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Résumé

L’ objectif principal de cette these est d’étudier les propriétés de la solution de trois
types de systemes d’équations hyperboliques non linéaires. Dans la premiere étude, on
considere 1’équation des Ondes avec un terme source interne et un terme dissipatif fron-
tiere. Au début, on utilise la méthode de 1I’ensemble stable pour prouver 1’existence de
la solution faible globale. Ensuite, on utilise les inégalités intégrales de Komornik pour
montrer la stabilité de cette solution. Quant au deuxieme étude, on présente le résultat
de I’existence globale de la solution faible pour I’équation des Ondes avec terme dissi-
patif variable frontiere. Ensuite, on prouve que cette solution faible globale est stable.
Cette étude est basée sur la théorie des semi groupes et certaines inégalités intégrales.
Pour la troisieme étude, on considere un systeme de deux équations des Ondes avec
des termes dissipatifs interne/fronticre et des termes sources. L’ objectif majeur de cette
étude est de montrer deux résultats d’explosion en un temps fini : le premier concerne
la solution faible avec une énergie initiale négative. Le deuxieme concerne la solution
faible a énergie initiale positive.

Mots clés: Equation des Ondes; Systéme couplé; Terme de source; Terme dissipatif;
Exposant constant; Exposant variable; Solution locale; Solution globale; Stabilité; Ex-

plosion.



Abstract

The main purpose of this thesis is to study the properties of the solution for three
types of systems of nonlinear hyperbolic equations. In the first study, we consider the
wave equation with internal source and boundary damping terms. In the beginning, we
use the stable set method to prove the existence of the global weak solution. Then, we
use some integral inequalities due to Komornik to prove the stability of this solution.
As for the second study, we present the result of the global existence of a weak solution
for the wave equation with boundary variable damping term. Then, we prove that this
global weak solution is stable. This study is based on the semi groups theory and some
integral inequalities. For the third study, we consider a system of two wave equations
with internal/boundary damping and source terms. The major aim of this study, is to
prove two blow up results in finite time: the first one is concerned with weak solution
with negative initial energy. The second one is concerned with weak solution with pos-
itive initial energy.

keywords: Wave equation; Coupled system; Source term; Damping term; Constant exponent;

Variable exponent; Local solution; Global solution; Stability; Blow up.
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GENERAL INTRODUCTION

Literature review

During the last few decades, many researchers have been interested to the existence
and behavior of the solution for nonlinear wave systems. In the case of one wave equa-
tion, the system with internal damping and source terms have been dealt by a lot of
authors. In 1977, Ball [4] showed that, in the absence of the damping term, the source
term causes a finite time blow up of solutions with negative initial energy. Haraux and
Zuazua [14], in 1988, proved that, in the absence of the source term, the damping term
assures the global existence for arbitrary initial data. In the linear damping case, Levine
[23], in 1974, established a finite time blow up result for negative initial energy. In
1994, Georgiev and Todorova [[17] extended Levine’s result to the nonlinear damping
case. They gave two results :
e if the damping term dominated the source term then the global solution exists for ar-
bitrary initial data,
e if the source term dominated the damping term then the solution with sufficiently
negative initial energy blows up in finite time.

In 2001, Messaoudi [24] improved the result of Georgiev and Todorova and proved
a finite time blow up result for solutions with negative initial energy only. Ikehata [[16]],
in 1995, used the stable set method, introduced by Sattinger [38] in 1968, to show that
the global solution exists for small enough initial energy. In addition, authors in [12],
[43]], [44]] and [45]] have addressed this issue.

Park and Ha [36], in 2008, used the multiplier method to get the existence and the



General introduction

uniform decay rates concerning the semilinear wave equation with boundary damping
and source terms. In 2015, Fiscella and Vittilaro [[11] showed the blow up in finite time
of the solution with positive initial energy.

Recently, many efforts have been devoted on the Mathematical models equations
of elliptic, parabolic and hyperbolic equations with internal variable exponent which
are including in the models of various physical phenomena such as flows of electro rhe-
ological fluids or fluids with temperature dependent viscosity and filtration processes
through a porous media and image processing. Among which, we mention some stud-
ies in this direction. In 2011, Antontsev [2] obtained, under suitable conditions on the
parameters in the system of wave equation with p(x, t)— Laplacian and damping term,
the existence and the blow up of solution. Next, in 2015, Sun and al. [41] discussed
the lower and upper boundes for the blow up time results of the nonlinear hyperbolic
equation with internal variable damping and source terms under appropriate assump-
tions on the initial data. After that, Messaoudi and Talahmeh [27], in 2017, extended
the result of Korpusov in [20] with internal constant exponent. They proved that
a certain solution with arbitrary positive energy blows up in finite time. Also, in the
same year in [28]], they discussed the blow up result with suitable conditions on the
variable exponent and on the initial data for a different nonlinear equation. In 2017,
Messaoudi and al. [30] considered the wave equation with internal damping term and
source term with variable exponent. They proved the local existence using the Faedo
Galerkin method. Then, under some conditions on the variable exponent and the ini-

tial data, they obtained the blow up result of the solution.

Ghegal and al. [18]], in 2018, considered the same equation and proved, by using
the stable set method, that the global solution with suitable assumptions on the initial
data exists. Beside that, they showed that this solution is stable by applying the integral
inequality due to Komornik [19]. In 2021, Mustafa and al. [32] considered the wave
equation with internal variable exponent and time dependent nonlinear damping. They
used the multiplier method to obtain an energy decay results. For more studies in this

direction, we refer the readers to [[6]] and [29]].

In the case of two coupled wave equations, Agre and Rammabha [1]], in 2006, proved
several results concerning the local and the global existence, uniqueness of the weak so-
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lution to systems of nonlinear wave equations with internal damping and source terms.
Then, by using some technics as in [3]], [17] and [37/], they showed that any weak solu-

tion with negative initial energy blows up in finite time.

Houari [15], in 2010, extended the blow up result which proved in [1] for solution
with positive initial data by employing the same method as in [43] with some needed
modifications. In the same year and with the presence of the viscoelastic term, Mes-
saoudi and Houari, in [26], also, proved the blow up result for some solutions with
positive initial energy, using the same technics as in [15] and some estimates obtained
in [25].

Later, Yanqiu and Rammaha [47], in 2013, studied the systems of nonlinear wave
equations with nonlinearities supercritical interior and boundary sources and the bound-
ary and interior damping functions. They proved that under some restrictions on the
parameters in the system, every weak solution with negative initial energy blows up in
finite time. In addition, in 2014, they obtained in [48]] for the same system, the local and
the global existence, the uniqueness results of the weak solutions using the nonlinear
semi groups and the theory of the monotone operators. They, also, showed that such

solution depend continuously on the initial data.

By applying the Galerkin and the energy methods, Hao and Cai [13], in 2016, proved
several results on the local and the global existence, the blow up of solutions with posi-

tive initial energy for nonlinear coupled wave equations with viscoelastic terms.

Main Contribution

Our results, in this thesis, are conducted under the aim of studing the existence and
the behavior of solution for different types of nonlinear hyperbolic systems. First, we
consider a nonlinear wave equation with internal source and boundary damping terms,
both terms are with a constant exponent. We apply the stable set method to prove the
existence of the global weak solution. Then, we use some integral inequalities to obtain
the stability of this solution. To the best of our knowledge, the application of those tech-
nics is new for this kind of problems. Second, we shed some light on the systems with
variable exponent in the boundaries. We state and prove the global existence result of
the weak solution. Then, we prove the stability of this solution. We note, here, that no
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study was given, in the literature, for the case of boundary variable exponent damping
terms and no result of existence of systems with variable exponent was proved by using
the semi groups theory method. In this part, we find some difficulties on the variable
exponent nonlinearity comparing with the constant exponent in the first part, especially
on the boundary term. Third, we focuse on two coupled wave equations with constant
exponent. We prove two main results. We start with showing that the weak solution
with negative initial energy blows up in finite time. Then, we prove the same result for

weak solution with positive initial energy.

Organization of the thesis
This dissertation is divided into four chapters, in addition to the general introduc-

tion, conclusion and perspective.

> Chapter 1: This chapter consists on three sections: in Section 1.1, we recall some
useful preliminaries on the Lebesgue and on the Sobolev spaces with constant expo-
nent, their definitions and some results needed in our proofs later. Section 1.2 is con-
cerned with spaces with variable exponent, which include the history of the Lebesgue
and Sobolev spaces, also, we mention some definitions and properties of those spaces.
In Section 1.3, we give the most important results that we will use them later in our
studies.

> Chapter 2: Here, we deal with a system of wave equation with nonlinear inter-
nal source and boundary damping terms. The study consists on the following: In
Section 2.2, by assuming some hypothesis on the parameters in the system, we state
the existence result of the maximal weak solution. Then, we show that the energy of
the solution is a decreasing function. Section 2.3 is concerned with the global property
of the maximal weak solution by using the stable set method. In Section 2.4, we apply
the multiplier method and the integral inequalities due to Komornik to prove that this
solution is stable.

> Chapter 3: In this chapter, we consider a system of wave equation with variable ex-
ponent in the boundary damping term. In Section 3.1, we present and prove the global
existence result of the weak solution by the semi groups theory. In Section 3.2, we
prove that the energy associated to the weak solution is a decreasing function. After
that, we give and prove the stability of the obtained solution.

> Chapter 4: At last, we study a system of two coupled wave equations with inter-
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nal/boundary damping and source terms in the case of constant exponent. In Section 4.2,
we present the existence result of the weak maximal solution, we also, give the energy
identity associated to the solution. In Section 4.3, we state and prove our first blow
up result in the case of negative initial energy. In Section 4.4, we give and prove the

second blow up result in the case of positive energy.



CHAPTER 1

PRELIMINARIES

In this chapter, we recall the definitions of the Lebesgue and Sobolev spaces with
constant/variable exponent. Then, we present some useful inequalities and formulas
that are related to this spaces in which we will need them later in our proofs. After that,

we present some required results.

1.1 The constant exponent spaces

Let 2 be a domain of R"(n € N*) with sufficiently smooth boundary 0f2.

1.1.1 Lebesgue space with constant exponent

Definition 1.1.
Letp € R*.
e For 1 < p < oo, the Lebesgue space is defined as:

LP(Q) ={u:Q — R measurable and/ lulPdz < +o0}.
Q

LP(Q) is equipped with the norm

1
lallzogey = lull, = / ufPde)?.
Q

8



Chapter 1. Preliminaries

e Forp = oo, L>®() is given by

L>(Q) ={u:Q — R measurable and 3C >0: |u| < C a.e on Q},

L>(Q) is equipped with the following norm

| o) = |Julloe = inf{C >0:|ul| <C a.e on Q}.

1.1.2 Sobolev space with constant exponent

Definition 1.2.
Let m € N*.
e Forp € [1, 40|, the Sobolev space W™P (X)) is defined as follows:

Wme(Q) = {u € LP(Q),0% € LP(Q);a € N : |a| < m}.

Where 0% is the generalised derivative in the distribution sense.
Wm™P(Q) is endowed with the norm bellow

3=

lullwmaey = D 10%ul}

laf<m
e For p = +o0, W™P(Q) is defined as follows
Wmee(Q) ={u € L>*(2),0% € L*(Q);a € N: |a] < m},
Wm:>°(Q) is endowed with the norm

lullwmeeqy = D 107Ul

leef| <

Remark 1.1.
For p =2 and m = 1, we note W'2(Q) = H'(Q). So

HY(Q) = {ue 12(0)/ 2%

o, € L*(Q) foralli =1,n}.

Remark 1.2.
We note by H} () and H?(Q)) the spaces given by

Hy(Q) = {u € H(Q)/uso0 = 0}

9
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and
ou @ 0%u
Ox; 0z’ Ox;0x;

H*(Q) = {ue L*(Q)/ € L*(Q) foralli,j =1,n}.

Lemma 1.1.
The Sobolev space H}(Q) is a Hilbert space with the scalar product defined by

<u,v>Hé(Q) = /Vu.Vvd:c forall u,v € Hy(Q)
9)

and with the norm

mem:{/wmwﬂéfwauueHam.
Q

1.1.3 Important inequalities with constant exponent

Lemma 1.2. ( Poincare’s inequality)

There exists a positive constant, depending on €, such that
lull 2@y < Cllull gy for all ue Hy(). (1.

Lemma 1.3. (Holder’s inequality)
Let 0 < p,q,r < oo with ]lj +% = % If f € LP(Q) and g € LI(Y), then fg € L"(2)
and we have

£ gllr < [ f1lpllgllg- (1.2)

Lemma 1.4. (Green formula)
Forallu € H*(Q) and v € H'(Q), we have

/Auvd:c = —/Vqud:c—i—/g—uvdu. (1.3)
v
Q 0

Q
Proposition 1.1. (Young’s inequality)

Leta,bzOandp,q>0suchthat%+%:1.
o We have

P
ab< T+ (1.4)
p q
e for all e > 0, we have ;
q
ab < ea” + —. (1.5)
€Epr

10
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e Forall § > 0, we have

oP 01
ab < —a? + —0b1. (1.6)
p q
Lemma 1.5. (Algebric inequality)
Letp > 1. Forall a,b > 0, we have
(a+Db)P < 2071 (aP 4 bP). (1.7)

1.2 The variable exponent spaces

In 1931, Orlicz was the first one who present the variable exponent Lebesgue spaces
in his paper [35]], where, he asked about the necessary and the sufficient conditions on
a real sequence (y;) for which ). z;y; converges, for sequences of real numbers (p;)
with p; > 1 and (z;) such that ) «!* converges. Also, he considered the variable
exponent function space LP(") on the real line, the function spaces bear his name after he
concentrated to the theory of this spaces. The space L¥(£2) is constituted by measurable
function v : {2 — R for which

o(\) = /go()\|u(x)|)dx < +oo,

for some A > 0 and ¢ is a real valued function that may depend and must satisfies some
conditions, putting certain properties of p in an abstract setting. Nakano in [33] and
[34]] was the first who studied a more general class of functions spaces called modular
spaces, where, the work of Nakano and the modular spaces were investigated by several
people. An explicit version of these spaces was investigated by Polish Mathematicians,
like Hidzik. The interested reader can see the monograph [31]] of Musielak and Orlicz
for more details.

The Russian researchers have independently developed the variable exponent Lebesgue
spaces on the real line. In 1961, Tsenov [42] originated their results. Sharapudinov in
[39]] and [40] introduced the Luxembourg norm for the Lebesgue space and showed that
if the exponent satisfies 1 < essinfp < p < esssupp < +oo then this space is a Ba-
nach space. By considering variational integrals with non standard growth conditions,

Zhikov [46] in the mid-80’s, started a new line of investigation of variable exponent

11
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spaces. Next, Kovacik and Rakosnik [21] in the early 90’s, established many of the basic
properties of Lebesgue and Sobolev spaces in R". A big developmenet has been made in
the beginning of the millennium, for the rigorous study of variable exponent spaces. In
particular, a relation was made between the variable exponent spaces and the variational
integrals with non standard growth and coercivity conditions. Also, modelling of some
physical phenomena such as flows of electro-rheological, nonlinear viscoelasticity and

many other examples.

1.2.1 Lebesgue spaces with variable exponent

Let € be a domain of R™ (n € N*).

Definition 1.3.
Let P(Q2, %, 1) be a o — finite, complete measurable space. Let P(Q), i) be the set of
all i — measurable functions p : @ — [1,00). The function p € P($2, ) is called a
variable exponent on ). We define
p :=essinf p(z) and p* = esssupp(z).
z€Q s

If p™ < +o0, then p is said to be a bounded variable exponent. If p € P(), 11), then, we
define p' € P(Q2, ) by
1 1

1
— + =1, where — :=0.
p(z)  p'(z) 00

The function p' is called the dual variable exponent of p.

Definition 1.4.
Letp : Q — [1,00) be a measurable function. We define the Lebesgue space with vari-
able exponent p(.) by

LPO(Q) i= {u: Q@ — Rmeasurable :  g,(y(Mu) = / |Au(x) [P dz < oo, for some A > 0}.
0

or equivalently

LPO(Q) = {u: Q@ — R; measurable in Q and lim g,)(\u) = 0}.
A—0

12
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) (Q) is equipped with the following Luxembourg type norm
. u(z) (@)
[ull o) () := inf{A >0 ‘T' dr < 1}.
Q

Lemma 1.6. /3]
Ifp(.) = p, then

[ullp) = llullp-
Definition 1.5.

We say that a function q :  — R (n € N*) is log Holder continuous on 2 if there
exists a constant 0 > 0 such that for all 0 < § < 1, we have

0

< ———— foraex,y € Quith |x —y| <.
log|z —y|

Lemma 1.7. [22)]
If p : QQ — R is a Lipschitz function on €, then, p is log Holder continuous on ().

Remark 1.3.
The log Holder continuity condition on p can be replaced by p € C(Q) if Q) is bounded.

Theorem 1.1. [22/]
Ifp € P(Q, ), then, LPY)(Q, 1) is a Banach space.

Lemma 1.8.
Ifp: Q — [1,00) is a measurable function with p' < +oc, then, C§°(12) is dense in
LPO(Q).

Lemma 1.9.
If1 <p <p(r) <p" < +oo, then

. - + - +
ming[ull} ), 1l } < ep@) () < max{llull}e), [[ull;q)}
for any u € LPV(Q).

Remark 1.4.

If the exponent p is constant then p~ = p™ and hence gp)(u) = ||ul[?.

13
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1.2.2 Sobolev spaces with variable exponent

Let € be a domain of R™ (n € N*).

Definition 1.6.
Let a := (a, ..., ) € N" be a multi-index. Assume that u € L}, (). If there exists
g € Li,.(Q) such that

loc

aa1+...+an,l/} ot N
oz gyt = (71 /wgdfﬁ forall 4 € C5*(Q).
Q

Q
Then g is called a weak partial derivative of u of order . The function g denoted by

8a1+m+anu

80‘“ or 0% gxq...0%ng, "

Definition 1.7.
Let m € N and p(.) be a variable exponent. W™P()(Q) is defined as follows

WmrO(Q) = {u € LPV(Q) such that 0%y € LPV(Q) with |a| < m},

Where |a| = a1 + ... + au,.
WmPL)(Q) is equipped with the following norm

. u
|ullym.ee) () = inf{A >0 me,po(m(x) <1h= > [0auly),

0<|a|<m
with
Owma) (o) (U) = Z 01r0 (@) (Oatt).
0<]al<m
Clearly
Wt (Q) = LPO(Q).
Remark 1.5.
We have

WhPO(Q) = {u € LPV(Q) such that Vu exists and |Vu| € LPV(Q)}.
Wtr()(Q) is equipped with the following norm

lullwreo @) = llullo) + [Vullpe)-

14
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Theorem 1.2. [3)/
Let p € P(Q, ). The space W™P)(Q) is a Banach space, which is separable if p is
bounded and reflexive if 1 < p~ < pT < +o0.

Definition 1.8.

The closure of the set of W™P)(Q)- functions with compact support in WP (Q) is
the Sobolev space W,"" © (Q2) " with zero boundary trace."

Furtheremore, we denote by Hgn’p(')(Q) the closure of C$°(Q2) in W™PL)(Q) and by
W=L0)(Q) the dual space of W'*()(Q), in the same way as the usual Sobolev spaces,

1 1
where 20 + 70 = 1.
Lemma 1.10.

We have

o H"PV(Q) c WY (Q).
o If p is log Holder continuous on ) then H)"")(€) = W9 (Q).
o Ifp(.) = 2 and m = 1 then H}(Q) = W,*(Q).

Theorem 1.3. /3]
Let p € P(Q, u). The space Wy"" (')(Q) is a Banach space, which is separable if p is
bounded and reflexive if 1 < p~ < pt < +o0.

Lemma 1.11. /3, 22/(Embedding Proberty)
Assume that ) is a bounded with sufficiently smooth boundary 02 and p,q € C(Q)
such that

l<p <pT<+4o0and 1 <q <q' < +oo forall x €

ng(xr) .r +
ol 2D f gt <o,
and p(x) < q*(z) in Wwith ¢ (x) = { "o 1
+oo if gt > n.

Then, the embedding W, ’q(')(Q) — LPO)(Q) is continuous and compact.

Corollary 1.1.
Assume that ) is a bounded with sufficiently smooth boundary O and p - Q0 — (1, 00)

is a continuous function such that

l<p <pf< if n>3.

n—2

Then, the embedding H}(QY) — LPY)(Q) is continuous and compact.

15



Chapter 1. Preliminaries
1.2.3 Important inequalities with variable exponent
Theorem 1.4. [22|] (Poincaré’s Inequality)
Assume that ) is a bounded. If p satisfies the log Holder inequality on (), then
In particular, the space

ullp) < ClIVullp) forall ue Wyt (5),

) = IVullpe)-

where C' is a positive constant depending on §) and p(.)

.

Wl’p(’)(Q) has an equivalent norm given by
o

Lemma 1.12. (Holder’s Inequality)

Let p,q,r > 1 be a measurable functions defined on €} satisfying
1
fora.ey e Q.

If f € LPV(Q) and g € LI (Q) then fg € L™V (Q) and
1fgllrcy < 1F oo llglla)-

Case p = q = 2 yields the Cauchy Schwarz inequality.

Leta,b > 0. Let p,q,v > 1 be a measurable functions defined on (), such that

Lemma 1.13. (Young’s Inequality)
1 1 1
= + foraey e Q.
p(y)  a(y)

(ab)y©) a0 pa0)
"0 = 20

Then
+ )
q()
By taking r = 1 and 1 < p,q < +0o0, it follows that for any € > 0, we have

ab < ea?") + CH1V,

1
For p = q = 2, it comes that for all € > 0, we have
bQ
4_6.

SIS

where C, =
q(ep)
ab < ea® +

16



Chapter 1. Preliminaries

1.3 Useful Theorems

In this section, we give some important results that we will apply later.

Theorem 1.5. [/9]

Let E : R, — R, be a nonincreasing function and assume that there exists a con-
stants C' > 0 and o > 0 such that

/E(t)“adt < CE(S), 0< 8 < 0.
S

Then, there exists a positive constants ¢, w and tg > 0 such that, for all t > t,, we have

E(t) < { E((i)le_wt Zf a=0,
cta if a>0.

Theorem 1.6. [/0]

Let A be a maximal monotone operator in a Hilbert space H with domine D(A). Then,

o [fU° € D(A), then, the problem
U'+ AU =0 inR., U(0) =0,

has a unique solution

U e C(R,,H).

o [fU° € D(A), then, the solution is more regular:

UeWh(R,,H).

17



CHAPTER 2

WAVE EQUATION WITH INTERNAL
SOURCE AND BOUNDARY
DAMPING TERMS: GLOBAL
EXISTENCE AND STABILITY

This chapter is the subject of the following accepted publication:
Wave equation with internal source and boundary damping terms: Global existence and stabil-

ity. By Boulmerka Imane and Hamchi Ilham.

In this chapter, we consider the following system

uy — Au = f(x,u) in (0,T) x £,

u=0 on (0,T) x Iy, 2.1
Oyu = —(h.v)g(x,u) on (0,T) x Iy,

u(0) = up and u(0) = uq in Q.

Where T' > 0, Q is a bounded domain of R™(n > 1) with sufficiently smooth boundary
I' = TgUTLy withTogNTy = 0. fisa nonlinear internal source function, g represents a

nonlinear boundary damping function, and h € R"™. A is the Laplacien with respect to the

18



Chapter 2. Wave equation with internal source and boundary damping terms: Global existence
and stability

spatial variables. 0,v = Vv.v where v is the unit outward normal vector to T and Vv is the

gradient with respect to the spatial variables.

The objective of this chapter is to apply the stable set method to prove the existence of the
global weak solution of then to use some integral inequalities to obtain the stability of this

solution.

This chapter is organized as follows: section 2.1 contains assumptions on the parameters
of needed to obtain our results. In section 2.2, we present the results of the existence of
the maximal weak solution of our problem and the decreasing of the energy of this solution. In
section 2.3, we prove that this weak maximal solution is global. In section 2.4, we prove that the

obtained global weak solution is stable.

The following assumptions are made:

2.1 Assumptions

(A1) Assumptions on the partition {I'),T'1} of T':

e Let xg € R"™ and hy > 0. Put
h=hz)=x—x9 forallz€Q,

lo={x el /hv<0}#0

and
Iy = {ZC S F/hl/ > ho}

(A2) Assumptions on the source term f:

e We assume that the function f is countinous in €2 x R where, f(x,0) = 0 and there exists
C1,Csy,p > 0, with
{ 2<p if n=12,

2<p<2i=L if n>3,

such that

|f(x,u) — f(z,v)] < Crlu—v|(1+ |uP~2 + [vP~2) forall z € Qandu,v € R

19
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and
F(z,u) < @]u\p forallz € Qandu € R, (2.2)
p

where F' is the primitive of f defined by

F(J},u):/f(l‘,T)dT forall x € Qand u € R.
0

(A3) Assumptions on the damping term g:

o We shall assume that the function g is countinous on I'y xR and there exists Cs, Cy, C5, Cg, m >

0, where

{ 2<m ifn=1,2,

2 .
2§m§n—f2 ifn>3,

such that, for all © € T'1, we have

1
Cslu|™ ! < [g(z,u)| < Calu[7T if Ju| <1,

Cslul < lg(z,u)| < Cglu| if |u] >1 (2.3)

and
g(z,u)u >0 forallz €'y andu € R.

2.2 Existence of the maximal weak solution

This section is concerned with the existence of the maximal weak solution of and the de-
creasing of the usual energy associated to this solution.
According to [I36l], we obtain the following result.

Theorem 2.1.
o Iful € H%O(Q) ={u€ H Q) : u=00nTy} and u* € L?(Q), then, there exists T > 0
and a maximal weak solution w in (0,T") of the problem , such that

we C%(0,T), Hy, (2)) N CH((0,T), L*(5)).
o Ifu’ € H*(Q) N Hy, (Q) and u' € H} (), such that

ou°
5 + (hv)g(z,ut) =0 on TY.

20
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Then, there exists T > 0 and a unique maximal solution of the problem (2.1)), such that
u e L>((0,T), H*(Q) N HE, (),
u € L((0,T), Hf, ()
and
uy € L=((0,7), L*(52)).

Next, we consider the energy functional E associated with our system defined by

1 1
E(t) = |luell3 + = ||Vu|3 — | F(z,u)dz forallt € (0,T).
2 2
Q

We have the following derivative energy identity, which shows that the above energy is a de-

creasing function.

Lemma 2.1. [I/1]]
Let ug € H%O () and uy € L*(Q), we have

t
E(t)—E(s) = — / /(h.l/)g(x, u)updldr forall0 <s<t<T.
s I'y

2.3 Global property of the maximal weak solution

In this section, we prove the global property of the weak solution of our system. For this
end, we introduce the following functionals, associated to the maximal weak solution given
in Theorem 2.1, defined by

J(t) = J(u(t)) = %HVUH% — /F(x,u)d:c forallt e (0,T)
Q

and
K(t) = K(u(t)) = |Vul2 —p/F(x,u)da: forall t € (0,T).

Q
We consider the set
H = {w € H} (Q)/K(w) > 0}. (2.4)
Let C be the best constant such that
[ull, < Cul|Vullz for all u € HE (). (2.5)

We have next, the property of the set H.
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and stability

Theorem 2.2.
Ifup € Hand uy € L?(2) with

2 _
f= G0N BO) T <1,

then, the maximal weak solution u of (2.1)) is global.

Proof. Firstly, we have
u(t) e H forallte (0,T).

Indeed, since
ug € H,

then
K(’LL[)) > 0.

This implies that there exists 7" < T such that
K(t)>0 forallte|0,T].

We have

1
10 = 319ul} - [ Flau)ds
Q

p—2 5 1 ) /
=—||Vullg+ —=(||Vu|lz5 —p | F(x,u)dx
% [Vullz p(” 12 (z,u)dz)

p—2 9 1
= ——||Vul|j3 + - K(t).
5 IVull3 + K0

By (2.7), we find

-2
J(t) > %HVUH% forallt € [0,T).
Hence 5
2P ).

IVully < 25 7(0)

Moreover 1
J(t)=E(t) - §HUtII§ < E(1),

then

2p
Vul|2 < E(t).
IVull3 < 25 B()
Since F is a decreasing function, then we have

2p
Vull2 < =2 F(0).
IVulf < =5 B(0)

22
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By (2.2)), we obtain

C’z/ Cy
F(z,u)dr < —= | |ulPdx = —=||ul|?.
/<> 2 [ = 2l
Q Q

(2.5)) leads to
Cs Cs —2
F(z,u)dr < ?CfHVUHg = ?CfHVqu IV7ull3.
Q

Also, (2.9) gives
Cy 2p p=2 2
Pl wyde < 2op 2 p(0)"7 [ vul},
p p—

Q
So
p/ 2D p=2 2 2
p | Fleude < GOEC=SE0) = [IVullz = A Vullz
Q
We then use (2.6) to find
p/F(x,u)dl‘ < ||Vul|? forallte[0,T"].
Q
Hence

K(u(t)) = K(t) = ||Vul/3 —p/QF(:E,u)dac >0 foralltel0,T].

(2.4) 1eads to
w(t) eH forallt e [0,T].

By noting that

2 _
CQCf(IfZ’QE(T/))’% <1,

we can repeat the proceedings above to extend 7" to T'.
Secondly, from the definition of E and K, we get for all ¢ € (0,7")

1 1
B(®) = 5w} + 5 IVul ~ [ Paudo

Q
1 p—2 1
= §HutH§ + TPHVUH% + EK(t)-
Since
K(t)>0 forallte (0,7T),
then

1 -2
B(t) > g lull3 + 75 = IVulf forallt < (0,7).
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This implies that there exists C' > 0 such that

luell2 + ||[Vul2 < CE(t) forallt e (0,T). (2.10)

Furthermore, E is a decreasing function, then

|uel|3 + || Vul|3 < CE(0) forallte (0,T).

By the alternative statement, we find the desired result. O

2.4 Stability of the global weak solution

We have the following stability result.

Theorem 2.3.
Ifug € Hand uy € L*(Q) with 8 < 1, then, there exists two positive constants C and w, such
that the global weak solution of ([2.1)) satisfies for all t > 0

Et)<Ce™ if m=2,

E(t) < C; if m>2.

tm—2

Proof. By the integral inequalities due to Komornik [19], it is sufficient to prove that, for all
0 <S5 <T < o0, there exist C' > 0 such that

T
/E’S(t)d:c < CE(S). (2.11)
S

For this end, we proceed in several steps.
Step 1: Energy identity
We put
Mu :=2h.Vu+ (n — 1)u.

We multiply the first equation of 1) by E e (t)Mwu. Then, we integrate the obtained result
over [S,T] x Q, we find

T
0= EmT_Q(t) Mu(uy — Au — f(x,u))dzdt
[7of

=I5+ I+ Is, (2.12)
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where
T
I = / BT (1) / w Mudzdt,
S Q
T
Igz/Em2_2 t)/AuMudxdt
S
and
T
Iy = — / E"T (1) / £, u) Mudzdt.
S Q
We have
T
= / E"T (1) / wy Mudzdt = [E™T (t) / w Mudz]}
S Q Q
T
/ /utMuda?dt—/ E*T ()/ut(Mu)tda?dt.
S Q Q
But

T
/ /ut )edzdt = / /ut (2h.Vu+ (n — 1)u)dxdt
Q s Q

T
/uthVu )edzdt — / E"T( /ut (n — 1)u)dadt,
Q S Q

UJ\%

which implies that

/ / ug(Mu)dxdt = / / ug(h.Vuy)dzdt
Q Q
T

—(n—-1) / /\ut] dxdt.
Q

S
If we apply the following identity

/Jl (k.Vj2)d /k v(j1j2)d /]2dlv(91k)d
T

Q

25
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for all
j1,752 € CHQ) and ke (C1(Q)),
with
j1=jJe=u and k=h,
we find

—/ut(h.Vut)dx = —/(h.u)|ut\2dF+/utdiv(uth)d3:.
Q r Q
Also, if we apply the following identity

div(jk) = jdivk + k.Nj forall j € CY(Q) and k € (C1(Q))", (2.15)

with
j=us and k=h,

we obtain

—/ut(h.Vut)dﬂs = —/(h.u)\ut|2df + /ut(utdivh—l— h.Vu)dz,
Q r Q

= —/(h.u)]ut\zdf—i—/divh\uthm—i—/ut(h.Vut)dac,
T Q Q
this leads to
—2/ut(h.Vut)d1: = —/(h.y)|ut2df‘—|—n/|ut|2daj.
Q r Q
Now, if we replace the above result in ( , we find

T T
—/E22( )/ut (Mu)dxdt = / /\ut| dxdt
S Q S Q
T
/ / (h.v)|ug|*dldt.
S T

So, I; takes the forme

L= [B"5 (1) / v Mudz)L —mT_Q /T B (0B, (t) / w Mudzdt

Q S Q
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T T
+/E'”52 (t)/|ut]2dxdt / / h.v)|ug|2dDdt.
S Q S r

For I, we have

£) / %Mudth

T T
/ B ( / AuMudzdt = / o
S
T

S Q r
+ / BT (1) / VuV (Mu)dzdt.
S
For the second term in the above identity, we have
T
/ /Vuv Mu)dzdt = / /VUV (2h.Vu + (n — 1)u)dzdt,
S Q Q
it follows that
T T
/E /vuv Mu)dzdt = 2/Em2( )/Vu.V(h.Vu)dxdt
S Q S Q
T
(n—1) / /]Vu\Qdacdt (2.16)
S Q
But
/VuV(h.Vu)dx :/\Vulzdx—i—;/h.V(WuP)dm
Q Q Q

Then, by the identity (2.14)), we get

/Vuv h.Vu)dx _/\vuy2dx+ /(h V)| Vu|2dD — /dwh\Vu| dx
r Q

ul?dr + = /(h v)|Vul|?dl.

So, by replacing it in (2.16), we find

T T
/ /VuV Mu)dzdt = (2 —n / /]Vu\ dxdt
S Q S Q
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T T
+(n—1) / /|vu\2dxdt / /hz/)|Vu2dth
S S r
T T
m—2 2
= [ E 2 (t) | |Vul°dzdt + (h.v)|Vu|?ddt.
S Q S T
Hence
T T
12_/E’”22(t /\Vu!Qdacdt—ir/E 2 t)/(h.u)\Vu]Qdth
S S r
T

m 2 8U
/ (t) / 5, Mudldt.
r

Inserting I, I and I3 in (2.12) to ﬁnd

T
m— - 2 m—
0=[E"F (t) / wMudz])§ — =2 / B (1) Ey(t) / wMudazdt
S

2
Q
T T T
+/E22(t)/]ut| dmdt+/E22(t)/]Vu|2da:dt—/E /f x, u) Mudzdt
S Q S S

Thus, we can write it as following

/E T / \ut]2 + ]Vu\ Ydxzdt = I + [[ST]XQ + I[ST}XFv .17
where
Io = —[Em’;Q(t) /utMudx]g,
Q
T
Iisrixa = / /utMud:L"dt—l— t)/f(x,u)Mud:Edt,
S Q
and
T T
Iis.7)xr / BT / — MudT'dt + / / (h.v)(Jug|* — |Vu|?)dTdt.
S r S r
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Step 2: Energy inequality

For the first term I, we can see that

/|Mu|2dx = / 12h.Vu + (n — 1)ul|?dz < /(|2h.Vu| + |(n — 1)u|)?dz
Q Q

Q

By the algebric inequality (1.7), we have
/]Mu\Qda: < 2/ |2h. Vu|*dx + 2/ |(n — 1)u|?dz.
Q Q Q

In the rest of the proof, C' represents a positive generic constant.

By the Poincare’s inequality (I.1)), we get

/|Mu|2d:c < O||Vul)3. (2.18)

Hence, we have

1
| [ wdtudal < 5 [ uPdo 5 [ 13uPas < Clul + [Vul?),
Q Q Q

but, by (2.10)), we obtain

\/utMudx| < CE(t). (2.19)
Then, the first term I became
Io = E"7°(S) / w(S)Mu(S)dz — E"=" (T) / w(T)Mu(T)da
Q Q

< CE" (S)E(S) + CE™2" (T)E(T).
Since the energy F is a positive decreasing function, then
Io < CE"% (S)E(S) < CE(S). (2.20)

For the second term /[ 1)« , we have

-2 m—
%ﬂm:”g/Ez%mmw/wMMMt
Q

/ x,u) Mudzdt.
Q

IisT)x0 < C/Ew(t)(_Et( /|Mu]2dxdt

Q

/T
S
By (2.19) and the Young inequality (1.3, we get for all e, > 0
T
e
2
S
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T
1
2— / / |f (2, ) |*dzdt.
S

Using the assumptions on f, (2.8) and (2.18)), we find

Iisr)xa < C/E > ( )(—Et(t))dt+elc/E’5(t)dt
T
+C(e1) / /|u|2d:1:—|—/|u!2p Ddz)d
S
< ClE%(S) - B¥(T +61C/E”£

+C(€1) / L /\u\ d:r:+/]u\2p Dz)d

Since the energy is a positive decreasmg function, then we obtain

Iisrixa < CE(S) + e1C / E% (t)dt

T
/ /\u| da;+/yu|2p Vdz)d (2.21)
S Q

We apply the interpolation inequality

Jull < Rullhally ™ with =5+ and a € 0.1
For
r=2p-1), a= 2(;01— 1 and B =2(2p — 3),
we obtain s
lullap—1) = ||U||22(p lu ||22(§73)
then

2 1 2p—3
lully =) < lullallul3, 5-
(p—1) (2p—3)

We use the Young inequality (I.5) to find for all e; > 0
2(p
lullzty3) < S lullyz—s) + *HUHz
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Using the embedding H%O (Q) — L2CP=3)(Q) to have
2(p—1 2(2p-3
lullye=3) < exCIVul3* % 4 Cea) ul3

By (2.8), we get

lull5E=3) < exCE(#) + Cle) ull3.

Then, we replace it in (2.21)), to find
T
Iistixo < CE(S) +€1C/Er2n (t)dt + e2C (€1 /EZL
S

T

C(ep, €2 / /|u| dxdt, (2.22)
Q

s
For the third term I[g 1), we have

T T
Iis 1< / / — MudTdt + / / (hv)(Jug|* — |Vul|?)dldt
S r S T
T T
/ / — Mudl'dt + / Mudf‘dt
S To S

IS}

T
+/Emz_2(t)/(h.1/)(|ut|2— Vul?)drde
S I'o
T
+ / B 1) / (ho)(Jug]? — |Vu|?)dTdt
S r
= Iis1)xro + L5151 5 (2.23)
where
T T
m—2 ou m=2 2 2
Isero = [ B2 () [ SEMudrdet [ B3 @) [ (o)l — [Vuf?)dras
5 I'o S T'o
and
T T
m—2 ou m=2 2 2
Isper, = | B0 [ SoMudrde+ [ B2 0) [ (ho)(ul ~ [Vu)drt
5 I S r
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For Ijs1)xr,, we use the definition of Mu to get

T T
ou ou
S To S o

Z

/hu)(\ut|2 Vul?)drdr,
1)
On I'y, we have

u =0,

— ,0u
Vu=r.5;,

Ut = 0,
|Vul? = g—g|2

So, we can write the term on | 7)xr, as following

T T
Iisrxry = / / | drdt — /
S S

then

/ u)|%\2dl“dt.

Fo 1_‘0
Then
T
Ijs 7% = / / (h. u)|—|2drdt
S To
Since
h.v <0 on T,
SO, we arrive at
Iisrjxry < 0. (2.24)
For I|s 7«1, , we use the definition of Mw to find
’ 19}
m—2 u
I[S,T}XIH :/E 2 (t) /(QhVu)adedt
S T
T T
m=2 ou m=2 2 2
+(n=1) [ E2 (t) ua—dth+ E =z (t) | (hv)(|ug]® — |Vul?)dldt.
v
S Iy S Iy
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Then

—2

T
Iis rixr, = —/E?(t)/(2h.Vu)(h.V)g(x,ut)dth
S Iy

T
(1) / B2 1) / w(h.v)g(a, up)dT'dt
S

T
+ / BT (1) /(h.u)(\ut|2 — |Vul?)dTdt.
S I

By the Young inequalities (I.5]) and @[), we find for all ¢; > 0

Iisrixr, <

/'|mmmﬂ+wm>

+m—nQWF+;ywmemwﬂﬁ—

1) / (h)|Vu2dTdt

Iy

¥ ‘

T
+ S/ E73 (1) / (h.v)|ug|2dTdt

I

T T
:elC/EZ_Q( )/yu| (h.v)dDdt + C(er) / /ygx w)|2(h.v)dTdt
S S '

'

3

T
+S/Ez(t)/(h.u)]ut|2dfdt.

We put dI'y, = (h.v)dI to obtain

T
m—=2 2
Iisrxr, < aC [ E72 (t) | |u[*dTpdt
S INT

T T
Jr/Emz_2( )/|ut| thdt+C 61 / /‘g X, Ut | drhdt
S S

Iy ry
We have
/yu| dr, < : /|Vu2dx < CE(®).

It Q
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So, the term on I'y became

T
Iis s, < elC/ET; )dt + C(e /E 7 / lg(z,w) | + Jug|*)dTpdt.  (2.25)
S

I
‘We have
I'h=TIyulsy,
with
Iy ={x el;u| <1}
and

I's = {(L‘ eIy ]ut\ > 1}.

Then, we obtain

T T
/E ; /| (2, u)|® + |usl?) thdt:/ /|g(:c w)|? + |us]2)dTndt
s I S I
T
/ BT ( /yg(x ug) [ + |ug[2)dTpdt. (2.26)
S T's
‘We have

2 =2
l9(z, ue)* = lg(@, ue) | (lg(z, ue) |7 |g(w, ue)|?)
2(m—1)

2
= |g('r7ut)‘m‘g(x7ut)’ m

and

2 =2 Q(m 2(m—1)
Juel? = Jug|m (Jue| 7 Juel?) = Juag] 7 |

For |u;| < 1, we use the assumptions on g (2.3) to find
2(m—1)

= -/ 2
g(@,u)|> < Cyp ™ |g(, ug)ug|m

and

2
(x>ut)ut‘mv

ug* < —5
ey
then

/TE’”EQ( )/(|g(x w)|? + |ug|2)dTpdt < c/ NO) / g (2, uy Jug|m dTpdt.
S

1) TaCIly

34



Chapter 2. Wave equation with internal source and boundary damping terms: Global existence
and stability

By the embedding L'(T;) in L (T';), we get
y g g

/T / lg(z,ug)|? + |ug|?)dlpdt < C/ )[/g(w,ut)utdl“h]ridt
s I

I
T
<C [ E"2 (t)(—E,(t))mdt.
/

If m > 2, we apply the Young inequality (1.3) for

m—2

a=E"(t), b=(-E(t)n, p=-——y and q=

to find for all e > 0

T T T
/Em22(t)(— Q/E’S t)dt + C(e /
S S S

This implies that

T T
/Em22(t)(—Et(t))3zdt < GQ/E?(t)dt + Ce2) E(S).
S S

If m = 2, we obtain

Hence
T T
/E"’z / (@, )+ [ue|2)dTpdt < GQC/E’S Vit + C(e)E(S).  (227)
S Ty S

Now, for |u¢| > 1, we use the assumption on g (2.3) to obtain

m—2

B2 (t) / 9(, ug)updlpdt
I'scIy

T
JE" @) [GowunP +uf)drnde < (5 +Co) [ B
S

I's
T
< C [ B*7 (1)(~E(1))dt,
/

“\ﬂ
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and stability

then
T

/ B / l9(a, wo)|? + [ue[*)dTndt < CE(S).

We insert (2.27), (2.28)) in (2.26)) to find

T
/ /y 2, u)[2 + Jug2)dTdt < 620/3’3 Jdt + C(e2) E(S).
I r

After that, we put the result (2.29) in (2.23)) to obtain

m
2

T
I[S’T}xl“l < 610/l?m21 dt—l—GQC 61 /E t)dt + C( 61,62)E(S).
S

Putting (2.24) and (2.30)) in (2.23) we find

ﬂ
2

T
Iisrxr <€1C'/ % t)dt + e2C(€1 /E t)dt + C(e1, e2) E(S).
s

Combining (2.20), (2.22)) and (2.31)) in (2.17), we get

T T

/E”f(t)/(\ugu|vu\2)dxdt<0(61,62)/19 2

S Q S

: t)/|u]2dxdt
Q

T
(a0 + exC(er) /E’” Bt + Cler, e2)E(S).
S

(2.28)

(2.29)

(2.30)

2.31)

Taking €; sufficiently small, then, €2 sufficiently small and using the definition of the energy, to

obtain

w‘g

T
/ E
s
Step 3: End of the proof
By the uniqueness compacteness argument, we can prove that

T
[ B
S

T
/ / lu2dedt + CE(S).
S Q

/|u!2dxdt < c/ / g, w)|? + g [2) .

Q
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and stability

Then, we have for all e3 > 0

T
/ /|u| dxdt<630/ E% (t)dt + Cles) E(S).
S Q

Replacing it in (2.32) and taking e3 sufficiently small, then, the result (2.T1)) is finally obtained.
O
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CHAPTER 3

WAVE EQUATION WITH BOUNDARY
VARIABLE DAMPING TERM:
GLOBAL EXISTENCE AND
STABILITY

This result was submitted by Boulmerka and Hamchi.

In this chapter, we study the following wave equation with variable exponent in the boundary
damping term:
utt—Au: mn QXR+,
u=20 on I'g xRy,
07 ™ (3.1)
0 on I't x Ry,

U in .

Here, Q) is a bounded domain of R™(n > 1) with sufficiently smooth boundary T' = Ty UT'y with
ToNT1 = 0. vis the unit outward normal to T. h € R™, g represents the boundary damping

function with variable exponent.

The main purpose of this chapter is to present and prove the global existence result by the
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

semi groups theory, then, to obtain the stability of the weak global solution of the problem (3.1)).

This study is organized as follows: in section 3.1 we present and prove the global existence
result of the weak solution of the problem (3.1). For the section 3.2, we prove that the energy
associated to the weak solution of the problem is a decreasing function. After that, we state
and prove the stability of the obtained global weak solution.

In order to state the corresponding results we have the following assumptions:

3.1 Assumptions

(A1)Assumptions on the partition {I'y,T'1} of T':

e Let vy € R™ and hy > 0, we have
I'o={xel/hv<0}#0 and Ty ={z € I'/h.v > hy},

where

h(z) =x —x¢ forall z €.

(A2) Assumptions on the damping term g:

e Assuming that the function g is continuous on I'y X R and for all x € T, g(z,.) is an in-

creasing and globally Lipschitzian function on R with
9(z,0) =0, g(x,v)v>0 forallz el andv R (3.2)
and there exists C1, Cy, Cs, Cy > 0 such that, for all x € I’y and v € R, we have

1
{ il ™1 < [g(a,0)| < Cofo| 7O if ol < 1, 43

Cslv| < |g(z,v)| < Cylv| if |v] > 1.
Here, the exposent m(.) is a measurable function on I'1, such that
2<mp<m(.)<mg ifn=1,2
and

2n
2<my <m()<mg<
<mp<m()<mp< —

ifn>3,
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

where

mi :=ess inf m(x) and mg:=ess sup m(z).
z€l z€l

As an exemple of the boundary term g, we take for all x € 'y

{a@mwwﬂv if ol <1,

gl@,v) = az)v if v >1,

in which « is a positive bounded and continuous function on I';.

3.2 Existence of the global weak solution

In this section, we prove the global existence of the weak solution to the problem (3.1)).

Theorem 3.1.
olful ¢V ={uec H(Q):u=00nTy} and u' € L*(Q), then, there exists a unique weak
solution u of the problem ([3.1)), such that

u € C(Ry,V)NCHRL, L3(Q)).
o Ifu’ € H?(Q) NV and u' € V, such that

ou°
a—l:/—i-(h.y)g(m,ul) =0 on Iy

Then, there exists a unique strong solution of the problem (3.1)), such that
we 2Ry, H(Q)),

up € L™ (R+, V)

and
ugy € LRy, L*(Q)).

Proof. Consider the following operators

AB:V —V,
defined for all v, w € V by
(Av,w)yry = /VU.dea:
Q
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

and

(Bv,w)yry = /(h.y)g(:c,v)wdf‘.
I'
The problem (3.1]) can be rewritten as following

U+ AU =0 in Ry,
U(0) = (u°,ul),

where
A:D(A) CV xL*(Q) — V x L*(Q),

is the operator defined as following
A(ug,ug) = (—ug, Auy + Bug) for all (u1,us) € D(A),

with
D(A) = {(u1,u2) €V x V : Aug + Bug € L*(Q)}.

Since
D(A) = {(u1,u0) € V XV :uy € H*(Q) and ({;:1 + (h.v)g(xz,u2) =00on T},

D(A) is dense in V' x L?(2) and A is an maximal monotone operator in V' x L?(2), then,

Theorem 7.1 in Komornik [19] gives us the desired result. O

3.3 Stability of the solution

Bellow, we state and prove that our global weak solution is stable. This will be accomplished by
using the multiplier method and some integral inequalities.
Before proving the main result, we need to prove the following.

Lemma 3.1.
The energy E associated with the problem defined as follows

1 1
E(t) = §HuzeH§ + §HVUH§ forallt € Ry

is a decreasing function.

Moreover, the derivative is given by

E(t) =— /(h.y)g(x,ut)utdf <0 forallteRy. (3.4)

I
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

Proof. Firstly, we prove (3.4)) for the strong solution. For this end, we multiply the differential

equation in (3.1) by u; and integrate over (2, we obtain

/uttutdx — / Auudr = 0,
Q Q

then, for the first term in the left hand side of the equation, we have

ld/ 9
Upplpdr = —— ug|“dx.
[ e = 55 [

For the second term in the right hand side, we use the Green formula (1.3) and the boundary

conditions to obtain

1
—/ Auutdmz/Vu.Vutdx— @utdfz d/ |Vu|2d:r3—{—/(h.y)g(az,ut)utdf.
QO 0 T ov 2dt 0

IR
Adding the two above results, we find

1d

5@(|\Ut|l§+IIVUII§) = —/ (h-v)g(@, us)udl’,

IN]

which means p

ﬁﬂﬂ=—ﬁywmmwmmp

Using the assumption on the damping term to get
E(t) <0 forallteRy,.
Secondly, by density, we obtain (3.4) for the weak solution. O
We are now ready to give the stability result.

Theorem 3.2.

There exists two positive constants c and w such that, for all t € R, we have

ce Wt if mo=2

5 if mo > 2. 3-5)

Proof. We prove (3.5) for strong solutions of (3.I) and by density we can extend our results to
weak solutions. So, to reach this end, we proceed in several steps.
Step 1: Energy identity
Let
0<8S<T <400
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

and
Mu :=2h.Vu+ (n — 1)u.

We multiply the first equation of 1) by E5 ( )Mwu. Then, we integrate the obtained result
over [S,T] x Q to find
T
= / Em2272
s

t)/Mu(utt — Au)dxdt
Q

=15 + Iz, (3.6)
where
T
I = /E’m222 (t)/uttMuda:dt
S Q
and
T
Iy = —/EmQQ_2 t)/AuMuda:dt.
5
We have
T
I = /EM22_2 (t)/uttMudxdt = [EMQZ_2 (t)/utMudaz]g
S Q Q
mg — 2 i mo—4 T my2
e / B (0B / wMudzdt — /S B ) / g (M) dadt.
5 Q Q
But
T T
—/Em222 (t)/ut( Vedwdt = /E /ut (2h.Vu + (n — 1)u)edzdt
5 Q S
T T
= —2/E /ut (h.Vu)idzxdt — /E /ut((n— 1)u)¢dzdt,
S Q 5
which implies that
T
- / B (1) / wy(Mu)dzdt = —2 ) / wp(h. Vg dadt
5 Q S Q
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

/ |ug|2ddt. (3.7

But

/ut(h Vuy)d / (h.v |ut\2dF+/utdiv(uth)d:U.
T

Q Q
If we apply the identity (2.15)) for

J=u and k=h,
we obtain

—/ut(h.Vut)dx = —/(h.u)]ut|2df + /ut(utdivh—i- h.Vug)dx
Q T Q

—/(h.v)]ut|2df+/divh\uﬂQdm—i—/ut(h.Vut)dx,

T Q Q

—2/ut(h.Vut)dx — —/(h.y)|ut2dr+n/‘ut|2d$'
Q

this leads to

Q r
Now, if we replace the above result in (3.7) we find
T T
- / E™5 (1) / w (Mu),dzdt = / B / |y |2ddt
S Q S
T
mo—2 2
—/E : (t)/(h.y)\ut] drdt.
S r
So, I; takes the form
T
mo— — 2 mo—
L= [E" (1) / w Mudz)% — m22 / E™%5 () E() / ue Mudadt
Q s Q
T T
mo—2 2 mo—2 2
+ [ BTz (t) | |u|°dedt — | E72 (t) [ (h.v)u|*dTdt.
S Q S r

For I, we use the Green formula (1.3) to obtain

T
) / AuMudzdt = — / B
Q S

44
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

T

+ / E'm22—2

S

t)/VuV(Mu)dmdt.

For the second term in the above identity, we have

t)/VuV(Mu)dxdt:

t) /VuV(2h.Vu + (n — 1)u)dxdt,

it follows that

T
/VUV (Mu)dxdt = 2/E t)/Vu.V(h.Vu)d:cdt
S Q

T

n—l/E

S

t) / \Vu|?dxdt. (3.8)
Q

But .
VuV (h.Vu) = |[Vul? + 5h.V(|vu\2).

Therefore, we get

/wv (h.Vu)da _/|vuy dr + = /(h v)|Vu|?dl’ — /dwh\vu|2dx
Q

2 -
2

1
ul?dx + = /(h v)|Vul|?drl.
Q r
Then, by replacing it in (3.8)), we find

T
/E /vuv Mu)dzdt = (2 —n) /E t)/|Vu]2dxdt
S Q

T

S
T
—F(n—l)/Em%2 (t) /|Vu\2dxdt+/ /hl/ |Vu|?dldt

S r

T
/]Vu| da:dt+/E
S
T
t)/\Vupdacolt—i-/Em222
Q S

45
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/E
S
T
mo—2
IQZ/E 2
S

(h.v)|Vul|*dTdt.

’1\
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T
/ E Mudth.
S T
Inserting I; and I5 in (3.6)) to find
0=[E"% (1) / ueMudal§ - "2 S (O E(t) / wMudzdt
Q Q
T T
+/Em22_2 t)/|ut]2dxdt+/Em2 )/]Vu|2dxdt
S Q S Q

) /(h.y)(w? ~ ug[2)dTdt.
Iy

T
mo—2
_/E 22
S

Thus, we can write it as following

T
t) / O fudrdt + / B
ov
S

r

(3.9

T
m 2
JEZ @[ luPdo+ [ 1VuPdz)at = o + Lo + T,
S
where
mo—2
Io=—|E 2 (t)/utMudaf]g,
)
mQ -2
I[ST]XQ = )Et( )/utMudxdt
Q
and
T 6 T
Iiszwr = /Em22_2(t)/&iLMudth—i—/Esz_Q t)/(h.u)(|ut]2 — |Vu|?)dTdt.
5 T 5 T

Step 2: Energy inequality

First, we have

/\Mu]zdx _ / 128V + (n — 1)uf2de < /(ygh.wy +1(n — )u))2de

Q Q Q

By the algebric inequality (1.7), we obtain

/]Mu\deg 2/\2h.Vu\2dx+2/\(n—l)u!de.
Q Q Q
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In the rest of the proof, C' represents a positive generic constant.

By the Poincare’s inequality (I.1)), we get

/|Mu|2dac < C”VUH%
Q

Hence, we have

1 1
| [ widtudol < 5 [ fds+ 5 [ 1Mufds < €l + Vald),
Q Q

but, by the definition of the energy, we obtain

| / wMudz| < CE(t). (3.10)

Then, the first term I became

mo—2

Io=E"5°(8) [ w(S)Mu(S)de — E™5(T) [ w(T)Mu(T)dz
/ /

m 2

< CE™% (S)E(S) 2 (T)E(T).

Since the energy F is a decreasing function, then
Io < CE(S). (3.11)

For the second term I|g 7)., Thanks to (3.10) we have

() (~ () E(t)dt = C / B (1) (— Ei(t))dt

= CIE®(S) — EZ(T)].

—

This implies that
Iisrixo < CE(S). (3.12)

For the third term I[g 1), we have

T T
Iis7)xr /E MudI‘dt+/E /hy )(Jug)? — |Vu|*)dTdt
S r S r
T T
/E Mudth—i—/E Mudfdt
S To S ry
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T
ma =2 2 2
+ 2 (t) [ (hv)(Ju® — [Vul*)dldt
S To
T
mo—2 2 9
+ 2 (t) [ (h.v)(Jug|* — |Vu|?)dDdt
S I8
= Iis7ix10 + L[5,7)xT1 > (3.13)
where
T T
mo—2 a’LL 2 2
I[S,T]XFO = E 2 (t) aMudth—l— E h V)(|Ut’ \Vu| )dth
S To S To
and
T T
mo— 8U ”"2*2 2 2
Iismixr, = | £72 (t) By —Mudl'dt+ [ E t) [ (h.v)(Jul® — |Vu|*)dT dt.
S Fl S Fl
For Ijs1)xr,, we use the definition of Mu to get
r ou i 0
Iisrixre = 2/Em222( )/(h Vu)a—dfdt—i— n—1) )/UQZdth
S To S To

T
o[
S

But, we have
then

Hence, we obtain

T
m2—2
Iis rixry = 2/E
S

On the other hand, we have

B

/ (hv)(Jwg]® — |Vul|*)dTdt.
I'o

u =0,

’LLtZO.

T
8 m2—2 2
hVu)a—dth— T (¢) [ (hov)|Vu|2dldt.
S

o
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then 5
U
\v4 2 _ |22 2
Vul? = |22,
which implies that
T T
I[ST]XFO_Q/E /hu 9 parar /E /hu)|2df‘dt
S F() S 1_‘0
Therefore, we can write the term I[g 77«1, as following
Iis rixry = / (h. u)|—| dldt.
Since
h.wv <0 on Iy,
SO, we arrive at
Iisr1xry < 0. (3.14)

For I|5 1«1, , we use the definition of Mw to find

/ (2h. Vu)ngdt

ST]XFl
T T
(n—1) /E /udet+ / (hv)(Jug|* — |Vul?)dDdt.
S Iy S

Then

T
Iis mxr, = /E
S
T
—(n—1) /E
s

T
+/E’"22 (t)/(h.y)(|ut]2  |Vul?)dTdt.
S

I'

/ (2h.Vu)(h.v)g(x,us)dl'dt
I

/u(h v)g(x,us)dldt

Iy

»
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Chapter 3. Wave equation with boundary variable damping term: Global existence and stability

By applying the Young inequality (1.5) for a = u, b = g(z,us), e = €1 > 0and p = g = 2, we
find for all 1 > 0

T
m 2 h2 1
I[ST xIy < /E T / [2(2]9(35,%)\2 + 2]Vu\2)] (h.v)dl'dt
S

Iy

n /T B (1) / [<n 1)l + 5o, W)] (hv)drdt

261

S I

T T
—/E%”U/mywmﬂw+/E /hMWMMt

S ry S ry
T T
:qc/E%Q@/ﬂwmmﬂa+cm) ?Q/M@WWmmﬂﬁ
Ty S

m2

T
+!E2 @/mwmﬁﬂw

We put dI'y, = (h.v)dI to obtain

T
2
I[S,T]XF1 < 610/E
S

‘We have .
/]u|2dfh < 2/|Vu2dx < CE(t).
I Q

So, the term on I'; became

T
mo—2
Wﬂﬂﬁﬁéﬁi/ E7(t ﬁ+CXqX/E %(ﬂ/ﬂﬂaugﬁ+hm%myﬁ. (3.15)
S INY
We put
r=T_urly,
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with
' ={zel;|u <1}

and
Iy = {$ eIy |ut| > 1}

Then, we obtain

T
/y (z,us)|> + |ug|*)dTpdt = /E / lg(z,u) | + |ug|?)dTpdt
S T_
T
+ / B / 19, ue)|? + |ug|2)dTndt. (3.16)
S I,
‘We have
g, ue) 2 = g, ue)| 7 (|g(a, )70 |, u)[?)
= 9o, u)| 7 g )|
and

2 1 T (o | o 2 (g | T [ | et
[ug]* = Jue| @ (Jug] @ fug|) = Jug| @ [ug| m@

For |ut| <1, we use the assumptions (3.3) on the boundary term g to find
2
lg9(z,ue)|” < Clg(a, ue)ue| ™

and
2
lue® < Clg(z, up)ug| @,

which gives
T
/ E”
s

Thus, we obtain

m2—2

2
/ (@, )+ [ue|2)dTpdt < C/E )/|g(x,ut)ut|m<z>drhdt.

r_

T
el

JEE 0 [ste.u)P+lul) /b“” AL
S r_
Since,

2 2 .

— < and ‘g(,ut) <1lonl_,

mo m( ) Cg
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then

2
mo

dI'pdt

/ 900+ )

_2
/ C2m(9:) ' g(ch(l:;t)u'i

r_cly

T
my— 2
< C/E = t)/|g(:v,ut)ut’"2 AUyt
S T
2
By the embedding L!(T;) in L™z (I'y), we get
T
2
JE2 0 [t u)P + fuf? L[ gt uumdry) s
S r_ r
T
m2 2 2
/ _E,(1) P dt. (3.17)
If mo > 2, we apply the above Young inequality (1.5)), with
mo— 2
a= B0, b= (EM)T, e p=—l25 and =2
to find
T T
2 my
(=B (t))m2dt < 2/E2 dt—l—C’eg/ ))dt for all ea > 0.
S S
This implies that
T
2
=T 2/Eﬁ )Vt + Ce2) B(S).
S
If mo = 2, we obtain
T
[ B 0By < CB(S),
5

Hence, (3.17)) became

/|g(:p w)? + )thdt<ezC/E2 Vit + C(e)E(S).  (3.18)
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Now, for |u;| > 1, we use the assumption on g to obtain

T
/ lg(z, w)|® + |w|*)dlpdt < (= + Cs) / g(x, ug)udlpdt
I, s ryCry
T T
<c [E" () [ gto.u) = (0 (~Edt)
S I
then
/ |92, u)|* + |ug)?)dTpdt < CE(S). (3.19)
We insert (3.13)), m in (3.16)) to ﬁnd
T T
/Em22(t)/|(g(:c,ut)|2 + |ug|?)dTpdt < eQC/E”?(t)dHC(eQ)E(S). (3.20)
S

After that, we put the result (3.20) in (3.13)) to obtain

T
I[ST}XF < elc/E 2 dt+€2c 61 /E22 dt+C(61,€2)E(S)
S

T
< (6C + e2C(e1) /EW;Q t)dt + Cle, €2) E(S). 3.21)
S
(B-14) and (3.21)) in (3.13) gives
T
Iisixr < (€ + exC(er) /Ez Vi + Cler, e2)E(S). (322)
S

Step 3: End of the proof
Combining (3.11), (3:12) and (3.22) in (3.9) and using the definition of the energy to get

T T
/ EZ(t)dt < (e,C + 620(61))/ EZ (t)dt + Cley, e2) E(S).
S S

Taking €; sufficiently small, then €5 sufficiently small to find
T
/E"f?(t)dt < CE(S).
S
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Then, the result (3.5)) is finally obtained by the integral inequalities due to Komornik [19].
O
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CHAPTER 4

COUPLED WAVE EQUATIONS WITH
INTERNAL/BOUNDARY DAMPING
AND SOURCE TERMS: BLOW UP

This result was submitted by Boulmerka and Hamchi.

This chapter is devoted to the study of the following system

u — Au+ g1(z, ur) = f1(u,v) in (0,T) xQ
vy — Av = fo(u,v) in (0,T) x Q
u=20 on (0,T)xT, @1
v=20 on (0,7) x Ty,
Oy + ga(z,ve) = YP(z, v) on (0,T) x Ty,
(u(0),v(0)) = (uo,vo) and (ut(0),v¢(0)) = (u1,v1) in Q.

Here, Q) is a bounded domain of R™(n > 1) with sufficiently smooth boundary I' = T'o UT'1 with
ToNTy = 0. Ais the Laplacien with respect to the spatial variables. 0,v = Vv.v where v is
the unit outward normal vector to I" and Vv is the gradient with respect to the spatial variables.
Moreover, f1 and fo are the coupling source terms, g1 and gs represent the internal/boundary

damping terms and 1 is the boundary source term.
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The principal goal of this work is to prove two main results concerning the system (4.1}).
First, we show that the weak solution with negative initial energy blows up in finite time. Then,

we prove the same result for the weak solution with positive initial energy.

This chapter is organized as follows: section 4.1 contains assumptions on the parameters in
(H.1) needed to obtain our results. In section 4.2, we present the preliminaries which are divided
into two subsections: some useful Lemmas and the local existence result. In section 4.3, we
give, first, some properties of the functional H in the case of negative initial energy. After that,
we state and prove our first blow up result. In section 4.4, we give an important Lemmas and
properties of the functional H when the initial energy data is positive and, also, state and prove

the second blow up result.

Throughout this chapter, we use the following assumptions:

4.1 Assumptions

(A1) Assumptions on f, and fo:

e For all (u,v) € R2, we have

F1(00) = Ju+ 020D (u + ) + fufPulo] 2 42)
and
fa(u,v) = |u+ v (w4 v) + [o]Poul?, 4.3)
where
-1<p if n=12,
-1<p< fffg if n>3.

(A2) Assumptions on g, and g :

e We assume that the function g1 is monotone, continuous in 0 x R with g1(.,0) = 0 and

there exists three positive constants my, C1 and Co, such that
2<m; <2(p+2)

and
Cilu|™ < gi(z,w)u < Calu|™ forall x€Q and ueR. (4.4)
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e We shall assume that the function gy is monotone, continuous function on I'y xR with g2(.,0) =

0 and there exists three positive constants ms , Cs and Cy, such that
2 S mo

and
C3|v|™ < ga(x,v)v < Cy|v|™ forall z €Ty and veR. (4.5)

(A3) Assumptions on 1) :

o We asume that the function v is defined on I'1 X R and there exists three positive constants k,
C5 and Cg, such that
2Cs
k > max{msa, ?}, C;>1
5

and
Cslv|F < ¥(z,v)v < Cglv|* forall z €Ty and veR. (4.6)

4.2 Preliminaries

In this part, we recall some technical results that we will need them later.

4.2.1 Useful Lemmas

By the definition of f1 and fa, we find the following relation between them.

Lemma 4.1.
For all (u,v) € R%, we have

ufl(u7 U) + UfQ(ua ’U) - 2(p + 2)F(u7 ’U), 4.7)

where

F(u,v) = (lu + v[2PHD) 4 2luw|PF2), (4.8)

b
2(p+2)
Proof. We use the definitions (4.2)) of f; and (4.3) of fo, we find

wfi(u,v) + v fa(u, ) = |u+o*P (u+v) (w4 ) + 2Jul (o]
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= |u + v|?PF2) 4 2Jup|PT2.

2(p+2)
2

(o12) to obtain

We multiply this result by

wfi(u,v) + vfa(u,v) = 2(p+2) lu + U‘Q(p+2) + 2|uv|p+2),

20 +2)
hence

ufi(u,v) +vfa(u,v) = 2(p+ 2)F(u,v).

The proof is, now, completed.
Next, we present the following property of the function F.

Lemma 4.2. [26]
There exists two positive constants C7 and Cs such that, for all (u,v) € R2, we have

Cr 2p+2) | |, 2(o+2) Cy

Proof. We start with the left hand side of (4.9), we have:
i) If u = v = 0, the result is trivial.
ii) If v # 0 and |u| < |v|, we have

(|u|2(p+2) + |U,2(p+2))'

1
2(p+2)

We consider the following positive continuous function in [—1, 1] defined by

Flu,v) = o2 D(|L 4 = PP+ 4 9] = ot2).

J(s) = 1+ 802 4 2072,

‘We have

in i(s) > 0.
_{21%1*7(5) >

If min j(s) = 0 then, for some sy € [—1, 1], we find
—1<s<1

in i(s) =3 = 2(p+2) p+2 _
_min 5(s) = j(s0) = [1 + sol + 2[so] 0.

This implies that
|1+ so| = |so| =0,

which is impossible. Thus

2C; = min j 0
7=_min j(s)>0,

therefore

F(u,v) > o |v[2(P+2) > O |u|2(P+2),
p+2 p+2
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Consequently,
C? 2
2F (u,v) > —— (|v]2(PF2) 4 |y |20 +2)y,
(:0) 2 =T (w2042 o fuf242)
or o
7 2(p+2) 2(p+2)
—(|v + ju < F(u,v).
555 13y (00 + ) < P
iii) If v # 0 and |u| > |v|, we follow the same steps as in i) to obtain
F(u,v) = ;|u|2(p+2)(‘1 + 9‘2(p+2) + 2’E|p+2) > i|u|2(p+2) > i|v‘2(p+2)’
2(p+2) u u p+2 p+2

then, we have o
7 2(p+2) 2(p+2)
—(|u + |v < F(u,v).
gy (™ o) < Flu,o)
At the end, in all cases, we find our goal.
Now, for the right hand side of inequality (#.9). So, we use the algebric inequality (I.7) for

a=|ul,b=|v|and p = 2(p+ 2) to find
|U+U’2(p+2) < (|u| + ’v|)2(p+2) < 22p+3(‘u|2(p+2) n ’U|2(p+2)). (4.10)
We apply, also, the Young inequality fora=|u|,b=|v],6 =1and p =g =2to get
ol < 5 (jul? + [of?),

then, we find )
|ul P2 o2 < (5)’)+2(IUI2 + [v]?)P+2.
We use, again, (I.7) to obtain

|uv‘p+2 — ’u‘p+2‘v’p+2 < (%)p+22p+1(|u’2(p+2) + |U‘2(p+2))

1
= (P 4 [0+, (4.11)
(ET0) and @ETT) give
1 2
< p+3(1,,|2(p+2) 2(p+2) 2(p+2) 2(p+2)
F(u,0) S 5o (2P0 4+ [oPOFD) + (204 4ot
22P43 41,
<z T (p+2) 2(p+2)y
< Sy (WD + )
So, we deduce that .
F(u,v) < 8 (|2 F2) 4 )20 t2) ,
(1.0) < 5o g (™) 4 o)
where Cg = 22713 + 1. O
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After that, we set the last important result in this section, by exploting the embedding
H(Q) < L20+D(Q) and HE (Q) — L>PT2(Q).
Lemma 4.3. [26]
There esists ) > 0 such that, for any (u,v) € H}(2) x H%O(Q), we have

2(p+2 2
w4 w2242 4 2wl 242 < n(IVul3 + Vo3, “.12)

where

fullaor = ( 1a72dz) 755,

Proof. We have
1w+ vll20p42) < lull2gpra) + [[Vll2p+2)-
By using (I.7) for
a = |lullapray, b= [[vll2(p+2) and p =2,
we obtain

2

lu+ 0342y < (ullagora) + 10ll2042)* < 2([ull3piz) + 10l5042)-

Thus

(p+2)
o+ 02252 < 202 ([full3 gy + 013027+ (4.13)

Also, using the Holder inequality (T.2))

1 1 1
forall 0 <p,q,r < oo suchthat —+—=— and f € LP(Q) g e LI(Q),
P q r

forp=2(p+2),9=2(p+2),r=p+2and f = u, g = v, to obtain

[wvllpra < [lullagpral[vll2p+2)-

Applying the Young inequality (T.4) to find

1
[wvllpra < 5 (ull3gpra) + [V113(1)-

Therefore .
+2
luvllfs < s lull3gre) + 1015642)" (4.14)
After that, suming up (.13) and (@.14) to find
2(p+2) 1
Jut0l205 4 2unllg2 < @74 4 ) (el + Telpen))*

The embedding H{ () — L2*T2(Q) and H (Q) < L2PT2(Q) yield to

2 2
o)+ 2lluoll033 < (| Vul + Vo3, n>o.

”7“““”2 (p+2) )

This conclude the proof. O
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4.2.2 Existence of the local weak solution

In this subsection, we define the maximal weak solution of the system ({#.1). Then, we present

some important properties of this solution.

Definition 4.1.
A pair of functions (u, v) is said to be a weak solution of #.1) on (0,T), where T > 0, if

u € C((0,T), HY(Q)),us € C((0,T), L*(Q)) N L™ (Q x (0,T)),
v e C((0,T), Hp, (), v € C((0,T), L*(Q)) N L™(T'y x (0,T)),
(u(0),0(0)) = (uo,v0) € Hy(2) x Hy, (%),
(u(0),v¢(0)) = (ug,v1) € L*(Q) x L*(Q)

and, for all test functions:

¢ € C((0,T), H Q) N L™ (Q x (0,T)) with ¢; € L*((0,T), L*(Q))

and

¢ € C((0,T7), HE, ()N L™ (T x (0,T)) with ¢, € L'((0,T),L*(Q)),

we have for all t € (0,T)

% utqﬁd:r—/utqﬁtd:r—l—/Vquﬁd:r—l—/gl(:v,ut)qﬁdx—/fl(u,v)qbdx
Q Q Q Q Q

and

d
dt/vtcpd:r—/vttptdx—&—/VvVgodx—i—/gQ(a:,vt)godF = /fQ(u,v)wdx—&—/@/J(x,v)godF.
Q Q Q Q

I'1 r

Now, we present the definition of the maximal solution of the system ({.1).

Definition 4.2.
We say that a weak solution u is maximal if it cannot be a restriction of a weak solution in (0,T"),
where T < T'.

By using the idea in [\l], we can obtain the following result.
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Theorem 4.1.
There exists a unique maximal weak solution (u,v) of defined on (0,T) for some T' > 0.
Also, the following alternative holds:

T = o0,

or

T <oo and lim([lurllz + [[oell2 + [[Vall2 + [ Voll2) = +oc.

Using the De finition 4.1 of the weak solution and the assumptions and on ¢
and go, we can obtain the decreasing of the energy functional of the system ({.1)).

Lemma 4.4.
We have
dE(t)
5 < — | gz, u)wdr — | go(x,vp)vdl <0 forallt € (0,7), 4.15)
Q I

where E is the energy functional associated to our system, defined for all t € (0,T), by

1 1
E(t) = §(||Ut|\§+ I\vt||§)+§(||VUI|§+ IIVvH%)/F(u,v)dw/‘l’(x,v)dﬂ (4.16)
Q I}

here
v

U(z,v) = /w(m‘ﬂ')dr forall x €Ty and veR.
0

4.3 First main result

In this section, we show that the weak solution defined in Theorem 4.1 blows up in finite time

when the initial energy data is negative. To reach this end, we consider the following functional
H defined by
H(t)=—E(t) forallte (0,T). (4.17)

4.3.1 Properties of the functional H

In the following two Lemmas, we state and proof some important tools that will play a major

role in the proof of our first main result.
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Lemma 4.5.

We assume that

E(0) < 0. (4.18)
Then o o
8 2(p+2) 2(p+2) 6 k
0 < H(O) < (D) < gl + Wbl + Flollbr, @19)
Here

ol r, = / jo[dT.
Iy

Proof. We use the definition of H in (4.17), the decreasing of the energy and the fact that the
initial energy is negative (4.18)) to get

0 < H(0) < H(t).

Now, we have

1 1
H(t) =~ (lunl + ol) = 57l + [V013) + [ Fluv)de+ [ W, )
) I
Which implies that
H@g/Fm@m+/W@MJ.

Q r
As a result of (4.6)), we have

Cﬁ k

U(z,v) < ?]v\ forallz €Ty andv € R, (4.20)

hence, (4.9) and (4.20) give

Cs 2(p+2) 20+2)y . C6 . 1k
H) < 5o (b 13) + 050050 + Wl for attt e 0,7)
This concludes the proof. O

In the rest of this chapter, C represents a generic positive constant.

Lemma 4.6.

Let
p+1 2(p—|—2)—m1 k —mg

(p+2) 2(m1 —1)(p+2) (m2 — 1)k

1.

0<U§mm{2
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We have
HO (@) |ull o) + HOT2D(@)]|0][{78,
2 2 2 2
Cllull3) + ol + lollE v, + H(®)) 4.21)
and

/ g1 (@, up)udz + / ga(@, ve)vdl < C(M{™™ + My ") (Jull 573 + [olla73)

Q I'1

H|vl[fp, + H(t) + CH (t)H'(t) for all My, My > 0. (4.22)

Proof. Thanks to (4.19) and the fact that m; < 2(p + 2), we obtain

o(mi—1)
o(mi— 2 2) 2 2)
H =D (@) ully ) < [ (p+2)<u ullzors) + Il te) + 2 lellir,
2)\m 2(p+2 2(p+2 olmi—
(lullyo o)™/ e < C([lull58 ) + [ollab s + ol )7t =D
2(p+2 2(p+2 m
(ot + el yri/et),
SO
o(mi— 2 2 2 2 o(mi— m
HO D (@) lullped ) < CUlull&ts) + [ullot ) + oflf p, ) =m0 - 4.23)

Now, we use the following algebric inequality

1
<(1+-)z4a) forallz>0,0<v<1landa >0, (4.24)
a
for
(p+2
z= ||UHQ + oIl Z+2§ +ollfr,, v =o(mi—1) +mi/2(p+2) and a = H(0),
to obtain

2 2 2 2 o (s — m
(rullyos) + o33 + ol p, om0 2+

2 2
< C(llullyiy) + olats) + llf r, + H(0)).

Since H(0) < H (t) for all ¢ > 0, then, (4.23) became
o 2(pt+2 2(p+2
HO D () lullpeh ) < Clullolts) + ol ) + ol r, + H (). (4.25)
Similarly, we find

a(m 2 2 2 2
HO @) oll, < Cllullalry) + Ill50 ) + [vlfr, + HE).  4.26)
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By summing up (4.25) and (#.26), we find {@.21).

Next, according to (4.4) and [@.5), we have

/gl(:n,ut)ud:x < C’g/|u||ut|m1_1d1‘
Q

Q

and

/gg(x,vt)vdfg C4/]U\]vt\m2_ldf.
I'

I

We apply, the Young inequality (T.6)

e First, fora = |u|, b = |us|™ !, p=m;and q = 7 to obtain
o -1
[ orteuuds < 2l + LSS i for all 8 > 0.

Q

e Second, for a = |v|, b = |v;|™2!, p = my and ¢ = 7 to get

ma —mo

ma

5 - 1 m
/92(33 v)vdl < 2 HU”mQ,rl + 725 2ol p, for all 62 > 0.

Iy

By taking §; and 2 such that
o = M{T™MHIM () and 632 = My~ HIO™ T (1),

we find
/ 01 (2 ueYudzs < CME=™ HEOM=D () a0 1+ CH= (1) g |2
Q

and

T+ CH () w2 1.

ma,I'y

/ g, v)vdD < CME™ Hom2=D (1) |y |72
I

Since my < 2(p + 2) and mg < k, then

+ CH™7 () [Jut]lmy

/91($7Ut)udl“ < CMll_mlHO(mlfl)( )”UHQ(pH)

Q

and

/gg(x,vt)vdf < C’M21—m2Ho(m2 1) ( )H”HkFl +CH™(t )||1),5Hm2 r-
I
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ED, @I and @I gives
Cr e < /gl(:c,ut)utd:r < _E(t) = H'(1),
Q
which implies that
H=(t)||uell;t < CH™(t)H'(t).

Similarly, we find
H7(O)lvell s, < CH () H'(t).

Therefore, we conclude by inserting (4.25]) and @.29) in (@.27)) the estimate

—m 2(p+2 2(p+2
/ g1z, ur)udz < CMI™ (full 5005 + vl + [vllfr, + H ()

Q

+CH™(t)H'(t).
Also, we put (#.26) and (#.30) in (#.28) to obtain

—m 2(p+2 2(p+2
/ gz, ve)vdl < CMY"2([ul30 ) + w5002 + [vllf p, + CH®))

I

FCOH () H'(t).

Summing up (@#.31) with @32), we get the wanted results [@.22).

4.3.2 Blow up result

Now, we are in position to state and prove the first main result of this chapter.

Theorem 4.2.
Assume that

E(0) < 0.
Then, the weak solution of #.1) blows up in finite time.

Proof. Let us introduce the following functional

L(t)= H'"7o(t) + e/(uut +vv)dzr forall t € (0,T),
Q
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for € small to be chosen later.

It is sufficient to prove that, for some ag > 0, we have
L'(t) > agL" =) @) forall t € (0,T).

To reach this end, we proceed in several steps:

Step 1: By taking the derivative of L and using the De finition 4.1 of the weak solution to the
system (4.1)), we get

L'(t)=(1—o)H () H'(t Vull3 + [IVol3)

e([luel3 + oell3) — €

)+
+e/(uf1(u,v) + vfa(u,v))dx — e/gl(:n,ut)udx - e/gg(w,vt)vdf + /w(:p,’u)vdf.
Q Q I T

Using (.7), we obtain

L'(t) = (1= o)H ™7 (t)H'(t) + e|luel3 + [|vel13) — e(l[Vull3 + [Voll3)

+e2(p+2) | F(z,u)de —e€ | gi(z,u)udr —e [ go(x,v)vdl +€ [ (z,v)vdl.
e

'

Adding and substracting epH for 2 < p < min{>2 ”062 : %} to find
L'(t) = (1—o)H () H'(t) + e(lluell3 + [lve]13) — e(|Vull3 + [|Vo[I3)

+e2(p+2)/ z,u dw—e/gl T, ug ud:c—e/gg(ac,vt)vdl1
Q Q I

+e / Y(x,v)vdl' + epH (t) + epE(t).
Iy
By the definition of F, we find

L(t) = (1= ) H " (O)H'(t) + e(1+ 2) ([luel3 + [uel13) + e(5 = D(IVull3 + [ Vo[3)

2 2
+e(2(p+2) — /F T, U dx—e/gl(x ut)ud:c—e/gg(ac vy )vdl
Q T
-l-e/z/J(x,v)vdF - ep/ U(x,v)dl" + epH (t).
I
(@.6) and (@.20) imply that
-0 p p
L'(t) = (1= o) H-7 (O H'(t) + e(1 + D) (luell3 + [[vrl|3) + e(5 = D((IVull3 + [Vol2)
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+epH (t) + €Cy /F(m,u)d:c + 662”1)”27“ - e/gl(as,ut)udx

Q Q
—e/gz(x,vt)vdf, (4.33)
'y
where
Ci=2(p+2)—p>0
and o
Co = C5 — %p 0

Inserting (#.22) in (4.33) to obtain

L'(t) = (1—o—eC)H 7 ()H'(t) + e(1 + )(||Ut||2 + loell3) + 6(% = 1)(IVul3 + [Vo]3)

_ — _ — +2 +2
+epH(®) +Cr [ Fla,u)ds + Calollir, — L™ + 37 (Jull 302 + o130

Q
+olli r, + H()).
Thanks to (#.9)), we get

L'(t) 2 (1—0—eC)H 7(t)H'(t) + (1 + )(HUtHz +lerll3) + e = D(IVul + [IVol3)

2
+epH () + Ca([ull3lt) + [0l553) + eCallvf p, — eC(MI™™ + M=) (Jlul 3073
rota + ol + H®)),
where C'3 = 26(';2). Therefore

p P
S U3 + lloil3) + e = D(UIVull3 + [|Vol3)

L'(t)y>(1—0c—eC)H 7 ()H'(t) +e(1 + 5 5

te[p — C(M{™™ + My~ ) H (1) + €[Cy — C(M ™™ + My~ ") ([ull53) + lol535)

+e[Co — C(M] ™™ + My~ ™)) |lv|lf 1, - (4.34)

First, we pick € small enough so that 1 — o — eC' > 0. Then, we choose M7 and M> sufficiently

large to have
p—C(M{™™ + M, ™) >0, Cy—C(M™™ + M, ™) >0
and Cy — C(M;™™ + M, ™) > 0.
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Consequentely, there exists ¢ > 0 such that (4.34) became

L'(t) > CCH () + uell3 + ool + lullsoa) + [0l5043) + 1ol .r,)-

Step 2: Now, according to (4.33)), we have

L(t) > L(0) forall te (0,7),

where
L(0) = H'- 9 / upu1 + vou1)d
Q

So,
o If

/(Uoul + vov1)dz > 0,

Q
then

L(0) > 0.

o If

/(UOU1 + vov1)dz < 0,
Q
then, we choose € such that

HY U uoul—i—wovl dx>0

:0\

as a consequence, we have

So, L is a positive function.

Step 3: We have

LY (1) = [H( /uut+wt ]/ (=)
0

< [HY(t) + € /(uut + voy)da |/ (1=9),
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Using the algebric inequality li fora = H7(t),b = €| [(uuy+vvy)dz| andp = 1/(1 — o)
Q
to get

LYy < CTH() + | / (utty + voy)d Y10,
Q
Applying (L.7), again, to find

L0 < CLHO + ([ fulfualde) V0= 4 ([ follofde) O @30
Q Q

But, using the Holder inequality (1.2)) and the fact that 2 < 2(p + 2) give

/ gl < ( / ful?dz)b ( / u2dz)t < C |( / 20D ) 2 / e ?dr)
Q Q Q 0 0

Therefore
(/|U||ut|d$)11" <C (/ !u|2(p+2)dx)2<101)<p+2>(/ |ut|2d:c)ﬁ
Q Q 0

Using the Young inequality (1.6) to get

([ lultuddr)™s <€ | [ 1P e o5 4 ([ juf oyt
Q Q Q

where
~2(1-o0)

1 90 and q¢=2(1—-o0),

SO

_1 2 2Ny — L
([ lullulde)™ < (Il 357 + ul).
Q

Now, we use the algebric inequality (4.24) for

2t 1 _
Z = ||u”2(p+2)7 V= (1 — 20_)(p+ 2) and a = H(O),
to obtain
== 2(p+2
( / [ul ue|dz) =7 < C(H(0) + [ull5073) + [lue3),
Q
SO

_1
([ lulluddo)™s < CCE) + Jull323 + )
Q
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Similarly, we can prove that

1
([ ellonkdz) > < CEHE + 0357 + o).
Q

Finally, (4.36) became

. 2(p+2 2(p+2
LY () < COH (1) + [[uel3 + [loel3 + lully ) + 0l505),
SO

L0 () < CCH®) + uell3 + ool + lul33) + 30T + ok @37

Step 4: In the last step, we combine {#.35) and to find a positive constant ag, such that

L'(t) > agLV=9)(t) forall t € (0,T).

4.4 Second main result

In this section, we assume that the initial energy is stranded between the zero and a given posi-
tive number. With similar method as in the proof of the first main result, we get our second main

result on the blow up of the weak solution in finite time.
To start, we need the following notations:
By =" /22)eByt = inf{|[Vull2 : v € HE () : [[o]lkr, = 13,

2(p+2) K
_1.2_ B 2(p+2) _ C6B3 &
Qo) = 50° — STy (+2) _ 2o for all o >0,

e« is the first positive zero of the function @',

(Chotimst if Gk <2(p+2),

2Csp(p+2)
ol = Q(), oFy =
—C, 2 .
Rl ool if Csk > 2(p+2).
We note that Ey < FEj. Indeed,
o If Csk < 2(p + 2), then
2(p+2
By p  (Ck=Coplot 1 o B oo CoBh
206p(p+2) 2 ' 2(p+2) ! R
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_l’_
20p(p+2) 2 2(p+2)" K
since k < Csk < 2(p 4 2), then

2(p+2) k
_ a% ( C5k - Cﬁp 1 Bl 2p+2 4 CﬁB2 a?“_2> :

C5k‘ — Cﬁp 1 B2(p+2) 2042 CGBk —
Ey—Fi <2 |22 =0 ~— 71 2et2y 2072 k-2
2 1—0‘1< Copk 2 kM T )
hence S(ois
Ey — FE; < a? 705 _ 1 _ 1 + Bl(p+ )a§p+2 + CﬁBgallc_z
=\ cep k2 k ’

since 1 is the zero of the function Q' then

B} a2t2 | CeBEak? = 1. (4.38)

G3)

Since % < 1, hence
6

=N

Cs 1
Ey—FEi<ai|=—"-=]<
2 1_a1<06p 2)_&

So
Ey— FE1 <0.

o I[f Csk > 2(p + 2), with the same way, we obtain

2(p+2) k
2(p+2)—Cep)ai 1 , B 2p+2) , C6B;

Ey— Ey = _Z s B L6053
2T C5Copk 2 3™ TR ™

2p+2) —Cep 1 BT CeBE
a? P 6p 1 4+ 21 Q2P 2 2672 (k2
=\ 2Csp(p+2) 2 20p0p+2) ¢t koot
Since, we have % < %, then
B g <o (o202~ Cop) 1 Cs[BIP o242 L cg Bkl
S T ) 2 2(p+2) '

By ([#-38), we obtain

Cs Cs 1 Cs L[ Cs 1
Er— By <ol - SRR & N Y PR
’ 1—a1<cﬁp 200 +2) 2+2<p+2>> T\ 2

So
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4.4.1 Important Lemmas

Here, we are going to introduce and prove some useful results required to obtain our second

main result.

Lemma4.7.

Assume that
1
0 < E(0) < Ey and (||Vuol3 + |Vuol3)2 > ca.

Then, there exists a constant cva > o such that, for all t € (0,T'), we have

1
(IVull3 + [Voll3)Z > oz (4.39)
and
2(p+2) k
2(p+2 2 B 242 CsB
m(HWFUHzE}ﬁzi + 2[|luv]|713) + IIUHk > mazw ) 4 2 0f. (440)

Proof. Let us define the function
Y(t) = ||Vul3 + | Vo3 forall t € (0,T).

By (4.8) and (4.16)), we have

1 2(p+2) p+2
E(0) 2 590 - g (l+ vl 13 + 2wl 5) — [ 0. v,
1N
(@T2) and (@20) give
1 Ui 2 2\p+2 Cs
E(t) > =~v(t) — ———— pt
(1) 2 570) = 50 g (I9ul + 190372 = Sl

By the definition of B; and By, we obtain

1 Bt CoBY
> Z -1 p+2 6 ')
B(t) 2 37) = 555 (IVull + 1 9013) [Vol5.
Further, we find
1 B t2) CeB
> = ! p+2 _ ~6D2 k/2
B(t) 2 37(t) = 555 (00) 2 (4(1)
1 B2(P+2) OBk
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where o = (v(t))Y/2.

Clearly, we have
Q'(a) = a(l - Bf(ﬂ+2)a2(p+2)—2 o CﬁBgak—Q)'

We can easely verify that () is increasing for 0 < o < a1, decreasing for o > «; and

Q(a) > —00 as «a— +oo.

Since

We set
a0 = (7(0))/2,
Thanks to (.4T)), we have
Qao) = Q((v(0))"/?) < E(0) = Q(a2).

Then

ap Z a9.

Now, we suppose that
(v(to))? < ay for some to > 0.

Using the continuity of the function -y, we can choose ¢y such that
(4(t0)) "/ > an.
Again, by (#.41), we obtain
E(to) > Q(v(to)) > Q(a2) = E(0)

and it’s impossible since
E(t) < E) for allte (0,T).

Therefore
(W(t))% >ao forall t>0.
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Now, by @.15)), @.16) and (#.20)), we get

1 1 2(p+2) pt2y , Co e
57(75) - EB(0) < m(”u + U’\g(p+2) + 2[juvl33) + ?”Unk,n-

Hence, (4.39) gives

p+2)

2 7(t)
(Il +wl5045) U

Cs
- 2 pt2y . ~6

Using (4.42)) and the definition of the functional () to obtain

2(p+2) +2y, Gy 1k 1,
m(”u +vllypre) + 2Muvllpis) + ?HUHkIl Z 50— Q(a2)
2(p+2 2(p+2

_ 1042 . }aQ + Bl(p : o 2P 12) + CGBS ok = Bl(p : o 2(P1+2) + C6B§ ok

22 2727 20p+2) 2 k2 242 2 k%
which gives {.40). O

Now, we need the following new expression of the functional H :

H(t)=Ey— E(t) forallte (0,T). (4.43)

4.4.2 Properties of the functional [

Here, we are going to give the proof of the following useful Lemmas.

Lemma 4.8.
Assume that
0<E(0)< By and (|Vuo|?+ |[Vuol2)2 > ar.

Then, for all t € (0,T), we have

Cs

Cy 2(p+2) 2(p+2) k
0 < HO) < 1(0) < 5 o (ullfD + Wl s + ol

p+2)
Proof. The proof of
0< H(0) < H(t),
is trivial.

We put (#.16) in (@.43) to get

1
H(t) = By = 5 (llullz + lvell3) = 5(IVullz + [Voll3)

1
2
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+/F(u,v)dx+/\ll(a:,v)dI‘.

Q I
Using (#.39) and since az > o, we find
gL 2 2y 1 Vul2 + IVol2) < E 1,
2 = 5 lluellz + lluell2) = S (IVullz + [[Voll2) < B1 = Seq.
Therefore, (#.44) became

H(t) < E, — la% + /F(u, v)dx —|—/\Il(:n,v)df

2
Q T
[
=Q(m) — oles! + [ F(u,v)dx + | ¥(z,v)dl’
Q N1
1, 1, BY™ ,,. CeBk
= ia% — ia% — mal(ﬁ ) _ Tzoz’f + /F(u v)dx —i—/\I/(a:,v)dF
I
BQ(P+2) B
= 717a%(p+2) 06 — 24 /F U, v da:+/‘11(m,v)df
2(p+2)
Q r
/F U, v dx—i—/\I/
I

By @.9) and (.20), we find
H(t) <

(p+2) (p+2)

- 2(/>+2)

The proof is now completed.
By the same method as in the proof of Lemma 4.6, we can obtain the following.

Lemma 4.9.

Let
p+1 2(p—|—2)—m1 k—THQ

0 <o mint ) 2m = 1)(p+2) (ma = DR

We have for all t € (0,T)

HMD () fullt + HO D (@) o]

ma,l'

p+2)

C(lull3 hr, +H(1)
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and

/ g1(x, w)udz + / go (@, ve)vdl < C(MI™™ 4+ My~ (([ull30 03 + vl 5s)

Iy

H|vl[fp, + H(t) + CH (t)H'(t) for all My, My > 0. (4.45)

4.4.3 Blow up result
The correspending second main result is presented in the below Theorem.

Theorem 4.3.
The weak solution of the system ({.1) with initial data satisfying

1
0<E0)<Er and ([Vuol3 +[[Veol3)? > an,
blows up in finite time.

Proof. We define the following function

L(t) = H'7o(t) + 6/(uut +ov)dz  for all te (0,T),
Q

for € small to be chosen later.

We proceed in several steps.

Step 1: As in the first step of the proof of T'heorem 4.2, we obtain

L(t) = (1= ) H " ()H' (1) + €L+ 5)(lwal}3 + [ee]3) + (5 = 1)(IVul3 + [V0]3)

p 2(p+2 2
et = B+ vl L) + 2l — [ ortuuds ~ e [ ga(avvar
Q I
+e/1/1(:c, v)vdll — ep/\lf(x, v)dl + epH (t) — epEs. (4.46)
Fl Fl
For the last term, we can see that
2(p+2) k 2(p+2) k
B 20p+2)  CeB B 20p+2) . CeB _
—enE> > —enE 1 P 2 k 1 P 2 k 1'

According to (4.40), we obtain

2(p+2 2
—epEy > —epBa[ g (|lu+ o315 + 2ol 1)

_
(p+2)

77



Chapter 4. Coupled wave equations with internal/boundary damping and source terms: Blow
up

Cs .\ 1k B2 20+2) | C6B5 11
+?\|U’k,r1](ma2p + A as).

However, using this result, (4.6) and (4.20), (4.46) becames

L(t) = (1= ) H () H'(6) + e(L+ 5)(utl}3 + [0e]3) + (5 = 1)(IVul3 + [V0]3)

_ _ .
+epH(t) + eCa((lu+ v]5005) + 2luvl|713) + Csvllf p, — e / g1 (, u)udz
Q

—e/gg(x,vt)vdf, (4.47)
I

where 2(p2)

— p pEy | By 2p42) , C6BY 11

Cy=1- — ( o, + as)

20+2) 2(p+2)2(p+2) k
and 2(p+2)
Vol Cep Bj ’ 2(p+2) CﬁBg ky—1
=Cs— — |1+ Ey(——

Our next goal is to show that C'y and C’5 are positive.

For C4, we have

o If C5k < 2(p + 2), then
(C5k — CGp)a%

By —
27 " 2Cep(p + 2)
#.38)) leads to
2(p+2
B2 2042 CsB; ko o
2(p+2) ! 200+2) " T 2(p+2)
since ay > o, then, we find
2(p+2
BYY ey GBS o od
2(p+2) ° 200+2) 27 2(p+2)
1 1 1
Since p2) < fom™ <z , then
2(p+2
Bl(p : 2(p+2) CGB§ k 05%
2 + 5 , (4.48)
2(p+2) k 2(p+2)
then, we obtain
2(p+2
A )(Bl<p+) 2<P+2>+CGB§a’“) o Py %
20p+2)""2(p+2) 2 ko2 20p+2)"2(p+2)
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(2(p+2) —ploi _ (2(p+2) - Cop)at
Ap+2)? 4(p +2)?

Since 2(p + 2) > C5k, then

B%(P"‘Q) 2p+2) n CGB§ k:) (C5k — C6p)Ck% B C6pE2 > pE2

2(p+2)"2 ko N

p
(1- ) 4(p + 2)2 200+2) ~ 2(p+2)’

2(p+2)

consequently
64 > 0.

o If Csk > 2(p + 2), then
(2(p +2) — Cop)aj

By =
2 CsCopk
We have
B%(P+2) a2(p+2) N C@Bg ak N a? B%(P+2)O€(P+2)*2 + CﬁBécalk;—Q
2(p+2) 2 27 Csk ’
using (4.38)) to obtain
BX) . CsB% " o2 (4.49)
20p+2) 2 k27 Csk '
then 2(p+2) k 2
(1 _ p )( Bl a2(ﬂ+2) + 0632 ak) (2(/) + 2) _p)al
20p+2)""2(p+2) 2 ko2 2C5k(p + 2)
_ @2(p+2) —Cep)oi _ CopEs
2C5k(p + 2) 2(p+2)’
" 2(p+2) K
(1- P ) B; Q2002 Ce B3 k) > pE>
20p+2) 2(p+2) 2 k27 2p42)
hence
64 > 0.
For C’s5, we have
o If C5k < 2(p + 2), we use to find
Cep Bf(pH) ap+2) . CeBS Cep, of
_ 68 C- — 252

_ (Csk — Cep)ad _ CepEy
2k(p+2) k-
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So
65 > 0.

o If Csk > 2(p + 2), we use to obtain

B2+
Cep 2 (p+2) " CGBz ok) > (Csk — Cgp)a?

(G = T)(z(er 9) %2 ko2 Csk?

The fact that Csk > 2(p + 2) gives

(C5 — @)(ﬂ 2(p+2) + CsBj ak‘) > (2(p +2) — Csp)ai _ CepEs
k2(p+2) 2 ko2 Csk? ko

Then
65 > 0.
Now, we insert (#.43) in (@.47) to obtain

L'(t) = (1—o0—eC)H (L) H'(t) + (1 + )(HUtHQ + [lell3) + 6(5 = D(IVul3 + [V0]13)

(p+2)

_ ) .
epH () + Ca(llu -+ ol2042) + 2uv]213) + Csllolf r,

— - (p+2 (p+2
—eC(M{™™ + My ™) ([ull 515 + ol ) + ollf p, + H(2),
using (#.9) to get

L'(t) 2 (1—0—eC)H 7(t)H'(t) + (1 + )(HUtHQ + loell3) + e(g = 1)(IVull3 + [Vo]3)

val (p+2 +2 el k
+epH (t) + eCo(|ully 0 3) + [0l1513) + Cs vl r,

_ —m 2 2 2
—eC(M{™™ + My~"2)([ull55) + [vllos) + ollf r, + H (),

where Cg = C7C}4. Thus
—o b p
L'(t)>(1—0—eC)H () H'(t) + (1 + 5)(Huf||§ + o 13) + €5~ D([Vull3 + IVoll3)

-m —m Yal -m —m 2(p+2 2 2)
telp — C(M™™ + My ™) H(t) + e[Ce — C(M{ ™™ + My~ "™)]([[ull515) + w51 3)

+e[Cs — C(M} ™™ + My~ ™)) ||v|ly 1, - (4.50)

We take € small enough so that (1 — o) — eC' > 0. Then, we choose M; and M, sufficiently
large to have

— CO(M{™™ 4 M} ™) >0, Cg—C(M;™™ + M; ™) >0
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and Cs — C(M{™™ + M,y ™) > 0.

Therefore, there exists ¢’ > 0 such that for all ¢ € (0,7), (4.50) can rewriting as follows

L'(t) > C'(H () + w3 + [vill3 + llullaora) + lollaois) + ol r,)- (451)

2(p+2

Step 2: Similarly, to the second step in the proof of T’ heorem 4.2, we can find

L(t) >0 for all t€(0,T).

Step 3 : As in the third step in the proof of T'heorem 4.2, there exists C' > 0 such that for all
t € (0,7T), we have

. 2(p+2 2(p+2
LYO=(8) < CCH ) + el + ool + Tl + oll50s) + IolEr). @52)

Step 4: At the end, we combine (4.5T)) with (#.52) to find a positive constant a;, such that

L'(t) > ai LMY=V (4) forall t € (0,T).
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CONCLUSION AND PERSPECTIVES

Conclusion
In this thesis, our results, concerning the existence and the behavior of solution of nonlinear
hyperbolic systems, have been proved under suitable assumptions on the initial data and on the

exponent nonlinearity.

In the first study, we have proved the global existence and stability of the weak solution for
a nonlinear wave equation with the presence of the internal source and the boundary damping
terms in the case of constant exponent. In the second study, we have obtained the global exis-
tence and the stability of the weak solution for a wave equation with variable boundary damping
term. In the last study, we have showed that the weak solution of nonlinear coupled wave equa-

tions blows up in finite time for weak solution with positive or negative initial energy.

Perspectives

The following open questions can be made regarding the material presented in this thesis:
e Study of the global existence of solution for the first system in the case of 8 > 1.

e Study of the global existence of solution for the first system in the case when the damping

term dominated the source term (m > p).
o Study of the blow up of solution for the first system.
o Study of the Stability of solution for the third system.
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