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Abstract

The purpose of this thesis is to study a collection of problems related to the Lebesgue spaces with
variable exponent. In particular, we study the variable weighted Hardy space on domains, where,
we explore its atomic decomposition and we also study its dual space. Next, we study the weighted
variable Hardy space associated with operator L, more accurately, we establish the molecular char-
acterization of the space HZEL) (R"), then we explore its dual space. Finally, we study the weighted
Hardy-Lorentz spaces with variable exponents, more precisely, we establish the atomic characteri-

zation of the variable weighted Hardy-Lorentz spaces.
Résumé

L'objectif de cette thése est d’étudier un ensemble de problémes liés aux espaces de Lebesgue a
exposant variable. Dans un premier temps, nous étudions les espaces de Hardy pondéré a expo-
sant variable sur les domaines, ot nous établissons sa décomposition atomique, et nous découvrons
également son espace dual. Ensuite, nous étudions 1'espace de Hardy pondéré a exposant variable
associé a 'opérateur L, o, nous établissons la caractérisation moléculaire de 1’éspace HZJE')(]R”),
puis nous étudions son espace dual. Enfin, nous étudions les espaces de Hardy-Lorentz pondéré
a exposant variable, o1 nous établissons la caractérisation atomique des espaces de Hardy-Lorentz

pondéré a exposant variable.
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2010 Mathematics Subject Classification: Primary 42B35; Secondary 42B30, 42B25.

1ii






CONTENTS

1 Preliminaries and basic properties
1.1 Variable exponent Lebesguespace . . .. .. ... ... .. ... ... .. .. ... ...
1.2 Variable weighted Lebesguespace . . ... ... ......................

1.3 Weighted Lorentz space with variable exponents . . . . . ... ... ...........

2 Weighted variable Hardy spaces on domains
2.1 Preparationand helpfulresults . . ... ... ... ... .. ... ... . . ..
22 Atomicdecomposition . . . .. ... L
23 Dualityresult . ... ... .

3 Weighted variable Hardy spaces associated with operators
3.1 Preparation and helpfulresults . . ... .. ... ... ... .. .. . o .
3.2 Weighted variable Hardy spaces associated with operators satisfying Davies-Gaffney
estimates . . . . . ...

33 Dualspace . . . .. . e

4 Weighted Hardy-Lorentz spaces with variable exponents
41 Preparationand helpfulresults . . ... .. ... ... ... .. ... .. .o o L.
42 The Hardy-Littlewood maximal Operator on the variable weighted Lorentz spaces . .

43 Atomicdecomposition . . . . .. ... L

Bibliography

26
26
29
37






INTRODUCTION

The theory of function spaces with variable exponents has evolved into an interesting
field of research due to its connection with various domains such as, the modeling of elec-
trorheological fluids, thermorheological fluids, in the study of image processing, in differ-
ential equations with nonstandard growth, see e.g. [12, 36, 79].

The starting point of this theory was in 1931 by Orlicz [77], who introduced a natu-
ral generalization for the well-known L?(Q))—spaces via replacing the real exponent p by
a measurable function p(-). Kov¢ik and Rakosnik [51] showed that LP() (Q)) —spaces have
many similar properties to the classical L”(Q))—spaces, but different in subtle ways. After
10 years later, Fan and Zhao [26] proved the same properties and results in [51], where they
have used a different method. The variable exponent function spaces have been widely in-
vestigated and used in harmonic analysis and partial differential equations, see for instance
[18, 21, 64] and the references therein.

In the last decades, the weighted variable exponent Lebesgue space, which is a gener-
alization of both the weighted Lebesgue space and the variable Lebesgue space, has been
intensively studied, see for example [22, 30]. Finding the optimal condition for which the
maximal function is bounded on this space is one of the most considerable problems in this
space. Diening and Hésto [19] introduced the class A .y as a generalization of the ordinary
Mukenhoupt class A, and proved that the maximal operator is bounded on weighted vari-

able exponent Lebesgue space with weights in this new class.

The real variable Lorentz spaces LP/7(IR") is firstly initiated by Lorentz in [63] and this
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kind of space is considered as an extension for the classical Lebesgue spaces LP(IR"). The
study of the Lorentz spaces became an extensive field of research due to its applications
in many fields of mathematics. We refer the reader to [2, 6, 7, 59, 60] and the references
therein. Concerning Lorentz spaces with variable exponent, Kempka and Vybiral [49], in-
troduced and investigated the variable Lorentz spaces LP()7()(R"). One of the important
result proved in [49] lies in the fact that the variable Lorentz space coincides with the vari-
able Lebesgue space when p(-) = g(-) i.e. LPO)PO)(R") = LPO)(R™), exactly as in the real
variable case. Worth mentioning that Israfilov et al. [44] studied the mapping properties of
classical operators arising in harmonic analysis in the weighted variable Lorentz spaces. Re-
cently, O. Kulak [53] introduced a new weighted variable exponent Lorentz space, then he
investigated the boundedness of the bilinear Littlewood-Paley square function and Hardy-
Littlewood maximum function on these weighted variable exponent Lorentz spaces. Fur-
ther historical details and recent developments related to the Lorentz spaces with variable
exponents are reported in [15, 25, 31, 71].

Another proper substitute for the classical Lebesgue spaces is the classical Hardy spaces
HP(R"), introduced and developed by E. Stein and G. Weiss [86]. Worth pointing out that
the real variable Hardy space H? (R") plays an important role in harmonic analysis and par-
tial differential equations, see for instance [70, 82]. In [8], M. Bownik introduced and studied
the anisotropic Hardy spaces associated with very general discrete groups of dilations. F.
Weisz [87] investigated the atomic characterization of the Martingale Hardy Spaces in the
case 0 < p < 1. It deserves to mention that Miyachi [68, 69] introduced the Hardy space on
open subset () of R" via the maximal function, where he has studied the atomic decomposi-
tion and the duality theory of this kind of spaces. On the other hand, S. Wu [88] established
a wavelet characterization for weighted Hardy spaces. Whilst, Lee and Lin [55] defined
molecules belonging to weighted Hardy spaces HJ,(R") and they have showed that each
weighted atom is a weighted molecule, and each weighted molecule belongs to a weighted
Hardy space. J. Huang and Y. Liu [43] explored the boundedness of intrinsic square func-
tions on the weighted Hardy spaces, then they characterize the weighted Hardy spaces by

the intrinsic square functions.

In the spirit of the ideas of Orlicz [77] and E. Stein and G. Weiss [86], Nakai and Sawano
[74] introduced Hardy spaces with variable exponents on IR" via the grand maximal func-
tion, which can be seen as a generalization of the Hardy spaces and the variable Lebesgue

spaces. Always in the same paper, Nakai and Sawano have investigated several properties
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for the variable Hardy spaces, in particular, they have obtained the atomic characterization
of the Hardy space H?()(IR") with variable exponent, with this decomposition, they have
proved the Littlewood—Paley characterization of H?(") (R"). As an application of the atomic
decomposition of HP()(IR"), the authors of [74] showed that the Campanato space with
variable growth conditions is the dual space of the variable Hardy spaces. Independently,
Cruz-Uribe and Wang [16] studied the variable Hardy space HP(")(IR") with p(-) satisfying
some conditions slightly weaker than those used in [74]. Zhuo et al. [101] have proved the
intrinsic square function characterizations of this space. Recently, Zhuo et al. [100], intro-
duced the Hardy space with variable exponent on the RD —space with infinite measures,
then they have obtained several characterizations for this kind of space. More recently, Liu
[57] extended the result of Miyachi [68, 69] to the variable setting, where he introduced
the Hardy spaces with variable exponents on domains and studied the atomic decomposi-
tion and the duality theory of the variable Hardy space. In the context of the weighted
Hardy space with variable exponent, K-P. Ho investigated in [38] the weighted Hardy-
Morrey spaces, then in [39], he studied the weighted variable Hardy spaces HE) (R") and
he introduced a new class of weights with variable exponent W, ). K-P. Ho in his work [39],
by applying the extrapolation theory was able to obtain the Fefferman-Stein vector-valued
maximal inequalities on the weighted variable Lebesgue spaces L) (R"), where w belongs
to the new class Wp(,) (R"), then he established the atomic decomposition of the weighted
Hardy spaces with variable exponents (see the next chapter for the definition of W, (., (R")).

In recent years, there has been a lot of attention paid to the study of Hardy spaces asso-
ciated with different operators, which is a very active research topic in harmonic analysis.
X.T Duong and L. Yan [24] investigated the duality between the Hardy and the BMO space
associated with operators fulfill the heat kernel bounds. Thereafter, S. Hofmann and S. May-
borod [41] explored the Hardy and BMO spaces associated to divergence elliptic operators.
Subsequently, X. T. Duong and J. Li [23] studied the Hardy spaces associated to operators
satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. The no-
tion of the Davies-Gaffney estimates (or the so-called L?off-diagonal estimates) of the semi-
group {e~*L'};50 was first introduced by Gaffney [46] and Davies [20], which serves as good
generalization of the Gaussian upper bound of the associated heat kernel. Regarding the
variable Hardy spaces, Yang and Zhuo [96] introduced the space H?(") (R") associated with
operators L on R"”, where p(-) : R" — (0,1] is a measurable function satisfying the globally
log-Holder continuous condition and L is a linear operator on L?(IR"), which generates an
analytic semigroup {e~‘L};>o whose kernels have pointwise upper bounds. Furthermore,

Page-3-
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as an applications Yang and Zhuo [96] studied the boundedness of the fractional integral on
these Hardy spaces and the coincidence between the spaces H f ) (R") and the variable ex-
ponent Hardy spaces H?(')(IR"). As a generalization of the results obtained in [96], Yang et
al. [92] considered the variable Hardy spaces H” Q) (R") associated with operator L, which
obeys the Davies-Gaffney estimates. More generally, Zuo et al. [99] investigated the vari-
able Hardy-Lorentz spaces associated with operators satisfying Davies-Gaffney estimates,
it deserves to point out that these results obtained in [99] are new even when the variable
exponent p(-) is a constant. Many research works were devoted to the study of the Hardy
spaces associated with different operators, we refer the reader to [40, 52, 93] and the refer-

ences therein.

The Hardy-Lorentz spaces HP1(IR") can be seen as interpolators between the Lorentz
spaces and the Hardy spaces, with the convenient parameters of the Lorentz spaces LP1(IR")
and the Hardy spaces HP(R"). In [27], Fefferman et al. investigated the real interpolation
of the Hardy-Lorentz spaces HP1(IR"). Fefferman and Soria [28] proved the atomic decom-
position of Hardy-Lorentz space with p =1 and g = co. This result was extended later by
Abu-Shammala and Torchinsky [1] to the space HP1(IR"), where they have established its
atomic characterizations, and proved the boundedness of singular integrals for p € (0,1]
and g € (0,00]. Recently, Grafakos and He [47] established various results for the Weak-
Hardy space, corresponding to the case HP*°, with p € (0,00). Lately, L. Jun et al.[59] in-
vestigated the anisotropic Hardy-Lorentz spaces, thereafter, L. Jun et al. [60] studied the
Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces.

As a generalization for the classical weak Hardy-Lorentz spaces, Yan et al. [90] in-
troduced the variable weak Hardy space on R", via the radial grand maximal function,
and they have established its radial or non-tangential maximal function characterizations
(they have used the notation WHP()(R") instead of HP (')'°°(]R”)). Moreover, they have
also obtained various equivalent characterizations of the WH?(")(IR"), by means of atoms,
molecules, the Lusin area function, and the Littlewood-Paley g-function or g3-function,
respectively. As an application of these results, Yan et al. [90] established the bounded-
ness of convolutional é-type and non-convolutional y-order Calderén-Zygmund operators
from HP()(R") to WHP()(R") including the critical case when p_ = n/(n + ) or when
p— =n/(n+ ), where p_ := essinfycrsp(x). J. Liu et al. [58] investigated the anisotropic
variable Hardy—-Lorentz spaces. Thereafter, Jiao et al. in [32] were able to extend the results
stated in [90] to the variable Hardy-Lorentz spaces H?()1(R"), with q € (0, cc]. In addition,
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they have obtained a new John-Nirenberg theorem, and the boundedness of singular op-
erators on HP()4(IR"). Recently, J. Liu [61] studied the Littlewood-Paley and finite atomic
characterizations of anisotropic variable Hardy—Lorentz spaces. More recently, K. Saibi [80]
established the intrinsic square function characterizations of the variable Hardy-Lorentz
spaces and X. Liu et al. [62] proved the molecular characterization of anisotropic Hardy-
Lorentz spaces with variable exponent.

In line with the above works, this thesis aims to study a class of function spaces with
variable exponent. More precisely, in Chapter 2, we introduce and study the weighted
Hardy spaces Hg,(') (Q2) on a proper open subsets, more specifically, we assume that () is a
proper open subset of R” and p(-) is a variable exponent with p : O — (0,00). We first intro-
duce the weighted hardy spaces, then we characterize these spaces via the grand maximal
function and we establish the atomic decomposition of these spaces. Moreover, we intro-
duce the weighted variable Holder spaces Ag,(')’q’d(ﬂ) over the set (), then we show that
Afu(')’q’d(ﬂ) represents the dual space of the variable weighted Hardy space HE) (Q).

Chapter 3 is devoted to the study of the weighted variable Hardy HZ,(L) (R™) associated
with operators, we assume that this kind of operator obeys the Davies-Gaffney estimates.
We start by investigating the molecular characterization of these spaces by mean of the
atomic decomposition of the weighted tent spaces, then as an application of this molecular

characterization, we prove that BMO? ,EZUM

space H z(') (R"), where L* denotes the adjoint operator of L on L2(IR").

W

is the dual space of the variable weighted Hardy

The last Chapter is concerned with the study of the weighted Hardy-Lorentz spaces
with variable exponents. In particular, we introduce the weighted Hardy-Lorentz spaces
H{Z,(')'”’ (R"), where g € (0,0] via the radial or non-tangential maximal functions. Thereafter,
H? ()q

we define the variable weighted atomic Hardy-Lorentz spaces Hy, jiom o s

(R") by means
of (p(+),r,s)—atoms (see definition 4.1.2). As first step, we prove the boundedness of the
Hardy-Littelwood maximal operator on the variable weighted Lorentz spaces by using an
interpolation theorem of sublinear operators. Next, under the assumption that p(-) satis-
fies the log-Holder condition, g € (0,00] and 7 € ((ki/?)’,c0] such that 1 €S, (see definition
1.2.2) we prove the following identity,

Hg)(-),q(an) — grLa (R"),

w,atom

with equivalent quasi-norms.

Page-5-
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List of notations

Throughout this thesis the following notations will be used.

C stands for a positive constant which may be different from line to line.
A < B means that there exists a positive constant C such that A < CB.
The symbol A~ Bmeans A SBand BS A.

For an open set Q) C R”, we denote by D(Q)) the set of infinitely differentiable func-
tions with compact supports in ).

D'(Q)) is the topological dual space of D(Q)) equipped with the weak—x topology.

For a measurable subset () C R"” we denote by |Q)| and )¢, the Lebesgue measure of

() and the characteristic function of (), respectively.
We denote by N the set {1,2,---} and by Z the set N U {0}.
The space S(IR") denotes the space of all Schwartz functions.

The space S’ (IR") denotes the topological dual space of S(IR") called also by (the space

of tempered distributions).

Page-6-



CHAPTER 1

PRELIMINARIES AND BASIC
PROPERTIES

In this chapter, we give some definitions, notations and some mathematical backgrounds on
the variable Lebesgue spaces, Lorentz spaces with variable exponents, the weighted vari-
able Lebesgue spaces, weighted variable Lorentz spaces and compile some useful lemmas.

1.1 Variable exponent Lebesgue space

A measurable function p(-) : ) — (0,0) is called a variable exponent. For a variable expo-

nent p(-), we define

p— =essinfycqp(x) and py =esssup,.op(x).

and by P(Q)) we denote the collection of all variable exponents such that 0 < p_ < p; < 0.
Example 1.1.1. Here two examples for the variable exponents:

(i) O =Rand p(x) =2+ sin(x),

(i) Q= (1,00) and p(x) = x.

We define some notations to describe the range of exponent functions. Let p(-) € P(Q)
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and aset E C (), let

p—(E) =essinfycpp(x), p+(E)=ess superp(x).

For the sake of simplicity, we write p_ = p_(Q), and p+(Q) = p+. We define three canonical
subsets of :

bl = {x€eQ:p(x) =+oo}.
P = {xe:px)=1}.

'Y = {xeQ:p(x) € (1,00)}.
We denote by p/(+) the conjugate of variable exponent p(-), where

1 1
p()  pP'()

The notation p’ will also be used to denote the conjugate of a constant exponent. We say

=1,

that the variable exponent p(-) fulfills the globally log-Holder continuity condition and we
write p(-) € Clog (Q), if there exists a constants Cp(.),Coo and p such that, for any x,y € R”,

P(x) - )| < —P iy
- log(e+ ﬁ)' ’

o0

[p(x) — peol < w-

To define the Lebesgue spaces with variable Lebesgue spaces, we need first to define the

following modular function,

Definition 1.1.2. Given (), p(-) € P(Q) and a Lebesgue measurable function f, define the
modular associated with p(-) by

0,a(f)i= /Q o QPO+l

If f ¢ L®(Qo) or fP0) ¢ LY\ Qo), we define 0,000 (f) = 00. When |Q| =0, in particular,
when p; < +oo, we let | fl|~(q,) =0, when [Q\ Qwl, then o (f) = [|fllL=(q)- In the

Page-8-
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situation, when there is no confusing we write p, (f) or p(f) instead of o, (f)-

Now, we state some properties of Lebesgue spaces with variable exponent. For more

details, see for example [18] and [21].

Proposition 1.1.3. Given Q) and a function p(-) € P(Q). Then the following assertions hold true :

(1) Forall f,0(f) = 0and p(|f]) = p(f),
(2) p(f) =0ifand only if f(x) =0 fora.e. x € Q,
(3) if p(f) < +oo, then f(x) < oo fora.e. x € Q),

(4) the modular p is convex, i.e. for t >0,
ptf+ (1 =1g) < to(f) + (1 —1)p(g),

(5) the modular p is order preserving, i.e. if | f(x) < |g(x)|a.e. then p(f) < p(g),

(6) the modular p has the continuity property. i.e. If p(f/0) < 400, for some o > 0. Then the
function A — p(f/A) is continuous and decreasing on [,00).

After we have given definition and some properties of the modular p, we are now ready
to provide the definition of the Lebesgue spaces with variable exponent L{)(Q)).

Definition 1.1.4. Given () and a function p(-) € P(Q).

Define the the space LP(") (Q2) to be the set of Lebesgue measurable functions f such that
p(f/A) < 4oo for some A > 0.

Define the space Lfo(c') (Q)) to be the set of measurable functions f such that f € Lfo(c') (K)
for every compact set K C ().

Remark 1.1.5. According to (3)-proposition 1.1.3, if f € LP()(Q)) then f is finite almost ev-

erywhere.

Example 1.1.6. Let Q) = (1,00),p(x) = x and f(x) = 1. We can easily see that p(f) = +oo,

however

1
xlogA
p(f/)\)—/1 e dx-/\l /\<—|—oo

On the other hand, if O = (0,1), p(x) = 1 and f(x) = 1. Then p(f) < oo, but p(f/A) =
+oo forall A < 1.

Page-9-
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This condition is needed for the case, when p(-) is unbounded function. When p (Q \
) < oo then the space LP()(Q) coincides with the set of functions such that p(f) is finite.

The next proposition gives a relation between the modular function and the variable
Lebesgue spaces which can be founded in [18], and for the convenience of the reader we
give the proof here.

Proposition 1.1.7. Given Q and a function p(-) € P(Q). Then f € LPU)(Q) ifand only if p(f) <
oo is equivalent to assuming that p_ = oo or p4(Q \ Qeo) < +00.

Proof. In this proof we deal with the following implication :
p(f) = p— =00 0r p+(Q\ Qo) < +00.

Let f € LP1)(Q), since the modular p is order preserving then, p(f/A) < p(f) for some
A > 1. Thus

o) = [ (O b A Ay < AP @05/ 0) <
0\Q

Now we assume that, p_ < oo and p(Q \ Q) = co. We construct a function f such that
p(f)=ocobut f€LP Q). By the definition of essential supremum, there exists a decreasing
sequence of sets { Ex } xey with finite measure such that:

(i) Ex C O\ Qc,

(i) Exy1 C Exand |Eg \ Exyq]| >0,
(ifi) |Ex| =0,
(iv) if x € Eg, p(x) > pr > k.

Define the function f by

X) = _ X
) (k_zl |Ex \ Exa| JEN By XE\ B ))

Then, from the assumption (iv) we get, for any A > 1

1

p(x)

Page-10-
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= 1
(f/A) = —/ AP dy
ol k; |Ex \ Exy1l JENE .,
< Z A K < .
k=1
By the same computation, we can find that p(f) = co. Thus the proof is achieved. O

Proposition 1.1.8. [18] Given Q) and a function p(-) € P(Q). If p+(Q\ Qo) < o0, then for all
A>T,
p(Af) S APHONO=)p(f).

Furthermore, if p4 < 0o and A > 1, then

AP=p(f) < p(Af) < APrp(f).

Remark 1.1.9. If A € (0,1), then the reverse inequalities are true.

The newt theorem shows that the variable Lebesgue spaces is a vector space, see e.g [18].
The proof is given here for the convenience of the reader.

Theorem 1.1.10. Given Q) and a function p(-) € P(Q),LP1)(Q) is a vector space.

Proof. We know that the set of Lebesgue measurable functions is itself a vector space, and
since 0 belongs to LP(*) (Q)), it suffices to show that

f,e € LP(Q) = af + Bge LP(Q), Va,Be R

Let 4 = (|a| + |B|)A, for some A > 0.
From (1) and (5) in Proposition 1.1.3, we get

p<txf+/3g> :p<|txf+/3g|>

H H
o] B
<0 (g g U1/ + s (81/)-

We deduce from the convexity of the modular p,

of +Pgy . la] B -
P S P AV + g e lsl/ ) < oo

Page-11-
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]

Luxemburg-Nakano Type Norm.

In the case of real variable Lebesgue spaces L?(Q)), for p € [1, 0] the norm derived directly

from the modular

Il = ([ 17Gorrax) " ™)

Due to the presence of the power 1/p in (N) we cannot adopt this definition to the case of
variable Lebesgue spaces, via replacing 1/ p by a variable function 1/ p(x). Then we need to
use the so-called Luxemburg quasi-norm, also known as Luxemburg-Nakano quasi-norm.

Definition 1.1.11. Given Q) and a function p(-) € P(Q). For a measurable function f, we

define
10y = inf{A > 020, o (F/4) <1}, (LN)

The next Lemma gives some characterizations for the Luxemburg quasi-norm, we refer

the reader to the books [18, 21], here we give the proof for the convenience of the reader.

Lemma 1.1.12. Given Q) and a function p(-) € P(Q). The function || - || ) defines a norm on
LPO(Q). ie.

) 111y = O i and only if £ = 0,
(ii) forall vy € R, ||')’f||UJ(-)(Q) = |'Y|||f||LP(~)(Q)I

(iii) ||f+g||m<~> o) S ”f”Lp(-) o) T ||g||Lp(‘) Q)
Q) Q) Q)

Proof. We start by proving (i). When f =0, then p(f/A) =0 <0, consequently [|f|;,() ) =
0. Conversely, we suppose that || f||, ) () = 0, then for all A >0,

pUF/N) = [ IF /AP D+ | f/M 1m0y 1
O\Qw —_———
I

We observe that I <1 thus | f[|;~(q,) < A, thus f(x) =0 for a.e. x € Q. If A <1, by

virtue of Proposition 1.1.8, we have

)\_7"/ f()|PWdx <T<1.
O\Oso
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Hence,

/ () |[P®dx < AP~
O\ Qoo

Consequently, || f7(") I11(0\0) = 0, which means that f(x) =0 for a.e. x € '\ Q. Now
we turn to prove (ii). Let y € R*, then we have

17f iy = inf{A > 02 p(I1f /1) <1},

by a change of variable, we infer that

19l = linf { > 0:p(11f/ 1/ 1) < 1)
= |y|inf{s>0:p(|7]f/8) <1}.

Finally, we move to prove (iii). Fix A ¢ > || fl[ ;) () and Ag > [|g ]l () (), then p(f /Af) <
and p(g/Ag) < 1.Let A =Ar+ Ag.
(3)—of Proposition 1.1.3 and the convexity of the modular p leads to

A
p<%>:p<%+n>s%mmfw%pwﬂ

Thus || f +g|l; .0 ) < Af + Ag. By taking the infimum over Ay and Ag we get (iii). [

The next proposition plays an important role in the study of function spaces with vari-
able exponent, see for example [21]. For the convenience of the reader we present the proof
of the proposition.

Proposition 1.1.13. Given Q) and a function p(-) such that |Qe| = 0, then for all s € [p%,oo),

o) = 1150 (1.1.1)

Proof. By setting u° = A, then from the definition of the norm and the fact that || =0, we
infer that
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H‘f‘SHLP(')(Q) :inf{/\ >0: /Q (|f(/9\5)‘5>p(x)dx - 1}

:inf{]/ts>01/0(’f(:)|)sp(X)dx§1} HfHLS,,

]

Remark 1.1.14. If |Q)] > 0 and the exponent p(-) is not identically infinite, then (1.1.1) do not
always hold. Indeed, let O = [—1,1], and define

- {1 if xe[-1,0;

co if x€(0,1],
and
f(x){1 if xe[-1,0];

2 if xe(0,1],

and s = 2, then we observe that

01 1 5
2 — — 2—:—

thus || f2 ||Lp(.)(m = 5. But, on the other hand,

b (F/N) = (G2 42(5),

if we solve the equation (})? +2(}) — 1 =0, we find out that | f||?
is different to || f2|| ) Q)

— 1 ;
120() Q) - (ﬁ)z which

The next results show some properties of the Luxemburg quasi-norm and the modular

function.

Proposition 1.1.15. [18] Given Q and a function p(-) € P(Q), if f € LPO)(Q)) and ||f||L,, ) >0
then P(f/Hf”Lp ) < 1. Moreover, p(f/\|f||Lp ) =1 for all non-trivial f € LP()(Q) ) lfand
only if p1-(Q\ Qoo ) zsﬁmte

Corollary 1.1.16. [18] Given Q) and a function p(-) € P(Q).
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(i) If||f||U, < 1, thenp(f) < ||f||Lp<~>(Q)
(ii) Zfo”Lp > 1, then p(f) > ||f||LP(')(Q

Furthermore, if we suppose that |Qe| = 0, then
(iii) Zfo”LP ) S 1, then p(f)/P- < HfHLP(‘)(Q) <p(f)VF+,

(i0) i £l oy > 1o then p(F)MP+ < IIf sy < PP~

Holder Inequality.

The Holder inequality is one of important inequalities in the analysis of partial differential
equations and harmonic analysis, then it would be reasonable to ask whether Holder’s in-
equality remains true in the case of variable exponent, more precisely, we have the following

theorem.

Theorem 1.1.17. Given Q) and a function p(-) € P(Q). Forall f € LPV)(Q) and g € LF'()(Q).
Then fg € LY(Q) and we have

/ £ ()8 (0)ldx < Coir 1l s Iy (112)

where Cp(.y = (14 2= — 75)lxa. 1o @) + 1Xaw @) + X0, =)

The next result is the generalized Holder inequality

Corollary 1.1.18. Given Q) and a functions p(-),q(-) € P(Q). Define r(-) by

Then, there exists a constant C > 0 such that, for all f € LPC)(Q)) and g € L10)(Q)), then we have
fg e L'O(Q) and

||fg||Lr<~)(Q) < C”f”LP(')(Q)||g||L'1<')(Q)' (1.1.3)

For the proof of theorem 1.1.2 and corollary 1.1.3, we refer the reader to [17, 21].
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Definition 1.1.19. Given Q) and a function p(-) € P(Q).

[F ey = I | sz

gGLP/('>(Q)ngHLp’(')(Q =

Theorem 1.1.20. [18] Given Q) and a function p(-) € P(Q). Then, f € LPU)(Q) if and only if
£l 100 () 18 finite, moreover, we have

o)l f ey ) < ﬂf||m<->(g) < o)l ey

where 1/c,() = [[xa.ll1=) + X0 lz=) + X1 1)

Convergence and Completeness of L") (()).

In this subsection, we consider the convergence in the Lebesgue spaces with variable expo-
nent.

Definition 1.1.21. Given ), p(:) € P(Q) and given a sequence of functions, {fi}ren C
LrO(Q).

(i) (convergence in modular) We say that f; converges to f in modular if for some a > 0,
o(a(f — fr)) > 0ask — oo,

(ii) (convergence in norm) We say that fi converges to f innorm if || f — fic|l () () = O as
k — oo.

The presence of the constant & in the above definition is to preserve the homogeneity of
convergence i.e. If fx converges to f then 2f; converges also to 2f.

Proposition 1.1.22. Given Q), and a function p(-) € P(Q), the sequence of functions, { fy }ren C
LPU)(Q) converges to f in norm if and only if for every & > 0,p (a(f — fi)) — 0 as k — oo,

Proof. Assume that f; converges to f in norm. Let a > 0. The homogeneity of the norm
gives,
[l (fie — f)HLP(')(Q) = a|fi — fHUJ(~>(Q) kjoo 0.

By using corollary 1.1.16, for all k sufficiently large, we obtain

p(oc(fk —f)) <allfx _fHLP(')(Q)'
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Hence,

palfe=£)) =0

Conversely, let A > 0 and let « = 1. Then for all k sufficiently large, o((fx — f)/A) <1,
thus || fr — fll 0 () < A Since this inequality is true for any A > 0 we find out

”fk - f”LP(‘)(Q) kjoo 0.
]

The next result shows the relation between the convergence in norm and the conver-

gence in modular. For more details we refer the reader to [18].

Theorem 1.1.23. Given Q), and a function p(-) € P(Q). Convergence in norm is equivalent to
convergence in modular if and only if either p_ = oo or p(Q \ Qo) is finite.

The following two theorems represent respectively the monotone convergence theorem

and the Fatou-like Lemma in the variable Lebesgue spaces.

Theorem 1.1.24. [18] Given O, and a function p(-) € P(Q). Let {fi}rew C LPO)(Q) be a se-
quence of non-negative functions such that fy increases to a function f pointwise a.e. Then either

f e LPO(Q) and || fill oy ey = I Fll ooy oF F & LPO(Q) and | fell 1y o) — -

Theorem 1.1.25. [18] Given Q, and a function p(-) € P(Q). Let {fi}xew C LPU)(Q) such that
fx converges pointwise almost everywhere to f. If liminfy ., || fk||L,,(.)(Q) < oo, then f € LP1)(Q))
and

HfHLP(')(Q) < HgglfﬂkaUi(-)(Q)'

Now, we state an extension of the called Lebesgue’s dominated convergence theorem
from the classical Lebesgue spaces to the variable Lebesgue spaces. For the proof we refer
the reader to [18].

Theorem 1.1.26. Given Q), p(-) € P(Q), and assume that p4 < oo. If the sequence f} converges
pointwise almost everywhere to f and there exists a function g € LP()(Q) such that |fi(x)| < g(x)
a.e. Then f € LPU)(Q) and

f = fillrorey 2, 0

If p4+ = oo, then this result is always false.
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The following result gives the relation between the convergence in norm and the con-
vergence in measure.

Theorem 1.1.27. [18] Given Q), and a function p(-) € P(Q), If the sequence { fi }reny € LPO)(Q)
converges to f in norm, then it converges in measure.

As in the case of the real variable Lebesgue spaces L7 (Q), we have the following com-

pleteness theorem, for further details we refer the reader to [18].

Theorem 1.1.28. Given Q) and a function p(-) € P(Q). The variable Lebesgue space LP\)(Q) is
complete.

Remark 1.1.29. From the fact that the modular p is order preserving and the above theorem,
then the space LP(") (Q)) is ideal.

Theorem 1.1.30. Given Q) and a function p(-) € P(Q). Suppose that p4 < oo. Then the set of
bounded functions of compact support with suppf € Q) is dense in LP()(Q)).

The next theorem shows the non-density result of the set of bounded functions in the
variable Lebesgue spaces.

Theorem 1.1.31. [18] Given Q) and a function p(-) € P(Q). If p+(Q\ Q) = oo, then the set of
bounded functions is not dense in LP()(Q)).

Remark 1.1.32. It is well-known that the variable exponents Lebesgue space is a special case
of Musielak-Orlicz spaces (see [73]).

The Hardy-Littlewood Maximal Operator

The maximal function Mf represents the largest average value of f at each point. In partic-
ular, we have the following definition

Definition 1.1.33. Given a function f € L}
function of f, is defined for all x € ()

(R"), then Mf, the Hardy-Littlewood maximal

loc

M(f) _sup|B|/|f ‘dy'

B>x
where the supremum is taken over all balls B of () containing x.

The following result gives some properties of the Hardy-Littlewood maximal operator,
see for example [21, 19].
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Proposition 1.1.34. The Hardy-Littlewood maximal operator has the following properties

(1) The operator M is sublinear, i.e.
M(f+g)(x) < Mf(x) + Mg(x),

(2) the operator M is homogeneous, i.e. forall « € R, M(af)(x) = |a|Mf(x),
(3) forall £, |f(x)| < Mf(x),
(4) if f € L®(R"), then Mf € L*®(R") and || Mf || oo (rny = || f]| L2 (rn)

(5) if f(x) # 0 on a set of positive measure, then on any bounded set Q) there exists € > 0 such
that Mf(x) >¢, x € Q,

(5) if f(x) # 0 on a set of positive measure, then Mf ¢ L'(IR").
Theorem 1.1.35. The function Mf is lower semi-continuous and therefore measurable.

The following Theorem gives some classical norm inequalities for the Hardy-Littlewood

maximal operator.

Theorem 1.1.36. Given f € LP(R"),1 < p < oo, for every t > 0,

{re R MF(0 > 1) < 5 [ 170 Pa

Further, if p € (1,00], then

IMFfllrrey < Cullfll e grey-

The next lemma shows the boundedness of the Hardy-Littlewood maximal operator on

variable Lebesgue spaces, we refer the reader to [20].

Lemma 1.1.37. Let p € C'(R") with 1 < p_ < p. < co. Then there exists a positive constant C
such that for all f € LPC)(R"™) and we have

||Mf||Lp(-)(]Rn) < C”f”m(d(w)-
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1.2 Variable weighted Lebesgue space

In this section, we recall the definitions and some properties of the weighted variable Lebesgue
spaces. We start with the definition of the Muckenhoupt class of weight functions.

Definition 1.2.1. For p € (1,00). A locally integrable function w : Q3 — (0,00) is said to be an
* Ap—weightif
1 1 2 NP/
[w]a, := sup —/w(x)dx —/w(x) P dx < oo0.
y BGB(Z,V)<|B| B ><|B| B >

* Aj—weight, if for all balls B

ﬁ/ w(x)dx < Cw(x), a.ex€B,
B

for some a constant C > 0.

¢ for the case of p = co we have the following definition of the A, —weight,

Example 1.2.2. Here we give a classical examples for the Muckenhoupt class of weight. The
function w(x) = |x|7 is an A,—weight if and only if ¢ € ( — n,n(p — 1)). Another classical
example is w(x) = d”(x,0Q)), where for x € Q) the function d denotes the distance from the
point x and the boundary 0(), this function d belongs to A; if and only if y € (—n,n).

Now we recall the definition of the weighted variable exponent Lebesgue space LZ,(.) (Q))

is defined as
JARN(ONE :{f Q—R":p,) /|f dx<00}
For a function f € LZ,(.) (Q)), define

1Al 0y = inf{A >0:p000(1) < 1}.
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In particular, if w =1, it is well known that L") (Q) = LPO)(Q)) and if p(-) is a constant, i.e.,

p(-) = p, then Lw(') (Q) is the classical weighted Lebesgue space L%, (Q).
Next, we give a definition of a class of weights which is more general compared with

the Muckenhoupt class of weight.

Definition 1.2.3. Let p(-) : Q — (0,00) be a measurable function such that 0 < p_ < p; < o0
and w: Q) — (0,00) be a Lebesgue measurable function. We denote by W,,.)(Q) the set of
all Lebesgue measurable functions w such that

(i) HXB”LP(')/E(Q) < oo and || x5l 0y <0 for any B € B, where p =min{p_,1};
wl L

(ii) there exists k > 1 and s > 1 such that the Hardy-Littlewood maximal operator is
bounded on L(Sf,g}z) /k(Q).

w

We introduce the following indices which will be used later. For any w € W), (), we set

sw = inf{s > 1: M is bounded on Lgf’l(/)s)/(ﬁ)} (1.2.1)
and
Sy = {s > 1: Misbounded on LSf,E})S) /k(Q),for some k > 1}. (1.2.2)

For any fixed s € S, we define

k3, :=sup{k > 1: M is bounded on LSf,E}Z)//k(]R”)}.

The index k3, is used to measure the left-openness of the boundedness of M on the family
. //k
(Lo (R Yo,
Next, we give some basic examples of functions belonging to the class defined above.

Example 1.2.4. 1. Let p(-) : Q — (0,00) such that p(x) =2 forany x € Q and w(x) : Q —
(0,00) such that w(x) = |x|_411. Then, one can easily show that w satisfies the (i) of
Definition 1.2.3, and by the fact that w? e Aq forg > % and [39, Proposition 2.4], we
know that w satisfies (ii) of Definition 1.2.3. Thus w € W,(.(Q).

2. Suppose that Q) is an open bounded subset of R". Let p(-) : 3 — (0,00) defined by

2In|x|+1 .
P(x)z{sln—x+z i Ixlze

2if x| <e,
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and w(x) =1+ dist(x,9Q)). Obviously, w satisfies the (1) of Definition 1.2.3, and by
taking s = k = 2 and using [75, Theorem 2.2] with a simple computation, we can show
that

IIMfII @y <CIfI e
L

ZU -1

()
7
-1

Thus w € W,y (Q).

Remark 1.2.5. Here we give some remarks on definition 1.2.3-(i) when the function exponent

p(-) is a constant

* When p(-) = p,1 < p < 9, is a constant function, Definition 1.2.3-(i) is equivalent to
the assumption that w? and w " are locally integrable functions.

* When p(-) = p,0 < p <1, is a constant function, Definition 1.2.3-(i) is equivalent to the
assumption that w is locally integrable and 1 -; 1s locally bounded.

Concerning definition 1.2.3-(ii), we have the following Proposition, for the proof see [39].

Proposition 1.2.6. Let p € (0,00), if p(-) = p, then a Lebesgue measurable function w : R" —
(0,00) fulfills (2)— in definition 1.2.3 if and only if w? € Ac.

For a general Lebesgue measurable function p(-) : R” — (0,00), we have the following

result which guarantees that the weight w satisfies the condition Definition 1.2.3-(i).

Lemma 1.2.7. Let p(-) : R" — (0,00), be a Lebesgue measurable function with 0 < p_ < p4 < .

If wP+ is locally integrable, then for any B € B, the quantity || x|
L

w:

0 is finite.
(R™)

=

Fsis ™

Proof. Since w+ is locally integrable, we have, for B € B

ey pltae?) = [ (w(0)"Pdx < |{r e Braw(x) <1} + [ wixrds
< |B| +/w(x)”+dx
B

< 00,

Since the function p(-)/p : R" — [1,00), then [18, Proposition 2.12] ensures that xpwk €

LPU)/P(R"), which implies that || x5]| o < oo O
Ly (RW)
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Remark 1.2.8. It is easy to see that L’ 1(/5) (Q) is the s-convexification of Lt (Q)) and for any
fgely) (),

P P
£+ 810 ) < I ) + 10

Remark 1.2.9. Let p(-) € P(IR"), then we have,

AN oy = WAIS so -

wls

The following theorem gives the Fefferman-Stein vector valued maximal inequalities on
Lﬁ,(') (Q)). For the proof, we refer to [39].

Theorem 1.2.10. Let p(-) : Q3 — (0,00) be a measurable function with 0 < p_ < p1 < oo and
q € (1,00). If w e W, (Q), then, for any r > sy, we have

1/q 1/q
(,Z (Mfi)”7> <C <,Z |fi|q> . (1.2.3)

Remark 1.2.11. Let u € [1,00). Then by the above theorem and the fact that, for all balls

B C R" and r € (0,min(p,sw)), xup < ur (M()(B)) we infer that there exists a positive
constant C such that, for any {B;};cn of balls of R”,

n
r

ZXB

jEIN

Z XuB;

jEN

L:Mo) ()

We recall in the following lemma the Holder inequality, for the proof see [39, Lemma
2.1].

Lemma 1.2.12. Let p(+) : R" — [1,00) be a measurable function and w : R™ — (0,00) be a Lebesgue
measurable function. Then

[ VIS Idx <2110 o I8l g

The following lemma presents the conjugate formula for qu(') (R™).

Lemma 1.2.13. Let p(-) : R" — [1,00) be a measurable function and w : R" — (0,00) be a Locally
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measurable function. Then

1£1170 ey = 5PA / x)ldx: g e LhC LR, gl g < 13

1.3 Weighted Lorentz space with variable exponents

Before delving into the definition of the weighted variable Lorentz spaces, we first recall the
definition of classical Lorentz spaces.
4 For a measurable function f we define its non-increasing rearrangement by

fr(t) = inf{s,

F ()] > s} < t}.

Definition 1.3.1. For p,q € (0, 00|, the Lorentz space LP71(IR") is the set of functions f such
that || f|| Ly.s(rn) is finite, with

dt 1/q
(/ (17 ()74 ) | ifg<oo,
| fllLrarey = 0 y . (1.3.1)
stugt PFE(t), if g = oo.
>

The use of non-increasing rearrangement makes it rather difficult to extend the above
definition to the variable setting. Fortunately, there is an equivalent characterization of
Lorentz spaces LP1(IR") which does not make use of the notion of non-increasing rearrange-
ment, more precisely, we have the following characterization see [49]. For p,q € (0, 0],

(o] q .
(/0 Aq_l||X{x€]R”:|f(x)|>)\}||(Zlﬂ(]Rn)d/\) ;1 0<g<oo,

sup M| X xerr:|f(x)[> A} Lr (R7) if g =o0.
A>0

||f||Lp,f1(]Rn) ~ (1.3.2)

According to (1.3.2) and the [49, definition 2], we define the variable Lorentz spaces
LZFL(')"] (R") as follows

Definition 1.3.2. Let p(-) € P(R") and 0 < g < co. Then qu(')’q (IR") is defined to be the set
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of all measurable functions f such that || f HL”('W < 00, where

(R")

1
® -1 q T
B (/0 AT HX{xe]R”:|f(x)|>)\}||LZ/(<)(]Rn)d/\) , 1 0<g<oo,

I 00 ey = (1.3.3)

SUP A[|X (rerr:|f(x)[>A} ] ) oy if g=o0.
A>0 w

Remark 1.3.3. When the weight w = 1, then the definition 1.3.2 coincides with the definition
of the variable Lorentz spaces L()(R").

Below, we collect some properties for the weighted Lorentz spaces Lg,(')'q(lR”) that will
be used later in this chapter. We start by the following Lemmas, where their proofs are
similar to the classical one, see [49].

Lemma 1.3.4. Let p(-) € P(R") and q € (0,00]. Then || -
Lw(’)rﬁl(IRn).

. defines a guasi-norm on
I p00a gy defi q

Lemma 1.3.5. Let p(-) € P(R"),w € W) (R") and q € (0, 00]. Then for all f € qu(')’q(lR”) and
s € (0,00), it holds true that

AP oo ey = IFI spo0 (R

wl/s

The next lemma presents an equivalent discrete characterization of the quasi-norm
|| - HLZ,('>"7 (R")’ The proof is similar to [49, Lemma 2.4].
Lemma 1.3.6. Let p(-) € P(R") and 0 < q < oo. If f € LEV)(R™), then

1

q a
szq X{xeRn: >0k ) rron ) ’ if0<q<oo,
Sup2k||X{x€R”:|f(x)|>2k} ||Lgv<->(]Rn)f if g = co.

keZ

Lemma 1.3.7. Let p(-) € P(R"),w € W,,(.\(R") and let 0 < g1 < g < 0. Then
LZ}(‘)/‘h (Rn) C Lw(')r‘h(]Rn).

Moreover, we have,

11 gy A1 g
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CHAPTER 2

WEIGHTED VARIABLE HARDY
SPACES ON DOMAINS

Let Q) be a proper open subset of R"” and p(-) : O — (0,00) a variable exponent obeys
the globally log-Holder continuity condition. In this chapter, we introduce the weighted
variable Hardy space on () via the radial maximal function and then we characterize this
spaces by the grand maximal functions. Moreover, we establish the atomic decomposition
of the weighted variable Hardy space Hff,(') (R"), and as application, we figure out its dual

space.

2.1 Preparation and helpful results

Let ¢ € D(B(0,,1)) such that [, ¢(x)dx = 1. For any t € (0,00) and x € O, we set ¢(x) =
t="¢(t1x). For any f € D'(Q), the radial maximal function M;;/Q (f) is defined for any
x € O by

Myo(f)(x):= sup  [{f,du(x =), (2.1.1)

te(0,dist(x,Q)¢))

where Q)¢ denotes the complementary set of () in R”, dist(x, Q)°) := inf{|x —y| : y € Q°}
and (-, -) denotes the duality between D’(Q)) and D(Q)).

Definition 2.1.1. Let Q) be an open set of R” and p(-) € P(Q). Then, the weighted variable
Hardy space Hf,(') (Q)) is defined to be the set of all f € D’(Q)) such that M(‘;Q (f) € Lt (Q),
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where M(‘;Q is as in (2.1.1), equipped with the quasi-norm

Let () be an open subset of R” and denote the set of all locally integrable functions on
Qby Ll (Q). Let m € Z.. We denote the set of polynomial functions on R" of degree less

loc

than m by P,,. For any s € (0,00) and f € L] (IR"), let

L . —(n+s) .
1 fllags) == Sgﬁl{péﬁj [rB /Blf(x) P(x)|dx] }

where the supremum is taken over all balls B C R"” and rg denotes the radius of B.
Let () be a proper open subset of R" and f a measurable function on ). For any x € (),
define f by

f_{f(x? if xeQ;
0 it xeQO“

If f € LL _(R"), set
£l = 1Fllaco + sup {F ()] dist(x,0)) .

Then
A(s; Q) = {f measurable on Q: f € L (Q) and 1 fllas0) < oo}.

Let Q) € R"” be an open set, f € D'(Q)) and s € (0,00). For any x € ), the grand maximal
function f;(, is defined by

fso(x) = sup (-9,

where the supremum is taken over all those functions ¢ for which there exists t, € (0,0)
such that ¢ € D(B(x,t) N Q) and ||| p(s:0) < p—(n+s)

Definition 2.1.2. Let () be an open set of R” and p(-) € P(Q). Then, the weighted variable
Hardy space HZ(')aX,S(Q) is defined to be the set of all f € D'(Q) such that f7, € Lw(') (Q),

7

equipped with the quasi-norm

Hf|‘H51,(r21aX,S(Q) = ||f;Q||L§]()(Q)
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Next, we give the definition of (p(-),r, w)-atoms.

Definition 2.1.3. Let Q) be an open set of R”, p(-) € P(Q)), w: Q — (0,00), g € (1,00] and
dy =n(sy —1). (2.1.2)

1. A cube Q C IR" is called of type (a) if 4Q C ) and Q C R" is called of type (b) if
20N =@ and 40N O° # 2.

2. A measurable function a on Q) is called a type (a) (p(-),q,w)q—atom if there exists a
cube Q of type (a) such that

(1) suppa C Q;

/9
) < ¥ .
2) llallzoa HXQHLP o
(3) there exist s > dy, such that, [p.a(x)x*dx =0 for all x € Z7 with |a| <ss.

3. A measurable function b on () is called a type (b) (p(+),q, w)q—atom if there exists a
cube Q of type (b) such that

(1) supp b C @,‘
@) [1bllLoa

@\1/ .
HX lroq)

In what follows, we denote the set of all pairs (a,Q) of type (a) (p(-),r,w)q— atoms
and their supports by A(p(-),r,w) and by B(p(-),r,w) the set of all pairs (a,Q) of type (b)
(p(-),r)q— atoms and their supports.

Let p(-) € P(Q), {Ai}ien be a sequence of numbers in C, {Q;}ien be a cube sequence
of the supports of type (a) (p(-),r,w)q— atoms, {k;}en be a sequence of numbers in C,
{Qi}ien be a cube sequence of the supports of type (b) (p(-),r,w)q— atoms. Define
6 } 7

7

A{Askien {Qitien) - H { T {M

Xl o @)
and A
_ kil xg, ¢

Blshen AQken) = |{ & [ e—| 1)

ienN LIXG; 11120 ) Lo (Q)

here and hereafter 6 € (0,s;,').
Next, we give the definition of the atomic weighted variable Hardy spaces on domains.

Page-28-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

Definition 2.1.4. Let Q) be an open set of R”, p(-) € P(Q)) and w: Q) — (0, c0). The weighted
variable atomic Hardy space HY, () (Q) is defined to be the space of all functions f € D'(Q))

w,atom
which can be decomposed as

f=Y Mai+ Y kb in D'(Q), (2.1.3)
i€EN ieEIN

where {4;};cy is a sequence of type (a)(p(+),q, w)q-atoms, associated with cubes {Q;}ien,
and {b;};cN is a sequence of type (b)(p(-),q,w)q-atoms, associated with cubes {Q;}icn,
satisfying that,

A({Ai}ien, {Qitien) + B({xi}iew, {Qi}ien) < co.

Moreover, for any f € HY, (). (Q), we define

w,atom

11y = 106 { ACA e 1Q0be) + Blfshen {0hen) |

w,atom
where the infimum is taken over all the decompositions of f as (4.1.5).

Remark 2.1.5. Let Q) be an open set of R"” and p(-) € P(Q). For {A;}ien C C, and cubes
{Qitien C Q) let

A*({Ai}ien, {Qjtien) :=  inf {/Q Z ( Al )p(X)w(x)P(")dxg 1}.

ree) L/ g, i MIxgll o g

Then from the embedding ¢/ < ¢, we deduce that for any sequences of {A;};cn C C, and
cubes {Q;}ien C Q,
A" ({Aitien {Qi}) < A({Ai}ien, {Qi})-

2.2 Atomic decomposition

We start first by proving that the variable weighted Hardy spaces on domains can be char-

acterized via the grand maximal function. More precisely, we have the following result.

Theorem 2.2.1. Let ) be a proper open subset of R™ and ¢ € D(B(0,,1)) such that [, ¢(x)dx =
L p(+) € P(Q) such that n/(n +s) < p— < p4 < oo, w € W,)(Q) and s € (0,00). Then,
HZ’Z,(') (Q) ~ Hﬁ,ﬁ}laxs(n) with equivalent quasi-norms.
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Proof. Let f € D'(Q). By the definition of M;{/Q (f) and f;(f), we have

IME (P50 0y < WP g0

On the other hand, by [68, corollary 1], we know that for any x € (),

fFa(F)x) M) ().

Then, by the definitions of the spaces Hg,(') (Q)) and Hﬁ,f')ax,s (Q)) and the above inequalities,
we deduce that Hf{’)(.) (Q) =~ Hfj,f;r)laxls (Q) with equivalent quasi-norms. O

In the next theorem, we establish the atomic characterization of the weighted Hardy
spaces on domains.

Theorem 2.2.2. Let Q) be a proper open subset of R" and ¢ € D(B(0,,1)) such that [, ¢(x)dx =
L p(-) € P(Q), w € Wy (Q) and g € (max{1,p=},c0]. Then, HL(Q) ~ HEGA (Q) with
equivalent quasi-norms. In particular, ifn/(n +s) < p_ then

w,atom

with equivalent quasi-norms.

Before giving the proof of the above theorem, we give some useful lemmas. We begin
by a result obtained in [69, pp. 211-212]. We denote the set of cubes, with sidelength 1 and
center (xq,---,x,) with xj € Z forany j € {1,---,n}, by Qq. For i € Z, we denote the set of
cubes of the form 2'Q, with Q € Qg, by Q;. Let Q = U;czQ;. For a proper open set (2 of R",
we set

W(Q) := {Q(eq lo) € Q:20lg < dist(cg, ) < 431g |-
Lemma 2.2.3. Let Q) be a proper open subset of R", s € (0,00), m € Z and f € D'(Q). For any
icZ,let
Q= {xeQ: fin(x) > 2},
where f is as in (2.1.2). Then the following statements hold true.

1. Foranyic Z,
O, = UQEW(Qi)Q and Q= UQEW(Q)Q'

Moreover, there exists a constant ¢ depending only on n such that for any i € Z, } new(a,) X10Q <
c.
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2. There exist functions {'}icz,1cq and {hg}geq such that

f= Y K+ Y hg in D(Q)
icZ,1cQ Q€0
3. For any ieZ andll €Q,if I ¢ W(Qy_1), then i = 0; if I € W(Qy_1), then b} € L®(Q),
supph} C 91, < h},P >=0 for all P € IP;,, and there exists a positive constant C depending
only on n,s and m, such that ||hy|| ;) < C2',

4. Forany Q € Q,if Q € W(Q)), then h8 =0;if Qe W(Q), then h8 € L®(Q)), supph8 C9Q
and there exists a positive constant C, depending only on n, s and m, such that ||h8 =) <
Cinfyeog fiq ().

The next lemma plays a crucial role in the proof of the atomic decomposition. It is a
slight variant of [39, Lemma 5.4]. It can be seen as the extension of [81, lemma 4.1] to the

weighted case. For a general version and for the proof see lemma 3.1.5.

Lemma 2.24. Let p(-) € P(Q),w € W,.y,r € (0,5,") and q € ((ki)',00). Then there exists a
positive constant C such that for any sequence {B;}jen of balls in R",{A;}ien C C and functions
{a;}je satisfying that for any j € N, Supp a; C Bj and ||aj| g(rn) < |Bj|1/1,

The next lemma plays a key role in the proof of theorem 2.2.2.

<C
i ()

(£ ar)
j=1

(5 hn )’
j=1

()

Lemma 2.2.5. Let p(-) € P(Q),q € (1,00]. Then there exists a positive constant C such that, for
any j € N, type (a)(p(-),q,w)—atom a; and x ¢ 2,/nQ);,

n+dw+1
n

[M(XQ]') (x)]
lxQll 0

M, o(aj)(x) <C , (2.2.1)

where, Q; := Q(cqgj, £(Qj)-

Proof. Let x ¢ 21/nQj and for any k € Z, we set ¢y (x — -) := 27 knp (27K (x — ).
Since supp (¢x(x — -) € Q(x;217F), it follows, if supp (¢x(x — -) N Qj = @, then we have,

<aj,¢(x —-) >=0. Moreover, if supp (¢ (x —-) N Qj = &, then £(Q;) <2' ¥ and |x — o, <
227k,
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Let g, x be the Taylor polynomial of degree dy,. For any y € Q;, we have

|Pr(x — ) — Gugel S2UTEFV |y — ¢ [Ht

- (E(Q]-))dWH

~ +dw+1 ’
(K(Q]-))” + |x — cQj|n+dw+1

The fact that for any j € IN, type (a)(p(-),q,w)—atom a; and the Holder inequality in-
equality leads us to

<apnx =) >1= | [ [9x—y) ey

dp+1
< (£9) ()|
(£(Q))) + |x = cq; [Pt o
dp+1
S ) 0l
(K(Q]))n+ wh + |x — CQj|n+dw+1
+dyp+1
e oI}
(@) 4 | — g et T @)
n+dw+1
[M (XQ]') (x)}
Ixeillporqy
which gives the desired result. O
Proof of theorem 2.2.2. We start by the first inclusion Hg,(aloqm(ﬂ) — bV (Q).
Let f € Hi/(éig)qm(()), by definition we conclude that there exist {A;};>1, {x;}i>1 C C and two

sequences {a;};>1,{b;}i>1 of type (a) — (p(-),q,w)q atoms and (b) — (p(),q,w)q atoms
,srespectively, such that

f= Z)\iai + inbi/ in 'D/(Q)

i>1 i>1

By Remark 1.2.8, we have
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14 _ + 14
£ 00y = Mgy

P 14
< || ¥ MMy (@) oot Z‘Ki‘M(;Q(ai)’ oo
ieN ) llien Ly ()
thus
14 + .
||f||H5,<)(Q) > iEZ]I\I|)LZ|X2\/ﬁQijM¢,Q(a1) Lz)(')(Q)
[
—+ A; .. c1\4Jr a;
& Mxemop M@
P
+ K ~M+ a;
ieZIN| i1Xsg, M 0l41) i)
P
+ 1| Y Ikilx g5 My o (ai)
iEZIN HA(8Qij) ¢, ! Lg’u(')(Q)

=1 + 1 + I3 + 1I4.

Note that for all i € IN, M;Q(ai) (x) < M(a;)(x) for any x € 2,/nQjj, then by Lemma 2.2.4,

we have

3
I S .ZH‘,\I|/\1'|X2\/HQI-]-M(‘11') .
1€ w
9 1/0p
S ‘ {Z (Mi\Xz\/ﬁQl.jM(ai)) } » (2.2.2)
=N U0)

p

< [,A({/\i}izp{Qi}iZl)] :

We pass to deal with I,. According to lemma 2.2.5, for x ¢ 21/n(Q;);ien, we have

S

N | [M(XQi)(x)]
Mg o) (x) S lxaill 0 @) ”

where s = %. Thus
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Z |A1~|

VAN

By Remark 1.2.8, we have

P

1/s
Mo

[Z |Ail

e[
iex Xl o

L’ ()

Since s > sy, then from theorem1.2.10 and Remark 2.1.5, we obtain

|Ail Yo
I S ' { Y W(%Qf)s] 0 (2.2.3)
ieN 1XQ; LhO ) LZl/S(Q)
Z A ’XQl -
S P ey e R
|: ({A }1>1/{Q }1>1 :|
S {«4({/\ bi>1,{Qi }121)} :
In a similar manner to I;, we get
P
I3 S, Z |/\ |X8Q M(;_Q(b) (2.24)
=N L (o)
0 1/6p
< g My (®)’
‘ LEZN( g Mpal®0) 10(@)

S [B({Ki}iZL{Qi}iZl)]p-

For any (x € (SQNZ-]-)C), we have

M (B7) (x) = sup
{keZ : 0<2k<dist(x,Q¢) /2}

ér%(z*u —y))bily)dyl,

consequently,
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Mia)Ws  sup | [ 2ty
{keZ : 0<2k<70(Q;)} i
+ sup /N 27 (27 (x — y))bi(y)dy‘
{keZ : 7¢(Q;) <2k <dist(x,Q¢) /2} i
= 911 + 2[2.

For any x € (8Q;j)° and y € Q;; we have |x — y| > 7£(Q;) > 2 then 2 ¥|x — y| > 1. Since
¢ € D(B(ORrn,1)), we conclude that 20, = 0. We note that 2, = 0 if dist(x, Q0¢) < 14¢(Q;). We
suppose that dist(x,Q¢) > 14/(Q;), we have

|x — y| > dist(x,Q°) — dist(y,Q°) > dist(x,Q°) — dist(y, Q°).

As Q; is type (b)—cube then 4Q; N Q) # &, consequently dist(y,)°) < 46(@» for any
ye Qij. Hence for any y € Q; and x € (8@]’)C nQ
Ix—y| > dist(x,Q°) — dist(y,Q°) > dist(x,Q°) — 40(Q;)
> dist(x,Q°) — ;dist(x, Q°) > dist(x,0°) /2
> 2K

Thus, we conclude that I, = 0. Putting (2.2.2), (4.3.6) and (4.3.7) together we find out that
f € HEO Q) with [If1]p0 0 S 1]

w, atom

m(Q)’

Let us now prove the reverse inclusion, let f € Hg,(') (Q) and
Q;={xeQ: fi}x)>2}, VjezZ

It is easy to check that (3;1 C () for any k € Z. In view of Lemma 2.2.3, there exists two
functions {h]]}jeZ, jeq and {hg}QeQ such that

f= Z h]—i—Zh in D' (Q

J€Z,]€Q Qe€Q

Let /\]} = ||h]] () ||X9]”L5,<') According to (3) of Lemma 2.2.3, we can see that ()L]].)’lh]]‘

(93
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is (a) — (p(+),00)qnw—atom. By (1) and (3) of Lemma 2.2.3, we find out

A({M}jez1c0,{9T}jeq)

”» 1/6
' ~1 0
=10 T Wl o))
JEZ,JEW(Q 1) © LiY Q)
| /8 1/6
S (Z[ZJXQH] )
j€z L5 (@)
On the other hand we have
) 0 . 0 : 0
¥ @0 ~ (520, ~ (£ 2x0, 10"
jez jez JEZ
Consequently,
1/6
A({AYez e {9} je@) < 22]?(0] 1\
j€z ()

1725 ||L,, o

S

Let kg := HhBHLm HX9QHL§,(‘)(Q)’ it is easy to see that (KQ)_1h8 isa (b) — (p(-),00)q n—atom.
Then we obtain

i 179|179
B({roloeo 19Q)0s0) = ||| L (rorsalaoil ), )
LQeW(0) v L)
17611179
rg Z ( l%f fsz9Q> ]
LQew() ¥ L (@)
< ||f:“|| o
<
Summing up the above estimates, we conclude that f € H. w(aloqm( Q) and || f || @ <
watom
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2.3 Duality result
In this section, we figure out the dual space of the weighted variable Hardy space Hf;,(') (Q).
We begin by introducing the definition of the weighted variable Holder space.

Definition 2.3.1. Let Q) be a proper open subset of R”, p(-) € P(Q), w € W,,(.,(Q}), g € [1,00)
and 4 E Z. A function f € L] _(Q) is said to belong to the weighted variable Holder space
AL () if

||f||A5]()ﬂd(Q)

|Q|1/q 1/q
= sup { inf ( /\f \qu) }
Q:type (a)cubes PelPq HXQ”LP

[QIV7
oo (ol Jol ) <o
Q:type (b)cubes |XQ ”LP

where g’ denotes the conjugate of g.

Theorem 2.3.2. Let Q) be a proper open subset of R", p(-) € P(Q)), w € W,,(,(Q)) with 0 <
p— <pi+<1,g€l,0)andd € Z, with q > dy. Then, the dual space of HZ(')(Q), denoted by
(Hg,(') (Q))*, is Afu(')’q’d(ﬂ) in the following sense

1. Let ¢ € ALY (Q)). Then the linear functional
L:f—L(f) = /Q F(x)g(x)dx, 23.1)

initially defined for H PO (Q) has a bounded extension to Hg,(') Q).

w atom,fin

2. Conversely, if L € (Hf,(')(Q))*, then there exists a unique extension g € AZ,(')’q’d(Q) such
(2.3.1) holds true.

Before proving the above theorem, we introduce the following result which can be
proved by using the argument used for [100, Lemma 5.9] mutatis mutandis.

Lemma 2.3.3. Let p1 € (0,1], « € [p+,1]. Then there exists a positive constant C such that, for all
{Aitien C C and any sequence { Q; }icN of cubes in Q,

(S ) < AUADienAQuen):

ieIN
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Proof of theorem 2.3.2. Letjo € N, f :=Y" ; Aja; + Zl 1Kibi € HPOA (Q) and P be a Taylor

w,atom, fin
expansion of ¢ and of order d,, we use the vanishing moment condition fulfills by 4; we

obtain

ko ko
i=1 i=1
ko
SQM/ 8(x) = P(x)[|ai(x)|dx
+ ;\ml /Q 190)] ().

By the Holder inequality, we get

ko
x)dx < Z |)‘i|H(g_P)XQi”L‘Y(Q)||aiXQiHLq’(Q)
i=1

ko
+ 2 Iilllg(0)x g oy 1bixg, | v
=1

Since a; and b; are (a)(p(-),q',w)q—atom and (b)(p(-),q',w)n—atom respectively, we ob-

[ st

tain

k /!
<V —‘Qi!l/q —P
<Y Al (g = P)xg;llLaca)

ko 1/
e 'Ql‘ s o
x QHLP ,

According to the definition of the space Ag,(')’d(]R”), we get

ko

< gl gy X (o (Al + IxiD))-

i=1

X
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By Lemma 2.3.3, we conclude that

< 181l gpr4 gy X (A({/\i}izll{Qi}izl) +B({Ki}izlr{éi}i21))-

On the other hand it is easy to see that the space H” ) (Q)) is dense in H pe)a (Q)), thus

w,atom, fin w,atom

we conclude that the linear functional /¢ is bounded on Hy, pe )( Q).

Conversely, let £ € (Hg,(')(Q))*, we have L7 (Q) < HE )( Q), where Q is a cube of Q.
Thus ¢ defines a functional on L7 (Q). From of the Riesz representation theorem, there exists
g0 € L1(Q) such that /(f) = ngQ(x)f(x)dx for every f € L7 (Q). According to the Hahn-
Banach theorem we deduce that there exists a unique measurable function g € L7(Q)) and

= [ sxftar, vf Lt (@),

(-)d

Our next step is to show that ¢ € AL,/ (IR"). By taking the supremum of £(f) over all

(a)(p(+),9")a—atoms a and (b)(p(-),q’,w)q—atoms b we obtain

£+ 1) S 10 0

where 0«
0 oy = s { = }
(o) = P AT o
Let Q C Q) be of type (a) cube and f € L1 (X) with Hf”m ) < 1. We set

19(fF
. QIVT(f — fP)xg . (2.3.2)

”XQ”LZ(-)(Q)”f”m’(ﬂ)

We observe thatais a (a)(p(-),q',w)q—atom. Combining (2.3), suppa C Q and the vanish-

ing moment condition, we find out

a)| = ‘/Qﬂ(x)(g(x) —P(x))dx| < ||€||<H5<~>(Q))*- (2.3.3)
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In view of (2.3.2) and (2.3.3) we conclude,

|Q|”" 3
TRl P))dx| S 14y
Consequently,
A (st - P ))] < @34)
su in x * 3.
ot | PP \Txell g0y s (12 (@)
In a similar way, we set
Q1Y fxg5

b:=

Xl 0000 1

We note that b is a type (b)(p(+),q’,w)q—atom. From (2.3), we obtain

]—‘/b x)dx

IQIW
Txal

< || *,
160 (0 )

Hence

x)dx

S e .
10 0 )

Taking the supremum over all the cubes of type (b), we conclude

g ( q> .
sup (HXQIILp /|g )|9dx 161 g ) (2.3.5)

Q:type(b

Putting (2.3.4) and (2.3.5) together we get the desired result. O
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CHAPTER 3

WEIGHTED VARIABLE HARDY
SPACES ASSOCIATED WITH
OPERATORS

This chapter is devoted to the study of the weighted variable Hardy space Hf,(;u) (R")
associated with operator L which has a bounded holomorphic functional calculus and ful-
fills the Davies-Gaffney estimates. In particular, we show the molecular characterization of
H f,(zg (R") via the atomic decomposition of weighted tent spaces, and we establish a duality
relation between HE(') (R") and BMOZi M

;W ,W

3.1 Preparation and helpful results
Let R :=R" x (0,00). For any a € (0,00) and x € R", define

To(x):={(y,t) e R |y — x| < at}.

If & = 1, for the sake of simplicity, we write I (x) instead of I'y(x).
For any ball B := B(xp,rp) C R" with x3 € R" and rp € (0,00), A € (0,00) and j € N. Let
AB:= B(XB,)U’B),

B={(y,t) € R dist(y,B) > t}.
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For any ball B(x,r), with x € R" and r € (0,00) there exists a positive constant C such
that
|B(x,2r)| <C|B(x,1)|, |B(x,2r)| =2"|B(x,1)|

and for A € [1,00)
|B (x,Ar)| < CA"|B(x,7)|.

There exists a positive constant C such that

[B(y,r)|<C {1+Mr|B(x,r)|. (3.1.1)

Lemma 3.1.1. [94]
There exist a collection of open sets{Qux C R" :k € Z,a € I}, and § € (0,1), ag > 0 and C €
(0,00) such that

1. forany k € Z,

]I{Tl — -
\ Déglk le,k 0,

2. ifi >k, then either Qi C Qg 0r Qu,i N Qpx = D;

3. for any fixed k € Z,a € Iy and i < k, there exists a unique B € I; such that Q. x C Qg i;
4. forany k € Z,u € Iy, the diameter of Q, j does not exceed Cok;

5. forany k € Z,u € I, there exists a ball B (za,k,aoék) C Quk-

The square function Sy associated with L is defined by setting, for any f € L?(R") and
x € R" by,

(SL)

- 1/2
Sr(f)(x):= [/0 /B<x ) ‘tZLeftzL () (v) Zfi/ff] )

Now, we recall some notions of bounded holomorphic calculi which was introduced by
MclIntosh [65].
Let 0 <7 < 7. The closed sector in the complex plane C is defined as follows,

Sy ={z€C:largz| <y} U{0} (3.1.2)
and its interior is denoted by SY, i.e.
52 ={ze C\{0}: |arg,z| < 7}. (3.1.3)
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Denote the set of all holomorphic functions on 52 by H (52) and for any b € H (52), we
define ||b|| by
1b]|c0 = sup{|b(z)] :2652}. (3.1.4)

The set of all b € H(S}) satisfying ||b]|e < o0 is denoted by He(S)) and define the set
¥(S)) by
clz[*
1+ |z%

¥(Sy) = {gbeHm(Sg):Hv,C>O: lw(z)| < ,v.zesg}. (3.1.5)

Let 7 € [0,77) and denote the spectre of L by o(L). Then, we say that the closed operator
L on L2(R") is of type 7 if

1. o(L) is a subset of S;,,

2. for any v € (1, 7), there exists a positive constant C, such that forall A ¢ S,
(L =AD" rarey) < Col AT (3.1.6)

where £(L?(IR")) denotes the set of all linear continuous operators from L?(R") to
itself and for any operator T € L£(L?(R")), its norm is denoted by || T|| L(I2(R7))-

Let 7 € [0,77), L be a one-to-one operator of type # in L?(R"), v € (17,77) and ¢ € ¥(SY).
The operator (L) is defined as follows

(L) = %/@4]()\)()\1 — L)71dA, (3.1.7)

where @ := {re*" :7 € (0,00)} U {re " :r € (0,00)}, v € (,v) is the curve consisting of two
rays parameterized anti-clockwise. It is well-known that the integral in (3.1.7) is absolutely
convergent in L2(IR") (see [35, 65] for more details) and (L) does not depend on the choice
of v (see for instance [3, Lecture 2]). By a limiting procedure we can extend the above
holomorphic functional calculus on ¥ (SY) to He(S9) (the reader is referred to [65] for more
details). Let 0 < v < 7, we say that the operator L has a bounded Heo(S9)-calculus in L?(IR")
if there exists a positive constant C, such that for all ¥ € H(S9),

(L)l £(z2qrry) < CllPl Lo(s0)- (3.1.8)

Remark 3.1.2. Let 7 € [0,%). If L is an operator of type 7 in L?(R"), then L generates a
bounded holomorphic semigroup {e~%'}

tion 7.1.1]).

,es0 on the open sector 505_77 (see [35, Proposi-
Ty >

2
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We assume that L is an operator that fulfills the following assumptions.
7T

Assumption(A). L is one-to-one operator of type 7 in L?(R") with 17 € [0,%) and has a
bounded holomorphic functional calculus.

Assumption(B). The semigroup {e~*"'};~o generated by L satisfies the Davies-Gaffney es-
timates, i.e. there exist a positive constants c; and ¢, such that, for any function f in L?(R")
and closed sets E and F of R" with supp f C E,

i o [dist(E,F)]?
le™ (Flle2(r) < cae T f ez (3.1.9)
where dist(E, F) :=inf{|x —y|: x € E,y € F}.
Remark 3.1.3. Let L be an operator that fulfills Assumption(A) and Assumption(B). Then,

(1) for any i € Z, the family of operators {(tL)'e~*L'};~¢ satisfies the Davies-Gaffney
estimates (see Remark 2.5(i) in [92]).

(2) we can easily prove that the operator S; defined in (SL) is bounded on L?(R") by
means of Fubini’s theorem and [40, (4.1)].

Remark 3.1.4. Here we give some operators which fulfill Assumption(A) and Assumption(B):
(@) The one-to-one non-negative self-adjoint operator L satisfying Gaussian upper bounds.

(b) The second order divergence form elliptic operators with complex bounded coeffi-

cients.

(c) The Schrédinger operator —A + V on IR" with the non-negative potential V € L} (R").

loc

We end this section by giving a useful result which play an important role in the atomic

decomposition part,

Lemma 3.1.5. Let p(-) : R" — (0,00) be a Lebesgue measurable function with 0 < p_ < p4 < o0
and w € W,,(.y. Let s € Sy and { Ay }xe be a sequence of scalars. For any r > (k3,)", and {by }ren €
L (IR™) with suppby C Qx C Q, such that

1Bkl (rey < Akl Qil ™", (3.1.10)

where Ay > 0, for all k € IN, we have

| 5 pet

keIN

(3.1.11)

sp() 7
Lwl/s

e S CH Y ArlAdxao,
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where C is constant independent of { Ax }rew, { M tren, and {by tren -

Proof. Fixs € Sy. Forany g € L(SP('))/(IR”) with ||g||L<sp(_)>/

o1/s <1, we get
w=1/s

(R")

R bi(x)g(x)dx < ||kaU(IR")”XngnLr’(lR")'

From (3.1.10) we deduce that

, 1/r
[ b(0)g(dx < AQ (/Qk sl'dx)

Hence,
1 , 1/7
br(x)g(x)dx| < Ar|Qil( 5= [ Ig(x)]"dx
R~ ’Qk’ Qk
1/r
<caed inf (Mllst') ()

<caf (M<|g|“><x>)1/r'dx,

for some C > 0. By virtue of Lemma 1.2.12, we find out

(S nm)ad < Xl [ (o) a

keN Qk

& /IR ( L Akwimk(x)) (M(lg\f’)(m)l/r'dx.

keN

By using Holder inequality, we obtain,

| M) x| | T Al s oo |07 e
/ " <k§\l ) kgxl FILn) e L) (R
| [pagtnn M| 1
~ kM X sp(- sp( )Y /¢! .
keN O szl(/)s(IRn) 8 L;ﬁ(r/))s/ (R")

Since 7’ < kS,, the definition of k3, ensures that there exists ¥’ < k < k3, such that the

operator M is bounded on Liff ,E})s)//k(]R”), on the other hand from the following inequality,
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forallr € (1,00)

(Mf)" <
L Gp

Hence, the operator M is bounded on L
get (3.1.11) which is the desired result.

M(|f]")-
)/

r(/) ( ™). In view of Proposition 1.2.13 we

]

3.2 Weighted variable Hardy spaces associated with opera-

tors satisfying Davies-Gaffney estimates

In this section, we establish the molecular characterization of the weighted variable Hardy
space via the atomic decomposition of the weighted variable tent spaces given in this sec-
tion.

+1
RY

For all measurable functions f on and for any x € R", we define the Lusin-area

A(f)(x ( // fnyff )1/2, (3.2.1)

Let p(-) € P(R") and w : R” — (0,00). The tent space TP()(R"*1) is the space of all
measurable functions f on lR’_frl such that

function by

11 g5 sy = MG s oy < (622)

The weighted variable tent space Tf,(') (R"*1) is defined to be the space of all measurable
functions f on R such that A(f) € LZ,(') (R™), with the norm

171550 ety = AN 0 gy 323

Remark 3.2.1. If f € T?(R"™), then

dxdty\1/2
gy = ( o M 0PSE)
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Let F be a closed set in R” and O = F, we denote by O the tent over O which is the set
O:={(x,t) € R dist(x,F) > t}. (3.2.4)

Next, we give the definition of (p(-),w, c0)-atoms.

Definition 3.2.2. Let p(-) € P(R"), w : R" — (0, c0) be a Lebesgue measurable function and
r € (1,00). A function a on R’ is called a (p(+),w, 00)-atom if
(i) there exists a ball B C R” such that supp a C B;

-1

. 1/
) gy < 1BI X0 g

The following Theorem presents the atomic characterization of the weighted variable
tent space TZZ(') (R,

Theorem 3.2.3. Let p(-) : R" — (0,00), w € W,,(.. Then for f € TZ’Z,(')(IRQH), there exists
(p(+),w,o00)-atoms {a; }icN associated with the balls { B; } e, respectively, and numbers {A; }ien C
C such that for almost every (x,t) € R,

flx,t) =Y Miai(x, t). (3.2.5)

icN
Moreover, there exists a positive constant C such that, for all f € TZZ(') (R,
A({)‘i}ieN/{Bi}ieN) < C||f||T7’(')(]Rn+l)/ (3.2.6)
w +

where for any sequence of numbers {A;}ieN € C and sequence of balls {B;}ieN

oo (3.2.7)
Ly (R7)

A({Aitien, {Bitien) = H (EZN {A—XBRJ@)Q

Xl oo

where 0 € (0,s3,1).
Proof. Let f € Tf,(')(lR’rrl). Forany i € Z, let

O;={x eR": A(f)(x) > 2'}.

Since f € Tzﬁ(')(]R'}fl), it is easy to check that (); is a proper open set and |();| < oo for
each i € Z. By a similar argument used in the proof of [42, Theorem 3.2], we can show that
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supp f C [( Uiez (/)\1*) U E] , where E C R""! satisfying JE @ = 0. Thus, for each i € Z, by

applying the Whitney decomposition (see [85, p. 167]) to ()}, we get a sequence {Q; ;}jeN

of disjoint cubes such that
L. Ujen Qij = O and {Q; j} jen have disjoint interiors,

2. forallj €N,
Cl\/ElQ,-,j < diSt(Qi/]', (Q;k)[:) < CZ\/%lQi,j’ (328)

where [, . denotes the side-length of the cube Q;;, dist(Q;;, (Q;‘)E) =inf{|lx —y|:x €
Qi € (0.
For each j € N, choose a ball B; ; with the same center with Q; ; and with radius % Vil(Qj ).
We define
Aij =By (Qij x (0,00)) N (7 \ O7,),

ai,j = Z_i ||XBI',]' ||;£(')(Rn)fXAi,]' and )\i,j = 2i ||XB,-/]' ||L§,(')(1R”)' (329)
Notice that {(Q;; x (0,00)) N ((/)\:‘ \ (/Zl’jr\l )} C B\i,]-. Following the proof used in [101, Theorem

2.16], we can show that a; j is a (p(-),w, o0)-atom associated to the ball B; ; for any i € Z and
j € N. We obtain that f =} ez ) icnAijai,; almost everywhere. Then, it remains to show
that A({A;}ien, {Bi}ien) < CHfHT,,(.)(]RnH). Indeed, by the definition of A; ; (3.2.9), we get

w +

i o1
AN biezjen Bibiezjen) = LI CE (2%8,) )P0

i€Z jeN
) 0 1
ST2ICE (x8,) )P0
i€Z jEN v

From the fact that,

Y X, Sxop S1,
jeN

we deduce that

A({AijYiez jen {Bijliczjen) S Y 2'llxa 120 gy
i€Z ¢

=Y 2lxa: i,
icz FLy (R
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Since r < s;,', we use Theorem 1.2.10 and the fact xo: < [M(xq;)], we find

A({Aijtiez jen, {Bijticz jen) S 22i||M(7cQ,)||Lp<-)(Rn)
i€z “

Then, the proof is completed. O
Proposition 3.2.4. If f € Tf,(')(lR’ﬁl), then f =YY Ajja;j converges in TZZ,(')(IRTA).
i

Proof. Let f € Tf,(')(lRffl) and 7 € (0,s;,!), then from Lemma 3.1.5, we find that, for any
N €N,

Az )

li[+[jI<N

= «4< L )‘ij‘lij)
LAY (Rn) li|+1jI>N

Y Al A(ay)

li[+[j[>N

Lh (Rr)

IA

L (Rr)

{ )y [lAile(ﬂz’jﬂr}l/r

li[+[jI>N

IN

Lh (Rr)

1/r
ien sl 20 ()

Putting together the last inequality with (3.2.6) and the dominated convergence Theo-

IN

rem, we get

lim A (f - Z /\i]'ai]')

N—o0 .-
li|+ljl<N

L) (Rr)

|Aijlxsy, 17 v
< |[im{ ¥ [—f} —o.
N=voo | s n Ll Il o 10 ®n)
Hence, f = ZZM‘% converge in Tfl’,(') (lR’fﬁl). Thus the proof is achieved. ]

L
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We denote by T7 ) (R"1) and T3, (R"1) respectively, the set of all functions in b0 (R
and T?(R""!) which have compact supports.

Proposition 3.2.5. Let p(-) € P(R"),w € W,,.). Then Tf(') (R C T%,c(]RTLl) in the meaning
of sets.

Proof. By [34, Lemma 3.3(i)], we know that, for any g € (0,00), Tg/C(IRTl) C Tzz,c(ll{’frl). Then
it suffices to show that T/ () (R Tg:c(]RTl), for some g’ € (0,00).

Indeed, let f € T} 2(4}) (R") such that supp f C E, where E is a compact set of R"."1. Let
B be a ball of R""! such that E C B. Then, supp.Af C B

/" [Af(x)rdx B /{xGB:Af(x)§1} {Af(x)rdx " /{xeB:Af(x)>1} [Af(x)]pdx

P
<11+ [ A7) xuds
Ri’l
< |B| + | AfxslLs
< [BJ + [[(Af) sl
< BI+ AR porsllcs | e
a

w w P

P
N ‘B’ + HAfHZp(-)’

this ends the proof. O

Next, we establish the molecular characterization of the weighted variable Hardy spaces
associated with operators satisfying the Davies-Gaffney estimates. These spaces are de-

noted by H f('). We begin with some definitions.

, W

Definition 3.2.6. Let p(-) € P(R") and w : R" — (0,00) be a Lebesgue measurable function.
Let L be an operator satisfying Assumption(A) and Assumption(B). The weighted variable
Hardy space HY ¢) (R") is defined as the completion of the space ﬁf(w) (R™),

, W

HY'(RY) = {f € LP(R") [ SL(f)] 0 < 00},

with respect to the quasi-norm

~ : Sc(f)
Hf”HZ(J(R”) = ISLH) e = mf{)\ > O'pp(-),w( h ) < 1}.
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() M,e

To introduce the molecular weighted variable Hardy spaces H E,w

(R"), we give the
definition of a (p(-),w, M, €)1 molecule.

Definition 3.2.7. Let L be an operator satisfying Assumption(A) and Assumption(B) and
p(-) € P(R") and w: R" — (0,00) be a Lebesgue measurable function. Assume that M € N
and € € (0,00). A function m € L?(R") is called (p(-),w, M,€); molecule, if m € R(LM)(the
range of LM ) and there exists a ball B := B(xp,rp) C R" with xg € R" and rp > 0 such that,
foreveryk=0,--- ,MandjcZ,

—27—1\k —€j|nip|1/2 -1
H(rB L ) mHLZ(Uj(B)) <2 €]|2]B| ||XBHL5,<.>(1R”)’ (3210)
where forj € Z,
U;j(B) := B(xp,2'rg)\B(xp,2 " 'rp).

Remark 3.2.8. If € € (5,00), then for any k € {0,---, M},
27 —1\k 1/2 -1
where C is a positive constant independent of m, k and B.

Definition 3.2.9. Let L be an operator satisfying Assumption(A) and Assumption(B). Let
p(:) e P(R") and w € W (). Assume that M € N and € € (0,00). For a measurable function
fonIR",

f= i?\jmj (3.2.11)
j=1

is called molecular (p(-),w, M, €) — representation of f if {m;};c is a family of (p(-),w, M, €)L

molecules, the sum converges in L?(IR") and {A;}jen C C satisfies that

A({/\j}jeN/{Bj}jeN) < o,

where for any j € IN, B; is the ball associated with m;.
The space H f(w) M€ (R") is defined to be the set of all functions f € L?(R") which has a

molecular (p(-),w, M, €)—representation.
( : )ere

, W

The molecular weighted variable Hardy spaces H} (IR") is the completion of H 7

W
with respect to the quasi-norm

110 gy = {3 (e B )
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where the infimum is taken over all decompositions of f as (3.2.11).

(-).Me
W

nical Lemmas. Let L be an operator satisfying Assumption (4) and (b) and M € IN. The

To establish the molecular characterization of H I;j (R"™) we need the following tech-

next lemma is a slight variant of [92, Proposition 3.10].

Lemma 3.2.10. Let p(-) € P(R") and w € W), .. There exists constant C and o € (0,nsy) such
that, for any j € Z+ and (p(-),w, M, €) molecule m, associated with ball B := B(xg,rg) C R"
with xg € R" and r, > 0,

—i01~nip|1/2 -1
1SL(m) |2y (5)) < C2777|27B| ||XB||L5}(')(]R11)'

The following lemma can be found in [92] or [9, Proposition 4.5(i)].

Lemma 3.2.11. Forany G € T>(R""!) and x € R", the operator defined as

e (6)(x) = [ (PLPH e PG N) () T
0

is bounded from T2(R'1) to L2(R").

For the next lemma we refer the reader to [92].

Lemma 3.2.12. Let p(-) € P(R"),w € W,(.). Assume that a is a(p(-),w,o0)—atom associated
with ball B C R™. Then for any M € IN, € € (0,00), there exists a positive constant Cy; . depending
only on M and € such that Cpremtar1(a) is a (p(-), w, M, €)r molecule associated with the ball B.

Proposition 3.2.13. Let p(-) € P(R"),w € Wy(y. Let M € N and € € (0,00). Then the set
p()Me

of all finite linear combinations of (p(-),w, M,e)r molecule noted by H ' "~ (R") is dense in
HE(ZB’M’E(]R”) with respect to the quasi-norm || - ||Hp(.),M,€ R’
! Lw

’(Z'U)’M’e (R™). Then, by definition we know that for any ¢ € (0,0) there exists

(')’M'e(]R”) such that

, W

Proof. Letg € HY
a function f € ﬁf
o

- . € < Y4

Hg fHHf,(w),M, (IR”) -2

by the definition of H f(w) ’M’e(lR”) we conclude that, there exists {A;};en C C and a fam-
ily {m;}jen of (p(),w, M,e)L molecules, associated with balls {B;};en of R", such that

f = Z;ozl )t]'m]' in Lz(]Rn) and A({A]’}jGNI {Bj}jelN) < Q.
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Forany N € N, let fyy = Z]-]il Ajm;, then we have

(e9)
Aillgosnegn = || 5 Am
IF = Filigomequey = | 20 A5 e

<A (A Ea (B

1/0
B { i [ |Ajlxs; -9}
= sl o gy 120) (R
1/0
B i Ajlxe; 10
]':N+1 ||XB]||L5]()(]R”) L:}(e')/@(]Rn)
where 6 € (0,s,'). Since
1/0
- o o |/\]‘XB 0
A({Aj}ijH,{Bj}j:NH): > sl (]]Rn)] <
j=N+1 XB]' Lz}(') L”({,)/G(IR”)

it follows that, for almost every x € R",

lim iy | =o.
N_>°°]':N+1 HXB]‘”LF’(')(IR”)

Combining this and the dominated convergence Theorem, we obtain
1/0

=0,
LP({_};VH(]Rn)

w

lim
N—o0

= |/\j|XBj ]9

j=N+1 ||XBj||LP(')(]R”)

we conclude that,

]\]/:]iIIOOHf - fN”HZ(Z;])'M’E(]Rn) - O

Hence, we find that, for any ¢ € (0,00), there exists some Ny € N such that, for any
N > Ny

)
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(-).Me
,w,fin

Obviously, for any N € N, fy € HY (R"). Then for any ¢ € (0,00) when N > Nj

- JMe <|¢g— VMe — JMe < 0.
& fN||H£<w),M,(W)N||g f||H§fw)'M'(R")+”f fN||H£fzg,M,(Rn)N

(')ere

, W

Thus, HF )M (R") is dense in H}

L, fin (R"™) with respect to the quasi-norm || - || BPOM

(R’
O

The following Theorem deals with the molecular characterization of H Ilj,(z.v) (R™)

Theorem 3.2.14. Let L be an operator satisfying Assumption (A) and Assumption (B). Let p(-) €
P(R"),w € Wy(.). Let M € (3[s0w — 11,00) NN and let € € (nsqy,00). Then Hf,(Z'O)’M’e(lR”) and

H ’le(z;)) (R™) coincide with equivalent quasi-norm.

().Me

To prove this theorem, we first show the following inclusion, H f -

L2(1R")]

(R") € |H[%) (R 1

Proposition 3.2.15. Let L be an operator satisfying Assumption (A) and (B). Let p(-) € P(R"),w €
W) Let M € (5[50 — 31,00) NN and let € € (nsy, ). Then there exists a positive constant C

such that, for any f € I:Ip(')’M’e(IR”),

Lw
HfHHf,(Z;,)(R”) < CHfHHf,(;U)'M’E(R")'
Proof. Let f € H 51(73 ’M’e(lR”). Then by definition, we know that there exists {A;};en C C and

a family {m;};en of (p(-),w, M, €)r molecules associated with balls { B; } jcy of R", such that
f=YXZAjm;in L?(R") and

gy ~ A e (Bl ) G210

Since the operator S; is bounded on L?(R"), we find that

SL(f) — SL< 'N A]m]>

j=1
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Hence, there exists a subsequence {S L <Z;V:k1 /\]-mj> } such that, for almost every x € R"
keN

k—o0

N
lim sL(gAjmj) (x) = SL(f)(x).
]:

Thus, for almost every x € R", we have

0]

SL(F)(x) < ) 1A[SL(m)) (x)

j=1

3 Y IS () ) (),

j=1i=0

where, foreachjcNandic Z,
Uj(B) := B(xp,2'rg)\B(xp,2/ 'rp).

Thus

0 . 0
IS gy = 1SN e (6213)

Z; Al [SL(mj)Xui(Bj)}
]:

IN
e

N
I
o

LP%‘)/Q(]Rn)

w

N REVC
[ZMJ”G[SL(MJ')XU,-(BJ-)] ]

0

I
72

N
I
o

j=1

L (R)

By virtue of Lemma 3.2.10, we find that, foranyj€ Nandi € Z,

HinHXB]‘ ||L§70(')(Rn)SL(m]')XU,'(Bj) HLZ(]R”) 5 |2iBj|1/21 (3214)

where o € (nsy,00). According to above estimate, we apply Lemma 3.1.5, to conclude that

l

<

Y

00 0
2_1,(7 1 1 | 1/6
Z x5l () o | ]|X2184
Lp(')(R‘rl) ! LZ (]R ) !

=1 v

o | ) 178
> A1 [SLm)xu ;)]

j=1

L (Rr)
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From the fact that
Xaig,(¥) < 2"M(xg,)(x),

we deduce that

o0

2—i0‘ -1 /\ ZiHM ? 178
T2 sl g 12" M) |}

=1

0o P | o 1/6
Z|/\]| [SL(m])XUi(B]‘)}

j=1

l

Combining Remark 1.2.8 and Theorem 1.2.10, we find out, for r € (0,s;,!)

L (R7) L (R7)

oo 1/6
6
H{ 2’/\]'|9[SL(mj)XU,-(Bj)] }
]:

LZ)()(]Rn)

~ 0/r 1/6
{2[2“’ @l I H)MAVM(xBj)] }

j=1
/0
AT o/r\ "
{ (0 |H’]| o) }
- \r 16/r
sa-ite-)|f Aj] V!

XB;
'||XB1||2§J()(R”) !

Al 1951/0
XB;

LA (R
1/r

12

b (R
1/r

e

~.
Il
—_

()/7’ n
LP T (R

agk

< p-ile=7) {

1L ||XB]' ||L€’U(')(]Rn)

~.
Il

Lz,U(IR")

ST DA ({47} jene Bihien ) ~ 2y oy
From the above inequality, (3.2.12) and (3.2.13), we infer that, for any f € H fg}) ’M’e(]R”),

o N0
N { 221(0’)} Il e g

i=0 Lw
~[I£ll Y

which is the desired result. ]

Page-56-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

The following proposition shows that [H [’j/("';)) (R") N LZ(IR”)} is a subset of H [’i(&]) ’M’e(]R”).

Proposition 3.2.16. Let L be an operator satisfying Assumption (A) and (B). Let p(-) € P(R"),w €
W, (). Let M € N and let € € (0,00). Then for any f € [Hf(')(lR”) N Lz(lR”)], there exists

,W

{Ai}jew C Cand a family {m;} ;e of (p(+),w, M, €)r molecules, associated with balls { B} e of
R", such that f = } 224 Ajm; in L%(R"),

A1) jere (B ) < €IS g gy
Proof. Let f € H E,(Z;J) (R™) N L?(IR") and let,
F(x,t) := Le Lf(x), forall(x,t) € R,

Then F € TZZ(')(]R”) N L?(IR"). Hence, by Theorem 3.2.3 there exists (p(-),w,c0)—atoms
{aj}jen associated with the balls {B;}jcn respectively and numbers {A,;};cn C C such that
for almost (x,t) € R"*1,

F(x,t) = Y_ Aja(x,t), in OV (R") N L2(R").
jeEN

By the Heo—calculi of L, we know that

f=Cum /0 w(tZL)MHe*fZL(tZLe*fZL( f))# = 7y (F), in L2(R"),

where Ci [y tz(Msz)e_tZ% = 1. The fact that 7y 1 is bounded from T?(R:) to L2(R"), it
follows that

f = CM X 7TM,L< Z /\]El]> = CM< 2 /\j?TM/L(Ll]')>, in Lz(]Rn)
jeN jeN

From Lemma 3.2.11 we know that m; = 7, (a;) is a multiple of a (p(-), w, M, €) molecule
adopted to Bj, which implies the desired result. O

Proof of Theorem 3.2.14. From the Proposition 3.2.15, Proposition 3.2.16 and a density argu-
ment we have, for M € (%[sy — 3],00) "IN and each € € (nsy, ), then

[Hp(')(]R”) N LZ(]Rn)] _ f_jé’(')/M,E(]Rn).

Lw W
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with equivalent quasi-norm. O

3.3 Dual space

In this section, we study the duality of H L( )(IR”). Here and hereafter, we denote by L* the

w
adjoint operator of L in L2(R"). Let us first recall some basic notions and definitions.

Definition 3.3.1. Let p(-) € P(R") and w : R" — (0,0) be a Lebesgue measurable function.
Let L be an operator satisfying Assumption (A) and Assumption (B). Then for any M € N
and € € (0,00) define

MPOMERMY) .= § F=LM(g) € LAR") : g € DLM),||f ]|, piomte oy < ¢
ML,w (]R)

where D(LM) denote the domain of the operator LM and

M
A1l POMe (gay = SUP 2D xg0,1) 150 e Z Plezyso1) (3.3.1)
L D L5 (R

The dual space of ME,(ZB ’M’G(IR”) is defined as the set of all the bounded linear function-
als on Mf(')’M’E(]R”), and denoted [Mz(')’M’e(lR”)] . Then for for any f € [Mf(')’M’e(lR”)}

W W W

and g € Mﬁ(')’M’e(lR”), the duality between [Mf(')’M’e(]R”)} " and ME(')’M’e(IR”) denoted by

;W S

(f,8)m- Let MY (R™) = Mg o0 [ ML) (R

Definition 3.3.2. Let p(-) € P(R") and w: R"” — (0, 0) be a Lebesgue measurable function.
Let M € IN and L be an operator satisfying Assumption (A) and Assumption (B). We say
that an element f € ME,(Z'U)’M’* (R") is in BMO{£;2(’)M(R”) if

J

where the supremum is taken over all balls of R".

1/2 )
i (1 — By (£) ()

sup

||f||BMo{£'L}M(Rn) R ||x||L7;L<~>

The following result can be seen as an extention of [92, Proposition 4.3] to the weighted
MPDME (R,

, W
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Proposition 3.3.3. Let p(-) € P(R") and w € W,(.y. Let M € N and € € (0,00).

Iffe Mf(uz ’M’e(IR”). Then f is a harmless positive constant multiple of a (p(-),w, M, €)r molecule
associated with ball B(0,1). Conversely, if m is a (p(-),w, M,€)r molecule associated with ball
B CR", then m € MZ(')’M’F’(IR”).

,W

The following three estimates play an important roles in the proof of our main results in

this section. The proof of next lemma can be done with similar arguments of [92, Lemma 9].

Lemma 3.3.4. Let p(-) € P(R"),w € Wy,.yand M € N. Then f € BMO{I(L'U)’M(]R”) is equivalent
to that

B

. = Su
||f||BMO£(w),M,rES(]Rn) BCI[I{)” HXBHLP IRn

1/2
[/‘ (- 1+ 30 )M ()| dx] < oo,

where the supremum is taken over all balls of R". Moreover, there exists a positive constant C such
that, for any f € BMOigB’M(IR”), we have

AN ot S N peistres om < CHFI oM o
BMOL,w (]R) BMOL,w (IR) BMOL,w (IR)

The next lemma play a key role in the proof of the main results of this section, for more
details we refer the reader to [92, Lemma 4.5.].

Lemma3.3.5. Let p(-) € P(R") andw € W,,(.). Let €,€ € (0,00) and M € N and M>M+€e+12.
Suppose that f € Mf’(Z'U)’M’*(R”) satisfies

2
-1
/n P dx < oo. (3.3.2)

Then, for any (p(-),w, M, €y, molecule m, it hold true that,

mone=Co [ [ (LM () (oPLe L) (),

where Cyy is a positive constant, depending on M, which satisfies Cpy [y M+ 1e2f2# =1.

The proof of the following lemma is similar to that of [41, Lemma 8.3] and [92, Lemma
4.71].
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Lemma 3.3.6. Let p(-) € P(R") and w € W,y and M € IN. Then there exists a positive constant
C such that, for any f € BMOL( )M (R™),

w

A

where the supremum is taken over all balls of R".

1/2
]B\l/z t2 2dxdt
DO <1l

sup
BCR" HXBHLP

Proposition 3.3.7. Let p(-) € P(R") and w € W,,(.). For any € € (2nsy,0),M € N and f €
BMOZS,L’)M(IR”). Then f satisfies (3.3.2).

Proof. Let f € BMOY g;zl;M(lR”), then by Lemma 3.3.4, we have

|B|1/2 PP 2d 1/2
%m[/}g 1= I+ N E) x] <.
We write
= L=+ A
e 1+ |x[n+e
Sy i OWE,
j=0/U;(B(0,1)) 1+ |x|n+e
2

<y [ @) e i
j=0 U;(B(0,1))
For any j € Z, choose kj € Z such that C6i <2< CoNi~1. Let

M; = {B €Iy, : Qpr, N B(0,CO" 1)} £ 2.
By Lemma 3.1.1(1), we find for any j € Z
U;(B(0,1)) C B(0,C85) C Upew,Qpo-
Moreover, by (4),(5) of Lemma 3.1.1 and the fact that Csk < 1, we know that, for any
B € M;, there exists some zgx, € Qp k, such that,
B(Zﬁ,ko;ao(sko) - Q,B,ko C B(Zlglko;éfsko) C B(Z[;,ko,l).
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From Lemma 3.3.4, we infer that

2
dx}

= j(n+e 1
; { Y 1 (a0 2500 | Bzpk0 DI }HfHBMOp Mg

ﬁEM]'

IS iz—ﬂ”*a{ Z/ ‘[I—(I+L*)_1]M(f)(x)
j=0 peM; B(zg 1))

According to Lemma 3.1.1(4) with k = ko, we conclude that,
B(zgx,, 1) C B(0,1+1+Cs% 1) C B(0,3C5% ") c B(0,35~12)).

The fact that, for any r € (0,s5), x oy S 27 [M(x "" and Theorem 1.2.10, im-
y w B(0,36-12/) ~ XB(0,1)
plies that

15(apa 0y S 03512 0 e
in 1/

S 2/ [M(XB(O,I))} rHLZ)(‘)(]R")

<2 HM(XB(O,l))Hi/p()

S 2j7”?(B(0,1)H¥{

/7 (Rm)

T (we)

<27 || xB(0,) 120 gy

On the other hand, from (3.1.1), we have,

B(zp, )] S27B(0,1)] !

Since € € (2nsy, ), it follows that there exists r € (0,s;,!) such that € € (22, c0), we obtain

J< Y 27/t { Y. 27 lxs00) ||2 12"B(0,1)]~ }I|f||BMOp M (o

j=0 BEM,;
<]22 = ||fHBMOp gy B0 7400 [BO 1)
~ I ot gy 150 |B<o,1>|*1 < co.
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Hence f satisfies (3.3.2). O
In the following result, we prove the duality of the space HY (;EU(IR”).

Theorem 3.3.8. Let p(-) € P(R") and w € W,(.. Let M € (5[50 — 31,00) "IN and € € (nsy, )
and M > M + 2ns,, + - Then, we have,

H R = BMOY M (R,

with equivalent norms. More precisely,

(i) Let g € [HI)(R")] . Then g € BMO} )™

v (R"), forany f € Hz(zgfﬁe(ll{”), it hold true
8(f) = (g f)mand

o < .

p(')/M/E

(ii) Conversely, let ¢ € BMOY ( ;’)M(]R”). Then, for any f € H (R™), the linear functional

’

Lw,fin
Cq defined by Lo (f) = (8, f) m, has a unique bounded extension to Hf,(@) (R™) and there exists
a positive C such that, for any g € BMOPSIL’)M(IR”)

Proof. We first show (i). Let g € {H f(w) (IR”)} . Then, for any f € H f(w) (R"), we have

G < 18 0 g ) oy

we know that, for any (p(-),w, M, €); molecule m,

L P
thus
g(m)| < |g]] (1) (rr)] (3.3.3)
On the other hand, by Proposition 3.3.3, we find that for any h € Mz,(l'u) Me(RM) with
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||h||M,,( Me gy = 1, where h is harmless positive constant multiple of a (p(-),w, M, €)r
Lw

molecule associated with the ball B(0,1). From (3.3.3), we find that for any € € (0,00),g €
[Mfl(zg’M’e(R”)} . Hence, g € MZ(Z'U)’M’*(R”) and forany h € ME,(Z'U)’M’E(R”),

(&) m=g(h).

Next we show that

We take aball B C R", ) € L?(B) with ||h |12(p) = 1. Following the argument used in [94], we
—HXH‘Bl /( ) (I—- eréL) M (1) is a harmless positive constant multiple of a (p(-),w, M, €)L

molecule. Therefore

know that

|B|1/2 _ AL X o = _ ALM
‘HXHLP (]R”)/(I ) ()( )h d | o !(g, HX”LT’L(')(R”) (I ) (h)>M’

which implies that, for any ball B C R"

|B|1/2 2, 1/2<
X X . *,
Tl R{/ (1= H V@) S 181

Hence we get the desired result. Now we turn to prove (ii). Let ¢ € BMOY gZUM(lR”) For

feH pL).M “(R"), we define

wfm
()= [ fxgEd
Since f € HL w)fm (R") C Hf(w) (R"), we have that tzLe_tsz € TZZ(')(IRTA). Then by The-
orem 3.2.3, we can assume that 2Le "L = YjenAjaj, where {a;}jeN is a sequence of
(p(-),w,00)—atoms supported of {B;};en. By Proposition 3.3.7 we know that ¢ satisfies
inequality (3.3.2) for € > 2nsy,. Thus, it follows from Lemma 3.3.5, the Holder inequality

and Lemma 3.3.6,
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= CM//]RnJrH(tzL*)Me_ﬂL* (g)(x)tZLetzL(f)(x)dedt

ST 0 )0 x| B

j=1

_Prs dxdt 1/2 dxdt1/2
L[ [f lenret @@PSE ] [ ol

o
j:] L*,w

A (A7) iene Bihien ) 18 gpaopver
<

Hence, the proof of Theorem 3.3.8 is achieved. O
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CHAPTER 4

WEIGHTED HARDY-LORENTZ SPACES
WITH VARIABLE EXPONENTS

In this chapter, we are interested essentially with the weighted Hardy-Lorentz spaces with
variable exponents. First, we define the variable weighted Lorentz spaces, and we prove
the boundedness of the maximal operator on LZ,('M (R") for 1 < p_ <py <ooand w €

W,()(IR"), then we introduce the weighted Hardy-Lorentz spaces with variable exponent

and we establish its atomic decomposition.

4.1 Preparation and helpful results

For N € N, let

FyRY)={peS®M: Y sup[(1+[x)NDPyp(x)l <1}, (4.1.1)
ezt |p|<NxER"

where, for any B:= (B1,..., fn) € Z",|B| = B1 + ... + Bn and DF := (%)ﬁl...(%)ﬁ".
For all f € §'(IR"), define radial grand maximal function fy; | of f by

fu o =sup{|f *¢i(x)[:t€(0,00) and ¢ € Fn(R")}, (4.1.2)

where, for all t € (0,00) and ¢ € R”, ¢y :=t"¢(/1).
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Definition 4.1.1. Let p(-) € C'%¢(R") and N € (r% + n+ 1,00) be a positive integer. The

weighted Hardy-Lorentz space Hg,(')’q(]R”) is defined to be the set of all f € S§'(R") such
that f§, | € LZ,(')’E’(]R”), equipped with the quasi-norm

(4.1.3)

_ *
HfHHZL(')’q(IR”) - HfN,+ ’Lz’ff')'q(]R”)'

Next, we introduce the definition of the atomic weighted Hardy-Lorentz space, and the

(p(-),r,s)-atom is given in the following definition.

Definition 4.1.2. Let p(-) € P(R") and r > 1. Fix an integer dy, = n(s, — 1). A measurable
function 2 on R" is called a (p(-),7,s)-atom if there exists a ball B such that

(1) suppa C B;
B[/

@) llall,rey < ;

- ||XBHL5](-)(]R”)
(3) there exist s > dy, such that [, a(x)x*dx =0 for all x € Z with |a| <s.

Let p(-) € P(R"), {Axj}rez,jen be a sequence of numbers in C and {By ;}rez,jen be a
()
jeEN ||XBk,,- ||Lp(~)(1Rn)

Definition 4.1.3. Let p(-) € P(R"), r € (1,00] and s as in Definition 4.1.2. The weighted vari-
able atomic Hardy-Lorentz space HY, () (R") is defined to be the space of all functions

w,atom,1,s

f € §'(R") which can be decomposed as

sequence of balls in R". Define

q

A({Axjrezjens {Brjtrez jen) = (Z )q/ (4.1.4)

keZ

Lh (R)

here and hereafter 8 € (0,s,').

f=Y ) Mjax; in S'(R"), (4.1.5)

keZ jeEN

where {a; ;}iez,jen is a sequence of (p(-),r,s)-atoms, associated with balls {By j}rez,jen,
satisfying that, for all x € R" and k € Z,} jen X3, ; (x) < A with A being a positive constant

independent of x and k, and forallk € Zand j € N, Ay ; = CZ"Hka,j ||Lp(‘)(]R with C being a

")

positive constant independent of k and j. Moreover, for any f € Hg)glgnlr,s(lR”), we define

e gy = inf A({Ak j}kez,jens { Bk jkez,jeN ), (4.1.6)

w,atom,r,s
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where the infimum is taken over all the decompositions of f as (4.1.5).

Now, we give a characterization for the weighted variable Hardy-Lorentz spaces via the

radial or non-tangential maximal functions.

Definition 4.1.4. Let i € S(R") such that [, (x)dx # 0. Let f € S’(IR"). The radial maxi-

mal function of f associated to the function ¢ is defined by setting, for all x € R",

P (f)(x):= sup [fxipe(x)],

te(0,00)

and for any a € (0,0), the non-tangential maximal function of f € S§’(R") associated to ¢
is defined by setting, for all x € R",

$5,0(f)(x) 1= sup [fxyr(x)].
te(0,00)
When a4 = 1, we use the notation ¢ (f)(x) instead of ¢g ,(f)(x). For any N € N and
0 < a < oo, the non-tangential grand maximal function of f € §’(R") is defined by setting,
for all x € R",

fN,v,a(x) = sup sup |f*e(y)].

peFnte(0,00),|y—x|<at
When a = 1, we use the notation f}; ¢ instead of f}; ¢ ,- A distribution f € S’(R") is called
a bounded distribution if, for all ¢ € S(R"), f x ¢ € L*°(R"). For a bounded distribution f,
its the non-tangential maximal function, with respect to Poisson kernels {P;}4~0, is defined
by setting for all x € R",

where I' denotes the Gamma function.

For s € Z, let P°(IR") be the set of all polynomials having degree at most s. Denote by

Q the set of all cubes whose edges are parallel to the coordinate axis. For locally function
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integrable function f, a cubes Q € Q and a nonnegative integer s, there exists a unique

polynomial P such that for any polynomial R € P*(R"),

| (0 - Pe)R@ar =0

Denote this unique polynomial P by Pf,f. For p(-) € P, the space BMO,, () 1(R") is
defined as

BMOw,p(«),l (]Rn) = {f € Llloc(]Rn) : ||f||BMOw,p<,),1(]R”) < oo},

where

1 /
ny . =Sup ———————— x) — P¢ x)|dx.
HfHBMOp(_),l(IR ) Qeg ||XQ||L§’U(')(]R;1) 0 ‘f( ) Qf( )‘

The following lemma is a slight variant of [101, Lemma 2.8].
Lemma4.1.5. Let p € P(R"), If f € S(R") then f € BMOy, .y 1-
The next lemma is the Calderén formula, we refer to the reference [10, p.219].

Lemma 4.1.6. Let p € S(IR") be such that suppyp C B(0,1) and let [, p(x)dx = 0. Then, there
exists a function Y € S(R™) such that its Fourier transform ¢ has a compact support away from the
origin and, for all x € R" \ {0}.

® o~ dt
| #gn T =1
0
We finish this section by the following useful lemma.
Lemma 4.1.7. Let (i,j) € Z x N and B;; := Bjj(x;j,7;j) for some x;; € R" and r;; € (0,00). Then,
forany x € (ZBij)U, we have

n+dy+1

[M(xp,(x)] "

4.1.7)
||XBz] ” LZ,(>(R”)

(ﬂij)*(x)

A

Proof. Let ¢ € F. Combining the vanishing moment condition of a;;, the Taylor remainder
theorem and the Holder inequality together, we find out, for i € Z N [ig,o0),j € N and t €
(0,00),
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X — p Xij
|ai % i (x)| = ‘/B”llij(y) [4’( ty) —WZ;, = (Pé! )( ]t y)ﬁ#

]y—x |dw+1
S J, 0l s

Bj;

dw+1 1/q 1/q
S——— / |a;i(y)|7dy / dy
’ 1]|n+dw+1 Bjj

<l (#)”””“
TILEY (RN [x — xjj]

/

Hence, for any x € (2Bij)c,

< -1 Fij et
(ai]-) * (x) ~ ”XBI']“ LZ}(')(]Rn) <m>

ntdy+1

< [M(xp,;(x)] ™

”XBij || LZ)() (]R”)

4.2 The Hardy-Littlewood maximal Operator on the variable

weighted Lorentz spaces

The interpolation theorem is crucial in the proof of the boundedness of the Hardy-Littlewood

maximal operator on the weighted Lorentz spaces with variable exponents.

Theorem 4.2.1. Let p(-) € P(R"), let py € (0,1) and py € (1,00) and g € (0,00]. Assume that

T is a sublinear operator defined on LP1P() (IR™) + LP2PC) (R™) satisfying that there exist a positive
1

constants Cy and Cy such that, foralli=1,2, f € LZ}iP(') (R"), withw;(x) =w?i (x) and A € (0,00),

AHX{xe]R":|T(f)>A|}”Lpﬂz(-)) < Ci||f||Lp,-;Z<-> ; (4.2.1)
w;(R" w; (R"

Then the operator T is bounded on qu(')’q(lR”), moreover, there exists a positive constant C

depending only on p(-) and q such that, for all f inLZ,(')’q(lR”),
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ITFI 00 gy < CUAN pera

Proof. Let f Efu(')’q (R"), combining Lemma 1.3.5, Lemma 1.3.6 and (4.2.1) together, we con-

clude that

||Tf||Zp(-),q(Rn ~ Z 2 q”?({xe]R" I Tf(x |>2’<}|| R
w kez

S L 29X xeme e x |>zk}|| (&)

keZ keZ
- Z 2 qHX{XGIR" T fiq (x)[>2F }HLPlP (]Rn) T Z 2" ”X{XER” T fi1 (x)[>2F }HLPzP (
kez wl/P1
< Y 2kt |\fk1||pp1p . ). pap() oo
kezZ 1/p1( kez L ®)
= A+ A,
where fi1:= fX{xern|p(x)|>2) A0 fie2 3= fX rerm| () <24}
For the first term A4, we have
kq(
A=Y 29 fx e pys2 e o
keZ L pl(lR)
K p1q
= ) 2kt fZX{erR" D<IFI<2 [ rar0)
kez wl/P1
kq(1— 1
S Y 2atom) 22”7 X{xeRrdi<|f(x)| <21} O gy’
kezZ

From Remark 1.2.9, we infer that

Az p (H 2 2P K xernaicl <2 ||
S

Since g € (0,00), then we will estimate the term A; in two cases.
First case. When g € (0, p]. We have,

q/p
P
2 (R >> ’

+ 3 2 were s 12150 e

n
wPZ]R)
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A1< szﬂll p1) szpquX{xeR”21<|f( |<2]+1}HLP ]R”)
kez j=

j
= szpquX{xe]R” 2/ <|f(x )|<2]+1}HLP )(R7) (k_z 2kq(1_p1)>

JEZ

<22]qHX{erR"\f |>21}HLp ) (R")
jEZ

~IIFI,

Lo

Second case. When g € (p, ), take &1 € (p1,1). In view of the Holder inequality, we find
out

==

Aq 5 kz qu(l 1) (Z p(p1—e1 21281 ||X{x€]Rn:2j<f(x)|§2j+l}H§p(.)(]Rn)>
ez w

p

q/
Aq §2kq(1 pl){<22]r1(r71 “)@/q E))(q p)/q<Zz]qgl||X{x€Rn:21<|f(x)|§21'+1}HZP(~>(W)) }
]':k ]'_ w

< szql p1)pka(pi—e1) 22]”’ HX{xeRn2]<‘f( |<2f+1}HLp J(RM)'
kez j=k

Since ¢ < 1. Then, we obtain

Al S .szqgl “X{XER”:2j<‘f(x)|§2j+1} HZZ,()(]R”) . Z 2kq(1_51)
= =—00
S L2 tneretsiorsanligo oy = 11750

]E

The estimate of the term A is analogous to the first term A, here we show the Second
case corresponding to the case q € (p, ). Let &2 € (1, p2). In view of the Holder inequality,
we find out
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==

AZS_, szq(l p2) ( Z QJPP HX{XE]R”21<|f( |<2]+1}||Lp ))
kez j=—00

< Z qu(lpz){

_ _ |4 r/q
= (j;oozfp p2—e2)(q/q E)) (J;oozm HX{xER”2]<|f( |<2]+1}HLP ]R")>
k—1
< szql p2) pkq(p2—é2) Z DJq€2 ”X{xe]R”21<|f( ‘<2]H}HL” R
keZ j=—00
As g7 > 1, we deduce that
A2< Z2ﬂi 2||X{x€]R” 2]<‘f( |<2]+1}H ]R”) Z 2kq(17€2)
jez k=j+1
N ZZMHX{erRn f(x |>zf}HLp ) (RM) ||f||zp<>q
]e w

As an immediate result of the above theorem, we have the following conclusion
Proposition 4.2.2. Let p(-) € C'¢(R") with1 < p_ < p < coand let g € (0,00]. Then the Hardy-
Littelwood maximal operator M is bounded in the weighted variable Lorentz spaces L}, ) (R")

The next theorem play an important role in the proof of the atomic decomposition

Theorem 4.2.3. Let p(-) € CI8(IR") and let q € (0,c0]. Suppose that N € (£ + n + 1,00). Then
the following items are equivalent:

(i) fe HL(R), ie. f e S'(R") and f* € LEVI(R™).
(it) f is bounded distribution and N (f) € LZ,(')’q(IR”).

(iii) f € S'(R™) and there exists p € S(R™) with [n P(

x)dx = 1such that ¢ (f) € Lf(')'q
Moreover, for any f € HZ‘Z( )4

o T(R™).
1(R™), it holds true that

15 0 gy = IV G gy 2 1 )t g
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Proof. We start by the first implication (i) = (ii).
Let f € Hff,(')’q(]R”), then we have B(x,1) C {y € R": f{; , > Cn|f x¢(x)[} := Qg ». (See
[90], pp.20). By virtue of the definition of W), and the Holder inequality, yields

. _ T . _ + 1
min{1f + ()" | * @017} < min{l £+ p(3) P % ¢ b [ K )y
< min{\f*qb(x)l"’,!f*4>(x)|’”}m

< [ 0 0, ) )0 )y
< min{|f x p(x)17, I * p()]"}

N max{||XQf,x||p_ ||Xﬂfx| p+()(]Rn)

Smax{||f*||Z;<. ||f || }-
w

R n

}

By using the embedding qu(-),q(an) — LZ,(')'“ (R"), for 0 < g < oo, we find out

min{|f x ¢(x)[7~, | f x p(x)[" } S max{[|f*|",

< max{]|f*[|?

Tl
)’Hf ’LZ](-),q(]Rn)}'

Lhl)e
i

Hence, f x ¢ € L°(R") and f is bounded distribution. From the argument used in ([84]
pp-98), we have

N(f) < kZz‘k(svk)*v(f)(x), x € RY,
=0
where {; }renw C S(R") have uniformly bounded seminorms in S(IR"). Proposition 3.10
in [8] ensures that f*(x) &~ f}; ¢(x) for all x € R". Combining, Remark 2.7 in [32], Fatou’s
Lemma and the fact that 5, (f) (x) S f3; v (%) for all x € R", we conclude that

IN Oy < | 2 275005

keIN (Rn)
T
—k *
5 Z 27 <’~Pk)v(f) 0
keN LT (R
SF My
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Therefore N'(f) € qu(')’q(]R”).

Now we turn to the second implication, (ii) = (iii). If f is a bounded distribution and
N(f) e Lp(')’q(lR”) From estimate in ([84] p.99), there exists a function ¥ € S(IR") such that
Jrn ¥ (x)dx =1 and ¢ (f)(x) SN (f)(x), which implies that (iii) holds true.

It remains to prove (iii) = (i), from corollary 4.2.2 and by using an analogous argument
used in [90, p.2842-2845] we get the desired result and we omit the details. O

The next result is an immediate consequence from the above theorem.

Corollary 4.2.4. Let p(-) € CI°8(IR"), let g € (0,00],a € (0,00) and let N be as in the above theorem.
Then f € Hz’f,(')’q(lR”) if and only if on of the following items holds true

(i) f€S8'(R")and thereexists p € S(R") with [, Y (x)dx = 1such that 3, ,(f) € LEOA(R™)
(i) eS8 (R") and ff; o € L VI(RY).

Moreover, for any f € Hf:,(')’q (R™), it holds true that

||f||Hp ]Rn ||fi],V||L57()rW(IRn) ~ HIP*V,QHLZ)(')/‘](]Rn)’

where the implicit equivalent positive constants independent of f.

4.3 Atomic decomposition

In this section, we deals with the atomic decomposition of the weighted Hardy-Lorentz
spaces. More precisely, we have the following result

Theorem 4.3.1. Let p(-) € C'°8(R"),q € (0,00] and r € ((kl/b)’,oo] such that § € Sy, and let
dw =n(sw —1). Let w € W,,.. Then Hf,(')’q (R") = HPOA (R™) with equzvalent quasi-norms.

w,atom

Proof. First, we prove the following embedding HE) 1(R") C H pe) (R™).

w, atom
Since each (p(-),00,s)—atomisalsoa (p(-),r,s) —atom, then it suffices to prove Hp(')’q(]R”) C
HZ(alom(]R”) Let ¢ € S(IR") be such that suppy C B(0,1), [g. ¢(x)xVdx = 0 for all v € Z}

with |y| <s. Then, from Lemma 4.1.6, there exists a function i € S(R") such that its Fourier
transform ¢ has a compact support away from the origin and, for all x € R" \ {0}.

[ dden T =1
0
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We define a function 7 on R" as follows, for all x € R" \ 0.

1 if x=0

7(x) = {fl P(tx) L if x#£0

By [10, p.219], we have 7 is infinitely differentiable, has compact support and equals to
1 near the origin. Let xp :={2,---,2} € R" and f € Hg,(')’q(]R”). For any x € R", set

$(x) = p(x —x0), P(x) == p(x +x0).
Given f € S(R"), foralla € R" and t € (0,00). Consider the functions

F(x,t):=fx¢i(x) and G(x,t):= f>m(x).

Thus, by [10, p.220],

«© ~ dydt . "

[ | Fuie-n®E m s,

0 JR*

Let
My (f)(x) == sup (IF(w, )] + Gy, 1)) (4.3.1)

t€(0,00),|y—x|<3t(|xo|+1)

and

O;:= {x e R": My (f)(x) > 2'}.

Then My (f)(x) is semi-continuous which implies that the set (); is open, and from
corollary 4.2.4, we have

HMV(f)HLfU(')"’(]R") S ||f||H5)(')'fI(]Rn)'

Since (; is a proper open set, by means of the whitney decomposition [85, p. 167], there
exists a sequence {Q;;}jen of cubes such that, foralli € Z,

(1) UjenQij = Q; and {Q;;}jew have disjoint interiors

(2) forallj €N, c1y/n (Q < dist(Q;;, O ) < c1y/n EQ where KQ represents the length of

the cube Q;;,dist(Q;, O l) =inf{|x —y|:x € Q¥ € QE} and c1, ¢ are two positive
constants.
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Now, for any ¢ € (0,00),i € Z,j € N and x € R", let

dist(x,QlD) = inf{|x—y|:y60?}

O = {(xt) € R0 < 2t(|xp| + 1) < dist(x,OF)}
Qi = {(xt) eR:xeQy(xt) €O\ Qi)

and we define the function bfj as follows

«© ~ dydt
= [ [ o, DR — ).
Analogous to [10, p.221-222], there exists constants C; and C; such that, for all € €
(0,00),i ez andj € N,suppbfj C B(in/" éﬁgQi]‘) C ClQij/ ||bl£]||Loo(IRn) < C22i, f]Rn bfj(x)x”de =
0 for all y € Z", obeys |y| <sand

f=lm) Y bi(x) in S'(R").

¢20/cZ jeN

From [32, Remark 5.5], we have, for these balls B (inj, 2V/nt Qij) ,

5
% B(xq,, EﬁeQij) < Axa,- (4.3.2)
IS

By the Alaoglu theorem [78, Theorem 3. 17] and diagonal rule, we conclude that there exists
a sequence {b;;}(; yezxn C L¥(R") and a sequence {¢x }ren such that e — 0 as k — co and
for any ¢ € L}(R"),

kli_{l;lo < bf]?‘,g >=< bjj,g >,
with suppb;; C C1Qjj, [|bij | Lo (rry S 2!, For all y € Z" satistying || <s,

" bij(x)x"dx =< bi;, x"xc,0; >= kh—>nolo o bf}‘(x)x”dx =0.
At this stage, we show that

lim ) ) bif(x) =) ) bi(x). (4.3.3)

k= icz ieN i€ZjeN

Let ¢ be a function belongs to S(R"). Lemma 4.1.5 ensures that ||§||BMOW(') | < oo
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On the other hand, we have

Y ) (I<bif, o>+ <bijl>])

lil>NjeN

~N-1
= Y L (<L |+ <bi> )+ L 2{\/CQ b () [2(x) — Py, T()]

i=—o0 jEN i=N+1jeN

+] /C o i) [£00) — P8 WW‘}

~N-1
SDIEY LS o oL R NI

i=—oo i=N+1jeN

S2Mle+ Y T 2l lplElsuo e
i=N+1jeN

<22y + 1m0, o aeey Lo 2, 0
1 N+1

S27NGl ey + 27NV NE oy, w111

From Lemma 1.3.7, we conclude that

Yo Y (I<bif o> 1+1<bip g > 1) S27N8lpwn 27N 1ellamo,, )1 (R R L g oy
li|>NjeN

which tends to 0 as N tends to oo, the constant r is chosen such that r € (max{1,p4,o}).In
a similar way;, it hold true that

Y Y (I<bf 0>+ <bj, 0> ) <oo.

i|<NjEN

Finally, by the same argument used in [56, p. 651] we obtain (4.3.3). Fori € Z and j € N,
let B;; be the ball having the same center as Q;; with the radius g\/ﬁﬁQU,

a; = -
T G2l o

and Ay = Ca2' g, |y
(R?)
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Thus, a;; is a (p(-),,s)—atom, which is also a (p(-),r,s)—atom,

f: Z Z )\l-]-al-]- in S/(Rn)

i€ZjeN
Furthermore, we have

1

q r (2 el )
S 2 xoy )
L2 (R iz (R

2 ) bij

icZjeN

( Z XBi,j)l/E

jEIN

|z
(R")

i€Z

Hp

w, atom

By taking the infimum over all decompositions, we deduce that

HfHHP (]Rn < ||f”HP (]R”)

wa om

and so we find that HJ, () "(R") c HY, () (R"™). Now, we turn out to the second inclusion.

w,atom
Let f € H waiom(lR”) there exists a sequence {4;;}icz,jen of (p(-),7,s)—atoms associated
with the balls {B; ;}icz jen and a sequence of complex numbers {A;;}icz,jen such that f
has a decomposition as in [32, (5.2)] with A; ; := A2'[| x5
it suffices to prove that

y HL”(')(IR")' In view of Lemma 1.3.6

1
q

Ziq n. £k i 1 <

For k € Z, we set

k-1 0
f= 2 2 Aijaii+ 3 ) Aijaiji=fi+ fa

i=—c0jEN i=kjeN
Remark 1.2.9 leads to

X (rewrn:p )52 1 00 gy S X gwemns >3 o0 oy F X (e A (2613 1 ) gy
_|_

||X{xeAIE:f2*(x)>2k*1}HLQJ(')(]R")
= L +1L+1;,
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where A := U2, Ujen 2B; ;. We start by I;, we have

<
]Il ~ HX{XG]R":):L_EOOZjeN)\i,j(ai,j)*XZB,-,j(x)>2k72}HLg;(')(R”)

HX{XG]R":Z;:L)O Zje]N Ai'j(ai'j)*XZBFj (x)>2k*2} ||L5,(') (R")

= Hll + 1112.

Let } €Sy and 7 € (1, min{—%— kl/h ,1})anda € (0,1— %) Then Holder inequality gives

k=1 N7
) e < (L 207)

i=—0cojEN i=—o0

; 1/q
X [ Z 2- ’”‘7<2/\1] aij)* (x) X2, (x )) ]

j=—o00 jeEN

2le q 1/67
= ia
o (2aq’ 1) (nad —1)1/T 1_2002 7 ( Z Al]al] x)XZBU( ))

j€Z
= D(x),

where, 1/5+ 1/4 = 1. We use the fact that gb < 1 and aj;(x) S Majj(x), for all x € R", [90,
Remark 2.1(i)] and [17, theorem 2.61], we deduce that,

I; < ||X{xelR":<1>( )>2H}HL”' (R™")
5 2—k07(1—a) Z - zaq[Z)\l] az] XZBU]
i jeN L) (R)
~ k=1 i
< 9—kq(1—a) Z 271 Z [(aij)*XZBij}q
i=—c0 jeN L) (R
1/b
o gb
< 2 ki(1—a) Z y—i(l—a)bq Z [||XB,]||LP (R szZBi]]q
i jeN LI (R
- b
j=—00 JEN ! Lp(lj/b(]Rn)

Letr:=q/§ > (ki/"), since the operator M is bounded on L', we find out, for all i € Z and
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jEN,

H(HXBz]HLZ]()(]Rn)M(al])XBl])qHL"(IR") S’ ”XBZJH?:Z}()(]Rn)”M(aZ]XBl])ler(]Rn)
S Byl

It follows from Lemma 3.1.5

1
b

I < ki(l1—a i(1—a)bg )
11 2" [ _Z 27! Y X28; O g
i=—o00 jeEN w (]R)
From Remark1.2.11, we find
1
b
I < kq (1—a i(1—a)bg )
1 S [_Z 2™ ZXB,] 9
i=—o00 jeEN (R")

Lete; € (1,(1 —a)g). According to Holder inequality, we deduce that

1
b

[ k—1
<  n—kj(1-a) —ib[(1—a)g—ey Hibe
In 5 2 2 , 2 127 EENXB,-]-
[ i=—co j

LQ&,‘W(Rn)]
1
b

ki(1—a) _ kil bl(1-a)g—enitey || ( y )1/b ’ ]
2—kq(1-a i —a)q—e1pibe XB:
| i=—c0 jE]N / Lﬁ](‘)(][{n)

q
k=1 1
-t { x 20 L g (8 )y

i=—co jEN

A

N

1/q
< zkel( Z it | Z?CBq” ) ,

j=—00 jeN

Hence, we get

[e¢]

Z(Zkﬂu)q = Z 2 qHX{xe]R” (f1)*x28; ( >2k}Hqu(A)(]R”)

k=co k=—o0
5 Z 2kq2 keiq Z quel ZX31]

k=—o0 j=—o00 R")
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— Z 21£]€1 Z XBI Z 2kq(17€1)
i=—co ML v 514

< Zzzq Z XBU 0 < ||f|| _— (4.3.4)
€7 w watom

Now, we turn out to estimate I13. For any b € (0, ;4=7),q1 € ((n+dn—+1)b' Handae (0,1—

1), we have
q

le rg ||X{x€]R”:(I)1 (x)>2k*1} ||LZ;<>(]R"),

k—1 —iagq * M1/q1 . 1 1
1.

From the estimate (4.1.7), we get

I, < kq1 (1—a)

2 27 [ 2 Aij TijX (2B;) }41

i=—0o0 jEN

kqlla{zz (1—a)g1b

1=—00

L (R)

n+dw+1 qlb

Z [M(XBij)} !

jeN

A

1/b
LZ%>/b<R”>}

1/b
Lf;h-vbm}

( ZXBl])l/b }l/b.

Lh (Rr)

Since % > sy we apply theorem1.2.10 to obtain

> X8,

]I12<2 kg (1— a{ Z - i(1—a)q b
jEN

j=—o00

<2kq11a{22 (1—a)g1b
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Lete; € (1,(1 — a)qp). Holder inequality ensures that,

b 1/b
Ty, S 2—kq1(1 a { Z - ibez[(1—a)q1—e Zzbez (ZXB”) }
i=—o00 ]E]N LZ,()(]Rn)
= k1 1/q
< 2 k’hla(zzlﬂql €2zbq>bq(22iq€2(ZXBij>1/b )
i=—o0 i=—c0 jEN L2 (Rr)
1/q
—k
< 2 €2< Z irez | ZXBTJ e Rn) :
j=—00
Therefore, we obtain
o0 q
k
Y, (M) =) 2\ X pern(ryn (0524
k=—o0 keZ (ZBij) LZPU(')(IRn)

q

k-1
kgn—kerq ige
S L2t 3w Sl

Z XBj;

keZ i=—o00 jEZ
- kq(1—
< 221%2 ZXBz] e - Z okq(1—e2)
icZ ' k=i+1
< )27 ZXB,] 0 S s ey (4.3.5)
ieZ w,atom

To estimate I, we choose r1 € (0,min(p,q)). Then from definition and Remark1.2.11, we

obtain

S H Z EXZBUHL”

i=kjeZ R")
s r 1/7‘1
o3 op R I Do or ™ I
i=kjeZ =k || jeZ LZ,(')(]R”)
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Let es € (0,1). According to Holder inequality, we deduce

n 1/
LZ)()(RH)]

( Y200 Y xa;

jEZ

q >1/q
LA (R7)

k k
Y @'mL)? = )2 ”7||X{xeAk:<fz>*<x>>2k}||Zp<->(w)

]I2 S 22 1e3r12163r1

Y X,

jEZ

s
qan

q

>1/q
L (Rm)

A

. q
Z 2_1637’1 ﬁ
i=k

Z XBjj

jez

< 2—ie3 (izi%q

i=k

Thus,

keZ keZ
5 Z 2k‘72—k€3 [Zzlqé@“ ZXB :|1/q
kezZ i—k L we)
S L) Dol i Pali=e)
i= jEZ ! k:—oo
< 2 < 4.3.6
~ iGZZ H ]GZZXBI] Lp ]Rn ||f|| w atom(]Rn) ( )

It remains to estimate I[3. Since p € (%1, 1), there exists r, € (0,00) such thatr; € (W 1).

By taking by € (0, min{ Then, we have

A 1))

I = e w21l me

Y. ) (i) )X, o

i=kjeIN

)
5 kT2 [Z

< 2—k1’2

LA (Rr)

by 1/
a;;)* )" .
(Z ij z])) X(Ak>ﬂ> Lp(~)/b1(]Rn)]
b

jeN
w1
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We observe that 1/b; > s,/ p- Then, by theorem1.2.10 and (4.1.7) we conclude that,

1/by
L (R"J

w1

(o]

113 < 2—k1’2 Zzi?’zbl

| i—k

(% o))

jEN

by 1/by
LZ’L(')(IR”)]

Let € > 1. Thanks to the Holder inequality, we have

< 27k i ZXBi]-
Li=

=k || jeN

00 bl

]IS < 2—k7’2 ( Zzibﬂ’z—ieblziebl
i=k

ok, (iz ibyry—ieby) 7 > b” (Zzleq

i=k
q )1/4
()(]Rn)

>1/b1
i) (Rn)

Z XBj

je]N

N

Y Xs;

jEIN

1/q
LP( )(IR"))

5 ( i 2166]

Y X,

jeN

Then, we have

Z (ZkH3)q S Z 2kq2 keq Zzzqe L

keZ keZ i=k

S Zziqe ZXBij

keZ jEN L”(') (R") k=—oco

S’ Zzlq Z XBI] ”fHHP

Vl
icZ ]EN ZJ<>(R waom )

Y XB;

jEN
q i

Z 2kqe

L (R)

(4.3.7)

Putting (4.3.4),(4.3.5),(4.3.6) and (4.3.7) together we conclude that

w, atom

(Rm)

consequently f € Hg,(')’q(]R”), this ends the proof. O
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Conclusion and perspectives.

Conclusion

The theory of function spaces with variable exponents is a classical branch of the har-
monic analysis, and since these spaces are widely used in the mathematical modeling in
the real-world phenomena such as, modeling of electrorheological fluids, thermorheolog-
ical fluids...etc. Therefore, it is of interest to explore and studying this kind of spaces as
the Hardy spaces with variable exponents in different situations. Motivated by the works
[39, 57, 69, 68, 74, 23,92, 90, 32]. In this thesis, we have established some results related to
variable Hardy spaces. The first one, is the atomic decomposition of the weighted variable
Hardy spaces on domains and then we have studied the duality result of these spaces. Sec-
ondly, we have investigated the weighted variable Hardy spaces associated with operators
satisfying the Davies-Gaffney estimates, where, we have established the molecular char-
acterization of HZ(')(IR”) and we have proved also a duality relation between HZ(Z'U) (R™)
and BMOEQZ&M Finally, we established an interpolation theorem, then we showed Feffer-
man-Stein vector-valued inequality on the weighted variable Lorentz space and we have
showed the atomic characterization of weighted Hardy-Lorentz spaces with variable expo-

nents.

Perspectives

In the future, we hope to continue in this axis of research, as we will try to understand and
explore some results for the variable Hardy-Lorentz spaces on domains. Our next goal is
to find some applications to the atomic characterization of the weighted variable Hardy-
Lorentz spaces established in chapter 4 such as the duality result for this space.
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List Of Publications.

The main results of this thesis are the series of the following papers [66, 54, 67].

* O.Melkemi, K. Saibi, and Z. Mokhtari, : Weighted variable Hardy spaces on domains.
Adv. Oper. Theory 6, 56 (2021). https/ doi.org/10.1007 /s43036-021-00151-4

¢ B. Laadjal, K. Saibi, O. Melkemi and Z. Mokhtari : Weighted variable Hardy associ-

ated with operators satisfying Davies-Gaffney estimates. Submitted.

* O. Melkemi, Z. Mokhtari, and K. Saibi, : Atomic characterization of the weighted

Hardy-Lorentz spaces with variable exponent. Submitted.

Page-86-






BIBLIOGRAPHY

[1] W. Abu-Shammala and A. Torchinsky, The Hardy—Lorentz spaces HP1(IR"), Studia Math.
182 (2007), no. 3, 283-294

[2] E. Agora, ]. Antezana, and M. Carro, Weak-type boundedness of the Hardy—Littlewood max-
imal operator on weighted Lorentz spaces, J. Fourier. Anal. Appl. 22 (2016), no. 6, 1431-1439.

[3] D. Albrecht, X. T. Duong and A. McIntosh : Operator theory and harmonic analysis, In-
structional Workshop on Analysis and Geometry, Part 11 (Canberra, 1995), Proc. Centre
Math. Appl. Austral. Nat. Univ. vol. 34, 1996, 77 — 136.

[4] A. Almeida and P. Hasto, Besov spaces with variable smoothness and integrability, J. Funct.
Anal. 258 (2010), 1628-1655.

[5] A. Almeida, and A. Caetano, : Atomic and molecular decompositions in variable expo-
nent 2-microlocal spaces and applications. J. Funct. Anal. 270, 1888-1921 (2016)

[6] M. Arifio and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy’s
inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), no.
2,727-735.

[7] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math. (Amst.), vol. 129,
Academic Press, Inc., Boston, MA, 1988

[8] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no.
781.

88



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[9] T. A. Bui, J. Cao, L. D. Ky, D. Yang and S. Yang, Musielak-Orlicz-Hardy spaces associated
with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces 1 (2013),
69-129.

[10] A.Calderén, An atomic decomposition of distributions in parabolic HP spaces, Adv. Math. 25
(1977), no. 3, 216-225.

[11] G. A. Chacén, and G. R. Chacén, : Analytic variable exponent Hardy spaces. Adv.
Oper. Theory 4, 738-749, (2019)

[12] Y. Chen, S. Levine, R. Rao, : Variable exponent, linear growth functionals in image process-
ing. SIAM ]. Appl. Math. 66, 1383-1406 (2006)

[13] M. Carro AND J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Analysis
112 (1993), 480-494

[14] M. Carro AND ]. Soria, The Hardy-Littlewood maximal function and weighted Lorentz
spaces, ]. London Math. Soc. 55 (1997), 146-158.

[15] M. ]. Carro, J. A. Raposo, and ]J. Soria, Recent developments in the theory of Lorentz spaces
and weighted inequalities, Mem. Amer. Math. Soc., 187 (2007), pp. xii+128.

[16] D. Cruz-Uribe and L.-A. D. Wang, Variable Hardy spaces, Indiana Univ. Math. J. 63
(2014), 447-493.

[17] D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of classical oper-
ators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264.

[18] D. V. Cruz-Uribe, and A. Fiorenza,: Variable Lebesgue Spaces, Foundations and Har-
monic Analysis. Birkhiiser/Springer, Heidelberg (2013)

[19] D. Cruz-Uribe,L. Diening, P. Hasto,: The maximal operator on weighted variable
Lebesgue spaces. Fract. Calc. Appl. Anal. 14, 361-374 (2011)

[20] E. B. Davies : Uniformly elliptic operators with measurable coefficients. - J. Funct. Anal. 132,
1995, 141 — 169.

[21] L. Diening, P. Harjulehto, P. Hasto and M. Razicka, Lebesgue and Sobolev spaces with
variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.

Page-89-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[22] L. Diening, and M. RuZi¢ka,: Calderén-zygmund operators on generalized Lebesgue
spaces LP(") and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197-220
(2003)

[23] X. T. Duong and J. Li : Hardy spaces associated to operators satisfying Davies-Gaffney
estimates and bounded holomorphic functional calculus, ]J. Funct. Anal., 264 (2013), pp.
1409-1437. https:/ /doi.org/10.1016/j.jfa.2013.01.006

[24] X. T. Duong and L. Yan : Duality of Hardy and BMO spaces associated with
operators with heat kernel bounds, ]J. Amer. Math. Soc., 18 (2005), pp. 943-973
(electronic).https:/ /doi.org/10.1090/50894-0347-05-00496-0

[25] L. Ephremidze, V. Kokilashvili, S. Samko,: Fractional, maximal and singular operators in
variable exponent Lorentz spaces. Fract. Calc. Appl. Anal. 11(4), 407-420 (2008)

[26] X. Fan, and D. Zhao,: On the spaces LP(¥)(Q)) and W"P()(Q). J. Math. Anal. Appl.
263, 424-446 (2001)

[27] C. Fefferman, N. Riviere, and Y. Sagher, Interpolation between HP spaces: the real method,
Trans. Amer. Math. Soc. 191 (1974), 75-81.

[28] C. Fefferman and F. Soria, The space weak H 1 Studia Math. 85 (1987), 1-16

[29] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for variable exponent Riesz
potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522.

[30] Y. Jiao , K. Saibi , C. Zhang : Weighted L10)-estimates for the mnonlinear
parabolic equations with non-standard growth. J. Math Anal. and App. 489, 124145
(2020).https:/ /doi.org/10.1016/j.jmaa.2020.124145

[31] Y. Jiao, L. Peng and P. Liu, Atomic decompositions of Lorentz martingale spaces and applica-
tions. J. Funct. Spaces Appl., 7 (2009), no. 2, 153-166. MR 2541232

[32] Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy-Lorentz spaces HP()1(IR™). Math.
Nachr. 292 (2019), no. 2, 309-349.

[33] Y.Jiao, Y. Zuo, D. Zhou, and L. Wu: Variable Hardy-Lorentz spaces H” ()q (R™). Math.
Nachr. 292, 309-349(2019)

[34] R.Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic op-
erators, J. Funct. Anal. 258 (2010), 1167 — 1224.https:/ /doi.org/10.1016/j.jfa.2009.10.018

Page-90-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[35] M. Haase, The functional calculus for sectorial operators, Oper. Theory Adv. Appl., 169
(2006), 19 — 60.

[36] T.C. Halsey, : Electrorheological fluids. Science 258, 761-766 (1992)

[37] P. Harjulehto, P. Hasto and M. Pere, Variable exponent Lebesgue spaces on metric spaces:
the Hardy-Littlewood maximal operator, Real Anal. Exchange, 30(2004), no. 1,87 — 103.

[38] K.-P. Ho,: Atomic decompositions of weighted Hardy-Morrey spaces. Hokkaido Math. J., 42,
131-157 (2013)

[39] K. Ho, Atomic decompositions of weighted Hardy spaces with variable exponents. Tohoku
Math. J. (2) 69 (2017), no. 3, 383—-413.

[40] S. Hofman, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces associated to
non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math.
Soc.,214 (2011), no. 1007, vi+78.

[41] S. Hofmann and S. Mayboroda, Hardy and BMO spaces associated to divergence form el-
liptic operators, Math. Ann. 344 (2009), 37 — 116. https:/ /doi.org/10.1007 /s00208-008-
0295-3

[42] S. Hou, D. Yang, and S. Yang, Lusin area function and molecular characterizations of
Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15 (2013),
no. 6, 1350029.https:/ /doi.org/10.1142/50219199713500296

[43] J. Huang and Y. Liu, Some characterizations of weighted Hardy spaces, ]. Math. Anal. Appl.
363 (2010), no. 1, 121-127

[44] D.M. Israfilov, V. Kokilashvili, N.P. Tuzkaya, The classical integral operators in weighted
Lorentz spaces with variable exponent, IBSU Scientific Journal 1 issue 1, (2006), 171-178

[45] M. Izuki, E. Nakai, and Y. Sawano,: Function spaces with variable exponents-an intro-
duction. Sci. Math. Jpn. 77, 187-315 (2014)

[46] M. Gaffney : The conservation property of the heat equation on Riemannian manifolds. -
Comm. Pure Appl. Math. 12,1959, 1 — 11.https://DOI:10.1002/CPA.3160120102

[47] L. Grafakos and D. He, Weak Hardy spaces, Some Topics in Harmonic Analysis and Appli-
cations, Adv. Lect. Math. (ALM), vol. 34, Int. Press, Somerville, MA, 2016, pp. 177-202.

Page-91-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[48] A.Y. Karlovich and I. M. Spitkovsky, The Cauchy singular integral operator on weighted
variable Lebesgue spaces, Concrete operators, spectral theory, operators in harmonic anal-

ysis and approximation, 275-291, Oper. Theory Adv. Appl., 236, 2014.

[49] H. Kempka and ]. Vybiral, Lorentz spaces with variable exponents, Math. Nachr. 287
(2014), no. 8-9, 938-954.

[50] V. Kokilashvili and S. Samko: Singular integrals in weighted Lebesgue spaces with variable
exponent, Georgian Math. J. 10 (2003), no. 1, 145-156.

[61] Kovaack, O. and Rékosnik, J.: On spaces L? () and WkP(¥) Czechoslovak Math. J. 41,
592-618 (1991)

[652] L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of
sublinear operators, Integral Equations Operator Theory 78 (2014), 115 —
150.https:/ /doi.org/10.1007 /s00020-013-2111-z

[53] O.Kulak On The Weighted Variable Exponent Lorentz Spaces. Montes Taurus J. Pure Appl.
Math. 3 (1), 78-88, 2021.

[54] B. Laadjal, K. Saibi, O. Melkemi and Z. Mokhtari Weighted variable Hardy associated with
operators satisfying Davies-Gaffney estimates. Submitted for publication.

[55] M.-Y. Lee, C.-C. Lin, : The Molecular Characterization of Weighted Hardy Spaces. ]J. Funct.
Anal. 188, 442-460 (2002)

[56] Y. Liang, D. Yang, and R. Jiang, Weak Musielak—Orlicz-Hardy spaces and applications,
Math. Nachr. 289 (2016), no. 5-6, 634-677.

[57] X. Liu, : Atomic characterizations of variable Hardy spaces on domains and their ap-
plications. Banach J. Math. Anal. 15, 26 (2021)

[58] J. Liu, D. Yang, and W. Yuan, Anisotropic variable Hardy-Lorentz spaces and their real inter-
polation, Journal of Mathematical Analysis and Applications, vol. 456, no. 1, pp. 356-393,
2017.

[59] J. Liu, D. Yang, and W. Yuan, Anisotropic Hardy—Lorentz spaces and their applications, Sci.
China Math. 59 (2016), no. 9, 1669-1720

[60] J. Liu, D. Yang, and W. Yuan, Littlewood-Paley characterizations of anisotropic Hardy-
Lorentz spaces, Acta Mathematica Scientia, vol. 38, no. 1, pp. 1-33, 2018.

Page-92-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[61] J. Liu and E. Weisz and D. Yang and W. Yuan, Littlewood-Paley and finite atomic charac-
terizations of anisotropic variable Hardy-Lorentz spaces and their applications. ]. Fourier Anal.
Appl., 25 (2019), 874-922.

[62] X. Liu, X. Qiu and B. Li, Molecular characterization of anisotropic variable
Hardy-Lorentz spaces, Tohoku Math. J(2)., 72 (2020), 211-233.

[63] G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55

[64] S. Martinez and N. Wolanski, A minimum problem with free boundary in Orlicz spaces,
Adv. Math. 218 (2008), 1914-1971

[65] A. McIntosh, Operators which have an H® functional calculus, in: Miniconference on
operator theory and partial differential equations (North Ryde, 1986), Centre for Math.
App. Austral. Nat. Uni. Canberra, 1986, 210 — 231.

[66] O. Melkemi, K. Saibi, and Z. Mokhtari, Weighted variable Hardy spaces on domains. Adv.
Oper. Theory 6, 56 (2021). https/ doi.org/10.1007 /s43036-021-00151-4

[67] Melkemi, O., Saibi, K. and Mokhtari, Z. Atomic characterization of the weighted Hardy-
Lorentz spaces with variable exponent. Submitted.

[68] A.Miyachi, : Maximal functions for distributions on open sets.

Hitotsubashi J. Arts Sci. 28, 45-58 (1987)
[69] A. Miyachi, : Hardy spaces over open sets. Stud. Math. 95, 205-228 (1990)

[70] S. Miiller: Hardy space methods for nonlinear partial diferential equations. Tatra Mt. Math.
Publ. 4, 159-168 1994

[71] Y. Mizuta and T. Ohno Sobolev’s inequality for Riesz potentials in Lorentz spaces of variable
exponent . Math. Soc. Japan Vol. 67, No. 2 (2015) pp. 433—452 doi: 10.2969/jmsj/ 06720433

[72] C.Muscalu, T. Tao, C. Thiele A counterexample to a multilinear endpoint question of Christ
and Kiselev. Math Res Lett, 2003, 10: 237-246

[73] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49-65
[74] E. Nakai and Y. Sawano: Hardy spaces with variable exponents and generalized Campanato

spaces. J. Funct. Anal. 262, 3665-3748 (2012)

Page-93-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[75] A. Nekvinda,: Maximal operator on variable Lebesgue spaces for almost monotone
radial exponent. Journal of mathematical analysis and applications, 337, no. 2, 1345-
-1365 (2008)

[76] R. Oberlin, A. Seeger , T. Tao, et al. A variation norm Carleson theorem. ] Eur Math Soc,
2012, 14: 421-464

[77] W. Orlicz, Uber konjugierte Expoentenfolgen, Studia Math. 3 (1931), 200-211

[78] W. Rudin, Functional analysis, second ed., International Series in Pure and Applied
Mathematics, McGraw-Hill, Inc., New York, 1991.

[79] M. Razicka, : Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes
in Mathematics, vol. 1748, Springer, Berlin (2000)

[80] K. Saibi : Intrinsic Square Function Characterizations of Variable Hardy-Lorentz
Spaces. Journal of Function Spaces. vol. 2020, Article ID 2681719, 9 pages
(2020).https:/ /doi.org/10.1155/2020/2681719

[81] Y. Sawano, : Atomic Decompositions of Hardy Spaces with Variables Exponents and its
Applications to Bounded Linear Operators. Integr. Equ. Oper. Theory 77, 123-148 (2013)

[82] S.Semmes, : A primer on Hardy spaces, and some remarks on a theorem of Evans and Miiller.
Commun. Partial Difer. Equ. 19, 277-319 (1994)

[83] G. Sinnamon. The Fourier Transform in Weighted Lorentz Spaces. Publ. Math., 2003, v. 47,
p-3-29.

[84] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals,
With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, no. 3, Prince-

ton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993

[85] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathe-

matical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[86] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I: The
theory ofHP-spaces, Acta Math. 103 (1960), 25 — 62.

[87] F. Weisz , Martingale Hardy spaces for 0 < p <1, Probab. Th. Rel. Fields 84 (1990), 361-
376. MR 91d:60107

Page-94-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[88] S. Wu, : A wavelet characterization for weighted Hardy Spaces. Rev. Mat. Iberoamericana
8(3), 329- 349 (1992)

[89] J. Xu,: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511-522
(2008)

[90] X. Yan, D. Yang, W. Yuan, C. Zhuo Variable weak Hardy spaces and their applications, ].
Funct. Anal. 271 (2016), no. 10, 2822-2887

[91] D. Yang, C. Zhuo, and W. Yuan,: Triebel-Lizorkin type spaces with variable exponents. Ba-
nach J. Math. Anal. 9, 146-202 (2015)

[92] D. Yang, J. Zhang and C. Zhuo, Variable Hardy spaces associated with operators sat-
isfying Davies-Gaffney estimates, Proc. Edinb. Math. Soc., (2) 61 (2018), no. 3, 759 —
810.https:/ /doi.org/10.1142/50219199711004221

[93] L. Yan, Classes of Hardy spaces associated with operators, duality theorem and applications,
Trans. Amer. Math. Soc., 360 (2008), pp. 4383—4408.https://doi.org/10.1090/S0002-
9947-08-04476-0

[94] D. Yang and ]. Zhang, Variable Hardy spaces associated with operators satisfying Davies-
Gaffney estimates on metric measure spaces of homogenous type, Ann. Acad. Sci. Fenn. Math,
43 (2018), no. 1, 47 — 87 https:/ /doi.org/10.5186/aasfm.2018.4304

[95] D. Yang, C. Zhuo and E. Nakai, Characterizations of variable exponent Hardy spaces via
Riesz transforms, Rev. Mat. Complut. 29 (2016), 245 — 270. https:// DOI 10.1007 /s13163-
016-0188-z

[96] D. Yang, and C. Zhuo, Molecular characterizations and dualities of variable exponent Hardy
spaces associated with operators. - Ann. Acad. Sci. Fenn. Math. 41, 2016, 357 — 398. https:/ /
DOI 10.5186/aasfm.2016.4125

[97] C.Zhang, : Global weighted estimates for the nonlinear parabolic equations with non-standard
growth. Cal. Var. Partial Differential Equations 55, Art. 109, 27 pp.(2016)

[98] ]J. Zhang, and Z. Liu,: Atomic characterizations of Hardy spaces associated to Schrodinger
type operators. Adv. Oper. Theory 4, 604-624 (2019)

Page-95-



DOCTORAL DISSERTATION OUSSAMA MELKEMI

[99] Y. Zuo, K. Saibi and Y. Jiao, Variable Hardy-Lorentz spaces associated to operators satisfying
Davies-Gaffney estimates, Banach. J. Math. anal. 13 (2019), no. 4, 769 — 797 https:/ /DOIL:
10.1215/17358787-2018-0035.

[100] C. Zhuo, Y. Sawano, D. Yang,: Hardy spaces with variable exponents on RD-spaces and
applications. Diss. Math. 520, 1-74 (2016)

[101] C. Zhuo, D. Yang, and Y. Liang, : Intrinsic square function characterizations of Hardy
spaces with variable exponents. Bull. s. Math. Sci. Soc. 39, 1541-1577 (2016)

[102] C. Zhuo, D. Yang, and W. Yuan, Interpolation between HP')(R") and L®(R") Real
method, ]. Geom. Anal. (2017), available at https://doi.org/10.1007 /s12220-017-9904-2.

Page-96-



	1 Preliminaries and basic properties
	1.1 tealVariable exponent Lebesgue space
	1.2 tealVariable weighted Lebesgue space
	1.3 tealWeighted Lorentz space with variable exponents

	2 Weighted variable Hardy spaces on domains
	2.1 tealPreparation and helpful results
	2.2 tealAtomic decomposition
	2.3 tealDuality result

	3 Weighted variable Hardy spaces associated with operators
	3.1 tealPreparation and helpful results
	3.2 tealWeighted variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates
	3.3 teal Dual space

	4 Weighted Hardy-Lorentz spaces with variable exponents
	4.1 tealPreparation and helpful results
	4.2 tealThe Hardy-Littlewood maximal Operator on the variable weighted Lorentz spaces
	4.3 tealAtomic decomposition

	Bibliography

