العشوائية في فضاءات أبعاد  تتناول هذه الأطروحة المعادلات

 ركز بشكل رئيسي على مسألتين.تلا نهائية. انها ت

المسألة الأولى هي تحليل الاستقرار القوي والتثبيت القوي للمعادلات 

نصف قطر    خصائص تعيينيتم  .ضطراباتلا الخاضعةالتفاضلية العشوائية 

 قطر نصف تعظيم دراسة تتممعادلات ليابونوف.  بواسطةالاستقرار 

 .الخطية المؤثرات متراجحاتوبعض  ريكاتي معادلة بواسطة الإستقرار
المسألة الثانية تتعلق بتحليل سلوك الاستقرار لمعادلة التطور 

يتم تحديد  ،العشوائي المجردة شبه الخطية ذات الذاكرة اللانهائية

 دراسة السلوك المقارب.  كذلك و الحل ووحدانية وجود

نصف قطر الاستقرار،  ،: معادلات التطور العشوائيالمفتاحيةالكلمات 

، التناقص معدل، الاستقرار القوي، التثبيت القوي، معادلة ريكاتي

 الذاكرة اللانهائية.
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