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 الملخص

من   أنواعثلاثة  حلول خصائص دراسة هو الأطروحةمن هذه  رئيسيالالهدف    

معادلة  نعتبر الأولىالدراسة  في جمل المعادلات التفاضلية الزائدية الغير خطية.

 في البداية, بح خارجي.معامل  منبع داخلي و معامل كب غير خطية مرفقة أمواج

نستخدم ثم,  .لشاملا الضعيف حلجود الو لإثبات المجموعة المستقرةطريقة نستخدم 

الدراسة  إلىبالنسبة  أماحل. ال هذا استقرار لإثباتكومورنيك  تكاملمتراجحات 

الغير خطية   الأمواجمعادلة ل الضعيف لحلل الشاملقدم نتيجة الوجود نفالثانية 

 الشامل الضعيف نبرهن ان هذا الحلثم,  المتغير. الأسالمرفقة بمعامل كبح ذو 

في  هذه الدراسة تعتمد على نظرية  نصف زمرة وعلى متراجحات التكامل. .مستقر

 / ةداخلي الكبحو  منبعال  تبمعاملا  الأمواجالدراسة الثالثة، نعتبر جملة معادلتي 

نفجار في وقت للا ننتيجتي ةبرهنالهدف الرئيسي من هذه الدراسة, هو   ة.خارجي

سالبة، أما النتيجة ذو طاقة ابتدائية  الضعيف متعلقة بالحل الأولىالنتيجة  : منتهي

                                 ذو طاقة ابتدائية موجبة. الضعيف بالحل فمتعلقة لثانيةا

؛ كبح؛ معامل منبع معاملجملة معادلتين؛   معادلة الأمواج؛فتاحية: الكلمات الم

 .؛ الانفجار؛ الاستقرارالشاملالأس الثابت؛ الأس المتغير؛ الوجود المحلي؛ الوجود 

                                                             

 



Résumé

L’objectif principal de cette thèse est d’étudier les propriétés de la solution de trois
types de systèmes d’équations hyperboliques non linéaires. Dans la première étude, on
considère l’équation des Ondes avec un terme source interne et un terme dissipatif fron-
tière. Au début, on utilise la méthode de l’ensemble stable pour prouver l’existence de
la solution faible globale. Ensuite, on utilise les inégalités intégrales de Komornik pour
montrer la stabilité de cette solution. Quant au deuxième étude, on présente le résultat
de l’existence globale de la solution faible pour l’équation des Ondes avec terme dissi-
patif variable frontière. Ensuite, on prouve que cette solution faible globale est stable.
Cette étude est basée sur la théorie des semi groupes et certaines inégalités intégrales.
Pour la troisième étude, on considère un système de deux équations des Ondes avec
des termes dissipatifs interne/frontière et des termes sources. L’objectif majeur de cette
étude est de montrer deux résultats d’explosion en un temps fini : le premier concerne
la solution faible avec une énergie initiale négative. Le deuxième concerne la solution
faible à énergie initiale positive.

Mots clés: Équation des Ondes; Système couplé; Terme de source; Terme dissipatif;
Exposant constant; Exposant variable; Solution locale; Solution globale; Stabilité; Ex-
plosion.



Abstract

The main purpose of this thesis is to study the properties of the solution for three
types of systems of nonlinear hyperbolic equations. In the first study, we consider the
wave equation with internal source and boundary damping terms. In the beginning, we
use the stable set method to prove the existence of the global weak solution. Then, we
use some integral inequalities due to Komornik to prove the stability of this solution.
As for the second study, we present the result of the global existence of a weak solution
for the wave equation with boundary variable damping term. Then, we prove that this
global weak solution is stable. This study is based on the semi groups theory and some
integral inequalities. For the third study, we consider a system of two wave equations
with internal/boundary damping and source terms. The major aim of this study, is to
prove two blow up results in finite time: the first one is concerned with weak solution
with negative initial energy. The second one is concerned with weak solution with pos-
itive initial energy.

keywords: Wave equation; Coupled system; Source term; Damping term; Constant exponent;
Variable exponent; Local solution; Global solution; Stability; Blow up.
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GENERAL INTRODUCTION

Literature review
During the last few decades, many researchers have been interested to the existence

and behavior of the solution for nonlinear wave systems. In the case of one wave equa-
tion, the system with internal damping and source terms have been dealt by a lot of
authors. In 1977, Ball [4] showed that, in the absence of the damping term, the source
term causes a finite time blow up of solutions with negative initial energy. Haraux and
Zuazua [14], in 1988, proved that, in the absence of the source term, the damping term
assures the global existence for arbitrary initial data. In the linear damping case, Levine
[23], in 1974, established a finite time blow up result for negative initial energy. In
1994, Georgiev and Todorova [17] extended Levine’s result to the nonlinear damping
case. They gave two results :
• if the damping term dominated the source term then the global solution exists for ar-
bitrary initial data,
• if the source term dominated the damping term then the solution with sufficiently
negative initial energy blows up in finite time.

In 2001, Messaoudi [24] improved the result of Georgiev and Todorova and proved
a finite time blow up result for solutions with negative initial energy only. Ikehata [16],
in 1995, used the stable set method, introduced by Sattinger [38] in 1968, to show that
the global solution exists for small enough initial energy. In addition, authors in [12],
[43], [44] and [45] have addressed this issue.

Park and Ha [36], in 2008, used the multiplier method to get the existence and the
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General introduction

uniform decay rates concerning the semilinear wave equation with boundary damping
and source terms. In 2015, Fiscella and Vittilaro [11] showed the blow up in finite time
of the solution with positive initial energy.

Recently, many efforts have been devoted on the Mathematical models equations
of elliptic, parabolic and hyperbolic equations with internal variable exponent which
are including in the models of various physical phenomena such as flows of electro rhe-
ological fluids or fluids with temperature dependent viscosity and filtration processes
through a porous media and image processing. Among which, we mention some stud-
ies in this direction. In 2011, Antontsev [2] obtained, under suitable conditions on the
parameters in the system of wave equation with p(x, t)− Laplacian and damping term,
the existence and the blow up of solution. Next, in 2015, Sun and al. [41] discussed
the lower and upper boundes for the blow up time results of the nonlinear hyperbolic
equation with internal variable damping and source terms under appropriate assump-
tions on the initial data. After that, Messaoudi and Talahmeh [27], in 2017, extended
the result of Korpusov in [20] with internal constant exponent. They proved that
a certain solution with arbitrary positive energy blows up in finite time. Also, in the
same year in [28], they discussed the blow up result with suitable conditions on the
variable exponent and on the initial data for a different nonlinear equation. In 2017,
Messaoudi and al. [30] considered the wave equation with internal damping term and
source term with variable exponent. They proved the local existence using the Faedo
Galerkin method. Then, under some conditions on the variable exponent and the ini-
tial data, they obtained the blow up result of the solution.

Ghegal and al. [18], in 2018, considered the same equation and proved, by using
the stable set method, that the global solution with suitable assumptions on the initial
data exists. Beside that, they showed that this solution is stable by applying the integral
inequality due to Komornik [19]. In 2021, Mustafa and al. [32] considered the wave
equation with internal variable exponent and time dependent nonlinear damping. They
used the multiplier method to obtain an energy decay results. For more studies in this
direction, we refer the readers to [6] and [29].

In the case of two coupled wave equations, Agre and Rammaha [1], in 2006, proved
several results concerning the local and the global existence, uniqueness of the weak so-
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General introduction

lution to systems of nonlinear wave equations with internal damping and source terms.
Then, by using some technics as in [5], [17] and [37], they showed that any weak solu-
tion with negative initial energy blows up in finite time.

Houari [15], in 2010, extended the blow up result which proved in [1] for solution
with positive initial data by employing the same method as in [43] with some needed
modifications. In the same year and with the presence of the viscoelastic term, Mes-
saoudi and Houari, in [26], also, proved the blow up result for some solutions with
positive initial energy, using the same technics as in [15] and some estimates obtained
in [25].

Later, Yanqiu and Rammaha [47], in 2013, studied the systems of nonlinear wave
equations with nonlinearities supercritical interior and boundary sources and the bound-
ary and interior damping functions. They proved that under some restrictions on the
parameters in the system, every weak solution with negative initial energy blows up in
finite time. In addition, in 2014, they obtained in [48] for the same system, the local and
the global existence, the uniqueness results of the weak solutions using the nonlinear
semi groups and the theory of the monotone operators. They, also, showed that such
solution depend continuously on the initial data.

By applying the Galerkin and the energy methods, Hao and Cai [13], in 2016, proved
several results on the local and the global existence, the blow up of solutions with posi-
tive initial energy for nonlinear coupled wave equations with viscoelastic terms.

Main Contribution
Our results, in this thesis, are conducted under the aim of studing the existence and

the behavior of solution for different types of nonlinear hyperbolic systems. First, we
consider a nonlinear wave equation with internal source and boundary damping terms,
both terms are with a constant exponent. We apply the stable set method to prove the
existence of the global weak solution. Then, we use some integral inequalities to obtain
the stability of this solution. To the best of our knowledge, the application of those tech-
nics is new for this kind of problems. Second, we shed some light on the systems with
variable exponent in the boundaries. We state and prove the global existence result of
the weak solution. Then, we prove the stability of this solution. We note, here, that no
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General introduction

study was given, in the literature, for the case of boundary variable exponent damping
terms and no result of existence of systems with variable exponent was proved by using
the semi groups theory method. In this part, we find some difficulties on the variable
exponent nonlinearity comparing with the constant exponent in the first part, especially
on the boundary term. Third, we focuse on two coupled wave equations with constant
exponent. We prove two main results. We start with showing that the weak solution
with negative initial energy blows up in finite time. Then, we prove the same result for
weak solution with positive initial energy.

Organization of the thesis
This dissertation is divided into four chapters, in addition to the general introduc-

tion, conclusion and perspective.

. Chapter 1: This chapter consists on three sections: in Section 1.1, we recall some
useful preliminaries on the Lebesgue and on the Sobolev spaces with constant expo-
nent, their definitions and some results needed in our proofs later. Section 1.2 is con-
cerned with spaces with variable exponent, which include the history of the Lebesgue
and Sobolev spaces, also, we mention some definitions and properties of those spaces.
In Section 1.3, we give the most important results that we will use them later in our
studies.
. Chapter 2: Here, we deal with a system of wave equation with nonlinear inter-
nal source and boundary damping terms. The study consists on the following: In
Section 2.2, by assuming some hypothesis on the parameters in the system, we state
the existence result of the maximal weak solution. Then, we show that the energy of
the solution is a decreasing function. Section 2.3 is concerned with the global property
of the maximal weak solution by using the stable set method. In Section 2.4, we apply
the multiplier method and the integral inequalities due to Komornik to prove that this
solution is stable.
. Chapter 3: In this chapter, we consider a system of wave equation with variable ex-
ponent in the boundary damping term. In Section 3.1, we present and prove the global
existence result of the weak solution by the semi groups theory. In Section 3.2, we
prove that the energy associated to the weak solution is a decreasing function. After
that, we give and prove the stability of the obtained solution.
. Chapter 4: At last, we study a system of two coupled wave equations with inter-
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General introduction

nal/boundary damping and source terms in the case of constant exponent. In Section 4.2,
we present the existence result of the weak maximal solution, we also, give the energy
identity associated to the solution. In Section 4.3, we state and prove our first blow
up result in the case of negative initial energy. In Section 4.4, we give and prove the
second blow up result in the case of positive energy.
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CHAPTER 1

PRELIMINARIES

In this chapter, we recall the definitions of the Lebesgue and Sobolev spaces with
constant/variable exponent. Then, we present some useful inequalities and formulas
that are related to this spaces in which we will need them later in our proofs. After that,
we present some required results.

1.1 The constant exponent spaces

Let Ω be a domain of Rn(n ∈ N∗) with sufficiently smooth boundary ∂Ω.

1.1.1 Lebesgue space with constant exponent

Definition 1.1.
Let p ∈ R∗.
• For 1 ≤ p <∞, the Lebesgue space is defined as:

Lp(Ω) = {u : Ω −→ R measurable and

∫
Ω

|u|pdx < +∞}.

Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) = ‖u‖p = (

∫
Ω

|u|pdx)
1
p .

8



Chapter 1. Preliminaries

• For p =∞, L∞(Ω) is given by

L∞(Ω) = {u : Ω −→ R measurable and ∃C > 0 : |u| ≤ C a.e on Ω},

L∞(Ω) is equipped with the following norm

‖u‖L∞(Ω) = ‖u‖∞ = inf{C > 0 : |u| ≤ C a.e on Ω}.

1.1.2 Sobolev space with constant exponent

Definition 1.2.
Let m ∈ N∗.
• For p ∈ [1,+∞[, the Sobolev space Wm,p(Ω) is defined as follows:

Wm,p(Ω) = {u ∈ Lp(Ω), ∂αu ∈ Lp(Ω);α ∈ N : |α| ≤ m}.

Where ∂α is the generalised derivative in the distribution sense.
Wm,p(Ω) is endowed with the norm bellow

‖u‖Wm,p(Ω) =

∑
|α|≤m

‖∂αu‖pp

 1
p

.

• For p = +∞, Wm,p(Ω) is defined as follows

Wm,∞(Ω) = {u ∈ L∞(Ω), ∂αu ∈ L∞(Ω);α ∈ N : |α| ≤ m},

Wm,∞(Ω) is endowed with the norm

‖u‖Wm,∞(Ω) =
∑
‖α‖≤m

‖∂αu‖∞.

Remark 1.1.
For p = 2 and m = 1, we note W 1,2(Ω) = H1(Ω). So

H1(Ω) = {u ∈ L2(Ω)/
∂u

∂xi
∈ L2(Ω) for all i = 1, n}.

Remark 1.2.
We note by H1

0 (Ω) and H2(Ω) the spaces given by

H1
0 (Ω) = {u ∈ H1(Ω)/u/∂Ω = 0}

9



Chapter 1. Preliminaries

and

H2(Ω) = {u ∈ L2(Ω)/
∂u

∂xi
,
∂2u

∂x2
i

,
∂2u

∂xi∂xj
∈ L2(Ω) for all i, j = 1, n}.

Lemma 1.1.
The Sobolev space H1

0 (Ω) is a Hilbert space with the scalar product defined by

〈u, v〉H1
0 (Ω) =

∫
Ω

∇u.∇vdx for all u, v ∈ H1
0 (Ω)

and with the norm

‖u‖H1
0 (Ω) = (

∫
Ω

|∇u|2dx)
1
2 for all u ∈ H1

0 (Ω).

1.1.3 Important inequalities with constant exponent

Lemma 1.2. ( Poincare’s inequality)
There exists a positive constant, depending on Ω, such that

‖u‖L2(Ω) ≤ C‖u‖H1
0 (Ω) for all u ∈ H1

0 (Ω). (1.1)

Lemma 1.3. (Holder’s inequality)
Let 0 < p, q, r < ∞ with 1

p
+ 1

q
= 1

r
. If f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ Lr(Ω)

and we have
‖fg‖r ≤ ‖f‖p‖g‖q. (1.2)

Lemma 1.4. (Green formula)
For all u ∈ H2(Ω) and v ∈ H1(Ω), we have∫

Ω

∆uvdx = −
∫
Ω

∇u∇vdx+

∫
∂Ω

∂u

∂ν
vdν. (1.3)

Proposition 1.1. (Young’s inequality)
Let a, b ≥ 0 and p, q > 0 such that 1

p
+ 1

q
= 1.

• We have
ab ≤ ap

p
+
bq

q
. (1.4)

• For all ε > 0, we have

ab ≤ εap +
bq

ε
q
p

. (1.5)

10



Chapter 1. Preliminaries

• For all δ > 0, we have

ab ≤ δp

p
ap +

δ−q

q
bq. (1.6)

Lemma 1.5. (Algebric inequality)
Let p ≥ 1. For all a, b > 0, we have

(a+ b)p ≤ 2p−1(ap + bp). (1.7)

1.2 The variable exponent spaces

In 1931, Orlicz was the first one who present the variable exponent Lebesgue spaces
in his paper [35], where, he asked about the necessary and the sufficient conditions on
a real sequence (yi) for which

∑
i xiyi converges, for sequences of real numbers (pi)

with pi > 1 and (xi) such that
∑

i x
pi
i converges. Also, he considered the variable

exponent function space Lp(.) on the real line, the function spaces bear his name after he
concentrated to the theory of this spaces. The space Lϕ(Ω) is constituted by measurable
function u : Ω −→ R for which

%(λu) =

∫
Ω

ϕ(λ|u(x)|)dx < +∞,

for some λ > 0 and ϕ is a real valued function that may depend and must satisfies some
conditions, putting certain properties of % in an abstract setting. Nakano in [33] and
[34] was the first who studied a more general class of functions spaces called modular
spaces, where, the work of Nakano and the modular spaces were investigated by several
people. An explicit version of these spaces was investigated by Polish Mathematicians,
like Hidzik. The interested reader can see the monograph [31] of Musielak and Orlicz
for more details.

The Russian researchers have independently developed the variable exponent Lebesgue
spaces on the real line. In 1961, Tsenov [42] originated their results. Sharapudinov in
[39] and [40] introduced the Luxembourg norm for the Lebesgue space and showed that
if the exponent satisfies 1 < ess inf p ≤ p ≤ ess sup p < +∞ then this space is a Ba-
nach space. By considering variational integrals with non standard growth conditions,
Zhikov [46] in the mid-80’s, started a new line of investigation of variable exponent
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Chapter 1. Preliminaries

spaces. Next, Kovacik and Rakosnik [21] in the early 90’s, established many of the basic
properties of Lebesgue and Sobolev spaces in Rn.A big developmenet has been made in
the beginning of the millennium, for the rigorous study of variable exponent spaces. In
particular, a relation was made between the variable exponent spaces and the variational
integrals with non standard growth and coercivity conditions. Also, modelling of some
physical phenomena such as flows of electro-rheological, nonlinear viscoelasticity and
many other examples.

1.2.1 Lebesgue spaces with variable exponent

Let Ω be a domain of Rn (n ∈ N∗).

Definition 1.3.
Let P(Ω,Σ, µ) be a α − finite, complete measurable space. Let P(Ω, µ) be the set of
all µ −measurable functions p : Ω −→ [1,∞). The function p ∈ P(Ω, µ) is called a
variable exponent on Ω. We define

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

If p+ < +∞, then p is said to be a bounded variable exponent. If p ∈ P(Ω, µ), then, we
define p′ ∈ P(Ω, µ) by

1

p(x)
+

1

p′(x)
= 1, where

1

∞
:= 0.

The function p′ is called the dual variable exponent of p.

Definition 1.4.
Let p : Ω −→ [1,∞) be a measurable function. We define the Lebesgue space with vari-
able exponent p(.) by

Lp(.)(Ω) := {u : Ω −→ Rmeasurable : %p(.)(λu) =

∫
Ω

|λu(x)|p(x)dx <∞, for some λ > 0}.

or equivalently

Lp(.)(Ω) := {u : Ω −→ R; measurable in Ω and lim
λ−→0

%p(.)(λu) = 0}.

12



Chapter 1. Preliminaries

Lp(.)(Ω) is equipped with the following Luxembourg type norm

‖u‖Lp(x)(Ω) := inf{λ > 0 :

∫
Ω

|u(x)

λ
|p(x)dx ≤ 1}.

Lemma 1.6. [3]
If p(.) ≡ p, then

‖u‖p(.) = ‖u‖p.

Definition 1.5.
We say that a function q : Ω −→ R (n ∈ N∗) is log Holder continuous on Ω if there
exists a constant θ > 0 such that for all 0 < δ < 1, we have

|q(x)− q(y)| ≤ − θ

log|x− y|
for a.e.x, y ∈ Ω with |x− y| < δ.

Lemma 1.7. [22]
If p : Ω −→ R is a Lipschitz function on Ω, then, p is log Holder continuous on Ω.

Remark 1.3.
The log Holder continuity condition on p can be replaced by p ∈ C(Ω) if Ω is bounded.

Theorem 1.1. [22]
If p ∈ P(Ω, µ), then, Lp(.)(Ω, µ) is a Banach space.

Lemma 1.8.
If p : Ω −→ [1,∞) is a measurable function with p′ < +∞, then, C∞0 (Ω) is dense in
Lp(.)(Ω).

Lemma 1.9.
If 1 < p− ≤ p(x) ≤ p+ < +∞, then

min{‖u‖p
−

p(x), ‖u‖
p+

p(x)} ≤ %p(x)(u) ≤ max{‖u‖p
−

p(x), ‖u‖
p+

p(x)},

for any u ∈ Lp(.)(Ω).

Remark 1.4.
If the exponent p is constant then p− = p+ and hence %p(x)(u) = ‖u‖pp.
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1.2.2 Sobolev spaces with variable exponent

Let Ω be a domain of Rn (n ∈ N∗).

Definition 1.6.
Let α := (α1, ..., αn) ∈ Nn be a multi-index. Assume that u ∈ L1

loc(Ω). If there exists
g ∈ L1

loc(Ω) such that∫
Ω

u
∂α1+...+αnψ

∂α1x1...∂αnxn
dx = (−1)α1+...+αn

∫
Ω

ψgdx for all ψ ∈ C∞0 (Ω).

Then g is called a weak partial derivative of u of order α. The function g denoted by
∂αu or ∂α1+...+αnu

∂α1x1...∂αnxn
.

Definition 1.7.
Let m ∈ N and p(.) be a variable exponent. Wm,p(.)(Ω) is defined as follows

Wm,p(.)(Ω) = {u ∈ Lp(.)(Ω) such that ∂|α|u ∈ Lp(.)(Ω) with |α| ≤ m},

Where |α| = α1 + ...+ αn.

Wm,p(.)(Ω) is equipped with the following norm

‖u‖Wm,p(.)(Ω) := inf{λ > 0 : %Wm,p(.)(Ω)(
u

λ
) ≤ 1} =

∑
0≤|α|≤m

‖∂αu‖p(.),

with
%Wm,p(.)(Ω)(u) =

∑
0≤|α|≤m

%Lp(.)(Ω)(∂αu).

Clearly
W 0,p(.)(Ω) = Lp(.)(Ω).

Remark 1.5.
We have

W 1,p(.)(Ω) := {u ∈ Lp(.)(Ω) such that∇u exists and |∇u| ∈ Lp(.)(Ω)}.

W 1,p(.)(Ω) is equipped with the following norm

‖u‖W 1,p(.)(Ω) = ‖u‖p(.) + ‖∇u‖p(.).

14
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Theorem 1.2. [3]
Let p ∈ P(Ω, µ). The space Wm,p(.)(Ω) is a Banach space, which is separable if p is
bounded and reflexive if 1 < p− ≤ p+ < +∞.

Definition 1.8.
The closure of the set of Wm,p(.)(Ω)- functions with compact support in Wm,p(.)(Ω) is
the Sobolev space Wm,p(.)

0 (Ω) " with zero boundary trace."
Furtheremore, we denote by Hm,p(.)

0 (Ω) the closure of C∞0 (Ω) in Wm,p(.)(Ω) and by
W−1,p′(.)(Ω) the dual space of W 1,p(.)(Ω), in the same way as the usual Sobolev spaces,
where 1

p(.)
+ 1

p′(.)
= 1.

Lemma 1.10.
We have
• Hm,p(.)

0 (Ω) ⊂ W
m,p(.)
0 (Ω).

• If p is log Holder continuous on Ω then Hm,p(.)
0 (Ω) = W

m,p(.)
0 (Ω).

• If p(.) = 2 and m = 1 then H1
0 (Ω) = W 1,2

0 (Ω).

Theorem 1.3. [3]
Let p ∈ P(Ω, µ). The space Wm,p(.)

0 (Ω) is a Banach space, which is separable if p is
bounded and reflexive if 1 < p− ≤ p+ < +∞.

Lemma 1.11. [3, 22](Embedding Proberty)
Assume that Ω is a bounded with sufficiently smooth boundary ∂Ω and p, q ∈ C(Ω)

such that

1 < p− ≤ p+ < +∞ and 1 < q− ≤ q+ < +∞ for all x ∈ Ω

and p(x) < q∗(x) in Ω with q∗(x) =

{
nq(x)
n−q(x)

if q+ < n,

+∞ if q+ ≥ n.

Then, the embedding W 1,q(.)
0 (Ω) ↪→ Lp(.)(Ω) is continuous and compact.

Corollary 1.1.
Assume that Ω is a bounded with sufficiently smooth boundary ∂Ω and p : Ω −→ (1,∞)

is a continuous function such that

1 < p− ≤ p+ <
2n

n− 2
if n ≥ 3.

Then, the embedding H1
0 (Ω) ↪→ Lp(.)(Ω) is continuous and compact.

15
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1.2.3 Important inequalities with variable exponent

Theorem 1.4. [22] (Poincaré’s Inequality)
Assume that Ω is a bounded. If p satisfies the log Holder inequality on Ω, then

‖u‖p(.) ≤ C‖∇u‖p(.) for all u ∈ W 1,p(.)
0 (Ω),

where C is a positive constant depending on Ω and p(.). In particular, the space
W

1,p(.)
0 (Ω) has an equivalent norm given by

‖u‖
W

1,p(.)
0 (Ω)

= ‖∇u‖p(.).

Lemma 1.12. (Holder’s Inequality)
Let p, q, r ≥ 1 be a measurable functions defined on Ω satisfying

1

r(y)
=

1

p(y)
+

1

q(y)
for a.e y ∈ Ω.

If f ∈ Lp(.)(Ω) and g ∈ Lq(.)(Ω) then fg ∈ Lr(.)(Ω) and

‖fg‖r(.) ≤ ‖f‖p(.)‖g‖q(.).

Case p = q = 2 yields the Cauchy Schwarz inequality.

Lemma 1.13. (Young’s Inequality)
Let a, b ≥ 0. Let p, q, r ≥ 1 be a measurable functions defined on Ω, such that

1

r(y)
=

1

p(y)
+

1

q(y)
for a.e y ∈ Ω.

Then
(ab)r(.)

r(.)
≤ ap(.)

p(.)
+
bq(.)

q(.)
.

By taking r = 1 and 1 < p, q < +∞, it follows that for any ε > 0, we have

ab ≤ εap(.) + Cεb
q(.),

where Cε = 1

q(εp)
q
p
.

For p = q = 2, it comes that for all ε > 0, we have

ab ≤ εa2 +
b2

4ε
.
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1.3 Useful Theorems

In this section, we give some important results that we will apply later.

Theorem 1.5. [19]
Let E : R+ −→ R+ be a nonincreasing function and assume that there exists a con-
stants C > 0 and α ≥ 0 such that

∞∫
S

E(t)1+αdt ≤ CE(S), 0 ≤ S <∞.

Then, there exists a positive constants c, w and t0 ≥ 0 such that, for all t ≥ t0, we have

E(t) ≤

{
E(0)e−wt if α = 0,

ct
−1
α if α > 0.

Theorem 1.6. [10]
LetA be a maximal monotone operator in a Hilbert spaceH with domine D(A). Then,
• If U0 ∈ D(A), then, the problem

U ′ +AU = 0 in R+, U(0) = 0,

has a unique solution
U ∈ C(R+,H).

• If U0 ∈ D(A), then, the solution is more regular:

U ∈ W 1,∞(R+,H).

17



CHAPTER 2

WAVE EQUATION WITH INTERNAL
SOURCE AND BOUNDARY

DAMPING TERMS: GLOBAL
EXISTENCE AND STABILITY

This chapter is the subject of the following accepted publication:
Wave equation with internal source and boundary damping terms: Global existence and stabil-
ity. By Boulmerka Imane and Hamchi Ilham.

In this chapter, we consider the following system
utt −∆u = f(x, u) in (0, T )× Ω,

u = 0 on (0, T )× Γ0,

∂νu = −(h.ν)g(x, ut) on (0, T )× Γ1,

u(0) = u0 and ut(0) = u1 in Ω.

(2.1)

Where T > 0, Ω is a bounded domain of Rn(n ≥ 1) with sufficiently smooth boundary
Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅. f is a nonlinear internal source function, g represents a
nonlinear boundary damping function, and h ∈ Rn. ∆ is the Laplacien with respect to the

18
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spatial variables. ∂νv = ∇v.ν where ν is the unit outward normal vector to Γ and ∇v is the
gradient with respect to the spatial variables.

The objective of this chapter is to apply the stable set method to prove the existence of the
global weak solution of (2.1) then to use some integral inequalities to obtain the stability of this
solution.

This chapter is organized as follows: section 2.1 contains assumptions on the parameters
of (2.1) needed to obtain our results. In section 2.2, we present the results of the existence of
the maximal weak solution of our problem and the decreasing of the energy of this solution. In
section 2.3, we prove that this weak maximal solution is global. In section 2.4, we prove that the
obtained global weak solution is stable.

The following assumptions are made:

2.1 Assumptions
(A1) Assumptions on the partition {Γ0,Γ1} of Γ:

• Let x0 ∈ Rn and h0 > 0. Put

h = h(x) = x− x0 for all x ∈ Ω,

Γ0 = {x ∈ Γ/h.ν ≤ 0} 6= ∅

and
Γ1 = {x ∈ Γ/h.ν ≥ h0}.

(A2) Assumptions on the source term f :

• We assume that the function f is countinous in Ω × R where, f(x, 0) = 0 and there exists
C1, C2, p > 0, with {

2 ≤ p if n = 1, 2,

2 ≤ p ≤ 2n−1
n−2 if n ≥ 3,

such that

|f(x, u)− f(x, v)| ≤ C1|u− v|(1 + |u|p−2 + |v|p−2) for all x ∈ Ω and u, v ∈ R
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and
F (x, u) ≤ C2

p
|u|p for all x ∈ Ω and u ∈ R, (2.2)

where F is the primitive of f defined by

F (x, u) =

u∫
0

f(x, τ)dτ for all x ∈ Ω and u ∈ R.

(A3) Assumptions on the damping term g:

•We shall assume that the function g is countinous on Γ1×R and there existsC3, C4, C5, C6,m >

0, where {
2 ≤ m if n = 1, 2,

2 ≤ m ≤ 2n
n−2 if n ≥ 3,

such that, for all x ∈ Γ1, we have

C3|u|m−1 ≤ |g(x, u)| ≤ C4|u|
1

m−1 if |u| ≤ 1,

C5|u| ≤ |g(x, u)| ≤ C6|u| if |u| > 1 (2.3)

and
g(x, u)u ≥ 0 for all x ∈ Γ1 and u ∈ R.

2.2 Existence of the maximal weak solution
This section is concerned with the existence of the maximal weak solution of (2.1) and the de-
creasing of the usual energy associated to this solution.

According to [36], we obtain the following result.

Theorem 2.1.
• If u0 ∈ H1

Γ0
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0} and u1 ∈ L2(Ω), then, there exists T > 0

and a maximal weak solution u in (0, T ) of the problem (2.1), such that

u ∈ C0((0, T ), H1
Γ0

(Ω)) ∩ C1((0, T ), L2(Ω)).

• If u0 ∈ H2(Ω) ∩H1
Γ0

(Ω) and u1 ∈ H1
Γ0

(Ω), such that

∂u0

∂ν
+ (h.ν)g(x, u1) = 0 on Γ1.
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Then, there exists T > 0 and a unique maximal solution of the problem (2.1), such that

u ∈ L∞((0, T ), H2(Ω) ∩H1
Γ0

(Ω)),

ut ∈ L∞((0, T ), H1
Γ0

(Ω))

and
utt ∈ L∞((0, T ), L2(Ω)).

Next, we consider the energy functional E associated with our system defined by

E(t) =
1

2
‖ut‖22 +

1

2
‖∇u‖22 −

∫
Ω

F (x, u)dx for all t ∈ (0, T ).

We have the following derivative energy identity, which shows that the above energy is a de-
creasing function.

Lemma 2.1. [11]
Let u0 ∈ H1

Γ0
(Ω) and u1 ∈ L2(Ω), we have

E(t)− E(s) = −
t∫
s

∫
Γ1

(h.ν)g(x, ut)utdΓdτ for all 0 ≤ s ≤ t ≤ T.

2.3 Global property of the maximal weak solution
In this section, we prove the global property of the weak solution of our system. For this
end, we introduce the following functionals, associated to the maximal weak solution given
in Theorem 2.1, defined by

J(t) = J(u(t)) =
1

2
‖∇u‖22 −

∫
Ω

F (x, u)dx for all t ∈ (0, T )

and
K(t) = K(u(t)) = ‖∇u‖22 − p

∫
Ω

F (x, u)dx for all t ∈ (0, T ).

We consider the set
H = {w ∈ H1

Γ0
(Ω)/K(w) > 0}. (2.4)

Let C∗ be the best constant such that

‖u‖p ≤ C∗‖∇u‖2 for all u ∈ H1
Γ0

(Ω). (2.5)

We have next, the property of the set H.
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Theorem 2.2.
If u0 ∈ H and u1 ∈ L2(Ω) with

β = C2C
p
∗ (

2p

p− 2
E(0))

p−2
2 < 1, (2.6)

then, the maximal weak solution u of (2.1) is global.

Proof. Firstly, we have
u(t) ∈ H for all t ∈ (0, T ).

Indeed, since
u0 ∈ H,

then
K(u0) > 0.

This implies that there exists T ′ ≤ T such that

K(t) ≥ 0 for all t ∈ [0, T ′]. (2.7)

We have
J(t) =

1

2
‖∇u‖22 −

∫
Ω

F (x, u)dx

=
p− 2

2p
‖∇u‖22 +

1

p
(‖∇u‖22 − p

∫
Ω

F (x, u)dx)

=
p− 2

2p
‖∇u‖22 +

1

p
K(t).

By (2.7), we find

J(t) ≥ p− 2

2p
‖∇u‖22 for all t ∈ [0, T ′].

Hence
‖∇u‖22 ≤

2p

p− 2
J(t).

Moreover
J(t) = E(t)− 1

2
‖ut‖22 ≤ E(t),

then
‖∇u‖22 ≤

2p

p− 2
E(t). (2.8)

Since E is a decreasing function, then we have

‖∇u‖22 ≤
2p

p− 2
E(0). (2.9)
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By (2.2), we obtain ∫
Ω

F (x, u)dx ≤ C2

p

∫
Ω

|u|pdx =
C2

p
‖u‖pp.

(2.5) leads to ∫
Ω

F (x, u)dx ≤ C2

p
Cp∗‖∇u‖

p
2 =

C2

p
Cp∗‖∇u‖

p−2
2 ‖∇u‖22.

Also, (2.9) gives ∫
Ω

F (x, u)dx ≤ C2

p
Cp∗ (

2p

p− 2
E(0))

p−2
2 ‖∇u‖22.

So
p

∫
Ω

F (x, u)dx ≤ C2C
p
∗ (

2p

p− 2
E(0))

p−2
2 ‖∇u‖22 = β‖∇u‖22.

We then use (2.6) to find

p

∫
Ω

F (x, u)dx < ‖∇u‖22 for all t ∈ [0, T ′].

Hence
K(u(t)) = K(t) = ‖∇u‖22 − p

∫
Ω
F (x, u)dx > 0 for all t ∈ [0, T ′].

(2.4) leads to
u(t) ∈ H for all t ∈ [0, T ′].

By noting that

C2C
p
∗ (

2p

p− 2
E(T ′))

p−2
2 < 1,

we can repeat the proceedings above to extend T ′ to T .
Secondly, from the definition of E and K, we get for all t ∈ (0, T )

E(t) =
1

2
‖ut‖22 +

1

2
‖∇u‖22 −

∫
Ω

F (x, u)dx

=
1

2
‖ut‖22 +

p− 2

2p
‖∇u‖22 +

1

p
K(t).

Since
K(t) > 0 for all t ∈ (0, T ),

then
E(t) ≥ 1

2
‖ut‖22 +

p− 2

2p
‖∇u‖22 for all t ∈ (0, T ).
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This implies that there exists C > 0 such that

‖ut‖22 + ‖∇u‖22 ≤ CE(t) for all t ∈ (0, T ). (2.10)

Furthermore, E is a decreasing function, then

‖ut‖22 + ‖∇u‖22 ≤ CE(0) for all t ∈ (0, T ).

By the alternative statement, we find the desired result.

2.4 Stability of the global weak solution
We have the following stability result.

Theorem 2.3.
If u0 ∈ H and u1 ∈ L2(Ω) with β < 1, then, there exists two positive constants C and w, such
that the global weak solution of (2.1) satisfies for all t ≥ 0

E(t) ≤ Ce−wt if m = 2,

E(t) ≤ C

t
2

m−2

if m > 2.

Proof. By the integral inequalities due to Komornik [19], it is sufficient to prove that, for all
0 ≤ S ≤ T ≤ ∞, there exist C > 0 such that

T∫
S

E
m
2 (t)dx ≤ CE(S). (2.11)

For this end, we proceed in several steps.
Step 1: Energy identity
We put

Mu := 2h.∇u+ (n− 1)u.

We multiply the first equation of (2.1) by E
m−2

2 (t)Mu. Then, we integrate the obtained result
over [S, T ]× Ω, we find

0 =

T∫
S

E
m−2

2 (t)

∫
Ω

Mu(utt −∆u− f(x, u))dxdt

= I1 + I2 + I3, (2.12)
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where

I1 =

T∫
S

E
m−2

2 (t)

∫
Ω

uttMudxdt,

I2 = −
T∫
S

E
m−2

2 (t)

∫
Ω

∆uMudxdt

and

I3 = −
T∫
S

E
m−2

2 (t)

∫
Ω

f(x, u)Mudxdt.

We have

I1 =

T∫
S

E
m−2

2 (t)

∫
Ω

uttMudxdt = [E
m−2

2 (t)

∫
Ω

utMudx]TS

−m− 2

2

T∫
S

E
m−4

2 (t)Et(t)

∫
Ω

utMudxdt−
∫ T

S
E

m−2
2 (t)

∫
Ω

ut(Mu)tdxdt.

But

−
T∫
S

E
m−2

2 (t)

∫
Ω

ut(Mu)tdxdt = −
T∫
S

E
m−2

2 (t)

∫
Ω

ut(2h.∇u+ (n− 1)u)tdxdt

= −2

T∫
S

E
m−2

2 (t)

∫
Ω

ut(h.∇u)tdxdt−
T∫
S

E
m−2

2 (t)

∫
Ω

ut((n− 1)u)tdxdt,

which implies that

−
T∫
S

E
m−2

2 (t)

∫
Ω

ut(Mu)tdxdt = −2

T∫
S

E
m−2

2 (t)

∫
Ω

ut(h.∇ut)dxdt

−(n− 1)

T∫
S

E
m−2

2 (t)

∫
Ω

|ut|2dxdt. (2.13)

If we apply the following identity∫
Ω

j1(k.∇j2)dx =

∫
Γ

k.ν(j1j2)dΓ−
∫
Ω

j2div(j1k)dx, (2.14)
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for all
j1, j2 ∈ C1(Ω) and k ∈ (C1(Ω))n,

with
j1 = j2 = ut and k = h,

we find
−
∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

utdiv(uth)dx.

Also, if we apply the following identity

div(jk) = jdivk + k.∇j for all j ∈ C1(Ω) and k ∈ (C1(Ω))n, (2.15)

with
j = ut and k = h,

we obtain

−
∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

ut(utdivh+ h.∇ut)dx,

= −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

divh|ut|2dx+

∫
Ω

ut(h.∇ut)dx,

this leads to
−2

∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ + n

∫
Ω

|ut|2dx.

Now, if we replace the above result in (2.13), we find

−
T∫
S

E
m−2

2 (t)

∫
Ω

ut(Mu)tdxdt =

T∫
S

E
m−2

2 (t)

∫
Ω

|ut|2dxdt

−
T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)|ut|2dΓdt.

So, I1 takes the forme

I1 = [E
m−2

2 (t)

∫
Ω

utMudx]TS −
m− 2

2

T∫
S

E
m−4

2 (t)Et(t)

∫
Ω

utMudxdt
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+

T∫
S

E
m−2

2 (t)

∫
Ω

|ut|2dxdt−
T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)|ut|2dΓdt.

For I2, we have

I2 = −
T∫
S

E
m−2

2 (t)

∫
Ω

∆uMudxdt = −
T∫
S

E
m−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt

+

T∫
S

E
m−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt.

For the second term in the above identity, we have

T∫
S

E
m−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt =

T∫
S

E
m−2

2 (t)

∫
Ω

∇u∇(2h.∇u+ (n− 1)u)dxdt,

it follows that

T∫
S

E
m−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt = 2

T∫
S

E
m−2

2 (t)

∫
Ω

∇u.∇(h.∇u)dxdt

+(n− 1)

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt. (2.16)

But ∫
Ω

∇u∇(h.∇u)dx =

∫
Ω

|∇u|2dx+
1

2

∫
Ω

h.∇(|∇u|2)dx.

Then, by the identity (2.14), we get∫
Ω

∇u∇(h.∇u)dx =

∫
Ω

|∇u|2dx+
1

2

∫
Γ

(h.ν)|∇u|2dΓ− 1

2

∫
Ω

divh|∇u|2dx

=
2− n

2

∫
Ω

|∇u|2dx+
1

2

∫
Γ

(h.ν)|∇u|2dΓ.

So, by replacing it in (2.16), we find

T∫
S

E
m−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt = (2− n)

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt
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+(n− 1)

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt

=

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt.

Hence

I2 =

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt

−
T∫
S

E
m−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt.

Inserting I1, I2 and I3 in (2.12) to find

0 = [E
m−2

2 (t)

∫
Ω

utMudx]TS −
m− 2

2

T∫
S

E
m−4

2 (t)Et(t)

∫
Ω

utMudxdt

+

T∫
S

E
m−2

2 (t)

∫
Ω

|ut|2dxdt+

T∫
S

E
m−2

2 (t)

∫
Ω

|∇u|2dxdt−
T∫
S

E
m−2

2 (t)

∫
Ω

f(x, u)Mudxdt

−
T∫
S

E
m−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)(|∇u|2 − |ut|2)dΓdt.

Thus, we can write it as following

T∫
S

E
m−2

2 (t)

∫
Ω

(|ut|2 + |∇u|2)dxdt = IΩ + I[S,T ]×Ω + I[S,T ]×Γ, (2.17)

where
IΩ = −[E

m−2
2 (t)

∫
Ω

utMudx]TS ,

I[S,T ]×Ω =
m− 2

2

T∫
S

E
m−4

2 (t)Et(t)

∫
Ω

utMudxdt+

T∫
S

E
m−2

2 (t)

∫
Ω

f(x, u)Mudxdt,

and

I[S,T ]×Γ =

T∫
S

E
m−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)(|ut|2 − |∇u|2)dΓdt.
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Step 2: Energy inequality
For the first term IΩ, we can see that∫

Ω

|Mu|2dx =

∫
Ω

|2h.∇u+ (n− 1)u|2dx ≤
∫
Ω

(|2h.∇u|+ |(n− 1)u|)2dx.

By the algebric inequality (1.7), we have∫
Ω

|Mu|2dx ≤ 2

∫
Ω

|2h.∇u|2dx+ 2

∫
Ω

|(n− 1)u|2dx.

In the rest of the proof, C represents a positive generic constant.
By the Poincare’s inequality (1.1), we get∫

Ω

|Mu|2dx ≤ C‖∇u‖22. (2.18)

Hence, we have

|
∫
Ω

utMudx| ≤ 1

2

∫
Ω

|ut|2dx+
1

2

∫
Ω

|Mu|2dx ≤ C(‖ut‖22 + ‖∇u‖22),

but, by (2.10), we obtain

|
∫
Ω

utMudx| ≤ CE(t). (2.19)

Then, the first term IΩ became

IΩ = E
m−2

2 (S)

∫
Ω

ut(S)Mu(S)dx− E
m−2

2 (T )

∫
Ω

ut(T )Mu(T )dx

≤ CE
m−2

2 (S)E(S) + CE
m−2

2 (T )E(T ).

Since the energy E is a positive decreasing function, then

IΩ ≤ CE
m−2

2 (S)E(S) ≤ CE(S). (2.20)

For the second term I[S,T ]×Ω, we have

I[S,T ]×Ω =
m− 2

2

T∫
S

E
m−4

2 (t)Et(t)

∫
Ω

utMudxdt+

T∫
S

E
m−2

2 (t)

∫
Ω

f(x, u)Mudxdt.

By (2.19) and the Young inequality (1.5), we get for all ε1 > 0

I[S,T ]×Ω ≤ C
T∫
S

E
m−4

2 (t)(−Et(t))E(t)dt+
ε1
2

T∫
S

E
m−2

2 (t)

∫
Ω

|Mu|2dxdt
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+
1

2ε1

T∫
S

E
m−2

2 (t)

∫
Ω

|f(x, u)|2dxdt.

Using the assumptions on f , (2.8) and (2.18), we find

I[S,T ]×Ω ≤ C
T∫
S

E
m−2

2 (t)(−Et(t))dt+ ε1C

T∫
S

E
m
2 (t)dt

+C(ε1)

T∫
S

E
m−2

2 (t)(

∫
Ω

|u|2dx+

∫
Ω

|u|2(p−1)dx)dt

≤ C[E
m
2 (S)− E

m
2 (T )] + ε1C

T∫
S

E
m
2 (t)dt

+C(ε1)

T∫
S

E
m−2

2 (t)(

∫
Ω

|u|2dx+

∫
Ω

|u|2(p−1)dx)dt,

Since the energy is a positive decreasing function, then we obtain

I[S,T ]×Ω ≤ CE(S) + ε1C

T∫
S

E
m
2 (t)dt

+C(ε1)

T∫
S

E
m−2

2 (t)(

∫
Ω

|u|2dx+

∫
Ω

|u|2(p−1)dx)dt, (2.21)

We apply the interpolation inequality

‖u‖r ≤ ‖u‖α2 ‖u‖1−αβ with
1

r
=
α

2
+

1− α
β

and α ∈ [0, 1].

For
r = 2(p− 1), α =

1

2(p− 1)
and β = 2(2p− 3),

we obtain
‖u‖2(p−1) ≤ ‖u‖

1
2(p−1)

2 ‖u‖
2p−3
2(p−1)

2(2p−3),

then
‖u‖2(p−1)

2(p−1) ≤ ‖u‖2‖u‖
2p−3
2(2p−3).

We use the Young inequality (1.5) to find for all ε2 > 0

‖u‖2(p−1)
2(p−1) ≤

ε2
2
‖u‖2(2p−3)

2(2p−3) +
1

2ε2
‖u‖22.
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Using the embedding H1
Γ0

(Ω) ↪→ L2(2p−3)(Ω) to have

‖u‖2(p−1)
2(p−1) ≤ ε2C‖∇u‖

2(2p−3)
2 + C(ε2)‖u‖22.

By (2.8), we get
‖u‖2(p−1)

2(p−1) ≤ ε2CE(t) + C(ε2)‖u‖22.

Then, we replace it in (2.21), to find

I[S,T ]×Ω ≤ CE(S) + ε1C

T∫
S

E
m
2 (t)dt+ ε2C(ε1)

T∫
S

E
m
2 (t)dt

+C(ε1, ε2)

T∫
S

E
m−2

2 (t)

∫
Ω

|u|2dxdt, (2.22)

For the third term I[S,T ]×Γ, we have

I[S,T ]×Γ =

T∫
S

E
m−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ

(h.ν)(|ut|2 − |∇u|2)dΓdt

=

T∫
S

E
m−2

2 (t)

∫
Γ0

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ1

∂u

∂ν
MudΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt

= I[S,T ]×Γ0
+ I[S,T ]×Γ1

, (2.23)

where

I[S,T ]×Γ0
=

T∫
S

E
m−2

2 (t)

∫
Γ0

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt

and

I[S,T ]×Γ1
=

T∫
S

E
m−2

2 (t)

∫
Γ1

∂u

∂ν
MudΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.
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For I[S,T ]×Γ0
, we use the definition of Mu to get

I[S,T ]×Γ0
= 2

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.∇u)
∂u

∂ν
dΓdt+ (n− 1)

T∫
S

E
m−2

2 (t)

∫
Γ0

u
∂u

∂ν
dΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt.

On Γ0, we have 
u = 0,

∇u = ν.∂u∂ν ,

then {
ut = 0,

|∇u|2 = |∂u∂ν |
2.

So, we can write the term on I[S,T ]×Γ0
as following

I[S,T ]×Γ0
= 2

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt−

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt.

Then

I[S,T ]×Γ0
=

T∫
S

E
m−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt.

Since
h.ν ≤ 0 on Γ0,

so, we arrive at
I[S,T ]×Γ0

≤ 0. (2.24)

For I[S,T ]×Γ1
, we use the definition of Mu to find

I[S,T ]×Γ1
=

T∫
S

E
m−2

2 (t)

∫
Γ1

(2h.∇u)
∂u

∂ν
dΓdt

+(n− 1)

T∫
S

E
m−2

2 (t)

∫
Γ1

u
∂u

∂ν
dΓdt+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.
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Then

I[S,T ]×Γ1
= −

T∫
S

E
m−2

2 (t)

∫
Γ1

(2h.∇u)(h.ν)g(x, ut)dΓdt

−(n− 1)

T∫
S

E
m−2

2 (t)

∫
Γ1

u(h.ν)g(x, ut)dΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.

By the Young inequalities (1.5) and (1.4), we find for all ε1 > 0

I[S,T ]×Γ1
≤

T∫
S

E
m−2

2 (t)

∫
Γ1

[2(
h2

2
|g(x, ut)|2 +

1

2
|∇u|2)

+(n− 1)(
ε1
2
|u|2 +

1

2ε1
|g(x, ut)|2)](h.ν)dΓdt−

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)|∇u|2dΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)|ut|2dΓdt

= ε1C

T∫
S

E
m−2

2 (t)

∫
Γ1

|u|2(h.ν)dΓdt+ C(ε1)

T∫
S

E
m−2

2 (t)

∫
Γ1

|g(x, ut)|2(h.ν)dΓdt

+

T∫
S

E
m−2

2 (t)

∫
Γ1

(h.ν)|ut|2dΓdt.

We put dΓh = (h.ν)dΓ to obtain

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m−2

2 (t)

∫
Γ1

|u|2dΓhdt

+

T∫
S

E
m−2

2 (t)

∫
Γ1

|ut|2dΓhdt+ C(ε1)

T∫
S

E
m−2

2 (t)

∫
Γ1

|g(x, ut)|2dΓhdt.

We have ∫
Γ1

|u|2dΓh ≤
1

2

∫
Ω

|∇u|2dx ≤ CE(t).
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So, the term on Γ1 became

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m
2 (t)dt+ C(ε1)

T∫
S

E
m−2

2 (t)

∫
Γ1

(|g(x, ut)|2 + |ut|2)dΓhdt. (2.25)

We have
Γ1 = Γ2 ∪ Γ3,

with
Γ2 = {x ∈ Γ1; |ut| ≤ 1}

and
Γ3 = {x ∈ Γ1; |ut| > 1}.

Then, we obtain

T∫
S

E
m−2

2 (t)

∫
Γ1

|(g(x, ut)|2 + |ut|2)dΓhdt =

T∫
S

E
m−2

2 (t)

∫
Γ2

(|g(x, ut)|2 + |ut|2)dΓhdt

+

T∫
S

E
m−2

2 (t)

∫
Γ3

(|g(x, ut)|2 + |ut|2)dΓhdt. (2.26)

We have
|g(x, ut)|2 = |g(x, ut)|

2
m (|g(x, ut)|

−2
m |g(x, ut)|2)

= |g(x, ut)|
2
m |g(x, ut)|

2(m−1)
m

and
|ut|2 = |ut|

2
m (|ut|

−2
m |ut|2) = |ut|

2
m |ut|

2(m−1)
m .

For |ut| ≤ 1, we use the assumptions on g (2.3) to find

|g(x, ut)|2 ≤ C
2(m−1)
m

4 |g(x, ut)ut|
2
m

and
|ut|2 ≤

1

C
2
m
3

|g(x, ut)ut|
2
m ,

then

T∫
S

E
m−2

2 (t)

∫
Γ2

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ C
T∫
S

E
m−2

2 (t)

∫
Γ2⊂Γ1

|g(x, ut)ut|
2
mdΓhdt.
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By the embedding L1(Γ1) in L
2
m (Γ1), we get

T∫
S

E
m−2

2 (t)

∫
Γ2

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ C
T∫
S

E
m−2

2 (t)[

∫
Γ1

g(x, ut)utdΓh]
2
mdt

≤ C
T∫
S

E
m−2

2 (t)(−Et(t))
2
mdt.

If m > 2, we apply the Young inequality (1.5) for

a = E
m−2

2 (t), b = (−Et(t))
2
m , p =

m

m− 2
and q =

m

2
,

to find for all ε2 > 0

T∫
S

E
m−2

2 (t)(−Et(t))
2
mdt ≤ ε2

T∫
S

E
m
2 (t)dt+ C(ε2)

T∫
S

(−Et(t))dt.

This implies that

T∫
S

E
m−2

2 (t)(−Et(t))
2
mdt ≤ ε2

T∫
S

E
m
2 (t)dt+ C(ε2)E(S).

If m = 2, we obtain
T∫
S

E
m−2

2 (t)(−Et(t))
2
mdt ≤ CE(S).

Hence

T∫
S

E
m−2

2 (t)

∫
Γ2

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ ε2C
T∫
S

E
m
2 (t)dt+ C(ε2)E(S). (2.27)

Now, for |ut| > 1, we use the assumption on g (2.3) to obtain

T∫
S

E
m−2

2 (t)

∫
Γ3

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ (
1

C5
+ C6)

T∫
S

E
m−2

2 (t)

∫
Γ3⊂Γ1

g(x, ut)utdΓhdt

≤ C
T∫
S

E
m−2

2 (t)(−Et(t))dt,
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then
T∫
S

E
m−2

2 (t)

∫
Γ3

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ CE(S). (2.28)

We insert (2.27), (2.28) in (2.26) to find

T∫
S

E
m−2

2 (t)

∫
Γ1

|(g(x, ut)|2 + |ut|2)dΓhdt ≤ ε2C
T∫
S

E
m
2 (t)dt+ C(ε2)E(S). (2.29)

After that, we put the result (2.29) in (2.25) to obtain

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m
2 (t)dt+ ε2C(ε1)

T∫
S

E
m
2 (t)dt+ C(ε1, ε2)E(S). (2.30)

Putting (2.24) and (2.30) in (2.23) we find

I[S,T ]×Γ ≤ ε1C
T∫
S

E
m
2 (t)dt+ ε2C(ε1)

T∫
S

E
m
2 (t)dt+ C(ε1, ε2)E(S). (2.31)

Combining (2.20), (2.22) and (2.31) in (2.17), we get

T∫
S

E
m−2

2 (t)

∫
Ω

(|ut|2 + |∇u|2)dxdt ≤ C(ε1, ε2)

T∫
S

E
m−2

2 (t)

∫
Ω

|u|2dxdt

+(ε1C + ε2C(ε1))

T∫
S

E
m
2 (t)dt+ C(ε1, ε2)E(S).

Taking ε1 sufficiently small, then, ε2 sufficiently small and using the definition of the energy, to
obtain

T∫
S

E
m
2 (t)dt ≤ C

T∫
S

E
m−2

2 (t)

∫
Ω

|u|2dxdt+ CE(S). (2.32)

Step 3: End of the proof
By the uniqueness compacteness argument, we can prove that

T∫
S

E
m−2

2 (t)

∫
Ω

|u|2dxdt ≤ C
T∫
S

E
m−2

2 (t)

∫
Γ1

(|g(x, ut)|2 + |ut|2)dΓdt.
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Then, we have for all ε3 > 0

T∫
S

E
m−2

2 (t)

∫
Ω

|u|2dxdt ≤ ε3C
T∫
S

E
m
2 (t)dt+ C(ε3)E(S).

Replacing it in (2.32) and taking ε3 sufficiently small, then, the result (2.11) is finally obtained.
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CHAPTER 3

WAVE EQUATION WITH BOUNDARY
VARIABLE DAMPING TERM:
GLOBAL EXISTENCE AND

STABILITY

This result was submitted by Boulmerka and Hamchi.

In this chapter, we study the following wave equation with variable exponent in the boundary
damping term: 

utt −∆u = 0 in Ω× R+,

u = 0 on Γ0 × R+,

∂νu+ (h.ν)g(., ut) = 0 on Γ1 × R+,

u(0) = u0 and ut(0) = u1 in Ω.

(3.1)

Here, Ω is a bounded domain of Rn(n ≥ 1) with sufficiently smooth boundary Γ = Γ0∪Γ1 with
Γ0 ∩ Γ1 = ∅. ν is the unit outward normal to Γ. h ∈ Rn, g represents the boundary damping
function with variable exponent.

The main purpose of this chapter is to present and prove the global existence result by the

38



Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

semi groups theory, then, to obtain the stability of the weak global solution of the problem (3.1).

This study is organized as follows: in section 3.1 we present and prove the global existence
result of the weak solution of the problem (3.1). For the section 3.2, we prove that the energy
associated to the weak solution of the problem (3.1) is a decreasing function. After that, we state
and prove the stability of the obtained global weak solution.

In order to state the corresponding results we have the following assumptions:

3.1 Assumptions
(A1)Assumptions on the partition {Γ0,Γ1} of Γ:

• Let x0 ∈ Rn and h0 > 0, we have

Γ0 = {x ∈ Γ/h.ν ≤ 0} 6= ∅ and Γ1 = {x ∈ Γ/h.ν ≥ h0},

where
h(x) = x− x0 for all x ∈ Ω.

(A2) Assumptions on the damping term g:

• Assuming that the function g is continuous on Γ1 × R and for all x ∈ Γ1, g(x, .) is an in-
creasing and globally Lipschitzian function on R with

g(x, 0) = 0, g(x, v)v ≥ 0 for all x ∈ Γ1 and v ∈ R (3.2)

and there exists C1, C2, C3, C4 > 0 such that, for all x ∈ Γ1 and v ∈ R, we have{
C1|v|m(x)−1 ≤ |g(x, v)| ≤ C2|v|

1
m(x)−1 if |v| ≤ 1,

C3|v| ≤ |g(x, v)| ≤ C4|v| if |v| > 1.
(3.3)

Here, the exposent m(.) is a measurable function on Γ1, such that

2 ≤ m1 ≤ m(.) ≤ m2 if n = 1, 2

and
2 ≤ m1 ≤ m(.) ≤ m2 ≤

2n

n− 2
if n ≥ 3,
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where
m1 := ess inf

x∈Γ1

m(x) and m2 := ess sup
x∈Γ1

m(x).

As an exemple of the boundary term g, we take for all x ∈ Γ1

g(x, v) =

{
α(x)|v|m(x)−2v if |v| ≤ 1,

α(x)v if |v| > 1,

in which α is a positive bounded and continuous function on Γ1.

3.2 Existence of the global weak solution
In this section, we prove the global existence of the weak solution to the problem (3.1).

Theorem 3.1.
• If u0 ∈ V = {u ∈ H1(Ω) : u = 0 on Γ0} and u1 ∈ L2(Ω), then, there exists a unique weak
solution u of the problem (3.1), such that

u ∈ C(R+, V ) ∩ C1(R+, L
2(Ω)).

• If u0 ∈ H2(Ω) ∩ V and u1 ∈ V, such that

∂u0

∂ν
+ (h.ν)g(x, u1) = 0 on Γ1.

Then, there exists a unique strong solution of the problem (3.1), such that

u ∈ L∞(R+, H
2(Ω)),

ut ∈ L∞(R+, V )

and
utt ∈ L∞(R+, L

2(Ω)).

Proof. Consider the following operators

A,B : V −→ V ′,

defined for all v, w ∈ V by

〈Av,w〉V ′,V =

∫
Ω

∇v.∇wdx
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and
〈Bv,w〉V ′,V =

∫
Γ1

(h.ν)g(x, v)wdΓ.

The problem (3.1) can be rewritten as following{
Ut +AU = 0 in R+,

U(0) = (u0, u1),

where
A : D(A) ⊂ V × L2(Ω) −→ V × L2(Ω),

is the operator defined as following

A(u1, u2) = (−u2, Au1 +Bu2) for all (u1, u2) ∈ D(A),

with
D(A) = {(u1, u2) ∈ V × V : Au1 +Bu2 ∈ L2(Ω)}.

Since

D(A) = {(u1, u2) ∈ V × V : u1 ∈ H2(Ω) and
∂u1

∂ν
+ (h.ν)g(x, u2) = 0 on Γ1},

D(A) is dense in V × L2(Ω) and A is an maximal monotone operator in V × L2(Ω), then,
Theorem 7.1 in Komornik [19] gives us the desired result.

3.3 Stability of the solution
Bellow, we state and prove that our global weak solution is stable. This will be accomplished by
using the multiplier method and some integral inequalities.

Before proving the main result, we need to prove the following.

Lemma 3.1.
The energy E associated with the problem (3.1) defined as follows

E(t) =
1

2
‖ut‖22 +

1

2
‖∇u‖22 for all t ∈ R+

is a decreasing function.
Moreover, the derivative is given by

Et(t) = −
∫
Γ1

(h.ν)g(x, ut)utdΓ ≤ 0 for all t ∈ R+. (3.4)

41



Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

Proof. Firstly, we prove (3.4) for the strong solution. For this end, we multiply the differential
equation in (3.1) by ut and integrate over Ω, we obtain∫

Ω
uttutdx−

∫
Ω

∆uutdx = 0,

then, for the first term in the left hand side of the equation, we have∫
Ω
uttutdx =

1

2

d

dt

∫
Ω
|ut|2dx.

For the second term in the right hand side, we use the Green formula (1.3) and the boundary
conditions to obtain

−
∫

Ω
∆uutdx =

∫
Ω
∇u.∇utdx−

∫
Γ

∂u

∂ν
utdΓ =

1

2

d

dt

∫
Ω
|∇u|2dx+

∫
Γ1

(h.ν)g(x, ut)utdΓ.

Adding the two above results, we find

1

2

d

dt
(‖ut‖22 + ‖∇u‖22) = −

∫
Γ1

(h.ν)g(x, ut)utdΓ,

which means
d

dt
E(t) = −

∫
Γ1

(h.ν)g(x, ut)utdΓ.

Using the assumption (3.2) on the damping term to get

Et(t) ≤ 0 for all t ∈ R+.

Secondly, by density, we obtain (3.4) for the weak solution.

We are now ready to give the stability result.

Theorem 3.2.
There exists two positive constants c and w such that, for all t ∈ R+, we have E(t) ≤ ce−wt if m2 = 2

E(t) ≤ c

t
2

m2−2
if m2 > 2.

(3.5)

Proof. We prove (3.5) for strong solutions of (3.1) and by density we can extend our results to
weak solutions. So, to reach this end, we proceed in several steps.
Step 1: Energy identity
Let

0 ≤ S < T < +∞
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and
Mu := 2h.∇u+ (n− 1)u.

We multiply the first equation of (3.1) by E
m2−2

2 (t)Mu. Then, we integrate the obtained result
over [S, T ]× Ω to find

0 =

T∫
S

E
m2−2

2 (t)

∫
Ω

Mu(utt −∆u)dxdt

= I1 + I2, (3.6)

where

I1 =

T∫
S

E
m2−2

2 (t)

∫
Ω

uttMudxdt

and

I2 = −
T∫
S

E
m2−2

2 (t)

∫
Ω

∆uMudxdt.

We have

I1 =

T∫
S

E
m2−2

2 (t)

∫
Ω

uttMudxdt = [E
m2−2

2 (t)

∫
Ω

utMudx]TS

−m2 − 2

2

T∫
S

E
m2−4

2 (t)Et(t)

∫
Ω

utMudxdt−
∫ T

S
E

m2−2
2 (t)

∫
Ω

ut(Mu)tdxdt.

But

−
T∫
S

E
m2−2

2 (t)

∫
Ω

ut(Mu)tdxdt = −
T∫
S

E
m2−2

2 (t)

∫
Ω

ut(2h.∇u+ (n− 1)u)tdxdt

= −2

T∫
S

E
m2−2

2 (t)

∫
Ω

ut(h.∇u)tdxdt−
T∫
S

E
m2−2

2 (t)

∫
Ω

ut((n− 1)u)tdxdt,

which implies that

−
T∫
S

E
m2−2

2 (t)

∫
Ω

ut(Mu)tdxdt = −2

T∫
S

E
m2−2

2 (t)

∫
Ω

ut(h.∇ut)dxdt
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−(n− 1)

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut|2dxdt. (3.7)

But
−
∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

utdiv(uth)dx.

If we apply the identity (2.15) for

j = ut and k = h,

we obtain

−
∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

ut(utdivh+ h.∇ut)dx

= −
∫
Γ

(h.ν)|ut|2dΓ +

∫
Ω

divh|ut|2dx+

∫
Ω

ut(h.∇ut)dx,

this leads to
−2

∫
Ω

ut(h.∇ut)dx = −
∫
Γ

(h.ν)|ut|2dΓ + n

∫
Ω

|ut|2dx.

Now, if we replace the above result in (3.7) we find

−
T∫
S

E
m2−2

2 (t)

∫
Ω

ut(Mu)tdxdt =

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut|2dxdt

−
T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)|ut|2dΓdt.

So, I1 takes the form

I1 = [E
m2−2

2 (t)

∫
Ω

utMudx]TS −
m2 − 2

2

T∫
S

E
m2−4

2 (t)Et(t)

∫
Ω

utMudxdt

+

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut|2dxdt−
T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)|ut|2dΓdt.

For I2, we use the Green formula (1.3) to obtain

I2 = −
T∫
S

E
m2−2

2 (t)

∫
Ω

∆uMudxdt = −
T∫
S

E
m2−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt

44



Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

+

T∫
S

E
m2−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt.

For the second term in the above identity, we have

T∫
S

E
m2−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt =

T∫
S

E
m2−2

2 (t)

∫
Ω

∇u∇(2h.∇u+ (n− 1)u)dxdt,

it follows that
T∫
S

E
m2−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt = 2

T∫
S

E
m2−2

2 (t)

∫
Ω

∇u.∇(h.∇u)dxdt

+(n− 1)

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt. (3.8)

But
∇u∇(h.∇u) = |∇u|2 +

1

2
h.∇(|∇u|2).

Therefore, we get∫
Ω

∇u∇(h.∇u)dx =

∫
Ω

|∇u|2dx+
1

2

∫
Γ

(h.ν)|∇u|2dΓ− 1

2

∫
Ω

divh|∇u|2dx

=
2− n

2

∫
Ω

|∇u|2dx+
1

2

∫
Γ

(h.ν)|∇u|2dΓ.

Then, by replacing it in (3.8), we find

T∫
S

E
m2−2

2 (t)

∫
Ω

∇u∇(Mu)dxdt = (2− n)

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt

+(n− 1)

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt

=

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt.

Hence

I2 =

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)|∇u|2dΓdt
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−
T∫
S

E
m2−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt.

Inserting I1 and I2 in (3.6) to find

0 = [E
m2−2

2 (t)

∫
Ω

utMudx]TS −
m2 − 2

2

T∫
S

E
m2−4

2 (t)Et(t)

∫
Ω

utMudxdt

+

T∫
S

E
m2−2

2 (t)

∫
Ω

|ut|2dxdt+

T∫
S

E
m2−2

2 (t)

∫
Ω

|∇u|2dxdt

−
T∫
S

E
m2−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)(|∇u|2 − |ut|2)dΓdt.

Thus, we can write it as following

T∫
S

E
m2−2

2 (t)(

∫
Ω

|ut|2dx+

∫
Ω

|∇u|2dx)dt = IΩ + I[S,T ]×Ω + I[S,T ]×Γ, (3.9)

where
IΩ = −[E

m2−2
2 (t)

∫
Ω

utMudx]TS ,

I[S,T ]×Ω =
m2 − 2

2

T∫
S

E
m2−4

2 (t)Et(t)

∫
Ω

utMudxdt

and

I[S,T ]×Γ =

T∫
S

E
m2−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)(|ut|2 − |∇u|2)dΓdt.

Step 2: Energy inequality
First, we have∫

Ω

|Mu|2dx =

∫
Ω

|2h.∇u+ (n− 1)u|2dx ≤
∫
Ω

(|2h.∇u|+ |(n− 1)u|)2dx.

By the algebric inequality (1.7), we obtain∫
Ω

|Mu|2dx ≤ 2

∫
Ω

|2h.∇u|2dx+ 2

∫
Ω

|(n− 1)u|2dx.
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In the rest of the proof, C represents a positive generic constant.
By the Poincare’s inequality (1.1), we get∫

Ω

|Mu|2dx ≤ C‖∇u‖22.

Hence, we have

|
∫
Ω

utMudx| ≤ 1

2

∫
Ω

|ut|2dx+
1

2

∫
Ω

|Mu|2dx ≤ C(‖ut‖22 + ‖∇u‖22),

but, by the definition of the energy, we obtain

|
∫
Ω

utMudx| ≤ CE(t). (3.10)

Then, the first term IΩ became

IΩ = E
m2−2

2 (S)

∫
Ω

ut(S)Mu(S)dx− E
m2−2

2 (T )

∫
Ω

ut(T )Mu(T )dx

≤ CE
m2−2

2 (S)E(S) + CE
m2−2

2 (T )E(T ).

Since the energy E is a decreasing function, then

IΩ ≤ CE(S). (3.11)

For the second term I[S,T ]×Ω, Thanks to (3.10) we have

I[S,T ]×Ω ≤ C
T∫
S

E
m2−4

2 (t)(−Et(t))E(t)dt = C

T∫
S

E
m2−2

2 (t)(−Et(t))dt

= C[E
m2
2 (S)− E

m2
2 (T )].

This implies that
I[S,T ]×Ω ≤ CE(S). (3.12)

For the third term I[S,T ]×Γ, we have

I[S,T ]×Γ =

T∫
S

E
m2−2

2 (t)

∫
Γ

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ

(h.ν)(|ut|2 − |∇u|2)dΓdt

=

T∫
S

E
m2−2

2 (t)

∫
Γ0

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ1

∂u

∂ν
MudΓdt
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+

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt

= I[S,T ]×Γ0
+ I[S,T ]×Γ1

, (3.13)

where

I[S,T ]×Γ0
=

T∫
S

E
m2−2

2 (t)

∫
Γ0

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt

and

I[S,T ]×Γ1
=

T∫
S

E
m2−2

2 (t)

∫
Γ1

∂u

∂ν
MudΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.

For I[S,T ]×Γ0
, we use the definition of Mu to get

I[S,T ]×Γ0
= 2

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.∇u)
∂u

∂ν
dΓdt+ (n− 1)

T∫
S

E
m2−2

2 (t)

∫
Γ0

u
∂u

∂ν
dΓdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)(|ut|2 − |∇u|2)dΓdt.

But, we have
u = 0,

then
ut = 0.

Hence, we obtain

I[S,T ]×Γ0
= 2

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.∇u)
∂u

∂ν
dΓdt−

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)|∇u|2dΓdt.

On the other hand, we have

∇u =
∂u

∂ν
.ν,
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then
|∇u|2 = |∂u

∂ν
|2,

which implies that

I[S,T ]×Γ0
= 2

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt−

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt.

Therefore, we can write the term I[S,T ]×Γ0
as following

I[S,T ]×Γ0
=

T∫
S

E
m2−2

2 (t)

∫
Γ0

(h.ν)|∂u
∂ν
|2dΓdt.

Since
h.ν ≤ 0 on Γ0,

so, we arrive at
I[S,T ]×Γ0

≤ 0. (3.14)

For I[S,T ]×Γ1
, we use the definition of Mu to find

I[S,T ]×Γ1
=

T∫
S

E
m2−2

2 (t)

∫
Γ1

(2h.∇u)
∂u

∂ν
dΓdt

+(n− 1)

T∫
S

E
m2−2

2 (t)

∫
Γ1

u
∂u

∂ν
dΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.

Then

I[S,T ]×Γ1
= −

T∫
S

E
m2−2

2 (t)

∫
Γ1

(2h.∇u)(h.ν)g(x, ut)dΓdt

−(n− 1)

T∫
S

E
m2−2

2 (t)

∫
Γ1

u(h.ν)g(x, ut)dΓdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)(|ut|2 − |∇u|2)dΓdt.
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By applying the Young inequality (1.5) for a = u, b = g(x, ut), ε = ε1 > 0 and p = q = 2, we
find for all ε1 > 0

I[S,T ]×Γ1
≤

T∫
S

E
m2−2

2 (t)

∫
Γ1

[
2(
h2

2
|g(x, ut)|2 +

1

2
|∇u|2)

]
(h.ν)dΓdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ1

[
(n− 1)(

ε1
2
|u|2 +

1

2ε1
|g(x, ut)|2)

]
(h.ν)dΓdt

−
T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)|∇u|2dΓdt+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)|ut|2dΓdt

= ε1C

T∫
S

E
m2−2

2 (t)

∫
Γ1

|u|2(h.ν)dΓdt+ C(ε1)

T∫
S

E
m2−2

2 (t)

∫
Γ1

|g(x, ut)|2(h.ν)dΓdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ1

(h.ν)|ut|2dΓdt.

We put dΓh = (h.ν)dΓ to obtain

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m2−2

2 (t)

∫
Γ1

|u|2dΓhdt+

T∫
S

E
m2−2

2 (t)

∫
Γ1

|ut|2dΓhdt

+C(ε1)

T∫
S

E
m2−2

2 (t)

∫
Γ1

|g(x, ut)|2dΓhdt.

We have ∫
Γ1

|u|2dΓh ≤
1

2

∫
Ω

|∇u|2dx ≤ CE(t).

So, the term on Γ1 became

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m2
2 (t)dt+ C(ε1)

T∫
S

E
m2−2

2 (t)

∫
Γ1

(|g(x, ut)|2 + |ut|2)dΓhdt. (3.15)

We put
Γ1 = Γ− ∪ Γ+,
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with
Γ− = {x ∈ Γ1; |ut| ≤ 1}

and
Γ+ = {x ∈ Γ1; |ut| > 1}.

Then, we obtain

T∫
S

E
m2−2

2 (t)

∫
Γ1

|(g(x, ut)|2 + |ut|2)dΓhdt =

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2 + |ut|2)dΓhdt

+

T∫
S

E
m2−2

2 (t)

∫
Γ+

(|g(x, ut)|2 + |ut|2)dΓhdt. (3.16)

We have
|g(x, ut)|2 = |g(x, ut)|

2
m(x) (|g(x, ut)|

−2
m(x) |g(x, ut)|2)

= |g(x, ut)|
2

m(x) |g(x, ut)|
2(m(x)−1)
m(x)

and
|ut|2 = |ut|

2
m(x) (|ut|

−2
m(x) |ut|2) = |ut|

2
m(x) |ut|

2(m(x)−1)
m(x) .

For |ut| ≤ 1, we use the assumptions (3.3) on the boundary term g to find

|g(x, ut)|2 ≤ C|g(x, ut)ut|
2

m(x)

and
|ut|2 ≤ C|g(x, ut)ut|

2
m(x) ,

which gives

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ C
T∫
S

E
m2−2

2 (t)

∫
Γ−

|g(x, ut)ut|
2

m(x)dΓhdt.

Thus, we obtain

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ C
T∫
S

E
m2−2

2 (t)

∫
Γ−

C
2

m(x)

2

∣∣∣∣g(x, ut)ut
C2

∣∣∣∣ 2
m(x)

dΓhdt.

Since,
2

m2
≤ 2

m(.)
and

∣∣∣∣g(., ut)ut
C2

∣∣∣∣ ≤ 1 on Γ−,
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then

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2+|ut|2)dΓhdt ≤ C
T∫
S

E
m2−2

2 (t)

∫
Γ−⊂Γ1

C
2

m(x)

2

∣∣∣∣g(x, ut)ut
C2

∣∣∣∣ 2
m2

dΓhdt

≤ C
T∫
S

E
m2−2

2 (t)

∫
Γ1

|g(x, ut)ut|
2
m2 dΓhdt

By the embedding L1(Γ1) in L
2
m2 (Γ1), we get

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ C
T∫
S

E
m2−2

2 (t)[

∫
Γ1

g(x, ut)utdΓh]
2
m2 dt

≤ C
T∫
S

E
m2−2

2 (t)(−Et(t))
2
m2 dt. (3.17)

If m2 > 2, we apply the above Young inequality (1.5), with

a = E
m2−2

2 (t), b = (−Et(t))
2
m2 , ε = ε2, p =

m2

m2 − 2
and q =

m2

2
,

to find

T∫
S

E
m2−2

2 (t)(−Et(t))
2
m2 dt ≤ ε2

T∫
S

E
m2
2 (t)dt+ C(ε2)

T∫
S

(−Et(t))dt for all ε2 > 0.

This implies that

T∫
S

E
m2−2

2 (t)(−Et(t))
2
m2 dt ≤ ε2

T∫
S

E
m2
2 (t)dt+ C(ε2)E(S).

If m2 = 2, we obtain
T∫
S

E
m2−2

2 (t)(−Et(t))
2
m2 dt ≤ CE(S).

Hence, (3.17) became

T∫
S

E
m2−2

2 (t)

∫
Γ−

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ ε2C
T∫
S

E
m2
2 (t)dt+ C(ε2)E(S). (3.18)
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Now, for |ut| > 1, we use the assumption on g to obtain

T∫
S

E
m2−2

2 (t)

∫
Γ+

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ (
1

C5
+ C6)

T∫
S

E
m2−2

2 (t)

∫
Γ+⊂Γ1

g(x, ut)utdΓhdt

≤ C
T∫
S

E
m2−2

2 (t)

∫
Γ1

g(x, ut)utdΓhdt ≤ C
T∫
S

E
m2−2

2 (t)(−Et(t))dt,

then
T∫
S

E
m2−2

2 (t)

∫
Γ+

(|g(x, ut)|2 + |ut|2)dΓhdt ≤ CE(S). (3.19)

We insert (3.18), (3.19) in (3.16) to find

T∫
S

E
m−2

2 (t)

∫
Γ1

|(g(x, ut)|2 + |ut|2)dΓhdt ≤ ε2C
T∫
S

E
m2
2 (t)dt+ C(ε2)E(S). (3.20)

After that, we put the result (3.20) in (3.15) to obtain

I[S,T ]×Γ1
≤ ε1C

T∫
S

E
m2
2 (t)dt+ ε2C(ε1)

T∫
S

E
m2
2 (t)dt+ C(ε1, ε2)E(S)

≤ (ε1C + ε2C(ε1))

T∫
S

E
m2
2 (t)dt+ C(ε1, ε2)E(S). (3.21)

(3.14) and (3.21) in (3.13) gives

I[S,T ]×Γ ≤ (ε1C + ε2C(ε1))

T∫
S

E
m2
2 (t)dt+ C(ε1, ε2)E(S). (3.22)

Step 3: End of the proof
Combining (3.11), (3.12) and (3.22) in (3.9) and using the definition of the energy to get

T∫
S

E
m2
2 (t)dt ≤ (ε1C + ε2C(ε1))

T∫
S

E
m2
2 (t)dt+ C(ε1, ε2)E(S).

Taking ε1 sufficiently small, then ε2 sufficiently small to find

T∫
S

E
m2
2 (t)dt ≤ CE(S).
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Then, the result (3.5) is finally obtained by the integral inequalities due to Komornik [19].
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CHAPTER 4

COUPLED WAVE EQUATIONS WITH
INTERNAL/BOUNDARY DAMPING
AND SOURCE TERMS: BLOW UP

This result was submitted by Boulmerka and Hamchi.

This chapter is devoted to the study of the following system

utt −∆u+ g1(x, ut) = f1(u, v) in (0, T )× Ω,

vtt −∆v = f2(u, v) in (0, T )× Ω,

u = 0 on (0, T )× Γ,

v = 0 on (0, T )× Γ0,

∂νv + g2(x, vt) = ψ(x, v) on (0, T )× Γ1,

(u(0), v(0)) = (u0, v0) and (ut(0), vt(0)) = (u1, v1) in Ω.

(4.1)

Here, Ω is a bounded domain of Rn(n ≥ 1) with sufficiently smooth boundary Γ = Γ0∪Γ1 with
Γ0 ∩ Γ1 = ∅. ∆ is the Laplacien with respect to the spatial variables. ∂νv = ∇v.ν where ν is
the unit outward normal vector to Γ and∇v is the gradient with respect to the spatial variables.
Moreover, f1 and f2 are the coupling source terms, g1 and g2 represent the internal/boundary
damping terms and ψ is the boundary source term.
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up

The principal goal of this work is to prove two main results concerning the system (4.1).
First, we show that the weak solution with negative initial energy blows up in finite time. Then,
we prove the same result for the weak solution with positive initial energy.

This chapter is organized as follows: section 4.1 contains assumptions on the parameters in
(4.1) needed to obtain our results. In section 4.2, we present the preliminaries which are divided
into two subsections: some useful Lemmas and the local existence result. In section 4.3, we
give, first, some properties of the functional H in the case of negative initial energy. After that,
we state and prove our first blow up result. In section 4.4, we give an important Lemmas and
properties of the functional H when the initial energy data is positive and, also, state and prove
the second blow up result.

Throughout this chapter, we use the following assumptions:

4.1 Assumptions
(A1) Assumptions on f1 and f2:

• For all (u, v) ∈ R2, we have

f1(u, v) = |u+ v|2(ρ+1)(u+ v) + |u|ρu|v|ρ+2 (4.2)

and
f2(u, v) = |u+ v|2(ρ+1)(u+ v) + |v|ρv|u|ρ+2, (4.3)

where {
−1 < ρ if n = 1.2,

−1 < ρ ≤ 3−n
n−2 if n ≥ 3.

(A2) Assumptions on g1 and g2 :

• We assume that the function g1 is monotone, continuous in Ω × R with g1(., 0) = 0 and
there exists three positive constants m1, C1 and C2, such that

2 ≤ m1 < 2(ρ+ 2)

and
C1|u|m1 ≤ g1(x, u)u ≤ C2|u|m1 for all x ∈ Ω and u ∈ R. (4.4)
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•We shall assume that the function g2 is monotone, continuous function on Γ1×R with g2(., 0) =

0 and there exists three positive constants m2 , C3 and C4, such that

2 ≤ m2

and
C3|v|m2 ≤ g2(x, v)v ≤ C4|v|m2 for all x ∈ Γ1 and v ∈ R. (4.5)

(A3) Assumptions on ψ :

•We asume that the function ψ is defined on Γ1 × R and there exists three positive constants k,
C5 and C6, such that

k > max{m2,
2C6

C5
}, C5 ≥ 1

and
C5|v|k ≤ ψ(x, v)v ≤ C6|v|k for all x ∈ Γ1 and v ∈ R. (4.6)

4.2 Preliminaries
In this part, we recall some technical results that we will need them later.

4.2.1 Useful Lemmas

By the definition of f1 and f2, we find the following relation between them.

Lemma 4.1.
For all (u, v) ∈ R2, we have

uf1(u, v) + vf2(u, v) = 2(ρ+ 2)F (u, v), (4.7)

where
F (u, v) =

1

2(ρ+ 2)
(|u+ v|2(ρ+2) + 2|uv|ρ+2). (4.8)

Proof. We use the definitions (4.2) of f1 and (4.3) of f2, we find

uf1(u, v) + vf2(u, v) = |u+ v|2(ρ+1)(u+ v)(u+ v) + 2|u|ρ+2|v|ρ+2
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= |u+ v|2(ρ+2) + 2|uv|ρ+2.

We multiply this result by 2(ρ+2)
2(ρ+2) to obtain

uf1(u, v) + vf2(u, v) =
2(ρ+ 2)

2(ρ+ 2)
(|u+ v|2(ρ+2) + 2|uv|ρ+2),

hence
uf1(u, v) + vf2(u, v) = 2(ρ+ 2)F (u, v).

The proof is, now, completed.

Next, we present the following property of the function F.

Lemma 4.2. [26]
There exists two positive constants C7 and C8 such that, for all (u, v) ∈ R2, we have

C7

2(ρ+ 2)
(|u|2(ρ+2) + |v|2(ρ+2)) ≤ F (u, v) ≤ C8

2(ρ+ 2)
(|u|2(ρ+2) + |v|2(ρ+2)). (4.9)

Proof. We start with the left hand side of (4.9), we have:
i) If u = v = 0, the result is trivial.
ii) If v 6= 0 and |u| ≤ |v|, we have

F (u, v) =
1

2(ρ+ 2)
|v|2(ρ+2)(|1 +

u

v
|2(ρ+2) + 2|u

v
|ρ+2).

We consider the following positive continuous function in [−1, 1] defined by

j(s) = |1 + s|2(ρ+2) + 2|s|ρ+2.

We have
min
−1≤s≤1

j(s) ≥ 0.

If min
−1≤s≤1

j(s) = 0 then, for some s0 ∈ [−1, 1], we find

min
−1≤s≤1

j(s) = j(s0) = |1 + s0|2(ρ+2) + 2|s0|ρ+2 = 0.

This implies that
|1 + s0| = |s0| = 0,

which is impossible. Thus
2C7 = min

−1≤s≤1
j(s) > 0,

therefore
F (u, v) ≥ C7

ρ+ 2
|v|2(ρ+2) ≥ C7

ρ+ 2
|u|2(ρ+2).
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Consequently,

2F (u, v) ≥ C7

ρ+ 2
(|v|2(ρ+2) + |u|2(ρ+2)),

or
C7

2(ρ+ 2)
(|v|2(ρ+2) + |u|2(ρ+2)) ≤ F (u, v).

iii) If v 6= 0 and |u| > |v|, we follow the same steps as in ii) to obtain

F (u, v) =
1

2(ρ+ 2)
|u|2(ρ+2)(|1 +

v

u
|2(ρ+2) + 2|v

u
|ρ+2) ≥ C7

ρ+ 2
|u|2(ρ+2) ≥ C7

ρ+ 2
|v|2(ρ+2),

then, we have
C7

2(ρ+ 2)
(|u|2(ρ+2) + |v|2(ρ+2)) ≤ F (u, v).

At the end, in all cases, we find our goal.
Now, for the right hand side of inequality (4.9). So, we use the algebric inequality (1.7) for
a = |u|, b = |v| and p = 2(ρ+ 2) to find

|u+ v|2(ρ+2) ≤ (|u|+ |v|)2(ρ+2) ≤ 22ρ+3(|u|2(ρ+2) + |v|2(ρ+2)). (4.10)

We apply, also, the Young inequality (1.6) for a = |u|, b = |v|, δ = 1 and p = q = 2 to get

|u||v| ≤ 1

2
(|u|2 + |v|2),

then, we find
|u|ρ+2|v|ρ+2 ≤ (

1

2
)ρ+2(|u|2 + |v|2)ρ+2.

We use, again, (1.7) to obtain

|uv|ρ+2 = |u|ρ+2|v|ρ+2 ≤ (
1

2
)ρ+22ρ+1(|u|2(ρ+2) + |v|2(ρ+2))

=
1

2
(|u|2(ρ+2) + |v|2(ρ+2)), (4.11)

(4.10) and (4.11) give

F (u, v) ≤ 1

2(ρ+ 2)

(
22ρ+3(|u|2(ρ+2) + |v|2(ρ+2)) + (|u|2(ρ+2) + |v|2(ρ+2))

)
≤ 22ρ+3 + 1

2(ρ+ 2)
(|u|2(ρ+2) + |v|2(ρ+2)).

So, we deduce that

F (u, v) ≤ C8

2(ρ+ 2)
(|u|2(ρ+2) + |v|2(ρ+2)),

where C8 = 22ρ+3 + 1.
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After that, we set the last important result in this section, by exploting the embedding
H1

0 (Ω) ↪→ L2(ρ+2)(Ω) and H1
Γ0

(Ω) ↪→ L2(ρ+2)(Ω).

Lemma 4.3. [26]
There esists η > 0 such that, for any (u, v) ∈ H1

0 (Ω)×H1
Γ0

(Ω), we have

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η(‖∇u‖22 + ‖∇v‖22)ρ+2, (4.12)

where
‖u‖2(ρ+2) = (

∫
Ω

|u|2(ρ+2)dx)
1

2(ρ+2) .

Proof. We have
‖u+ v‖2(ρ+2) ≤ ‖u‖2(ρ+2) + ‖v‖2(ρ+2).

By using (1.7) for
a = ‖u‖2(ρ+2), b = ‖v‖2(ρ+2) and p = 2,

we obtain

‖u+ v‖22(ρ+2) ≤ (‖u‖2(ρ+2) + ‖v‖2(ρ+2))
2 ≤ 2(‖u‖22(ρ+2) + ‖v‖22(ρ+2)).

Thus
‖u+ v‖2(ρ+2)

2(ρ+2) ≤ 2ρ+2(‖u‖22(ρ+2) + ‖v‖22(ρ+2))
ρ+2. (4.13)

Also, using the Hölder inequality (1.2)

for all 0 < p, q, r <∞ such that
1

p
+

1

q
=

1

r
and f ∈ Lp(Ω) g ∈ Lq(Ω),

for p = 2(ρ+ 2), q = 2(ρ+ 2), r = ρ+ 2 and f = u, g = v, to obtain

‖uv‖ρ+2 ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2).

Applying the Young inequality (1.4) to find

‖uv‖ρ+2 ≤
1

2
(‖u‖22(ρ+2) + ‖v‖22(ρ+2)).

Therefore
‖uv‖ρ+2

ρ+2 ≤
1

2ρ+2
(‖u‖22(ρ+2) + ‖v‖22(ρ+2))

ρ+2. (4.14)

After that, suming up (4.13) and (4.14) to find

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ (2ρ+2 +
1

2ρ+1
)(‖u‖22(ρ+2) + ‖v‖22(ρ+2))

ρ+2.

The embedding H1
0 (Ω) ↪→ L2(ρ+2)(Ω) and H1

Γ0
(Ω) ↪→ L2(ρ+2)(Ω) yield to

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η(‖∇u‖22 + ‖∇v‖22)ρ+2, η > 0.

This conclude the proof.
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4.2.2 Existence of the local weak solution

In this subsection, we define the maximal weak solution of the system (4.1). Then, we present
some important properties of this solution.

Definition 4.1.
A pair of functions (u, v) is said to be a weak solution of (4.1) on (0, T ), where T > 0, if

u ∈ C((0, T ), H1
0 (Ω)), ut ∈ C((0, T ), L2(Ω)) ∩ Lm1(Ω× (0, T )),

v ∈ C((0, T ), H1
Γ0

(Ω)), vt ∈ C((0, T ), L2(Ω)) ∩ Lm2(Γ1 × (0, T )),

(u(0), v(0)) = (u0, v0) ∈ H1
0 (Ω)×H1

Γ0
(Ω),

(ut(0), vt(0)) = (u1, v1) ∈ L2(Ω)× L2(Ω)

and, for all test functions:

φ ∈ C((0, T ), H1
0 (Ω)) ∩ Lm1(Ω× (0, T )) with φt ∈ L1((0, T ), L2(Ω))

and

ϕ ∈ C((0, T ), H1
Γ0

(Ω)) ∩ Lm2(Γ1 × (0, T )) with ϕt ∈ L1((0, T ), L2(Ω)),

we have for all t ∈ (0, T )

d

dt

∫
Ω

utφdx−
∫
Ω

utφtdx+

∫
Ω

∇u∇φdx+

∫
Ω

g1(x, ut)φdx =

∫
Ω

f1(u, v)φdx

and

d

dt

∫
Ω

vtϕdx−
∫
Ω

vtϕtdx+

∫
Ω

∇v∇ϕdx+

∫
Γ1

g2(x, vt)ϕdΓ =

∫
Ω

f2(u, v)ϕdx+

∫
Γ

ψ(x, v)ϕdΓ.

Now, we present the definition of the maximal solution of the system (4.1).

Definition 4.2.
We say that a weak solution u is maximal if it cannot be a restriction of a weak solution in (0, T ′),
where T < T ′.

By using the idea in [1], we can obtain the following result.
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Theorem 4.1.
There exists a unique maximal weak solution (u, v) of (4.1) defined on (0, T ) for some T > 0.
Also, the following alternative holds:

T = +∞,

or
T <∞ and lim

t→T
(‖ut‖2 + ‖vt‖2 + ‖∇u‖2 + ‖∇v‖2) = +∞.

Using the Definition 4.1 of the weak solution and the assumptions (4.4) and (4.5) on g1

and g2, we can obtain the decreasing of the energy functional of the system (4.1).

Lemma 4.4.
We have

dE(t)

dt
≤ −

∫
Ω

g1(x, ut)utdx−
∫
Γ1

g2(x, vt)vtdΓ ≤ 0 for all t ∈ (0, T ), (4.15)

where E is the energy functional associated to our system, defined for all t ∈ (0, T ), by

E(t) =
1

2
(‖ut‖22 + ‖vt‖22) +

1

2
(‖∇u‖22 + ‖∇v‖22)−

∫
Ω

F (u, v)dx−
∫
Γ1

Ψ(x, v)dΓ, (4.16)

here

Ψ(x, v) =

v∫
0

ψ(x, τ)dτ for all x ∈ Γ1 and v ∈ R.

4.3 First main result
In this section, we show that the weak solution defined in Theorem 4.1 blows up in finite time
when the initial energy data is negative. To reach this end, we consider the following functional
H defined by

H(t) = −E(t) for all t ∈ (0, T ). (4.17)

4.3.1 Properties of the functional H

In the following two Lemmas, we state and proof some important tools that will play a major
role in the proof of our first main result.
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Lemma 4.5.
We assume that

E(0) < 0. (4.18)

Then
0 < H(0) ≤ H(t) ≤ C8

2(ρ+ 2)
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)) +

C6

k
‖v‖kk,Γ1

. (4.19)

Here
‖v‖kk,Γ1

=

∫
Γ1

|v|kdΓ.

Proof. We use the definition of H in (4.17), the decreasing of the energy and the fact that the
initial energy is negative (4.18) to get

0 < H(0) ≤ H(t).

Now, we have

H(t) = −1

2
(‖ut‖22 + ‖vt‖22)− 1

2
(‖∇u‖22 + ‖∇v‖22) +

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ.

Which implies that

H(t) ≤
∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ.

As a result of (4.6), we have

Ψ(x, v) ≤ C6

k
|v|k for all x ∈ Γ1 and v ∈ R, (4.20)

hence, (4.9) and (4.20) give

H(t) ≤ C8

2(ρ+ 2)
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)) +

C6

k
‖v‖kk,Γ1

for all t ∈ (0, T ).

This concludes the proof.

In the rest of this chapter, C represents a generic positive constant.

Lemma 4.6.
Let

0 < σ ≤ min{ ρ+ 1

2(ρ+ 2)
,

2(ρ+ 2)−m1

2(m1 − 1)(ρ+ 2)
,
k −m2

(m2 − 1)k
}.
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We have
Hσ(m1−1)(t)‖u‖m1

2(ρ+2) +Hσ(m2−1)(t)‖v‖m2
k,Γ1

≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(t)) (4.21)

and ∫
Ω

g1(x, ut)udx+

∫
Γ1

g2(x, vt)vdΓ ≤ C(M1−m1
1 +M1−m2

2 )(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2)

+‖v‖kk,Γ1
+H(t)) + CH−σ(t)H ′(t) for all M1,M2 > 0. (4.22)

Proof. Thanks to (4.19) and the fact that m1 < 2(ρ+ 2), we obtain

Hσ(m1−1)(t)‖u‖m1

2(ρ+2) ≤
[

C8

2(ρ+ 2)
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)) +

C6

k
‖v‖kk,Γ1

]σ(m1−1)

(‖u‖2(ρ+2)
2(ρ+2))

m1/(2(ρ+2)) ≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
)σ(m1−1)

(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
)m1/2(ρ+2),

so

Hσ(m1−1)(t)‖u‖m1

2(ρ+2) ≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
)σ(m1−1)+m1/2(ρ+2). (4.23)

Now, we use the following algebric inequality

zν ≤ (1 +
1

a
)(z + a) for all z ≥ 0, 0 < ν ≤ 1 and a > 0, (4.24)

for

z = ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
, ν = σ(m1 − 1) +m1/2(ρ+ 2) and a = H(0),

to obtain
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖v‖kk,Γ1

)σ(m1−1)+m1/2(ρ+2)

≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(0)).

Since H(0) ≤ H(t) for all t ≥ 0, then, (4.23) became

Hσ(m1−1)(t)‖u‖m1

2(ρ+2) ≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(t)). (4.25)

Similarly, we find

Hσ(m2−1)(t)‖v‖m2
k,Γ1
≤ C(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖v‖kk,Γ1

+H(t)). (4.26)

64



Chapter 4. Coupled wave equations with internal/boundary damping and source terms: Blow
up

By summing up (4.25) and (4.26), we find (4.21).
Next, according to (4.4) and (4.5), we have∫

Ω

g1(x, ut)udx ≤ C2

∫
Ω

|u||ut|m1−1dx

and ∫
Γ1

g2(x, vt)vdΓ ≤ C4

∫
Γ1

|v||vt|m2−1dΓ.

We apply, the Young inequality (1.6)
• First, for a = |u|, b = |ut|m1−1, p = m1 and q = m1

m1−1 to obtain∫
Ω

g1(x, ut)udx ≤
δm1

1

m1
‖u‖m1

m1
+
m1 − 1

m1
δ
−m1
m1−1

1 ‖ut‖m1
m1

for all δ1 > 0.

• Second, for a = |v|, b = |vt|m2−1, p = m2 and q = m2
m2−1 to get∫

Γ1

g2(x, vt)vdΓ ≤ δm2
2

m2
‖v‖m2

m2,Γ1
+
m2 − 1

m2
δ
−m2
m2−1

2 ‖vt‖m2
m2,Γ1

for all δ2 > 0.

By taking δ1 and δ2 such that

δm1
1 = M1−m1

1 Hσ(m1−1)(t) and δm2
2 = M1−m2

2 Hσ(m2−1)(t),

we find ∫
Ω

g1(x, ut)udx ≤ CM1−m1
1 Hσ(m1−1)(t)‖u‖m1

m1
+ CH−σ(t)‖ut‖m1

m1

and ∫
Γ1

g2(x, vt)vdΓ ≤ CM1−m2
2 Hσ(m2−1)(t)‖v‖m2

m2,Γ1
+ CH−σ(t)‖vt‖m2

m2,Γ1
.

Since m1 < 2(ρ+ 2) and m2 < k, then∫
Ω

g1(x, ut)udx ≤ CM1−m1
1 Hσ(m1−1)(t)‖u‖m1

2(ρ+1) + CH−σ(t)‖ut‖m1
m1

(4.27)

and ∫
Γ1

g2(x, vt)vdΓ ≤ CM1−m2
2 Hσ(m2−1)(t)‖v‖m2

k,Γ1
+ CH−σ(t)‖vt‖m2

m2,Γ1
. (4.28)
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(4.4), (4.15) and (4.17) gives

C1‖ut‖m1
m1
≤
∫
Ω

g1(x, ut)utdx ≤ −E′(t) = H ′(t),

which implies that
H−σ(t)‖ut‖m1

m1
≤ CH−σ(t)H ′(t). (4.29)

Similarly, we find
H−σ(t)‖vt‖m2

m2,Γ1
≤ CH−σ(t)H ′(t). (4.30)

Therefore, we conclude by inserting (4.25) and (4.29) in (4.27) the estimate∫
Ω

g1(x, ut)udx ≤ CM1−m1
1 (‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖v‖kk,Γ1

+H(t))

+CH−σ(t)H ′(t). (4.31)

Also, we put (4.26) and (4.30) in (4.28) to obtain∫
Γ1

g2(x, vt)vdΓ ≤ CM1−m2
2 (‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2) + ‖v‖kk,Γ1

+ CH(t))

+CH−σ(t)H ′(t). (4.32)

Summing up (4.31) with (4.32), we get the wanted results (4.22).

4.3.2 Blow up result

Now, we are in position to state and prove the first main result of this chapter.

Theorem 4.2.
Assume that

E(0) < 0.

Then, the weak solution of (4.1) blows up in finite time.

Proof. Let us introduce the following functional

L(t) = H1−σ(t) + ε

∫
Ω

(uut + vvt)dx for all t ∈ (0, T ),
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for ε small to be chosen later.
It is sufficient to prove that, for some a0 > 0, we have

L′(t) ≥ a0L
1/(1−σ)(t) for all t ∈ (0, T ).

To reach this end, we proceed in several steps:
Step 1: By taking the derivative of L and using the Definition 4.1 of the weak solution to the
system (4.1), we get

L′(t) = (1− σ)H−σ(t)H ′(t) + ε(‖ut‖22 + ‖vt‖22)− ε(‖∇u‖22 + ‖∇v‖22)

+ε

∫
Ω

(uf1(u, v) + vf2(u, v))dx− ε
∫
Ω

g1(x, ut)udx− ε
∫
Γ1

g2(x, vt)vdΓ +

∫
Γ1

ψ(x, v)vdΓ.

Using (4.7), we obtain

L′(t) = (1− σ)H−σ(t)H ′(t) + ε(‖ut‖22 + ‖vt‖22)− ε(‖∇u‖22 + ‖∇v‖22)

+ε2(ρ+ 2)

∫
Ω

F (x, u)dx− ε
∫
Ω

g1(x, ut)udx− ε
∫
Γ1

g2(x, vt)vdΓ + ε

∫
Γ1

ψ(x, v)vdΓ.

Adding and substracting εpH for 2 < p < min{2(ρ+2)
C6

, kC5
C6
} to find

L′(t) = (1− σ)H−σ(t)H ′(t) + ε(‖ut‖22 + ‖vt‖22)− ε(‖∇u‖22 + ‖∇v‖22)

+ε2(ρ+ 2)

∫
Ω

F (x, u)dx− ε
∫
Ω

g1(x, ut)udx− ε
∫
Γ1

g2(x, vt)vdΓ

+ε

∫
Γ1

ψ(x, v)vdΓ + εpH(t) + εpE(t).

By the definition of E, we find

L′(t) = (1− σ)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+ε(2(ρ+ 2)− p)
∫
Ω

F (x, u)dx− ε
∫
Ω

g1(x, ut)udx− ε
∫
Γ1

g2(x, vt)vdΓ

+ε

∫
Γ1

ψ(x, v)vdΓ− εp
∫
Γ1

Ψ(x, v)dΓ + εpH(t).

(4.6) and (4.20) imply that

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)
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+εpH(t) + εC1

∫
Ω

F (x, u)dx+ εC2‖v‖kk,Γ1
− ε
∫
Ω

g1(x, ut)udx

−ε
∫
Γ1

g2(x, vt)vdΓ, (4.33)

where
C1 = 2(ρ+ 2)− p > 0

and
C2 = C5 −

C6p

k
> 0.

Inserting (4.22) in (4.33) to obtain

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+εpH(t) + εC1

∫
Ω

F (x, u)dx+ εC2‖v‖kk,Γ1
− εC(M1−m1

1 +M1−m2
2 )(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)

+‖v‖kk,Γ1
+H(t)).

Thanks to (4.9), we get

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+εpH(t) + εC3(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖ρ+2

ρ+2) + εC2‖v‖kk,Γ1
− εC(M1−m1

1 +M1−m2
2 )(‖u‖2(ρ+2)

2(ρ+2)

+‖v‖2(ρ+2)
2(ρ+2) + ‖v‖kk,Γ1

+H(t)),

where C3 = C7C1
2(ρ+1) . Therefore

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+ε[p−C(M1−m1
1 +M1−m2

2 )]H(t) + ε[C3 −C(M1−m1
1 +M1−m2

2 )](‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2))

+ε[C2 − C(M1−m1
1 +M1−m2

2 )]‖v‖kk,Γ1
. (4.34)

First, we pick ε small enough so that 1− σ− εC ≥ 0. Then, we choose M1 and M2 sufficiently
large to have

p− C(M1−m1
1 +M1−m2

2 ) > 0, C3 − C(M1−m1
1 +M1−m2

2 ) > 0

and C2 − C(M1−m1
1 +M1−m2

2 ) > 0.
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Consequentely, there exists ζ > 0 such that (4.34) became

L′(t) ≥ ζ(H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
). (4.35)

Step 2: Now, according to (4.35), we have

L(t) ≥ L(0) for all t ∈ (0, T ),

where
L(0) = H1−σ(0) + ε

∫
Ω

(u0u1 + v0v1)dx.

So,
• If ∫

Ω

(u0u1 + v0v1)dx ≥ 0,

then
L(0) ≥ 0.

• If ∫
Ω

(u0u1 + v0v1)dx < 0,

then, we choose ε such that

H1−σ(0) + ε

∫
Ω

(u0u1 + v0v1)dx ≥ 0,

as a consequence, we have
L(0) ≥ 0.

So, L is a positive function.

Step 3: We have

L1/(1−σ)(t) = [H1−σ(t) + ε

∫
Ω

(uut + vvt)dx]1/(1−σ)

≤ [H1−σ(t) + ε|
∫
Ω

(uut + vvt)dx|]1/(1−σ).
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Using the algebric inequality (1.7) for a = H1−σ(t), b = ε|
∫
Ω

(uut+vvt)dx| and p = 1/(1− σ)

to get

L1/(1−σ)(t) ≤ C[H(t) + |
∫
Ω

(uut + vvt)dx|1/(1−σ)],

Applying (1.7), again, to find

L1/(1−σ)(t) ≤ C[H(t) + (

∫
Ω

|u||ut|dx)1/(1−σ) + (

∫
Ω

|v||vt|dx)1/(1−σ)]. (4.36)

But, using the Hölder inequality (1.2) and the fact that 2 ≤ 2(ρ+ 2) give

∫
Ω

|u||ut|dx ≤ (

∫
Ω

|u|2dx)
1
2 (

∫
Ω

|ut|2dx)
1
2 ≤ C

(

∫
Ω

|u|2(ρ+1)dx)
1

2(ρ+1) (

∫
Ω

|ut|2dx)
1
2

 .
Therefore

(

∫
Ω

|u||ut|dx)
1

1−σ ≤ C

(

∫
Ω

|u|2(ρ+2)dx)
1

2(1−σ)(ρ+2) (

∫
Ω

|ut|2dx)
1

2(1−σ)

 .
Using the Young inequality (1.6) to get

(

∫
Ω

|u||ut|dx)
1

1−σ ≤ C

(

∫
Ω

|u|2(ρ+2)dx)
p

2(1−σ)(ρ+2) + (

∫
Ω

|ut|2dx)
q

2(1−σ)

 ,
where

p =
2(1− σ)

1− 2σ
and q = 2(1− σ),

so
(

∫
Ω

|u||ut|dx)
1

1−σ ≤ C((‖u‖2(ρ+2)
2(ρ+2))

1
(1−2σ)(ρ+2) + ‖ut‖22).

Now, we use the algebric inequality (4.24) for

z = ‖u‖2(ρ+2)
2(ρ+2), ν =

1

(1− 2σ)(ρ+ 2)
and a = H(0),

to obtain
(

∫
Ω

|u||ut|dx)
1

1−σ ≤ C(H(0) + ‖u‖2(ρ+2)
2(ρ+2) + ‖ut‖22),

so
(

∫
Ω

|u||ut|dx)
1

1−σ ≤ C(H(t) + ‖u‖2(ρ+2)
2(ρ+2) + ‖ut‖22).
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Similarly, we can prove that

(

∫
Ω

|v||vt|dx)
1

1−σ ≤ C(H(t) + ‖v‖2(ρ+2)
2(ρ+2) + ‖vt‖22).

Finally, (4.36) became

L1/(1−σ)(t) ≤ C(H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2)),

so

L1/(1−σ)(t) ≤ C(H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
). (4.37)

Step 4: In the last step, we combine (4.35) and (4.37) to find a positive constant a0, such that

L′(t) ≥ a0L
1/(1−σ)(t) for all t ∈ (0, T ).

4.4 Second main result
In this section, we assume that the initial energy is stranded between the zero and a given posi-
tive number. With similar method as in the proof of the first main result, we get our second main
result on the blow up of the weak solution in finite time.

To start, we need the following notations:

•B1 = η1/2(ρ+2), •B−1
2 = inf{‖∇v‖2 : v ∈ H1

Γ0
(Ω) : ‖v‖k,Γ1 = 1},

•Q(α) = 1
2α

2 − B
2(ρ+2)
1

2(ρ+2) α
2(ρ+2) − C6Bk2

k αk for all α > 0,

•α1 is the first positive zero of the function Q′,

•E1 = Q(α1), •E2 =


(C5k−C6p)α2

1
2C6p(ρ+2) if C5k ≤ 2(ρ+ 2),

(2(ρ+2)−C6p)α2
1

C5C6pk
if C5k > 2(ρ+ 2).

We note that E2 ≤ E1. Indeed,
• If C5k ≤ 2(ρ+ 2), then

E2 − E1 =
(C5k − C6p)α

2
1

2C6p(ρ+ 2)
− 1

2
α2

1 +
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
1 +

C6B
k
2

k
αk1
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= α2
1

(
C5k − C6p

2C6p(ρ+ 2)
− 1

2
+
B

2(ρ+2)
1

2(ρ+ 2)
α2ρ+2

1 +
C6B

k
2

k
αk−2

1

)
,

since k ≤ C5k ≤ 2(ρ+ 2), then

E2 − E1 ≤ α2
1

(
C5k − C6p

C6pk
− 1

2
+
B

2(ρ+2)
1

k
α2ρ+2

1 +
C6B

k
2

k
αk−2

1

)
,

hence

E2 − E1 ≤ α2
1

(
C5

C6p
− 1

k
− 1

2
+
B

2(ρ+2)
1 α2ρ+2

1 + C6B
k
2α

k−2
1

k

)
,

since α1 is the zero of the function Q′, then

B
2(ρ+2)
1 α2ρ+2

1 + C6B
k
2α

k−2
1 = 1. (4.38)

Since C5
C6
≤ 1, hence

E2 − E1 ≤ α2
1

(
C5

C6p
− 1

2

)
≤ α2

1

(
1

p
− 1

2

)
.

So
E2 − E1 ≤ 0.

• If C5k > 2(ρ+ 2), with the same way, we obtain

E2 − E1 =
(2(ρ+ 2)− C6p)α

2
1

C5C6pk
− 1

2
α2

1 +
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
1 +

C6B
k
2

k
αk1

≤ α2
1

(
2(ρ+ 2)− C6p

2C6p(ρ+ 2)
− 1

2
+
B

2(ρ+2)
1

2(ρ+ 2)
α2ρ+2

1 +
C6B

k
2

k
αk−2

1

)
.

Since, we have 1
k <

C5
2(ρ+2) , then

E2 − E1 ≤ α2
1

(
C5(2(ρ+ 2)− C6p)

2C6p(ρ+ 2)
− 1

2
+
C5[B

2(ρ+2)
1 α2ρ+2

1 + C6B
k
2α

k−2
1 ]

2(ρ+ 2)

)
.

By (4.38), we obtain

E2 − E1 ≤ α2
1

(
C5

C6p
− C5

2(ρ+ 2)
− 1

2
+

C5

2(ρ+ 2)

)
= α2

1

(
C5

C6p
− 1

2

)

≤ α2
1

(
1

p
− 1

2

)
.

So
E2 − E1 ≤ 0.
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4.4.1 Important Lemmas

Here, we are going to introduce and prove some useful results required to obtain our second
main result.

Lemma 4.7.
Assume that

0 ≤ E(0) < E2 and (‖∇u0‖22 + ‖∇v0‖22)
1
2 > α1.

Then, there exists a constant α2 > α1 such that, for all t ∈ (0, T ), we have

(‖∇u‖22 + ‖∇v‖22)
1
2 > α2 (4.39)

and

1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2) +

C6

k
‖v‖kk,Γ1

≥ B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 . (4.40)

Proof. Let us define the function

γ(t) := ‖∇u‖22 + ‖∇v‖22 for all t ∈ (0, T ).

By (4.8) and (4.16), we have

E(t) ≥ 1

2
γ(t)− 1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2)−

∫
Γ1

Ψ(x, v)dΓ,

(4.12) and (4.20) give

E(t) ≥ 1

2
γ(t)− η

2(ρ+ 2)
(‖∇u‖22 + ‖∇v‖22)ρ+2 − C6

k
‖v‖kk,Γ1

.

By the definition of B1 and B2, we obtain

E(t) ≥ 1

2
γ(t)− B

2(ρ+2)
1

2(ρ+ 2)
(‖∇u‖22 + ‖∇v‖22)ρ+2 − C6B

k
2

k
‖∇v‖k2.

Further, we find

E(t) ≥ 1

2
γ(t)− B

2(ρ+2)
1

2(ρ+ 2)
(γ(t))ρ+2 − C6B

k
2

k
(γ(t))k/2

=
1

2
α2 − B

2(ρ+2)
1

2(ρ+ 2)
α2(ρ+2) − C6B

k
2

k
αk = Q(α), (4.41)
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where α = (γ(t))1/2.
Clearly, we have

Q′(α) = α(1−B2(ρ+2)
1 α2(ρ+2)−2 − C6B

k
2α

k−2).

We can easely verify that Q is increasing for 0 < α < α1, decreasing for α > α1 and

Q(α)→ −∞ as α→ +∞.

Since
Q(0) = 0 ≤ E(0) < E2 ≤ E1 = Q(α1),

then, there exists α2 > α1 such that

Q(α2) = E(0). (4.42)

We set
α0 = (γ(0))1/2.

Thanks to (4.41), we have

Q(α0) = Q((γ(0))1/2) ≤ E(0) = Q(α2).

Then
α0 ≥ α2.

Now, we suppose that
(γ(t0))1/2 ≤ α2 for some t0 > 0.

Using the continuity of the function γ, we can choose t0 such that

(γ(t0))1/2 > α1.

Again, by (4.41), we obtain

E(t0) ≥ Q(γ(t0)) > Q(α2) = E(0)

and it’s impossible since
E(t) ≤ E(0) for all t ∈ (0, T ).

Therefore
(γ(t))

1
2 > α2 for all t > 0.
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Now, by (4.15), (4.16) and (4.20), we get

1

2
γ(t)− E(0) ≤ 1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2) +

C6

k
‖v‖kk,Γ1

.

Hence, (4.39) gives

1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2) +

C6

k
‖v‖kk,Γ1

≥ γ(t)

2
− E(0) ≥ 1

2
α2

2 − E(0).

Using (4.42) and the definition of the functional Q to obtain

1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2) +

C6

k
‖v‖kk,Γ1

≥ 1

2
α2

2 −Q(α2)

=
1

2
α2

2 −
1

2
α2

2 +
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 =

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 ,

which gives (4.40).

Now, we need the following new expression of the functional H:

H(t) = E2 − E(t) for all t ∈ (0, T ). (4.43)

4.4.2 Properties of the functional H

Here, we are going to give the proof of the following useful Lemmas.

Lemma 4.8.
Assume that

0 ≤ E(0) < E2 and (‖∇u0‖22 + ‖∇v0‖22)
1
2 > α1.

Then, for all t ∈ (0, T ), we have

0 < H(0) ≤ H(t) ≤ C8

2(ρ+ 2)
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)) +

C6

k
‖v‖kk,Γ1

.

Proof. The proof of
0 < H(0) ≤ H(t),

is trivial.
We put (4.16) in (4.43) to get

H(t) = E2 −
1

2
(‖ut‖22 + ‖vt‖22)− 1

2
(‖∇u‖22 + ‖∇v‖22)
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+

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ. (4.44)

Using (4.39) and since α2 > α1, we find

E2 −
1

2
(‖ut‖22 + ‖vt‖22)− 1

2
(‖∇u‖22 + ‖∇v‖22) < E1 −

1

2
α2

1.

Therefore, (4.44) became

H(t) ≤ E1 −
1

2
α2

1 +

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ

= Q(α1)− 1

2
α2

1 +

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ

=
1

2
α2

1 −
1

2
α2

1 −
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
1 − C6B

k
2

k
αk1 +

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ

= − B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
1 − C6B

k
2

k
αk1 +

∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ

≤
∫
Ω

F (u, v)dx+

∫
Γ1

Ψ(x, v)dΓ.

By (4.9) and (4.20), we find

H(t) ≤ C8

2(ρ+ 2)
(‖u‖2(ρ+2)

2(ρ+2) + ‖v‖2(ρ+2)
2(ρ+2)) +

C6

k
‖v‖kk,Γ1

for all t ∈ (0, T ).

The proof is now completed.

By the same method as in the proof of Lemma 4.6, we can obtain the following.

Lemma 4.9.
Let

0 < σ ≤ min{ ρ+ 1

2(ρ+ 2)
,

2(ρ+ 2)−m1

2(m1 − 1)(ρ+ 2)
,
k −m2

(m2 − 1)k
}.

We have for all t ∈ (0, T )

Hσ(m1−1)(t)‖u‖m1
m1

+Hσ(m2−1)(t)‖v‖m2
m2,Γ1

≤ C(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(t))
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and ∫
Ω

g1(x, ut)udx+

∫
Γ1

g2(x, vt)vdΓ ≤ C(M1−m1
1 +M1−m2

2 )(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2)

+‖v‖kk,Γ1
+H(t)) + CH−σ(t)H ′(t) for all M1,M2 > 0. (4.45)

4.4.3 Blow up result

The correspending second main result is presented in the below Theorem.

Theorem 4.3.
The weak solution of the system (4.1) with initial data satisfying

0 ≤ E(0) < E2 and (‖∇u0‖22 + ‖∇v0‖22)
1
2 > α1,

blows up in finite time.

Proof. We define the following function

L(t) = H1−σ(t) + ε

∫
Ω

(uut + vvt)dx for all t ∈ (0, T ),

for ε small to be chosen later.

We proceed in several steps.
Step 1: As in the first step of the proof of Theorem 4.2, we obtain

L′(t) = (1− σ)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+ε(1− p

2(ρ+ 2)
)(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2)− ε

∫
Ω

g1(x, ut)udx− ε
∫
Γ1

g2(x, vt)vdΓ

+ε

∫
Γ1

ψ(x, v)vdΓ− εp
∫
Γ1

Ψ(x, v)dΓ + εpH(t)− εpE2. (4.46)

For the last term, we can see that

−εpE2 ≥ −εpE2(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2)(

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2)−1.

According to (4.40), we obtain

−εpE2 ≥ −εpE2[
1

2(ρ+ 2)
(‖u+ v‖2(ρ+2)

2(ρ+2) + 2‖uv‖ρ+2
ρ+2)
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+
C6

k
‖v‖kk,Γ1

](
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2)−1.

However, using this result, (4.6) and (4.20), (4.46) becames

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+εpH(t) + εC4(‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2) + εC5‖v‖kk,Γ1
− ε
∫
Ω

g1(x, ut)udx

−ε
∫
Γ1

g2(x, vt)vdΓ, (4.47)

where

C4 = 1− p

2(ρ+ 2)
− pE2

2(ρ+ 2)
(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2)−1

and

C5 = C5 −
C6p

k

[
1 + E2(

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2)−1

]
.

Our next goal is to show that C4 and C5 are positive.

For C4, we have
• If C5k ≤ 2(ρ+ 2), then

E2 =
(C5k − C6p)α

2
1

2C6p(ρ+ 2)
.

(4.38) leads to
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
1 +

C6B
k
2

2(ρ+ 2)
αk1 ≥

α2
1

2(ρ+ 2)
,

since α2 > α1, then, we find

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

2(ρ+ 2)
αk2 >

α2
1

2(ρ+ 2)
,

Since 1
2(ρ+2) ≤

1
C5k
≤ 1

k , then

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 >

α2
1

2(ρ+ 2)
, (4.48)

then, we obtain

(1− p

2(ρ+ 2)
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) > (1− p

2(ρ+ 2)
)

α2
1

2(ρ+ 2)
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=
(2(ρ+ 2)− p)α2

1

4(ρ+ 2)2
≥ (2(ρ+ 2)− C6p)α

2
1

4(ρ+ 2)2
.

Since 2(ρ+ 2) ≥ C5k, then

(1− p

2(ρ+ 2)
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) >

(C5k − C6p)α
2
1

4(ρ+ 2)2
=

C6pE2

2(ρ+ 2)
≥ pE2

2(ρ+ 2)
,

consequently
C4 > 0.

• If C5k > 2(ρ+ 2), then

E2 =
(2(ρ+ 2)− C6p)α

2
1

C5C6pk
.

We have

B
2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 > α2

1

(
B

2(ρ+2)
1 α

2(ρ+2)−2
1 + C6B

k
2α1

k−2

C5k

)
,

using (4.38) to obtain
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2 >

α2
1

C5k
, (4.49)

then

(1− p

2(ρ+ 2)
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) >

(2(ρ+ 2)− p)α2
1

2C5k(ρ+ 2)

≥ (2(ρ+ 2)− C6p)α
2
1

2C5k(ρ+ 2)
=

C6pE2

2(ρ+ 2)
,

so

(1− p

2(ρ+ 2)
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) >

pE2

2(ρ+ 2)
,

hence
C4 > 0.

For C5, we have
• If C5k ≤ 2(ρ+ 2), we use (4.48) to find

(C5 −
C6p

k
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) > (C5 −

C6p

k
)

α2
1

2(ρ+ 2)

=
(C5k − C6p)α

2
1

2k(ρ+ 2)
=
C6pE2

k
.
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So
C5 > 0.

• If C5k > 2(ρ+ 2), we use (4.49) to obtain

(C5 −
C6p

k
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) >

(C5k − C6p)α
2
1

C5k2
.

The fact that C5k > 2(ρ+ 2) gives

(C5 −
C6p

k
)(
B

2(ρ+2)
1

2(ρ+ 2)
α

2(ρ+2)
2 +

C6B
k
2

k
αk2) >

(2(ρ+ 2)− C6p)α
2
1

C5k2
=
C6pE2

k
.

Then
C5 > 0.

Now, we insert (4.45) in (4.47) to obtain

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+εpH(t) + εC4(‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2) + εC5‖v‖kk,Γ1

−εC(M1−m1
1 +M1−m2

2 )(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(t)),

using (4.9) to get

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+εpH(t) + εC6(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖ρ+2

ρ+2) + εC5‖v‖kk,Γ1

−εC(M1−m1
1 +M1−m2

2 )(‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
+H(t)),

where C6 = C7C4. Thus

L′(t) ≥ (1− σ − εC)H−σ(t)H ′(t) + ε(1 +
p

2
)(‖ut‖22 + ‖vt‖22) + ε(

p

2
− 1)(‖∇u‖22 + ‖∇v‖22)

+ε[p−C(M1−m1
1 +M1−m2

2 )]H(t) + ε[C6 −C(M1−m1
1 +M1−m2

2 )](‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2))

+ε[C5 − C(M1−m1
1 +M1−m2

2 )]‖v‖kk,Γ1
. (4.50)

We take ε small enough so that (1 − σ) − εC ≥ 0. Then, we choose M1 and M2 sufficiently
large to have

p− C(M1−m1
1 +M1−m2

2 ) > 0, C6 − C(M1−m1
1 +M1−m2

2 ) > 0

80



Chapter 4. Coupled wave equations with internal/boundary damping and source terms: Blow
up

and C5 − C(M1−m1
1 +M1−m2

2 ) > 0.

Therefore, there exists ζ ′ > 0 such that for all t ∈ (0, T ), (4.50) can rewriting as follows

L′(t) ≥ ζ ′(H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
). (4.51)

Step 2: Similarly, to the second step in the proof of Theorem 4.2, we can find

L(t) ≥ 0 for all t ∈ (0, T ).

Step 3 : As in the third step in the proof of Theorem 4.2, there exists C > 0 such that for all
t ∈ (0, T ), we have

L1/(1−σ)(t) ≤ C(H(t) + ‖ut‖22 + ‖vt‖22 + ‖u‖2(ρ+2)
2(ρ+2) + ‖v‖2(ρ+2)

2(ρ+2) + ‖v‖kk,Γ1
). (4.52)

Step 4: At the end, we combine (4.51) with (4.52) to find a positive constant a1, such that

L′(t) ≥ a1L
1/(1−σ)(t) for all t ∈ (0, T ).
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CONCLUSION AND PERSPECTIVES

Conclusion
In this thesis, our results, concerning the existence and the behavior of solution of nonlinear

hyperbolic systems, have been proved under suitable assumptions on the initial data and on the
exponent nonlinearity.

In the first study, we have proved the global existence and stability of the weak solution for
a nonlinear wave equation with the presence of the internal source and the boundary damping
terms in the case of constant exponent. In the second study, we have obtained the global exis-
tence and the stability of the weak solution for a wave equation with variable boundary damping
term. In the last study, we have showed that the weak solution of nonlinear coupled wave equa-
tions blows up in finite time for weak solution with positive or negative initial energy.

Perspectives
The following open questions can be made regarding the material presented in this thesis:

• Study of the global existence of solution for the first system in the case of β ≥ 1.

• Study of the global existence of solution for the first system in the case when the damping
term dominated the source term (m ≥ p).

• Study of the blow up of solution for the first system.

• Study of the Stability of solution for the third system.
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