
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
Ministry of Higher Education and Scientific Research

Batna 2 - University
Faculty of Mathematics and Computer Science

Computer Science department

Doctoral Thesis
To obtain the degree of Doctor of Science

Sector: Computer science
Specialty: Networks and Distributed Systems

Self-stabilization in dynamic distributed
systems

Presented by
Saadi Leila

President Faiza TITOUNA Professor U-Batna 2

Supervisor Hamouma MOUMEN Professor U-Batna 2

Examiner Sonia Sabrina BENDIB MCA U-Batna 2

Examiner Aldjia BOUCETTA MCA U-Batna 1

Examiner Abderrahmane BAADACHE Professor U-Alger 1

Examiner Leila BOUSSAAD MCA U-Batna 1

◦ ◦ ◦
”Strong people are the ones who’ve come through the toughest times.”

◦ ◦ ◦

Dedicate to

◦ ◦ ◦
To the memory of my mother, only the person I need in my life

To my father, only the person I respect and I am indeted
To my husband

To my daughters Soujoud et Safwa my hope in this life
To all my sisters and brothers and their families

To my father-in-law, only my best friend.

◦ ◦ ◦

i

Acknowledgments

My gratitude goes to everyone whose assistance was vital in accomplishing this thesis.

First and foremost, my sincerest thanks go to my supervisor, Hamouma Moumen, for his
constant unwavering guidance, diligent advice, and infinite support. Thank you Chief.

I would like to thank Dr.Baderddine Benreguia for being a source of knowledge on the
main principles of this thesis.

Special thanks go to Pr. Faiza Titouna, Dr. Sonia Sabrina Bendib, Dr. Aldjia Boucetta,
Dr. Abderrahmane BAADACHE and Dr. Leila Boussaad who agreed to be part of my final
defense committee. I would also like to extend my thanks to all colleagues and friends in the
Computer Science Department who contributed one way or another to this thesis.

Leila

ii

Abstract

Dynamic distributed systems are used widely in everyday life by dealing with exploitation
and treatment on information, documents, services, medias, and all entertainment means.
Many companies creating software and systems compete to offer users powerful and tolerant
services.

This dynamic DS are obliged to response the user demands in time and with trustworthy
information, they offer all levels of security; authenticity of all services and personnel infor-
mation. This kind of systems appears in our life in all areas using different means of sensors
that collect all type of information and requests where the challenge is to ensure a permanent
service availability since failures occurs.

Many algorithms are used here to fault tolerant and exceed those situations, among the
self-stabilizing algorithms that take the system to a legitimate state even the presence of
failures and errors.

This thesis deals with the problem of finding dominating set using self-stabilizing paradigm
in dynamic distributed systems. Usually, members of a dominating set are selected to be as
cluster heads in Wireless Sensor Networks (WSN) in order to ensure a permanent service
availability. Since failures occurs frequently inside WSN due to limited battery energy, self-
stabilizing algorithm allows recomputing the dominating set, and hence the network returns
to its ordinary running.

Existing works have introduced many variants of self-stabilizing algorithms that compute
minimal dominating set S where each node out of S has neighbours in S more than it has
out S. In this thesis, we introduce a generalized self-stabilizing algorithm called minimal
(α, β)-dominating set. An α-dominating set is a subset of nodes S such that for any node υ

out of S, the rate of neighbours of υ inside S must be greater than α, where 0 < α ≤ 1. In
the same way, an (α, β)-dominating set is a subset of nodes S such that: S is α-dominating
set and for each node υ in S, the rate of neighbours of υ inside S is greater than β, where
0 ≤ β ≤ 1. Mathematical proofs and simulation tests show the correctness and the efficiency
of the proposed algorithm.

Through our proposed variant (α, β)-domination, we prove rigorously the conjecture of
Carrier et. al. (Self-stabilizing (f, g)-alliances with safe convergence) who have proposed a
self-stabilizing algorithm for a domination variant called (f, g)-alliance set only when f ≥ g.
We prove the correctness of the case f < g.

Key words: self-stabilizing algorithm; minimal dominating set; α-domination; dynamic
distributed systems.

iii

Contents

1 Distributed systems and fault tolerance 5

1.1 Introduction . 6

1.2 Distributed systems . 6

1.2.1 Definition . 6

1.2.2 Distributed systems goals . 8

1.2.3 Types of distributed systems . 9

1.3 Models of communication in distributed systems 11

1.3.1 Message passing communication 12

1.3.2 Shared memory communication 12

1.3.2.1 State model (or composite model): 12

1.3.2.2 read-write atomicity: 12

1.4 Asynchronous distributed systems . 13

1.4.1 Synchronous distributed system 13

1.4.2 Asynchronous distributed system 14

1.5 Fault tolerance . 15

1.5.1 Definition . 15

1.5.2 Failure models . 16

1.5.3 Fault tolerance approaches . 16

1.5.3.1 Fault taxonomy in distributed systems 16

1.5.3.2 Fault-tolerant algorithm categories 17

1.5.4 Fault tolerance mechanism in distributed system 19

1.5.4.1 Replication Based Fault Tolerance Technique 19

1.5.4.2 Process level redundancy technique 19

iv

1.5.4.3 Fusion based technique 20

1.5.4.4 Checking Point/RollBack Technique 20

1.6 Conclusion . 20

2 Self-stabilizing in distributed systems 23

2.1 Introduction . 24

2.2 Definition . 24

2.2.1 Formal definition . 25

2.2.2 Self-stabilization advantages and disadvantages 26

2.2.3 Self-stabilization algorithm design 27

2.2.4 Daemons . 29

2.2.5 Complexity measures . 29

2.2.6 Transformers . 30

2.2.7 Proof techniques . 31

2.3 Examples of self-stabilization algorithms for some graph problems 33

2.3.1 Matching . 33

2.3.2 Dominating set . 35

2.3.3 Independent Set . 37

2.3.4 Coloring graph . 37

2.4 Conclusion . 39

3 Algorithms for dominating sets 43

3.1 Introduction . 44

3.2 Definitions . 45

3.3 Algorithms of dominating set . 48

3.3.1 K-domination . 48

3.3.1.1 Varieties of k-domination 48

3.4 Dominating set applications . 50

3.4.1 MDS in wireless networks . 50

3.4.2 Design of wireless sensor networks 52

3.4.3 Health service . 52

3.5 Conclusion . 53

v

4 Self-stabilizing Algorithms for Minimal Dominating Set 55

4.1 Introduction . 56

4.2 Related Work . 57

4.3 Self-stabilizing distributed algorithms for dominating set 57

4.3.1 Dominating bipartition [GHJS03b] 57

4.3.2 Minimal dominating set [GHJS03b] 59

4.3.3 A Self-Stabilizing Distributed Algorithm for Minimal Total Domi-
nation [GHJS03a] . 61

4.3.3.1 Minimal Extended Domination [GHJS03a] 62

4.3.4 self-stabilizing algorithms for minimal total k-dominating [BYK14] 63

4.3.4.1 Minimal total dominating set 63

4.3.4.2 Total k-dominating set [BYK14] 64

4.4 Self-stabilizing Algorithm for Minimal α-Dominating Set 64

4.4.1 α-domination . 64

4.4.2 Related work of α-domination on self-stabilization 65

4.5 Model and terminology . 66

4.5.1 Execution model . 68

4.5.2 Transformers . 68

4.6 Self-stabilizing algorithm for minimal α-dominating set 69

4.6.1 Closure . 70

4.6.2 Convergence and complexity analysis 71

4.7 Minimal (α, β) dominating set . 72

4.7.1 Self-stabilizing algorithm for minimal (α, β)-dominating set 73

4.7.2 Closure . 73

4.7.3 Convergence and complexity analysis 74

4.8 Simulation and experimental results . 75

4.9 Conclusion . 79

Conclusion & Perspectives 82

Bibliography 86

vi

List of Figures

1.1 A distributed system connects processors and systems by a communication
network. [KS08] . 7

1.2 A distributed system organized as middleware. [TS06] 7

1.3 An example of a cluster computing system. [KS08] 10

1.4 Distributed pervasive systems. 11

1.5 An example of a synchronous execution in a message-passing system. All
the messages sent in a round are received within that same round. [KS08] . 14

1.6 An example of an asynchronous execution in a message-passing system. A
timing diagram is used to illustrate the execution. [KS08] 15

1.7 Self-stabilization algorithms. 18

1.8 Robust algorithms. 18

1.9 Replication based technique in distributed system. [SA15] 19

2.1 Self-stabilization system’s behavior. [Neg15] 25

2.2 Self-stabilization properties, closure and convergence. [Neg15] 26

2.3 A legitimate configuration for matching problem. [Neg15] 28

2.4 Examples of matchings (the shaded edges denote the elements of the match-
ings). [GK10] . 34

2.5 Minimal Dominating Set D of a graph G. (The members of D are hatched).
[Neg15] . 36

3.1 Five Queens Problem. [HHS98] . 44

3.2 Dominated jobs. [Ken06] . 45

3.3 Example of minimal dominating sets. [HHS98] 46

3.4 Results of the MkDSP proposed by [NHNT20]. 51

vii

4.1 Dominating bipartition. 58

4.2 Execution of the algorithm Dominating bipartitions. [GHJS03b] 58

4.3 Minimal dominating set. 59

4.4 Execution of the algorithm minimal dominating set. [GHJS03b] 60

4.5 Algorithm MTDS: Minimal Total Dominating Set. 63

4.6 α-MDS self-stabilizing algorithm . 70

4.7 α, β-MDS self-stabilizing algorithm . 73

4.8 Cardinality of α-MDS according to α on graphs with 1000 nodes. 76

4.9 Convergence time according to α on graphs with 1000 nodes. 77

4.10 Cardinality of the minimal dominating set according α and β. 78

4.11 Convergence time according α and β.. 79

viii

List of Tables

1.1 Different types of transparency in a distributed system [ISO95]. 8

1.2 Different types of failure. 16

1.3 the differences between the techniques of fault tolerance in distributed sys-
tem. [SA15] . 21

2.1 Self-stabilizing algorithms for maximal matchings and its variants. 36

2.2 Self-stabilizing algorithms for dominating sets and its variants. 40

2.3 Self-stabilizing algorithms for maximal independent set and its variants. . . 41

2.4 Self-stabilizing algorithms for coloring graph problem and its variants. . . 41

4.1 Table of notations . 67

4.2 Self-stabilizing algorithms on one parameter α domination. 80

4.3 Self-stabilizing algorithms on two parameters α and β domination. 80

ix

General Introduction

General Introduction

Distributed computing occurs when one has to solve a problem in terms of physically distinct
entities (usually called nodes, processors, processes, agents, sensors, etc.) such that each
entity has only a partial knowledge of the many parameters involved in the problem.

Understanding and designing distributed applications is not an easy task [AW04], [CaR11].
This is because, due to the very nature of distributed computing, no node can capture instan-
taneously the global state of the application it is part of. This comes from the fact that, as
nodes are geographically localized at distinct places; distributed applications have to cope
with the uncertainty state created by failures.

Self-stabilization is a fault tolerance approach for distributed systems that has been in-
troduced for the first time by Dijkstra [Dij74]. A self-stabilizing distributed system is able
to achieve a global correct configuration (without any external intervention), in a finite time,
starting from an initial illegitimate configuration. Various self-stabilizing distributed algo-
rithms have been proposed in the literature using graph theory such as leader election, nodes
coloring, domination problems, independent set identification, spanning tree construction.
The reader can refer to the survey [GK10] for more details of self-stabilizing algorithms.

Domination has been extensively studied in literature [HHS98] and adopted in many real-
life applications. It has been utilized for address routing, power management and clustering
issues in ad-hoc networks [LLY09, AWF03, BDTC05]. Recently, particular parameters of
domination have been used to influence (and change) the opinion of the users in the social
networks [FEK09, AKL18]. A dominating set is a subset S of the graph nodes where ev-
ery node is either in S or is a neighbor of at least one node of S. The dominating set S is
minimal if there is no proper subset in S that could be a dominating set. Before 2003, no
self-stabilizing algorithms have been introduced to solve (minimal) dominating sets problem.
At that time, algorithms are in general based on greedy, exact and heuristic methods. The
first self-stabilizing algorithm for (minimal) dominating set was proposed by Hedetniemi et
al. [HHJS03]. After that, many variants of self-stabilizing algorithms have been proposed
imposing additional parameters of domination like total domination [BYK14, GHJS03b],
efficient domination [Tur13, HHJ+12], connected dominating set [BBP13, DWS16], influ-
ence domination [WWTZ13, DWS14b], distance-k domination [DDL18]. Each parameter

1

Introduction

has its benefits according to the used application. For example, connected dominating sets
are generally used as backbone (infrastructure) in ad-hoc and sensor networks.

The α-domination concept (without using self-stabilization concept) has been studied
for the first time by [DHLM00]. Other results on α-domination are given in [DRV04]. Let
G = (V,E) be a connected graph where V is the set of nodes and E is the set of edges.
We say that S ⊆ V is α-dominating if for all v ∈ V − S, |N(v)∩S|

|N(v)| ≥ α, where 0 < α ≤ 1

and N(v) is the set of v neighbors i.e. N(v) = {u|vu ∈ E}. Besides the particular cases
of α-domination introduced in the literature, we present a new parametric called (α, β)-
dominating set. An (α, β)-dominating set is a subset of nodes S such that: S is α-dominating
set and for each node v in S, the rate of neighbours of v inside S is greater than β, where
0 ≤ β ≤ 1.

Contribution

Previous self-stabilizing algorithms have used only α = 1/2, where every node out of
S must be adjacent to at least 50% of nodes inside the dominating set. The threshold 50%

can be a limited choice, whereas other values like 20% (α = 0.2) or 70% (α = 0.7) may be
more useful. Therefore, using general parameters of α-domination and β-domination will
be more interesting for many practical cases.

Carrier et. al. [CDD+15] have introduced a variant similar to α and β domination, called
(f, g)-alliance set. However, authors have proved the self-stabilizing algorithm only when
f ≥ g. Hence, the case f < g still as a conjecture. Through our proposed variant (α, β)-
domination, we prove rigorously their conjecture.

The thesis has also the following threefold contributions.

(i) We propose a self-stabilizing algorithm to find a minimal α-dominating set called
α-MDS.

(ii) a new parameter of domination (α, β)-domination is introduced.

(iii) Finally, a self-stabilizing algorithm is presented for computing minimal (α − β)-
dominating set.

The later proposed algorithm proves the conjecture of Carrier et. al. [CDD+15] that there
is a self-stabilizing algorithm for (f, g)-alliance problem when f < g.

Thesis organization

This thesis is organized as follows: Chapter 1 provides a presentation of distributed
systems and fault tolerance paradigm. First, we have summarized the notions of distributed
systems, their definition, objectives, types; then we moved on to existing communication
models. Synchronization is also an important concept in DS, which is why we have focused
on synchronous and asynchronous systems.

2

Introduction

studying distributed systems requires the study and knowledge of the fault tolerance
paradigm which is described in the second part of the chapter.

In the second chapter we introduced and described the self-stabilizing algorithms used
to overcome faults in a distributed system. we have seen how to designate a self-stabilizing
algorithm and the main elements influencing their stabilization such as daemons, complexity
measures and transformers. We ended the chapter with an important state of the art of some
self-stabilizing algorithms in different graphs.

Since this thesis is interested in the minimal dominating set paradigm and how to apply
a self-stabilizing algorithm to find it, the third chapter introduces the concept of minimal
dominating set in general and the varieties of algorithms used to find it.

The fourth chapter details the use of the self-stabilizing paradigm to find the dominating
set. After presenting some existing self-stabilizing algorithms (like the first self-stabilizing
algorithm for minimal dominating set proposed by Hedetniemi et al. and other many variants
of self-stabilizing algorithms proposed imposing additional parameters like total domination,
efficient domination, ...), the chapter must discuses the main contribution : Self-stabilizing
algorithm for minimal (α, β)-dominating set.

Finally, we conclude the work with an important conclusion and future perspectives.

3

Chapter 1

Distributed systems and faults tolerance

CHAPTER 1

DISTRIBUTED SYSTEMS AND FAULT

TOLERANCE

Contents
1.1 Introduction . 6

1.2 Distributed systems . 6

1.2.1 Definition . 6

1.2.2 Distributed systems goals . 8

1.2.3 Types of distributed systems . 9

1.3 Models of communication in distributed systems 11

1.3.1 Message passing communication 12

1.3.2 Shared memory communication 12

1.4 Asynchronous distributed systems . 13

1.4.1 Synchronous distributed system 13

1.4.2 Asynchronous distributed system 14

1.5 Fault tolerance . 15

1.5.1 Definition . 15

1.5.2 Failure models . 16

1.5.3 Fault tolerance approaches . 16

1.5.4 Fault tolerance mechanism in distributed system 19

1.6 Conclusion . 20

5

Chapter 1 : Distributed systems and fault tolerance

1.1 Introduction

The study of this thesis takes place around fault tolerance in distributed systems exactly the
proposal of new algorithms allowing systems to self-stabilize, which gave the need to make
a study on distributed systems and fault tolerance.

This Chapter is divided en tow parts by presenting important knowledge on distributed
systems and fault tolerance. Firstly,we quote the fundamentals of a distributed system; its
objects, architectures, models and a brief presentation of an asynchronous distributed sys-
tem. Generally, since the important goal in distributed systems design is to construct the
system in such a way that it can automatically recover from partial failures without seri-
ously affecting the overall performance, we will discuss in the second part the importance
of fault tolerance. an important state of the art will be presented in this chapter to highlight
the advantages and disadvantages of fault tolerance algorithms in distributed systems and
networks.

1.2 Distributed systems

1.2.1 Definition

Computer architectures have evolved significantly since their appearance side by side of
operating systems and different software, which has given rise to distributed systems defined
as an interconnected, multiple processors. Various definitions of distributed systems have
been given in the literature, none of them satisfactory, and none of them in agreement with
any of the others.

[TS06] define the distributed system as a collection of independent computers that ap-
pears to its users as a single coherent system. Otherwise; this definition refers to two im-
portant characteristics of distributed systems. The first is that a distributed system is a set
of computer elements that can each behave independently of each other called nodes. A
second element is that users (whether people or applications) think they are dealing with a
single system. [TS16] A general definition has been given by [KS08] that is a collection
of independent entities that cooperate to solve a complex problem that cannot be individu-
ally solved. This definition refers all system where there is a communication among mobile
intelligent agents in the real world like flock of birds, ecosystems of microorganisms. the
distributed system became a reality in our life due to the emergence of the internet and the
huge data flowing through the web.

A distributed system is composed of a set of independent computers in memory, proces-
sor, operating system and software/hardware resources; interconnected via a specific com-

6

Chapter 1 : Distributed systems and fault tolerance

munication network. each computer acts as an independent entity locally; globally all units
can participate in distributed tasks/calculations like showing in Figure 1.1.

Figure 1.1: A distributed system connects processors and systems by a communication network.
[KS08]

In order to support the heterogeneity of computers in the network while providing a
single system view, distributed systems are often organized by means of a software layer,
i.e. logically placed between a level layer top layer composed of users and applications, and
an underlying layer, called middleware as shown in Figure 1.2.

Figure 1.2: A distributed system organized as middleware. [TS06]

7

Chapter 1 : Distributed systems and fault tolerance

1.2.2 Distributed systems goals

• Making resource accessible: the most important reason to highlight a distributed sys-
tem is to share different remote resources placed on different sites either hardware
(printers, disks, computers, ...) or software (data, files, web pages, ...). The desired
objective is to minimize the cost of using resources economically.

• Distribution and transparency: another important goal of a distributed system is to
hide from clients everything about the operation of the system and how resources are
physically shared among users.

transparency type

[TS06] resume the types of transparency in the table:

Access hide differences in data representation and how a resource is accessed
Location hide where a resource is located
Migration hide that the resource may move to another location
Relocation hide that a resource may be moved to another location while in use
Replication hide that the resource is replicated
Concurrency hide that the resource may be shared by several competitive users
Failure hide the failure and recovery of resource

Table 1.1: Different types of transparency in a distributed system [ISO95].

Degree of transparency

In many cases, increasing the transparency of distribution costs the loss of perfor-
mance in distributed systems. We have a compromise between having transparency
and keeping the performance in such a way many Internet applications repeatedly try
to contact a server before finally giving up. Consequently, attempting to mask a tran-
sient server failure before trying another one may slow down the system as a whole.
[KS08] puts the point in such a case showing it may have been better to give up ear-
lier, or at least let the user cancel the attempts to make contact. In other way, aiming
for distribution transparency may be a nice goal when designing and implementing
distributed systems, but that it should be considered together with other issues such
as performance and comprehensibility. The price for not being able to achieve full
transparency may be surprisingly high.

• Openness: an open distributed system is a system that offers services according to
standard rules that describe the syntax and semantics of those services. [KS08] [Cro96]
describe an open distributed system with a set of components that may be obtained

8

Chapter 1 : Distributed systems and fault tolerance

from a number of different sources, which together work as a single distributed sys-
tem. In 1988, the International Standard Organization (ISO) began work on preparing
standards for open distributed system (ODP) to define the interfaces and protocols to
be used in the various components in an ODP. Generally, an open distributed system
should also be extensible; that means we can easily add components or parts that run
in different operating systems or replace an entire one.

• Scalability: to know if a distributed system is scalable, we have to measure the evo-
lution of its size on the user side, resources, geographical mobility in the sense of
distance, and administrative evolution so that the system can be managed even over
time. To realize this idea, the designers face some problems dealing with a centralized
server, huge amount of data and information and different types of networks from a
localization point of view.

• Pitfalls: distributed systems differ from traditional software because components are
dispersed across a network. Not taking this dispersion into account during design time
is what makes so many systems needlessly complex and results in mistakes that need
to be patched later on. This mistakes are formulated as the following false assump-
tions that everyone makes when developing a distributed application for the first time:
[KS08]

1. The network is reliable.

2. The network is secure.

3. The network is homogeneous.

4. The topology does not change.

5. Latency is zero.

6. Bandwidth is infinite.

7. Transport cost is zero.

8. There is one administrator.

1.2.3 Types of distributed systems

Distributed systems are growing quickly and touche an important number of fields, in fact,
we can distinguish between different types of them:

• Distributed computing systems: this class of distributed systems is used to perform
high performance computing tasks; we can distinguish tow groups:

9

Chapter 1 : Distributed systems and fault tolerance

1. Cluster computing systems: this subgroup is used for the parallel programming
in which a single program is run in parallel environment on multiple machines.
the computers in a cluster are largely the same, they all have the same operating
system, and are all connected through the same network.

Figure 1.3: An example of a cluster computing system. [KS08]

2. Grid Computing systems: the key issue of a grid computing that we can use a
large number of resources from different organizations and locations with differ-
ent system to collaborate in a task belonging to q group of people using virtual
organization.

3. Cloud Computing system: following Vaquero et al. [VMCL09], cloud computing
is characterized by an easily usable and accessible pool of virtualized resources.
Which and how resources are used can be configured dynamically, providing
the basis for scalability: if more work needs to be done, a customer can simply
acquire more resources. The link to utility computing is formed by the fact that
cloud computing is generally based on a pay-per-use model in which guarantees
are offered by means of customized service level agreements (SLAs).

Cloud computing is organized to four layers as:

Hardware processors, routers, but also power and cooling systems.

Infrastructure It deploys virtualization techniques to provide customers an in-
frastructure consisting of virtual storage and computing resources.

Platform Also like operating systems, the platform layer provides higher-level
abstractions for storage and such.

Application Actual applications run in this layer and are offered to users for
further customization.

10

Chapter 1 : Distributed systems and fault tolerance

• Distributed information systems: the second class of distributed systems is found in
organizations that were confronted with a multiple of networked applications, but for
which interoperability turned out to be a painful experience. Many of the existing
middleware solutions are the result of working with an infrastructure in which it was
easier to integrate applications into an enterprise-wide information system. Two forms
of this class are listed:

1. Transaction processing systems

2. Enterprise application integration

• Distributed pervasive systems: in this class, we refer to a distributed pervasive sys-
tems, they are often characterized by being small, battery-powered, mobile, and having
only a wireless connection, although not all these characteristics apply to all devices.
Moreover, these characteristics need not necessarily be interpreted as restrictive, as is
illustrated by the possibilities of modem smart phones. [RMM05]. This systems are
implemented in different aspects of life: in homes systems, buses, buildings, farms,
electronic health care systems, sensor networks... to give in the end the notion of
internet of things.

Figure 1.4: Distributed pervasive systems.

1.3 Models of communication in distributed systems

A distributed system involves a number of nodes communicating with one another. In or-
der to develop a distributed algorithm, details of inter-nodes communication can be quite
important. In general, there are many parameters of variability in distributed systems like

11

Chapter 1 : Distributed systems and fault tolerance

the model of communication. Models are simple abstractions that help understand the way
nodes communicate.

1.3.1 Message passing communication

This model of communication correspond to systems where processes communicate by send-
ing messages through a network. In synchronous message-passing, every process sends out
messages at time t that are delivered at time t + 1, at which point more messages are sent
out that are delivered at time t + 2; the whole system runs in lockstep, marching forward in
perfect synchrony. [Asp22]

In asynchronous systems, messages are only delivered after unknown delay. we can
found also semi-synchronous models.

1.3.2 Shared memory communication

Every two neighbors share a common memory. Therefore, using the common memory, a
node will be able to read its local state and states of its neighbor nodes. Two sub-models can
be distinguished in this case:

1.3.2.1 State model (or composite model):

In this model, a node executes the following three operations as an atomic step.

(1) reading states (registers) of all its neighbors,

(2) making internal computations and then

(3) updating its own state (register).

This model has been introduced by Dijkstra in order to be used for the concept of self-
stabilization [Dij74].

1.3.2.2 read-write atomicity:

This model makes separation between operations. We assume that each operation is an
atomic step i.e. reading is atomic step and writing is another atomic step. [DIM90].

12

Chapter 1 : Distributed systems and fault tolerance

1.4 Asynchronous distributed systems

The distributed systems are also classified on synchronous/asynchronous systems, the syn-
chronisation can be processor synchrony/asynchrony, synchronous/asynchronous communi-
cation primitives and synchronous/asynchronous executions.

1.4.1 Synchronous distributed system

A synchronous distributed system comes with strong guarantees about properties and nature
of the system. Because the system makes strong guarantees, it usually comes with strong
assumptions and certain constraints. Synchronous nature by itself is multi-faceted:

• Upper Bound on Message Delivery There is a known upper bound on message trans-
mission delay from one process to another process OR one machine/node to another
machine/node. Messages are not expected to be delayed for arbitrary time periods
between any given set of participating nodes.

• Ordered Message Delivery The communication ways between two machines are ex-
pected to deliver the messages in FIFO order. It means that the network will never
deliver messages in an arbitrary or random order that can’t be predicted by the partic-
ipating processes.

• Notion of Globally Synchronized Clocks Each node has a local clock, and the clocks of
all nodes are always in sync with each other. This makes it trivial to establish a global
real time ordering of events not only on a particular node, but also across the nodes.

• Lock Step Based Execution The participating processes execute in lock-step. An ex-
ample will make it more clear. Consider a distributed system having a coordinator
node that dispatches a message to other follower nodes, and each follower node is ex-
pected to process the message once the message is received. It cannot be the case that
different follower nodes process the input message independently at different times
and thus generate output state at different times. This is why we say processes execute
in lock step synchrony a la lock step marching.

The problem with synchronous distributed systems is that they are not really practi-
cal. Any software system based on strong assumptions tends to be less robust in real world
settings and begins to break in practical/common workloads. For example, relying on the
network that it is definitely going to deliver the message in a fixed amount of time is not
really a practical assumption. In real world, software system is subjected to multiple kinds
of failure. It is practically difficult to build a completely synchronous system, and have the
messages delivered within a bounded time. [KS08]

13

Chapter 1 : Distributed systems and fault tolerance

Figure 1.5: An example of a synchronous execution in a message-passing system. All the messages
sent in a round are received within that same round. [KS08]

1.4.2 Asynchronous distributed system

The most important thing about an asynchronous distributed system is that it is more suitable
for real world scenarios since it does not make any strong assumptions about time and order
of events in a distributed system.

• Clock may not be accurate, clocks can be out of synchronisation Clocks of different
nodes in a distributed system can drift apart. Thus it is not at all trivial to reason about
the global real time ordering of events across all the machines in the cluster. Machine
local timestamps will no longer help here since the clocks are no longer assumed to be
always in synchronisation.

• Messages can be delayed for arbitrary period of times Unlike synchronous distributed
system, there is no known upper limit on message transmission delay between nodes.

Asynchronous distributed system is tough to understand since it is not based on strong
assumptions and does not really impose any constraints on time and ordering of events. It
is also tough to design and implement such a system since the algorithms should tolerate
different kinds of failures. An obvious example of such an asynchronous system is the
Internet.

14

Chapter 1 : Distributed systems and fault tolerance

Figure 1.6: An example of an asynchronous execution in a message-passing system. A timing dia-
gram is used to illustrate the execution. [KS08]

1.5 Fault tolerance

More close to everyday life, are the telecommunications switching systems and the bank
transaction systems, this systems are more close to be attacked or get failures in reliability
and availability. To achieve the needed reliability and availability, we need fault-tolerant
computers which they have the ability to tolerate faults by detecting failures, and isolate
defect modules so that the rest of the system can operate correctly.

1.5.1 Definition

[HW92] describes the situation of faults like that a system is said to have failure if the service
it delivers to users deviates from compliance with the system specification for a specified
period of time.

A failure is defined as a deviation of a service delivered by a system from the essential
specification of this system to eliminate errors or faults.

Fault tolerance refers to the ability of a system (computer, network, cloud cluster, etc.)
to continue operating without interruption when one or more of its components fail. To say
that a system tolerates faults, we must guarantee the concepts:

• availability: refers to the probability that the system is operating correctly at any given
moment and is available to perform its functions on behalf of its users.

• Reliability: presents the response of a system for a long time to the maximum and it
performs its tasks continuously without failure and errors.

15

Chapter 1 : Distributed systems and fault tolerance

• Safety: refers to the situation that when a system temporarily fails to operate correctly,
nothing catastrophic happens.

• maintainability: means that how a failed system can be repaired; that shows also a
high degree of availability.

A system is said to fail when it cannot meet its promises. In particular, if a distributed system
is designed to provide its users with a number of services, the system has failed when one
or more of those services cannot be (completely) provided. [TS06] We can define the cause
of an error as a fault, it’s important to know the origin of an error to create a fault tolerance
system. faults are classified as transient, intermittent, or permanent.

1.5.2 Failure models

[TS06] resume the failure models in the table 1.2:

Type of failure Description

Crash failure
A server halts, but is working correctly until it
halts

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive to incoming messages
A server fails to send messages

Timing failure
A server’s response lies outside the specified
time interval

Response failure
Value failure State
transition failure

A server’s response is incorrect The value of the
response is wrong The server deviates from the
correct flow of control

Arbitrary failure
A server may produce arbitrary responses at ar-
bitrary time

Table 1.2: Different types of failure.

1.5.3 Fault tolerance approaches

1.5.3.1 Fault taxonomy in distributed systems

In [Tix10], Tixeuil describes faults in distributed systems using two criteria: time and nature.
Considering the time occurrence of faults, three types are distinguished:

16

Chapter 1 : Distributed systems and fault tolerance

1. transient faults: faults that are arbitrary in nature can strike the system, but there is a
point in the execution beyond which these faults no longer occur;

2. permanent faults: faults that are arbitrary in nature can strike the system, but there is
a point in the execution beyond which these faults always occur;

3. intermittent faults: faults that are arbitrary in nature can strike the system, at any
moment in the execution.

A second criterion is the nature of the faults. We can distinguish the following faults de-
pending on whether they involve the state or the code of the element:

1. State related faults: changes in an element’s variables may be caused by disturbances
in the environment (electromagnetic waves, for example), attacks (buffer overflow, for
example) or simply faults on the part of the equipment used.

2. code-related faults: an arbitrary change in an element’s code is most often the result
of an attack (the replacement, for example, of an element by a malicious opponent),
but certain, less serious types correspond to bugs or a difficulty in handling the load.

• Crashes

• Omissions

• Duplications

• Desequencing

• Byzantine faults

1.5.3.2 Fault-tolerant algorithm categories

Two major categories for fault-tolerant algorithms can be distinguished:

1. Robust Algorithms: these use redundancy on several levels of information, of commu-
nications, or of the system’s nodes, in order to overlap to the extent that the rest of the
code can safely be executed.

2. Self-stabilizing algorithms: these rely on the hypothesis that the faults are transient
(in other words, limited in time), but do not set constraints regarding the extent of
the faults (which may involve all of the system’s elements). Typically, self-stabilizing
algorithms are non-masking, because between the moment when the faults cease and
the moment when the system has stabilized to an appropriate behavior, the execution
may turn out to be somewhat erratic. [Tix10]

17

Chapter 1 : Distributed systems and fault tolerance

Figure 1.7: Self-stabilization algorithms.

Figure 1.8: Robust algorithms.

18

Chapter 1 : Distributed systems and fault tolerance

1.5.4 Fault tolerance mechanism in distributed system

1.5.4.1 Replication Based Fault Tolerance Technique

The replication based fault tolerance technique is one of the most popular method. This
technique actually replicate the data on different other system. In the replication techniques,
a request can be sent to one replica system in the midst of the other replica system. In this
way if a particular or more than one node fails to function, it will not cause the whole system
to stop functioning as in the Figure 1.7.

Figure 1.9: Replication based technique in distributed system. [SA15]

Consistency: This is a vital issue in replication technique. Several copies of the same
entity create problem of consistency because of update that can be done by any of the user.
The consistency of data is ensured by some criteria such as linearizability, sequential consis-
tency and casual consistency, etc. sequential and linearizability consistency ensures strong
consistency unlike casual consistency which defines a weak consistency criterion.

For example a primary backup replication technique guarantee consistency by linerariz-
ability, likewise active replication technique.[SA15]

Degree or Number of Replica:the replication techniques utilises some protocols in repli-
cation of data or an object, such protocol are: Primary backup replication, voting and
primary-per partition replication.

1.5.4.2 Process level redundancy technique

This fault tolerance technique is often used for the transient (described in 1.4.3) faults that
disappears without anything been done to remedy the situation; the problem with transient

19

Chapter 1 : Distributed systems and fault tolerance

faults is that they are hard to handle and diagnose but they are less severe in nature. In
handling of transient fault, software based fault tolerance technique such as Process-Level
Redundancy (PLR) is used because hardware based fault tolerance technique is more expen-
sive to deploy.

1.5.4.3 Fusion based technique

Replication is the most widely used method or technique in fault tolerance. The main dis-
advantage is that there are a lot of backups involved. Since backups increase with fail-
ures and management costs are very high, fusion-based technologies solve this problem.
Convergence-based technology offers an alternative because it requires fewer backup ma-
chines than replication-based technique. [SA15]

1.5.4.4 Checking Point/RollBack Technique

Checkpointing is a technique for inserting fault tolerance into computing systems. It basi-
cally consists of taking a snapshot of the current application state, storing it on some memory
area and later on using it for restarting the execution from that particular point in case of fail-
ure. It is a fault tolerant technique in which normal processing of a process is interrupted
specifically to preserve the status information necessary and then to allow resumption of pro-
cessing at a later time. Computation may be restarted from the current checkpoint instead
of repeating it from the beginning if a failure occurs. Checkpoint based rollback recovery
is being used as a technique in various areas like scientific computing, mobile computing,
distributed database, telecommunication and critical applications in distributed and mobile
ad hoc networks. [PT14] Categories of checking point/rollback technique are:

• uncoordinated checkpointing

• coordinated checkpointing (blocking and non-blocking)

• communication-induced check pointing

We resume in the table 1.3 the differences between the techniques of fault tolerance in
distributed system:

1.6 Conclusion

To clarify the field of study of this thesis, reference has been made to a first chapter compris-
ing a brief state of the art on distributed systems. In addition, we have shown through what

20

Chapter 1 : Distributed systems and fault tolerance

Major Factors Replication Tech-
nique

Checking Point/Roll
Back Technique

Fusion Based Tech-
nique

Process Level Redun-
dancy Technique

Working Redirected to replica State saved on stables
to rage used for recov-
ery

Back up machine A set of redundant pro-
cess

Consistency Some criterion; lin-
earizability.

Avoiding orphan mes-
sages

Among backup
machines

Not a major issues

Multiple Faults Han-
dling

Depend upon number
of replica.

Depend upon Check
pointing scheduling

Depends upon number
of back machine

Depends upon set of re-
dundant process

Performance Decreases as number of
replica increases.

Decrease with fre-
quency and size of
checkpoint

Decrease in case of
faults as recovery cost
is high

Decrease as faults ap-
pears disappear

N-Faults N replicas ensure n-1
faults

Uncoordinated Pes-
simistic and N level
disk less used for N-1
Faults

In order handle Extra
N faults N backups ma-
chine are required

Scaling the number of
process and Majority
voting

Multiple Failure Detec-
tor

Reliable, Accurate,
Adaptive

Reliable, Accurate,
Adaptive

Reliable, Accurate,
Adaptive

Reliable, Accurate,
Adaptive

Table 1.3: the differences between the techniques of fault tolerance in distributed system. [SA15]

we read as a document what a distributed system is, its objectives, its types and the means
of communication between its entities.

And to clearly specify what type of distributed system is in this study, we spent a mo-
ment on the synchronous and asynchronous distributed systems. Finally, we have oriented
our state-of-the-art brief towards fault tolerance in distributed systems by emphasizing defi-
nitions, approaches and algorithms.

Among the algorithms cited for tolerating faults in a distributed system is self-stabilizing
which gives the subject studied in the next chapter.

21

Chapter 2

Self-stabilizing in distributed systems

CHAPTER 2

SELF-STABILIZING IN DISTRIBUTED

SYSTEMS

Contents
2.1 Introduction . 24

2.2 Definition . 24

2.2.1 Formal definition . 25

2.2.2 Self-stabilization advantages and disadvantages 26

2.2.3 Self-stabilization algorithm design 27

2.2.4 Daemons . 29

2.2.5 Complexity measures . 29

2.2.6 Transformers . 30

2.2.7 Proof techniques . 31

2.3 Examples of self-stabilization algorithms for some graph problems . . 33

2.3.1 Matching . 33

2.3.2 Dominating set . 35

2.3.3 Independent Set . 37

2.3.4 Coloring graph . 37

2.4 Conclusion . 39

23

Chapter 2 : Self-stabilizing in distributed systems

2.1 Introduction

In the previous chapter, we discussed the algorithms used to tolerate faults in a system which
are robust algorithms and self-stabilizing algorithms. these allow a system to move from one
state to another in order to stabilize and continue its operation in the presence of failures.
Self-stabilizing methods prove their effectiveness in overcoming transient type faults. To
clarify the concept of self-stabilizing algorithms, this chapter focuses on their general and
formal definition, how to designate a self-stabilizing algorithm, complexity measures and
examples of their use with a state of the art of works known in the field.

2.2 Definition

The self-stabilizing paradigm was introduced by Edsger W. Dijkstra in 1973. A self-stabilizing
system is a system that can automatically recover following the occurrence of (transient)
faults [Dol00]. The idea is to design systems that can be started in an arbitrary state and still
converge to a desired behavior. We call the system ”self-stabilizing” if and only if, regard-
less of the initial state and regardless of the privilege selected each time for the next move,
at least one privilege will always be present and the system is guaranteed to find itself in a
legitimate state after a finite number of moves. [Dij74]

This makes self-stabilization an elegant approach for transient fault-tolerance [Dol00].
Figure 2.1 illustrates the behavior of self-stabilizing system. Note that self-stabilizing system
may not reach a legitimate configuration (or desired configuration) if faults occur frequently
during the convergence. For this reason, most publications assume that all faults are tran-
sient, i.e. no further faults occur during the stabilization of the system.

Most of the studies of self-stabilizing have focused on theoretical level using simple
undirected graphs. Only few of works have used experimental tests on random graphs known
as Erdos-Renyi graphs [NGHK15]. In fact, it has been proved that most of real networks
cannot be represented by the model Erdos-Renyi. Barabasi and Albert have proposed a
model known as scale-free network or Barabasi-Albert model [BA99].

This concept did not gain any attention in the beginning until 1984, when Lamport re-
ferred to Dijkstra’s work as an important approach for fault-tolerance. he Wrote in his paper
[Lam84]: I regard this as Dijkstra’s most brilliant work–at least, his most brilliant published
paper. It’s almost completely unknown. I regard it to be a milestone in work on fault toler-
ance. The terms ”fault tolerance” and ”reliability” never appear in this paper. In fact, one
reason why it’s not better known might be Dijkstra’s approach, illustrated in [Dij74]. He
said: I regard self-stabilization to be a very important concept in fault tolerance, and to be a
very fertile field for research.

24

Chapter 2 : Self-stabilizing in distributed systems

Figure 2.1: Self-stabilization system’s behavior. [Neg15]

2.2.1 Formal definition

Let A be a distributed algorithm, G be a graph representing some topology, and D be a
daemon. Let SP be a specification, i.e., a predicate over executions. We recall that SP is a
formal definition of the problem to be solved, in terms of liveness and safety properties.

Definition 2.1: A is self-stabilizing for SP in G under D if there exists a non-empty subset
of configurations L ⊆ C, called the legitimate configurations (conversely, C L is called the
set of illegitimate configurations) [ADDP19], such as defined by [AG93]:

• Closure: This property will be preserved once the system reaches a legal configuration;
i.e. the set of legitimate configurations is closed. L is closed (by A in G under D),
i.e., ∀γ ∈ L and ∀γ′ ∈ C, if γ 7→ γ′, then γ′ ∈ L.

• Convergence: The system always reaches a legitimate configuration after a finite time
if no further fault occurs during the stabilization. A converges under D to L in G, i.e.,
∀e ∈ ε, ∃γ ∈ e such as γ ∈ L.

• Correctness: Every final configuration is legitimate, i.e. the algorithm actually com-
putes for which it was originally developed. Under D, SP is satisfied from L, i.e.,
∀e ∈ ε(L), SP (e) holds, where ε(L) in the subset of executions of ε that starts from a
configuration of L.

Self-stabilization and silence:

Many self-stabilizing algorithms for building distributed structures, such as spanning
trees, actually implement an additional property called silence [DGS99]. This term was in-
troduced into the register model, but their definitions apply independently of each model. A

25

Chapter 2 : Self-stabilizing in distributed systems

Figure 2.2: Self-stabilization properties, closure and convergence. [Neg15]

self-stabilizing algorithm is silent if it converges in a finite time to a configuration in which
the values of the communication variables used by the algorithm remain fixed. Commu-
nication variables are buffer variables whose values are transmitted and/or retrieved from
neighbors using communication primitives (usually send/receive or read/write operations).
Silence is a desirable quality. As described in [DGS99], the silent property usually means
simpler algorithm design. Furthermore, the silent algorithm can use less communication
operations and communication bandwidth.

2.2.2 Self-stabilization advantages and disadvantages

Self-stabilization presents many advantages:

• Self-recovering: The system always reverts to correct behavior without external inter-
vention or global initialization. Therefore, self-stabilization is very useful for scale-
free systems where manual intervention is not possible.

• No initialization: The system always converges indeed if it starts from illegitimate
configuration. Therefore, the self-stabilizing algorithms don’t need any correct initial-
ization.

• Dynamic topology adaptation: If an algorithm has a correct behavior which depends
on the system topology, such as spanning tree construction, network decompositions
and the algorithm may have an incorrect behavior when topology changes, then the
self-stabilizing algorithm is suitable in this case. Since topology changes can be

26

Chapter 2 : Self-stabilizing in distributed systems

seen as transient faults that affect the correct behavior of the algorithm, then the self-
stabilizing algorithm returns automatically to the correct topology in finite time.

we can also list disadvantages to self-stabilization:

• High complexity: The performance of self-stabilizing algorithms are often lower than
their equivalent non-self-stabilizing algorithms in case where no transient faults.

• No termination detection: The nodes of the system have no way of detecting the ter-
mination of the algorithm or aware if a legitimate configuration is reached or not.

2.2.3 Self-stabilization algorithm design

The distributed system is represented by an undirected graph G = (V,E); where V is a set
of nodes corresponding to the process and E is a set of edges representing the links between
nodes. Let n = |V | and m = |E|.

• Two nodes υ and u are neighbors if and only if (υ, u) ∈ E.

• The set of neighbors of a node υ is denoted by N(υ), i.e. N(υ) = u ∈ V |(υ, u) ∈ E.

• The closed neighborhood of a node υ is denoted by N [υ] = N(υ) ∪ υ.

• We denote by d(υ) the degree of a node υ (i.e. d(υ) = |N(υ)|) and ∆ the maximum
node degree in the graph.

• The maximum length of the shortest path between any nodes is called diameter of G
and it is denoted by D.

• In the system, every node υ has a set of variables whose contents specify the state sυ

of the node υ.

• The union of the states of all nodes defines the system’s global state (or configuration).

Definition 2.1 (Configuration): A configuration c of the graph G is defined as the n-
tuple of all node’s states: c = (sv1, ..., svn). The set of all configuration is denoted by CG.
Each node has only a partial view of the system [Neg15].

Based on its state and that of its neighbors (distance-one model), a node can make a

move which results the changing of at least one value of one or more of its variables. Note
that in distance-two model (resp. distance-k model), a node can read its state and the state
of nodes of distance at most two (resp. at most k). Therefore, self-stabilizing algorithms are
given as a set of rules of the form :

27

Chapter 2 : Self-stabilizing in distributed systems

[Rule’s label] : [If p(υ) then M]

The predicate p(υ) is defined over υ′s partial view. The statement M denotes a move that
changes only state of the node υ. A rule is called enabled if its predicate evaluates to true. A
node υ is also called enabled (or privileged) if at least one of its rules is enabled. Otherwise,
the node υ is disabled, i.e. all of its rules are disabled. The nodes cooperate to solve a
specific problem. This problem is defined by a predicate P .

Definition 2.2 (Legitimate configuration): A configuration c is called legitimate (or
desired) with respect to P if c satisfies P .

Let LP ⊆ CG be the set of all legitimate configurations with respect to a predicate P . An

Figure 2.3: A legitimate configuration for matching problem. [Neg15]

example is illustrated in the Figure 2.3 for the problem of matching in graphs; predicate P

is evaluated to true if any node in the graph G is matched (married) with only one neighbor.
Then any configuration that satisfies P is called legitimate configuration. Otherwise, the
configuration is illegitimate.

Definition 2.3 (Execution): An execution x of an algorithm is a maximal sequence of
configurations c1, c2, ..., ci, ..., ck such that each configuration ci+1 is the next configuration
of ci using one unit of time. The execution of self-stabilizing algorithms are encapsulated
under the notion of daemon. An enabled node υ makes a move if and only if υ is selected
by the daemon i.e. the node υ brought into a new state that is a function of its old state and
the states of its neighbors [Dij74].

Thus, several daemons have been proposed for designing self-stabilizing algorithms. The
following section describes the most common daemons used in the literature.

28

Chapter 2 : Self-stabilizing in distributed systems

2.2.4 Daemons

Daemons are one of the most central yet less understood concepts in self-stabilization where
the execution of the algorithm is captured by them [Dij74]. Intuitively, the daemon is a
mechanism for selecting the enabled (privileged) nodes to execute their moves. This mecha-
nism plays the role of both scheduler and adversary against the stabilization of the algorithm.
This can be done by scheduling the worst possible cases for algorithm’s execution. Thus, the
choice of daemon is important in designing of self-stabilizing algorithm in terms of conver-
gence and complexity analysis. Indeed, many types of daemons are assumed in the literature
of self-stabilizing algorithms. Dubois presents a good taxonomy of existing daemons in
[DT11]. The three most common daemons are the following:

1. Central daemons: At each step, the central daemon selects exactly one enabled node
to make a move.

2. Distributed daemons: The distributed daemon selects in each step a non-empty subset
of the enabled nodes to make their moves simultaneously.

3. Synchronous daemons: This type of daemon can be considered as a special kind of
distributed daemon where in each step all enabled nodes make their move simultane-
ously.

Daemons are also associated with the notion of fairness. A daemon can be fair (weakly),
or unfair (adversarial). A daemon is fair if every continuously enabled node is eventually
selected. The unfair daemon on the other hand may delay the move of an enabled node as
long as there are other enabled nodes. Self-stabilizing algorithms designed for a specific
daemon may not operate under a different daemon. However, an algorithm designed for an
unfair distributed daemon works with all other daemons.

2.2.5 Complexity measures

The complexity measures are used to evaluate the performance of a self-stabilizing algo-
rithm. These measures include time, memory or the number of messages sent. There are
different measures for time complexity of self-stabilizing algorithms. These measures do
not consider the local resource demand of the nodes. This is due to the assumption that the
time needed for local computation (local resource demand) is negligible (smaller) compared
to the time needed for nodes communications. [Neg15]

The measures used to describe the self-stabilization algorithm complexity are:

29

Chapter 2 : Self-stabilizing in distributed systems

1. Move: A move of a node υ is one transition from state sυ to a new state s̀υ after the
execution of the statement of an enabled rule in the algorithm.

2. Step: step is a tuple (c, c̀), where c and c̀ are configurations, such that some enabled
nodes, in configuration c, make moves during this step, and c̀ is the configuration
reached after such nodes made their moves simultaneously.

3. Round: A Round is a minimal sequence of steps in which every node that was enabled
at the beginning of the round, gets the chance to be selected for making a move if it
has not become disabled by a move of its neighbors.

4. Time complexity: The time complexity of self-stabilizing algorithms is the maximum
number of moves, steps or rounds needed for reaching a legitimate configuration, re-
gardless of starting configuration.

[Neg15] has to note that under central daemon, the steps complexity is equivalent to moves
complexity, since the daemon selects only one enabled node per step. Moreover, for syn-
chronous daemon, the rounds complexity is equivalent to steps complexity, since under this
daemon, a round contains only one step. Since moves complexity is an upper bound of steps
and rounds complexities within any daemon, then it would be more interesting to analyze
self-stabilizing algorithms using moves instead of steps or rounds.

2.2.6 Transformers

There are several different distributed models assumed in the literature and therefore we
need to design different algorithms to solve a problem in each model. A common approach
to avoid this is to design general methods that permit to transform an algorithm from one
model to other. Thus, many methods, called Transformers have been proposed with self-
stabilization. A Transformer converts a self-stabilizing algorithm A that runs under a given
model to a new self-stabilizing algorithm A’ such that A’ runs under another model. Note
that both of algorithms (A,A’) share the same set of legitimate configurations. Usually, these
transformers cause overhead complexity in terms of time or space memory. In general, these
transformers can be classified into three types:

1. Communication model transformers: In literature, we have three common commu-
nication models used in distributed systems: state model, shared-register model and
message-passing model. Thus, the design of self-stabilizing algorithms depends heav-
ily on the communication model used in the system and an algorithm under specific
model cannot run under another communication model. For this reason, many trans-
formers have been proposed in literature for converting a distributed algorithm and

30

Chapter 2 : Self-stabilizing in distributed systems

preserving self-stabilization property such that transformer from shared memory to
message passing proposed in [Dol00] and the transformer from message passing to
shared memory presented in [Ioa02]. More transformers and details can be found in
[Dol00].

2. Distance-knowledge transformers: Using model of computation of distributed algo-
rithms, a node can read only its variables and those of its neighbors in the case of
distance-one model. Thus, it is easier to design a self-stabilizing algorithm for certain
problems assuming that a node can read the variables of nodes that are in distance two
or more. The idea in this category of transformation is as follows: each node maintains
its variables and copies of variables of its neighbors. Thus, in order to maintain these
variables up-to-date, a node can execute a move if and only if all neighbors have given
their permission.

3. Daemon transformers: In addition to communication model used by a system, the
design of self-stabilizing algorithms also depends on the assumption presented in this
chapter; Usually, the algorithms designed under central daemon do not stabilize un-
der synchronous or distributed daemon. Indeed, designing self-stabilizing algorithms
under central daemon is often convenient. However, the central daemon does not con-
sider concurrent executions of two neighbors and therefore it is not directly practicable
in real distributed systems. For this reason, several transformers have been proposed
for converting an algorithm designed for central daemon into an algorithm that sta-
bilizes under the distributed daemon. Since the distributed daemon is more general
than others daemons, then transformation from the distributed daemon to the central
daemon is not required.

In addition, another kind of transformers can also be found in the literature. These trans-
formers allow to convert a distributed algorithm (non self-stabilizing) into a self-stabilizing
algorithm [AS88], [KP93]. However, these transformers usually sacrifice either convergence
time complexity or memory requirements.

2.2.7 Proof techniques

Most self-stabilizing algorithms for graph problems are silent, then proving their correctness
is usually not difficult task; i.e. it is sufficient to prove that in configuration where no node
is enabled, the configuration of the system is legitimate. However, proving the convergence
of these algorithms is a challenging task. For proving the convergence (second property) of
a self-stabilizing algorithm, several techniques has been proposed in the literature. We cite:

31

Chapter 2 : Self-stabilizing in distributed systems

• Variant Function: [Kes88] proposed an approach for the first time by using a Variant
Function to prove the convergence of self-stabilizing algorithms. This technique mea-
sures the progress and the evolution of an algorithm during its execution. The basic
idea is to use a function over the configuration set whose value is bounded, to prove
that this function monotonically increases (or decreases) when nodes execute any rule.
This can be done for example by counting nodes with certain properties.

• Attractor: The technique of attractor is used to prove the convergence of a self-
stabilizing algorithm when it is difficult to find variant function. The idea is to define
a sequence of predicates p1, ..., pk over the configuration set, where all legitimate con-
figurations satisfy the predicate pk. Moreover, each predicate pi+1 is a refinement of
pi where 1 ⊆ i ⊆ k. The predicate pi+1 refines the predicate pi if pi pi holds whenever
pi+1 holds. The term attractor is often used for each pi predicate [Dol00]. Then, the
goal is to prove that a system in which pi holds reaches a configuration satisfies pi+1.

• Global State Analysis: A single node has not knowledge about the configuration of
the whole system. However, this global view can be used for proving the termination
of an algorithm. For instance, it may be possible to prove that there is no configuration
that can occur twice. This proves that the number of possible configurations is finite
due to the fixed number of nodes and their local states. Usually, most algorithms
define several local states for each node, this causes an exponential number of possible
configurations CG. Hence, this technique may not be a good decision when the goal
is to prove the performance of an algorithm. [Neg15]

• Analysis of Local States and Sequences: Contrary to the global state analysis, this
technique considers only the analysis of the state of a single node and its neighbors.
Some systems have the property that nodes become disabled after executing certain
moves. The basic idea is to show that any node in the system has a bounded number
of moves or bounded number of state sequence. This technique is used in [Tur07] and
[SX08] for proving the convergence of self-stabilizing algorithms for dominating set
problems.

• Graph Reduction and Induction: Recently in [TH11], Turau and Hauck developed a
new technique to prove the stabilization under central and distributed daemon. The
basic idea of this technique is to create a mapping from the algorithm’s execution se-
quence of a graph to that of a reduced graph. This allows to use complete induction
proofs [TH11]. The authors used this technique for finding the worst-case complexity
of self-stabilizing algorithms for finding the maximum weight matching with approx-
imation ratio 2.

• Neighborhood Resemblance: This technique is used to prove lower bounds of memory

32

Chapter 2 : Self-stabilizing in distributed systems

to solve a given problem within self-stabilizing paradigm. In fact, using this technique,
we obtain some impossibility results, i.e. it is impossible to find a self-stabilizing
algorithm for a given problem with less than a certain amount of memory.

2.3 Examples of self-stabilization algorithms for some graph
problems

To study different problems that present different areas (communication networks, schedul-
ing, distributed system, ...), the importance of graph theory appears, several self-stabilizing
algorithms for classic graph parameters have been developed in this direction, such as self-
stabilizing algorithms for finding minimal dominating sets, coloring, maximal matching,
maximal packing, spanning tree. Herman [Her02] presents a list of self-stabilizing algo-
rithms according to several categories such as topology or proof techniques. Gartner [Gar03]
surveys self-stabilizing algorithms for spanning trees. Later, Guellati and Kheddouci [GK10]
present a survey of self-stabilizing algorithms for independence, domination, coloring, and
matching problems. In this part, some references on matching, domination, coloring and
independence problems are summarized and more recent works are presented.

2.3.1 Matching

We can find in the literature a considerable number of self-stabilizing algorithms for the
matching problem. A matching (Figure 2.4) in a graph (G.V) is a set M of independent
(pairwise nonadjacent) edges. A matching M is maximal if no proper superset of M is
also a matching [GK10]. A matching of a graph G is called maximum matching if it has
largest cardinality among all possible matchings in G. A node that is incident with an edge
of a matching M is called matched, and nodes not incident with any edge of M are called
unmatched.

A set M ⊆ E of edges is called a generalized matching (or a b-matching) of G if, for all
nodes i ∈ V , |Ei ∩M | ≤ b, where Ei is the set of edges incident with i. An alternating path
in a graph G(V E), with respect to a matching M , is a path whose edges are alternately in
M and in (E −M). An alternating path is an augmenting path if the first and the last edges
are in (E −M).

Matching problem has many applications in fields as diverse as transversal theory, as-
signment problems [BNBJ+08], network flows [HSM+07], scheduling in switches [WS05].
since it is associated with marriage-like problems where the goal is to form maximum cou-
ples while optimizing specific criteria. For example, in networks, each client communicates

33

Chapter 2 : Self-stabilizing in distributed systems

Figure 2.4: Examples of matchings (the shaded edges denote the elements of the matchings). [GK10]

with only one server. More details on applications of matching can be found in [Gib85].

The first self-stabilizing algorithm for computing a maximal matching was proposed by
Hsu and Haung in [HH92]. The algorithm is uniform and works in anonymous system. It
assumes a central daemon. The proposed algorithm maintains a variable for each node υ in
the system that contains a pointer. This pointer may be null or may point at a υ’s neighbor.
Two nodes υ and u are matched (i.e. married) if and only if they point at each other. Then,
in final configuration, each pairs of matched nodes form a maximal matching.

The basic idea of the algorithm is as follows: each node υ that points null will point at an
arbitrary neighbor u such that u points at υ (which means υ accepts to be matched with u).
If a node υ that points to null and any of its neighbors points at υ then υ points an arbitrary
neighbor u such that u points to null (which means that υ invites/proposes a node u to be
matched). Then, a node υ that points at neighbor u and the latter points at another node ω, so
υ will change its pointer to null (which means that v withdraws its proposition/invitation).

Hsu and Huang proved that the time complexity is O(n3) steps. The complexity of the
same algorithm was improved to O(n2) steps by Tel in [Tel94] and later it was improved to
O(m) steps by Hedetniemi et al. in [HJS01].

Chattopadhyay et al. proposed in [CHS02], two algorithms for the same problem with
read/write atomicity. The first algorithm that stabilizes in O(n) rounds assumes that each
node has a distinct local identifier. The idea that each node tries to be matched with its
neighbor that has the minimum identifier. The authors extend this version by proposing the
second algorithm for anonymous system with (n2) rounds under central daemon. However,
the second algorithm assumes that each node knows ∆ (maximum node degree in the system)

34

Chapter 2 : Self-stabilizing in distributed systems

and G is a bipartite graph.

In [GHJS03b], Goddard et al. proposed a synchronous version of the algorithm Hsu
and Haung that stabilizes in O(n) rounds in mobile ad-hoc networks. However, the authors
assumed distinct local identifiers for nodes and communication is ensured through message
exchanges between nodes. Goddard et al. in [GHS06] proposed a uniform version for finding
1-maximal matching in trees assuming central daemon. A 1-maximal matching is maximal
matching and its cardinality cannot be increased by removing an edge and adding two edges.
Their algorithm is based on the algorithm of Hsu and Haung and by adding a mechanism for
exchanging an edge of the matching by two when it was possible. The proposed algorithm
needs O(n4) steps.

In [MMPT07], Manne et al. proposed an algorithm for maximal matching that stabilizes
in O(m) moves under distributed daemon. The authors assumed distinct local identifiers
within distance two. In the algorithm, each node maintains two variables, one variable for
pointer (the same as used by Hsu and Haung in [HH92]) and one boolean variable for in-
forming neighbors whether the node is matched or not.

We have to note that there is no self-stabilizing algorithm for finding a maximum match-
ing of general graphs in the literature. However, there are some algorithms for certain classes
of graph such tree [KS00] or bipartite graphs [CHS02]. Considering weighted graphs,
Manne et al. proposed a self-stabilizing for maximum weighted matching in general graph
[MM07]. The authors give upper bounds of O(2n) moves under the central daemon and
O(3n) for the distributed daemon. Recently, Turau and Hauck improve this complexity in
[TH11]. The authors present a new analysis of the algorithm proposed by Manne and they
proved that the same algorithm stabilizes in O(mn) moves under the central daemon. More-
over, the authors give a modified version that stabilizes within O(mn) moves within the
distributed daemon.

2.3.2 Dominating set

Domination in graphs has been extensively studied in graph theory. In a graph G = (V,E),
a set of nodes D ⊆ V is called a dominating set (DS) if every node of V is either in D or
has a neighbor in D, i.e.

∀υ ∈ V −D :N(υ) ∩D ̸= ∅.

A dominating set is minimal (MDS) if no proper subset of D is a dominating set.

In the literature, there are several self-stabilizing algorithms for finding different variants
of dominating sets such as total dominating set, k-dominating set, connected dominating set
and weakly connected dominating set.

35

Chapter 2 : Self-stabilizing in distributed systems

Reference Result Topology Anon. Daemon Complexity
[HH92] Maximal Arbitrary Yes Central O(m) moves

[CHS02] Maximal Arbitrary No Distributed O(n) rounds
[GHJS03b] Maximal Arbitrary No Synchronous O(n) rounds
[GHJS03c] Generalized Arbitrary Yes Central O(m) moves
[GHS06] 1-Maximal Tree Yes Central O(n4) moves

[MMPT07] Maximal Arbitrary No Distributed O(m) moves
[KS00] Maximum Tree Yes Central O(n4) moves

[CHS02] Maximum Bipartite Yes Central O(n2) rounds
[MM07] 1/2 ap. max. wei. Arbitrary No Distributed O(3n) moves
[TH11] 1/2 ap. max. wei. Arbitrary No Distributed O(mn) moves

Table 2.1: Self-stabilizing algorithms for maximal matchings and its variants.

Figure 2.5: Minimal Dominating Set D of a graph G. (The members of D are hatched). [Neg15]

A set D is called total dominating set (TDS) if every node of the graph has a neighbor
in D, i.e. ∀υ ∈ V : N(υ) ∩ D = ∅. The set D is called k-dominating set (KDS) if every
node outside of D has at least k neighbors inside D. A dominating set D is said connected
dominating set (CDS) if D is connected and it is called weakly connected (WCDS) if the
subgraph weakly induced by D, i.e. (N [D], E ∩ (D ×N [D])) is connected, where N [S] =⋃

υ∈S N [υ].

The structure of dominating sets can be used as virtual overlays in a distributed sys-
tem. These structures are often used for designing efficient protocols in wireless and ad-hoc
networks[GHJS08], [UT11], [GHJS03b], [BDTC05]. Minimal dominating set can be used
for locating some nodes to be servers; thus clients must be closely with the servers [GHJS08].

36

Chapter 2 : Self-stabilizing in distributed systems

Connected dominating sets and weakly connected dominating set are often used to represent
virtual backbone in wireless networks [BDTC05].

We can cite 4 variants of dominating set algorithms such as summarized in the table 2.2:

• Simple domination variant

• Multiple domination

• Connected Dominating Set

• Independent Strong Dominating Set

The contribution of this thesis is to propose a new self stabilization algorithm for finding
dominating sets. This concepts will be detailed in the third chapter.

2.3.3 Independent Set

As defined above, a set of nodes is an Independent Set if no two nodes are adjacent. A
maximal independent set (MIS) is an independent set that is not properly contained in any
other independent set with bigger cardinality. The definition of MIS implies that for any
graph G = (V,E), if a node is not in the MIS, then it must be adjacent to at least one node
in the MIS. Therefore, an MIS of a graph G is also a minimal dominating set, however an
MDS is not necessary an MIS. The dominance property of the MIS and the sparseness of its
nodes make it an important structure for many applications, such as clustering in wireless
ad hoc networks [AWF03]. Since MDS and MIS are strongly related, many self-stabilizing
algorithms were also proposed for finding MIS, Other new works are presented in [MPR19],
[Gha15]; [Gha19]. The rest of algorithms presented for the independent set problems are
summarized in Table 2.3.

2.3.4 Coloring graph

Another graph theoretic problem that was studied in the context of self-stabilization is the
coloring of graphs [Die05]. A node coloring (or simply a coloring) of a graph G(V,E) is a
function c → N such that c(i) ̸= c(j) whenever i and j are adjacent. The elements of N
are called the available colors. If a graph G may be colored using k colors, we say that it is
k-colorable.

The smallest integer k such that G is k-colorable is the chromatic number of G, denoted
by X(G). A coloring that uses k ≥ X(G) colors is called a proper coloring. A coloring
that uses X(G) colors is called minimum coloring. A Grundy coloring of a graph is a proper

37

Chapter 2 : Self-stabilizing in distributed systems

coloring such that every node i has a neighbor of color r for all r, 1 ≤ r ≤ c(i). The
proposed self-stabilization algorithms for the coloring graph problem are in four fields:

• Coloring bipartite graphs: in this algorithm, a specific node is designated as a root,
and the other nodes determine their distance from the root in a breadth-first manner.
Then, nodes at even distance from the root color themselves black and nodes at odd
distance from the root color themselves white. This coloring corresponds to a proper
2-coloring of the graph. [SS93].

• Coloring planar graphs: Ghosh and Karaata [GK93] presented a uniform algorithm
for coloring planar graphs with at most six colors. In fact, the solution described
here is a combination of two algorithms, where the first generates a directed acyclic
version of the planar graph, and the second colors the generated graph. In the coloring
part, each node takes a color not taken by its successors in the directed acyclic graph.
The authors firstly supposed composite atomicity and a central daemon. Then, a new
version of the algorithm that works under a distributed daemon and a finer level of
atomicity has been proposed.

• Coloring chains and rings: Shukla et al. [SRR94] studied the problem of developing
uniform self-stabilizing algorithms for coloring anonymous chains and rings. They
first proposed a uniform algorithm for the 2-coloring of a chain. The algorithm works
as follows: each node i maintains an integer variable Xi and keeps it at the value zero
if i is at the extremity of the chain, or keeps it at the minimum value Xj of its neighbors
plus one. Then, the color of a node i is Ci = Xi mod 2.

This algorithm produces a 2-coloring of any odd chain under a distributed daemon.
For even chains, however, the algorithm does not produce a proper 2-coloring under a
central daemon, and moreover there is no uniform deterministic self-stabilizing algo-
rithm that works under a distributed daemon for this problem.

The second algorithm presented by Shukla et al. is uniform and produces a 3-coloring
for any oriented ring under a central daemon. The idea of the algorithm is as follows:
each node maintains a variable that represents its color. If a node has the same color
as its two neighbors, it will take the minimum of the available colors not taken by its
neighbors. And, if a node has the same color as its left neighbor, it will take any other
available color.

Here, also, there is no uniform deterministic self-stabilizing algorithm that works un-
der a distributed daemon for the 3-coloring for an oriented ring. However, a random-
ized solution can be designed for this problem.

• Coloring arbitrary graphs: Gradinariu and Tixeuil [GT00] presented a uniform algo-
rithm for coloring any graph with at most (∆ + 1) colors. The algorithm works under

38

Chapter 2 : Self-stabilizing in distributed systems

a central daemon and assumes that the system is anonymous. It is also assumed that
each node knows ∆, the maximum degree of the system’s communication graph. In
this algorithm the nodes always try to take the maximum color from the set 0, ...,∆
which is not taken by a neighbor. So, after stabilization they obtain a proper coloring
of the system’s communication graph. Gradinariu and Tixeuil modified the previous
algorithm so that it may work under a distributed daemon in two ways.

The most works realized for self-stabilization in coloring graph problem are summarized in
Table 2.4:

2.4 Conclusion

Self-stabilizing algorithms are used in most graph problems; therefore graphs are the best
method to present and study the behavior of systems, networks and the change of their states.
the graphs are proven their importance and effectiveness in the study of: communication in
networks, scheduling of processes and tasks, distributed systems, social networks, ..., which
are exposed to faults, breakdowns and change of topologies. Such a situation requires a self-
stabilizing algorithm to overcome it and bring the system to a stable and legitimate state.

In this chapter, we have tried to summarize these problems and how a self-stabilizing
algorithm is used; we started by defining such algorithms and these basic concepts, then we
cited important works from the literature.

Among the fields of application of self-stabilizing algorithms is the search for the domi-
nating set which is the subject of the 3rd chapter of this thesis.

39

Chapter 2 : Self-stabilizing in distributed systems

Reference Result Topology Anon. Daemon Complexity
[HHJS03] DS Arbitrary Yes Central O(n) moves
[HHJS03] MDS Arbitrary Yes Central O(n2) moves
[XHGS03] MDS Arbitrary No Synchronous O(n) rounds
[GHJS08] MDS Arbitrary No Distributed O(n) moves
[Tur07] MDS Arbitrary No Distributed O(n) moves

[CCT14] MDS Arbitrary No Distributed O(n) moves
ISDS MDS/MIS Arbitrary No Distributed O(n) rounds

[GHJS03a] MTDS Arbitrary No Central Exponential moves
[BYK14] MTDS Arbitrary No Distributed O(mn) moves
[KK03] MKDS Tree Yes Central O(n2) moves
[KK03] MKDS Tree No Distributed O(n2) moves

[HCW08] M2DS Arbitrary Yes Central O(mn) moves
[KK05] MKDS Arbitrary No Synchronous O(n2) rounds

[HLCW07] M2DS Arbitrary No Distributed
[DLV10] MKDS Arbitrary No Distributed O(k) rounds

[DHR+11] MKDS Arbitrary No Distributed O(Dn2) rounds
[Tur12] MKDS Arbitrary No Distributed O(nm) moves
[JG05] CDS Arbitrary No Synchronous O(n2) moves

[DFG06] CDS Arbitrary No Distributed O(n) moves
[GS10] CDS Arbitrary Yes Distributed
[KK10] CMDS BFS tree No Central O(k) rounds
[KK08] CMDS Arbitrary No Synchronous O(n) rounds

[RTAS09] CMDS DGB No Central O(n2) moves
[SX07] WCMDS BFS tree No Distributed O(22) moves
[TH09] WCMDS BFS tree No Distributed O(mn) moves

[DWS14b] WCMDS Arbitrary No Synchronous O(n) rounds
[Ben21] DS Dynamic Network No Central O(n) moves

Table 2.2: Self-stabilizing algorithms for dominating sets and its variants.

40

Chapter 2 : Self-stabilizing in distributed systems

Reference Result Topology Anon. Daemon Complexity
[SRR95] MIS Arbitrary Yes Central O(n) moves
[IKK02] MIS Arbitrary No Distributed O(n2) steps

[GHJS03b] MIS Arbitrary No Synchronous O(n) rounds
[SGH04] 1-MIS Tree Yes Central O(n2) moves
[Tur07] MIS Arbitrary No Distributed O(n) moves
ISDS MDS/MIS Arbitrary No Distributed O(n) rounds

[Ben21] MIS Dynamic Network No Central O(n) moves

Table 2.3: Self-stabilizing algorithms for maximal independent set and its variants.

Reference Result Topology Anon. Daemon Complexity
[SS93] CG Bipartite graph Yes Central
[KK06] CG Bipartite graph YES Central O(mn3d) steps
[KK06] CG Bipartite graph No Distributed O(mn3∆d) steps
[GK93] CG Planar graph No Distributed

[HHT05] CG Planar graph Yes Central O(d) rounds
[SRR94] CG Odd chain Yes Distributed
[SRR94] CG Oriented rings Yes Central
[GT00] CG Arbitrary Yes Central O(n∆) steps
[GT00] CG Arbitrary No Distributed O(n∆) steps
[GT00] CG Arbitrary Yes Distributed O(n∆) steps

[HHT03] CG Arbitrary Yes Central O(m) steps
[HHT03] CG Arbitrary Yes Central O(n) steps
[HHT03] CG Arbitrary Yes Central
[Ben21] CG Scale-free graphs No Central O(n) moves

Table 2.4: Self-stabilizing algorithms for coloring graph problem and its variants.

41

Chapter 3

Algorithms for dominating sets

CHAPTER 3

ALGORITHMS FOR DOMINATING SETS

Contents
3.1 Introduction . 44

3.2 Definitions . 45

3.3 Algorithms of dominating set . 48

3.3.1 K-domination . 48

3.4 Dominating set applications . 50

3.4.1 MDS in wireless networks . 50

3.4.2 Design of wireless sensor networks 52

3.4.3 Health service . 52

3.5 Conclusion . 53

43

Chapter 3 : Algorithms for dominating sets

3.1 Introduction

The following problem can be said to be the origin of the study of dominating sets in graph.
Figure 3.1 illustrates a standard 8 X 8 chessboard on which is placed a queen. According
to the rules of chess a queen can, in one move, advance any number of squares horizontally,
vertically, or diagonally (assuming that no other chess piece lies in its way). Thus, the queen
in figure can move to (or attack, or dominate all of the squares marked with an ’x’). In
the 1850s, chess enthusiasts in Europe considered the problem of determining the minimum
number of queens that can be placed on a chessboard so that all squares are either attacked by
a queen or are occupied by a queen. Figure 3.1 illustrates a set of six queens which together
attack, or dominate, every square on the board. It was correctly thought in the 1850s, that five
is the minimum number of queens that can dominate all of the squares of an 8X8 chessboard.
The Five Queens Problem is to find a dominating set of five queens. [HHS98]

Figure 3.1: Five Queens Problem. [HHS98]

To model the queens problem on a graph, let G represent the chessboard such that each
vertex corresponds to a square, and there is an edge connecting two vertices if and only if
the corresponding square are separated by any number of squares horizontally, vertically, or
diagonally. Such a set of queens in fact represents a dominating set. For another motivation
of this concept, consider a bipartite graph where one part represents people, the other part
represents jobs, and the edges represent the skills of each person. Each person may take
more than one job. One is interested to find the minimum number of people such that are
jobs are occupied. [Ken06]

The concept of dominating set; studied in this thesis by founding a self-stabilizing al-
gorithm; occurs in variety of problems where the puzzle or five queens problem are only

44

Chapter 3 : Algorithms for dominating sets

Figure 3.2: Dominated jobs. [Ken06]

interesting examples. A number of these problems are motivated by communication net-
work problems, for example. The communication network includes a set of nodes, where
one node can communicate with another if it is directly connected to that node. In order to
send a message directly from a set of nodes to all others, one needs to choose this set such
that all other nodes are connected to at least one node in the set. For other applications of
domination, the facility location problem, land surveying, and routings can be mentioned.

In this chapter we will introduce preliminaries and concepts that define the dominating
set in graphs; algorithms used and proposed to find the minimal dominating set in different
fields.

3.2 Definitions

Definition 1: A set S ⊆ V of vertices in a graph G = (V,E) is called dominating set if every
vertex υ ∈ V is either an element of S or is adjacent to an element of S.

Definition 2: For S ⊆ V , a vertex υ ∈ S is called an enclave of S if N [υ] ⊆ S, and
υ ∈ S is an isolate of S if N(υ) ⊆ V − S. A set is said to be enclaveless if it does not
contain any enclaves. [HHS98]

There are several different ways to define a dominating set in a graph, each of which
illustrates a different aspect of the concept of domination. Consider the following equivalent
definitions.

A set S ⊆ V of vertices in a graph G = (V,E). is a dominating set if and only if:

1. For every vertex υ ∈ V − S, there exists a vertex u ∈ S such that υ is adjacent to u;

45

Chapter 3 : Algorithms for dominating sets

2. For every vertex υ ∈ V − S, d(υ, S) ≤ 1.

3. N [S] = V

4. For every vertex υ ∈ V − S, |V (υ) ∩ S| ≥ 1, that is, every vertex υ ∈ V − S is
adjacent to at least one vertex in S;

5. For every vertex υ ∈ V , |V (υ) ∩ S| ≥ 1.

6. V − S is enclaveless.

Notice that if S is a dominating set of a graph G, then every superset S ′ ⊇ S is also a
dominating set. On the other hand, not every subset S” ⊆ S is necessarily a dominating set.
We will be interested in studying minimal dominating sets in graphs, where a dominating set
S is a minimal dominating set if no proper subset S” ⊆ S is a dominating set. The set of all
minimal dominating sets of a graph G is denoted by MDS(G).

Figure 3.3: Example of minimal dominating sets. [HHS98]

The theorems about dominating sets were given by [Ore62]:

Theorem 1: A dominating set S is a minimal dominating set if and only if for each vertex
u ∈ S, one of the following two conditions is holds:

• u is an isolate of S.

• there exists a vertex υ ∈ V − S for which N(υ) ∩ S = {u}.

The theorem 1 proofed in [Ore62], suggests the following definition:

46

Chapter 3 : Algorithms for dominating sets

let S be a set of vertices, and let u ∈ S; we say that a vertex υ is a private neighbor of u
(with respect to S) if N [V] ∩ S = {u}.

Furthermore, we define the private neighbor set of u, with respect to S, to be pn[u, S] =
{υ : N [υ] ∩ S = {u}}. Notice that u ∈ pn[u, S] if u is an isolate in (S), in which case we
say that u is its own private neighbor.

Given this terminology, we can say that a dominating set S is a minimal dominating
set if and if every vertex in S has at least one private neighbor, that is, for every u ∈ S,
pn[u, S] ̸= ϕ.

For example, consider the MDS3, 6, 7, 8 in the graph in Figure 3.3. Vertex 3 has vertices
2 and 4 as private neighbors, vertex 8 has vertex 1 as a private neighbor, while vertices 6 and
7 are their own private neighbors.

Theorem 2: every connected graph G of order n ≥ 2 has a dominating set S whose
complement V − S is also a dominating set.

Proof [HHS98]; Let T any spanning tree of G, and let u be any vertex in V . then the
vertices in T fall into two disjoint sets S and S’ consisting, respectively, of the vertices with
an even and odd distance from u in T ; both S and S’= V − S are dominating sets for G.

Theorem 3: if G is a graph with no isolated vertices, then the complement V −S of every
minimal dominating set S is a dominating set.

Proof [HHS98]: Let S be any minimal dominating set of G; assume vertex u ∈ V is not
dominated by any vertex in V − S; since G has no isolated vertices, u must be dominated
by at least one vertex in S − {u}, that is S − {u} is a dominating set, contradicting the
minimality of S. Thus every vertex in S is dominated by at least one vertex in V − S, and
V − S is dominating set.

Definition 3: the domination number γ(G) of a graph G equals the minimum cardinality
of a set in MDS(G), or equivalently, the minimum cardinality of a dominating set in G. the
upper domination number Γ(G) equals the maximum cardinality of a set in MDS(G), or
equivalently, the maximum cardinality of a minimal dominating set of G.

It is easy to see that for the graph G in Figure 3.3, γ(G) = 3; while Γ(G) = 5. Notice
that the set S = 1, 3, 5 is dominating set of minimum cardinality; this is called a γ − set of
G.

Notice further that S is an independent set. This is also called an independent dominating
set of G. The minimum cardinality of an independent dominating set of G is the independent
domination number i(G).

One of the earliest and most basic theorems about the domination number of a graph
is the following, due to Nieminen [NIE73]: Let εF (G) denote the maximum number of
pendant edges in spanning forest of G (a forest is an acyclic graph).

47

Chapter 3 : Algorithms for dominating sets

Theorem 4: For any graph G, γ(G) + εF (G) = n. [Ore62]

3.3 Algorithms of dominating set

3.3.1 K-domination

A subset D ⊆ V (G) is dominating in G if every vertex of V (G)\D has at least one neighbor
in D. Similarly, a subset D ⊆ V (G) is k-dominating in G if every vertex of V (G)\D
has at least k neighbors in D. The domination number γ(G) and the k-domination number
γk(G) of G are the minimum cardinalities of a dominating and a k-dominating set of G,
respectively. [EB20]

We say that a connected graph G is a (γ, γk)-graph if γk(G) = γ(G) + k − 2 and
∆(G) ≥ k. A connected graph G is (γ, γk)-perfect if δ(G) ≥ k and every connected
induced subgraph H of G with δ(G) ≥ k satisfies the equality γk(H) = γ(H) + k − 2.

Fink and Jacobson [FJ85], introduced k-domination in graphs as a generalization of the
concept of domination. Motivated by this definition, related problems have been studied
extensively by many researchers [BJ16], [Sha09], a good survey on k-domination and k-
independence is given by Chellali et al. [CFHV12]. Fink and Jacobson [FJ85] proved the
following result on the relation between the domination number and the k-domination num-
ber of G.

theorem 5: For any graph G with ∆(G) ≥ k ≥ 2, γk(G) ≥ γ(G) + k − 2.

Although it is proved that the above inequality is sharp for every k ≥ 2, the characteri-
zation of graphs attaining the equality is still open, even for the small values of k. Recently,
we considered a large class of graphs and gave a characterization for the members satisfying
the equality γ2(G) = γ(G).

[EB20] also proved that it is NP-hard to decide whether this equality holds for a graph.
Moreover, he gave a necessary and sufficient condition for a graph to satisfy γ2(G) = γ(G)

hereditarily. Some similar problems involving different domination-type graph and hyper-
graph invariants were considered.

3.3.1.1 Varieties of k-domination

k-Independent dominating sets [FHHR02] mainly deals with subsets of vertices which are
k-independent and 1-dominating.

(p, k)-Domination and (p, k)-Independence in [BHS94], Bean, Henning and Swart de-
fined (p, k)-dominating and (p, k)-independent sets as follows: let p and k be positive inte-

48

Chapter 3 : Algorithms for dominating sets

gers. A set D of vertices of a graph G is a (p, k)-dominating set if every vertex not in D is
within distance p from at least k vertices of D. The subset D is a (p, k)-independent set if
every vertex of D is within distance p from at most k − 1 other vertices of D. The (p, k)-
domination number, γ(p,k)(G), is the minimum cardinality among all (p, k)-dominating sets
of G, and the (p, k)-independence number, β(p,k)(G), is the maximum cardinality among all
(p, k)-independent sets of G.

The concept of (p, k)-domination is a generalization of the two concepts of distance
domination and k-domination, and the concept of (p, k)-independence is a generalization of
the two concepts of distance independence and k-independence. In particular, for p = 1,
a (p, k)-dominating set of G is a k-dominating set and a (p, k)-independent set of G is a
k-independent set.

Connected k-Domination defined such as: subset D ⊆ V (G) is a connected k-dominating
set of a connected graph G, if D is a k-dominating set of G and the subgraph induced by
the vertex set D is connected. The connected k-domination number

c
γ
k
(G) is the minimum

cardinality among the connected k-dominating sets of G. [Vol09]

Roman k-Domination in this section, we focus on results about an extension of the Ro-
man dominating function which was suggested by ReVelle and Rosing [RR00]. According
to [CPADJH04], Constantine the Great (Emperor of Rome) issued a decree in the fourth cen-
tury AD for the defense of his cities. He decreed that any city without a legion stationed to
secure it must neighbor another city having two stationed legions. If the first were attacked,
then the second could deploy a legion to protect it without becoming vulnerable itself. The
objective, of course, is to minimize the total number of legions needed. However, the Roman
Empire had a lot of enemies, and if a number of k enemies attack k cities without a legion,
then the cities are secured in the above sense if they are neighbored to at least k cities hav-
ing two stationed legions. This leads in a natural way to the following generalization of the
Roman dominating function.

A Roman k-dominating function on G is a function f : V (G) → 0, 1, 2 such that every
vertex u for which f(u) = 0 is adjacent to at least k vertices v1, v2, ..., vk with f(vi) = 2

for i = 1, 2, ..., k. The weight of a Roman k-dominating function is the value f(V (G)) =∑
u∈V (G) f(u). The minimum weight of a Roman k-dominating function on a graph G is

called the Roman k-domination number γkR(G) of G. The Roman k-domination number
was introduced by KÃ¤mmerling and Volkmann [KV09] in 2009. Note that the Roman
1-domination number γ1R(G) is the usual Roman domination number γR(G). A Roman
k-dominating function of minimum weight is called a γR-function.

The 2-Domination Subdivision Number The 2-domination subdivision number sdγ2(G)

of a graph G is the minimum number of edges that must be subdivided (where each edge
in G can be subdivided at most once) in order to increase the 2-domination number. For

49

Chapter 3 : Algorithms for dominating sets

example, sdγ2(Kn) = 2 when n ≥ 3 and sdγ2(Kp, q) = 3 when p, q ≥ 4. In 2008, Atapour,
Sheikholeslami, Hansberg, Volkmann and Khodkar [ASH+08] initialized the study of the
2-domination subdivision number.

Positive influence dominating set [FHE+11] defines the meaning of positive and nega-
tive node as: each node can have either positive or negative impact on its neighbor nodes. We
call a node with positive impact a positive node and a node with negative impact a negative
node. The positive degree of a node is the number of its positive neighbors. The same holds
for negative degree. The compartment of a node decides whether the node is a positive or a
negative node. Nodes that are chosen into the PIDS are marked as positive nodes. Thus a
neighbor u of v is a positive neighbor if u is initially a positive node or u is selected into the
PIDS. A positive influence dominating set P of a graph G is a subset of nodes in G that any
node u in G are dominated by at least ⌈d(u)

2
⌉ nodes in P where d(u) is the degree of node u.

The main idea of PIDS algorithm is as follows: first prune the original graph by removing
the initial positive nodes, then iteratively choose a 1-dominating set of the graph consisting
of nodes with less than half neighbors as positive neighbors until all nodes in the original
graph are either positive nodes or have more positive neighbors than negative ones. To
choose a 1-dominating set of a graph, we use a greedy algorithm. This algorithm selects the
node with the largest node degree into the dominating set.

3.4 Dominating set applications

The applications of MDS are quite rich that deal with large problems that we cannot find
exact solutions, those problems represent a wide dissemination of information. They are
reformulated in graphs where the nodes are the actors of the problem and the vertex are the
interactions and the relationship between those nodes. Dominating set can be used in very
large-scale networks, the study of social networks, the design of wireless sensor network,
the protein interaction networks, covering codes,

3.4.1 MDS in wireless networks

Many works are proposed in the literature using the algorithms of MDS to solve problems
appearing in wireless networks such as:

• Very large-scale networks [NHNT20] used k-domination set to determine the domi-
nation relation between pairs of vertices; they construct the minimum k dominating set
of a graph. Its application in determining a good approximation of large-scale social
networks. Considering the MkDSP in the context of social networks.

50

Chapter 3 : Algorithms for dominating sets

The novel features of their method are (i) a prepossessing phase that reduces the
graph’s size; (ii) a construction phase with different greedy algorithms; and (iii) a
post-optimization phase that removes redundant vertices. In all phases, they used
techniques to reduce the number of times to compute k-neighbor set of vertices which
is very expensive on graphs arisen in social networks.

The application was taken of a company that runs a very large social network in which
users can be modeled as nodes and the relationship among users can be modeled as
edges. One of the important tasks of the company is monitoring all the activities (con-
versations, interactions, etc.) of the network users to detect anomalies such as cheating
or spreading fake news. With millions of users, it is impossible to observe all users in
the network, a potential solution is to construct a subset of users that can represent key
properties of the network. The obtained results show that this proposition provides
a better tradeoff between the solution quality and the computation time than existing
methods.

Figure 3.4: Results of the MkDSP proposed by [NHNT20].

• Study in social networks [FHE+11] used the positive influence dominating set to
(PIDS) to construct a minimum dominating set of a social network which consists
of individuals with a certain type of social problem (such as drinking, smoking and
drug related issues) is helpful for the success of intervention programs. Intervention
programs are important tools to help combat some of the social problems and consist
of disseminated education and therapy via mail, Internet, or face-to-face interviews.
In a social setting, people can have both positive and negative impacts on each other,
and a person can take and move among different roles since they are affected by their
peers.

51

Chapter 3 : Algorithms for dominating sets

For example, within the context of drinking problem, a binge drinker can be converted
to an abstainer through intervention program and have positive impact on his direct
friends (called neighbors). However, he might turn back into a binge drinker and have
negative impact on his neighbors if many of his friends are binge drinkers.

Ideally, [FHE+11] wanted to educate all binge drinkers, since this will reduce the pos-
sibility of converted binge drinker being influenced by his binge drinker friends who
are not chosen in the intervention program. On the other hand, due to the budget limi-
tations, it is impossible to include all the binge drinkers in the intervention program.

Therefore, how to choose a subset of individuals to be part of the intervention program
so that the effect of the intervention program can spread through the whole group under
consideration becomes an important research problem.

[CTB15] have introduced two novel algorithms that are able to determine efficiently
an approximation to the minimum dominating set problem and, simultaneously, they
will preserve the quality of the solution to an acceptable level. using Erdos-Renyi
random graph model that generates a scale free network.

3.4.2 Design of wireless sensor networks

[VKK15] gave a pertinent survey and study among the use of connected dominating set CDS
in wireless sensor networks. The CDS construction algorithms are classified into different
types. It is based on whether the network topology is prescient or not, network models,
efficiency of the algorithm in forming a small size CDS and its time and information com-
plexity.

According to the network topology is prescient or not, they can be centralized or dis-
tributed algorithms and according to the network models, the CDS can be classified to undi-
rected graphs or directed graphs. Also, According to the efficiency of the algorithm while
forming the minimum CDS, the CDS construction algorithms can be further divided into
four types: Global protocols, Quasi-global protocols, Quasi-local protocols and Local pro-
tocols.

3.4.3 Health service

[MMBP11] introduced a new network-based approaches and apply them to get new insight
into biological function and disease. They used the notion of domination and find dominating
sets (DSs) in the protein-protein interaction PPI network, i.e., sets of proteins such that every
protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a topologically central
TC role, as it enables efficient communication between different network parts.

52

Chapter 3 : Algorithms for dominating sets

[AME21] proposed a method to apply constraint-based models for dominating protein
interaction networks. the authors have introduced a new framework called MOIA, in which
three models have been modified to generate multiple MDSets with minimum inter sections
for PPI networks.

3.5 Conclusion

In this chapter, we introduced the domination set and how use to find a dominating set in a
graph and the theorems proofed in the literature to find the minimal dominating set. Then
we cited some works and some applications and benefits of finding the minimal dominating
set.

Again we will return to the self-stabilizing algorithm that is a fault tolerance approach
for distributed systems that has been introduced for the first time by Dijkstra [Dij74]. A
self-stabilizing distributed system is able to achieve a global correct configuration (without
any external intervention), in a finite time, starting from an initial illegitimate configuration.

Various self-stabilizing distributed algorithms have been proposed in the literature using
graph theory such as leader election, nodes coloring, domination problems, independent set
identification, spanning tree construction. The reader can refer to the survey [GK10] for
more details of self-stabilizing algorithms.

We will show in the next chapter the use of self-stabilizing algorithm to find the minimal
dominating set in a graph introducing the parameters proposed in the literature to give effi-
ciency results in different applications. after that we will introduce the proposition and the
objective of this thesis.

53

Chapter 4

Self-stabilizing Algorithms for Minimal
Dominating Set

CHAPTER 4

SELF-STABILIZING ALGORITHMS FOR

MINIMAL DOMINATING SET

Contents
4.1 Introduction . 56

4.2 Related Work . 57

4.3 Self-stabilizing distributed algorithms for dominating set 57

4.3.1 Dominating bipartition [GHJS03b] 57

4.3.2 Minimal dominating set [GHJS03b] 59

4.3.3 A Self-Stabilizing Distributed Algorithm for Minimal Total Dom-
ination [GHJS03a] . 61

4.3.4 self-stabilizing algorithms for minimal total k-dominating [BYK14] 63

4.4 Self-stabilizing Algorithm for Minimal α-Dominating Set 64

4.4.1 α-domination . 64

4.4.2 Related work of α-domination on self-stabilization 65

4.5 Model and terminology . 66

4.5.1 Execution model . 68

4.5.2 Transformers . 68

4.6 Self-stabilizing algorithm for minimal α-dominating set 69

4.6.1 Closure . 70

4.6.2 Convergence and complexity analysis 71

4.7 Minimal (α, β) dominating set . 72

4.7.1 Self-stabilizing algorithm for minimal (α, β)-dominating set . . . 73

4.7.2 Closure . 73

4.7.3 Convergence and complexity analysis 74

4.8 Simulation and experimental results 75

4.9 Conclusion . 79

55

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

4.1 Introduction

Domination has been extensively studied in literature [HHS98] and adopted in many real-
life applications. It has been utilized for address routing, power management and clustering
issues in ad-hoc networks [LLY09, AWF03, BDTC05]. Recently, particular parameters of
domination have been used to influence (and change) the opinion of the users in the social
networks [FEK09, AKL18]. A dominating set is a subset S of the graph nodes where every
node is either in S or is a neighbor of at least one node of S. The dominating set S is minimal
if there is no proper subset in S that could be a dominating set.

Before 2003, no self-stabilizing algorithms have been introduced to solve (minimal)
dominating sets problem. At that time, algorithms are in general based on greedy, exact
and heuristic methods. The first self-stabilizing algorithm for (minimal) dominating set was
proposed by Hedetniemi et al. [HHJS03]. After that, many variants of self-stabilising al-
gorithms have been proposed imposing additional parameters of domination like total dom-
ination [BYK14, GHJS03a], efficient domination [Tur13, HHJ+12], connected dominating
set [BBP13, DWS16], influence domination [WWTZ13, DWS14a], distance-k domination
[DDL18]. Each parameter has its benefits according to the used application. For example,
connected dominating sets are generally used as backbone (infrastructure) in ad-hoc and
sensor networks.

This thesis deals with the problem of finding dominating set using self-stabilization
paradigm in distributed systems. Usually, members of a dominating set are selected to be
as cluster heads in Wireless Sensor Networks (WSN) in order to ensure a permanent service
availability. Since failures occurs frequently inside WSN due to limited battery energy, self-
stabilizing algorithm allows recomputing the dominating set, and hence the network returns
to its ordinary running.

Existing works have introduced many variants of self-stabilizing algorithms that compute
minimal dominating set S where each node out of S has neighbors in S more than it has out
S. In this thesis, we introduce a generalized self-stabilizing algorithm called minimal (α, β)-
dominating set. An α-dominating set is a subset of nodes S such that for any node v out of
S, the rate of neighbors of v inside S must be greater than α, where 0 < α ≤ 1. In the same
way, an (α, β)-dominating set is a subset of nodes S such that: S is α-dominating set and
for each node v in S, the rate of neighbors of v inside S is greater than β, where 0 ≤ β ≤ 1.
Mathematical proofs and simulation tests show the correctness and the efficiency of the
proposed algorithm.

Through our proposed variant (α, β)-domination, we prove rigorously the conjecture of
Carrier et. al. [CDD+15] who have proposed a self-stabilizing algorithm for a domination
variant called (f, g)-alliance set only when f ≥ g.

56

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

We prove the correctness of the case f < g.

4.2 Related Work

4.3 Self-stabilizing distributed algorithms for dominating
set

In this section, we will describe some proposed and proofed self-stabilizing algorithms
for dominating set in different environments. as we discuss in the second chapter, self-
stabilization is a paradigm for distributed systems that allows the system to reach a desired
global state, even in the presence of faults. A fundamental idea of self-stabilizing algorithms
is that no matter what global state in which the system finds itself, after a finite amount of
time, the system will achieve a correct and desired global state.

This concept is used to identify sets of nodes or sets of edges which satisfy a given
property P called minimal dominating set. Previous work in this area has produced self-
stabilizing algorithms for centers and medians of trees [AS99], maximal matchings [HH92][HJS01],
graph colourings [GK93][SS93], shortest paths [Hua05], articulation points [Kar99], and
spanning trees [SX07]. In many of these papers, correctness proofs for algorithms are given,
but an analysis is not provided.

4.3.1 Dominating bipartition [GHJS03b]

Hedetniemi and al. proposed the domination bipartition algorithm where node i has a single
binary variable x(i).The rules allow a node to change its value if all nodes in its closed
neighborhood have the same value. Upon stabilization, the two sets of nodes i|x(i) = 0 and
i|x(i) = 1 are each dominating sets, if G has no isolated nodes, thus forming a dominating
bipartition.

Figure 4.2 shows two different executions, (a)-(d) and (e)-(f), that begin with the same
initial configuration i.e. starting with the initial configuration shown in (a), diagrams (a)-(d)
depict one execution of Algorithm 2.1. Nodes i for which x(i) = 1 are black; starting with
the same initial configuration, diagrams (e) and (f) show an alternate execution, stabilizing
in only one move. Diagrams (d) and (f) depict stable states.

[GHJS03b] proofed the algorithm 4.1 in this way:

LEMMA 1: If node i ever makes a move, either Rl or R2, it will never make another
move, nor will any of its neighbors.

57

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Input: n: Dominating bipartition,
Begin

————————————————————————————————————-
R1 if x(i) = 0

∧
(∀j ∈ N(i))(x(j) = 0)

then x(i) = 1

R2 if x(i) = 1
∧
(∀j ∈ N(i))(x(j) = 1)

then x(i) = 0

—————————————————————————————————————
End.

Figure 4.1: Dominating bipartition.

Figure 4.2: Execution of the algorithm Dominating bipartitions. [GHJS03b]

PROOF: Let i and j be neighbors. A node can move only if it and its neighbors all have
the same value. Once i moves, x(i) and x(j) will be different, and so neither node can move.

LEMMA 2: Algorithm 4.1 can make at most n− 1 moves.

PROOF: Since the network has no isolated vertices, the first node that moves must have
at least one neighbor. By Lemma 1, neither of these nodes will be able to move thereafter.
Also by Lemma 1, any remaining nodes can move at most once.

LEMMA 3: When Algorithm 4.1 stabilizes, every node labeled 0 has at least one neighbor
labeled 1, and conversely, every node labeled 1 has at least one neighbor labeled 0.

THEOREM 1: In any network having no isolated nodes, Algorithm 4.1 stabilizes with a
dominating bipartition in at most n− 1 moves.

PROOF: This is immediate from Lemmas 2 and 3 The bound given in Theorem 1 is
right. Consider any star K1,n−1 in which every node is initially 1. If every leaf moves, there

58

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Input: n: Minimal dominating set,
Begin

————————————————————————————————————-
R1 if x(i) = 0

∧
(∀j ∈ N(i))(x(j) = 0)

then x(i) = 1

R2 if (x(i) = 1)
∧
(∄j ∈ N(i))(j → i)

∧
(∃k ∈ N(i))(x(k) = 1)

then x(i) = 0

P1 if x(i) = 1)
∧
(i ↛ null

then i → null

P2 if x(i) = 0)
∧
(∃ exactly one j ∈ N(i))((x(j) = 1)

∧
(i ↛ j))

then i → j

P3 if (x(i) = 0)
∧
(∃ more than one j ∈ N(i))((x(j) = 1))

∧
(i ↛ null)

then i → null

—————————————————————————————————————
End.

Figure 4.3: Minimal dominating set.

will be exactly n− 1 moves.

4.3.2 Minimal dominating set [GHJS03b]

Hedetniemi and al. proposed the algorithm using a graph without isolated nodes, it produces
a dominating bipartition where the nodes labeled 1 define a minimal dominating set, and the
nodes labeled 0 define a dominating set.

Algorithm 4.2 uses two variables. The first variable is a binary variable x(i) defining
a minimal dominating set S = i|x(i) = 1. We will use St to denote this set at time t.
The second variable is a pointer. By pointing to a neighbor j, written i → j, a node i

communicates to j that i is a private neighbor; that is, node j is the only node in S which
currently dominates node i. The value null is used for nodes in S and nodes in V − S that
are not private neighbors.

We write i ↛ j to denote that i is not pointing to j, and we write i → null to denote
that the pointer of i is not null. This algorithm is based on the following well-known and
straightforward characterization of minimal dominating sets, whose proof can be found in
[HHS98].

LEMMA 4: A set S is a minimal dominating set if and only if it is dominating and every
u ∈ S has a private neighbor.

[GHJS03b] called rules P1−P3 pointer moves. They do not modify membership in the
dominating set, but rather are used only to adjust pointer values so that

59

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Figure 4.4: Execution of the algorithm minimal dominating set. [GHJS03b]

• every node i ∈ S has a null pointer;

• every node i /∈ S having exactly one neighbor j ∈ S, points to j;

• every node i /∈ S having more than one neighbor j ∈ S, has a null pointer.

LEMMA 5: If at time t, St is not a minimal dominating set, then the system is not stable.

LEMMA 6: If a node uses R1, it will never make another membership move.

LEMMA 7: node can make at most two membership moves.

LEMMA 8: There can be at most n consecutive pointer moves.

LEMMA 9: The system can make at most (2n+ 1)n moves.

All proofs for this lemmas are in [GHJS03b].

THEOREM 2: Algorithm 4.2 produces a minimal dominating set and stabilizes in O(nn)

moves.

THEOREM 3: The algorithm 4.2 is stable if

• St is a minimal dominating set;

• every private neighbor outside St points to its unique neighbor in St; and

• all other nodes have null pointers.

60

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

4.3.3 A Self-Stabilizing Distributed Algorithm for Minimal Total Dom-
ination [GHJS03a]

This algorithm requires that every node have a unique ID. Goddard and al. have used i

interchangeably to denote a node, and the node’s ID. they assumed there is a total ordering
on the IDs. Each node i has two variables: a pointer p(i) (which may be null) and a boolean
flagx(i). If p(i) = j then they said that i pointsto j. At any given time, they denote with
D the current set of nodes i with x(i) = true.

Definition 1: For a node i, it was defined m(i) as its neighbor having the smallest ID.

Definition 2: they have defined the pointer expression q(i) as follows:

q(i) =

m(i) ifN(i) ∩D = ϕ

j ifN(i) ∩D = j

null ifN(i) ∩D ≥ 2

Note that the value q(i) can be computed by i (i.e., it uses only local information).

definition 3: The boolean condition was defined by y(i) to be true if and only if some
neighbor of i points to it.

The algorithm consists of one rule; thus, a node i is privileged if x(i) ̸= y(i) or p(i) ̸=
q(i). If it executes, then it sets x(i) = y(i) or p(i) = q(i).

The algorithm achieves the lemmas proofed in [GHJS03a]:

LEMMA 10: If the algorithm stabilizes, then D is a minimal total dominating set.

To proof this lemma, the authors claim that D is a total dominating set, by contradiction,
that some node i is not totally dominated (that is, has no neighbor in D). Then N(i)∩D = ϕ.
Since the system is stable, p(i) = q(i) = m(i) and m(i) /∈ D. But this implies y(m(i)) =

true and x(m(i)) = false, and so node m(i) is privileged, a contradiction. Thus D is a
total dominating set.

After that, they claim that D is minimal. For suppose there is some j ∈ D for which
D− j is a total dominating set. Since j ∈ D, or x(j) = true, there is some vertex i ∈ N(j)

for which p(i) = j. But since p(i) = q(i), node j must be a unique neighbor of i with
membership in D. Thus the removal of j will leave i undominated.

Goddard and al. said that node i invites node j if, at some time t, node i has no neighbor
in D and then executes the rule, causing p(i) = m(i) = j. For a node to join D, it must
either be pointed to from an initial erroneous state or be invited. Then this shows that the
algorithm stabilizes.

LEMMA 11: Let i be a node and suppose that between time t and t′, there is no in-move
a move is an in-move if it causes x(i) to become true, thereby causing a node i to enter D
by any node k > i. Then during this time interval node i can make at most two in-moves.

61

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

THEOREM 4: The self-stabilizing distributed algorithm for minimal total domination
always stabilizes, and finds a minimal total dominating set.

Proof : It suffices to show that every node makes only a finite number of in-moves. By
Lemma 11, node n, which has largest ID, makes at most two in-moves. During each of the
three time intervals, when node n is not making an in-move, using Lemma 11 again, node
n−1 makes at most two in-moves. It is easy to show this argument can be repeated, showing
that each node can make only finitely many in-moves during the intervals in which larger
nodes are inactive.

4.3.3.1 Minimal Extended Domination [GHJS03a]

The previous algorithm was generalized by Goddard and al. to obtain algorithms for other
domination problems. We have a dominating set is a set in which, for all i,

|N [i] ∩D| ≥ 1

and a total dominating set satisfies

|N(i) ∩D| ≥ 1

Now, for the algorithm, each node has a set of pointers, denoted p(i), whose cardinality
is bounded by t(i); we allow p(i) to contain i. Each node also has a boolean flag x(i).
As before, x(i) should be true if and only if some node points to i, and also as before, D
will denote the set of nodes with true flags at any point in time. At a given time, assume
|D ∩ N(i)| = k ≤ t(i). Then since t(i) ≤ |N(i)| there are at least t(i) − k members in
N(i)−D. Let Mi denote the unique set of those t(i)−k nodes in N(i)−D having smallest
ID′s. Note this set depends on D. The pointers are defined as:

Q(i) =

{
(D ∩N(i)∩) ∪Mi if |N(i) ∩D| − k ≤ t(i)

ϕ if |N(i) ∩D| > t(i)

As before, Goddard and al. defined the boolean condition y(i) to be true if and only if some
neighbor of i points to it. The algorithm consists of one rule. Thus, a node i is privileged if
x(i) ̸= y(i) or p(i) ̸= Q(i). If it executes, then it sets x(i) = y(i) and p(i) = Q(i). It is easy
to see that this algorithm reduces to previous algorithm.

62

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Input: n: Algorithm MTDS: Minimal Total Dominating Set (Expression model),
Begin

————————————————————————————————————-
Input: ε = NBS :: |x ∈ (v) : x.state = IN |,
R1: v.state = OUT ∧ ∃u ∈ (v) : u.NBS < 1

→ v.state = IN

R2: v.state = IN ∧ v.NBS ≥ 1 ∧ (∀u ∈ (v) : u.NBS ≥ 2)

→ v.state = OUT

—————————————————————————————————————
End.

Figure 4.5: Algorithm MTDS: Minimal Total Dominating Set.

4.3.4 self-stabilizing algorithms for minimal total k-dominating [BYK14]

4.3.4.1 Minimal total dominating set

A total dominating set S is called minimal when no proper subset of S is a total dominating
set of the graph G. Belhoul and al. have used the algorithm described in the previous
section avoid the use of pointers, and expand node knowledge by aggregating the states of
its distance-two neighbors using the expression model. this way leads to efficient algorithms.
they first proposed a linear self-stabilizing algorithm for finding a minimal total dominating
set, that they call MTDS, in the expression model under the unfair central scheduler. Then,
they removed this assumption to have an algorithm that converges in O(mn) under the unfair
distributed scheduler.

[BYK14] proofed the coming lemmas:

LEMMA 12: MTDS is a silent algorithm and when no node is enabled for MTDS in
the expression model, then S forms a minimal total dominating set of G, that proofs the
correctness.

LEMMA 13: Once a node dominated, it remains dominated.

LEMMA 14: If a node leaves S, it will never move again.

LEMMA 15: Algorithm MTDS stabilizes after at most 2n moves in the expression model
using the unfair central scheduler.

THEOREM 5: By Lemma 14, a node that executes R2 will never move again, so a node
moves at most twice (the longest execution sequence of any node is R1R2). Thus, Algorithm
MTDS stabilizes after at most 2n moves.

63

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

4.3.4.2 Total k-dominating set [BYK14]

Definition 4: Let G = (V,E) be a graph and k be a positive integer (k ≥ 1). A total k-
dominating set S (also called in literature, k-tuple total dominating set) is defined to be a
subset of V such that for each υ ∈ V , we have |N(υ) ∩ S| ≥ k.

The condition on k for the existence of a total k-dominating set in a graph G is k ≤ δ,
where δ denotes the minimum degree of G. Notice that a total 1-dominating set is the usual
total dominating set. A total k-dominating set S is called minimal when no proper subset of
S is a total k-dominating set of the graph G. The algorithm that constructs a minimal total
k-dominating set, given as MTDSk, using the expression model under the unfair central
scheduler uses the same variable stateas Algorithm MTDS. However, Belhoul and al. have
to redefine the expression of NbS , denoted by NbSk, according to the definition of the total
k-dominating set.

The set of expressions εk of MTDSk for a given node υ will be:

εk = NbSk :: |x ∈ N(υ) : x.state = IN | − k + 1

Rules of Algorithm MTDSk are obtained by replacing the expression NbS in rules of
Algorithm MTDS by NbSk. Note that a node υ is said to be k-dominated when υ.NbSk ≥
1.

4.4 Self-stabilizing Algorithm for Minimal α-Dominating
Set

4.4.1 α-domination

The α-domination concept (without using self-stabilization concept) has been studied for the
first time by [DHLM00]. they introduced the concept of α-domination as:

For any α with 0 < α ≤ 1 and a set S ⊆ V , we say that S is α-dominating if for all
υ ∈ V −S, |N(υ)∩S| ≥ α|N(v)|. The size of a smallest such S is called the α-domination
number and is denoted by γα(G).

Thus the Woolbright number [Woo95] of a graph G is γ1/2(G). The size of a largest
minimal such set S is called the upper α-domination number and is denoted by Γα(G).

They were be interested in studying the relationship between the α-domination param-
eter and other domination-related parameters. One can easily find that more than 80 types
of domination and domination-related parameters have appeared in the literature [HHS98].

64

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Although this new parameter adds to the list in a unique way, it is related to other types of
domination.

Other results on α-domination are given in [DRV04]. Let G = (V,E) be a connected
graph where V is the set of nodes and E is the set of edges. We say that S ⊆ V is α-
dominating if for all v ∈ V − S, |N(v)∩S|

|N(v)| ≥ α, where 0 < α ≤ 1 and N(v) is the set
of v neighbors i.e. N(v) = {u|vu ∈ E}. Besides the particular cases of α-domination
introduced in the literature, we present a new parametric called (α, β)-dominating set. An
(α, β)-dominating set is a subset of nodes S such that: S is α-dominating set and for each
node v in S, the rate of neighbors of v inside S is greater than β, where 0 ≤ β ≤ 1.

4.4.2 Related work of α-domination on self-stabilization

In self-stabilizing paradigm, few algorithms are proposed only for the particular instance of
α = 1

2
(three works to the best of our knowledge). In these cases, authors try to find the

minimal dominating set where each node (in V − S or in V) is dominated by at least half
(α = 1

2
) of its neighborhood. Wang et al. have introduced the positive influence dominating

set [FEK09]. A self-stabilizing algorithm known as MPIDS is presented for this parameter
in [WWTZ13]. We call S ⊆ V a positive influence dominating set if each node v ∈ V is
dominated by at least ⌈ |N(v)|

2
⌉ (that is, v has at least ⌈ |N(v)|

2
⌉ neighbors in S).

This algorithm can be considered as total 1
2
-domination because the condition of 1

2
-

domination must be respected by all the nodes. Positive influence domination has appli-
cations in social networks where this parameter is used in [AKL18, WWTZ13, DWS14a] in
order to influence the opinion of the users and individual behaviors in social networks. For
example, in a social network with smoking problem, smokers could be exposed to a possible
conversion to abstain due to the domination of their friends.

Simultaneously, Yahiaoui et al. have proposed a self-stabilizing algorithm for minimal
global powerful alliance set called MGPA [YBHK13] which has the same basic concept
of MPIDS. A subset S is said global powerful alliance set if for each node v ∈ V , the
majority of the neighbors of v are in S, that is, |N [v] ∩ S| ≥ |N [v] ∩ (V − S)|, where
N [v] = N(v)∪{v}. Like MPIDS, MGPA can be also considered as total 1

2
-domination. Note

that the global alliance concept is presented by Hedetniemi which includes the offensive and
the defensive alliances. In the offensive alliance, every node in V −S must be 1

2
-dominated.

While for the defensive alliance, every node in S has to be 1
2
-dominated. S is said global

powerful alliance if S is offensive and defensive.

Hedetniemi et al. have presented a collection of self-stabilizing algorithms to find an
unfriendly partition into two dominating sets R and B [HHKM13]. A bipartition {R,B}
is called unfriendly partition if for every node v ∈ R, most of neighbors of v are in B and

65

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

for every node u ∈ B, most of neighbors of u are in R. Obviously, every node of R is
1
2
-dominated by B and every node of B is 1

2
-dominated by R.

In 2011, Dourado et. al. have introduced a general variant of alliance called (f, g)-
alliance problem, where f and g are functions that depend on nodes degree. A set S is
called (f, g)-alliance if every node out S has a number of neighbors in S greater than or
equal f . And every node in S, has a number of neighbors in S greater than or equal g.
[DPRS11]

The algorithm MA(f, g) is safely converging in the sense that, starting from any configu-
ration, it first converges to a (not necessarily minimal) (f, g)-alliance in at most four rounds,
and then continues to converge to a minimal (f, g)-alliance in at most 5n + 4 additional
rounds, where n is the size of the network.

Carrier et. al. have presented in 2013 a distributed self-stabilizing algorithm for com-
puting (f, g)-alliance set that converges in O(∆3n) moves, where ∆ is the maximal degree
in the graph. However, the later algorithm works only under the hypothesis that f ≥ g.
[CDD+15] Algorithm is written in the shared memory model, and is proven assuming an
unfair (distributed) daemon, the strongest daemon of this model. Authors have conjectured
that there is a self-stabilizing algorithm (f, g)-alliance when f < g.

The major drawback of this algorithm, is the integer values of f and g. Before, launching
the self-stabilizing, the user must to have a previous knowledge on the graph degrees in order
to determine values of f and g. For example, to determine g for a node v, it must be set at
most |N(v)|.

In this work, we use values that express rate (known as α and β) rather than using integer
values (f and g) that depends on the nodes degree. In this case, there is no need to have a
previous knowledge on the distribution of the nodes degree.

4.5 Model and terminology

Generally, networks or distributed systems are represented by simple undirected graphs. Let
G = (V,E) be a connected graph where V is the set of nodes and E is the set of edges. For
a node v ∈ V , the open neighborhood of v is defined as N(v) = {u ∈ V : vu ∈ E}, where
the degree of v is d(v) = |N(v)|. N [v] = N(v)∪v denotes the closed neighborhood of v. In
this thesis, we use neighborhood to indicate the open neighborhood. In the following table,
we provide description for notations used in the rest of the chapter.

Definition 5: A subset S ⊆ V is a dominating set if for every node v ∈ V − S, there
exists a node u ∈ S such that v is adjacent to u [HHS98].

66

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Notation Description
V set of nodes (vertices)
E set of edges
G(V,E) graph with a set of nodes V and a set of edges E
v, u, w used generally to represent a node from V

vu an edge of E from v to u

n number of nodes i.e. |V |
m number of edges i.e. |E|
S a subset of nodes, generally S is defined as a dominating set
N(v) set of neighbors of v
NS(v) set of neighbors of v which are in S i.e. N(v) ∩ S

NV−S(v) set of neighbors of v which are out S
d(v) degree of v that is equal to number of neighbors |N(v)|
∆ maximal degree in a graph
α threshold in]0, 1]

β threshold in [0, 1]

α-dominated used for nodes out the dominating set, a node v ∈ V − S is α-dominated
if |NS(v)|

|N(v)| ≥ α

β-dominated used for nodes in the dominating set, a node v ∈ S is β-dominated if
|NS(v)|
|N(v)| ≥ β

v.state boolean variable of v that describes whether v is in S (v.state = In) or
out S (v.state = Out)

v.exp mathematical expression of v used to calculate rate of neighbors in S i.e.
|NS(v)|
|N(v)|

Table 4.1: Table of notations

The set NS(v) defines the neighbors of v in S i.e. NS(v) = {u ∈ S : vu ∈ E} and
NV−S(v) represents neighbors of v in V − S. Consequently, N(v) = NS(v) ∪NV−S(v).

An algorithm is self-stabilizing if it will be able to reach (during a finite time convergence)
a global correct configuration called legitimate and still in the legitimate state (closure) af-
ter it has started from an unknown configuration.

To show that an algorithm is self-stabilizing, it is sufficient to prove its closure for the
legitimate configuration and its convergence to achieve the desired configuration in a finite
time. So, a self-stabilizing algorithm guarantees to converge to the legitimate configuration
even if there is any possible transient faults. Also, an algorithm is called silent if in a
legitimate state, there is no enabled nodes. Obviously, if an algorithm is silent, the closure is
trivially satisfied.

67

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

In a uniform self-stabilizing system, all the nodes execute the same collection of rules
having the form if guard then statement (written as: guard −→ statement). Nodes have
also the same local variables that describe their state. The guard is a (or a collection of)
boolean expression. Once a guard of any node is true, the corresponding statement must be
executed (an action on the node’s state).

Thus, the state of every node is updated (modified or not) by the node itself using at
least one of its own rules.

Each node has a partial view of the distributed system (i.e. guard which consists of
boolean expressions) on (1) its state and the states of its neighbors (called distance-one
model) or (2) its state and the states of its neighbors and the states of the neighbors of its
neighbors (called distance-two model). A rule is said enabled if the guard is evaluated to be
true. A node will be enabled if at least one of its rules is enabled. Executing the statement
of the enabled rule by the node is called a move. A move allows updating the state (local
variables) of the node in order to be in harmony with its neighborhood.

4.5.1 Execution model

The execution of self-stabilizing algorithms is managed by a daemon (scheduler) that selects
nodes to move from a configuration to another configuration. Two types of daemons are
widely used in self-stabilization literature: central and distributed daemons. In the central
daemons, one enabled node is selected among all the enabled nodes to be moved. However,
in the distributed daemons, a subset of nodes are selected among the set of enabled nodes to
make a move simultaneously.

A particular case is distinguished for distributed daemons i.e. the synchronous dae-
mon where all the enabled nodes are selected to move simultaneously. Indeed, unfair
distributed daemon is the most used scheduler in self-stabilizing literature, where, in any
subset of the enabled nodes can make their moves simultaneously. A fair daemon is a
scheduler that selects the same enabled node continuously between configurations transi-
tion. Otherwise, the daemon is unfair where it can delay the node move if there are other
enabled nodes which allows to guarantee the convergence to the global legitimate configu-
ration. A detailed taxonomy of the daemons variants can be found in [DT11].

4.5.2 Transformers

Generally, it is easy to prove the stabilization of an algorithm working under hypotheses
like central daemon and expression distance-2 model. However, algorithms working under

68

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

distributed daemon and distance-one model are more difficult to prove, although they are
more suitable for real applications.

A common approach, known in literature [Tur12, GS13], allows converting a self-stabilizing
algorithm A which operates under a given hypotheses to a new self-stabilizing algorithm AT ,
such that AT operates under other hypotheses. This transformation guarantees that the two
algorithms obtain the same legitimate configuration. Different kinds of transformers can be
found in literature like distance transformers and daemon transformers. The transformation
process causes generally an overhead of the algorithm complexity. In this thesis, we use the
transformer D of Turau [Tur12] who can convert a self-stabilizing algorithm A (where A is
silent, executes under expression distance-2 model and uses an unfair central daemon) to a
self-stabilizing algorithm AD (The reached algorithm AD is silent, operates under distance-1
model and uses an unfair distributed daemon).

Transformers are designed in order to respect basis of self-stabilization. For example,
in the case of distributed daemon, it is not allowed for neighbors to make simultaneously
a move at the same time. This is achieved generally by using identifiers for nodes by the
transformer. In the same round, the node who has the higher identifier could be enabled (and
then moves) among their neighbors.

4.6 Self-stabilizing algorithm for minimal α-dominating set

In this section, we present a self-stabilizing algorithm called α-MDS for finding minimal
α-dominating set.

First, we give definition of α dominating set:

Definition 6: Let S be a subset of V and 0 < α ≤ 1. S is called α-dominating set if for
every node v ∈ V − S, |NS(v)|

|N(v)| ≥ α. S is minimal if no proper subset of S is α-dominating
set. Every node in V − S is called α-dominated.

Figure 4.6 illustrates the proposed self-stabilizing algorithm, where each node v main-
tains a local variable state and two expressions exp1 and exp2. The value of state can be In
or Out. It is clear that state is used to express whether any node belongs to α-dominating
set or not. Once the legitimate configuration is achieved, the α-dominating set is defined as
S = {v ∈ V : v.state = In}. The expression exp1 is used to check whether every node out
of S is α-dominated.

However, exp2 is used when a node v wants to leave S. The later expression aims to
check whether neighbors of v out of S still always α-dominated after v leaves S. Rule R1

allows every node out of S which is not α-dominated to move from Out to In. Conse-
quently, R1 ensures that every node of V − S must be α-dominated. R2 is used to verify

69

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Each node v checks and executes (with infinite loop) the following
Expressions:

———————————————————————————————————————–
exp1:: |NS(v)|

|N(v)|
exp2:: |NS(v)|−1

|N(v)| = exp1− 1
|N(v)|

———————————————————————————————————————–
Rules:

———————————————————————————————————————–
R1: v.state = Out ∧ v.exp1 < α −→ v.state = In

R2: v.state = In ∧ (v.exp1 ≥ α) ∧ (∀w ∈ NV−S(v) : w.exp2 ≥ α) −→ v.state = Out

———————————————————————————————————————–

Figure 4.6: α-MDS self-stabilizing algorithm

the minimality of S. Every node in S that can leave S without affecting the constraint α-
domination of its neighbors in V − S and still itself α-dominated, will leave S because it
preserves the legitimate configuration of its neighborhood. Observe that exp2 is used when a
node v wants to leave S, all the neighbors w ∈ NV−S(v) must still respect the α-domination
condition after the leaving of v. If, we deduce that after v moves from In to Out, there
will be at least a neighbor w ∈ NV−S(v) such that w will become not α-dominated, thus, v
cannot move out of S.

4.6.1 Closure

LEMMA 16: Once all the nodes are not enabled, the set S is a minimal α-dominating set.

PROOF: We prove that : (a) every node v of V −S is α-dominated and (b) S is minimal.

(a) For every node v out of S, v.exp1 must be ≥ α because R1 is not enabled. Hence,
each node out of S is α-dominated.

(b) We prove the minimality by contradiction. Suppose that all nodes are not enabled
and there exists a subset S ′ of S which is also α-dominating set. Let v e a node in S such
that S ′ = S−{v}. Thus, |NS′ (v)|

|N(v)| ≥ α (by definition) which implies that |NS(v)|
|N(v)| ≥ α because

NS′(v) = NS(v) . Since all the nodes of S are not enabled (R2 is not enabled for v) and
v.exp1 ≥ α, there exists a node w ∈ NV−S(v) such that w.exp2 < α, so |NS(w)|−1

|N(w)| < α.
After moving v from S to V −S, the number of neighbors of w having state In will decrease
by one i.e. |NS′(w)| = |NS(w)| − 1. Thus |NS(w)|−1

|N(w)| < α becomes |NS′ (w)|
|N(w)| < α. This is

a contradiction with the definition that every node out of the dominating set must be α-
dominated.

70

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

4.6.2 Convergence and complexity analysis

LEMMA 17: If any node w ∈ (V − S) has w.exp1 ≥ α, the value w.exp1 still greater than
or equal α and cannot be down less than α.

PROOF: Let w be a node from V − S such that w.exp1 ≥ α. The value w.exp1 can
be decrease by one way which is: if any neighbor v of w changes its state from In to Out.
However, R2 imposes that when v moves from In to Out , all its neighbors in V − S

including w must have exp2 ≥ α i.e. |NS(w)|−1
|N(w)| ≥ α 1. Suppose S2 is the new dominating set

after v leaves S. Thus, |NS2(w)| = |NS(w) − 1|. So, |NS(w)|−1
|N(w)| ≥ α becomes |NS2

(w)|
|N(w)| ≥ α.

Hence, w.exp1 remains ≥ α.

LEMMA 18: Once a node leaves S, it cannot reach S again.

PROOF: Since any node leaves S with exp1 ≥ α, R1 cannot be enabled again according
Lemma 17.

LEMMA 19: Every node executes at most R1 then R2 which allows algorithm 1 to
terminate in the worst case at 2n moves under the expression distance-2 model using unfair
central daemon.

PROOF: It follows from Lemma 18.

THEOREM 6: α-MDS is a silent self-stabilizing algorithm giving minimal α-dominating
set in finite time not exceeding O(n) moves under expression distance-2 model using unfair
central daemon.

PROOF: Lemma 16 gives the correctness and the closure because when the algorithm
is silent (all the nodes are disabled), it provides a minimal α-dominating set. Lemma 19
shows the convergence where the algorithm reaches the minimal α-dominating set in O(n).
Therefore, the proof follows from Lemma 16 and Lemma 19.

After proving the stabilization of algorithm α-MDS under the central daemon and ex-
pression distance-2 model, we use the transformer D proposed by [Tur12] that gives another
self-stabilizing algorithm α-MDSD. This later is executable under distributed daemon and
distance-one model.

THEOREM 7: α-MDSD gives a minimal α-dominating set and stabilizes in O(nm)

moves in the distance-one model under unfair distributed daemon .

PROOF: Using the transformer D of Turau. According the Theorem 18 of Turau [Tur12],
if there is a silent self-stabilizing algorithm A in the expression model that stabilizes after
O(A(G)) moves under the unfair central daemon. Then, the transformed algorithm AD is a
silent algorithm that stabilizes after O(mA(G)) moves under the unfair distributed daemon

1If at least one of v neighbors: w′ ∈ S′ has w′.exp2 < α, then R2 cannot be enabled and v remains in S,
thus w.exp1 still has ≥ α.

71

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

in the distance-one model. Thus, the proof follows from Theorem 18 of [Tur12] , where m

is the number of edges.

Definition 7: Let G = (V,E) be a graph with no isolated nodes. The subset S of V
is called a k-defensive dominating set if for every node v in S, we have |NS [v]|

|N [v]| ≥ k, where
k ∈]0, 1[

4.7 Minimal (α, β) dominating set

In the α-domination problem presented by Dunbar et al. [DHLM00], only nodes out of
the dominating set are imposed to be α-dominated. However, it is possible to apply this
parametric on all the nodes (who are In and Out) like the total domination and the global
powerful alliance. In the following, we introduce the new domination variant called (α, β)-
domination.

Definition 8: Let S be a subset of V , 0 < α ≤ 1 and 0 ≤ β ≤ 1. S is called (α, β)-
dominating set if (1) for every node v ∈ V − S, |NS(v)|

|N(v)| ≥ α and (2) for every node v′ ∈ S,
|NS(v

′)|
|N(v′)| ≥ β. S is minimal if no proper subset of S is (α, β)-dominating set.

Observe that :

• (α, 0)-domination is α-domination problem.

• (1
∆
, 0)-domination is the habitual problem of domination, where ∆ is the maximal

degree in the graph.

• (1
2
, 0)-domination is the offensive alliance.

• (1
2
, 1
2
)-domination is the global powerful alliance.

• For (α, 1)-dominating set, S = V and V − S = ∅.

• α could be equal to zero although it has been imposed ∈]0, 1] in the literature. In this
case when α = 0, the minimal dominating set will be an empty set.

Note that the (f, g)-alliance is the same as the (α, β)-domination problem when α =
f

|N(v)| and β = g
|N(v)| . In (f, g)-alliance, the dominating set is calculated based on the number

of neighbors that must be greater than or equal the integer thresholds f and g. However, in
the (α, β)- domination, the dominating set is computed based on the rate of neighbors that
must be greater than or equal the real thresholds α and β, such that 0 < α ≤ 1, 0 ≤ β ≤ 1.

Values of f and g are depending on graph structure. The user must has a previous knowl-
edge on the degree distribution of the graph. For example to determine values of f and g for

72

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Each node v checks and executes (infinite loop) the following
Expressions:

———————————————————————————————————————–
exp1:: |NS(v)|

|N(v)|
exp2:: |NS(v)|−1

|N(v)| = exp1− 1
|N(v)|

———————————————————————————————————————–
Rules:

———————————————————————————————————————–
R1: v.state = Out ∧ (v.exp1 < α ∨ ∃u ∈ NS(v) : u.exp1 < β) −→ v.state = In

R2: v.state = In ∧ (v.exp1 ≥ α) ∧ (∀wout ∈ NV−S(v) : wout.exp2 ≥ α)

∧(∀win ∈ NS(v) : win.exp2 ≥ β) −→ v.state = Out

———————————————————————————————————————–

Figure 4.7: α, β-MDS self-stabilizing algorithm

any node v, we need to know its degree in order to decide whether v has a sufficient number
of neighbors that overtakes the threshold. However, for the (α, β)-domination problem, it
is sufficient to define α and β without any previous knowledge which facilitates computing
dominating set regarding (f, g)-alliance.

4.7.1 Self-stabilizing algorithm for minimal (α, β)-dominating set

Figure 4.7 shows the proposed self-stabilizing algorithm for computing minimal (α, β)-
dominating set called (α, β)-MDS. Variable state and expressions exp1, exp2 have been
used before in algorithm 4.5, are also implemented in the current self-stabilizing algorithm.
The state variable indicates whether a node is In or Out. Expression exp1 allows testing
whether every node in S (resp. out S) is β-dominated (resp. α-dominated). While, exp2
checks that after a node v leaves S, their neighbors still always respecting conditions of α
and β domination. R1 moves a node from Out to In, if it is not α-dominated or has a neigh-
bor in S not β dominated. R2 moves a node v from In to Out with guarantees that new
configuration in the neighborhood of v still respect α and β domination after v leaves S.

4.7.2 Closure

LEMMA 20: When all the nodes are disabled, S is a minimal (α, β)-dominating set.

PROOF:

(a) We show first that S is (α, β)-dominating set. When all the nodes are disabled, R1

is disabled. Thus, for every node v out of S, v.exp1 ≥ α and ∀u ∈ NS(v) : v.exp1 ≥ β.

73

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Therefore, each node out of S is α-dominated and each node u ∈ S who has a neighbor in
V − S is β-dominated. As for the remainder nodes u ∈ S having no neighbors in V − S,
they are β-dominated because u.exp1 = 1 which is always greater than or equal β.

(b) We prove that S is minimal by contradiction. Suppose that S is (α, β)-dominating set
and there is no enabled node in S. Let S ′ = S−{v} be (α, β)-dominating set. So, this means
that v is α-dominated regarding S ′ (and even α-dominated for S because |NS(v)|

|N(v)| =
|NS′ (v)|
|N(v)|) ,

and for every neighbor of v we have |NS′ (win)|
|N(win)| ≥ β when win ∈ NS′(v) and |NS′−V (wout)|

|N(wout)| ≥ α

when wout ∈ NV−S(v). Since, {v} = S − S ′, it is easy to deduce for all win and wout

neighbors of v that NS′(win) = NS(win) − 1 and NS′(wout) = NS(wout) − 1. Therefore,
for all win ∈ NS(v),

|NS(win)|−1
|N(win)| ≥ β and for all wout ∈ NS(v),

|NS(wout)|−1
|N(wout)| ≥ α. This is

contradiction, because R2 is enabled for v.

4.7.3 Convergence and complexity analysis

The convergence proof is the same as one of the α-domination has been showed. Once a
node v leaves the set S and becomes has v.exp1 ≥ α. It still has v.exp1 ≥ α and it cannot
then come back to S. So, in the worst case, every node can make only two moves: enter then
leave. Thus, for n nodes of the graph, the algorithm achieves the legitimate configuration in
2n moves using a central daemon.

LEMMA 21: When a node v out of S reaches this predicate: v.exp1 ≥ α ∧ ∀u ∈
NS(v), u.exp1 ≥ β (v is α-dominated and all its neighbors in S are β-dominated), it still
remain in this predicate.

PROOF:

(a) How v still α-dominated?

Like is shown above in the proof of α-domination algorithm. Once a node v has |NS(v)|
|N(v)| ≥

α, its expression |NS(v)|
|N(v)| can decrease by one way i.e. if a neighbor u of v leaves S. However,

when u decides to leaves S, it has to check that ∀wout ∈ NV−S(u) : wout.exp2 ≥ α, which
means that v.exp2 ≥ α before u leaves S i.e. |NS(v)−1|

|N(v)| ≥ α. Suppose that S ′ = S − u, since

|NS′ | = |NS(v)− 1|, v remains α-dominated regarding S ′ because |N ′
S(v)|

|N(v)| ≥ α.

(b) How neighbors of v in S i.e. u ∈ NS(v) still all β-dominated ?

The expression |NS(u)|
N(u)

of every node u ∈ S which is β-dominated can decrease if a
neighbor z of u leaves S. When z decides to leave S, it checks the condition of R2. In other
word, u.exp2 must be greater than or equal β. After z leaves S, u still β-dominated under
the set S ′ because |NS(u)−1|

|N(u)| =
|N ′

S(u)|
|N(u)| ≥ β.

LEMMA 22: (α, β)-MDS terminates in the worst case in 2n moves under the expression
distance-2 model using unfair central daemon.

74

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

PROOF: Lemma 21 shows that each node moves at most twice (R1 then R2). Therefore,
for n nodes and under the central/sequential daemon, the convergence of (α, β)-MDS is
bounded by 2n moves.

THEOREM 8: (α, β)-MDS is a silent self-stabilizing algorithm that calculates the mini-
mal (α, β)-dominating set in O(n) moves under the expression distance-2 model using unfair
central daemon.

PROOF: Lemma 20 illustrates that (α, β)-MDS computes the minimal (α, β)-dominating
set when all the nodes are disabled and no other node can move. Then, correctness and clo-
sure are reached as a silent algorithm. Lemma 22 shows the convergence of (α, β)-MDS
where the minimal (α, β)-dominating set is reached in O(n) moves. Thus, the proof follows
from Lemma 20 and Lemma 22.

THEOREM 9: (α, β)-MDSD is self-stabilizing algorithm that calculates minimal (α, β)-
dominating set in O(nm) moves under the distance-one model using unfair distributed dae-
mon .

PROOF: Using the transformer D of Turau [Tur12], (α, β)-MDS could be converted
to a self-stabilizing algorithm (α, β)-MDSD that works under distance-one model using a
distributed daemon. The proof follows from Theorem 18 of [Tur12].

4.8 Simulation and experimental results

In this section, simulation tests are carried out to test α-MDS and (α, β)-MDS on two levels.
First, we attempt to observe the behavior of α-MDS according values of α in]0, 1]. Secondly,
we test (α, β)-MDS according values of both α and β simultaneously. It is important to
mention that this is the first work implementing the expression model. We have utilized
the implementation of L. Kuszner [Kus05] written in Java which represents a platform for
simulating uniform self-stabilizing algorithms. The proposed algorithms α-MDS and (α, β)-
MDS have been implemented and integrated. Only a central daemon is considered which is
the solely daemon provided by Kuszner plateform. Arbitrary graphs (Erdos-Reiny) of 1000
nodes using different densities have been synthetically generated. We have considered the
average value after launching 10 executions for each test to find the dominating set.

Figures 4.8 and 4.9 show experiments performed on α-MDS only. In this case, we try to
understand the behavior of α-MDS according values of α in]0, 1].

Figure 4.8 illustrates that whatever the graph density, the α-MDS size grows proportion-
ally whith α values. However, density of graph has some impact on the cardinality of the
dominating set. For high density (= 0.9) where graphs are close to be complete, relation is
clear: α ≃ cardinality like an equation of a line x = y, where 0 < α ≤ 1. Once density

75

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Alpha values in]0,1]

S
iz

e
 o

f
A

lp
h

a
−

M
D

S
 [

n
o

d
e

s
]

Density=0.01

Density=0.02

Density=0.05

Density=0.1

Density=0.4

Density=0.9

Figure 4.8: Cardinality of α-MDS according to α on graphs with 1000 nodes.

76

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Alpha values in]0,1]

T
im

e
 o

f
c
o

n
v
e

rg
e

n
c
e

 [
m

o
v
e

s
 n

u
m

b
e

r]

Density=0.01

Density=0.02

Density=0.05

Density=0.1

Density=0.4

Density=0.9

Figure 4.9: Convergence time according to α on graphs with 1000 nodes.

77

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

0

0.5

1

0

0.5

1
0

200

400

600

800

1000

Alpha]0,1]Beta [0,1]

S
iz

e
 o

f
(A

lp
h
a
,B

e
ta

)−
M

D
S

 [
n
o
d
e
s
]

Density=0.01

0

0.5

1

0

0.5

1
0

200

400

600

800

1000

Alpha]0,1]Beta [0,1]

S
iz

e
 o

f
(A

lp
h
a
,B

e
ta

)−
M

D
S

 [
n
o
d
e
s
]

Density=0.02

0

0.5

1

0

0.5

1
0

200

400

600

800

1000

Alpha]0,1]Beta [0,1]

S
iz

e
 o

f
(A

lp
h
a
,B

e
ta

)−
M

D
S

 [
n
o
d
e
s]

Density=0.05

0

0.5

1

0

0.5

1
0

200

400

600

800

1000

Alpha]0,1]Beta [0,1]

S
iz

e
 o

f
(A

lp
h
a
,B

e
ta

)−
M

D
S

 [
n
o
d
e
s
]

Density=0.1

Figure 4.10: Cardinality of the minimal dominating set according α and β.

begins to be down, curves of α-MDS size starts to deviate from the line x = y especially on
the extremities of the interval]0, 1]. The worst deviation from x = y is represented by the
curve of the smallest density = 0.01 where for α = 0.05 the cardinality of α-MDS is 20%
and for α = 0.95 the cardinality is 75%. Theses results are important from a point of view
application. Reducing the value of α as possible gives a lower cardinality of the dominating
set which is very practical in the reality. For example, for a given problem, if we want a
small dominating set of nodes, it will be sufficient to set α as small as possible.

Figure 4.9 shows the necessary time to converge to the stable configuration according
values of α. Theoretically, we have proved in section Convergence and Complexity Analysis
that the number of moves cannot exceed 2n moves which is confirmed by the experiments
where the number of moves is always less then 3n/5. However, it is clear through Figure
4.9 that α-MDS needs more time (number of moves) on the extremities of]0, 1] while it
converges quickly in the middle of this area.

Figures 4.10 and 4.11 illustrates tests curried out according values of α and β simulta-
neously. In figure 4.10, the cardinality of the minimal [α, β)-dominating set grows propor-
tionally with α and β. Observe that cardinality of the dominating set reaches its maximal
value (i.e. S = V) when β = 1. The convergence according values of α and β is illustrated
by figure 4.11. Globally, the number of moves to reach the illegitimate configuration has a
upper bound of 600 moves for a graph with 1000 nodes.

78

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

0

0.5

1

0

0.5

1
100

200

300

400

500

600

Alpha]0,1]Beta [0,1]

T
im

e
 o

f
c
o
n
v
e
rg

e
n
c
e
 [
m

o
v
e
s
 n

u
m

b
e
r]

Density=0.01

0

0.5

1

0

0.5

1
100

200

300

400

500

600

Alpha]0,1]Beta [0,1]

T
im

e
 o

f
c
o
n
v
e
rg

e
n
c
e
 [
m

o
v
e
s
 n

u
m

b
e
r]

Density=0.02

0

0.5

1

0

0.5

1
0

100

200

300

400

500

600

Alpha]0,1]Beta [0,1]

T
im

e
 o

f
co

n
ve

rg
e
n
ce

 [
m

o
ve

s
n
u
m

b
e
r]

Density=0.05

0

0.5

1

0

0.5

1
0

100

200

300

400

500

600

Alpha]0,1]Beta [0,1]

T
im

e
 o

f
c
o
n
v
e
rg

e
n
c
e
 [
m

o
v
e
s
 n

u
m

b
e
r]

Density=0.1

Figure 4.11: Convergence time according α and β..

4.9 Conclusion

Analysis shows that algorithm stabilizes in 2n moves, namely a complexity of O(n) using
the expression distance-2 model under central daemon. Simulations experiments illustrates
the efficiency of the proposed algorithm. Note that expression distance-2 model is a variant
of distance-two model. Using the transformer of [Tur12], α-MDS can be converted to α-
MDSD that converges in O(nm) under distributed daemon and distance-one model.

Simulation experiments conducted under expression distance-2 model show that α-MDS
outperforms other known algorithms.

For α ∈]0, 1[; for example, when α is fixed to be 0.2, each node (out of the domination
set following our definition) must has at least 20% of neighbors in the dominating set. It is
clear that the values α = 0 or α = 1 have no significance because when α = 0 it means that
all the nodes must be out of dominating set and if α = 1 that leads to all nodes are in the
dominating set.

Table 4.1 summarizes main formal results of α-MDS with other particular self-stabilizing
algorithms (of α = 1

2
) MPIDS, MGPA and Unfriendlier.

Table 4.2 presents results on both (α, β)-MDS and (f, g)-alliance.

Using the expression distance-2 model proposed by Turau, a self-stabilizing algorithm

79

Chapter 4 : Self-stabilizing Algorithms for Minimal Dominating Set

Algorithm Daemon Complexity α values

MPIDS [WWTZ13] Central O(n2) α = 1/2

Unfriendlier [HHKM13] Central O(n3m) α = 1/2

MGPA [YBHK13] Distributed O(nm) α = 1/2

α-MDS [this thesis] Distributed O(nm) 0 < α ≤ 1

Table 4.2: Self-stabilizing algorithms on one parameter α domination.

Algorithm Daemon Complexity (moves) Constraints between pa-
rameters

minimal (f, g)-alliance
[CDD+15]

Distributed O(∆3n) Proved only for f ≥ g,
conjecture for f < g

(α, β)-MDS [this thesis] Distributed O(nm) No constraint on α and β

Table 4.3: Self-stabilizing algorithms on two parameters α and β domination.

is proposed in this thesis for the new parametric (α, β)-domination called (α, β)-MDS. The
algorithm is studied in both theoretical and experimental sides, where it is proved that it
converges in O(nm) moves using a distributed daemon. The proposed algorithm confirms
the conjecture of [CDD+15] that there is a self-stabilizing algorithm for (f, g)-alliance when
f < g. The later result is achieved due to the expression distance-2 model that facilitates
developing self-stabilizing algorithm for calculating minimal (α, β)-dominating set. Only a
upper bound is provided in terms of moves number that shows a convergence in O(mn)

moves. It will be interesting to work in the future in order to find the convergence in terms
of rounds.

80

General Conclusion

Conclusion

In this thesis, we aimed to contribute in the field of fault tolerance in dynamic distributed
systems and to propose a new algorithm allowing such a system to stabilize at a legitimate
state, and like all work we started with a search and a state of the art to collect all the
necessary information to achieve a certain objective.

Our first knowledge must be in distributed systems and their needs in daily life, today,
these systems intervene in all aspects of life either in the form of services, media, giant
library of information, ... or in different fields presented by sensor networks such as intel-
ligent transport, military service, forest protection systems, industry, Internet of things,
All these types of systems present a certain level of dynamicity and reliability for provide
instant information to the user.

Then we briefly studied the faults and errors that can put a distributed system down. A
failure is defined as a deviation from the service delivered by a system from the essential
specification of this system to eliminate errors or faults; where the paradigm of fault toler-
ance refers to the ability of a system (computer, network, cloud cluster, etc.) to continue
operating without interruption when one or more of its components fail. We have cited in
this part the elements that categorize a tolerant system, the error and failure models, as well
as the fault tolerance approaches. As our thesis deals with distributed systems, we talked
about fault tolerance mechanisms in this type of system.

Among the methods used to overcome an error or failure failure in distributed systems
is to bring the system to a stable legitimate state in an automatic way. self-stabilizing algo-
rithms offer this opportunity to systems, it is a concept proposed by Disjktra in 1973 and is
later used in fault tolerance.

self-stabilizing system is a system that can automatically recover following the occur-
rence of (transient) faults [Dol00]. The idea is to design systems that can be started in an
arbitrary state and still converge to a desired behavior which means that this makes self-
stabilization an elegant approach for transient fault-tolerance.

For this reason we chose to apply a self-stabilizing algorithm in distributed systems
knowing that the application of these algorithms appears in different types of graphs with
different topologies and network connections. So we presented in this thesis a state of the

82

Conclusion

art of these algorithms through their formal definition, their advantages and disadvantages,
how to designate a self-stabilizing system. In addition, to run a self-stabilizing algorithm,
two important elements must be taken into consideration: daemons and transformers that we
have defined in this part; not forgetting the measures of complexity.

And to fully understand this paradigm, we presented a brief state-of-the-art on its use in
different types of graph problems, Citing the matching, dominating set, independent set and
coloring graph, in this part we present a good number of works in the literature.

As mentioned, among the graph problems treated in the literature is the search for the
minimal dominating set which reflects a whole set of problems and real situations in dis-
tributed systems and sensor networks. Therefore the contribution of this thesis is to propose
a new algorithm to find the minimal dominating set, we left the third chapter to clarify this
paradigm, definitions and algorithms allowing to find the dominating set are presented, as
well as the fields of application of this paradigm.

Finally, we moved on to our contribution in the last chapter which is the application of
a self-stabilizing algorithm to find the minimal dominating set in distributed systems. To
do this, we started by citing the first works applying a self-stabilizing algorithm in minimal
dominating set, well the important are:

Hedetniemi and al. proposed the domination bipartition algorithm where node i has a
single binary variable x(i).The rules allow a node to change its value if all nodes in its closed
neighborhood have the same value. Upon stabilization, the two sets of nodes i|x(i) = 0 and
i|x(i) = 1 are each dominating sets, if G has no isolated nodes, thus forming a dominating
bipartition [GHJS03b]

Another algorithm proposed by [GHJS03a] that requires that every node have a unique
ID. Goddard and al. have used i interchangeably to denote a node, and the node’s ID. they
assumed there is a total ordering on the IDs. Each node i has two variables: a pointer p(i)
(which may be null) and a boolean flagx(i). If p(i) = j then they said that i pointsto j. At
any given time, they denote with D the current set of nodes i with x(i) = true.

A total dominating set S is called minimal when no proper subset of S is a total dominat-
ing set of the graph G. Belhoul and al. have proposed a linear self-stabilizing algorithm for
finding a minimal total dominating set, that they call MTDS, in the expression model under
the unfair central scheduler. Then, they removed this assumption to have an algorithm that
converges in O(mn) under the unfair distributed scheduler.

After that we have described our contribution in this context. The proposed self-stabilizing
algorithm for computing minimal (α, β)-dominating set called (α, β)-MDS, we have used
the expression distance-2 model proposed by Turau to carry out the distributed system to
legitimate state. The algorithm is studied in both theoretical and experimental sides, where
it is proved that it converges in O(nm) moves using a distributed daemon after proofing

83

Conclusion

the efficiency in the central daemon which is simple. The proposed algorithm confirms the
conjecture of [CDD+15] that there is a self-stabilizing algorithm for (f, g)-alliance when
f < g. The later result is achieved due to the expression distance-2 model that facilitates
developing self-stabilizing algorithm for calculating minimal (α, β)-dominating set. Only a
upper bound is provided in terms of moves number that shows a convergence in O(mn)

moves. It will be interesting to work in the future in order to find the convergence in terms
of rounds.

After proofing the efficiency of the tow parameters α and β to find the minimal dominat-
ing set using a self-stabilizing algorithm, we conclude this thesis by some future proposal
idea. We will aim to apply this algorithm in real problems especially social networks such as
the spread of rumors and the influence of Internet users on each other. Also the identification
of effective Leader Group of Social Network seems a very important idea to apply the algo-
rithm. We can apply α-β-Domination in the study of the spread of diseases and infections.
Also we will aim to study this algorithm in fault tolerance algorithms against complicated
errors and failures such as Byzantine faults.

84

Bibliography

Bibliography

[ADDP19] Karine Altisen, StÃ©phane Devismes, Swan Dubois, and Franck Petit. Intro-
duction to distributed self-stabilizing algorithms. by Morgan and Claypool,
2019.

[AG93] A. Arora and M. Gouda. Closure and convergence: a foundation of fault-
tolerant computing. Software Engineering, IEEE Transactions, page 12,
1993.

[AKL18] F. N. Abu-Khzam and K. Lamaa. Efficient heuristic algorithms for positive
influence dominating set in social networks. Hot Topics in Pervasive Mobile
and Online Social Networking, IEEE, pages 610–615, 2018.

[AME21] A. A. Alofairi, E. Mabrouk, and I. Elsemman. Constraint based models for
dominating protein interaction networks. IET SystemsBiology, 2021.

[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast as static
networks. Foundations of Computer Science Annual Symposium IEEE, pages
206–219, 1988.

[AS99] Gheorghe Antonoiu and Pradip K. Srimani. A self-stabilizing distributed al-
gorithm to find the median of a tree graph. Journal of Computer and System
Science, 58:215–221, 1999.

[ASH+08] M. Atapour, S.M. Sheikholeslami, A. Hansberg, L. Volkmann, A. Khodkar,
and S. Arumugam. 2−domination subdivision number of graphs. AKCE
International Journal of Graphs and Combinatorics, 5(2):165–173, 2008.

[Asp22] James Aspnes. Notes on theory od distributed systems. Distributed under a
Commons Attribution-ShareAlike 4.0 International license, April 2022.

[AW04] H. Attiya and J. Welch. Distributed computing: fundamentals, simulations
and advanced topics. Wiley-Interscience, page 414, 2004.

86

[AWF03] K. M. Alzoubi, P. Wan, and O. Frieder. Maximal independent set, weakly-
connected dominating set, and induced spanners in wireless ad hoc networks.
International Journal of Foundations of Computer Science, 14(2):287–303,
2003.

[BA99] A. Barabasi and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, 1999.

[BBP13] K. Bessaoud, A. Bui, and L. Pilard. Self-stabilizing algorithm for low weight
connected dominating set. 17th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications, IEEE Computer Society,
pages 231–238, 2013.

[BDTC05] Jeremy Blum, Min Ding, Andrew Thaeler, and Xiuzhen Cheng. Connected
dominating set in sensor networks and manets. Department of Computer
Science The George Washington University, Washington, DC 20002, 2005.

[Ben21] Badreddine Benreguia. Self-stabilizing domination and localization in dy-
namic distributed systems. Phd science, Department of computer sciences,
Batna 2 university, 2021.

[BHS94] T. J. Bean, M. A. Henning, and H. C. Swart. On the integrity of distance
domination in graphs. Mathematics Australas. J Comb, 10:29–43, 1994.

[BJ16] Csilla BujtÃ s and SzilÃ rd Jasko. Bounds on the 2-domination number.
Discrete Appl. Math, 242:4–15, 2016.

[BNBJ+08] A. Bar-Noy, T. Brown, M. P. Johnson, T. La Porta, and O. Liu H. Rowaihy.
Assigning sensors to missions with demands. Algorithmic Aspects of Wireless
Sensor Networks, 2008.

[BYK14] Yacine Belhoul, Sad Yahiaoui, and Hamamache Kheddouci. Efficient self-
stabilizing algorithms for minimal total k-dominating sets in graphs. Infor-
mation Processing Letters, 114(7):339–343, 2014.

[CaR11] Ch. Cachin, R.Guerr aoui, and L. Rodrigues. Reliable and secure distributed
programming. Springer, page 367, 2011.

[CCT14] W. Y. Chiu, C. Chen, and S. Tsai. A 4n-move self-stabilizing algorithm for
the minimal dominating set problem using an unfair distributed daemon. In-
formation Processing Letters, 114(10):515–518, 2014.

[CDD+15] F. Carrier, A. K. Datta, S. Devismes, L. L. Larmore, and Y. Rivierre. Self-
stabilizing (f, g)-alliances with safe convergence. Stabilization, Safety, and
Security of Distributed Systems, 8255:61–73, 2015.

[CFHV12] M. Chellali, O. Favaron, A. Hansberg, and L. Volkmann. k-domination and
k-independence in graphs: A survey. Graphs and Combinatorics, 28:1–55,
2012.

[CHS02] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and
self-stabilizing distributed matching. In Proceedings of the Twenty-first An-
nual Symposium on Principles of Distributed Computing, PODC, pages 290–
297, 2002.

[CPADJH04] E. J. Cockaynea, S. M. Hedetniemic P. A. Dreyer Jr, and S. T. Hedetniemi.
Roman domination in graphs. Discrete Mathematics, 278:11–22, 2004.

[Cro96] Jon Crowcroft. Open Distributed System. Artech House, first edition edition,
1996.

[CTB15] A. Campan, T. M. Truta, and M. Beckerich. Fast dominating set algorithms
for social networks. In Michael Glass ans Jung Hee Kim, editor, Modern
AI and Cognitive Science Conference, volume 26, pages 55–62, Greensboro,
NC, USA, April 25-26, 2015.

[DDL18] A. K. Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing al-
gorithm for the generalized minimal k-dominating set problem. Theoretical
Computer Science, 2018.

[DFG06] Vadim Drabkin, Roy Friedman, and Maria Gradinariu. Self-stabilizing wire-
less connected overlays. International Conference On Principles Of Dis-
tributed Systems OPODIS, pages 425–439, 2006.

[DGS99] S. Dolev, Mohamed. G. Gouda, and M. Schneider. Memory requirements for
silent stabilization. Acta Informatica, 17(111):447–462, 1999.

[DHLM00] J. Dunbar, D. Hoffman, R. Laskar, and L. Markus. α-domination. Discrete
Mathematics, 211:11–26, 2000.

[DHR+11] S. Devismes, K. Heurtefeux, Y. Rivierre, A. K. Datta, and L. L. Larmore.
Self-stabilizing small k-dominating sets. Networking and Computing ICNC,
Second International Conference, pages 30–39, 2011.

[Die05] Reinhard Diestel. Graph theory. Springer-Verlag New York 1997, 2000,
2005, third edition edition, 2005.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. In Proceedings of the Ninth Annual ACM
Symposium on Principles of Distributed Computing, pages 103–117, New
York, NY, USA, 1990. Association for Computing Machinery.

[DLV10] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. A selfstabilizing
o(k)-time k-clustering algorithm. The Computer Journal, OUP, 53(3):342–
350, 2010.

[Dol00] Shlomi Dolev. Self-stabilization. The MIT Press, Cambridge, Massachusetts;
London, England, 2000.

[DPRS11] M.C. Dourado, L.D. Penso, D. Rautenbach, and J.L. Szwarcfiter. The south
zone: Distributed algorithms for alliances. Stabilization, Safety, and Security
of Distributed Systems, 6976:178–192, 2011.

[DRV04] F. Dahme, D. Rautenbach, and L. Volkmann. Some remarks on α-domination.
Discuss. Math. Graph Theory, 24:423–430, 2004.

[DT11] S. Dubois and S. Tixeuil. A taxonomy of daemons in self-stabilization. HAL,
open science, page 15, 2011.

[DWS14a] Y. Ding, J. Z. Wang, and P. K. Srimani. A linear time self-stabilizing algo-
rithm for minimal weakly connected dominating sets. International Journal
of Parallel Programming, pages 151–162, 2014.

[DWS14b] Y. Ding, J. Z. Wang, and P. K. Srimani. Self-stabilizing selection of influential
users in social networks. 17th International Conference on Computational
Science and Engineering, IEEE, pages 1558–1565, 2014.

[DWS16] Y. Ding, J. Z. Wang, and P. K. Srimani. A time self-stabilizing algorithm for
minimal weakly connected dominating sets. International Journal of Parallel
Programming, 44:151–162, 2016.

[EB20] G. B. Ekinci and C. BujtÃ s. Bipartite graphs with close domination and
k-domination numbers. Open mathematics, 18:873–885, 2020.

[FEK09] W. Feng, C. Erika, and X. Kuai. Positive influence dominating set in online
social networks. In Springer-Verlag, editor, Proceedings of the 3rd Inter-
national Conference on Combinatorial Optimization and Applications, vol-
ume 1, pages 313–321, 2009.

[FHE+11] F.Wang, H.Du, E.Camacho, K.Xu W.Lee, Y.Shi, and S.Shan. On positive
influence dominating sets in social networks. Theoritical Computer Science,
412:265–269, 2011.

[FHHR02] O. Favarona, S.M. Hedetniemib, S.T. Hedetniemib, and D.F. Rall. On k-
dependent domination. Discrete Mathematics, 249:83–94, 2002.

[FJ85] John Frederick Fink and Michael S. Jacobson. n-domination in graphs, in:
Graph theory with application to algorithms and computer science. John Wiley
and Sons, New York, pages 283–300, 1985.

[Gar03] Felix C. Gartner. A survey of self-stabilizing spanning-tree construction
algorithms. Swiss Federal Institute of Technology EPFL; technical report,
page 21, 2003.

[Gha15] Mohsen Ghaffari. An improved distributed algorithm for maximal indepen-
dent set. Computer Science, Data Structures and Algorithms, 2015.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages.
SODA19: Symposium on Discrete Algorithms, pages 805–820, 2019.

[GHJS03a] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K Srimani. A self-
stabilizing distributed algorithm for minimal total domination in an arbitrary
system graph. Computers and Mathematics with Applications, pages 240–
243, 2003.

[GHJS03b] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-
stabilizing protocols for maximal matching and maximal independent sets for
ad hoc networks. Proceedings International Parallel and Distributed Pro-
cessing Symposium, page 162, 2003.

[GHJS03c] W. Goddard, S.T. Hedetniemi, D.R. Jacobs, and P.K. Srimani. A robust dis-
tributed generalized matching protocol that stabilizes in linear time. 23rd In-
ternational Conference on Distributed Computing Systems Workshops, 2003.

[GHJS08] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-
stabilizing graph protocols. Parallel Processing Letters, pages 189–199,
2008.

[GHS06] Wayne Goddard, Stephen T. Hedetniemi, and Zhengnan Shi. An anonymous
selfstabilizing algorithm for 1-maximal matching in trees. Information Pro-
cessing Letters, 91(2):77–83, 2006.

[Gib85] Alan Gibbons. Algorithmic graph theory. Cambridge, Massachusetts; Lon-
don, England, 1985.

[GK93] S. Ghosh and M.H. Karaata. A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, pages 55–59, 1993.

[GK10] Nabil Guellati and Hamamache Kheddouci. A survey on self-stabilizing al-
gorithms for independence, domination, coloring, and matching in graphs.
Journal of parallel and distributed computing, pages 406–415, 2010.

[GS10] W. Goddard and P. K. Srimani. Anonymous self-stabilizing distributed al-
gorithms for connected dominating set in a network graph. Proceedings of
the international multi-conference on complexity, informatics and cybernet-
ics, IMCIC, pages 26–28, 2010.

[GS13] W. Goddard and P.K. Srimani. Daemon conversions in distributed self-
stabilizing algorithms. International Workshop on Algorithms and Computa-
tion, WALCOM 2013: WALCOM: Algorithms and Computation, 7748:146–
157, 2013.

[GT00] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration and arbi-
trary graphs. Proceedings. 4th International Conference on Principles of Dis-
tributed Systems, pages 55–70, 2000.

[HCW08] T. C. Huang, C. Chen, and C. Wang. A linear-time self-stabilizing algorithm
for the minimal 2−dominating set problem in general networks. Journal of
Information Science and Engineering, 24(1):175–187, 2008.

[Her02] T.R. Herman. A comprehensive bibliography on self-stabilization. Theoreti-
cal Computer Science, Chicago J.,, page 21, 2002.

[HH92] Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maxi-
mal matching. Information Processing Letters, 43(2):77–81, 1992.

[HHJ+12] S. M. Hedetniemi, S. T. Hedetniemi, H. Jiang, K. Kennedy, and A. A. McRae.
A self-stabilizing algorithm for optimally efficient sets in graphs. Information
Processing Letters, 112:621–623, 2012.

[HHJS03] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Self-
stabilizing algorithms for minimal dominating sets and maximal independent
sets. Computers and Mathematics with Applications, 46(5):805–811, 2003.

[HHKM13] S. M. Hedetniemi, S. T. Hedetniemi, K.E. Kennedyn, and A. Mcrae. Self-
stabilizing algorithms for unfriendly partitions into two disjoint dominating
sets. Parallel Processing Letters, 23(1), 2013.

[HHS98] T. W. Haynes, S. Hedetmieni, and P. Slater. Fundamentals of Domination in
Graphs: Advanced Topics. Marcel Dekker, Inc, 270 Madison Avenue, New
York, 10016, first edition edition, 1998.

[HHT03] S.T. Huang, S.S. Hung, and C.H. Tzeng. Linear time self-stabilizing color-
ings. Information Processing Letters 87, pages 251–255, 2003.

[HHT05] S.T. Huang, S.S. Hung, and C.H. Tzeng. Self-stabilizing coloration in anony-
mous planar networks. Information Processing Letters, 95(1):307–312, 2005.

[HJS01] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Maximal matching stabi-
lizes in time o(m). Information Processing Letters, pages 221–223, 2001.

[HLCW07] T. C. Huang, J. Lin, C. Chen, and C. Wang. A self-stabilizing algorithm for
finding a minimal 2−dominating set assuming the distributed demon model.
Computers et Mathematics with Applications, 54(3):350–356, 2007.

[HSM+07] H.Rowaihy, S.Eswaran, M.Johnson, D.Verma, A.Bar-Noy, T.Brown, and
T.LaPorta. A survey of sensor selection schemes in wireless sensor networks.
In Society of Photo-Optical Instrumentation Engineers SPIE Conference Se-
ries, page 22, 2007.

[Hua05] T. C. Huang. A self-stabilizing algorithm for the shortest path problem assum-
ing read/write atomicity. Journal of Computer and System Sciences, 71:70–
85, 2005.

[HW92] Walter L. Heimerdinger and Charles B. Weinstock. A conceptual framework
for system fault tolerance. Technical Report CMU/SEI-92-TR-033, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213, 1992.

[IKK02] M. Ikeda, S. Kamei, and H. Kakugawa. A space-optimal self-stabilizing algo-
rithm for the maximal independent set problem. Third International Confer-
ence on Parallel and Distributed Computing Applications and Technologies
PDCAT, pages 70–74, 2002.

[Ioa02] Kleoni Ioannidou. Transformations of self-stabilizing algorithms. Distributed
Computing (DISC); Lecture Notes in Computer Science, pages 113–117,
2002.

[ISO95] ISO. Open distributed processing reference model. International Standard
ISOIlEC IS 10746, page 5, 1995.

[JG05] Ankur Jain and A. Gupta. A distributed self-stabilizing algorithm for finding
a connected dominating set in a graph. Sixth International Conference on
Parallel and Distributed Computing Applications and Technologies PDCAT,
IEEE, pages 615–619, 2005.

[Kar99] Mehmet Hakan Karaata. A self-stabizing algorithm for finding articulation
point. International Journal of Foundations of Computer Science, 10(1):33–
46, 1999.

[Ken06] Nadia Nosrati Kenareh. Domination in graphs. Master of science, B.sc, Sharif
university, 2006.

[Kes88] J. L. W. Kessels. An exercise in proving self-stabilization with a variant func-
tion. Information Process Letter, 29(1):39–42, 1988.

[KK03] S. Kamei and H. Kakugawa. A self-stabilizing algorithm for the distributed
minimal k-redundant dominating set problem in tree networks. Proceedings
of the Fourth International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, PDCAT, IEEE, pages 720–724, 2003.

[KK05] S. Kamei and H. Kakugawa. A self-stabilizing approximation algorithm for
the distributed minimum k-domination. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 88(5):1109–1116,
2005.

[KK06] A. Kosowski and L. Kuszner. Self-stabilizing algorithms for graph coloring
with improved performance guarantees. International Conference on Artifi-
cial Intelligence and Soft Computing, Artificial Intelligence and Soft Comput-
ing ICAISC, pages 1150–1159, 2006.

[KK08] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing approximation for
the minimum connected dominating set with safe convergence. International
Conference On Principles Of Distributed Systems, OPODIS, Principles of
Distributed Systems, pages 496–511, 2008.

[KK10] Sayaka Kamei and Hirotsugu Kakugawa. A self-stabilizing distributed ap-
proximation algorithm for the minimum connected dominating set. Interna-
tional Journal of Foundations of Computer Science, pages 459–476, 2010.

[KP93] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-
passing systems. Distributed Computing, 7(1):17–26, 1993.

[KS00] M.H. Karaata and K.A. Saleh. A distributed self-stabilizing algorithm for
finding maximum matching. Computer Systems Science and Engineering,
15(3):175–180, 2000.

[KS08] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, New York, NY, USA,
2008.

[Kus05] L. Kuszner. Tools to develop and test self-stabilizing algorithms. 2005.

[KV09] K. Kammerling and L. Volkmann. Roman k-domination in graphs. J. Korean
Math. Soc., 46:1309–1318, 2009.

[Lam84] Leslie Lamport. Solved problems, unsolved problems and non-problems in
concurrency. PODC, Proceedings of the third annual ACM symposium on
Principles of distributed computing, page 11, 1984.

[LLY09] D. Li, L. Liu, and H. Yang. Minimum connected r-hop k-dominating set
in wireless networks. Discrete Mathematics, Algorithms and Applications,
1:45–57, 2009.

[MM07] Fredrik Manne and Morten Mjelde. A self-stabilizing weighted matching
algorithm. Stabilization, Safety, and Security of Distributed Systems, pages
383–393, 2007. Lecture Notes in Computer Science book series LNTCS.

[MMBP11] T. Milenkovic, V. Memiscc, A. Bonato, and N. Przculj. Dominating biological
networks. PLoS ONE, 6, 2011.

[MMPT07] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sebastien Tixeuil. A
new self-stabilizing maximal matching algorithm. Proceedings of the 14th In-
ternational Colloquium on Structural Information and Communication Com-
plexity (Sirocco 2007), pages 96–108, 2007.

[MPR19] A. R. Molla, S. Pandit, and S. Roy. Optimal deterministic distributed algo-
rithms for maximal independent set in geometric graphs. Journal of Parallel
and Distributed Computing, pages 36–47, 2019.

[Neg15] B. Neggazi. Self-stabilizing algorithms for graph parameters. PhD thesis,
UniversitÃ© Claude Bernard Lyon 1, 04 2015.

[NGHK15] B. Neggazi, N. Guellati, M. Haddad, and H. Kheddouci. Efficient
self-stabilizing algorithm for independent strong dominating sets in arbi-
trary graphs. International Journal of Foundations of Computer Science,
26(06):751–768, 2015.

[NHNT20] M. H. Nguyen, M. Hoang Ha, D. N. Nguyen, and The Trung Tran. Solving
the k−dominating set ptoblem on very large−scale networks. Computational
Social Networks, 7(4), 2020.

[NIE73] J. NIEMINEN. Two bounds for the domination number of a graph. Inst.
Maths Applies, pages 183–187, 1973.

[Ore62] Oystein Ore. Theory of graphs, volume 38. Providence, American Mathe-
matical Society, fourth 1967 edition, 1962.

[PT14] Sushant Patial and Jawahar Thakur. Checkpointing and rollback recovery al-
gorithms for fault tolerance in manets: A review. Int. J. Advanced Networking
and Applications, 6(3):2308–2313, 2014.

[RMM05] George Roussos, Andy J. Marsh, and Stavroula Maglavera. Enabling per-
vasive computing with smart phones. Published by the IEEE CS and IEEE
ComSoc, pages 20–28, April 2005.

[RR00] C. S. ReVelle and K. E. Rosing. Defendens imperium romanum: A clas-
sical problem in military strategy. The American Mathematical Monthly,
107(7):585–594, 2000.

[RTAS09] H. Raei, M. Tabibzadeh, B. Ahmadipoor, and S. Saei. A self-stabilizing dis-
tributed algorithm for minimum connected dominating sets in wireless sensor
networks with different transmission ranges. eleventh International Confer-
ence on Advanced Communication Technology, IEEE, pages 526–530, 2009.

[SA15] Arif Sari and Murat Akkaya. Fault tolerance mechanisms in distributed sys-
tems. International Journal of Communications, Network and System Sci-
ences, 8(12):471–482, 2015.

[SGH04] Z. Shi, W. Goddard, and S. T. Hedetniemi. An anonymous self-stabilizing
algorithm for 1-maximal independent set in trees. Information Processing
Letters, 91(2):77–83, 2004.

[Sha09] Ramy S. Shaheen. Bounds for the 2-domination number of toroidal grid
graphs. International Journal of Computer Mathematics, 86(4):584–588,
2009.

[SRR94] S.K. Shukla, D.J. Rosenkrantz, and S.S. Ravi. Developing self-stabilizing
coloring algorithms via systematic randomization. Proceedings. 1st Interna-
tional Workrrshop on Parallel Processing, pages 668–673, 1994.

[SRR95] S. K. Shukla, D. J. Rosenkrantz, and S.S. Ravi. Observations on self-
stabilizing graph algorithms for anonymous networks. Proceedings of the
second workshop on self-stabilizing systems, page 15, 1995.

[SS93] S. Sur and P.K. Srimani. A self-stabilizing algorithm for coloring bipartite
graphs. Information Sciences, 69(3):219–227, 1993.

[SX07] P.K. Srimani and Z. Xu. Self-stabilizing algorithms of constructing spanning
tree and weakly connected minimal dominating set. 27th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW’07), pages
20–28, 2007.

[SX08] Pradip K. Srimani and Zhenyu Xu. Self-stabilizing graph protocols. Parallel
Processing Letters, 18(1):189–199, 2008.

[Tel94] Gerard Tel. Maximal matching stabilizes in quadratic time. Information Pro-
cessing Letters, 49(6):271–272, 1994.

[TH09] Volker Turau and Bernd Hauck. A new analysis of a self-stabilizing maximum
weight matching algorithm with approximation ratio 2. Theoretical Computer
Science, 412(40):5527–5540, 2009.

[TH11] Volker Turau and Bernd Hauck. A new analysis of a self-stabilizing maximum
weight matching algorithm with approximation ratio 2. Theory Computer
Science, 412(40):5527–5540, 2011.

[Tix10] Sebastien Tixeuil. Self-stabilizing algorithms. Algorithms and theory of com-
putation handbook (2009) 26.1-26.45, pages 9–10, 2010.

[TS06] A. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, Upper Saddle River, NJ, second edition edition,
2006.

[TS16] A. S. Tanenbaum and M. V. Steen. A brief introduction to distributed systems.
Computing, 98(10):1009, 2016.

[Tur07] Volker Turau. Linear self-stabilizing algorithms for the independent and dom-
inating set problems using an unfair distributed scheduler. Information Pro-
cess Letter, 103(3):88–93, 2007.

[Tur12] Volker Turau. Efficient transformation of distance-2 self-stabilizing algo-
rithms. Journal of Parallel and Distributed Computing, 72(4):603–612, 2012.

[Tur13] V. Turau. Self-stabilizing algorithms for efficient sets of graphs and trees.
Information Processing Letters, 113:771–776, 2013.

[UT11] S. Unterschutz and V. Turau. Construction of connected dominating sets
in large-scale manets exploiting self-stabilization. Distributed Computing in
Sensor Systems and Workshops DCOSS, pages 1–6, 2011.

[VKK15] S. Vijayasharmila, P.G. Kumar, and S. Kamalesh. A survey on connected
dominating sets (cds) both in the wireless sensor networks and wireless ad
hoc networks. International Journal of engeneering research and technology
(IJERT), 04, 2015.

[VMCL09] L.M. Vaquero, L.R. Merino, J. Caceres, and M. Lindner. A break in the
clouds: Towards a cloud definition. ACM SIGCOMM Computer Communica-
tion Review, 39:50–55, 2009.

[Vol09] L. Volkmann. Connected p-domination in graphs. Util. Math, 79:81–90,
2009.

[Woo95] Woolbright. Personal communication. 1995.

[WS05] Xinzhou Wu and R. Srikant. Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-exclusive
spectrum sharing. Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC 05, 44th IEEE Conference, pages 342–5347, 2005.

[WWTZ13] G. Wang, H. Wang, X. Tao, and J. Zhang. A self-stabilizing algorithm for find-
ing a minimal positive influence dominating set in social networks. In Aus-
tralia Australian Computer Society, Inc., editor, Proceedings of the Twenty-
Fourth Database Technologies 2013 (ADC 2013), pages 93–99, 2013.

[XHGS03] Zhenyu Xu, Stephen T. Hedetniemi, Wayne Goddard, and Pradip K. Srimani.
A synchronous self-stabilizing minimal domination protocol in an arbitrary
network graph. International Workshop on Distributed Computing, IWDC,
pages 26–32, 2003.

[YBHK13] S. Yahiaoui, Y. Belhoul, M. Haddad, and H. Kheddouci. Self-stabilizing al-
gorithms for minimal global powerful alliance sets in graphs. Information
Processing Letters, 113:365–370, 2013.

Résumé

Les systèmes distribués dynamiques sont largement utilisés dans la vie quotidienne en
traitant et exploitant des informations, des documents, des services, des médias et tous les
moyens de divertissement. De nombreuses entreprises créatrices de logiciels et de systèmes
se font concurrence pour offrir aux utilisateurs des services performants et tolérants.

Ces SD dynamiques sont obligées à répondre aux demandes des utilisateurs dans les
délais et avec des informations fiables, elles offrent tous les niveaux de sécurité; l’authenticité
de tous les services et informations personnel. Ce type de systèmes apparaı̂t dans notre
vie dans tous les domaines en utilisant différents moyens de capteurs qui collectent tout
type d’informations et de demandes où le défi est de s’assurer une disponibilité permanente
du service dès que des pannes se produisent. De nombreux algorithmes sont utilisés ici
pour tolérer les pannes et dépasser ces situations, parmi les algorithmes auto-stabilisants qui
amènent le système à un état légitime même en présence de pannes et d’erreurs.

Cette thèse traite du problème de la recherche d’ensembles dominants en utilisant le
paradigme auto-stabilisant dans les systèmes distribués dynamiques. Habituellement, les
membres d’un ensemble dominant sont sélectionnés pour être des chefs de cluster dans
les réseaux de capteurs sans fil (WSN) afin d’assurer une disponibilité permanente du ser-
vice. Étant donné que les pannes se produisent fréquemment à l’intérieur du WSN en rai-
son de l’énergie limitée de la batterie, l’algorithme d’auto-stabilisation permet de recalculer
l’ensemble dominant, et donc le réseau revient à son fonctionnement normal.

Les travaux existants ont introduit de nombreuses variantes d’algorithmes auto-stabilisants
qui calculent l’ensemble dominant minimal S où chaque noeud sur S a plus de voisins dans
S qu’il n’en a hors S. Dans cette thèse, nous introduisons un algorithme auto-stabilisant
généralisé appelé ensemble (α, β)-dominant minimal. Un ensemble à dominance α est un
sous-ensemble de noeuds S tel que pour tout noeud υ hors S, le taux de voisins de υ à
l’intérieur de S doit être supérieur à α, où 0 < α ≤ 1. De même, un ensemble (α, β)-
dominant est un sous-ensemble de noeuds S tel que : S est un ensemble α-dominant et
pour chaque noeud υ dans S, le taux de voisins de υ à l’intérieur de S est supérieur à β, où
0 ≤ β ≤ 1. Des preuves mathématiques et des tests de simulation montrent la justesse et
l’efficacité de l’algorithme proposé.

A travers notre variante proposée (α, β)-domination, nous prouvons rigoureusement la
conjecture de Carrier et. Al. ((f, g)-alliances auto-stabilisantes avec convergence sûre) qui
ont proposé un algorithme auto-stabilisant pour une variante de domination appelée (f, g)-
alliance établie uniquement lorsque f ≥ g. Nous prouvons la correction du cas f < g.

Key words: Algorithmes auto-stabilisant, Ensemble dominant minimal, α-domination,
Systèmes distribués dynamiques.

 خص: مل

 تُستخدم الأنظمة الديناميكية الموزعة على نطاق واسع في الحياة اليومية من خلال التعامل مع الاستغلال والمعالجة للمعلومات والوثائق

والخدمات والوسائط وجميع وسائل الترفيه. تتنافس العديد من الشركات التي تنشئ برامج وأنظمة لتقديم خدمات قوية ومتسامحة

 للمستخدمين.

الديناميكي هذا بالاستجابة لطلبات المستخدم في الوقت المناسب وبمعلومات جديرة بالثقة ، فهي توفر جميع مستويات DSيلتزم

الأمان ؛ صحة جميع الخدمات ومعلومات الموظفين. يظهر هذا النوع من الأنظمة في حياتنا في جميع المجالات باستخدام وسائل مختلفة

تي تجمع كل أنواع المعلومات والطلبات حيث يكون التحدي هو ضمان توفر خدمة دائمة منذ حدوث من أجهزة الاستشعار ال

يتم استخدام العديد من الخوارزميات هنا للتسامح مع الأخطاء وتجاوز تلك المواقف ، من بين خوارزميات الاستقرار الذاتي الأعطال.

 الفشل والأخطاء. التي تنقل النظام إلى حالة شرعية حتى مع وجود حالات

تتناول هذه الأطروحة مشكلة إيجاد المجموعة المسيطرة باستخدام نموذج الاستقرار الذاتي في الأنظمة الموزعة الديناميكية. عادة ، يتم

(من أجل ضمان توافر خدمة WSNاختيار أعضاء المجموعة المسيطرة ليكونوا رؤساء مجموعة في شبكات الاستشعار اللاسلكية)

بسبب طاقة البطارية المحدودة ، فإن خوارزمية الاستقرار الذاتي تسمح WSNنظراً لأن الأعطال تحدث بشكل متكرر داخل دائم.

 بإعادة حساب المجموعة المسيطرة ، وبالتالي تعود الشبكة إلى عملها العادي.

حيث Sتحسب الحد الأدنى من الهيمنة على المجموعة قدمت الأعمال الحالية العديد من المتغيرات من خوارزميات الاستقرار الذاتي التي

 α) في هذه الأطروحة ، نقدم خوارزمية معممة ذاتية الاستقرار تسمى الحد الأدنى S أكثر من S لها جيران في S كل عقدة خارج

،β) - تظهر البراهين الرياضية واختبارات المحاكاة صحة وكفاءة الخوارزمية المقترحة. و المجموعة المسيطرة

 كية الموزعة ديناميظمة ال ة، الأنوعة المسيطر : خوارزميات الاستقرار الذاتي، المجم فتاحيةمات المكل ال

	Bibliography
	Distributed systems and fault tolerance
	Introduction
	Distributed systems
	Definition
	Distributed systems goals
	Types of distributed systems

	Models of communication in distributed systems
	Message passing communication
	Shared memory communication
	State model (or composite model):
	read-write atomicity:

	Asynchronous distributed systems
	Synchronous distributed system
	Asynchronous distributed system

	Fault tolerance
	Definition
	Failure models
	Fault tolerance approaches
	Fault taxonomy in distributed systems
	Fault-tolerant algorithm categories

	Fault tolerance mechanism in distributed system
	Replication Based Fault Tolerance Technique
	Process level redundancy technique
	Fusion based technique
	Checking Point/RollBack Technique

	Conclusion

	Self-stabilizing in distributed systems
	Introduction
	Definition
	Formal definition
	Self-stabilization advantages and disadvantages
	Self-stabilization algorithm design
	Daemons
	Complexity measures
	Transformers
	Proof techniques

	Examples of self-stabilization algorithms for some graph problems
	Matching
	Dominating set
	Independent Set
	Coloring graph

	Conclusion

	Algorithms for dominating sets
	Introduction
	Definitions
	Algorithms of dominating set
	K-domination
	Varieties of k-domination

	Dominating set applications
	MDS in wireless networks
	Design of wireless sensor networks
	Health service

	Conclusion

	Self-stabilizing Algorithms for Minimal Dominating Set
	Introduction
	Related Work
	Self-stabilizing distributed algorithms for dominating set
	Dominating bipartition GHJS03
	Minimal dominating set GHJS03
	A Self-Stabilizing Distributed Algorithm for Minimal Total Domination GHJS03A
	Minimal Extended Domination GHJS03A

	self-stabilizing algorithms for minimal total k-dominating BYK14
	Minimal total dominating set
	Total k-dominating set BYK14

	Self-stabilizing Algorithm for Minimal -Dominating Set
	-domination
	Related work of -domination on self-stabilization

	Model and terminology
	Execution model
	Transformers

	Self-stabilizing algorithm for minimal -dominating set
	Closure
	Convergence and complexity analysis

	Minimal (,) dominating set
	Self-stabilizing algorithm for minimal (,)-dominating set
	Closure
	Convergence and complexity analysis

	Simulation and experimental results
	Conclusion

	Conclusion & Perspectives
	Bibliography

