
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET 

POPULAIRE 

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

Université de Batna 2 

Faculté des Mathématiques et de l’Informatique 

Département d’Informatique 

THESE 

En vue de l’obtention du diplôme de 

Doctorat LMD en Informatique 

Spécialité : Systèmes Informatiques (SI) 

Présentée par 

Salim KADRI 

Contrôle de qualité des architectures logicielles 

à base de composants : Cas d'étude 

 

Soutenue publiquement le :  03/07/2022 

Jury : 

 Pr. Saber BENHARZALLAH            Professeur      Université de Batna 2     Président 

 Pr. Sofiane AOUAG                         Professeur       Université de Batna 2     Rapporteur 

 Pr. Laid KAHLOUL             Professeur       Université de Biskra      Examinateur 

 Pr. Hammadi BENNOUI            Professeur       Université de Biskra      Examinateur 

 Pr. Rachid SEGHIR                        Professeur       Université de Batna 2      Examinateur 

 Pr. Djalal HEDJAZI              Professeur       Université de Batna 2     Invité  



PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA 

Ministry of Higher Education and Scientific Research 

University of Batna 2 

Faculty of Mathematics and Computer Science 

Computer Science Department 

DISSERTATION 

In order to obtain the diploma of 

LMD Ph.D. in Computer Science 

Specialty: Informatics Systems (IS) 

Presented by 

Salim KADRI 

Quality control of component-based software 

architectures: Case study 

 

Publicly defended on July 03, 2022 

Jury : 

 Pr. Saber BENHARZALLAH           Professor       Université de Batna 2        President 

 Pr. Sofiane AOUAG                         Professor       Université de Batna 2       Reporter 

 Pr. Laid KAHLOUL             Professor       Université de Biskra      Examiner 

 Pr. Hammadi BENNOUI            Professor       Université de Biskra      Examiner 

 Pr. Rachid SEGHIR                        Professor       Université de Batna 2      Examiner 

 Pr. Djalal HEDJAZI              Professor       Université de Batna 2      Guest   



 

 

 

  



Abstract 
For many decades, software quality has been considered the key ingredient for business success 

for organizations. In this context, software architecture has been held as the appropriate level 

to deal with quality requirements (quality attributes). Various methods have been proposed to 

evaluate software architecture; however, according to the literature study we had performed, 

we found that these methods suffer from many drawbacks and shortcomings. In this 

dissertation, we have attempted to overcome these shortcomings by proposing a new evaluation 

methodology within a multi-service evaluation framework called MS-QuAAF (Multi-Service 

- Quantitative Architecture Assessment Framework). The latter consists of two primary 

modules. The first module proposes a new concept called facet projection to reduce the 

complexity of the target architectures by downsizing the relevant meta-models. The second 

module provides a set of generic metrics applied to the target architectures through three 

assessment services. The first service allows assessing the defectiveness of architecture at the 

design stage. The second service is used to assess architecture at the implementation stage 

through a newly proposed method called the responsibility decomposition analysis. The third 

service is dedicated to finalizing the evaluation effort and generating the final assessment report.  

The experimental evaluation that we had conducted through two cases study allowed us to 

answer the confronted research questions, thus many findings and contributions have been 

achieved. Contrarily to most methods, MS-QuAAF can provide a continuous evaluation that 

covers two main development stages, which are the design and implementation stages. It allows 

through its generic metrics the evaluation of any inputted quality attribute and the detection of 

architecture deviations. Furthermore, the framework is capable of steering architects during the 

development process to detect irregularities and hence improve architecture quality. 

Keywords. Software Quality; Software Architecture; Component-based Software; Quality 

Attributes; Non-Functional Requirements; Quality evaluation; Quality metrics; Architecture 

Defects.  

  



Résumé 

Depuis plusieurs décennies, la qualité des logiciels a été considérée comme le constituant clé 

du succès commercial des organisations. Les architectures logicielles ont été jugées comme le 

niveau approprié pour traiter les exigences de qualité des utilisateurs (attributs de qualité). Une 

multitude de méthodes a été proposée pour évaluer l'architecture logicielle. Cependant, selon 

l'étude de la littérature que nous avions effectuée, nous avons constaté que ces méthodes 

souffrent de nombreuse lacunes. Dans cette thèse, notre objectif est de surmonter ces lacunes 

en proposant une nouvelle méthodologie d'évaluation à l’aide d’un framework d'évaluation 

multiservice appelé MS-QuAAF. Ce framework se compose de deux modules principaux. Le 

premier module propose un nouveau concept appelé projection de facettes pour réduire la 

complexité d’une architecture cible en réduisant la taille de ses méta-modèles. Le deuxième 

module fournit un ensemble de métriques génériques appliquées aux architectures à travers trois 

services d'évaluation. Le premier service permet d'évaluer la défectuosité de l'architecture 

durant l’étape de conception. Le deuxième service est utilisé pour évaluer l'architecture à l’étape 

d’implémentation grâce à une méthode proposée appelée analyse de décomposition des 

responsabilités. Le troisième service est dédié à la finalisation de l'évaluation et à la production 

du rapport final. 

L'évaluation expérimentale que nous avions conduit à travers deux cas d’études nous a permis 

de répondre aux questions de recherche confrontées, ainsi de nombreuses conclusions et 

contributions ont été obtenues. Contrairement à la plupart des méthodes proposées, MS-QuAAF 

peut fournir une évaluation continue qui couvre deux étapes principales de développement : 

l’étape de conception et l’étape d’implémentation. Le framework permet à travers ses métriques 

génériques, l'évaluation de tous les attributs de qualité et la détection des déviations 

d’architecture. De plus, il est capable de guider les architectes pendant le processus de 

développement pour détecter les irrégularités et améliorer la qualité de l'architecture. 

Mots clés. Qualité du logiciel ; Architecture logicielle; Logiciel à base de composants ; 

Attributs de qualité ; Exigences non fonctionnelles; Évaluation de la qualité ; Métriques de 

qualité ; Défauts architecturaux. 

 

 

 

 

 



 صـــملخ

السياق،  لسنوات عديدة، اعتبرت جودة البرمجيات العنصر الرئيسي لنجاح للمؤسسات في أعمالها. في هذا

دة الطلب من تعتبر بنية هاته البرمجيات على أنها المستوى المناسب للتعامل مع متطلبات الجودة. مع زيا

حثون في هذا مج. لقد أدرك الباطرف المستخدمين على تلبية هذه المتطلبات، يزداد حجم وتعقيد بنية البرا

رق لتقييم بنية من الطكبير المجال أن تحقيق سمات الجودة مقيد ببنية برمجيات هذه الأنظمة. تم اقتراح عدد 

اها، وجدنا أن البرامج، خاصة في المراحل الأولى من عملية التطوير. ومع ذلك، ووفقاً للدراسة التي أجرين

 من العيوب.هذه الأساليب تعاني من العديد 

ضمن إطار  ، حاولنا التغلب على النقائص المسجلة من خلال اقتراح منهجية تقييم جديدةالأطروحةفي هذه 

الأولى  تقترح الوحدة .يتكون هذا الأخير من وحدتين أساسيتين MS-QuAAF. تقييم متعدد الخدمات يسمى

ة فتوفر مجموعة أما الوحدة الثاني  .وصفيةطريقة جديدة لتقليل تعقيد البنى من خلال تقليص حجم نماذجها ال

تقييم عيوب  تتيح الخدمة الأولى .من المقاييس العامة والتي تطبق على البنى من خلال ثلاث خدمات تقييم

دمة الثالثة مخصصة الخ يتم استخدام الخدمة الثانية لتقييم البنى في مرحلة التنفيذ. .البنى في مرحلة التصميم

 .التقييم النهائيلإعداد تقرير 

لتي تم طرحها، االتقييم التجريبي الذي أجريناه من خلال دراسة حالتين سمح لنا بالإجابة على أسئلة البحث 

-MS على عكس معظم الطرق الأخرى، يمكن أن يوفر .وبذلك تم تحقيق العديد من النتائج والمساهمات

QuAAF  لتنفيذل التطوير، وهما مراحل التصميم واتقييمًا مستمرًا يغطي مرحلتين رئيسيتين من مراح.  

فهو يشتمل  علاوة على ذلك، كما يسمح أيضا بتقييم كل سمات الجودة من خلال مقاييسه العامة المقترحة. 

لتقييم، إلا على الرغم من مصادفتنا بعض المشكلات والقيود أثناء ا .على ميزة تسمح باكتشاف تآكل البنى

ة التطوير قادر على توجيه المهندسين أثناء عملي الأطروحةالمقترح في هذه  أننا نعتقد أن إطار العمل

 .لاكتشاف المخالفات والنقائص وتحسين جودة البنية من خلال خدماته

 لجودة؛علامات ا البرامج القائمة على المكونات؛ البرمجيات؛ بنية جودة البرمجيات؛ .كلمات مفتاحية

 .البنىعيوب  مقاييس الجودة؛ الجودة؛تقييم  ؛وظيفيةمتطلبات غير 
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Chapter 1 

Introduction 

 
In this introductory chapter, we will briefly present the research context of this dissertation, the 

motivation for architecture evaluation, research aims and dissertation proposal, contributions, 

and the organization of the dissertation.  
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1.1 Context  

1.1.1 Component-based software engineering 

In the late 1990s, component-based software engineering (CBSD) has emerged as a new 

approach and trend to develop software systems based on software components reuse 

(Sommerville, 2011). The main motivation and rationale behind this development approach is 

the failure of the Object-Oriented paradigm to meet reusability expectations. In this context, 

distributing objects as reusable components is practically unrealizable because classes are too 

detailed, specific, and require a thorough understanding of their source code. Contrastingly, 

components are deployable artifacts of a higher abstraction level, specified by opened 

interfaces, and the implementation is hidden from other components. Therefore, component-

based software engineering aims at assembling large software systems from new and pre-

existing components through well-defined interfaces (Gaedke & Rehse, 2000). The embraced 

philosophy is to reuse pre-constructed software components instead of developing them from 

scratch. Hence, a component is developed only once and subsequently reused in various 

applications rather than reconstructing it every time. Accordingly, CBSD is characterized as a 

sub-discipline of software engineering particularized by reusability, composability, 

maintainability, adaptability, shorter development cycle, and improved quality properties. 

The primary goals of CBSD are to reduce the development effort and cost, shorten the software 

development cycle by deploying and delivering software applications more quickly, increase 

reliability, and facilitate maintenance by replacing, updating, and upgrading the concerned 

components without affecting the whole system. However, certain issues have been addressed 
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during building component-based systems, such as the trustworthiness of the deployed 

components, integration and interaction issues, and testing issues. These concerns can affect 

the quality of the developed components, and thus the overall system quality. 

1.1.2 Software architecture 

Software architecture has emerged as a mature and central sub-discipline of software 

engineering after several years of the software crisis in the mid-1970s (Kruchten et al., 2009).  

It can be defined as a set of significant decisions about the organization of a software system. 

These decisions include the selection of structural elements and their interfaces, the 

collaboration among those elements (the behavior), the composition of these structural elements 

into large subsystems, and the architectural styles that guide this organization (Bass et al., 2012; 

Kruchten et al., 2009; Mary & David, 1996). The architecture is generally constructed based on 

architectural decisions made in the early stages of the development process to achieve 

functional and non-functional requirements (called also quality attributes) (Falessi et al., 2011). 

However, the ability of a software system to fulfill its assigned functional responsibilities does 

not imply that the predefined quality attributes (performance, security, extensibility, etc.) are 

met. For instance, a system can deliver efficiently correct results but it does not satisfy the 

security requirement by letting confidential data be exposed to malicious users, or it takes too 

long to deliver these results. The solution to these quality concerns is purely architectural. In 

this context, architects should take the right architectural decisions to promote each one of the  

stakeholders’ (clients, developers, etc.) quality attributes. The more demanding the stakeholders 

are, the more complex and critical the architecture is. As a result, delivering software of high 

quality depends on implementing faithfully the architecture designed based on the architectural 

decisions taken earlier. Contrarily, violating these decisions by designers and developers 

throughout the development process may influence negatively the quality of the software and 

jeopardize its business goals.  

As the complexity of software architecture increases, the effort of architecture analysis and 

quality assessment increases as well. Consequently, architecture models are used as an 

abstraction of a software system to reduce its complexity by representing only the aspects of 

interest to the task at hand. These models are expressed using architectural modeling notations 

(formal, semi-formal, etc.) to capture the architectural decisions taken to build an architecture. 

In this Dissertation, we focus only on the decisions made to satisfy stakeholders’ quality 

attributes. We have proposed a new concept called architectural facets to reduce the complexity 

of architecture. Each facet is mapped to one quality attribute by encompassing only the 

decisions made to promote this attribute (e.g., performance). Subsequently, these facets are 

analyzed and assessed one by one to evaluate the overall architecture.  

1.1.3 Software quality 

“What is software quality?” is a kind of question that generates different answers depending on 

whom we asking (consumers or producers of the system), type of software system, business 
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and market environment, and so forth. From the point of view of producers, a product is judged 

of high quality if it conforms to the specified requirements. On the other hand, a customer’s 

viewpoint is when the product meets his/her needs and expectations. In this connection, the 

pioneers of quality are divided into two major camps, the Conformance to Requirements camp 

and the Customer Satisfaction camp. However, they share two main similarities. The former is 

that quality is the responsibility of the senior management. The latter is that individuals 

involved in the production process must get training and continuous education to improve 

quality.  

In this Dissertation, our viewpoint is tight-coupled with the Non-Functional Requirements 

(NFRs), which are characteristics of a software system called often quality attributes (QAs). 

These attributes represent measurable (or testable) properties of a software system used to 

designate its goodness and how well it satisfies the needs of its stakeholders (Bass et al., 2012). 

Contrarily to functional requirements that refer to the purpose of the system or the intended 

functions supposed to be provided by the system, quality attributes permit to determine how the 

system is supposed to be. For instance, the system should be maintainable, secure, and 

available. Therefore, maintainability, security, and availability represent the system’s quality 

attributes.  

Accordingly, our definition to software quality is the degree of achievement (satisfaction) of 

the competing quality attributes desired by all stakeholders and not just customers. For instance, 

architects and developers are interested in portability and modifiability, whereas customers are 

interested in efficiency and usability. However, the achievement of quality attributes is 

correlated with the conformance to the quality requirements specified as architectural decisions 

at the early stages of the development process.  

1.2 Motivation for architecture evaluation 

Nowadays, the software marketplace is highly competitive, which means that delivering high-

quality software is not only an obligatory but also a differentiator factor for companies. Critical 

sectors that depend heavily on software, such as homeland security and air control traffic expect 

to deploy error-free systems that are supposed to fulfill their quality requirement flawlessly. 

Therefore, the slight difference between the quality of a software product and its competitors is 

considered decisive in this highly demanding market. Furthermore,  poor software quality is 

responsible for severe business and safety disasters (Carrozza et al., 2018). Companies must 

boost up software quality perception and integrate it profoundly into their development process. 

They need tools and frameworks to support and perform architecture assessment even if it cost 

them the changing of their cultural, technical, and organizational reasoning. The lack of 

knowledge about software quality inside an organization is one of the main reasons that cause 

software defects. Therefore, quality must be perceived by the top management as well as the 

staff involved in the development of software products.  
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Since it has emerged in the last decade of the 20th century as a sub-discipline of software 

engineering, software architecture has been considered as the appropriate level to deal with 

quality attributes (Dobrica & Niemela, 2002). Hence, it has attracted the attention of 

researchers, as well as practitioners since the size and complexity of software systems have 

been augmented tremendously along with the increased demand of stakeholders’ to satisfy their 

quality requirements. They have realized (researcher and practitioners) that high-level design 

description is the key to understanding and managing complex software systems. Moreover, 

they recognized that the achievement of quality attributes is constrained by the SA of these 

systems and the architectural decisions made at this level (Babar et al., 2004).  

1.3 The problematic of architecture evaluation 

Undoubtedly, SA plays a major role in the achievement of the desired quality attributes; 

therefore, analyzing and assessing SA against those attributes of concern is very important as 

early as possible. In this context, the main goal of SA evaluation is to detect architectural defects 

and liabilities that may degrade the quality of architecture, and thus determining the extent to 

which architectural decisions meet the quality requirements. There were a myriad of evaluation 

methods proposed to assess software architecture. These methods can be divided into two basic 

classes, a qualitative evaluation, and a quantitative evaluation (Abowd et al., 1997; Dobrica & 

Niemela, 2002). The former uses questioning techniques to generate qualitative questions to be 

asked of an architecture. These techniques include questionnaires, checklists, and scenarios. 

The latter suggests quantitative measurement to evaluate an architecture using, for example, 

metrics, simulations, and experimentations. Inside each one of these evaluation classes, 

methods can be categorized according to many criteria, such as the target evaluation stage and 

the number of supported quality attributes.  

Indeed qualitative evaluation is thought to be applicable to assess any given architecture quality 

(Abowd et al., 1997; Bass et al., 2012); however,  it lacks statistical significance. Questioning 

techniques like questionnaires and checklists are mostly based on the evaluators’ perspective 

and subjectivity, which may decrease the evaluation accuracy and objectivity. Additionally, the 

results of scenario-based analysis depend on the selection of the scenarios and their relevance 

for identifying architecture’s weaknesses. In this context, there is no fixed number of scenarios 

to guarantee that the evaluation analysis is meaningful (Dobrica & Niemela, 2002). On the other 

hand, the essence of measuring techniques is to deliver assessors with quantitative results and 

views that can reflect the state of the architecture quality more accurately. However, this type 

of evaluation is addressed to answer specific questions, and thus evaluating specific quality 

attributes. Additionally, defining metrics for some attributes, such as security, and usability 

have proven difficult to develop (Bachmann et al., 2005). Predominantly, the literature study 

that we had performed to analyze the proposed methods allowed us to discover the following 

drawbacks: 
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- The evaluation is performed, either at the design time or implementation stage.  

Therefore, there is no such feature as continuous evaluation.  

- There is no conformance analysis between the prescribed architecture (the realized one) 

and the descriptive one (the intended one). As a result, architecture deviation analysis 

is not included within these methods.  

- Most methods support the evaluation of one or two quality attributes, especially 

quantitative methods. Very few methods that can support the evaluation of a large set 

of quality attributes. 

- Qualitative methods lack statistical significance.  

- Metric-based methods assess only some internal characteristics (especially complexity) 

correlated with a small set of quality attributes (maintainability and performance).  

- Lack of tool support. 

1.4 Dissertation proposal and contributions  

In this Dissertation, our main research aim is to propose an evaluation methodology that 

attempts to overcome the above-stated shortcomings. Accordingly, we have proposed a new 

evaluation framework called MS-QuAAF (Multi-Service - Quantitative Architecture 

Assessment Framework), a generic metric-based framework for evaluating software 

architecture continuously at the design and implementation stages (Kadri et al., 2021b).  The 

framework defines a suite of generic evaluation metrics to help evaluators in: 

 Assessing any quality attribute inputted into the framework.  

 Assessing architecture throughout two main stages of the development process (design 

and implementation). 

 Estimating architecture defectiveness and detecting potential deviations. 

 Evaluating the achievement of the NFR responsibilities assigned to promote quality 

attributes.  

 Making decisions about the architecture (e.g., validating or disapproving the design). 

MS-QuAAF performs architecture evaluation through two main modules. The first module 

implements the concept of facet projection to extract from architecture meta-models only 

information of interest to the evaluation task. The second module proposes seven metrics 

applied to the target architectures through three assessment services. The framework allows 

quality evaluation and monitoring throughout two main stages of the development process, 

more specifically, after the accomplishment of the design and implementation stages. The 

former evaluation allows identifying architecture defects, which helps architects to fix design 

flaws according to the early architecture specification. The latter evaluation assesses the 
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fulfillment of the NFR responsibilities prescribed to promote stakeholders’ quality attributes. 

As a result, incorporating these two types of assessment in the same framework allows a) 

continuous architecture evaluation and monitoring, b) identifying whether a poor architecture 

quality is caused by rules infringement at the design stage, implementation stage, or both of 

them, and c) improving the quality by adjusting the architecture in accordance with the 

architecture specification. Additionally, the evaluation is performed quantitatively through a set 

of metrics to provide architects and evaluators with quantitative views that reflect the state of 

architecture quality more accurately. 

During the development of MS-QuAAF, we have confronted with the following research 

questions: 

 RQ1: Is the proposed framework capable of calculating the defectiveness of the 

designed architecture? 

 RQ2: Is the proposed framework capable of estimating the satisfaction of NFR 

responsibilities of the implemented architecture? 

 RQ3: Are the proposed metrics capable of deducing architecture deviations?  

 RQ4: Does the proposed framework help in enhancing architecture quality?  

After we had conducted a case study to answer these questions, we succeeded to achieve the 

following contributions: 

- A new concept called facet projection is proposed to reduce the complexity of 

architecture in order to facilitate its assessment and monitoring. The latter consists of 

extracting from large meta-models only information of interest to the evaluation task at 

hand.  

- The evaluation proposed by the framework is independent of quality attributes and their 

relevant quality models, which makes it a generic framework. The independency is 

promoted by the proposed generic metrics that direct the ability of the framework to 

evaluate any inputted quality attribute. 

- The framework promotes continuous evaluation by covering two crucial stages of the 

development process, which are the design and the implementation stages. Additionally, 

the evaluation can be performed after major maintenance activities.   

- A new concept called NFR responsibilities is proposed within the framework to evaluate 

the implemented architecture. For each quality attribute, NFR responsibilities are 

decomposed iteratively to construct a weighted analysis tree used to assess the 

fulfillment of these responsibilities.  

1.5 Dissertation outline 

The dissertation is organized as follows. 
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 Chapter 1 introduces the context of this dissertation, which is the component-based 

software architecture quality control and monitoring. Moreover, we have introduced the 

motivation for architecture evaluation, problematic of architecture evaluation, the 

dissertation proposal, and the research question. 

 Chapter 2 depicts two sub-disciplines of software engineering and the relationship 

between them, which are component-based software engineering and software 

architecture. Architecture modeling, architecture description languages, and 

architecture analysis are also depicted in this chapter.  

 Chapter 3 describes the concept of quality according to the most-known quality 

management pioneers, software quality management techniques, software defects and 

failure, and the most-known quality models proposed to provide standardized tools to 

measure software quality.  

 Chapter 4 constitutes a state-of-the-art study related to the topic of this dissertation. 

We have presented a large set of evaluation techniques proposed to evaluate software 

architecture. The analysis of these methods and the comparison between them gave us 

a clear view of the domain of software architecture evaluation, although its diversity 

and complexity. Accordingly, we extracted from these evaluation techniques the main 

strengths and weaknesses to develop a new framework that encompasses new features 

within a new generic evaluation perspective.   

 Chapter 5 presents firstly the rationale behind proposing the evaluation methodology 

within MS-QuAAF. Second, the framework’s methodology and its foundation are 

presented in a nutshell. Third, the concept of architecture facets, model projection, and 

facet projection defined within the facet projector module are depicted. 

 Chapter 6 details the evaluation effort performed through the quality evaluator module. 

The latter consists of three evaluation services each of which defines a set of generic 

metrics calculated mathematically through sequences of equations.  

 Chapter 7 provides a concrete implementation of each evaluation service through an 

experimental evaluation, in which two case studies will be treated and discussed. The 

implementation will illustrate how to use the proposed metrics to assess software 

architecture during the development process. Finally, the research questions are 

answered in this chapter.  

 Chapter 8 concludes this dissertation by summarizing the key finding of this research 

by answering the research questions. Additionally, it discusses the contributions of the 

proposed approach, its limitation and weaknesses, and perspectives and future work.



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Chapter 2 

Component-based software engineering 

and software architecture 

 
In this chapter, pertinent concepts and generalities from two related and prominent sub-

disciplines of software engineering will be addressed before tackling the main topic of this 

dissertation, which is controlling architecture quality and evolution. These concepts may be 

used implicitly and explicitly throughout the quality control process. The first sub-discipline is 

called component-based software engineering (CBSE). The latter is the software architecture 

sub-discipline. 

Accordingly, this chapter is organized as follows. The first section is an introduction to CBSE, 

which is a development model and an approach to building software architecture from pre-

existed components in order to improve quality, decreasing the development time, and 

facilitating maintenance activities. The second section depicts the main characteristics of CBSE 

that may incite software architects to adopt this development model. The third section depicts 

traditional and advanced software engineering paradigms including CBSE. The fourth section 

illustrates software architecture and its fundamental constituents, which are components and 

connectors. Additionally, we will present architecture modeling and its notations, and 

Architecture Description Languages (ADL) used to specify software architectures. The fifth 

section depicts architecture analysis and its essential techniques, which considered central for 

controlling software architecture quality during its life cycle.    
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2.5 Architecture analysis ............................................................................................................. 25 

2.6 Conclusion ............................................................................................................................. 28 

 

2.1 Component-based software engineering  

Component-based software engineering has emerged in the late 1990s as an approach to 

software systems development based on software components reuse (Sommerville, 2011). The 

failure of object-oriented development (OOD) to meet the reusability expectations is the main 
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motivation for creating CBSE. In this context, classes are too specific, detailed, and require in-

depth knowledge of source code to use them, which made distributing objects as reusable 

components practically infeasible. As a result, OOD is used to construct monolithic 

applications, in which objects are almost never sold, bought, or deployed (C. Szyperski et al., 

2002). On the other hand, components are deployable artifacts of higher abstraction level 

specified by interfaces, generally larger than objects, and all implementation details are hidden 

from other components. According to (Gaedke & Rehse, 2000), “CBSE aims at assembling 

large software systems from previously developed components (which in turn can be 

constructed from other components)”. More specifically, applications are constructed by 

composing reusable new and pre-existing components through well-defined opened interfaces. 

Consequently, Many adopters of OOD moved to the camp of CBSD (Component-based 

software development) to improve reusability and enhance the overall architecture quality 

(Pree, 1997).  

The philosophy of CBSE is to reuse pre-constructed software components instead of developing 

them from scratch. The fundamental idea is to develop a component only once and reuse it in 

various applications rather than reconstruct it every time (Tiwari & Kumar, 2020). The CBSE 

process consists of defining, implementing, and integrating (composing) independent loosely 

coupled components into larger and complex systems. This indicates that CBSD is dedicated to 

developing specific as well as generalized components by following four processes, which are 

developing new components, selecting pre-constructed components from the repository, 

assembling components, and control and management (figure 2.1). These processes can be 

performed concurrently, in which feedbacks methods must be defined to address and fix the 

emerged problems with each process. Similarly, (Jacobson et al., 1997) defined another four 

parallel processes paradigm that consists of creating, managing, supporting, and reusing.  The 

creation process consists of developing applications by reusing and assembling components. 

The management process involves managing the selection of components according to 

requirements and costs. The supporting process carries out maintenance activities of the 

developed applications and delivers existing components from repositories. The reusing process 

consists of collecting and analyzing requirements in order to select the fitting components.  

The main objectives of CBSD are to shorten the software development life cycle by delivering 

and deploying software applications more quickly, increasing reliability, and reducing the 

development effort and cost by integrating commercial off-the-shelf components (COTS) and 

newly developed components to construct large and complex systems. Heineman and Council 

summarize three main goals of CBSE (Heineman & Councill, 2001): 

 Supporting the development of components as reusable entities. In this context, the 

benefits of reusing are productivity gains, quality gains (software systems are more 

dependable), and time-to-market gains. 
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 Supporting the development of software systems as assemblies of components through 

defining, implementing, and composing new and third-party components. 

 Facilitating maintenance activities by replacing, updating, upgrading, and customizing 

the concerned components.   

Although the benefits yielded by adopting CBSD, several issues should be addressed before 

building component-based applications: 

 Trustworthiness issues: components come from multiple and independent sources 

before they are integrated into larger systems. The absence of countermeasures can 

conduct to use malicious or not well-tested components within these systems, which 

may break down the whole system. Therefore, the solidity of a system is correlated 

directly with the reliability of its components.  

 Reusability issues: improved reusability implies adding complexity to the component 

since improving generality requires adding more generic interfaces and operations, 

which may decrease understandability and usability (Sommerville, 2011). 

 Integration and interaction issues: components with different complexity levels, various 

configurations, and incompatible interfaces may affect the interaction between 

components, the integration process, and the overall quality of the component-based 

system. Additionally, as the number of components increases, the complexity and the 

number of interactions between components increase as well. 

 Testing issues: testing difficulties at the unit level, especially with black-box 

components where the source code is unavailable are addressed in the literature (Tiwari 

& Kumar, 2020). Besides, integration testing of components imported from different 

repositories is more difficult than traditional software integration testing (C. Szyperski 

et al., 2002).  

 Quality issues: the above-mentioned issues can affect negatively the quality of the 

developed components, and thus the overall system quality.  

 

Figure 2.1. Concurrent CBSD process (Tiwari & Kumar, 2020) 
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2.2 Characteristics of CBSE 

CBSE is a sub-discipline of software engineering characterized by the following main 

properties:  

 Reusability: reusability is the pivotal and the backbone property of CBSE. Krueger 

defines it as “the process of creating software systems from existing software rather than 

building software systems from scratch” (Krueger, 1992). Johnson and Harris define it 

as “the process of integrating predefined specifications, design architectures, tested 

code, or test plans with the proposed software” (Johnson & Harris, 1991). 

 Composability: composability is one of the primary properties of CBSE, in which 

components are reusable and composable software entities. Therefore, an application is 

constructed by composing different independent components.  For a component to be 

composable, it should be designed in such a way that all external interactions should be 

performed through publicly well-defined interfaces.  

 Maintainability: “maintainability represents the degree of effectiveness and efficiency 

with which a product or system can be modified to improve it, correct it or adapt it to 

changes in environment, and in requirements” (ISO 25010, n.d.). In the context of 

CBSE, maintenance is much easier than monolithic applications because systems are 

made of reusable and composable components. In this regard,  components can be 

added, updated, removed, or replaced according to the software requirements (Tiwari & 

Kumar, 2020). 

 Shorter development cycle: the CBSD paradigm consists of decomposing complex 

applications into smaller and manageable modules. Therefore, instead of starting the 

development cycle by coding modules from the first line of code, components are 

selected, imported, and composed according to the requirements of modules under 

development. This process can decrease the development time significantly. In addition, 

modules can be developed concurrently, which makes the development cycle shorter.  

 Improved quality: generally, the CBSD paradigm permits the integration of pre-tested 

components at least at the unit level. Subsequently, other tests are performed, such as 

integration and system tests. These tests contribute to improving quality and 

constructing more robust and consistent application. Additionally, CBSD is intended to 

promote maintainability, reusability, flexibility, and extendibility.  

 Adaptability: “Adaptability is the degree to which a product or system can effectively 

and efficiently be adapted for different or evolving hardware, software or other 

operational or usage environments” (ISO 25010, n.d.). A software system with high 

adaptability is easy to adapt to the changes that occur to its architecture and 

environment. In traditional software development, components are designed for specific 

purposes, which creates tight-coupled relationships with other components. As a result, 

updating a component may propagate changes to other components, which complicates 
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the updating process and decrease the adaptability of the overall system. Contrarily, in 

CBSD this process is more flexible, in which components can be added, updated, or 

replaced easily without affecting or modifying other components. 

2.3 Component-based software life cycle 

A software development life cycle (SDLC) or a software process is a methodology or a detailed 

plan that defines a set of related activities that lead to producing a software system. These 

activities include designing, developing, testing, and maintaining a software system before its 

disposal. The development process can start from scratch or by reusing and integrating pre-

constructed components. Many development paradigms are proposed to makes the 

development process more disciplined, systematic, and easy to understand and follow by 

stakeholders. Despite the adopted paradigm, quality assessment and control can be performed 

in conjunction with any paradigm throughout its development stages (early, medium, and late 

assessment). However, the application and integration of the evaluation process may differ from 

one paradigm to another. In this section, we will outline both traditional and advanced 

paradigms before presenting the component-based software paradigm. Furthermore, we will 

discuss briefly the possible stages in which we can integrate MS-QuAAF into these paradigms.  

2.3.1 Traditional software engineering paradigms 

Traditional software engineering paradigms can be categorized into three broad categories 

(Tiwari & Kumar, 2020): classical paradigms, incremental paradigms, and evolutionary 

paradigms. In this sub-section, we present one paradigm for each category. 

2.3.1.1 The waterfall paradigm 

The basic waterfall paradigm is an organized, systematic, and sequential development process, 

in which the succeeding activity should not start until the previous one has been accomplished. 

As a result, the basic waterfall model cannot adapt to enhancements and requirements change 

during development.  For these reasons, Winston Royce made some changes that allow 

feedback from one activity to another, which made the development process not simply linear 

(Royce, 1987). Therefore, the documents produced at each phase are modified to reflect the 

change made, which permit to fix problems that emerged at each development phase (figure 

2.2). The main stages of the waterfall paradigm can be described as follows (Sommerville, 

2011). 
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- Requirement analysis and specification: this activity describes what a system is 

supposed to do by specifying its functionalities and constraints on its operations 

according to the system’s stakeholders.  

- Software design: the overall design followed by detailed design are performed to 

construct the software architecture that describes system abstractions and the 

relationships among them. At this stage, quality assessment consists of evaluating the 

designed architecture and its conformance to the specified requirements. 

- Implementations and unit testing: the established design is implemented as a set of 

executable program units. Subsequently, unit testing is performed to check that each 

unit meets its specification. 

- Integration and system testing: the developed units are integrated to construct the 

complete system, which is verified and validated to ensure the satisfaction of 

stakeholders’ requirements. Normally, the accomplishment of this phase means that the 

software is ready to be delivered to the end-user.  

- Operation and maintenance: in this phase, the system is already operational. 

Maintenance activities involve correcting bugs that are not discovered in earlier phases, 

improving implementation, enhancing the system, and supporting new requirements. 

Integrating quality assessment into the waterfall paradigm can be performed possibly at four 

main stages: design, implementation, integration, and maintenance. At the design stage, the 

early assessment consists of evaluating the designed architecture and its conformance to 

specifications. At the implementation and integration stages, the architecture is evaluated 

against the models defined at the design stage. At the maintenance stage, the architecture must 

be evaluated at each time new features and functionalities are added, updated, or removed.  

Figure 2.2. The Waterfall model 
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The waterfall paradigm is an organized, manageable, and easy to implement process as long as 

the requirements are very clear from the beginning and they are not expected to change during 

the development process. However, it is very rare to start a project where all requirements are 

available at the earliest development stages. Additionally, its sequential nature means that 

concurrent phases are not supported, which implies that a development team cannot start a 

phase until the previous one has been finished (blocking states (Bradac et al., 1994)).  

2.3.1.2 The incremental development paradigm 

The incremental development model follows the sequential paradigm of the waterfall model in 

an iterative manner, in which the system is built incrementally. Each iteration produces a system 

release (increment) by passing through requirements specification, designing, coding, and 

testing activities. The deliverable of the first increment represents the core product where basic 

and highly prioritized requirements are tackled. In the next increment, more requirements and 

functionalities are added to the previous release. This process is repeated iteratively until all 

requirements of the desired system have been satisfied.  

In our vision, assessing a software system that adopts the incremental development model must 

be performed at the increment level. At each increment, the designed and implemented 

architecture should be assessed before passing to the next increment. Consequently, the quality 

of the software can be controlled and improved throughout the development process 

incrementally. 

The incremental paradigm has many advantages comparing to the classical waterfall paradigm. 

First, the development process can start with the most prioritized requirements without the need 

to collect all requirements in advance, which allows producing operational software with basic 

features more rapidly. Second, since the size of each iteration deliverable is small, the cost of 

requirement changing is reduced and the testing and debugging are much easier. Third, this 

paradigm is more flexible since new customer requirements can be added easily in the 

subsequent releases.  

Although these advantages, many problems may emerge by adopting this paradigm. First, 

incorporating or changing requirements each time may lead to new and unforeseen errors, 

which can be costly in terms of time and money (Tiwari & Kumar, 2020). Second, adding 

increments may cause quality degradation and architecture deviation from the designed one 

unless money and time are spent on architecture improvement (Sommerville, 2011).  

2.3.1.3 The spiral development paradigm 

The spiral paradigm is a risk-driven development process and one of the most important SDLC. 

The development process is represented as a spiral rather than a linear set of activities with 

backtracking and feedbacks across these activities. Each loop of the spiral represents a 

development phase. More specifically, a loop is divided into four quadrants.  The first quadrant 

specifies the objectives of the current phase, defines solutions, and identify risks. The second 
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quadrant concerns risk assessment and reduction. The third quadrant tackles development, 

construction, and verification activities. The last quadrant involves planning activities for the 

next loop. 

The spiral paradigm is an interactive process, in which clients are involved in each development 

phase. It provides flexibility when changing/adding new requirements by accommodating them 

in the next loop. Additionally, the spiral model is especially used for risk recognition, 

assessment, and diminution at each development cycle. For this reason, the spiral model is the 

only one that integrate automatically the quality assessment in its development paradigm.  

Although these advantages, the spiral paradigm is complex and not suitable for small projects 

because it is costly in terms of money and necessitates more time to plan.  Besides, it requires 

risk experts to manage and mitigate risks, otherwise, risks are not assessed and managed 

properly and the project may go to fail.  

2.3.2 Advanced software engineering paradigms 

Over the years, numerous researchers, experts, and enterprises are involved in improving the 

software development process to overcome traditional paradigms’ liabilities. This led to 

develop and evolve a set of advanced software engineering paradigms, such as clean room, 

agile, and CBSD. These paradigms changed imperatively the way of evaluating software 

architecture. For Example, some paradigms may allow promoting continual architecture 

evaluation; others may allow reducing the evaluation effort.    

2.3.2.1 The Agile development paradigm 

The Agile SDLC is a combination of incremental and iterative development processes with a 

focus on customer satisfaction. It includes a set of guidelines and practices performed by 

collaboration between self-organizing teams and their customers. The Agile paradigm breaks 

the development process into small increments, in which each iteration lasts from one week to 

three or four weeks. Each iteration includes a set of activities performed simultaneously by 

cross-functional teams. These development activities involve requirements gathering, design, 

development, testing, deployment, and feedback. At the end of each iteration, a new release of 

the working system is delivered to customers, which permits adapting quickly to changes. In 

this regard, the essence of the Agile paradigm is to promote continual improvements, iterative 

design, customer collaboration, and adaptiveness and rapid response to changes. The 

architecture evaluation process can be integrated into each iteration concurrently with other 

activities, in which designed and implemented architecture are assessed. This allows 

discovering and fixing design flaws and errors earlier at each increment release, which allows 

improving the overall quality of the final product and thus reducing maintenance effort and 

cost.  

Contrarily to other paradigms, teams consist of all stakeholders, in which customers are 

considered as an integral part of the development team where the customer’s voice is replaced 
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with the customer’s story (Tiwari & Kumar, 2020). Changes are always welcomed, which 

allows adaptation at every stage of the development process. Time and overall cost are reduced 

because many activities are performed in parallel and errors can be caught and fixed quickly. 

Rollback decision can be taken at any stage and only the concerned increment can be affected. 

On the other hand, adopting the agile model can engender many problems and shortcomings. 

The development process can become unmanageable when frequent changes affect increments 

because requirements are not clear or the customer is not satisfied. The Agile model depends 

heavily on customers’ collaboration, and thus a shortage of documentation can be addressed. 

In this context, the lack of documentation may cause difficulties when maintaining the system 

or transferring information and technologies to new stakeholders. In addition, the Agile is not 

the right paradigm for small or low-budget projects.  

2.3.2.2 Component-based software paradigm 

The main idea of the component-based software paradigm is reusing pre-existing components 

to construct software systems. Embracing this development principle has several consequences 

for the software lifecycle (I. Crnkovic et al., 2006), in which we distinguish two separate CBSD 

processes: 

 Development for reuse: this process concentrates on developing components that will 

be reused in other systems. 

 Development with reuse: this process is concerned with developing new systems using 

pre-existing services and components.    

When starting the development of a new system, we do not know what components are 

available; therefore, a new separate process of discovering and validating components will 

appear. Generally, these two processes constitute the main development activities for many 

component-based software paradigms. Figure 2.3 depicts these activities as follows. 

1. Requirements analysis and specification: this activity consists of analyzing 

requirements gathered from the customer to remove deficiencies and ambiguity. The 

goal is to analyze the likelihood solution designated to meet the customer’s 

requirements. In the CBSD, specifying requirements should take into account the 

availability of components that satisfy these requirements. If possible, the whole system 

will be constructed from pre-existing components; otherwise, unavailable components 

should be implemented. To squeeze all advantages of the CBS approach, requirements 

can be negotiated and modified to be fulfilled with the pre-existing components (I. 

Crnkovic et al., 2006). 

2. System design: a complete architecture of the system should be defined at this stage, in 

which components and their relationships are identified based on the customer’s 

requirements. However, this stage is tightly related to the availability of components as 

well as the requirements stage. Therefore, the availability of components and their 
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models (EJB, CORBA…etc) are the main determiners of the system design. For 

instance, using a component model that requires a specific style, such as client-server 

will oblige the system design to follow that style.  

3. Components identification: this stage is unique to CBSD, in which three sub-activities 

are defined (Sommerville, 2011): 

 Component search: this activity consists of seeking candidate components that 

should meet the system requirements. In this context, components can be 

searched locally in the company repositories or from external trusted vendors.  

 Component selection: the selection of suitable components starts once the 

candidate components are identified. In an ideal case, candidate components 

match perfectly the requirements. In other cases, the selection is much more 

complex. The mapping between candidate components and the system 

requirements are not clear. Therefore, architects and developers must find the 

best composition that can cover these requirements. 

 Components validation: once components are selected; they must be validated 

by checking if they act as was expected. The test effort is correlated directly with 

the trustworthiness of the selected components. If components are imported 

from trusted suppliers where components are pre-tested, then testing may not be 

required. On the other hand, if components are developed by unknown sources, 

then test cases must be performed before integrating the component into the 

system. 

4. System integration: this step consists of integrating components to build the executable 

system architecture. The integration consists in its turn of downloading components 

from repositories, registering, and deploying them into the component container.  

5. System test/ validation: similar to traditional development models, tests and 

verifications are performed to check that the overall system meets the specified 

requirements. Assembling components may generate errors that require checking 

contractual interfaces (input and output) of the involved components. However, locating 

errors can be difficult especially when using black-box components brought from 

different suppliers (I. Crnkovic et al., 2006).  

6. Maintenance: this activity encompasses some steps that are similar to the steps of the 

integration activity because new or modified components are integrated into the system. 

However, changing the glue code is probably required to support the new modifications. 
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Moreover, the system must be tested to fix incompatibility issues or broken 

dependencies.  

Figure 2.3. A V development model adapted to CBS paradigm 

In this dissertation, the defined quality assessment approach can be integrated into the 

development for reuse process and development with reuse process. The former integration 

allows separate evaluation of components’ internal architecture; however, this is possible only 

with white-box components. The latter promotes architecture evaluation at three development 

stages, which are system design, system validation, and maintenance. The evaluation at the 

design stage permits the assessment of the complete architecture resulted from interweaving 

components in order to detect and fix potential design flaws before implementation. At the 

validation stage, the implemented architecture is evaluated according to the designed one, and 

against the CBSD’s properties, such as reusability and composability (section 2.1). At the 

maintenance stage, the architecture is evaluated when new components are added, updated, or 

removed.  

One of the particularities of component-based systems is that evaluation effort is reduced 

significantly because most of the components (generally imported from trusted suppliers) are 

pre-tested and evaluated. Consequently, the evaluation may concern only the overall 

architecture constructed by combining these components.   

2.4 Software architecture and components 

2.4.1  Architecture 

Software systems are built to satisfy organizations’ business goals. The bridge between these 

goals and the final concrete system is called architecture. There is no universal definition of 
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software architecture; however, we attempt to provide the most known definitions in the 

literature.  

Definition 1. The software architecture is the set of structures needed to reason about the 

system, which comprises software elements, relations among them, and properties of both (Bass 

et al., 2012).  

Definition 2. It can be defined as a set of significant decisions about the organization of a 

software system. These decisions include the selection of structural elements and their 

interfaces required to compose the system, the collaboration among those elements (the 

behavior), the composition of these elements into large subsystems, and the architectural styles 

that guide this organization (Rumbaugh et al., 1999). 

Definition 3. “Software architecture is the fundamental organization of a system embodied in 

its components, their relationships to each other, and to the environment, and the principles 

guiding its design and evolution” (“IEEE Recommended Practice for Architectural Description 

for Software-Intensive Systems,” 2000).   

Definition 4. “The structure of the components of a program/system, their interrelationships, 

and principles and guidelines governing their design and evolution over time” (Garlan & Perry, 

1995).  

Definition 5. “A software architecture is a set of architectural elements that have a particular 

form. Three different classes of architectural elements are distinguished” (Perry & Wolf, 

1992b):  

- The processing elements: represent components that transform data elements. 

- The data elements: represent elements that contain data that is transformed by the 

processing elements. 

- The connecting elements: represent the glue that interrelates different components to 

each other. 

All these definitions state that architecture is a set of structural elements held by relationships. 

These elements should support reasoning about the system and its attributes that include 

functional and non-functional requirements considered important to some stakeholders. 

Therefore, architecture is an abstraction of the system because it shows only information of 

interest, such as elements and their relationships, and omits all the unnecessary details.  

2.4.2  Components  

In the CBSE community, components represent independent and reusable building blocks that 

can be composed with other components through predefined and opened interfaces to construct 

a software system. In the literature, various academic definitions describe components in 

various ways. Some of these definitions are provided below. 
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Definition 1. “A software component is a unit of composition with contractually specified 

interfaces and context dependencies only. A software component can be deployed separately 

and is subject to composition by third parties” (Clemens Szyperski & Pfister, 1996). 

Definition 2. “A component is a physical, replaceable part of a system that packages 

implementation and provides the realization of a set of interfaces” (About the Unified Modeling 

Language Specification Version 1.3, n.d.). 

Definition 3. “A software component is a software element that conforms to a component 

model and can be independently deployed and composed without modification according to a 

composition standard.” (Heineman & Councill, 2001). 

Definition 4. “A software component is an architectural entity that (1) encapsulates a subset of 

the system's functionality and/or data, (2) restricts access to that subset via an explicitly defined 

interface, and (3) has explicitly defined dependencies on its required execution context” 

(Richard N. Taylor et al., 1996). 

The above definitions agree that a component is an independent, replaceable, and modifiable 

unit that can be deployed and composed with other components according to composition 

standards and through publicly defined interfaces. In the context of CBSE, Sommerville defined 

five essential characteristics of a software component as follows (Sommerville, 2011).  

 Standardized. A component must adhere to a standard component model. A model 

should define interfaces, documentation, deployment, and usage information. 

 Independent. A component should be able to be composed and deployed without 

needing to use other specific components. If a component wants to use external services, 

then they should be specified as required in the interface specification.  

 Composable. A component should provide a set of publicly defined interfaces to be 

composable and able to interact externally with other components.  

 Deployable. A component must be self-contained and able to operate as a stand-alone 

entity on the target component platform. Additionally, components are usually delivered 

as binary entities that do not need to be compiled before their deployment. 

 Documented. A component must be fully documented to allow users to decide whether 

to use the component that meets their needs or not. 

2.4.2.1 Basic elements of components 

2.4.2.1.1 Interfaces 

An interface of a software component can be defined as a specification of its access point and 

the medium by which components connect (Ivica Crnkovic & Larsson, 2002; C. Szyperski et 

al., 2002). An interface can define a set of named operations that can be invoked by the 

component’s client. If a component can provide multiple services, then multiple access points 

are defined through multiple interfaces. Two types of related interfaces reflect the services 
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provided by the component and the services required for the component to operate correctly 

(figure 2.4): 

 Provided interface: this type of interface exposes the services provided by the component 

to other components. It defines a set of operations (methods) that can be called by the 

users of the component. 

 Required interface: this type of interface specifies the services that must be provided to 

the component by other components to operate correctly. Thus, the absence of these 

services makes the component nonfunctional and inoperative. 

2.4.2.1.2 Implementation 

Contrarily to interfaces, implementation refers to the internal and concrete definition of the 

component, which is the source code. The implementation is hidden in some components and 

visible in others. According to the implementation visibility, we can distinguish two mains 

types of components: 

 Black-box components: the implementation is decoupled and hidden behind interfaces. 

Therefore, the component’s clients know no details beyond the interfaces and their 

specifications. The architecture can be built according to these specifications since 

knowledge about the internal implementation is not required in this type of component.  

 White-box components: In the white-box components, the implementation is available, 

which may enhance the understandability and thus allows customizing the component 

to fit with the client’s needs.  

2.4.2.1.3 Specification 

In the CBSE, we can distinguish two types of component specification, a syntactical 

specification, and a behavioral specification. 

 Syntactical specification: this form of specification is concerned with describing 

interfaces, in which the signature part that represents named operations and their input/ 

output parameters are described. There are many techniques used to specify 

component’s interfaces of different technologies, such as IDL (Interface Description 

Language) for CORBA (Common Object Request Broker Architecture) and COM 

technologies, and the Java programming languages for the Sun’s JavaBeans (Ivica 

Crnkovic & Larsson, 2002). However, syntactical specification is not addressed to 

specify the overall behavior of components. As a result, contracts are proposed by 

Meyer (Meyer, 1992) as an extension to syntactical specification by adding the notion 

of behavior. 

 Contract (behavioral specification): a contract specifies for each operation within the 

component the constraints that the component should maintain. These constraints 

represent the pre and post-conditions that constitute the specification of the 

component’s behavior. Moreover, contracts specify the interaction between 
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components in terms of the set of involved components, the role of each component, 

and the invariant to be maintained by each component.   

 

 

 

 

2.4.3 Connectors  

Software components are meant to provide functionalities supposed to constitute the application 

business logic, whereas connectors are designated to manage the connectivity between these 

components. This organization permits to keep the component’s focus on application and 

domain-specific concerns by separating the computation concerns handled by components from 

interaction concerns handled by connectors (R. N. Taylor et al., 2009). A software connector 

can deliver one or more services, such as transferring control and data among components, 

messaging, transaction, etc. Taylor defines four main classes of interaction services that a 

connector can provide (R. N. Taylor et al., 2009): 

 Communication. Many communication services that consist of transferring data 

between building blocks are provided by connectors. In this context, components 

exchange frequently messages, data to be processed, and computation results by the 

means of connectors.   

 Coordination. Connectors provide coordination services by supporting control transfer 

between components. Method invocations, function calls, and load balancing 

management are examples of coordination connectors. 

 Conversion. Managing the interaction among heterogeneous components is not a trivial 

task. Conversion connectors allow overcoming interaction issues between these 

components by providing conversion services, such as wrappers and data formats 

converters.  

 Facilitation. This service is dedicated to facilitating and optimizing the interaction 

between components. For instance, concurrency control, load balancing, and scheduling 

services are provided by connectors to meet certain non-functional requirements and 

reducing interdependencies between involved components.  

Based on this categorization of interaction services, Taylor et al. defined eight different types 

of connectors, which are procedure call, event, data access, linkage, stream, arbitrator, adaptor, 

and distributor.  

Figure 2.4. Component’s interfaces (Sommerville, 2011) 
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Although software connectors have not been addressed and studied to the same extent as 

components, they have an important role in streamlining interaction among components that 

expose heterogeneous functionalities developed by various organizations at different times and 

locations.  

2.4.4 Architecture modeling 

Models represent an abstraction of a system, intended for understanding, designing, or 

explaining aspects of interest of that system (Dori, 2011). They are used to support many 

activities throughout the development process, such as design, analysis, and verification and 

validation (V&V). In this connection, Taylor et al. defined an architecture model as an artifact 

that aimed at capturing some or all design decisions that comprise the system’s architecture 

using architectural modeling notations (R. N. Taylor et al., 2009). These notations are nothing 

but languages and means of capturing architectural decisions. Architecture modeling notations 

range from informal and rich to highly formal and narrow. The available notations can be 

divided into three main categories as follows. 

 Informal notation. The informal notation is not designed to be analyzed and processed 

by machines, in fact, it is dedicated to being checked and understood by humans. 

However, informal representation is ambiguous and confusing because it gives 

inconsistent interpretations and it cannot be analyzed mechanically (Jackson, 2019). 

Graphical diagrams that consist of boxes and lines or natural languages are good 

examples of informal notations. Usually, this type of notation is intended for non-

technical stakeholders, such as managers and customers. 

 Semi-formal notation. The semi-formal notation is widely used in architecture 

modeling.  It is intended to be useful by both technical and non-technical stakeholders. 

The essence of semi-formal languages is to try to make a balance between a high degree 

of precision and formality on the one hand, and expressiveness and understandability 

on the other hand (R. N. Taylor et al., 2009). Models are expressed using standardized 

notation such as graphical elements and constructions rules; however, it does not 

provide a complete treatment of the meaning of these elements (Bass et al., 2012). This 

type of notation can be analyzed manually by humans or automatically by machines. A 

broadly and most popular used notation is the Unified Modeling Language (UML) 

(Welcome To UML Web Site!, n.d.). UML is syntactically rich and fundamentally based 

on graphical notation that uses textually annotated graphical symbols. However, the 

ambiguity about the meaning of these symbols can produce different interpretations of 

the same UML diagram. Generally, semi-formal representations may suffer from 

precision issues, which make performing sophisticated analysis hard to achieve.  

 Formal notation. The formal notations define and describe structure and behavior 

precisely and objectively (Jackson, 2019). Contrarily to semi-formal notation that 

provides only formally defined syntax, formal representation provides also formally 
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defined semantics. Besides, formal notations are amenable to automatic analysis, such 

as Alloy (Jackson, 2012), the Z notation (Spivey & Abrial, 1992), and Wright (R. Allen 

& Garlan, 1997), which make this type of notation intended only for technical 

stakeholders.  

2.4.5 Architecture Description Languages (ADLs) 

As architecture became a dominating substance in developing software systems, Architecture 

Description Languages (ADL) have emerged as formal notation that can be used to represent 

that architecture in an unambiguous way (Clements, 1996a). More specifically, an ADL is a 

notation used to express architecture models in order to capture and document the architectural 

decisions taken to build a system’s architecture. Medvidovic et al. claim that an ADL must 

explicitly model components, connectors, and their configurations. In addition, it must provide 

the tool support to be considered useful and usable. These four elements should be the 

fundamental constituents of any proposed ADL (Medvidovic & Taylor, 2000). Clements 

defined five requirements for a language to be an ADL as follows (Clements, 1996b). 

- An ADL must support the creation, refinement, and validation of an architecture. 

- An ADL must be able to represent most of the common architectural styles. 

- An ADL must be able to express architectural information through system views. 

- If an ADL can express the implementation level, then it must have the ability to match 

more than one implementation to the architecture views. 

- An ADL must support analytical capabilities based on the architecture level, or the 

capabilities to generate prototype implementations. 

However, there is always a continuous debate about which notation can or cannot be called an 

ADL? We agree with Taylor et al. by considering any notation used to capture and document 

the main architectural decisions as an architecture description language.   

There was a myriad of proposed ADLs that can be classified as general-purpose languages or 

domain-specific languages. We will discuss briefly a small set of these ADLs as follows.   

 Darwin: Darwin is a general-purpose ADL used for specifying structures of 

component-based systems. It provides graphical representation along with well-defined 

textual syntax to describe components and their interconnections in order to capture 

architectural decisions more rigorously and formally. It should be noted that Darwin 

does not support connectors explicitly; however, components that play the role of 

connectors by facilitating interconnection can be interpreted as connectors. Besides, 

Darwin is designed for structural modeling and not for describing other architecture’s 

aspects, such as behavior (Magee et al., 1995). 

 Rapide: Rapide is an event-based language designed for specifying architectures of 

distributed concurrent systems. An event is an object generated by calling an action, 

such as a procedure’s call or reply.  Events are organized into partially ordered sets and 
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related by causal and timing relationships. Rapide allows behavioral analysis and 

simulation of architectures at the early stages of the development process. It provides 

architecture constructs for defining executable prototypes before the implementation 

stage, in which synchronization, concurrency, timing, and dataflow are represented 

explicitly (Luckham et al., 1995). However, Rapide is focused on event-based modeling 

to addressing the dynamic aspects of architecture at the expense of other aspects. 

Additionally, its notation is obscure and difficult to learn.  

 Wright: Wright is an ADL developed to describe and analyze software architecture and 

architectural styles using concepts such as components, connectors, ports and roles 

(interfaces), attachments, and styles. It is based on the formal specification of the 

abstract behavior of components and connectors. Wright uses CSP-like 

(Communicating Sequential Process) notation to describe this behavior, predicates to 

characterize styles, and static checks to determine the consistency of architectural 

specifications (R. J. Allen, 1997). Similar to Darwin and Rapide, Wright lack support 

to refine architectural specification into implementations.  

 Acme: Acme is an extensible ADL developed to express the structural design decisions 

using seven basic constructs: component, connector, port, role, system (configuration), 

attachment, and representation. Originally, Acme was designed to provide an 

interchangeable language for development tools rather than being an ADL (Garlan et 

al., 2010). The language should integrate ADL tools by providing an interchange format 

for exchanging architecture information. However, this strategy was never applied at a 

wide scale, probably because of the semantic differences among the target ADLs (R. N. 

Taylor et al., 2009). 

Additionally, other languages that can be classified as ADLs can be found in (Clements, 1996b; 

Medvidovic & Taylor, 2000; R. N. Taylor et al., 2009).  

2.5 Architecture analysis 

Architecture analysis is the activity that allows discovering important system properties using 

architectural models. In this context, the analysis can reveal inappropriate design decisions and 

subtle flaws at early stages, getting early answers about the system’s complexity and size, 

checking the conformance of the architectural models to constraints and design guidelines, and 

the satisfaction of functional and non-functional requirements. Taylor et .al defined four main 

goals of architecture analysis (R. N. Taylor et al., 2009): 

a. Completeness. This goal can be divided into external and internal analysis goals. Assessing 

the architecture’s external completeness consists of verifying whether the architecture 

captures adequately all the system’s fundamental functional and non-functional 

requirements. However, this can be hard to achieve due to architecture’s high complexity 

and size. Assessing internal completeness consists of verifying whether architecture’s 

elements have been fully captured according to the architectural decisions taken and the 
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modeling notations used to model such architecture. Internal completeness is easier to assess 

than the external one because it is amenable to automation. 

b. Consistency. Consistency is an internal property that allows ensuring that different 

architectural elements, rules, and constraints do not contradict one another. Architecture 

models can help in discovering inconsistencies resulted from architectural decisions 

captured by these models. For instance, the following inconsistencies can be detected at the 

model level: 

 Name inconsistencies can occur when components, connectors, and provided services 

may have similar names. At the architectural level, this may engender a problem, 

especially with large architectures. In this context, determining which components are 

wrongly accessed is difficult.  

 Interface inconsistencies may occur when a component’s required interface and 

another component’s provided interface have the same name, nonetheless, their return 

types and parameter lists (signatures) may differ. Moreover, interface inconsistencies 

incorporate name inconsistencies and not the opposite. 

 Behavioral inconsistencies occur when the names and interfaces of components that 

request and provide services match, but their behaviors do not.  

 Interaction inconsistencies are the result of violating interaction protocols between 

components even their names, interfaces, and behaviors are consistent.  

c. Compatibility. Compatibility is an external property intended to ensure the adherence 

between architectural models and the specified architectural styles, tactics, constraints, and 

design guidelines. The analysis for compatibility can be straightforward and amenable to 

automation if these design rules are specified formally; however, the analysis would be 

challenging with semi-formal and informal specification.  

d. Correctness. Correctness is an external property that determines whether architecture is 

correct according to the external system specification. The correctness can be achieved if 

and only if the architectural decisions made realize entirely those specifications. Besides, the 

implemented architecture is considered correct according to the designed architecture if and 

only if the implementation captures and realize all the key architectural decisions of the 

designed architecture. 

Additionally, architecture analysis permits to discover architecture degradation that comprises 

two related architecture mismatches, which are architecture drift and erosion (Perry & Wolf, 

1992a): 

- Erosion. Architecture erosion is the result of modifying the system by introducing new 

architectural decisions that violate and disregard its fundamental rules and prescriptive 

architecture (De Silva & Balasubramaniam, 2012). The accumulation of these 

modifications over time will create a mismatch between the descriptive (realized or 

implemented architecture) and the prescriptive architecture (intended architecture). In 
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other words, the implemented architecture will diverge from the intended architecture. 

Architecture erosion may lead to disastrous results and system failure. 

- Drift. Architecture drift is the result of introducing new modifications into the 

descriptive architecture that are not encompassed by the intended architecture. These 

changes do not violate necessarily the prescriptive architecture’s architectural decisions; 

however, they may lead to future inadaptability and a lack of clarity and coherence that 

make the architecture more obscure and easy to violate (Perry & Wolf, 1992a; R. N. 

Taylor et al., 2009).  

2.5.1 Architectural characteristics to be analyzed 

Architectural models permit to address many architectural concerns of given software 

architecture. These concerns can be structural, dynamic, or non-functional. 

a. Structural characteristics.  These characteristics denote the organization of the architectural 

elements that constitute the software architecture. Therefore, the analysis should focus, for 

example, on connectivity and containment relationships among components. In other words, 

determining whether the architecture is well-formed and structured by verifying the 

adherence to the specified architectural styles, constraints, and tactics. For instance, 

verifying whether the connection between two components is authorized, checking 

disconnected components and subsystems from the rest of the architecture, determining the 

conformance to a specific style, or ensuring that the number of provided interfaces of a 

specific component should not exceed five. 

b. Behavioral characteristics. Well-formed architecture is of great importance to building 

software systems of quality; however, it can be of limited utility if the system does not 

provide the expected behavior specified at early stages. The analysis must consider two main 

types of behavior. The former is the internal behavior of individual components; however, 

the analysis can be restricted to the public interfaces if the component’s internal 

implementation is hidden. The latter is the composite behavior or the system-level behavior 

resulted from combining components.  

c. Non-Functional characteristics. Non-Functional characteristics define how the system is 

supposed to be, such as modifiability, availability, and performance.  They constitute 

restrictions or constraints on the design of the system across its different components and 

connectors. However, they are qualitative in nature and often miscomprehended, which 

makes them difficult to analyze and assess.  

2.5.2 Analysis techniques 

Various techniques of architecture analysis is available for software architects. These 

techniques can be categorized into three main categories (R. N. Taylor et al., 2009): inspection 

and reviews, model-based, and simulation-based analysis.  

a. Inspection and reviews. This technique includes a set of activities conducted by 

different stakeholders (especially architects and developers) in which architectural 
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models are studied to ensure specific architecture properties, and then, to critique the 

architecture under analysis as a whole or some of its parts. Usually, inspection 

techniques are performed manually, which makes them tedious and expensive; 

however, they are advantageous when using informal notations to specify architecture. 

In addition, many task analyses that consider different architectural properties can be 

performed simultaneously by the relevant stakeholders.  

b. Model-based analysis. This analysis technique relies entirely on the architectural 

description of the underlying system to explore architecture properties using dedicated 

analysis tools. The main goals of the model-based analysis are to verify consistency, 

internal and external completeness, and correctness. Some analysis tools that use this 

technique would generate automatically system implementation from architectural 

models, which may ensure the external completeness (adherence of the system’s 

implementation to the architectural models) and correctness. Unlike inspections and 

reviews techniques, model-based techniques are less costly. However, models permit to 

analyze only explicit architecture properties and they cannot be used easily for implicit 

properties. The latter can be readily inferred by humans from existing information. 

Furthermore, model-based techniques cannot provide all answers to stakeholders, and 

they are coupled with other techniques from inspection and reviews and simulation-

based analysis.  

c. Simulation-based analysis. This technique necessitates generating executable and 

dynamic models of the system or its parts of interest, usually from source models. It 

should be noted that not all architectural models are amenable to simulation, such as 

informal models, because they lack the appropriate formalism (formal notation) 

required to enable their execution. The main goals of the simulation-based analysis are 

also completeness, compatibility, consistency, and correctness.  However, this 

technique requires high technical expertise with simulation, architectural models, and 

modeling notations.  

2.6 Conclusion  

This chapter introduced generalities and main concepts of component-based software 

engineering and software architecture. These concepts are considered important and must be 

addressed before getting involved with architecture quality control and evolution, which is the 

central aim of this dissertation.   

In a highly competitive and demanding software marketplace, CBSE has emerged as a new 

paradigm to develop software systems of quality more rapidly based fundamentally on 

reusability and composability principles. This paradigm has many advantages as well as some 

shortcomings; however, our main interest is the architecture quality of software systems 

constructed by this paradigm and not the paradigm itself. In this context, architecture 

specification and modeling using formal and semi-formal notations (section 2.4.4 and 2.4.5), 
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and model-based analysis (section 2.5.2) will be used intensively in the process of quality 

control. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3 

Software quality 
In the previous chapter, we have presented some important concepts that concern component-

based software and software architecture. The current chapter is complementary to the last one, 

in which we will discuss the concepts of quality in general and software quality in particular. 

The latter is the key element of the framework MS-QuAAF, and the heart and the soul of this 

dissertation.  

For many decades, software quality is considered very critical and essential for organizations, 

and a key component for business success. Nowadays, the software marketplace is extremely 

competitive, which means that developing software systems of high quality is not only an 

obligatory but also a differentiator factor for companies (Kadri et al., 2021b). Critical sectors 

that depend heavily on software, such as homeland security and air control traffic expect to 

deploy error-free systems that are supposed to fulfill their quality requirements flawlessly. In 

this context,  poor software quality is responsible for severe business and safety disasters 

(Carrozza et al., 2018). Therefore, companies must boost up software quality perception and 

integrate it profoundly into the development process.  

This chapter is organized as follows. The first section depicts the concept of quality according 

to the perspective of well-known quality gurus, such as Shewhart and Deming, the comparison 

between those perspectives, and the presentation of our own perspective. The second section 

presents the main software quality management approaches, such as software quality assurance 

and software quality control. The third section explains software errors, defects, failures, and 

the difference between them. The fourth section presents the most well-known quality models, 

the comparison between them, and the relationship between these models and the framework 

MS-QuAAF. 
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3.1 What is software quality? 

“What is software quality?” is a kind of question that generates different answers depending on 

whom we asking (consumers or producers of the system), requirements, type of software 

system, business and market environment, and so forth. In this section, we will attempt to 
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provide a set of definitions according to the point of view of some of the most-known quality 

pioneers, consumers, and producers. Furthermore, we will outline our vision about quality and 

quality control adopted in this dissertation. 

Emphasizing these historical definitions as well as stakeholders’ perspectives allow better 

understanding of quality, quality attributes, quality models, quality assurance, and quality 

control.  

3.1.1 The quality according to Shewhart 

Walter Shewhart was considered as one of the giants of the quality movement in the first half 

of the 20th century, and the founder of the Statistical Process Control (SPC) (Walter Andrew 

Shewhart, 1931). He developed a control chart, which is an essential tool used to control the 

process. The chart permits monitoring a process by providing upper and lower control limits. 

Therefore, a process is closely controlled if it performs inside these limits (O’Regan, 2014). He 

defined also a cycle model called the PDCA model (Plan-Do-Check-Act), which is a systematic 

approach to process control and problem-solving. In his influential book, he asserted that 

productivity and quality improve as process variability is reduced. 

Shewhart argued that controlling the quality of a product must involve three steps: the 

specification of the standard of quality designed to meet the stakeholders’ needs; the production 

of the desired product; and the verification of the conformance of the product to the specified 

quality standard (WALTER A. Shewhart, 1958). Obviously, the quality according to Shewhart 

is the conformance to requirements and quality standards. Thus, a piece of product is accepted 

or rejected according to the result of conformance checking.  

3.1.2 The quality according to Deming 

W. Edwards Deming, one of the major figures of the quality movement is an American 

statistician and business consultant influenced by Shewhart’s work on SPC.  He argued that 

improving quality might be achieved by reducing costs by decreasing rework of defective 

products, and thus improving productivity as reworking time decrease. Moreover, improving 

quality is 1) the responsibility and the efficiency of the top management that should adopt the 

appropriate management principles, and 2) it must be a constancy of purpose from all 

individuals to ensure success (O’Regan, 2014).  

The quality according to Deming is defined by or measured by the satisfaction of customers. 

He defined good quality as the predictable degree of uniformity and dependability with a quality 

standard suited to the customer (Deming, 1986). In this context, a manager’s quality definition 

is when specification and final product are met. On the other hand, a customer’s definition is 

when the product meets his/her needs and expectations.  

In his influential book Out of the Crisis, Deming defined 14 principles for total quality 

management to transform western organization style to customer-focused organizations: 



Chapter 3. Software quality  33 

1. Improving products and services by creating constancy purpose. 

2. Adopting the new philosophy. 

3. Building quality into the product and stopping depending on inspections because they 

are costly and unreliable. 

4. Minimizing cost by working with a single supplier.  

5. Improving constantly and forever the system and its processes. 

6. Using institute training on the job. 

7. Implementing leadership instead of supervising. 

8. Eliminating fear. 

9. Breaking down barriers between different staff and departments.   

10. Eliminating Slogans 

11. Eliminating numerical quotas.  

12. Removing barriers to pride of workmanship. 

13. Implementing education and self-improvement for everyone.  

14. Accomplishing transformation is everyone’s job.  

3.1.3 Quality according to Juran 

Joseph Juran, another giant in the quality movement defined quality as fitness for use. His top-

down management approach is customer-based, in which customer satisfaction is realized when 

a product meets customer’s needs (J. M. Juran & Godfrey, 1999). Accordingly, He claimed that 

quality issues are the direct responsibility of management that must ensure planning, 

controlling, and improving quality. These three activities are called Juran Trilogy described 

usually by a diagram with the cost of poor quality on the vertical axis and time on the horizontal 

axis (O’Regan, 2014). This trilogy is an improvement cycle intended for reducing the cost of 

poor quality as follows. 

a. Quality planning. This activity consists of defining customers’ needs, setting goals, 

defining requirements for the product, and developing plans along with stakeholders’ 

expectations.  

b. Quality control. This activity consists of evaluating performance, determining needs to 

be assessed, and taking actions and filling the gap between performance and goals.  

c. Quality improvement. This activity consists of repairing defects and continually 

improving delivery and customer satisfaction.  

Additionally, Juran defined ten steps to quality improvement as follows (J. M. Juran & Godfrey, 

1999). 

1. Creating awareness of the need and opportunity for improvement. 

2. Setting goals for improvement. 

3. Organizing to reach the goals. 

4. Providing training throughout the organization. 

5. Carrying out projects to solve problems. 
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6. Reporting progress (expected and achieved progress). 

7. Giving recognition. 

8. Communicating results. 

9. Keeping scoring by sticking to the plan and tracking progress to reach goals. 

10. Maintaining momentum by making annual improvement part of the regular processes 

of the company. 

These steps have been evolved over the years to be suited to different segments and 

organizations.  

3.1.4 Quality according to Crosby 

Philip Crosby is a philosopher, consultant, and major figure in the quality movement. His two 

influential books Quality is Free (Crosby, 1980), and Quality without Tears (Crosby, 1995) 

outlined his perspective on quality. He defined the zero-defect (ZD) program that outlines his 

philosophy of doing things right the first time. His point of view on quality is clear-cut. The 

latter does not consist of some vague concepts, such as goodness, high or bad quality. Instead, 

it is unambiguously conformance to requirements.  He argued that the term Acceptable Quality 

(or Defect) Level (AQL) is evidence of failure and a commitment to producing defective 

products. In this context, defects can be caused by two main reasons, a lack of knowledge or 

lack of attention of the individual (O’Regan, 2014). The former can be resolved by training. 

The latter is more difficult and requires changing the individual’s mindset.  

The outcome of the right implementation of the zero-defect program is improved productivity 

due to fewer defective products and reworking. The goal of this program is preventive in order 

to meet requirements the first time and every time. Poor quality is the responsibility of 

management. The latter should seed the program of zero defect in their employees’ minds to 

achieve the desired quality and business goals. Crosby defined a fourteen-step improvement 

program to achieve this quality. The program necessitates management commitment and cross-

functional and well-organized improvement teams to be successful. The state and the cost of 

quality should be determined, and corrective actions must be performed accordingly.  

In summary, Crosby’s philosophy consisted of three main principles: 

1. Quality is conformance to requirements. 

2. Prevention is the system of quality. 

3. The only performance standard is the zero-defect program. 

However, this philosophy does not take into account the difference in quality between products. 

For instance, a BMW car is of the same quality as a Dacia car if they are conform to 

requirements. Furthermore, the ZD program is not suitable for software systems where high 

complexity is often the source of defects rather than the mindset of software engineers.  
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3.1.5 Quality according to Ishikawa 

Kaoru Ishikawa is a major figure in quality control techniques and training. His perspective on 

quality is customer satisfaction, in which managers should ensure to meet consumer needs. 

Although he believed in standards, he argued that consumer needs are the ultimate source of 

decisions making. He invented the fishbone diagram (cause and effect diagram) which is a 

pictorial diagram that depicts visually possible causes of a result. It is used for analyzing 

industrial processes to find the root causes of a specific problem. He proposed the quality 

control circle, which is a small group of employees who do similar work, and meet to analyze 

and identify problems, and recommending and implementing solutions in order to improve 

quality and productivity. In this context, Ishikawa recommended seven basic tools for quality 

control and improvement, which are the fishbone diagram, Pareto chart, process mapping and 

data gathering tools, graphical tools, run charts, scatter plots, and flowcharts (Ishikawa, 1985).  

3.1.6 Quality according to IEEE Std.730-2014 

According to IEEE 730-2014, quality is the degree to which a software product meets 

established requirements; however, quality depends upon the degree to which established 

requirements accurately represent stakeholder needs, wants, and expectations (“IEEE Standard 

for Software Quality Assurance Processes,” 2014).  

3.1.7 Comparison and contrast 

The comparison and contrast between the above-mentioned quality icons allows us to extract 

many similarities as well as differences that concern their points of view, quality improvement 

processes, management responsibilities, performance indicators, and assessment tools.  

Similarities: the first obvious similarity shared between them is putting the responsibility of 

product quality on the shoulders of the senior management. They argued that top management 

should plan, control, and improve quality by adopting the right principles. Furthermore, 

management has the whole responsibility of ensuring communication and coordination across 

the involved teams and the different levels of hierarchy by providing the necessary training and 

the appropriate work conditions.  

The second similarity is that individuals involved in the production process must get training 

and continuous education to improve quality. According to Crosby, the lack of knowledge and 

training is one of the main reasons that cause defects. Therefore, an organization must set up 

training programs to level up the skills of management as well as their staff.   

              Conformance to 

requirements 

Customer 

Satisfaction 

Tools, approaches, 

and slogan 

Shewhart X X Control chart, PDCA 

model   

Deming  X 14 points, deadly and 

dreadful deceases 
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Differences: By comparing the above quality definitions and perspectives, two main 

philosophies adopted by experts to define quality can be outlined (Table 3.1): 

 Conformance to requirements: quality is defined as conformance to requirements. A 

product is judged of high quality if it meets the specified requirements. Crosby is the 

most commonly known for adopting such a philosophy.  

 Customer satisfaction: quality is defined as customer satisfaction. A product is judged 

of high quality if it fulfills customer’s needs and expectations. Deming, Juran, and 

Ishikawa are considered among the adopters of this philosophy.  

The definition of Shewhart and IEEE 730-2014 standard is a combination of these two 

philosophies. They argued that a product should meet the specified requirements to generate 

customer satisfaction. 

The second difference is about the performance standard. Shewhart defined the control chart to 

measure and monitor quality. A quality process is under control if it performs inside the lower 

control limit (LCL) and the upper control limit (UCL). Crosby proposed the zero defect, which 

is not just a motivational slogan, but a commitment and mindset to prevent defects. Although 

he did not mean that all outputs have to be perfect, he claimed that involved individuals should 

be committed to meet requirements the first time and every time.  Juran did not define explicitly 

a performance slogan; however, he defined the Breakthrough and Control approach to achieve 

a new (higher) quality performance level (Joseph M. Juran, 1964). He described pictorially by 

a control chart the breakthrough, in which the old and the newly attained performance level are 

presented. On the other hand, Deming did not define any performance slogan. In fact, he argued 

that slogans cannot help anyone to do a better job.  

The third difference concerns quality management and control. Crosby’s approach to achieving 

quality is prevention rather than error detection and correction. He proposed the prevention 

process, which involves requirement establishment, measuring, comparing, and taking actions. 

The first three processes are defined to anticipating the possibility of errors occurring, whereas 

the last process is to take actions to keep errors from occurring. Additionally, He defined the 

fourteen steps program to achieve quality by performing the appropriate actions according to 

the state and the cost of quality. Deming’s approach is also prevention to promote quality. The 

prevention is achieved by three processes, which are analysis, control, and improvement. He 

defined fourteen principles (obligations) to transform any organization no matter its size into a 

Juran  X Juran Trilogy, 10 steps 

Crosby X  Zero defects, 14 steps 

Ishikawa  X Fishbone diagram, 

quality control cycle 

IEEE 730-2014 X X / 

Table 3.1. The comparison between the quality pioneers’ viewpoints 
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customer-focused organization through quality. Juran’s approach is to promote continuous 

improvement to achieve quality. He defined the “Juran Trilogy”, which is an improvement 

cycle that involves planning, control, and improvement processes. Shewhart’s systematic 

approach focuses also on continuous improvement. He proposed the PDCA cycle to control 

quality and solve emerging problems. Finally, Ishikawa’s approach is based on inspection and 

detection to locate and solve problems. He defined the fishbone diagram for analyzing the 

industrial process in order to detect the main causes of specific problems. Furthermore, he 

proposed problem-solving techniques (section 3.2) to control and manage the quality 

improvement process.  

3.1.8 Our perspective on software quality 

The software quality viewpoint addressed in this dissertation is tight-coupled with Non-

Functional Requirements (NFRs), which are characteristics of a software system called often 

quality attributes (QAs). The latter represent measurable (or testable) properties of a software 

system used to designate its goodness and how well it satisfies the needs of its stakeholders 

(Bass et al., 2012). Contrarily to functional requirements that refer to the purpose of the system 

or the intended functions supposed to be provided by the system, quality attributes permit to 

determine how the system is supposed to be. For instance, the system should be maintainable, 

secure, and available. Therefore, maintainability, security, and availability represent the 

system’s quality attributes.  

Accordingly, we can define the quality of a software system as the degree of achievement 

(satisfaction) of the specified quality attributes desired by all stakeholders and not just 

customers. For instance, architects and developers are interested in portability and 

modifiability, whereas customers are interested in efficiency and usability. However, QAs of a 

system do not have the same priority; therefore, a software is judged of high quality if it can 

meet tradeoffs among the competing NFRs. As a result, the quality of the software is correlated 

with the ability to promote and achieve competing quality attributes and manage the tradeoffs 

among these attributes.  

This perspective on quality is the basis on which we developed the framework MS-QuAAF to 

control and assess the quality of software architecture. More specifically, the framework 

assesses the satisfaction of each QA separately, and then it calculates the overall satisfaction 

score.  

3.2 Software quality management  

Satisfying customer’s needs, as well as the organization’s objectives, necessitate the 

implementation of a successful quality strategy to achieve the desired quality level. A quality 

strategy consists of designing and constructing a solid quality management system (QMS) that 

is able of detecting defects at early stages in order to minimize cost and delivering high-quality 

outputs continually. A QMS is an aggregate of quality-related structures, plans, processes, tools, 
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policies, and infrastructures (Westfall, 2016). In this section, we will outline some quality 

management approaches and philosophies, such as total quality management, quality assurance, 

and quality control. 

3.2.1 Software product stakeholders  

Stakeholders represent individuals or groups who affect or affected by a software product and 

thus have a degree of influence over the requirements for that software (Westfall, 2016). They 

can be categorized into two main classes: suppliers (producers) and acquires (consumers) of 

the software.  

Acquires of the software can be divided into two main categories. The first category is 

customers who select, request, and purchase the software in order to fulfill their business goals. 

The second category represents users who use actually the software directly or indirectly. In 

their turn, users can be divided into many groups that have different levels of skill, knowledge, 

roles, and privileges, such as novice users, occasional users, and advanced users.  

Suppliers of the software include all individuals and groups involved with the development of 

the software system in its lifecycle, such as managers, architects, programmers, testers, 

maintainers, and evaluators.  

The quality expectations on the consumer side are achieved when the software performs its 

functionalities as it is specified correctly and reliably. In other words, the software should meet 

the customer’s desired functional and non-functional requirements. On the other hand, the 

quality expectations on the producer side are achieved by delivering software systems that 

conform to the specified requirements in order to fulfill contractual obligations. More 

specifically, the software should promote all the specified ilities, such as maintainability, 

reliability, functionality, and so forth.  

3.2.2 Total Quality Management  

Total Quality Management (TQM) is a management philosophy for customer-focused 

organizations. It focuses on quality continual improvement by developing a quality culture 

within the organization. In this regard, quality is a company-wide objective, in which total 

customer satisfaction is a first-class organization goal. TQM requires that all members of an 

organization participate in improving products, services, and processes. Furthermore, all 

functions in the organization must follow high standards, and all staff must be trained in quality 

management. More specifically, the TQM can be divided into four main parts (O’Regan, 2014): 

 Customer-focus: customers are the determiner of the level of product quality. They have 

rights and expectations that need to be satisfied, which require the involvement and the 

training of all staff and the commitment of the senior management. 
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 Process: this involves the focus on the process and its improvement by using problem-

solving to identify the root causes of problems, and thus taking the right decisions 

subsequently.  

 Measurement and analysis: to promote continual improvement, analysis of the quality 

of the product and process must be performed repeatedly by setting up a measurement 

program with the organization’s activities.  

 Human factors: this involves integrating a quality discipline into the organization and 

developing a culture of customer satisfaction. This can be achieved via training and 

promoting effective communication to motivate employees to embrace the TQM 

philosophy.  

3.2.3 Software Quality Assurance 

According to the IEEE 730-2014 standard, Software Quality Assurance (SQA) is a set of 

activities that define and assess the adequacy of software processes to provide evidence that 

establishes confidence that the software processes are appropriate for and produce software 

products of suitable quality for their intended purposes (“IEEE Standard for Software Quality 

Assurance Processes,” 2014). SQA is a preventive approach that involves all the planning and 

implementation activities that are integrated into all stages of the software development process 

starting from requirements definition until product release. These activities may include 

creating an SQA plan, setting checkpoints, applying software engineering techniques, defining 

testing strategy, controlling change, measuring change impact, and performing SQA audits. All 

these activities are performed to: 

 Ensuring an acceptable level of confidence that the software system will conform to 

functional technical requirements, and thus achieving a suitable quality level. 

 Ensuring an acceptable level of confidence that the software development process will 

conform to budgetary and scheduling requirements. 

 Improving the efficiency of the software development process to boost up the 

achievement of managerial and functional requirements.  

The quality in the organization is promoted by the quality assurance group. The latter is an 

independent group that provides an independent product assessment, which involves 

conducting audits to verify conformance, reporting the audit results to top management, and 

improving the software development process. Mainly, the essence of a quality assurance team 

is to act as the customer’s voice to achieve the desired quality level and ensuring that quality is 

considered at each step in the software process.   

3.2.4 Software quality control 

Software Quality Control (SQC) is a set of activities designed to ensure that a developed 

product meets the functional and non-functional requirements. For this purpose, SQC can be 

performed with the help of some control techniques, such as inspection and testing to detect 

defects.  
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The inspection consists of a formal review of a deliverable to identify defects and provide 

confidence in its correctness. However, inspection is not meant for building quality into the 

product from the beginning because it is performed at the end of the production process. As a 

result, defective products are removed from the batch to be revised and reworked (O’Regan, 

2014). On the other hand, software testing can be integrated into many stages of the 

development cycle to detect defects relatively earlier comparing to inspection techniques. 

Software testing consists of white box or black box techniques and may encompass unit, system, 

integration, acceptance, and performance testing. The defined tests can be executed within the 

verification and validation (V&V) activities to discover and repair defects; however, it is not 

always possible to determine whether the number of defined tests is sufficient and meaningful.  

The cost of defect repair is correlated with the development stage in which those defects are 

detected. The earlier the defect is discovered the lower the cost is. In contrast, defects detected 

out of phase are increasingly expensive to fix. Moreover, defects detected by customers are the 

most expensive defects because they may require changing requirements, design, and 

implementation (O’Regan, 2014).  

3.2.5 SQA Vs SQC 

Although the terms quality assurance and quality control are often used interchangeably, each 

one of them comprises different tasks and activities, and it serves different objectives. Software 

assurance is dedicated to ensuring an acceptable level of quality throughout the whole 

development process, whereas quality control tends to discover defects and check the 

conformance of practically completed products. Besides, SQA is prevention-oriented, where 

SQC is detection-oriented (table 3.2). 

The breadth of SQA and SQC is quite different. SQA has a larger scope because a) it tends to 

be more organizational, b) it encompasses a variety of infrastructures and more additional 

activities, and c) it focuses on all the development efforts that may occur throughout the 

software process. On the other hand, SQC includes only the activities that focus on controlling 

the quality of a single product.  

Additionally, SQA is performed during most phases of the software lifecycle starting with the 

requirements definition, passing by design and coding, and finishing with the product release. 

However, SQC activities are limited to evaluation and testing phases.  

 SQA SQC 

Purpose  Preventing causes of errors and flaws 

by setting up and improving the 

appropriateness of the software 

process.  

Identifying defects and checking the 

satisfaction of functional and non-

functional requirements.  

Focus  Process  Product  
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Essence  Prevention-oriented Detection-oriented 

When  During the whole process Before software release 

Table 3.2. A comparison between software quality assurance and software quality control 

3.3 Error, fault (defect), failure 

Software systems are used daily in our life, such as work, home, shopping, etc. However, these 

systems may not work as expected and sometimes may go to fail. For instance, a system is 

unable to deliver results at the expected time, or it may suffer from security and reliability 

issues. The root cause of software failure is errors, which are human mistakes in nature. 

Subsequently, errors may cause defects, which may cause failures (figure 3.1).  

 

 

 

 

 

 

 

 

3.3.1 Errors  

Errors are the root cause of software failure and poor quality. An error can be a procedure error, 

a code error, a documentation error, and so forth. The cause of all these errors is mainly human. 

Therefore, any member of the team represents a potential source of errors. A developer can 

make logical and calculation mistakes, an architect can make design errors, a business analyst 

may misunderstand or misinterpret a client requirement, and even a customer can commit errors 

by providing insufficient or unclear requirements definition. In this section, we will outline 

some types of errors that may occur at any stage of the development process and cause defects 

and failures. 

 Faulty requirements definition: this type of error is usually committed by the client who 

may define requirements erroneously, provide incomplete definition, or include 

unnecessary requirements.  

 Defective client-developer (architect, or analyst) communication: this type of error is 

occurred due to misunderstanding the client’s requirements in the early stages of the 

software lifecycle, or misunderstanding and mishandling the changes of these 

requirements presented by the client orally or written in forms.  

Figure 3.1. The causality relationship between error, fault, and failure 
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 Deviation from software requirements: developers may deviate from the documented 

requirements deliberately or unintentionally due to many causes, such as time and 

budget pressure, or using pre-existed software modules without sufficient analysis and 

adaptation to new requirements. 

 Design flaws: design defects may engender the production of poor software quality. 

This type of error is caused often by system architects and engineers. Typical errors may 

include the non-conformance of the designed architecture to the requirements and 

specified architecture, erroneous task sequencing, erroneous boundaries and conditions 

definition, and so forth.  

 Code errors: this type of errors committed by programmers may include several errors, 

such as errors in data selection, or errors in manipulating data structures and 

development tools.  

 Non-compliance with the designed architecture: this type of error is due to 

misunderstanding the design documentation or communication failure between 

programmers and architects. The non-conformance of the implemented architecture 

with the designed one is called architecture erosion (chapter 1).   

 Shortcomings of the testing process: leaving a greater part of errors undetected or 

uncorrected is due to the failure of the testing process. This type of error made by testers 

includes incomplete test plans, documenting and reporting errors failure, correcting 

faults failure due to the misinterpretation of the causes of the faults, etc.  

 Documentation errors: documentation errors affect negatively the development and 

maintenance processes. This type of error may include design, coding, and requirements 

errors, which generate in their turns additional errors in further stages of development 

and maintenance and thus troubling the involved teams.    

3.3.2 Software defects 

A software fault or defect is the discrepancy between the expected and the yielded results. A 

defect can cause incorrect functioning of a software system under specific conditions or 

applications, and rarely the software in general (Galin, 2004). More specifically, a defect 

(caused by software errors) represents the inability of a software product to comply with the 

specified requirements, which prevents the software from acting as desired and expected. 

Generally, defects are discovered by testers and reported to developers and architects to be 

rectified. It should be noted that not all software errors become defects, for instance, erroneous 

code may not cause defective software functionalities. In this context, defects can be 

categorized into a set of severity levels as follows.  

a. Critical. A critical defect is a catastrophic fault that affects directly the core functionalities 

of a software product, and therefore, needs to be treated and removed immediately. This type 

of defect may lead to collapsing the entire system or the failure of its essential features and 

functionalities.  
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b. Major. Major defects do not cause the complete failure of a system; however, they are 

responsible for affecting the main function of a software product. 

c. Minor. Minor defects have less impact on the system and their damage is somewhat slight. 

The consequences of these defects can be noticed during the execution of the software; 

however, they do not prevent users from executing the desired task.  

d. Trivial. These defects have no impact on the software product and the execution of its 

functionalities. For instance, grammatical or spelling errors.  

The classification of these defects into these four categories is very important in the context of 

this dissertation. We defined these classes because the proposed evaluation framework MS-

QuAAF relies heavily on the severity level of defects to calculate the fulfillment of the specified 

non-functional requirements and the defectiveness of the relevant software architecture using 

dedicated metrics. The quantification of the severity of defects by the framework allows 

enhancing the estimation accuracy of the rate of quality attributes satisfaction, software 

architecture erosion and deviation, and architecture defectiveness (see chapter 5, 6).  

Additionally, defects can be classified from another point of view according to the priority of 

their treatment due to business and technical factors. As a result, defects can be of high priority 

and necessitate to be repaired as soon as possible, of medium priority and require to be treated 

in the next release, or of low priority and their treatment can be performed voluntarily with 

other defects.  

3.3.3 Software failure 

A software failure is the result of a software defect that makes the system behave incorrectly 

and fail to perform as expected in the real environment. However, not all defects conduct to 

failure that disrupts the use of the system (figure 3.2). A defect becomes a failure only when is 

activated. In other words, the defect is activated when the user applies a specific faulty 

application. In certain cases, the defect is never activated and stays inactive in the code. This is 

possible since a defective system application is never executed by the user or the combination 

of actions that activate the defect never occurs (Galin, 2004). 

To prevent failure, the assessment framework MS-QuAAF focuses on defects that occur in two 

main stages of the development process, which are design and implementation. It assesses 

architecture after the accomplishment of these two stages and then generates the defectiveness 

and conformance reports. The goal is to promoting the quality of software architecture from the 

beginning of its lifecycle, decreasing design and implementation defects, and thus minimizing 

the chances of software failure. 
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3.4 Quality models 

The proposition of software quality models is backdated to the 1970s, such as the McCall’s and 

the Boehm’s models. The main objective of such models is to provide standardized tools to 

measure software quality. Each model consists of a set of quality characteristics (quality 

attributes or factors). Therefore, general and specific software products can be assessed 

according to these characteristics in order to enhance and achieve the desired quality level. 

However, choosing which quality model to follow can be a challenging task (Al-Qutaish, 2010). 

In this section, we will present five of the most well-known software quality models and the 

comparison between them.  

3.4.1 The McCall’s quality model  

Known as the General Electrics Model, the McCall’s quality model is one of the most known 

quality models in the literature (McCall et al., 1977). It was developed specifically for the U.S. 

Air Force Electronic Systems Division (ESD) and the Rome Air Development Center (RADC) 

to provide standards and technical guidance to software acquisition managers. It attempts to 

bridge the gap between the users’ views and the developers’ priorities through a set of quality 

factors and their quality criteria. More specifically, the model consists mainly of a) quality 

factors, b) each factor is developed hierarchically to a set of quality criteria, and c) for each 

criterion, a set of programming language independent metrics are defined. 

Quality factors are user-related characteristics that contribute actively to the quality of a 

software system. Therefore, they represent the external attributes of software that reflect the 

users’ view. On the other hand, quality criteria are software-related attributes by which factors 

are judged and defined, which implies they reflect the internal view (the developer view) of a 

software system.  

The McCall’s model consists of exactly eleven factors categorized into three major activities as 

follows (figure 3.3). 

 Product revision: this activity encompasses three quality factors, which are 

maintainability, flexibility, and testability. 

Figure 3.2. Software errors, defect, and failure 
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 Product operation: this activity incorporates five quality factors, which are correctness, 

reliability, efficiency, integrity, and usability. 

 Product transition: This activity includes three quality factors, which are portability, 

reusability, and interoperability. 

 

 

 

 

 

 

 

 

 

 

Each factor consists of at least two quality criteria (figure 3.4), and thus the total number of 

those criteria is twenty-three. It should be noted that some criteria are common to more than 

one factor. For instance, the modularity criterion is common to maintainability, testability, 

reusability, and interoperability factors. This implies that the McCall’s model defines high-level 

relationships and user-oriented interactions between some of its proposed factors. Furthermore, 

each criterion is assessed by a set of measurement metrics, in this context, these metrics are 

computed by answering yes and no questions. For example, if these questions are answered 

equally, this means that the quality criterion is achieved by 50% (Al-Qutaish, 2010).  

In summary, the McCall’s model attempted to provide a complete software quality picture by 

providing eleven quality factors, twenty-three quality criteria, and measurement metrics for 

each criterion to cover internal and external attributes of target software systems.  

Figure 3.3. The McCall’s quality triangle 
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Figure 3.4. The McCall’s hierarchical quality model 

3.4.2 The Boehm’s quality model 

In 1978, B.W. Boehm introduced his quality model to assess quantitatively and automatically 

software quality. Similar to the McCall’s model, the Boehm’s model defines hierarchically a 

set of quality characteristics and metrics that contribute to the overall software quality (B. W. 

Boehm et al., 1978; Barry W. Boehm et al., 1976). However, these characteristics are grouped 

into three levels as follows (figure 3.5).  

 High-level characteristics: at this high level, there are three primary characteristics of 

the system stated as follows. 

- As-is utility:  the extent to which we can use the software product as-is.  

- Maintainability: the effort required to understand, modify, and retest a software 

product.  

- Portability: the effort required to change the system to fit with the new environment. 

 Intermediate-level: this mid-level encompasses seven quality characteristics that 

altogether denote the quality expected from a software system. 

- Portability (the portability characteristic is common between two levels). 

- Reliability: extents to which the software can perform its intended functions. 

- Efficiency: the total of resources required to execute the intended functions. 

- Usability: the effort required to learn, understand and operate the software. 

- Testability: the effort required to check that the system performs its intended 

functions. 
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- Understandability: the degree of clarity of the system’s structures and behavior. 

- Modifiability: the effort required to modify the system during maintenance.  

 Low-level: this level contains primitive characteristics that provide a foundation for 

defining metrics. Each mid-level characteristic is divided into two or more primitive 

characteristics. For instance, the modifiability characteristic is divided into 

structuredness and augmentability. Each primitive characteristic in this model is 

measured by at least one metric. Boehm defined a metric as “measure of extent or degree 

to which a product possesses and exhibits a certain (quality) characteristic” (B. W. 

Boehm et al., 1978).  

3.4.3 The Dromey’s quality model 

Dromey proposed an evaluation framework that allows constructing software quality models in 

a structured and systematic way by proceeding from the tangible to the intangible (Dromey, 

1995). He defined a generic model for building quality into the software product. This model 

consists of three main entities: components (variables, functions, modules, requirements, etc.), 

quality-carrying properties (tangible properties) for components, and high-level quality 

attributes. The framework evaluates the quality of software components through the 

measurement of their quality-carrying properties. The latter are divided into four basic 

Figure 3.5. The Boehm’s quality model 
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categories: correctness properties, structural properties, modularity properties, and descriptive 

properties (documentation). Each category of quality-carrying properties is related directly to 

high-level quality attributes that characterize the quality of a software system (figure 3.6). These 

attributes are taken from the International Standard ISO-9126 (replaced by ISO/IEC 

25010:2011 (ISO 25010, n.d.)). However, Dromey added to this list, the reusability attribute. 

The Dromey’s model is a product-based model that distinguishes that quality evaluation differs 

from one product to another. It provides a process that permits building quality-carrying 

properties into these products. In other words, the model establishes the link between tangible 

characteristics and less tangible quality attributes. Furthermore, the model can assist in 

searching, detecting, and classifying quality defects caused by the violated properties. This 

information allows building a comprehensive set of defects for any language environment 

(Dromey, 1995).  

 

Figure 3.6. The Dromey’s quality model 

3.4.4 The FURPS quality model 

The FURPS model was developed originally by Robert Grady at the Hewlett-Packard (Grady, 

1992). This model stands for five quality characteristics divided into functional (F) and non-

functional requirements (URPS) as follows (figure 3.7). 

 Functionality: this attribute is evaluated by assessing feature sets, software capabilities, 

and overall system security.  

 Usability: this attribute includes human factors, user interface consistency, aesthetics, 

training materials, and documentation.  
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 Reliability: this attribute can be evaluated by measuring severity and frequency of 

failure, predictability recoverability, MTTF (mean time to failure), etc. 

 Performance: this attribute can be evaluated by measuring response times, resource 

consumption, recovery times, efficiency, etc. 

 Supportability: this attribute may include adaptability, testability, installability, 

maintainability, serviceability, configurability, compatibility, and extensibility.  

This model was later extended to FURPS+ by IBM Rational Software (Jacobson et al., 

1999; Kruchten, 2000). The “+” indicates more requirements and standards, such as design 

constraints, interface requirements, implementation requirements, and physical 

requirements.  

  

 

 

 

 

 

 

 

 

3.4.5 The ISO/IEC 25010:2011 Quality Models  

The product quality model of the Systems and software Quality Requirements and Evaluation 

(SQuaRE) was developed specifically to identify quality attributes that can be used to establish 

stakeholders’ requirements, their satisfaction criteria, and their corresponding measures (ISO 

25010, n.d.). It was derived from the ISO/IEC 9126:1991, which was developed to support 

these needs. The latter replaced by the ISO/IEC 9126:2001, which defines six quality attributes 

and twenty-seven sub-attributes for internal and external qualities (Al-Qutaish, 2010). 

Furthermore, this standard defined a quality in use model, which includes four quality 

characteristics. However, the ISO/IEC 9126:2001 was also withdrawn and revised by the 

ISO/IEC 25010:2011 (figure 3.9). The latter integrates the same quality characteristics with 

some adjustments: 

 Adding Security as a characteristic instead of a sub-characteristic of functionality.  

 Adding compatibility as a characteristic. 

 Removing the Compliance sub-characteristics. 

 Adding new sub-characteristics, such as availability, modularity, and reusability.  

 Giving more accurate names to characteristics and sub-characteristics.  

Figure 3.7. The FURPS’s quality model 
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 Adding Context Coverage as a new characteristic to quality in use.  

This standard defines two models relevant to both computer systems and software products: 

a) A quality in use model. This model incorporates five quality characteristics and nine sub-

characteristics that concern the impact of interaction when using software products and 

computer systems in a particular context of use. The ISO/IEC defined the quality in use 

as “the degree to which a product or system can be used by specific users to meet their 

needs to achieve specific goals with effectiveness, efficiency, freedom from risk and 

satisfaction in specific contexts of use” (ISO 25010, n.d.). Accordingly, the following 

quality characteristics are defined (figure 3.8): 

- Effectiveness. 

- Efficiency. 

- Satisfaction: this attribute encompasses Usefulness, Trust, Pleasure, and Comfort. 

- Freedom from risk: this attribute includes Economic risk mitigation, Health and 

safety risk mitigation, and Environmental risk mitigation. 

- Context coverage: this attribute incorporates Context Completeness and Flexibility.  

b) A product quality model. This model incorporates eight quality characteristics and 

thirty-one sub-characteristics related to static and dynamic properties of software 

products and computer systems (figure 3.9): 

- Functional Suitability: it includes Functional completeness, Functional correctness, 

and Functional Appropriateness. 

- Performance Efficiency: it includes Time Behavior, Resource Utilization, and 

Capacity. 

- Compatibility: it encompasses Co-existence and Interoperability. 

- Usability: it encompasses Appropriateness Recognizability, Learnability, 

Operability, User Error Protection, User Interface Aesthetics, and Accessibility. 

- Reliability: it incorporates Maturity, Availability, Fault Tolerance, and 

Recoverability. 

- Security: it includes Confidentiality, Integrity, Non-Repudiation, Authenticity, and 

Accountability. 

- Maintainability: it comprises Modularity, Reusability, Analyzability, Modifiability, 

and Testability. 

- Portability: it comprises Adaptability, Installability, and Replaceability.  

According to this standard, these models are developed for supporting specification, 

development, requirements, maintenance, and quality assurance and control of software 

products and computer systems. It should be noted that these quality models have excluded 

functional properties; however, they included the Functional Suitability characteristic (ISO 

25010, n.d.).  
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Figure 3.8. A quality in use model (ISO/IEC 25010:2011) 

 

 

Figure 3.9. A product quality model (ISO/IEC 25010:2011) 

3.4.6 Analysis and discussion 

By analyzing and comparing the quality factors (attributes, characteristics) of the above models, 

we found that only one quality characteristic is common to all these models, which is the 

Reliability attribute (Table 3.3). The same result is found by Al-Qutaish (Al-Qutaish, 2010) in 

his comparative study; however, he utilized the ISO 9126 instead of ISO 25010. This result 
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demonstrates that Reliability is the most important quality characteristic in software 

engineering according to these models.  

Quality characteristics McCall’s 

Model 

Boehm’s 

Model 

Dromey’s 

Model 

FURPS 

Model 

ISO/IEC 

25010:2011 

Correctness X     

Maintainability X  X  X 

Testability X X    

Reliability X X X X X 

Efficiency X X X  X 

Usability X  X X X 

Integrity X     

Portability X X X  X 

Interoperability X     

Reusability X  X   

Flexibility X     

As-is Utility  X    

Human Engineering  X    

Understandability  X    

Modifiability  X    

Functionality   X X  

Performance    X X 

Supportability    X  

Functional Suitability     X 

Compatibility     X 

Security     X 
Table 3.3. Comparison between the presented quality models 

Furthermore, Table 3.3 illustrates that three quality characteristics are included in four quality 

models, which are Efficiency, Usability, and Portability, and one characteristic is included in 

three models, which is Maintainability. These four attributes are also considered of great 

importance in assessing software systems. On the other hand, some attributes are defined 

exclusively by one quality model, such as Supportability and Understandability. However, this 

does not diminish their role in quality evaluation. Actually, these attributes may be considered 

important in specific contexts by specific stakeholders. Besides, we found in this comparison 

that some characteristics in some models are defined as sub-characteristics in other models, for 

instance, the Integrity and Interoperability attributes in the McCall’s model are defined as sub-

attributes of the Security and Compatibility attributes in the ISO/IEC 25010:2011, respectively.  

To this end, we found that the McCall’s, the Dromey’s, and the ISO/IEC 25010:2011 models 

are very close to each other in terms of the defined quality characteristics.  More specifically, 

they have five quality attributes in common, which are Maintainability, Reliability, Efficiency, 

Usability, and Portability. The Boehm model can also be considered close to these models but 

to a lesser extent. It should be noted that all the attributes in common belong to the McCall’s 
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model, which proves that the latter is the foundation on which most of the successor models are 

built, even the recent ones, such as the ISO/IEC 25010:2011.  

3.4.7 MS-QuAAF and Quality models 

MS-QuAAF is a quantitative evaluation framework that assesses software architecture with 

respect to stakeholders’ NFR goals (chapters 5, 6). These goals that represent quality 

characteristics may belong potentially to a specific quality model. Therefore, among the 

questions that may arise when using this framework are the following.  

- What is the relationship between the framework and quality models? 

- Do quality models have the same impact on the evaluation effort in terms of time 

and money?  

One of the major characteristics of MS-QuAAF is its independency of quality models. The 

framework has no knowledge about the quality model of the quality attributes under assessment. 

The evaluation consists of accepting any quality attribute as input, calling the evaluation 

services to perform the assigned assessment tasks, and then producing the evaluation report as 

output. Therefore, the evaluation effort of target architectures is always performed 

independently of their quality models, which means that the framework supports all models. 

For the second question, if we suppose that many quality models are fully adopted by evaluators 

in the assessment process of the same architecture, then the evaluation effort in terms of time 

and money is obviously not the same. This is due to the complexity of quality models and the 

number of their quality characteristics and sub-characteristics. For instance, the evaluation 

efforts of the same attribute A1 that belongs to the quality models M1 and M2 may not be equal 

because A1 of M1 has sub-attributes more than A1of M2. 

3.5 Conclusion  

This chapter tackled the key topic of this dissertation, which is software quality. First, we have 

started by depicting the concept of quality in general according to the point of view of the most 

known figures of the quality movement, such as Deming, Juran, and Shewhart. Their definitions 

of quality are divided into two major philosophies. The former defines quality as conformance 

to requirements, in which a product is judged of high quality if it meets the specified 

requirements. The latter defines quality as customer satisfaction, in which a product is judged 

of high quality if it fulfills customer’s needs and expectations. Furthermore, we have presented 

our perspective on software quality, which is the degree of achievement of the desired quality 

attributes of all stakeholders and not just customers, taking into account the tradeoffs among 

these attributes. This definition is the basis on which the framework MS-QuAAF was built.  

Second, we have outlined three major quality management approaches developed to satisfying 

customer’s needs, as well as the organization’s objectives, which are Total Quality 

Management, Software Quality Assurance, and Software Quality Control. These approaches 



Chapter 3. Software quality  54 

represent quality management philosophies and activities employed to manage quality within 

an organization.  

Third, we have depicted the problem of software errors and defects that usually cause software 

quality degradation. In this context, defects are mainly caused by human errors, such as faulty 

requirements definition or code errors. Defects can be critical, which may conduct to software 

failure and make the system fail to perform as expected in the real environment. 

Fourth, we have presented some of the most well-known quality models, such as the McCall’s 

model and the ISO/IEC 25010:2011 model. These models provide standardized measures to 

assess software quality by defining a set of quality characteristics and sub-characteristics. 

Furthermore, we have explained the relationship between quality models and the framework 

MS-QuAAF, and the impact of these models on the assessment process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 

Software architecture analysis and 

evaluation methods 

 
In this chapter, we will depict the main evaluation methods proposed to assess software 

architecture. We classified these methods according to a set of criteria, such as measurability 

and evaluation techniques. The classification criteria have facilitated categorizing these 

methods, comparing their evaluation techniques, and emphasizing their advantages and 

drawbacks. Performing this literature study and extracting the main shortcoming of evaluation 

methods allowed us at the first time to construct the skeleton of our evaluation framework MS-

QuAAF and define its main goals. Subsequently, we have developed and improved the 

framework gradually until its final version, which will be presented in detail in the next 

chapters.  
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4.1 Motivation for architecture evaluation 

Since it has emerged in the last decade of the 20th century as a sub-discipline of software 

engineering, software architecture (SA) has been considered as the appropriate level to deal 

with quality attributes (Dobrica & Niemela, 2002). Hence, it has attracted the attention of 

researchers, as well as practitioners since the size and complexity of software systems have 

been augmented tremendously along with the increased demand of stakeholders’ to satisfying 

their quality requirements (figure 4.1). They have realized (researcher and practitioners) that 

high-level design description is the key to understanding and managing complex software 

systems. Moreover, they recognized that the achievement of quality attributes is constrained by 

the SA of these systems and the architectural decisions made at this level (Babar et al., 2004).  

Undoubtedly, SA plays a major role in the achievement of the desired quality attributes; 

therefore, analyzing and assessing SA against those attributes of concern is very important as 

early as possible. In this context, the main goal of SA evaluation is to detect architectural defects
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 and liabilities that may degrade the quality of architecture, and thus determining the extent to 

which architectural decisions meet the quality requirements. More specifically, the early 

evaluation permits:  

- Identifying and mitigating design risks.  

- Predicting the quality of the system before it has been built.  

- Verifying that quality requirements are addressed in the design.  

- Assessing the potential of the architecture to deliver a system that is capable of fulfilling 

those requirements.  

- Reducing the development effort, and saving the integration, testing, and maintenance 

costs by fixing defects at the initial stages of the software development.  

Although most of the assessment methods focus on the early evaluation, other methods gave 

attention to evaluating architecture at late stages of development, generally after the 

implementation stage. The major aim of the late evaluation is to verify the conformance 

between the intended architecture and the implemented one. In other words, verifying that 

architectural decisions made at design time, such as tactics and architectural styles are not 

violated at the implementation stage. The infringement of these decisions causes the 

phenomenon of architecture erosion, which can be defined as the mismatch between the 

descriptive architecture (the realized one) and the prescriptive architecture (the intended one) 

(de Silva & Balasubramaniam, 2012). However, most of the well-known evaluation methods 

and frameworks in the literature focus on the evaluation at the early stages, which will be 

addressed extensively in the current chapter.   

Figure 4.1. The relationship between software architecture and business goals 

4.2 Classification criteria for evaluation methods 

Different communities with different points of view have developed a considerable number of 

techniques to evaluate SA with respect to the targeted quality attributes. The most well-known 
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evaluation methods are scenario-based, software metrics, attribute model-based, and machine 

learning-based. The categorization of these methods can be performed according to many 

criteria. Dobrica (Dobrica & Niemela, 2002) has defined a framework for classifying scenario-

based evaluation techniques according to a set of elements: specific method’s goal, evaluation 

techniques, quality attributes, SA description, Stakeholders’ involvement, method’s activities, 

reusability of an existent knowledge base, and method validation. Additionally to these 

elements, Babar et al. (Babar et al., 2004) have added other categorization elements for his 

classification framework, such as maturity stage, process support, and tool support. Sobhi et al. 

(Sobhy et al., 2021) have defined four criteria for classifying methods that evaluate SA under 

uncertainty, which are quality evaluation, quality attributes consideration, level of autonomy, 

and uncertainty management.  

In this chapter, we will categorize evaluation methods according to six classification criteria: 

a. Measurability (C1): Measurability allows dividing evaluation methods into two basic 

classes, which are qualitative and quantitative evaluation. C1 permits distinguishing 

methods that use qualitative techniques to assess SA from methods that use measuring 

(quantitative) techniques for the same purpose. However, some methods are called 

hybrid because they combine both techniques.  

b. Evaluation technique (C2): This criterion permits determining the evaluation 

techniques within each main class (Qualitative or quantitative). Qualitative methods 

consist mainly of questioning techniques to generate qualitative questions to be asked 

of an architecture. These techniques include questionnaires, checklists, and scenarios. 

On the other hand, quantitative techniques suggest quantitative measurement to evaluate 

an architecture. using, for example, metrics, simulations, and experimentations. 

c. Evaluation stage (C3): This criterion permits to classify evaluation techniques 

according to the development stage in which architecture evaluation is performed. The 

latter concerns principally the designed architecture (design stage), the implemented 

(realized) architecture (implementation stage), or both of them (continuous evaluation). 

d. The number of quality attributes (C4): This criterion permits to determine how many 

(single or multi-attributes) and which quality attributes are covered by each technique. 

e. Tradeoffs (C5): this criterion determines whether an evaluation technique supports 

tradeoffs among the competing quality attributes. 

f. Tool support (C6): This criterion allows determining whether an evaluation method 

provides tool support.  

According to these criteria (figure 4.2), we divided the evaluation methods into three main 

categories: 

- Scenario-based methods: Most of these methods are qualitative, whereas the rest of 

them are hybrid. 



Chapter 4. Software architecture analysis and evaluation methods 59 

- Goal decomposition analysis methods: The proposed methods are qualitative, 

quantitative, or hybrid.  

- Metric-based methods: These methods are based on metrics, which means they are 

purely quantitative.  

In this chapter, we have chosen to present these categories because a) they have been addressed 

excessively in the literature, especially scenario-based and metric-based, b) they address three 

aspects related directly to our assessment framework, which are architecture analysis, 

architecture evaluation, quality attributes, and metrics. Methods that use techniques, such as 

machine learning and statistical algorithms will not be presented in this dissertation and they 

are considered out of scope 

4.3 Evaluation methods 

There are numerous evaluation methods in the literature proposed to evaluate software 

architecture, each of which has its specificity, advantages, and drawbacks. In this chapter, we 

have chosen to portray a) the most addressed methods in the literature, and b) methods that are 

somehow related to our evaluation method. More specifically, three categories of evaluation 

methods will be presented in this section, which are scenario-based methods, goal 

decomposition methods, and metric-based methods. Subsequently, these methods will be 

compared and classified according to the above classification criteria.  

4.3.1 Scenario-based methods 

At the beginning of the 1990s, scenario-based frameworks appeared as the descriptive means 

for specifying and assessing quality attributes within a context. The latter means that quality 

attributes cannot exist in isolation; therefore, they must be evaluated with respect to a specific 

context. For example, evaluating the security attribute with respect to some types of threats, or 

performance with respect to specific resource utilization, and so forth. A scenario can be defined 

as a specified sequence of steps that may involve the use or modification of the system (Kazman 

et al., 1996). The main goal of this type of evaluation is to verify the reaction of architecture 

against the specified scenarios to decide its wellness within specific contexts.   

There is a myriad of scenario-based methods proposed for architecture analysis and evaluation. 

Therefore, we will attempt to present the most known scenario-based methods within the 

following non-exhaustive study, in which diverse evaluation techniques will be depicted. The 

reason behind presenting this category of evaluation methods is that they focalize mainly on 

architecture analysis at the design stage, which allows discovering defects as early as possible. 

This inspired us to define one of the primary services of MS-QuAAF that allows analyzing 

architecture against the documentation specified at early stages. However, MS-QuAAF’s 

service evaluates architecture quantitatively through a set of dedicated metrics instead of using 

scenarios within qualitative techniques.    
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4.3.1.1 Scenario-based Architecture Analysis Method (SAAM) 

SAAM is the first well-known scenario-based architecture analysis method proposed originally 

to allow comparison between the competing architecture solutions (Kazman et al., 1996). Over 

the years, the method’s steps have evolved as a result of the increased author’s experience with 

architecture analysis. SAAM is interested in evaluating the architecture to determine its fitness 

with respect to certain system properties (qualities). More specifically, its main goal is to 

evaluate the architecture design decisions by checking architectural principles and assumptions 

against the documentation that describes the desired properties using a set of scenarios. 

Additionally, it contributes to identifying risks in software architectures.  

Scenarios are brief descriptions of anticipated or expected use of a system from the 

stakeholders’ viewpoints (developers, end-users, etc.).They have been widely used as a 

technique during a) requirements elicitation, b) design stage to compare design alternatives or 

Figure 4.2. Classification criteria for evaluation methods 
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c) development stage to verify the responses of an already-built system to specific operational 

situations. However, SAAM is considered as the first method that uses brief scenarios (one 

sentence long) for architecture quality analysis. Scenarios are used to express particular 

instances of each stakeholders’ quality attributes, and then target architectures are analyzed 

against the constraints specified by each defined scenario to assess the extent to which the 

architecture satisfies those attributes. It should be noted that this method is destined originally 

to assess modifiability; however, other attributes, such as portability and extensibility may also 

be assessed (Sobhy et al., 2021).  

The architecture analysis carried out by SAAM consists of the following steps: 

 Describing candidate architecture: architectures should be described with a clear syntactic 

architectural notation that all stakeholders involved in the analysis process can understand. 

An architecture is described in terms of functional partitioning (a collection of the system’s 

functions), structures (components and connectors), and the allocation from functionalities 

to those structures.  

 Developing scenarios: scenarios are developed to illustrating the activities that the system 

must accomplish or anticipating the changes that may be made to the system over time. 

These scenarios must cover all major and important uses of the target system. SAAM 

requires the presence of all stakeholders, such as developers, maintainers, and customers to 

identify the possible scenarios, which represent tasks related to each role of these 

stakeholders. The scenarios development and architecture description processes are related 

and iterative (figure 4.3). The final version of the architecture description and scenarios are 

considered as input to the subsequent analysis activities. 

 Performing scenarios evaluation: for each scenario, changes to architecture are listed and 

the cost for performing these changes is estimated. A modification means the introduction 

of a new component or connector or changing the specification of an existing component or 

connector.  At the end of this step, a summary table that lists all scenarios is created. The 

description of the impact or the changes that will be made by each scenario is also included 

in this table. The description illustrates the components and connectors that must be changed 

and the new components and connectors that must be introduced. This table is also useful 

for comparing candidate architectures to select which architecture can support better the list 

of scenarios.  

 Revealing scenarios interaction: this process consists of determining scenarios that affect 

common sets of components. This case is defined by SAAM as scenario interaction. 

Measuring interaction allows determining the extent to which separation of concerns is 

supported by the target architecture. Architectures with fewer scenario conflicts are favored 

par SAAM.  
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 Overall evaluation: Scenarios and their interactions are weighted according to their relative 

importance, which allows determining the overall ranking. This process necessitates the 

involvement of all the system’s stakeholders.  

SAAM has been validated in various domains and case studies; therefore, it was considered as 

a mature evaluation method. Among these case studies, we can find a global information 

system, air traffic control, and a revision control system (WRCS).  

4.3.1.2 Extending SAAM by integrating in the domain (ESAAMI) 

ESAAMI is a combination of analytical techniques provided by SAAM and reuse-based 

approaches. Hence, SAAM is integrated and deployed in domain-specific and reuse-based 

development processes (Molter, 1999). From the author’s viewpoint, reducing risk consists of 

reusing architectures from early successful projects in the same application domain. This can 

be achieved if the reused architecture and the system under development are adequately similar. 

Additionally, the reused architecture must provide flexibility to be adapted and fitted with the 

new system.  

This method is similar to SAAM concerning SA description, evaluation techniques, and 

stakeholders’ involvement. However, ESAAMI incorporates already existing knowledge, 

which makes the development process reuse-aware. Making available this knowledge requires 

providing reusable assets, such as proto-scenario, proto-evaluation, and architectural hints. 

These assets constitute analysis templates. A template in a domain-oriented development can 

be created on an abstraction level defined by the commonalities of the applications in this 

domain. In this context, proto-scenarios represent a generic description of reuse situations or 

interactions with the system. They are designated to be used in the stage of scenario elicitation, 

in which the selected scenarios are refined to fit specific details of the target application. The 

evaluation of these scenarios is facilitated by early analysis’s protocols of different projects as 

well as proto-evaluation. The latter can describe, for instance, how scenarios can be executed 

using a set of abstract architectural elements. In this regard, the proto-evaluation can be refined 

to taking into account the actual architecture elements and their relationships. In addition to 

proto-evaluation and protocols, hints are associated with scenarios to indicating which 

architectural elements would make the scenario convenient to handle (Molter, 1999). Similarly, 

scenarios interaction can also benefit from the early analysis’s protocols to characterize, for 

instance, specific scenarios as typical and necessary.   

As a means to compare several architectures regarding their usability in a specific application, 

scenarios and scenarios interaction can be weighted to depict their impact on this application. 
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The obtained weights can be reused in different projects in the same domain to make the 

analysis results comparable. 

ESAAMI allows reusing templates analysis to reduce the cost of analysis and expedite its 

implementation because of the availability of a suitable foundation for the scenarios elicitation 

and refinement. In other words, reusing templates in a domain-centric development process 

allows exploiting experiences and already existed knowledge to boost up the relevance of the 

analysis results. Besides reusing templates in several projects may conduct to obtain 

comparable analysis results, which helps in increasing the understanding of the differences 

between the considered architectures.  

The method is not considered validated since the author did not publish records that indicate 

the application of the method in experimental validation.  

4.3.1.3 Software Architecture Analysis Method for Evolution and Reusability 

(SAAMER) 

The authors presented a framework and a set of architectural views to assess the evolution and 

reuse quality attributes of software architecture by following an analysis approach based on 

SAAM. To guarantee that the analysis is scientific and well organized, a framework for 

gathering information and analysis is formulated. The latter has defined four main activities 

performed iteratively as follows (Lung et al., 1997). 

Figure 4.3. ESAAMI approach 
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Gathering. In this phase, four categories of information are collected and compiled to perform 

the analysis, namely stakeholders, architecture, quality, and scenarios information. 

Modeling. Modeling is a critical phase because if it is not accomplished correctly, then the 

whole analysis can be misled. The information collected previously is mapped into usable 

artifacts. This information is used to capture architecture, driving analysis, and providing 

feedback in the latter phases. In this phase, the modeling should take into account two aspects, 

which are the breadth and depth of analysis. The former describes the relationships between 

scenarios, quality attributes, stakeholders’ objectives, and architectural objectives. The latter 

deals with the abstraction levels at which various categories of information are represented. The 

depth of analysis impacts its accuracy.  

Analyzing. In this phase, SAAM is extended to perform quality attributes analysis, in which 

scenarios are mapped to SA. The analysis is performed through artifacts, such as domain models 

(used to compare competing architectures), relevant architectural views, scenarios, and 

tradeoffs.  

Evaluating. In this phase, architecture issues, such as performance bottlenecks are located, and 

mitigation strategies are enumerated.  

In addition to this framework, SAAMER adopts various architectural views that are considered 

critical for the analysis: 

 Static view: This view depicts the overall topology, which includes a module diagram, 

structure diagram, logical diagram, and object diagram. 

 Map view: This view identifies design violations and the mapping between functions 

or features and components. 

 Dynamic view: This view depicts the behavioral aspects of the system. It may include 

a causal diagram, functional diagram, object interaction diagram, Petri net, etc. 

 Resource view: This view is interested in the utilization aspect of the system resources.  

In this method, scenarios are the main driver for the architecture analysis and the capture of 

other architectural views. These views allow revealing deeper information, whereas scenarios 

can describe important functionalities that the system must support where the system needs to 

be changed. SAAMER extends SAAM by identifying for each scenario, required changes and 

estimating the necessary effort to make those changes. This information allows determining 

how the system can support stakeholders’ objectives or identifying the risk level or reuse across 

the application. SAAMER can analyze and expose architecture areas that are tailorable, 

reusable, and not reusable by using insights views and scenarios rather than developing the 

architecture from scratch, which may contribute to reducing the time and development effort of 

the new architecture.  
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Furthermore, this method answered the question concerning when to stop scenarios generation 

(unlike SAAM). Two methods are used here. First, the generation is tied to various 

stakeholders, quality, and architectural objectives. Based on these objectives and domain 

experts, scenarios are identified and clustered to make sure each objective is well covered. 

Second, the balance of scenarios regarding objectives is validated using QFD (Quality Function 

Deployment). In this context, matrices are generated to depict the relational strength from 

stakeholder and architectural objectives to quality attributes. Subsequently, these attributes are 

translated into a set of scenarios to reveal the coverage of each quality attribute using an 

imbalance factor. The latter is calculated by dividing the coverage by quality priority. If the 

result is less than 1, then more scenarios are needed to cover the concerned attribute.  

Concerning the method validation, SAAMER was applied to one system, which is a 

telecommunication and switching system. 

4.3.1.4 The Architecture Trade-off Analysis Method (ATAM) 

ATAM is the most popular architecture evaluation method (Sobhy et al., 2021). Its techniques 

are inspired by three areas: the quality attribute analysis, the notion of architectural styles, and 

SAAM. ATAM is considered as an evolved version of SAAM, in which the main purpose is 

not only evaluating the consequences of architectural decisions with respect to quality attributes 

requirements (Kazman et al., 2000) but to focus on how these attributes interact with each other 

and tradeoff against each other. In this context, taking decisions to promote one quality attribute 

may affect negatively other quality attributes. For instance, to promote availability and 

performance in a client-server architecture, architects decide to increase the number of servers. 

However, this decision may affect the security attribute by increasing the number of attack 

points and failures.  

The ATAM process consists of nine steps, in which the time required to carry out the analysis 

depends on the size of the system, the maturity of architecture, and the state of its description. 

- Step 1: In this step, the method is presented and described to stakeholders, particularly, 

architecture team and customer representatives. More specifically, the presentation describes 

the steps briefly, the procedures that will be for elicitation/ analysis, and the evaluation 

outputs.  

- Step 2: In this step, the project manager describes at a high abstraction level the system to 

be evaluated to all participants from a business perspective. Principally, the manager 

describes the most important functional requirements, business goals and motivation, 

constraints, and architectural drivers (major quality attributes, such as availability and 

performance).   

- Step 3: The proposed architecture will be described with a focus on how it addresses the 

business drivers. The description should cover technical constraints (hardware, OS, 
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middleware, etc.), systems with which the system may interact, and architectural approaches 

that must be followed to meet quality requirements. 

- Step 4: This step consists of capturing and identifying architectural (without analyzing) 

approaches and architectural styles adopted to address the highest priority quality attributes. 

- Step 5: In this step, the most important quality goals are identified, prioritized, and refined. 

The objective of this step is to draw stakeholders’ attention to focus on the most critical 

aspects of architecture by means of building a utility tree. The output of the tree generation 

is a prioritization of specific attributes realized as scenarios. The obtained prioritized list 

guides the remainder of the analysis by providing the evaluation team with information, such 

as where to probe architectural approaches, their risks, tradeoffs, etc. Moreover, this tree 

allows concretizing the quality attribute requirements and forcing the involved stakeholders 

to define their quality requirements more precisely.  

- Step 6: Based on the high-priority quality goals identified in the previous step, the elicitation 

and analysis of the architectural approaches that address those goals are performed. The main 

outputs of this step are the list of architectural approaches, questions associated with them, 

and responses to these questions. Additionally, architectural risks, sensitivity points, and 

tradeoffs are generated. 

- Step 7: This step is dedicated to brainstorming and prioritizing scenarios. According to the 

authors, generating scenarios can facilitate discussion and brainstorming when considerable 

numbers of stakeholders are involved in the ATAM. Based on scenarios generated in the 

fifth step, a broader set of scenarios is elicited from all stakeholders. Subsequently, the 

obtained set of scenarios is prioritized via a voting procedure.  

- Step 8: This step reiterates step 6; however, only the highly ranked scenarios (from the 

previous step) mapped to architectural approaches are considered to be test cases for the 

analysis. This step represents a testing activity that would allow revealing new additional 

information, such as sensitivity points and tradeoffs. If new information is uncovered, then 

the utility tree generated previously is failed. Therefore, the evaluation team should return 

back to step 4, 5, and 6 and work through them until no further new information is revealed. 

- Step 9: This is a reporting step, in which the ATAM team presents the findings to 

stakeholders based on the information collected previously (styles, scenarios, utility tree, 

etc.).  

These steps are grouped into two phases. The first phase (step 1 to step 6) is architecture-centric, 

in which information is gathered, elicited, and analyzed. The second phase is stakeholder-

centric that consists of building a utility tree (based on the utility tree of phase 1), collecting 

architectural approaches information, prioritizing scenarios, and mapping this information and 

scenarios onto architecture. Moreover, stakeholders’ viewpoints are elicited and the results of 

the first step are verified.  
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ATAM has been validated with several software systems and domains, such as the Battlefield 

Control System (BCS) and software-intensive ecosystems (Boxer & Kazman, 2017). In fact, it 

is considered the most applied evaluation method in both academic and industrial contexts.  

4.3.1.5 Scenario based architecture reengineering (SBAR) 

SBAR is a reengineering software architecture method that supports the assessment of multiple 

quality attributes. The evaluation consists principally of scenarios and performing design 

transformation to improve the targeted quality attributes. This process is performed iteratively 

until all requirements are met (figure 4.4). The inputs of this method are the software 

architecture and the updated requirement specifications, whereas the output is the improved 

design. SBAR consists of four main steps to perform assessment and transformations as follows 

(Bengtsson & Bosch, 1998). 

a. Incorporating new functional requirements. In this stage, quality attributes are not addressed 

directly. Based on the updated specification, the decomposition of the system into its main 

components is redesigned at a high abstraction level and thus, the first architecture version 

is generated.  

b. Software quality assessment. The goal of SBAR is to evaluate the potential of the designed 

architecture to achieve quality requirements. The method uses mainly scenario-based 

analysis to assess quality attributes Moreover; three complementary approaches can be used, 

which are simulation, experience-based reasoning, and mathematical modeling. Scenarios 

are particularly used to evaluate reusability and maintainability since they have proven their 

ability to express potential system changes. The evaluation through scenarios can be done in 

three sub-steps, which are defining a representative set of scenarios, analyzing architecture, 

and summarizing results. The simulation approach is used particularly to assess operational 

quality, such as fault-tolerance and performance. The main architecture’s components are 

implemented whilst other components are simulated, which generates an executable system. 

The context, inside which the system is supposed to execute, is also simulated at an 

appropriate abstraction level. Mathematical modeling is more suitable for the static 

evaluation of the design models. It can serve as an alternative to simulation since both 

approaches can assess operational qualities. Experience-based approaches allow assessing 

quality attributes based on experience and logical reasoning based on that experience. In this 

context, the evaluation process is more subjective and less explicit since it is based on 

experience and intuition. 

c. Architecture transformation. After the architecture evaluation has been completed, the 

assessed values are compared to the specified requirements. If unsatisfactory qualities are 

discovered, then the architecture must be changed to meet these qualities. The reengineering 

of the architecture consists of performing architecture transformations, each of which leads 

to generating a new architecture version that has the same functionalities but differs in its 
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quality attributes’ values. There are many categories of transformation that can be applied 

to architecture, such as imposing specific architectural styles and patterns. 

d. Software quality assessment. Steps 2 and 3 are repeated until all quality requirements are 

met. 

 

 

 

 

 

 

 

 

 

4.3.1.6 Cost-Benefit Analysis Method (CBAM) 

CBAM is an architecture-centric analysis approach destined for the economic modeling of 

software and systems. It was developed upon ATAM, in which the cost and benefits of 

architectural decisions are modeled to optimize such decisions. In this context, cost and benefits 

are traded off with system quality goals, and thus decisions are made in terms of these benefits 

as well as in terms of quality attribute response (Kazman et al., 2001).  

Once ATAM finishes the analysis, CBAM starts based on the ATAM documented artifacts, 

such as the description of business goals, architectural views, risks, and tradeoff points. ATAM 

allows uncovering architectural decisions and links them to business goals and quality attribute 

response, whereas CBAM allows determining the cost and benefits associated with these 

decisions. Accordingly, quality attributes can be traded off based on the associated cost/benefits 

and the importance degree of each attribute, which may aid stakeholders in the decision-making 

process. CBAM consists of six activities as follows. 

 Choosing scenarios and architectural strategies. Once the set of prioritized scenarios is 

generated by ATAM, a set of possible architectural decisions is described and associated 

with each scenario for which improvement is desired. The output of this step is a set of 

improvements, the affected portions of the existing architecture, and the description of 

architectural strategies. 

 Assessing quality attribute benefits. The decision-making aiding process consists of 

determining cost and benefits. The authors consider determining cost as a well-established 

software engineering component; therefore, they focus principally on benefit. The latter is 

correlated with the support degree that architectural strategies can provide to quality goals, 

Figure 4.4. SBAR activities 
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which are related to business goals. It should be noted that both goals are outputs of ATAM. 

This information is used by CBAM to determine the importance of each involved quality 

attribute in the architecture. Each stakeholder assigns a score to each QA (e.g., performance: 

25 and modifiability: 20 according to a 0:100 grading scale). 

 Quantifying the architectural strategies’ benefits. The assigned quality scores in the previous 

step are used to evaluate each architectural strategy. The latter can affect multiple quality 

attributes to varying degrees by contributing negatively or positively to their achievement. 

This can be captured by assigning -1 to the negative contribution and +1 to the positive one. 

Subsequently, the benefit of each architectural strategy is calculated by multiplying the 

corresponding quality score by the contribution value. The obtained results allow ranking 

the benefits of every considered architectural change. Furthermore, to capture uncertainty, 

CBAM uses stakeholder judgment variations for uncertainty measurement. 

 Quantifying the architectural strategies’ cost and schedule implication. In this step, the 

expected cost of each architectural strategy is estimated. Moreover, the schedule implication 

of each strategy is estimated in terms of critical shared resources, elapsed time, and 

dependencies among implementation efforts.  

 Calculating desirability. In this step, a desirability metric is calculated. This metric can be 

used to rank architectural strategies and help in the decision-making process. 

 Making decisions. In this step, architectural strategies are chosen according to cost, benefit, 

schedule implication, and desirability metric.  

4.3.1.7 Architecture-Level Modifiability Analysis (ALMA) 

ALMA is a scenario-based analysis method that focuses exclusively on modifiability, which 

means it does not support tradeoffs. It is characterized by its multiple analysis goals, repeatable 

techniques for performing analysis steps, and making implicit assumptions explicit. This 

method consists of the following steps (Bengtsson et al., 2004). 

 Goal setting. This first activity consists of determining the analysis goals. These goals are 

maintenance cost prediction, risk assessment, and software architecture selection. 

 Architecture description. In this step, information about the software architecture is 

collected. This information allows evaluating scenarios in two steps, which are analysis of 

the impact of scenarios and impact expression. ALMA depends on architectural views to 

provide information such as the decomposition of the system into components, the 

relationships between those components. 

 Change scenarios elicitation. The goal of this step is to find and select the change scenarios 

required for the evaluation in the next step. However, the number of possible changes is 

probably infinite. ALMA combines two techniques to overcome this issue. The first 

technique (equivalence classes) consists of dividing scenarios into equivalence classes and 

selecting one scenario as representative for each class, which may reduce the number of 

scenarios significantly. The second technique (classification of change categories) uses top-
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down or bottom-up approaches to classify the important change scenarios according to a 

selection criterion. 

 Change scenarios evaluation. ALMA applies the architecture-level impact analysis to 

determine the impact of changes scenarios on software architecture. This type of analysis is 

divided into three steps: identifying the affected components, determining the effect on the 

components, and determining ripple effects. Subsequently, the results of the analysis can be 

expressed either quantitatively or qualitatively using quantitative measures (e.g., ++, +, -, --

) to facilitate comparing the effects of scenarios.  

 Interpretation. In this step, the obtained results are interpreted according to the system 

requirements and the analysis goal. 

ALMA has been validated in several cases and domains, such as Althin medical, DFDS 

Fraktama, and software architectures at Ericsson Software Technology.  

4.3.1.8 Active Reviews for Intermediate Design (ARID) 

Active design reviews (ADR) are a technique proposed primarily to ensure quality by 

evaluating the detailed design of modules or components of a software system. Reviewers are 

asked to utilize the design and test actual understanding. ARID is a combination of ADR with 

a scenario-based architecture evaluation method, which is ATAM to tackle the problem of 

evaluating preliminary designs. This method is designed to perform in two main phases: pre-

meeting and review meeting to assess one quality attribute namely usability. The first phase 

encompasses four steps (step1 to step 4), whereas the second phase encompasses five steps 

(step 5 to step 9) (Clements, 2000). 

 Step 1: Identifying reviewers. A set of people who are supposed to present at the review is 

identified. 

 Step 2: Preparing design presentation. The goal of this step is to prepare a presentation that 

explains in detail the design. 

 Step 3: Preparing seed scenarios. The designer prepares a set of seed scenarios (like ATAM) 

to explain the concept of scenarios to reviewers. The latter can accept or refuse the provided 

scenarios. 

 Step 4: Preparing the review meeting. In this step, the main review meeting is scheduled, 

reviewers are invited to attend the meeting, and copies of the review agenda, seed scenarios, 

and presentation are distributed to the invited reviewers.  

 Step 5: Presenting ARID method. In this step, the meeting starts, and the ARID activities are 

explained to participants. 

 Step 6: Presenting design. In this step, the design is presented to determine if it is usable. 

Participants can ask clarification questions (rationale or implementation questions are not 

allowed) to reveal potential issues that the designer must address before the design is 

considered complete. 
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 Step 7: Brainstorming and prioritizing scenarios. Similar to ATAM, participants suggest 

scenarios to solve potential problems that can encounter. The defined scenarios are put with 

seed scenarios into the pool. Subsequently, the voting starts by allowing each reviewer to 

select 30% of the total of the gathered scenarios. The scenarios that have the most voting 

percentage are used to test the usability of the design.  

 Step 8: Performing review. Starting with scenarios that have received the most votes, 

reviewers are asked to produce codes that use the services provided by the design to resolve 

the problems stated by these scenarios. This step continues until the time fixed for the review 

has ended, all high-priority scenarios have been exercised, or the group indicates that a 

conclusion has been reached.  

 Step 9: Presenting the conclusion. In the final step, a list of issues is presented and the 

participants are asked for giving their opinions concerning the review efficacy.  

Unlike ATAM, ARID is not extensively validated in several projects and domains.  

Discussion on scenarios-based methods 

Scenario-based analysis and evaluation methods were addressed extensively in the literature. 

SAAM is considered the first one that has used scenarios to evaluate software architecture. All 

the subsequent methods have inspired this technique by SAAM explicitly or implicitly. Table 

4.1 shows the main differences and similarities between the addressed evaluation methods 

according to the comparison criteria stated in the first column. The first criterion depicts that 

except SBAR and ARID, all methods perform the evaluation in the final version of SA at the 

design stage. In this context, there are three main phases of interest to architecture evaluation, 

namely early, medium, and post-deployment (Abowd et al., 1997). In the first two phases, the 

architecture is still immature and needs iterative elaborations. On the other hand, the 

architecture is considered mature (final version) in the third phase where the system has been 

completely designed, implemented, or deployed. The second criterion allows categorizing 

evaluation methods according to the number of quality attributes that can be assessed. Methods, 

such as ESAAMI, ARID, and ALMA are dedicated to evaluating one attribute, whereas 

methods like ATAM and SBAR are able to assess multiple attributes. The third criterion depicts 

that most of the addressed methods do not support tradeoffs among quality attributes, except 

for ATAM and ARID. The fourth criterion showed us the most of the evaluation methods 

support the involvement of all stakeholders in the evaluation process. The fifth criterion 

illustrates the number of activities performed by each method during architecture evaluation. 

ATAM and ARID encompass the highest number of evaluation activities performed in two 

phases (nine activities in two phases), whereas SAAMER comprises the lowest number of 

activities (four activities).  

The main problems encountered with the majority of scenario-based methods are a) the results 

and effectiveness of analysis depend on the selection, elicitation, and relevance of scenarios 
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that can identify and cover the most critical assumptions and defects within SA, b) there is no 

fixed minimum set of scenarios that makes the analysis meaningful except for some methods 

that defined techniques to stopping scenarios generation such as SAAMER, and c) the lack of 

tool support. 

It should be noted that the list of scenario-based methods addressed in this dissertation is not 

meant to be exhaustive. Actually, a long list of these methods can be found in (Babar et al., 

2004; Dobrica & Niemela, 2002; Sobhy et al., 2021). This reflects the richness of this evaluation 

category with diverse methods and techniques in particular, and the complexity of the domain 

of software architecture evaluation in general.  

Scenario-based methods inspired us to define the first service of MS-QuAAF that allows 

analyzing and evaluating the architecture at the design stage to discover defects before going 

any further in the development process. However, the evaluation within our framework is 

performed quantitatively through metrics in order to provide assessors with more accurate 

evaluation results. Furthermore, the analysis through this service allows checking the adherence 

of the designed architecture against the specified one and thus fixing irregularities as early as 

possible.  
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4.3.2 Goal decomposition analysis methods 

In the field of software engineering research, there are three types of goal decomposition 

analysis methods, namely the Fault Tree Analysis (FTA), the Goal Structuring Notation (GSN), 

and the Softgoal Interdependence Graph (SIG). The FTA (Ruijters & Stoelinga, 2015) is a top-

down deductive analysis method that decomposes the root fault into subsequent causes using a 

tree structure form. The GSN (Kelly & Weaver, 2004) is a graphical notation used to visualize 

thoughts and methods supposed to lead to the achievement of stakeholders’ objectives by 

decomposing the top goal into sub-goals supported by evidence. The SIG is used within the 

NFR framework (Chung et al., 2000) to represent the NFR refinement structure, defining top 

quality requirements, and determining whether the system can achieve those requirements. In 

this chapter, we will focus on the NFR framework and SIG-based methods since they are 

dedicated to quality evaluation and analysis in a quality assurance context. Furthermore, MS-

QuAAF defines a new technique derived from SIG to evaluate architecture at the 

implementation stage.  

4.3.2.1 The NFR framework 

The NFR framework is a qualitative goal-oriented approach that uses non-functional 

requirements (performance, security, etc.) as a means to drive the overall design process. The 

framework depends principally on Softgoal Interdependence Graphs (SIGs) to represent and 

record the reasoning and design process. A softgoal is a goal (an NFR) that has no clear-cut 

definition and/or criteria as to whether it is satisfied or not (Chung et al., 2000). A SIG is a 

graphical representation that illustrates the interdependencies between softgoals using lines or 

arrows (figure 4.5). More specifically, SIGs are constructed by following a set of major steps: 

 Identifying NFRs. The main NFRs that the system should achieve are identified. Figure 4.5 

shows two main NFRs, namely good performance for account and secure account. Each 

NFR is represented as a top softgoal or the root node in the corresponding SIG.  

 Decomposing NFR softgoal. Each main softgoal is divided into a set of sub-goals. For 

instance, the security node is broken into integrity, confidentiality, and availability of 

accounts. The decomposition is performed iteratively until no further decomposition is 

possible. 

 Dealing with priorities. Softgoals considered of high importance are annotated with the 

symbol “!”. 

 Identifying possible operationalizations. Operationalizations represent design alternatives 

that can be implemented as development techniques (functions, data, constraints, etc.) to 

achieve NFR softgoals. Operationalizations softgoals are drawn as thick clouds, and they 

represent another type of softgoals. For instance, the Use indexing cloud (node) is an 

operationalization or a development technique that can be implemented to enhance the 

Response time NFR softgoal.  
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 Dealing with implicit interdependencies among softgoals. Operationalization softgoals can 

contribute positively (+) to one NFR softgoal and negatively (-) to another. The relationships 

between these two types of softgoals are represented by dashed lines for implicit 

interdependencies (correlations), and solid lines for the explicit ones. For instance, using 

uncompressed format may contribute positively to response time and negatively to storage 

space. Consequently, the tradeoff time-space is detected with the help of correlations.  

 Selecting among alternatives. The refinement process continues until no other alternatives 

need to be taken into consideration. The resulted SIGs are now completed and available to 

assist developers in selecting adequate alternatives using the information provided by those 

SIGs (operationalizations, tradeoffs, etc.).  

Plenty of methods have extended the NFR framework and its SIG to evaluate software 

architecture qualitatively or quantitatively in different academic and industrial contexts.   

4.3.2.2 A goal-oriented simulation approach for cloud-based system architecture 

This approach codenamed Silverlining (Chung et al., 2013) is a combination of goal-oriented 

requirements engineering with cloud computing simulations to capture stakeholders’ goals in 

Figure 4.5. An example of performance and security SIGs 
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private cloud-based systems. These goals are used to explore, analyze, and select among 

architectural alternatives at early stages to provide profitable, performant, and scalable cloud-

based architecture. The simulation is used to investigate the impact of infrastructural design 

choices on the ability of the system to meet stakeholders’ needs. This approach necessitates 6 

steps to output the design that is probably more suitable for these stakeholders taking into 

consideration conflicting goals. 

 Step 1: Goals identification. Stakeholders’ goals are discovered, analyzed, and refined. 

 Step 2: Conflict identification. The goals identified in the previous step are represented using 

an Agent-SIG diagram. The latter differs a little bit from the original SIG by representing 

the relationships between stakeholders (agents), their goals, and their roles in the system. 

Although this representation is clearer, refinements are required to decompose those goals 

into specific operationalizations, which are assigned to the corresponding agents.  

 Step 3: Enriching the qualitative goal model with quantitative information. The Agent-SIG 

diagram is augmented with quantitative domain-specific information to support performing 

simulations in order to assess the impact of architectural decisions on the softgoals 

satisfaction degree. Stakeholders’ requirements from the application domain are translated 

into numerical values to which the eventual design is expected to meet in order to satisfy the 

related softgoals. These values are called design constraints, which can be used throughout 

the requirements elicitation for cloud-based projects. The presented method used these 

constraints to focus on three target goals, namely profitability, scalability, and performance. 

 Step 4: Iterative simulation and model refinement. The constraints obtained in the previous 

step are translated into simulation models using a dedicated simulation tool called CloudSim. 

The obtained models allow investigating the impact of design decisions on the softgoals 

presented by the Agent-SIG diagram. These models are refined by adding new architectural 

decisions based on the initial simulation results and the unmet goals to improve the captured 

design toward meeting stakeholders’ goals.  

 Step 5: Translating the derived model into the system architecture. The obtained models 

from the simulation process are translated into the cloud-based architecture in the specific 

application domain. Although the simulation can reduce the number of architectural 

alternatives, the design space may remain large, which makes exploring all designs 

infeasible. Based on architects’ experience, the optimal design with respect to tradeoffs is 

selected and improved subsequently.   

 Step 6: Testing. In order to minimize the gap between the ideal world of simulators and the 

application real world, a set of tests must be performed. These tests are dedicated principally 

to reducing the cost by detecting failures before implementing the architecture and 

purchasing hardware.  
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4.3.2.3 A quantitative assessment method for analyzing safety and security using the 

NFR approach 

This method (Subramanian & Zalewski, 2014) applies the NFR approach to assess 

quantitatively safety and security in Cyber-physical systems (CPSs). Firstly, the authors applied 

the qualitative evaluation to a CPS using the NFR approach. Second, the qualitative aspects of 

the produced SIG are mapped to quantitative aspects according to a set of mapping rules (M1, 

M2, etc.) as follows (figure 4.6). 

M1. Leaf softgoals are converted into a corresponding metric. Therefore, satisfied or denied 

leaves whether they are operationalizations or NFR softgoals are converted into the appropriate 

metrics. 

M2. Contributions (MAKE, HELP, HURT, and BREAK) are converted to the corresponding 

quantitative representation. 

M3. If criticalities are associated with contributions or softgoals, then criticality metrics are 

generated accordingly.  

M4. The quadruple (leaf softgoal metric, leaf softgoal criticality metric, contribution metric, 

and contribution criticality metric) is transformed into a metric that represents the individual 

contribution of a leaf softgoal to its direct parent.  

Figure 4.6. A quantitative SIG using the SV mapping scheme 
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M5. The metric of the parent softgoal is calculated from the collection of all the individual 

contributions of the child softgoal. 

M6. Similarly, the metric of the parent contribution is calculated from the collection of all the 

individual contributions of the child softgoal. 

The obtained metrics are propagated recursively through a bottom-up process, in which each 

evaluated softgoal is considered as the next leaf softgoal. The authors followed the single-value 

(SV) scheme as the quantitative scheme to apply the above mapping rules. However, they 

claimed that other schemes could be applied, such as fuzzy logic or probabilistic. This 

evaluation method has applied the SV scheme as follows.  

- M1 provides five values, which are 2, 1, -1, -2, and 0 to represent satisfied, weakly satisfied, 

weakly denied, denied, and unknown softgoals, respectively. 

- M2 attributes the scores +1, +0.5, -0.5, and -1 for the contributions MAKE, HELP, HURT, 

and BREAK, respectively.  

- M3 provides the criticalities values: 0 for a non-critical softgoal, 1 for a critical softgoal, 0 

for a non-critical contribution, and 1 for a critical contribution.  

- M4 provides a formula dedicated to combining the metrics for the above-mentioned 

quadruple.  

- M5 gives a formula to calculate the metric of the parent softgoal. 

- M6 provides a formula to calculate the metric of the parent contribution.  

The results of the case study shown in figure 4.6 reveal that the top softgoals safety and security 

have obtained scores 2, and -8, respectively, which means that safety is better than security. 

This is due to the obtained metrics of contribution and NFR softgoals during the evaluation 

process.  

4.3.2.4 A quantitative architecture evaluation using the goal decomposition framework 

and Archimate  

This method proposes a quantitative goal decomposition tree to clarify and assess the NFR 

goals that the system should promote (Zhou et al., 2020). It supports the evaluation of several 

quality attributes, unlike the above-mentioned approaches. The NFR goal tree is inspired by the 

NFR framework, in which the evaluation is performed qualitatively. The tree is constructed by 

decomposing recursively the top claim (softgoal or goal) into a set of sub-claims. To each leaf 

sub-goal, an evidence node is attached. The latter (close to the concept of operationalization) 

may represent a design specification, a test, a requirement definition, or a system operation. A 

modeling tool called Archimate is used to construct this tree and visualize the system at the 

early stages of the development process. More specifically, the NFR goal tree is created by 

applying the following main steps in sequence (figure 4.7).  

Step1: Goal identification, decomposition, and prioritization. First, the most important NFR 

goals are identified and structured. Second, the top NFR goal is decomposed recursively into 

several sub-goals until no further decomposition is possible. Third, priorities (weights) are 
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defined among sub-goals of the same parent. For instance, the sub-goals B and C have the same 

priority, which is ½.  

Step2: Attribute values assignment. First, evidence (yellow nodes) is attached to each leaf node. 

Second, attribute values are assigned to each evidence according to an adjustable quantitative 

scale (2: strongly satisfied, 1: satisfied, 0: neutral, etc.).  

Step3: Attribute value calculation. In this step, the top claim is calculated by propagating values 

from the bottommost nodes. First, values are propagated from evidence nodes to sub-goals 

according to one-to-one relationship or N-to one relationship. Second, values are propagated 

recursively from sub-goals to their parent node (P) according to the values of the sub-goals (S1, 

S2, etc.) and their weights (W) using the following equation. ∑i=1, k Si*Wi, where ∑i=1, k 

Wi= 1. The obtained result allows determining whether a top claim is satisfied and can be 

achieved through the target architecture.  

Discussion on goal decomposition analysis methods 

In this sub-section, we have presented a subset of methods that use the goal decomposition 

technique in general and the NFR framework in particular to evaluate software architecture. 

This subset is not intended as an exhaustive list. There are several qualitative and quantitative 

methods proposed in the literature, such as (Kaiya et al., 2002; Kokune et al., 2007; Saito & 

Yamamoto, 2006; Yamamoto, 2015).  

Figure 4.7. Quantitative architecture evaluation using the NFR goal tree 
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Table 4.2 illustrates the main differences and similarities between the aforementioned methods. 

The first method (the NFR framework) proposed by Chung provides a new idea and perspective 

on how to evaluate conflicting quality attributes (NFR goals). The idea consists mainly of 

constructing and using a Softgoal Interdependency Graph to choose among design alternatives, 

determining the achievement of the NFR goals, and resolving the conflict between the 

competing goals. Several methods have extended the NFR framework and used the concept of 

SIG to evaluate architecture qualitatively, quantitatively, or a combination of both. The second 

method combines a qualitative SIG with a cloud simulation tool to choose among design 

alternatives that may satisfy the stakeholders’ goals in private cloud-based systems. This 

method supports the evaluation of three NFR goals, which are profitability, performance, and 

scalability. The authors did not mention whether their approach could be applied to other NFR 

goals within other development contexts. Moreover, this approach seems long and needs several 

simulation iterations alongside cloud development expertise to choose among the most suitable 

alternatives. The third method is dedicated to assessing safety and security and resolving the 

conflicts between them. The evaluation consists of mapping qualitative aspects of the 

constructed SIG into quantitative aspects, calculating metrics, and propagating the obtained 

metrics to the parent nodes recursively. This method requires two steps to perform the mapping 

process, whereas other methods, such as (Yamamoto, 2015) can apply directly the quantitative 

evaluation without mapping, which may decrease the evaluation time and effort. Besides, this 

method cannot be applied to architectures where safety is not considered a system priority. The 

fourth method is a quantitative evaluation method that supports the assessment of multiple NFR 

goals. This method uses weights to determine the priority among sub-goals on the one side, and 

increasing the accuracy of the final achievement score on the other side. Unlike the NFR 

framework, this method does not support tradeoffs among NFR goals. Additionally, according 

to its authors, it is not clear how to apply the evaluation in large-scale systems where a high 

number of interdependencies are established between goals and sub-goals.  

In summary, the goal decomposition analysis has provided a new way to evaluate NFR goals 

that are not clear-cut. However, there are some shortcomings that may affect the evaluation 

accuracy. First, qualitative methods lack statistical significance, and thus cannot give us exactly 

the degree of satisfaction of the NFR goals. Second, quantitative methods may need several 

iterations to calculate the satisfaction of each goal. Besides the decomposition, weightage, 

values attribution, and values propagation steps, deeper goal trees, and large SIGs may lengthen 

the evaluation process due to the increased number of iterations. Moreover, the exactitude of 

the obtained results depends on the accuracy of the scores assigned to leaf nodes at the 

beginning of the evaluation process. Third, it is difficult to apply this type of evaluation to 

systems where goals are not easily mapped to a tree or graph structure. Fourth, most of the 

methods that we found in the literature are dedicated narrowly to assessing security and safety; 

therefore, a lack of multi-attribute methods that can assess a large set of NFR goals is addressed.  
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MS-QuAAF proposes a new technique derived from the NFR framework to evaluate 

architecture at the implementation stage. This service proposes a quantitative evaluation tree 

called the Responsibilities Satisfaction Tree (RST) inspired by weighted SIG and goal 

decomposition tree, in which nodes represent NFR responsibilities (this term will be explained 

in chapters five and six) instead of softgoals. RST attempts to improve the accuracy of 

evaluation by proposing dedicated equations to calculate the weight of nodes and their 

relationships contrarily to the above-mentioned techniques where weights are estimated by 

designers and architects.  

   Method 

 

 

 

 

Comparison 

The NFR 

framework 

A goal-oriented 

simulation 

approach for 

cloud-based 

system 

architecture 

Quantitative 

assessment 

method for 

analyzing safety 

and security 

using the NFR 

approach 

Quantitative 

architecture 

evaluation using 

the goal 

decomposition 

framework and 

Archimate 

Development 

stage 

Design stage Design stage Design stage Design and 

requirement 

analysis 

Quality 

attribute 

Multi-attribute Profitability, 

performance, 

and scalability 

in private could-

based systems 

Safety and 

security 

Multi-attribute 

Tradeoff Supported  Not supported supported Not supported 

# Evaluation 

activities 

6 activities 6 activities 6 activities 3 main activities 

Table 4.2. A comparison between the presented goal decomposition analysis methods 

4.3.3 Metric-based evaluation methods (metrics suites) 

In software engineering, metrics are proposed as methods and tools to quantify attributes in 

software projects, products, and processes (Fenton & Bieman, 2019; Sommerville, 2011). The 

main motivation for proposing measurement is to obtain quantitative values that reflect the 

status of the software quality. Once these values are collected, they are compared to other 

standardized values defined across an organization. The comparison allows drawing 

conclusions about the software quality and thus determining where it stands against the 

stakeholders’ objectives.  

Starting from the middle of the 1970s, many design metrics were proposed to assess specifically 

software internal characteristics, such as size and complexity. These traditional metrics are 

considered generic because they are not destined for a particular design or programming 

paradigm. However, after the object-oriented design has become the new trend and the 

dominant paradigm that most organizations shifted to, most of the proposed metrics suites were 

destined for evaluating architectures that adopted this approach of design. These metrics were 

defined to assess specific object-oriented properties, such as coupling between objects, 
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inheritance, and so forth. In this sub-section, we will only discuss the traditional and object-

oriented metrics due to their relevance to software architecture and quality attributes (figure 

4.8). On the other hand, metrics that do not measure the system design are considered out of 

the scope, such as software project metrics (processes, tests, etc.).  

Despite the design paradigm, quality attributes targeted by metrics can be divided into two main 

categories, external and internal. The former represents the visible and the perceived properties 

that the user can experience, such as usability and reliability. Generally, these properties are 

related to the dynamic behavior of the system and they can be measured directly or indirectly 

after the product has been created. The latter represents the static properties of the software that 

the end-user never sees. They are related to the internal design where the execution of the 

system is not required. Modularity, lines of code, and degree of reuse are examples of internal 

attributes. Measuring these attributes allows not only understanding the system quality but also 

predicting or measuring indirectly the external attributes. This implies that if internal properties 

are altered, then the external ones may also be affected in the process.  

4.3.3.1 Traditional metrics 

This sub-section discusses traditional metrics that have been proposed mainly to measure some 

essential design and programming properties, such as size and complexity.    

Figure 4.8. A subset of design-based metrics 
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4.3.3.1.1 Size related metrics 

This type of metric is dedicated to estimating and predicting the development effort by 

quantifying the size of the software. The following metrics are the most known ones in this 

category. 

 Source lines of code (SLOC). Known also as LOC, this metric is used to measure the size of 

software by counting the number of lines of its source code (Lorenz & Kidd, 1994). This 

metric is defined to predict programming productivity, development effort, and 

maintainability. However, there is no standard to define what a line of code is, or what are 

program entities must be considered when calculating the size of software (comments, 

declaration, statement, etc.).  

 Function Point Metric (FPM). This metric is proposed to measure the work effort at the early 

development stages. This effort is predicted by measuring the number of functions that the 

software should perform (Albrecht & Gaffney, 1983). A function is quantified as function 

points, which are inputs, outputs, master files, and inquiries. The authors have proposed a 

two-step procedure to estimate effort. First, function points are used to estimate SLOC. 

Second, SLOC is used to estimate the development effort.  

 Bang. This metric is proposed to measure the size of a software product during the 

requirement analysis based on the components of the structured analysis description 

(DeMarco, 1986). The measurement consists of dividing the system into three categories: 

function-strong, data-strong, and hybrid systems. The classification is based on the ratio 

RE/FP, where RE is the number of relationships in a retained model, and FP is the number 

of functional primitives in a data flow diagram (DFD). If this ratio is lesser than 0.7, then 

the system is function-strong. If the ratio is greater than 1.5, then the system is data-strong. 

Otherwise, the system is hybrid. For function strong systems, a function bang (function 

metric) is calculated by identifying a set of primitives from the design diagram, and then the 

number of tokens of each primitive is calculated using dedicated equations. For data-strong 

and hybrid systems, the number of objects is identified, and then the number of relationships 

of each object is calculated.  

4.3.3.1.2 Complexity metrics 

This type of metric is dedicated primarily to quantifying the complexity of software in order to 

predict the development effort.  

 McCabe’s Cyclomatic Complexity (CC). This metric was proposed to measure the 

complexity of software programs (source code) using control flow graphs (McCabe, 1976). 

The graph’s nodes represent indivisible commands of a program connected by edges (control 

flows). The Cyclomatic complexity represents the maximum number of the linearly 

independent paths within a program’s source code. In this context, an independent path has 

at least one edge that has never been traversed by other paths. The formula proposed to 

calculate this complexity metric is the following. 
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V (G) = E – N + 2P, where E is the number of edges, N is the number of nodes, and P is the 

number of predicate nodes (condition nodes). The larger the number of paths, the higher the 

program complexity. Furthermore, V (G) is equivalent to the maximum number of test cases 

that could be performed to test a software program. This metric has been correlated with 

several quality attributes, such as maintainability, modularity, and understandability.  

 Halstead’s software metrics. According to Halstead, a computer program is a set of tokens 

classified either as operators or as operands. Halstead has proposed a set of metrics (10 

metrics) that count these tokens in order to measure complexity and estimate the 

development effort (Halstead, 1977). To do that, he has defined a set of basic measures as 

follows. 

n1: the number of distinct operators. 

n2: the number of distinct operands. 

N1: total number of occurrences of operators.  

N2: total number of occurrences of operands.  

n*1: the minimum possible number of operators 

n*2: the minimum possible number of operands.  

By using these measures, some of the proposed metrics were computed as follows.  

- The length of a program is N=N1+N2. 

- The vocabulary of a program is n=n1+n2. 

- The volume of a program is V=N*log2 n. 

These metrics were integrated into many tools to measure complexity and programming effort.  

4.3.3.2 Object-oriented metrics 

Since the object-oriented design had gained huge popularity in the software development 

community, several metrics suites have been proposed to assess the quality of architectures that 

follow particularly this design paradigm. These metrics are intended for evaluating object-

oriented design properties, and thus judging the software architecture accordingly.  

4.3.3.2.1 Metrics for Object-Oriented Software Engineering (MOOSE) 

MOOSE (or CK) is the most-known object-oriented measurement suite. The latter was 

proposed by Chidamber and Kemerer to assess OO design (Chidamber & Kemerer, 1994). They 

have defined six metrics to check the consistency and the integrity of the design against a set 

of OO characteristics, such as coupling between objects, inheritance, and cohesion. More 

specifically, they have correlated with each metric the following significance and roles.  

- Weighted Methods per Class (WMC). This metric is related directly to complexity, which is 

calculated by summing the complexity of all methods defined within a class. WMC can be 

used to predict the time and effort needed to develop and maintain a class. A large number 

of methods of a class will affect its children since they inherit all the methods, which may 

increase significantly the complexity of those children classes. Furthermore, a high number 

of methods means that the class is more application-specific, which decreases its reusability.  
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- Depth of Inheritance Tree (DIT). The depth of inheritance of a class is the maximum length 

from the root of the inheritance tree to the node representing this class. DIT allows measuring 

how the number of ancestors can affect a class. The larger the value of DIT, the deeper the 

class in the inheritance hierarchy and the greater the number of inherited methods, which 

makes predicting the behavior of this class more complex. Additionally, deeper trees imply 

complex design since more classes and their methods are involved. However, a high DIT 

value may indicate also a greater possibility of reuse, unlike WMC.   

- Number of children (NOC). This metric gives us the number of the direct subclasses of a 

class in the class inheritance hierarchy. The higher the value of NOC, the greater the reuse. 

Moreover, a greater NOC may imply improper parent class abstraction and sub-classing 

misuse.  

- Coupling Between Object Classes (CBO). In the OO design, two classes are said coupled if 

the methods of one class use methods or variables declared in the other class. In this context, 

the CBO of a class is the number of classes to which it is coupled. A higher CBO may prevent 

reusability and lessen modularity. In addition, maintainability becomes harder since the 

sensitivity to changes in other related parts is greater. Therefore, keeping the CBO at the 

minimum allows designing more independent classes, and thus improving modularity and 

maintainability. 

- Response for a class (RFC). The response for a class is the cardinality of the set of methods 

that can be called and executed in response to a message sent to an object of this class. This 

metric can measure the potential communication between classes. The larger the value of 

RFC, the higher the complexity of the class and the harder its debugging and testing. 

- Lack of cohesion in methods (LCOM). Cohesion has been always used to measure how 

elements within a module or a package are strongly related. The CK suite measures the 

cohesion inside a class by the similarity between pairs of methods. Two methods are 

considered similar if they use the same variables. LCOM is computed by subtracting the 

count of pairs whose similarity is not zero from the count of pairs whose similarity is zero.  

If the number of non-similar methods is high, then the class is less cohesive and vice versa.  

4.3.3.2.2 Chen’s object-oriented metrics 

Chen has proposed a set of metrics to measure specifically the complexity of a class within an 

object-oriented design. He has defined the following metrics to measure coupling, cohesion, 

complexity of operations, and so forth.  

- Operation complexity metric. This metric was proposed to measure the operation (method) 

complexity of a class. It is computed by summing the complexity value of all the operations 

defined inside a class.  

- Operation argument complexity metric. This metric is calculated by summing the 

complexity value of each argument declared in each operation of a class. 
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- Attribute complexity metric. This metric is computed by summing the complexity value of 

each attribute defined in a class.  

- Operation coupling metric. This metric measures the coupling between the operations of a 

class and the operations defined in other classes. It can be calculated by summing the number 

of operations’ accesses to/by other classes.   

- Class coupling metric. This metric is dedicated to measuring the coupling between classes. 

It is calculated by summing the number of accesses to/by other classes. 

- Cohesion metric. This metric assesses the cohesion of a class by measuring the number of 

intersections between the arguments of operations. It is calculated by dividing the number 

of disjoints set resulted from the intersection of sets of arguments by the number of these 

sets. 

- Class hierarchy metric. This metric is calculated by summing the depth of a class in the 

inheritance tree, the number of its sub-classes, the number of its super-classes, and the 

number of inherited or local operations available to this class.  

- Reuse metric. This metric is equal to 1 if the class is reused, otherwise, the metric is equal to 

0.  

4.3.3.2.3 Metrics for Object Oriented Design (MOOD) 

Abreu has defined a metric suite called MOOD to evaluate the main concepts of the object-

oriented paradigm. MOOD measures particularly the concept: encapsulation, information 

hiding, inheritance, polymorphism, message passing, and reuse. The main goal of MOOD is to 

promote reusability and maintainability by setting design recommendations. The metrics 

proposed within MOOD are the following. 

- Attribute Hiding Factor (AHF). This metric is used to measure the concept of encapsulation 

(information hiding). A high AHF is recommended because it means that most attributes are 

hidden (only accessed by the corresponding methods). 

- Method Hiding Factor (MHF). This metric is also used to measure encapsulation. The 

number of visible methods is an indicator of the class functionality. A low MHF reflects 

increased functionality; however, it indicates a weak abstraction. On the other hand, a high 

MHF points out low functionality.  

- Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF). These two metrics 

are used to measure inheritance. A higher number of inheritance relationships indicates a 

deeper and wider inheritance tree, which may affect testability and understandability 

negatively.   

- Polymorphism Factor (PF). This metric allows assessing polymorphism by measuring the 

ratio of possible polymorphic situations to the maximum number of possible polymorphic 

situations. 
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- Coupling factor (COF). This metric measures the coupling degree between classes. A high 

COF value indicates high coupling and thus increased complexity, which is not 

recommended OO design.  

 

4.3.3.2.4 A Hierarchical Quality Model for Object-Oriented Design (QMOOD) 

Bansiya has proposed a hierarchical assessment model for high-level design quality attributes 

at the early stages of the development process (Bansiya & Davis, 2002). This model proposes 

a suite of metrics to assess behavioral and structural object-oriented properties, such as 

inheritance, modularity, and encapsulation. These properties are correlated with high-level 

quality attributes, such as complexity, flexibility, and reusability. The relationships from OO 

properties to quality attributes are weighted according to their importance in the system design. 

More specifically, the following eleven metrics were proposed to measure eleven OO properties 

in order to assess six quality attributes (reusability, flexibility, understandability, functionality, 

extendibility, and effectiveness).  

- Design Size in Classes (DSC). This metric designates the total number of classes. 

- Number of Hierarchies (NOH). This metric denotes the number of class hierarchies. 

- Average Number of Ancestors (ANA). The value of this metric represents the average number 

of ancestors along all paths of a root class.   

- Data Access Metric (DAM). This metric denotes the ratio of private attributes to the total 

number of attributes defined in a class. The higher the value of DAM, the better is the design. 

- Direct Class Coupling (DCC). This metric signifies the number of direct relationships 

created between classes through attribute declarations and message passing.  

- Cohesion Among Methods of Class (CAM). This metric indicates the ratio of the sum of the 

intersections of parameters of a method to the maximum number of parameters in the class. 

- Measure of Aggregation (MOA). This metric signifies the number of attributes declaration 

whose types are classes defined by the user.   

- Measure of Functional Abstraction (MFA). This metric designates the ratio of methods 

inherited by a class to the number of methods accessible by member methods of that class.  

- Number of Polymorphic Methods (NOP).  The value of this metric is the number of 

polymorphic methods in a class. 

- Class Interface Size (CIS). This metric represents the number of public methods in a class. 

- Number of Methods (NOM). The value of this metric signifies the number of all methods 

declared in a class.  

A tool called QMOOD++ was developed to collect data from C++ projects and compute these 

metrics automatically.   
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4.3.3.2.5 Li’s object-oriented metric suite 

Li proposed a new set of metrics claimed to be an alternative suite to the CK metrics. The new 

suite was proposed to remedy deficiencies identified during the validation of the CK suite using 

the Kitechenham’s metric-evaluation framework (Kitchenham et al., 1995).  

- Number of Ancestor Classes (NAC). Using the inheritance tree, this metric measures the 

count of ancestor classes from which a class inherits. It is the same as the CK’s DIT. 

- Number of Descendent classes (NDC). This metric measures the count of sub-classes 

inherited from a class in the inheritance tree. It is equivalent to the CK’s NOC. 

- Number of local methods (NLM). This metric measures the total number of public (accessible 

outside a class) local methods defined within a class. The higher the value of NLM, the more 

effort is needed to comprehend, implement, test, and maintain the class. 

- Class Method Complexity (CMC). This metric is calculated by summing the complexity of 

all local methods (public and private) defined in a class. Similar to NLM, a high CMC may 

affect understandability, implementation, testing, and maintenance.  

- Coupling Through Abstract Data Type (CTA). This metric is calculated by summing all 

classes that represent abstract data types of attributes declared in a class. 

- Coupling Through Message Passing (CTM). This metric represents the number of messages 

sent from a class to other classes except messages sent to local objects in the local methods 

of this class. The higher the values of CTM and CTA, the more effort is needed to perform 

implementation, testing, and maintenance.  

4.3.3.2.6 Choi’s Component-based metrics 

Component-based metrics have not widely addressed in the literature since component-based 

architectures are based on object-oriented technology, in which components generally consist 

of a set of related classes. Therefore, the above-mentioned metrics can be also used to assess 

component-based architectures. In this context, properties like coupling and cohesion can be 

assessed by measuring the intra-relationships between classes of the same component or inter-

relationships between classes scattered over different components. Choi’s (Choi et al., 2009) 

applied the strength of dependency between classes (SDC) to define the metrics: Cohesion of a 

Component (CHC), Coupling of a Component (CPC), Coupling Between Components (CBC), 

Average Cohesion of a System (ACHS), Average Coupling of a System (ACPS), and 

Independence Degree of a System (IDS=ACHS-ACPS). These metrics measure coupling and 

cohesion at the component level, between components, and globally at the overall system level.  

Discussion on metric-based methods 

Quality metrics were proposed to provide stakeholders with statistical information about the 

software system. This information represents measurement values related mostly to the internal 

characteristics of the system. Table 4.3 illustrates the comparison between traditional metrics 

and OO metrics suites. Traditional metrics have focused primarily on size and complexity 
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characteristics to estimate the development effort and predict maintainability. These metrics 

can be applied to any source code despite its programming paradigm. However, most of them 

do not allow measuring structural and behavioral design properties, which narrows their 

usefulness to the size and complexity of source code at advanced stages of the software 

lifecycle. On the other hand, object-oriented metric suites were proposed specifically to assess 

object-oriented designs. They allow measuring OO internal design properties such as coupling, 

encapsulation, and inheritance to draw conclusions about external characteristics. In this 

context, maintainability, testability, reusability, and modularity are the most correlated external 

attributes to OO internal properties. Although OO suites have widened the extent of quantitative 

evaluation using metrics through exploring and assessing deeper design properties, they cannot 

be applied to design and programming paradigms outside the OO approach.  

Metrics-based methods can suffer from many drawbacks. First, most metrics are used to assess 

design properties after the architecture has been implemented. This implies that potential 

defects are discovered at late stages of the development process; therefore, adjusting those 

defects can be very costly in terms of time, money, and development effort. Second, many 

metric suites lack tools that can collect design data from source code and compute metrics 

automatically to improve and expedite the evaluation process. Third, the presented metrics 

focus mainly on assessing structural properties, which diminish the number of assessed quality 

attributes to a small set. Fourth, concepts, such as size, complexity, coupling, and cohesion are 

often misunderstood and have inconsistent definitions in the literature (Briand et al., 1996).  

Taking into consideration these drawbacks, we have proposed MS-QuAAF, a metric-based 

framework that defines a set of metrics to assess software architecture. The framework allows 

evaluation at both design and implementation stages. Moreover, the defined metrics are generic, 

which allows assessing any inputted attribute on the condition that the architectural decisions 

taken to promote these attributes are specified at the early development stages.  

                            Metrics 

Comparison  

Traditional metrics Object-Oriented metrics 

Development stage Implementation stage Mostly implementation stage 

Design/programming 

paradigm 

general Object-Oriented 

Main objectives  Estimating the development 

effort 

Assessing reusability, 

maintainability, testability 

and modularity 

Tools Size and complexity metrics 

have been integrated into 

many tools 

Few metric suites have 

developed the corresponding 

evaluation tool. 

Table 4.3. A comparison between traditional and OO metrics 
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4.3.4 A myriad of other approaches to assess and predict quality attributes 

There are countless of other quantitative methods that propose different techniques to predict 

software architecture. However, we found that most of these methods focus principally on two 

quality attributes, either maintainability or performance. Koziolek categorized in his survey 

(Koziolek, 2010) five main approaches to predict performance in component-based software, 

which are UML-based approach, meta-models-based approach, middleware-based approach, 

formal performance specification approach, and measurement-based approach. The first four 

methods predict performance at design time, whereas the fifth one measures performance after 

the system has been implemented. Concerning maintainability, it is considered the most 

addressed quality attribute in the literature. Most of the proposed methods have attempted to 

assess maintainability, either quantitatively or qualitatively. In addition to the above-mentioned 

methods (scenario-based, OO methods, etc.), at least five categories of approaches were 

proposed to evaluate maintainability (Malhotra & Chug, 2016), which are statistical algorithms 

(e.g., Markov hidden models), machine learning algorithms (neural network, artificial neural 

network, etc.), nature-inspired techniques (e.g., genetic programming), expert judgment, and 

hybrid techniques (e.g., genetic algorithms with neural networks). These categories are out of 

this dissertation’s scope and will not be depicted in the next chapters.  

4.4 A concluding discussion about the presented evaluation methods 

In this chapter, we have presented three categories of evaluation approaches (table 4.4) 

addressed widely by several researchers in the literature, especially scenario-based and metric-

based approaches. These approaches are somewhat similar to MS-QuAAF in many aspects, 

particularly architecture analysis, architecture evaluation, and quality attributes. We have 

defined six main criteria (section 4.2) to classify those approaches, which are measurability, 

evaluation technique, development stage, number of quality attributes, tradeoffs, and tool 

support. These criteria allow comparing different evaluation techniques as well as putting 

emphasis on their advantages and liabilities as follows. 

- Measurability. Although qualitative methods have the ability to assess a large set of quality 

attributes compared to the quantitative ones, they suffer from subjectivity and the lack of 

quantitative data that can reflect the quality achievement more accurately.  

- Evaluation techniques. Each evaluation technique has its specificity, advantages, and 

drawbacks. Scenario-based methods were proposed to assist architects in requirement 

elicitation, design alternatives comparison, and gauging the architecture against anticipated 

or expected use of the system. However, scenario-based methods may suffer from other 

problems besides their qualitative nature, such as the relevance of scenarios against the most 

critical assumptions, and the number of defined scenarios that makes the analysis 

meaningful. Goal decomposition methods have provided a new way to assess NFR goals 

that are not clear-cut by using goal decomposition analysis. However, this technique cannot 

be applied to systems where goals are not easily mapped to a tree structure form. Besides, 
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the exactitude of evaluation results depends on the experience degree of evaluators since 

they have a crucial role in assessing goals satisfaction in the first steps of the evaluation 

process. Metric-based methods provide assessors with quantitative and statistical data that 

reflect the state of some internal characteristics of architecture, which can help to judge 

external attributes. Nevertheless, concepts such as complexity and size have inconsistent 

definitions, which may lead to different interpretations of the same architecture. 

Furthermore, these methods focus narrowly on assessing complexity at the implementation 

stage, which limits the number of assessed quality attributes to those correlated to 

complexity.  

- Development stage. Architecture analysis at design time has many benefits, such as detecting 

irregularities at early stages and reducing maintenance cost. However, this type of analysis 

does not allow continuing the evaluation at advanced stages, such as implementation; 

therefore, evaluating the realized architecture is not supported. On the other hand, the 

analysis at the implementation stage allows extracting from the source code useful 

information, such as coupling and cohesion. However, it is very costly to perform changes 

at this stage as we have mentioned before.  

- Number of quality attributes.  Some quality attributes are proven hard to quantify, such as 

security and reliability. As a result, quantitative methods are generally proposed to assess 

specific quality attributes, such as performance and maintainability. However, quite a few 

quantitative goal decomposition methods have proposed a multi-attribute evaluation. On the 

other hand, qualitative methods can support a larger set of attributes, though few scenario-

based methods support multiple attributes evaluation, such as ATAM and SBAR.  

- Tradeoffs. Considering tradeoffs among quality attributes can provide more accurate 

assessment results. We have found that OO metrics do not consider tradeoffs during the 

evaluation process. On the other hand, the number of scenario-based and goal decomposition 

methods that support tradeoffs is somewhat equal to methods that do not support tradeoffs.  

- Tool support. Most of the presented methods, either quantitative or qualitative do not provide 

tool support that can facilitate and automate the evaluation process.  

The analysis of these methods and the comparison between them gave us a clear idea on the 

domain of software architecture evaluation, although its diversity and complexity. Accordingly, 

we extracted from these evaluation techniques the main strengths and weaknesses to develop a 

new framework that encompasses new features within a new generic evaluation perspective.   
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4.5 Conclusion  

The analysis of the evaluation methods presented in this chapter allowed us to discover the 

following main drawbacks. 

- The evaluation is performed, either at the design time or implementation stage.  

Therefore, there is no such feature as continuous evaluation.  

- There is no conformance analysis between the prescribed architecture and the 

descriptive one. As a result, architecture deviation analysis is not included within these 

methods 

- Most methods support the evaluation of one or two quality attributes, especially 

quantitative methods. 

- Qualitative methods lack statistical significance.  

- Metric-based methods assess only some internal characteristics (especially complexity) 

correlated with a small set of quality attributes.  

- Lack of tool support.  

These shortcomings are the rationale for proposing MS-QuAAF, a new generic metric-based 

framework for evaluating software architecture continuously at the design and implementation 

stages. The framework attempts to overcome many of the drawbacks stated above by integrating 

                    Approach 

Criteria 

Scenario-based Goal 

decomposition 

framework 

Metric-based 

Measurability  Mostly qualitative Qualitative, 

quantitative, and 

hybrid 

quantitative 

Evaluation technique Through scenarios Based on the NFR 

framework 

Measurement 

through metrics 

Development stage Design stage Design stage Mostly 

implementation 

stage 

# quality attributes Fewest methods 

support multi-

attribute evaluation 

Most of methods 

focus on safety and 

security 

Maintainability, 

testability, 

reusability, and 

modularity  

Tradeoffs  Not all methods 

consider tradeoffs 

Not all methods 

consider tradeoffs 

Not considered 

Tool support Almost all methods 

do not provide tool 

support 

Almost all methods 

do not provide tool 

support 

Most methods do 

not provide tool 

support 

Table 4.4. A comparison between all the presented evaluation methods 
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three services within the same framework to a) providing continuous evaluation, b) supporting 

multi-attributes evaluation, and c) assessing architecture defects and conformance. The details 

of the evaluation process using MS-QuAAF will be explained in the three next chapters. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5  

The framework MS-QuAAF for 

monitoring and evaluating architecture 

quality: foundation and evaluation 

methodology 
 

In the first part of this dissertation, which includes chapter 2, chapter 3, and chapter 4, we have 

presented the context within which our work and evaluation approach will be carried out. In the 

second part, which commences with the current chapter, we will depict in detail the evaluation 

framework MS-QuAAF.  

In this chapter, we will present firstly the rationale behind proposing the evaluation 

methodology within MS-QuAAF. Second, the framework’s methodology and its foundation 

will be presented in a nutshell. Third, we will depict the concept of architecture facets, model 

projection, and facet projection. 

Contents 

5.1 Motivations and rationale behind MS-QuAAF ..................................................................... 94 

5.2 An introduction to the MS-QuAAF’s evaluation methodology ............................................ 96 

5.3 The facet projector module .................................................................................................. 101 
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5.1 Motivations and rationale behind MS-QuAAF 

Software architecture is generally designed based on architectural decisions made at the early 

stages of the development process to achieve functional and non-functional requirements 

(NFRs) (Falessi et al., 2011). However, the ability of a software system to fulfill its assigned 

functional responsibilities does not imply that the target quality attributes are met. For instance, 

a system can deliver efficiently correct results but does not satisfy the security requirement by 

allowing malicious users to access easily its confidential data. This implies that the architectural 

decisions made are either violated or not suitable for delivering software of high quality. 

Therefore, architecture must be evaluated and monitored continuously throughout the whole 

development process and at each maintenance activity. It should be an innovative and powerful 

methodology to do that, yet simple and easy to implement, which is our primary focus in this 

work.
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In the previous chapter, we have studied and presented the most well-known evaluation 

approaches and techniques in order to investigate their abilities and weaknesses. Based on this 

study, we have fixed clearly our evaluation methodology’s goals and designed the skeleton of 

MS-QuAAF (Kadri et al., 2021b) accordingly. Subsequently, we have built, tested, and 

integrated gradually each assessment service until the framework has been completely 

developed. 

The presented evaluations approaches were divided mainly into two basic categories, namely 

qualitative and quantitative. The former uses questioning techniques to generate qualitative 

questions to be asked of an architecture whilst the latter suggests quantitative measurement to 

evaluate an architecture. Although qualitative evaluation is thought to be applicable to assess 

any given architecture quality (Abowd et al., 1997; Bass et al., 2012), it lacks statistical 

significance. Questioning techniques like questionnaires and checklists are mostly based on the 

evaluators’ perspective and subjectivity, which may decrease the evaluation accuracy and 

objectivity. Additionally, the results of scenario-based analysis depend on the selection of the 

scenarios and their relevance for identifying architecture’s weaknesses. In this context, there is 

no fixed number of scenarios to guarantee that the evaluation analysis is meaningful (Dobrica 

& Niemela, 2002). On the other hand, the essence of measuring techniques is to deliver 

assessors with quantitative results and views that can reflect the state of the architecture quality 

more accurately. However, as we have stated previously, this type of evaluation can suffer from 

the following issues: 

 Quantitative evaluation frameworks are addressed to answer specific questions, and thus 

evaluate specific qualities, such as performance (Koziolek, 2010) and modifiability 

(Riaz et al., 2009). This is due to the fact that some quality attributes are hard to quantify.  

 Defining metrics for some attributes, such as security, and usability have proven 

difficult to develop (Bachmann et al., 2005). 

 Many metrics are used to evaluate the architecture at one specific development stage, 

more specifically, at design time or after the product is complete or nearly complete 

(Bansiya & Davis, 2002). Therefore, a lack of evaluation and risk-management 

frameworks that can cover these main stages throughout the development process 

(design time, implementation, and deployment) can be addressed.  

With the purpose of overcoming the main shortcomings of quantitative and qualitative 

techniques, we have proposed a quantitative evaluation framework (belongs to the metric-based 

category) called MS-QuAAF (Multi-Service - Quantitative Architecture Assessment 

Framework). The framework defines a suite of generic evaluation metrics to help evaluators in: 

 Assessing any quality attribute inputted into the framework.  
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 Assessing continuously architecture throughout two main stages of the development 

process (design and implementation). Two architecture states will be examined, which 

are the designed architecture and the implemented one.  

 Estimating architecture defectiveness and detecting potential deviations using dedicated 

metrics. 

 Evaluating the achievement of the NFR responsibilities (see chapter 6) assigned to 

promote quality attributes using a dedicated metric and through the goal decomposition 

tree (see chapter 4).  

 Making decisions about the architecture, for instance, architects can approve or 

disapprove the design (or parts of it) based on the obtained evaluation results.  

MS-QuAAF is a multi-service assessment framework derived from ISO/IEC/IEEE 42030:2019 

(“ISO/IEC/IEEE International Standard - Software, Systems and Enterprise – Architecture 

Evaluation Framework,” 2019), the generic architecture evaluation framework that specifies 

objectives (quality attributes), approaches, factors, and evaluation results as the key elements 

of any instantiated framework. MS-QuAAF performs architecture evaluation through two main 

modules. The first module proposes the concept of facet projection to extract from 

architecture’s meta-models only information of interest to the evaluation task. The second 

module proposes seven metrics applied to the target architectures through three assessment 

services to evaluate these architectures at the design and implementation stages. These metrics 

are called generic because they can measure the satisfaction of any quality attribute inputted 

into the framework. The latter does not provide specific metrics for maintainability, or 

performance, or any other quality attribute. In contrast, the proposed metrics are common to 

measure all targeted quality attributes on the condition that the architectural decisions taken to 

promote these attributes are specified at early development stages. At the design stage, metrics 

are used to judge the correctness of the designed architecture against the established architecture 

specification. At the implementation stage, metrics are used to judge the fulfillment of the 

responsibilities assigned to promote quality attributes. The evaluation results at each stage allow 

architects to accept or refuse the deviation from architecture specification. However, rectifying 

architecture irregularities at the design time is somewhat easier and less costly compared to the 

implementation stage where performing major changes is burdensome, complex, and very 

costly in terms of time and money.  

5.2 An introduction to the MS-QuAAF’s evaluation methodology 

Architecture evaluation can be defined by the judgments about architectures according to the 

specified evaluation objectives (“ISO/IEC/IEEE International Standard - Software, Systems 

and Enterprise – Architecture Evaluation Framework,” 2019).  MS-QuAAF judges software 

architecture by analyzing architecture specification with respect to stakeholders’ non-functional 

requirements (NFR) goals. An architecture specification encapsulates all architectural decisions 
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taken to satisfy these goals, such as architectural styles, tactics, and design rules (constraints). 

These architectural decisions constitute meta-models to which the designed and implemented 

architecture must comply.  

The essence of the evaluation adopted by the framework is based on the ATAM’s (Kazman et 

al., 2000) idea that claims that architectural styles and tactics are the main determiners of quality 

attributes (chapter 4). Therefore, architectural decisions are evaluated continuously to judge 

stakeholders’ quality attributes. In this context, the continuous evaluation provided by the 

framework consists of: 

- Analyzing and assessing the architecture at the design stage.   

- Analyzing and assessing the architecture at the implementation stage. 

- Keeping on providing evaluation services at each major maintenance iteration.   

The rationale for providing such evaluation is that most of the frameworks assess the 

architecture at one development stage, which does not allow quality monitoring and 

improvement throughout the key stages of the development process. More specifically, design 

time frameworks allow only early evaluation of the architecture to determine the extent to which 

architectural decisions meet the quality requirements. However, they do not permit architecture 

evaluation at late stages, such as implementation and deployment. On the other hand, the 

evaluation at late stages permits capturing the dynamic behavior of architectural decisions 

(Sobhy et al., 2021), detecting architecture erosion (de Silva & Balasubramaniam, 2012), and 

verifying the achievement of specific stakeholders’ concerns; however, it is not designated for 

assessing architecture at high abstraction levels (structures, topology, styles, constraints, etc.). 

Contrarily, MS-QuAAF allows quality monitoring throughout two main stages of the 

development process, more specifically, after the accomplishment of the design and 

implementation stages. The former evaluation allows identifying defects, which helps architects 

to fix design flaws according to the early architecture specification. The latter assesses the 

satisfaction of the NFR responsibilities prescribed to promote stakeholders’ quality attributes. 

As a result, incorporating these two types of assessment within the same framework allows: 

a) Continuous architecture evaluation and monitoring.  

b) Identifying if a poor architecture quality is caused by rules infringement at the design 

stage, implementation stage, or both of them. 

c) Improving the quality by adjusting the architecture in accordance with the architecture 

specification.  

Additionally, the evaluation is performed quantitatively through a set of metrics to provide 

architects and evaluators with quantitative views that reflect the state of architecture quality 

more accurately.  

Conceptually, the framework MS-QuAAF is organized around two basic modules as follows 

(Figure 5.1). 
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 The facet projector: This module is charged with analyzing architecture specifications to 

project out (extract) only elements of interest designated to promote the quality attributes 

under assessment. These elements constitute what we call the architecture facet. This 

module will be described extensively in the current chapter, in which the concepts of facets, 

model projection, and facet projection will be explained thoroughly.  

 The quality evaluator: This module represents the core of the proposed framework. It is 

charged with evaluating architecture or parts of architecture using a set of assessment 

services (table 6.1). Firstly, it reads the architecture facet produced by the first module as 

input. Secondly, according to the development stage, it starts the corresponding service to 

apply the appropriate metrics. Finally, a conclusive assessment report is produced as output. 

This module will be depicted in the next chapter.  

5.2.1 The ISO/IEC/IEEE 42030:2019 architecture evaluation framework 

MS-QuAAF follows the standard ISO/IEC/IEEE 42030:2019 (“ISO/IEC/IEEE International 

Standard - Software, Systems and Enterprise – Architecture Evaluation Framework,” 2019),  

which is a specification of a generic architecture evaluation framework for software, systems, 

and enterprises. The specification consists of a set of evaluation sub-clauses, practices, and 

principles according to which derived or specific frameworks must adhere. The major aims of 

this standard are to enable and assist architecture evaluation in order to 

a) Validating architectures supposed to promote stakeholders’ quality attributes. 

b) Assessing architecture quality regarding the fixed objectives. 

c) Assessing progress in contrast with architecture objectives achievement. 

d) Identifying potential architectural risks. 

e) Supporting decision-making where architecture is involved.  

Figure 5.1. A simplified conceptual model of MS-QuAAF 
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f) Determining whether architecture entities satisfy their intended purposes.  

 

 

 

 

 

 

Figure 5.2 shows the context within which the evaluation effort can be performed to address 

stakeholders’ concerns defined through architecture. The evaluation allows determining the 

potential of an architecture entity by making judgments against the extent to which concerns or 

objectives have been achieved. Therefore, these concerns are the primary focus of architecture 

evaluation frameworks.  

At a high abstraction level, this standard specifies a set of sub-clauses according to which every 

Architecture Evaluation (AE) framework should include the following key elements. 

a) At least one AE objective: An objective depicts the extent to which stakeholders’ 

concerns and the related business drivers are addressed.  

b) At least one AE approach: An approach is the means to specify AE objectives. 

c) At least one AE factor: a factor can contribute to one or more objectives. Cost and 

schedule are examples of AE factors. 

d) At least one AE result: A result is an outcome of using an AE approach.  

5.2.2 The compliance of MS-QuAAF with the ISO/IEC/IEEE 42030:2019 

The standard does not provide approaches that depict how to assess an architecture entity. In 

fact, it defines only a set of sub-clauses according to which specific derived frameworks should 

adhere. In this context, MS-QuAAF follows the above sub-clauses; however, it proposes its 

own evaluation approaches performed through a set of three services to provide stakeholders 

with evaluation reports at the key development stages. More specifically, MS-QuAAF complies 

with these sub-clauses as follows. 

a) AE objectives: An objective represents a stakeholder concern, which is a quality 

attribute in the context of this framework. The latter is designated to assess any quality 

attribute if and only if the architecture specification contains the corresponding 

architectural decisions. 

b) AE approaches: MS-QuAAF is a multi-service and multi-step evaluation framework, in 

which each service follows an evaluation approach that applies its defined metrics. 

Figure 5.2. The architecture evaluation context 
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These approaches constitute the evaluation methodology defined by the framework to 

provide a continuous architecture evaluation. In the design stage, the dedicated service 

analyzes and assesses the defectiveness of architectural rules, styles, and tactics 

specified in the early stages. The defectiveness metrics allow judging the correctness of 

the designed architecture against the established specification by analyzing rules 

infringements. For instance, the closer the value of defectiveness is to zero, the better 

the quality of the architecture. Therefore, the quality is judged by the framework based 

on the density of architecture defects caused by rules violations. In the implementation 

stage, the dedicated service allows checking the satisfaction of architectural rules after 

the accomplishment of the implementation stage. For this purpose, the service uses a 

responsibilities decomposition technique to calculate the satisfaction indicator. The 

latter is compared with optimal, moderate, and dissatisfactory calculated values to judge 

the architecture in this stage. In the final evaluation stage, a concluding evaluation report 

is generated by the corresponding service. The latter uses an evaluation matrix that 

contains the results obtained by the previous services to make final judgments on 

architecture quality. Moreover, these services can be recalled to reevaluate the 

architecture at each major maintenance iteration. 

c) AE factors: Factors are circumstances or facts that influence the evaluation process and 

contribute causally to its results, such as cost, performance, schedule, etc. For instance, 

allocating a sufficient evaluation budget allows recruiting more experienced architects, 

which may increase the evaluation performance and accuracy. On the other hand, low 

budgets, inexperienced architects, or unorganized evaluation schedules may affect 

negatively the evaluation outcomes and accuracy. 

d) AE results: Each service produces an evaluation sub-report, which contains assessment 

values. Additionally, the framework is designed to produce the final report after the 

evaluation has been completed. At each stage, architects and evaluators judge the 

architecture by comparing the obtained results with the optimal and dissatisfactory 

results. 

Although MS-QuAAF respects the standard’s key evaluation sub-clauses, it is a customized 

framework that differs from the standardized evaluation framework in the following points: 

- The standard states that the existence of architecture specification is not obligatory to 

perform an evaluation. Contrarily, MS-QuAAF considers the existence of architecture 

specification crucial because the evaluation effort performed within the framework is 

based on assessing the designed and implemented architecture against the specified 

architecture documentation.  

- The standard states that architecture analysis is optional since information can be 

obtained from other sources (the standard did not specify which sources can be used). 
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Contrarily, MS-QuAAF depends on architecture analysis to detect defects and 

irregularities.  

- The standard defines a generic evaluation framework for assessing software, systems, 

enterprises, and so forth. On the other hand, MS-QuAAF is dedicated exclusively to 

assessing software architecture quantitatively through a set of metrics. 

5.3 The facet projector module 

Software architectures are so complex, which means that describing them in a one-dimensional 

fashion is impossible (Bass et al., 2012). This implies that software architectures are not flat but 

rather multi-dimensional entities that encompass multiple facets and views. The tremendous 

complexity can make the architecture evaluation even harder and trickier. Therefore, we should 

expand our view to handle the architecture from multiple sides and angles according to 

stakeholders’ quality attributes. Each side can reveal parts of the architecture. We call these 

sides the architecture facets (AF). Accordingly, we believe that depicting software architecture 

as facets can enhance understandability significantly and thus streamlining quality assessment 

and monitoring. In this dissertation, AF is the first-class artifact used by MS-QuAAF to slice 

architecture through the facet projector module. The latter reads the architecture specification 

and the slicing criterion (which is the quality attribute under assessment) as input, and produces 

the architecture facet as output. The obtained facet will be sent to the quality evaluator module 

to be assessed by the designated services and metrics.  

5.3.1 Architecture facet 

Hiding information that is not necessary for the task to be undertaken is the essence of AF. It 

exposes only elements of interest mapped to the quality attribute under assessment to satisfy a 

specific evaluation task. More concretely, an AF encompasses only the architectural decisions 

made (topology, tactics, constraints, etc.) to promote this attribute. The latter is judged based 

on the results obtained from analyzing and evaluating the facet using the framework’s metrics, 

which makes the evaluation much easier by assessing only the architectural decisions of 

interest. A facet is extracted from large meta-models that reside in the NFR catalog using facet 

projection (section 5.3.5). 

Facets are mapped directly to quality attributes, for instance, a facet mapped to the portability 

attribute can expose the adopted architectural style (e.g., the layered style), the architectural 

elements in each layer, the relations among layers, and the tactics and rules specified to promote 

portability. Thus, a facet has the ability to depicting certain aspects of the architecture and 

ignoring the irrelevant ones, which characterizes its strength when we deal with large 

architectures.  

5.3.2 The NFR catalog 

In this dissertation, we prefer to use a new concept that we call the NFR catalog instead of NFR 

documentation. A non-functional requirement catalog is a repository that encapsulates 

architecture’s design information and rationale. More specifically, it contains meta-models that 
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encompass all architectural decisions taken to satisfy stakeholders’ NFR goals. These meta-

models are specified generally through modeling and specification languages, such as OCL 

(Richters & Gogolla, 2002), Alloy (Jackson, 2012), Acme (Garlan et al., 2010), and so forth. 

Among the information entries contained in this catalog, we can categorize the following: 

- The NFR responsibilities assigned to promote the desired quality attributes.  

- The architectural decisions taken to fulfill NFR responsibilities, such as the adopted 

architectural styles, tactics, rules, constraints, and so forth. 

- The involved architectural elements, their interfaces, properties, and the relations among 

these elements. 

- The mapping between each quality attribute and the architectural decisions made.  

The specification of this information constitutes large meta-models from which MS-QuAAF 

extracts facets to proceed with the evaluation of the related quality attributes. 

MS-QuAAF depends heavily on the design information categorized in this catalog to extract 

facets, analyzing architecture, and assessing quality attributes. By interrogating the NFR 

catalog to extract facets, we can find that different facets promote different quality attributes 

and goals at different priority degrees. Quality attributes that represent the most concern to 

stakeholders are mapped to facets that contain design information of high design priority. In 

this regard, the higher the facet’s importance is, the more its defectiveness is costly.  Therefore, 

violating design rules that reside behind a high prioritized facet may have a harmful impact and 

catastrophic consequences on the overall architecture, and thus on its quality. 

5.3.3 The anatomy of an architecture facet 

The major purpose of facets is to hide the unnecessary information and show to us only the 

elements of interest to the evaluation task at hand. This information can be hidden or shown 

through the concept of views. A view is a representation of a set of system elements and the 

relationships associated with them (Clements et al., 2003). Anatomically, a facet is constructed 

by weaving two views, an architectural view, and a quality view (figure 5.3) (Kadri et al., 2020, 

2021a): 

 The architectural view: it is a structural view since it shows a set of structures and their 

pathways of interaction that architects have chosen to satisfy a specific NFR goal. What 

we get from this view is the result of the architectural decisions taken to fulfill the quality 

attribute depicted in the associated quality view. It should be noted that architectural 

decisions represent a blend of architectural styles, tactics, rules, and constraints 

combined to achieve stakeholders’ goals.  

 The quality view: this view shows principally the quality attribute to be achieved by the 

architectural decisions depicted in the architectural view. A quality attribute can be 
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external or internal. External attributes represent the qualities perceived by the end-user, 

such as security and performance. On the other hand, internal attributes represent the 

unperceived qualities by the end-user, such as reusability and modularity. However, 

despite the type of these attributes, their achievement is crucial from the stakeholders’ 

point of view. This quality view shows as well other important entities, such as sub-

attributes and the involved stakeholders.  

These two views are weaved to construct the requested facet. We came up with this illustrative 

representation to boost up the understandability of the projected facets and thus improving the 

effectiveness of their usefulness. By using this view-based representation, MS-QuAAF can 

deduce directly the association between the adopted design and the relevant quality attribute. 

In other words, each facet exposes a set of structural elements and architectural decisions 

through its architectural view according to the quality attribute (and its sub-attributes) depicted 

in the quality view. For instance, the framework can proceed with the evaluation of the security 

attribute by assessing the associated architectural view that exposes the relevant architectural 

components, the adopted architectural styles, the assigned security responsibilities, and the 

architectural measures taken to provide security.  

More formally, we describe a facet AFi with the triplet <AVi, QVi, R>, where: 

- AVi is the architectural view of the facet. 

- QVi is the quality view of the facet. 

- R is the relation that attaches AVi to QVi.  

We describe an architectural view AVi with the triplet < A, E, D>, where: 

- A== {Ai /i=1, 2…n} is the set of the architectural decisions taken to promote the quality 

attribute Qai depicted in QVi.  

- E= {Ei /i=1, 2…m} is the set of the architectural elements (components, connectors, 

etc.). 

- D= {Di /i=1, 2…k} is the dependencies among E, constrained by rules, tactics, and 

architectural styles. 

We describe a quality view QVi with the couplet < Qai, Sh>, where: 

- Qai is the quality attribute promoted by architectural decisions depicted in AVi. 
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- Sh= {Shi / i=1, 2 …m} is the set of stakeholders interested of the quality attribute Qai. 

The structure and representation of a facet are instantiated from the multi-view modeling 

paradigm presented in (Kadri et al., 2020, 2021a), in which meta-models and models are 

depicted as two interweaved views (architectural and quality views). In these two papers, we 

have proposed through the multi-view paradigm to model a software architecture at three 

abstraction levels (Kadri et al., 2019), which are the macro-level (components and connectors), 

the meso-level (classes and their relationships), and the micro-level (objects). In the process of 

developing MS-QuAAF, we have chosen the multi-view paradigm to represent facets because 

it provides an illustrative representation that allows deducing easily the relationships between 

the architectural decisions taken and the relevant quality attributes. Therefore, the reasoning 

about the architecture and the evaluation task can be enhanced, which may facilitate the quality 

evaluation significantly.  

5.3.4 Facets Vs AOSD’s aspects 

Aspect-oriented software development allows the separation of concerns by modularizing 

crosscutting concerns into separate entities called the aspects (Pérez et al., 2006). AOSD 

permits both separate design and implementation of aspects, and their integration with other 

components of the system (Clemente et al., 2011). By this means, facets and aspects are almost 

dissimilar, and each one of them is addressed to resolve distinct problems. More specifically, 

aspects are designed and specified in the early stages of software design to be implemented in 

the subsequent coding stages (France et al., 2004; Stein et al., 2002). Besides, aspects aim to 

improve some quality attributes, such as understandability, adaptability, reusability, and 

maintainability (Laddad, 2003; Stein et al., 2002). On the other hand, facets are extracted from 

the architecture documentation and not designed or specified in the design phase. Additionally, 

facets represent on-demand artifacts used to assess quality attributes and not to improve them. 

In fact, the only concept shared between aspects and facets is modularization. The former uses 

modularization to encompass crosscutting concerns in separate modules. The latter uses 

Figure 5.3. The anatomy of an architecture facet 
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modularization to encompass design information related to one quality attribute. The reason 

behind this comparison is to avoid misinterpretations and clear up any potential confusion 

between aspects and facets. 

5.3.5 Facet projection 

Architecture specification usually leads to construct large and overloaded meta-models due to 

the high complexity of architectures. This situation pushed us to find out a new perspective to 

deal with this complexity. Our perspective consists of slicing the architecture (specified by 

meta-models) into a set of interrelated facets according to stakeholders’ quality attributes to 

streamline architecture evaluation. It is the responsibility of architects to decide which facets to 

extract to fulfill the requirements of the evaluation task ahead. We call this extraction procedure, 

facet projection.  The latter uses practically the model projection algorithm and parameterized 

projection defined in (Kadri et al., 2020, 2021a) to extract facets automatically or semi-

automatically. In this context, model projection allows reducing complexity and downsizing 

models iteratively to extract elements of interest through projection queries. It should be noted 

that the framework can embrace other meta-models slicing techniques (Blouin et al., 2015) if 

they fulfill the architects’ needs. 

Definition: facet projection 

A facet projection is a procedure that transforms a portion of the source meta-models that 

specify the overall architecture into a new reduced destination meta-model that represents the 

facet. The transformation consists of extracting from the source model only elements of interest 

through executing a projection query. This query takes the projection (slicing) criterion as input 

and produces a facet as output. More specifically, the extracted elements constitute the 

architectural view. The latter is weaved with the relevant quality view (which depicts the quality 

attribute inputted as projection criterion) in order to construct the requested facet. A facet 

projection is a unary operation written as ∏p (M), where:  

- P is the projection query.  

- M is the source meta-models.  

The result of such projection is the facet AF, which means that ∏p (M) =AF, and AF ⊆ M.  

Definition: projection query 

A projection query (Kadri et al., 2020) permits the interrogation of source meta-models in order 

to extract the desired elements. These meta-models are extracted normally from the NFR 

catalog. In this context, a projection query is a sort of statement that communicates with meta-

models to perform projections according to the input parameter. This parameter holds the 

projection criterion, which is the quality attribute inputted into MS-QuAAF. Inspired by SQL 

queries, a projection query p has the following syntax: 
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"project elements from source_meta-model into new_facet where projection_criterion=input 

parameters".  

This query is partially similar to the SQL selection query and it indicates to the facet projector 

(figure 5.4) to select elements of interest from the source meta-model and project them to 

construct a new architecture facet with respect to the projection criterion. The produced facet 

will be inputted into the quality evaluator module (a set of evaluation services) to proceed with 

the evaluation process. 

We have defined projection queries for the first time in  (Kadri et al., 2020, 2021a) to extract 

sub-models from larger multi-view models. The projection query in this case can hold multiple 

and different criteria, such as architectural styles, sub-systems, and components. However, 

since facet projection is a special case of model projection, the projection query uses one 

criterion, which is the quality attribute under assessment. For example, if we want to extract the 

facet mapped to the quality attribute performance, then the query can be written as follows. 

"project elements from source_meta-models into AFperformance where 

quality_attribute=performance".  

This query means to extract all architectural decisions taken to promote performance, for 

instance, introducing concurrency and improving bandwidth in a web-based architecture. The 

extracted decisions constitute the architectural view, which is weaved to the relevant quality 

view to construct the performance facet.  

More specifically, the facet AFperformance is constructed by executing the following four-step 

algorithm: 

Step 1. Reading the source specification of the source meta-models that reside in the NFR 

catalog. 

Step 2. Reading and compiling the projection query p. 

Step 3. Extracting the designated elements by the query p to construct the architectural view 

AVperformance. 

Step 4. Constructing the requested facet by weaving the architectural view AVperformance 

constructed in step3 to the quality view QVperformance.  

 

 

 

 

 
Figure 5.4. The facet projector input/output 
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Slicing tools and model projection have been addressed by many works in the literature. Blouin 

et .al (Blouin et al., 2015) have used the model slicing technique to build an interactive 

visualization tool that permits to focalize on the meta-model elements of interest. They used 

model slicing inspired by the program slicing technique to extract a subset of elements from 

source models. A DSL called Kompren is used to define model slicers to facilitate the creation 

of such visualization tools. The slicing technique has been used to reduce typical task effort in 

terms of time, correctness, and navigation.  

Androutsopoulos et .al (Androutsopoulos et al., 2011) have used model projection in state-

based models to minimize and specialize models for a specific operating environment. They 

defined four projection algorithms to address three critical concerns, which are correctness, 

effectiveness, and efficiency. Meyer et al. (Meyer et al., 2006) proposed Mondarian, a 

visualization tool that uses scripts (queries) on the data model to produce specialized views. 

The framework does not provide interaction facilities. Instead, it represents a meta-model for 

different visualization tools, in which scripts are used to transform the data model into the 

visualization model. In (Glinz et al., 2002), the authors proposed Adora, a modeling tool that 

relies on semantics zooms to visualize the desired level of details. In this context, filters are 

used to reduce the size and complexity of the underlying models. 

Most of these works focus on slicing UML models and meta-models, and thus they are 

dependent to one modeling language, which is UML. On the other hand, the concept of our 

projection algorithm adopted by facets projection is general and can be applied to any model or 

meta-model despite their specification language and creation tool by using high-level and 

customizable projection queries.  

5.3.6 An illustrative example of facet projection 

To clarify the concept of facets, let us take an example of the server of a Web auction 

application, which is one of two case studies that will be presented in the last chapter.  The 

server adopts the J2EE technologies to offer services to end-users, which means that its overall 

architecture is organized as a set of layers. Each layer encompasses a coherent set of related 

modules, in which messages are sent from the top layer to lower ones.  

To specify the architecture of this J2EE server, we have used Alloy, which is a lightweight 

formal modeling language. This language is reinforced by the Alloy analyzer that uses SAT 

solvers to enable automatic and bounded model checking (Cunha et al., 2015; Jackson, 2012, 

2019). The analyzer allows discovering flaws as early as possible during the design time to 

prevent defects at further development stages. The specification consists of defining a set of 

rules and constraints through Alloy predicates and facts to promote the desired quality attributes 

(listing 5.1). Facts are constraints assumed always to hold, whereas predicates are named 

constraints with zero or more declarations of arguments. 
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The Alloy specification shown in listing 5.1 illustrates that an authenticated bidder can search, 

buy, and pay for goods. These operations are performed by sending messages starting from the 

top layer down to the lower one. The top layer encompasses java Servlets that allows a bidder 

to log to his/her account, search, buy, and pay for bids. Each Servlet calls the appropriate EJBs 

(Enterprise Java Beans are server-side components that encapsulate business logic) packaged 

within the second layer. An EJB calls in its turn the corresponding java classes that reside in 

the bottom layer to connect to the auction database to execute users’ queries.  

Listing 5.1. An excerpt of the server Alloy specification 

 

1 module J2EE_Server2 

  

3 abstract sig Component {} 

4 abstract sig layer {contains: some Component} 

5 abstract sig Servlet_auction extends Component{calls:Ejb_auction} 

. . .  

13 //layer03 

14 one sig Presentation_Layer extends layer {} 

15 sig login extends Servlet_auction {} 

16 sig Account {searches:search_article, buys:buy_article, pays:pay_article} 

17 sig search_article extends Servlet_auction {} 

. . . 

21 //Layer02 

22 one sig Business_Layer extends layer {} 

. . . 

26 one sig pay_Ejb extends  Ejb_auction  {pays:pay_DB} 

27  

28 //Layer01 

29 one sig Data_Layer extends layer {} 

30 one sig DB extends Service_auction{} 

. . . 

34 sig pay_DB extends Service_auction{update:article some->Connection_DB} 

36 ///The presentation layer must contains only Servlet Components 

37 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, 

l:Presentation_Layer |s in l.contains && e not in l.contains  && r not in 

l.contains} 

… 

39 ///The Business layer must contains only EJBs Components 

40 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, 

l:Business_Layer|e in l.contains && s not in l.contains  && r not in l.contains} 

41 /*The Data access layer must contains only  Components that provide  

          DB connections, login, and execution of users' queries*/ 

43 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, l:Data_Layer|r 

in l.contains && s not in l.contains  && e not in l.contains}… 

45 // a bidder can buy only items that can be found in the database 

46 fact {all s:search_DB |all b:buy_DB | b.update in s.finds} … 

. . . 

55 // if a bidder buy some items that's means he found those item in the auction 

database 

56 fact {all a:Account, s:search_DB| some a.buys implies some s.finds} 

 

//security 

fact {all  a: Access_Manager, p:Previlege  |p in a.assign} 

fact {all s:Security_Policy, a: login | some a.follow implies some s.identify && 

 #follow.Security_Policy=#s.identify} 

. . . 
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This specification may consist of hundreds of lines because it defines constraints for a set of 

quality attributes, such as maintainability, performance, and security. For example, defining the 

number of layers, the type of components that should reside in each layer, and the relation 

between those components represent a part of the constraints specified to promote 

maintainability. The higher the number of quality attributes promoted by the architecture, the 

more complicated the specification and the larger the size of the resulting meta-models. In this 

case, we can benefit from the concept of facets to reduce complexity in order to assess the 

relevant quality attributes. The example shown below is a simplified illustration of the 

extraction and construction of the security facet (mapped to the security attribute). 

Example: extracting the security facet 

Like all online systems, a web auction can be a target of phishing attacks that acquire user 

information by masquerading as a legitimate entity. Architects must guarantee the 

invulnerability of their system against this type of online attack (and other attacks) by taking 

the appropriate architectural decisions that ensure the achievement of the security attribute. To 

assess whether this attribute is achieved, the facet projector extracts the architectural parts 

designated to promote this attribute through the projection algorithm. These parts constitute the 

security facet. More specifically, the projection is performed by applying the above-mentioned 

algorithm, as follows.  

i. Specifying the projection query destined to interrogate the overall architecture as 

follows. “project elements from main_architecture  into AFsecurity where 

QA=Security”.   

ii. Extracting the design information mapped to the security attribute, such as the 

architectural elements, and the security tactics and rules, then saving them in a separate 

Alloy module (Listing 5.2). This module represents the architectural view of the security 

facet. 

iii. Extracting the quality view of the security facet and saving it in a separate Alloy module. 

iv. Constructing the security facet by weaving the above views using a third Alloy module. 
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The first Alloy module (Listing 5.2) represents the architectural view of the security facet 

(yellow boxes shown in figure 5.5). It depicts the architectural components needed to secure 

the login to the system, such as the login, the security policy, the authentication, the 

authorization, and the access manager components. It also defines a set of security rules that 

constrain and control users’ access to the online auction (lines from 11 to 20). These security 

tactics constitute the first line of defense against malicious users. A bidder should be 

authenticated by entering a correct password, a captcha, and/or a digital certificate. If the bidder 

is properly identified, then the access manager component authorizes him/her to use the auction 

system by assigning him/her a set of privileges.  

Listing 5.2. An excerpt of the architectural view of the security facet 

The second Alloy module (listing 5.3) represents a simplified quality view of the security facet 

(grey boxes shown in figure 5.5).  This view depicts the security attribute and its interested 

stakeholders, which are architects, developers, and clients. It illustrates also the role of each 

stakeholder in the process of satisfying security. In this view, we assume the absence of security 

sub-attributes.  

Listing 5.3. The quality view of the security facet 

1 module QV_Security2 

2 abstract sig  QA {name:String,  To_Satisfy: some Stakeholder}{} 

3 sig Stakeholder {name:String, role:lone String} 

1 module Security 

2 sig login {follow: Security_Policy} 

3 one sig Security_Policy {identify: login -> Authentication, adhere: 

Password_Policy} 

4 one sig Authentication {authorize: login one-> one Authorization} 

… 

9 enum Protection_Type {password,capcha,degital_certificate} 

… 

15 //If the security policy identifies an actor, then it should authorize 

him/her 

16 fact {all s:Security_Policy, a: Authentication | some s.identify  implies 

some a.authorize } 

17 //if a login is authorized then the system should assign to it a 

privilege. 

18 fact {all s:Access_Manager, a: Authentication | some a.authorize implies 

some s.assign && #a.authorize=# s.assign} 

20 pred protect [l:login, p:Password_Policy]{some l implies some l.follow  } 

21 run protect {} 
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The third Alloy module (listing 5.4) is the one in charge of constructing the security facet by 

attaching the architectural view to the quality view through the Alloy predicate called join (line 

4 to line 9). Executing this predicate (line 10) will construct the security facet and give us its 

graphical representation shown in figure 5.5. The left grey side represents the quality view, 

whereas the right yellow side represents the architectural view. The graphical representation 

contributes to making the facet more readable and understandable because it explicitly 

illustrates the mapping between quality attributes and the architectural decisions taken to 

promote them.  

Listing 5.4. Weaving the architectural view to the quality view 

1 open Security as Arch_View 

2 open QV_Security2 as Quality_View 

3 one sig QA1 extends QA{promotedBy:Security_Policy} 

4 pred join[q1:QA1,s1,s2, s3:Stakeholder]{q1.promotedBy  in 

Security_Policy  

5  q1.name="Security" 

6 s1.name="Architect"  s1.role="specify security tactics" 

7 s2.name="Client" s2.role="get satisfied"  

8 s3.name="developer"   s3.role="implementing security tactics" 

9 s1+s2+s3 in q1.To_Satisfy} 

10 run join for   3 

Figure 5.5. The graphical representation of the security facet 
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5.3.7 Expected properties of the generated facets 

Although we have used Alloy to illustrate the construction of a facet, the concept of projection 

is independent of any specification language and can be applied to architectures specified with 

other languages. However, despite the specification language, the produced facets must adhere 

to the following properties: 

 Navigability: This property applies to facets specified with languages that provide graphical 

representation support. A produced facet must provide easy navigation due to its reduced 

size.  

 Clarity: A facet must express explicitly and clearly the mapping between the quality attribute 

of interest and the relevant architectural decisions.  

 Correctness: A produced facet must adhere to the projection query that specifies the 

architectural information supposed to be extracted.  

The model projection paradigm has proved its effectiveness in reducing the navigation time and 

reducing the size and complexity of the produced models (Kadri et al., 2021a), which can 

streamline significantly the next task of the evaluation process. However, it is possible to 

encounter some correctness issues when constructing a facet. This can probably happen due to 

ambiguous architecture specification. Therefore, it is preferable to revise and double-check the 

correctness of the facet before sending it to the quality evaluator to obtain reliable and more 

accurate assessment results.  

5.4 Conclusion  

In this chapter, we have presented the first module of MS-QuAAF, which is the facet projector. 

The first phase of quality assessment using MS-QuAAF is performed through this module, in 

which architecture facets are extracted from the main architecture specified by large meta-

models. An architecture facet is proposed as a means to hide unnecessary architecture 

information and show only the elements of interest related to the quality attribute inputted into 

the framework. Facets are extracted through facet projection, which is an instance of model 

projection. The latter was proposed for the first time in (Kadri et al., 2020) to extract elements 

of interest from oversized source models using projection queries. In this separate work; 

projection queries can accept multiple types of projection criteria, and therefore extracting the 

desired elements according to these criteria. Subsequently, we have proposed in another work 

(Kadri et al., 2021a) an improvement of the previous algorithm using incremental projection, 

in which extracting elements can be performed iteratively through many steps. 

Facet projection is a special case of model projection, in which the projection query holds one 

criterion, which is the quality attribute under assessment. Accordingly, only architectural 

decisions related to this attribute are extracted, which allows reducing complexity and 
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navigation time of large meta-models, and thus boosting up understandability and facilitating 

quality assessment. 

Once facets are extracted, the second phase of quality assessment commences through the 

quality evaluator module. The latter will be explained thoroughly in the next chapter. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 6 

The MS-QuAAF’s evaluation services and 

metrics 

 

In the previous chapter, we have presented an introduction to the evaluation methodology 

followed by the framework MS-QuAAF and the rationale and motivation behind such 

methodology. The framework consists of two primary modules, which are the facet projector 

and the quality evaluator. The former has been already depicted in detail in the preceding 

chapter. The latter will be presented in the current chapter.  

In this chapter, we will present the evaluation effort performed through the quality evaluator 

module. The latter consists of three evaluation services each of which defines a set of generic 

metrics calculated mathematically through sequences of equations. Each service provides an 

evaluation sub-report as output, which contains the assessment results of the corresponding 

development stage (design or implementation). Finally, a global report is generated at the end 

of the evaluation process.  
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6.1 The evaluation effort 

Once the desired facets are extracted from the overall architecture, they will be inputted into 

the quality evaluator module to proceed with the quality evaluation. The process starting from 

projecting facets to generating the final quality report is called the evaluation effort. The generic 

AE (Architecture Evaluation) framework defines the evaluation effort by the activity that 

determines the actual value of architecture. The evaluation effort can be performed at many 

stages during the development entity (chapter 5). Accordingly, MS-QuAAF allows performing 

this effort through a set of services at two main development stages, which are the conceptual 

design and the implementation stages. In the context of MS-QuAAF, the AE effort consists of  

a) Accepting any quality attribute as input. 

b) Extracting the corresponding architecture facet. 

c) Calling the evaluation services to perform the assigned assessment tasks using the 

appropriate metrics.
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d) Generating the evaluation report as output. 

However, it should be noted that the framework is designed to assess only one quality attribute 

at a time on the condition that each attribute has an architectural specification in the NFR 

catalog. The defined metrics are common to all attributes, which means that despite the quality 

attribute inputted into the framework, the quantitative measurement is performed using the 

same set of metrics through the following services (Figure 6.1): 

1) The first service called RDA (Rules Defectiveness Analysis) is dedicated to assessing 

the defectiveness of the design rules encompassed within the inputted facet.   

2) The second service called RTA (Responsibilities Tree Assessment) is dedicated to 

assessing the implementation and the achievement of the NFR responsibilities 

assigned to promote the attribute being assessed.  

3) The third service called LAFA (Late-assessment and final analysis) is dedicated to 

finalizing the evaluation effort and generating the final assessment and analysis report. 

Since the evaluation effort is performed at two development stages, two well-defined 

architecture states are assessed by the framework. These states can be defined as follows.  

(i) State 1: the first state appears after the design of the architecture has been completely 

accomplished. This state is called also the designed architecture.  

(ii) State 2: the second state emerges after the system has been implemented. This state is 

called also the implemented architecture.  

 

Services Architecture state Evaluation type 

RDA State 1 Pre-assessment 

RTA State 2 Post-assessment 

LAFA State 1, State 2 Conclusive post-assessment 

Table 6.1. MS-QuAAF’s Services 

Figure 6.1. MS-QuAAF evaluation effort 
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These states are assessed by the evaluation services shown in table 6.1. The first service is 

designed for pre-evaluating the architecture when it emerges in the first state. The second 

service is capable of post-evaluating the architecture when it occurs in state 2. The third service 

uses the results returned by the previous services to output the final evaluation report. The 

evaluation of these states aims to provide stakeholders with clear and quantitative results to 

keep them updated on the current state of the architecture quality, and thus performing the 

necessary elaboration to boost up this quality. 

The defined architecture states occur after the accomplishment of the design and 

implementation stages, respectively. According to (Abowd et al., 1997), the succession of these 

stages constitutes the phase called post-deployment, which is the last phase of interest to 

architecture evaluation. In our turn, we have divided this phase into two steps. The first step is 

called pre-assessment, and it is carried out by the service RDA. The second step is called post-

assessment, and it is performed by the services RTA and LAFA. The framework is not 

concerned with the evaluation phases called early and middle because the architecture is still 

immature and needs some iterative elaboration. However, in the post-deployment phase, the 

architecture is completely mature, and it is ready to answer the following questions: 

a) Are the stakeholders’ non-functional requirements met? 

b) Are the architectural decisions taken effective?   

c) Does the designed architecture match the specified architecture? 

d) Does the implemented architecture match the designed architecture?  

6.2 The quality evaluator module 

In this section, we will present the second module of the framework, which is the quality 

evaluator module (figure 5.1). The latter consists of three evaluation services, each of which 

provides a set of evaluation metrics. The succession of these services constitutes the architecture 

evaluation process that starts after the facet projection process. 

6.2.1 Rules Defectiveness Analysis service (RDA) 

Design rules are the basic elements and the cornerstone on which we build architectural 

specifications. They represent instructions and constraints at the meta-model level (Kallel et al., 

2018) to indicate how architecture elements should be organized, related, and behaved to meet 

functional and non-functional requirements. From this perspective, NFR rules represent a 

subset of design rules dedicated only to promoting stakeholders’ quality attributes. This type of 

rule is the only type analyzed by the framework’s services. In the rest of this chapter, we use 

the term rules instead of NFR rules for the sake of simplicity and brevity.  

RDA is an analyzing service called to gauge the defectiveness of rules specified at the early 

stages. A rule defectiveness measure is a set of metrics used to calculate the degree or the 

density of rules violation of software architecture when it occurs in state 1. Rules violations are 
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design infringements committed by designers when they deviate from the instructions specified 

in the NFR catalog. The reason behind introducing this service is the need for applying an 

earlier analysis that assesses the designed architecture before going any further through the 

development process. This would help designers to: 

 Fixing irregularities and non-conformance to design standards and architectural 

decisions in order to reduce architecture defectiveness. This includes architectural 

styles, patterns, and any type of rule specified to promote quality attributes.  

 Eliminating or decreasing undesired architecture complexity. 

 Reducing reworks on architecture during and after the implementation stage 

 Predicting the quality of the next state of architecture before proceeding with the 

implementation stage.  

RDA adopts a weight-based approach to assess rules defectiveness. It uses an importance scale 

to cluster rules into a set of macro-groups. Each macro-group is assessed separately, and then 

an evaluation recap that contains the defectiveness percentage, the number of rules 

infringements, and the violated rules will be produced at the end of the analysis. 

6.2.1.1 Macro-groups  

A macro-group is a cluster of rules that have the same weight and promote the same quality 

attribute. The grouping is based on a customizable scale that uses the importance degree 

(extreme, strong, moderate…etc.) and the violation severity (catastrophic, major, minor…etc.) 

of each involved rule. Grouping rules into macro-groups reduces significantly analysis 

iterations and the time spent to calculate architecture defectiveness. More specifically, instead 

of calculating facet defectiveness using the fulfillment score of each rule, we use only the score 

of each macro-group (eq. (2)). If we have, for instance, fifty rules grouped into four macro-

groups then, the number of iterations to calculate the defectiveness is reduced to four instead of 

fifty (eq. 5). More formally, we represent a macro-group MGi by the couplet <Ri, Wi>, where: 

- Ri= {rij /j =1, 2…n} is the set of n rules constituting the macro-group MGi. 

- Wi is the weight of the macro-group MGi, where 0≤Wi ≤1. 

6.2.1.2 Calculating architecture defectiveness metrics 

Design-time architectural defects represent the parts of the design that does not comply with 

architectural decisions taken at earlier stages and specified at the meta-model level. They 

represent the set of all rules violated when the design of architecture has been accomplished 

(state 1). An architectural defect has the following properties: 

- Source: a defect is caused by the violation of a design rule. 

- Severity: the degree of damage that a defect can cause.  It has a direct correlation with 

the weight of rules. The larger the weight of rules is, the higher the severity of their 

defectiveness. 
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RDA calculates the fulfillment score of each macro-group separately then, it calculates the 

defectiveness metrics of each facet inputted into MS-QuAAF, and finally, it calculates the 

overall architecture defectiveness using the following equations: 

Definition 1: Macro-group fulfillment 

Let MGi= {R1, R2,…,Rn} be the set of rules of the macro-group MGi, Wi be the weight of MGi, 

and S={S1, S2,…, Sn} be the set of fulfillment scores in which, each score is assigned to each 

rule of MGi, respectively, as follows. 

𝑆𝑖 = {
1, 𝑅𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
0, 𝑅𝑖 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

(1) 

This procedure requires architects to perform design reviews to identify the violated rules of 

each macro-group MGi then; RDA calculates the fulfillment score of each MGi as follows. 

𝑀𝐺𝐹𝑖 = (∑ 𝑆𝑖

𝑛

𝑖=1

)
𝑊𝑖

𝑛
, (2) 

where MGFi represents the satisfaction score of the macro-group MGi. Introducing the weight 

Wi allows obtaining more accurate scores. In this context, violating rules with a larger weight 

can increase significantly the architecture defectiveness compared to rules with a smaller 

weight.  

Calculating MGFi of all macro-groups of the facet AFi makes determining the satisfaction score 

of the related quality attribute QAi much easier (eq. (3) and eq. (5)) It suffices to sum the 

obtained MGFi to calculate this score. Subsequently, the overall fulfillment score is obtained 

easily by summing the scores of all stakeholders’ quality attributes (eq. (4) and eq. (6)). 

Definition 2: the QuARF (Quality Attribute Rules Fulfillment) metric 

Let MG= {MG1, MG2,…, MGn} be the set of macro-groups of the facet AFi, MGFi be the 

fulfillment score of each MGi of MG, and QAi is the quality attribute promoted by AFi, then 

𝑄𝑢𝐴𝑅𝐹𝑄𝐴𝑖 = ∑ 𝑀𝐺𝐹𝑖

𝑛

𝑖=1

(3) 

is the metric used to measure the fulfillment of rules of the facet AFi. More accurately, each 

quality attribute QAi is pre-assessed by measuring the conformance of the corresponding facet 

AFi to the architectural decisions taken. This metric is calculated by summing the score of each 

macro-group (calculated by eq. (2)) of MG. It is obvious that 0≤ QuARFQAi ≤1, which means 

that the closer the value of QuARFQAi is to 1, the smaller the number of rules violations.  

Example: let AF1 be the architecture facet mapped to the performance attribute. Let us assume 

that the total number of rules specified within AF1 is 25 rules scattered over 3 macro-groups: 
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MG1 contains 8 strongly important rules, MG2 contains 12 moderately important rules, and 

MG3 contains 5 slightly important rules. Assuming the weight of each macro-group is 0.5, 0.3, 

and 0.2, respectively (can be calculated by eq. (7), eq. (8), and eq. (9)), and the number of 

violated rules is 2 rules in MG1, 4 rules in MG2, and 2 rules in MG3, then the satisfaction score 

of each macro- group is calculated using eq. (2) as follows. 

MG1= (1+1+1+1+1+1+0+0)*0.5/8=0.375. 

MG2= (1+1+1+1+1+1+1+1+0+0+0+0)*0.3/12=0.2. 

MG3= (1+1+1+0+0)*0.2/5=0.12. The obtained scores are used to calculate the QuARF of 

performance as follows. 

QuARFperformance= 0.375+0.2+0.12≈ 0.7. The weight of macro-groups has a big influence on 

the satisfaction score of each quality attribute. Satisfying strongly important rules can enhance 

significantly these scores. For example, if all rules of MG1 are satisfied, then QuARFperformance 

is increased to 0.82, whereas the optimal value is 1. 

Definition 3: the OVF (Overall Fulfillment) metric 

Let QA= {QA1, QA2,…, QAn} be the set of all stakeholders’ quality attributes, AF= {AF1, 

AF2,…, AFn }be the set of the corresponding facets of the architecture SA, and QuARFQAi be 

the fulfillment score of each AFi, then 

𝑂𝑉𝐹 =  
∑ 𝑄𝑢𝐴𝑅𝐹𝑄𝐴𝑖

𝑛
𝑖=1

𝑛
  (4) 

is the metric used to measure the overall rules’ fulfillment of SA. OVF is calculated by summing 

the score of each facet AFi of AF (calculated by eq. 3). Obviously, 0≤ OVF ≤1, which means 

that the closer the value of OVF is to 1, the smaller the architecture defectiveness, and vice 

versa. 

Definition 4: the QuARD (Quality Attribute Rules Defectiveness) metric 

Let QuARFQAi be the fulfillment score of the facet AFi, then 

𝑄𝑢𝐴𝑅𝐷𝑄𝐴𝑖 % = (1 −  𝑄𝑢𝐴𝑅𝐹𝑄𝐴𝑖). 100 (5) 

is the metric used to measure the defectiveness percentage of the quality attribute QAi promoted 

by the facet AFi. The smaller the value of QuARFQAi, the larger the defectiveness of the facet, 

which affects negatively the quality attribute promoted. In the example above, the QuARD of 

performance is equal as follows. 

QuARDperformance= (1-0.7)*100= 30%. 

Definition 5: the OVD (Overall Defectiveness) metric 

Let OVF be the overall fulfillment score of the architecture SA, then 

𝑂𝑉𝐷 % = (1 −  𝑂𝑉𝐹). 100 (6) 
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is the metric used to measure the overall defectiveness percentage of SA. The smaller the value 

of OVD, the healthier the state of the designed architecture. 

6.2.1.3 Macro-groups weightage 

Architectural rules specified by architects play explicit and implicit roles in achieving specific 

quality attributes. The weight of a rule is correlated with the importance of its role in the 

stakeholders’ viewpoint. For Example, favoring modifiability over performance means that 

rules promoting modifiability weigh more than performance’s rules. Consequently, violating 

rules that determine how layers should communicate with each other in a layered design is not 

the same as violating rules that recommend the maximum number of defined layers. In the 

former, the violation leads to destroying a design principle that keeps a layered style consistent, 

which affects modifiability directly. In the latter, the violation may affect performance, which 

has less priority than modifiability.  The violation severity permits determining the weight of 

rules specified to promote a quality attribute. The larger the weight of rules, the higher the 

violation severity and the defectiveness ratio. 

Attributing weight to rules is not a trivial task because it depends on many criteria, such as 

quality attributes prioritization, trade-offs, and violation depth.  Hence, this allows us to treat 

the calculating of macro-groups’ weight as a decision-making problem. As we have mentioned 

above, rules are categorized into macro-groups according to architects’ judgment that uses a 

qualitative importance scale. However, this categorization does not assign quantitative weights 

to macro-groups. For this reason, RDA uses the AHP (Analytic hierarchy process) (R. W. Saaty, 

1987; T. L. Saaty & Vargas, 2012; Svahnberg et al., 2003) technique to calculate the weight of 

each defined macro-group. 

AHP is a multi-criteria decision-making technique that assigns preference values to alternatives. 

Such values are used to help decision-makers in ranking and selecting the best choice that suits 

their goals by decomposing hierarchically the decision problem into easier sub-problems 

(Svahnberg et al., 2003). The hierarchy elements are evaluated systematically using a pairwise 

comparison matrix along with expert judgments. The matrix is created with the help of a 

quantitative scale of relative importance called the Saaty scale (Table 6.2). 

Values Importance levels 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values 

1/2,…, 1/9 Inverse comparison 

Table 6.2. The Saaty scale 
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The matrix A (nxn) contains the pairwise comparison values between macro-groups calculated 

using the Saaty scale’s importance levels, where A (nxn) is written as follows. 

                     𝑀𝐺1 ⋯   𝑀𝐺𝑛 

𝐴 =
𝑀𝐺1

⋮
𝑀𝐺𝑛

 (
𝐴11 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑛

) (7) 

Each value of A is normalized by the sum of each column as follows. 

𝐴𝑖𝑗 =
𝐴𝑖𝑗

∑ 𝐴𝑖𝑗
𝑛
𝑖=1

 (8) 

After the matrix has completely normalized, we calculate the weight of each macro-group by 

dividing the sum of each line by n as follows. 

𝑊𝑖 =
∑ 𝐴𝑖𝑗

𝑛
𝑗=1

𝑛
 (9) 

The resulting weights are used to calculate the fulfillment score of macro-groups depicted by 

eq. (2). The weightage of macro-groups permits deducing the violation severity of each 

involved rule, and thus helping RDA in calculating architecture defectiveness more equitably 

(by giving each rule the weight that deserves) and accurately. 

In summary, the RDA service performs the defectiveness analysis and assessment as follows. 

Step 1. Dividing the inputted facet into a set of macro-groups using a qualitative importance 

scale. 

Step 2. Calculating the weight of each macro-group quantitatively using the AHP method (eq. 

7, 8, 9). 

Step 3. Calculating the fulfillment of macro-groups, facets, and the overall architecture (eq. 1, 

2, 3, 4). 

Step 4. Calculating the defectiveness of macro-groups, facets, and the overall architecture (eq. 

5, 6). 

Step 5. Generating the defectiveness sub-report.  

6.2.2 Responsibilities Tree Assessment service (RTA) 

Although RDA service permits us to analyze rules infringements and calculates architecture 

defectiveness at the end of the design stage (state 1), it does not allow us to assess the 

satisfaction of these rules after the accomplishment of the implementation stage (architecture 

state 2). For this purpose, a second service called RTA is introduced into MS-QuAAF to provide 

a continuous architecture evaluation. RTA defines a new type of metric called RSI 

(Responsibilities Satisfaction Indicator) to assess the satisfaction of NFR responsibilities 
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assigned to promote the inputted quality attribute by performing a responsibility decomposition 

analysis.  

Definition 6: the RSI metric 

RSI is the fundamental assessment metric defined within MS-QuAAF. It is an indicator used to 

gauge the satisfaction of NFR responsibilities by applying a responsibility decomposition 

analysis. 

A responsibility decomposition analysis consists of creating, analyzing, and assessing 

quantitatively a responsibilities tree called the Responsibilities Satisfaction Tree (RST). The 

latter is created by decomposing each node (responsibility) into several sub-responsibilities 

recursively until no further decomposition is possible. The service RTA uses RST to calculate 

the satisfaction of the top main responsibility (e.g., enhancing performance) by calculating the 

satisfaction of each weighted sub-responsibility starting from the bottommost nodes of the tree 

(bottom-up assessment). 

6.2.2.1 The Responsibilities Satisfaction Tree (RST) 

The responsibility decomposition analysis is inspired by the goal decomposition analysis used 

by the NFR framework originated by (Chung et al., 2000). The NFR framework is centered 

upon the concept of Softgoal, which is the basic unit for representing non-functional 

requirements (see chapter 4). A Softgoal is a goal that does not have a clear-cut criterion for its 

satisfaction (Mylopoulos et al., 1999), such as security, safety, and reliability. Currently, there 

are three main types of goal decomposition analysis (Kobayashi et al., 2016; Yamamoto, 2015; 

Zhou et al., 2020): the Softgoal Interdependency Graph (SIG) (Chung et al., 2000), the Fault 

Tree Analysis (FTA) (Ruijters & Stoelinga, 2015), and the Goal Structuring Notation (GSN) 

(Kelly & Weaver, 2004). However, these methods use a qualitative evaluation of Softgoals, and 

they cannot evaluate the satisfaction of these goals quantitatively. Besides, these types of goal-

driven methods are used to evaluate a specific type of NFR, such as security and robustness, 

and cannot be used for a generic architecture evaluation. In this work, we propose the service 

RTA that uses RST to evaluate the satisfaction of the assigned NFR responsibilities 

quantitatively regardless of the type of quality attributes inputted into the MS-QuAAF 

framework.    

RST (Figure 6.2) is a quantitative responsibility tree inspired by the weighted SIG and goal 

decomposition tree depicted in (Kobayashi et al., 2016; Subramanian & Zalewski, 2014; 

Yamamoto, 2015). It uses the same type of SIG’s relationships, which are the decomposition 

and the contribution relationships. However, it uses different types of nodes, which are the top 

responsibility (root), sub-responsibilities, and tactics (leaves) instead of the top claim, sub-

claims, and evidence (or operationalization Softgoals) nodes, respectively. Additionally, the 

weight of responsibilities is calculated using dedicated equations (eq.10 to eq.15) unlike 
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quantitative SIGs where weights are assigned to softgoals according to designers’ subjective 

estimation and without providing straightforward methods for calculating those weights.  

Formally, an RST is represented by the quintuplet <R0, R, T, D, C>, where: 

- R0 is the top main responsibility, which represents the RST’s root. 

- R= {Ri / i=1…n} is the set of sub-responsibilities that represent children and grand-

children of R0. 

- T= {Ti / i=1…n} is the set of tactics linked to the bottommost sub-responsibilities 

nodes. These tactics represent the RST’s leaves 

- D= {Di / i=1…n} is the set of decomposition links that relate responsibilities to each 

other. 

- C= {Ci / i=1…n} is the set of contribution links that relate tactics to responsibilities.  

The construction of the RST is performed by applying the following steps sequentially. 

Step 1. Top responsibility definition 

The first step to constructing RST is to define the main responsibility assigned to promote a 

quality attribute. Each attribute is associated exactly with one top responsibility. For instance, 

RST’s main responsibility assigned to promote performance can be expressed as boosting 

performance. 

Step 2. Responsibilities decomposition 

Each responsibility is decomposed and refined recursively into sub-responsibilities starting 

from the top responsibility until the decomposition criterion is fulfilled.  This criterion is 

satisfied when all the produced responsibilities are atomics (indivisible), and no further 

decomposition can be applied.  For instance, the responsibility called boosting performance can 

be decomposed into adopting multi-tier architecture, managing network latency, avoiding 

bottlenecks, and so forth. 

Step 3. Tactics attribution  

After the decomposition has been completely finished, tactics are attributed to the bottommost 

responsibilities. More specifically, at least one tactic is linked to each atomic responsibility. In 

this context, a tactic is a set of rules specified to achieve an NFR responsibility. Tactics can 

contribute positively or negatively to a responsibility achievement, which means that the more 

the number of tactics is fulfilled, the more responsibilities are satisfied and vice versa. For this 

reason, links between tactics and responsibilities are called contribution links.  
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6.2.2.2 Quantitative evaluation using RST 

Evaluating NFR responsibilities using RST is a multi-step bottom-up process that evaluates the 

achievement of NFR responsibilities incrementally. It starts by calculating the attribute values 

of tactic nodes using the weight and the satisfaction score of these architectural tactics. Then, it 

propagates these values to the upper responsibilities nodes level after level using the 

contribution and decomposition weights until it reaches the top responsibility (Figure 6.3). 

More specifically, the evaluation is conducted by applying the following steps. 

Step1. Calculating attribute values for tactic nodes 

Step 1.1. Assigning satisfaction scores to tactics 

The first step taken to evaluate NFR responsibilities consists of assigning to each tactic node a 

satisfaction score. The latter one is intended to assess whether the tactics specified at the design 

stage are well-implemented and satisfied at the implementation stage. The assessment consists 

of attributing score values to tactics according to an adjustable satisfaction scale (Figure 6.3 

(a)). In this work, we use the following values: 

 2: Strongly satisfied.  

 1: Moderately satisfied.  

 -1: Unsatisfied.  

 -2: Strongly unsatisfied.  

Step 1.2. Calculating the weight of tactics 

A tactic is a mixture of rules that constitutes a design technique. The weight of a tactic is 

calculated by summing the weights of all its rules. The weight of these rules has been already 

calculated by the first service RDA when the weight of macro-groups was determined using 

AHP (section 6.2.1.3). Therefore, the weight of a tactic node is calculated as follows. 

Figure 6.2. The Responsibilities Satisfaction Tree (RST) 
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Let Ti be a tactic node, R= {R1, R2, …Rn} be the set of rules constituting Ti, and RW={RW1, 

RW2,…RWn} be the set of weights of R, respectively, then 

𝑇𝑊𝑖 = ∑ 𝑅𝑊𝑖

𝑛

𝑖=1

 (10) 

is the weight of the tactic node Ti. For instance, if the tactic T1 encompasses 5 rules, each of 

which have the weights {0.5, 0.3, 0.2, 0.2, 0.3}, respectively, then TW1= 0.5+0.3+0.2+0.2+0.3= 

1.5.  

Step 1.3. Calculating attributes values 

Let T= {T1, T2,…Tn} be a set of tactic nodes, TW={TW1, TW2,…TWn} be a set of the 

corresponding tactic weights of  T, and S= {S1, S2,…Sn} be a set of satisfaction score of T, then 

𝑇𝑉𝑖 = 𝑇𝑊𝑖 ∗ 𝑆𝑖  (11) 

is the attribute value of the node Ti that has the weight TWi and the score Si (Figure 6.3 (a)). 

For example, the tactic node K shown in this figure is calculated by multiplying the weight 0.45 

by the satisfaction score 2, which gives us 0.45 as the attribute value of K. 

Unlike quantitative Softgoal-based approaches that depend only on the satisfaction scale to 

assign values to evidence, we have used the weight of tactic nodes beside satisfaction score to 

calculate attribute values of these nodes. We believe that using tactic weights in calculating 

attributes gives us more accurate results than other approaches. More specifically, the weight 

of tactics has a direct correlation with the positive and negative contribution of these tactics in 

achieving NFR responsibilities. The larger the weights are, the higher the contribution is, and 

vice versa.  

Step 2. Calculating attribute values for responsibilities nodes 

Calculating attribute values for responsibilities consists of using the propagation technique. 

Attribute values can be propagated from tactics nodes to sub-responsibilities nodes or from sub-

responsibilities to upper sub-responsibilities.  

Step 2.1. Tactic to sub-responsibility propagation using contribution weight 

Attribute values of tactic nodes can determine how much a tactic can contribute to the 

achievement of the upper nodes. In the RST tree, an atomic sub-responsibility can be fulfilled 

by a set of tactics, each of which has a contribution weight. These weights are calculated as 

follows. 

Let RSi be an atomic responsibility, T= {T1, T2,…Tn} be the set of tactics assigned to RSi, 

TW={TW1, TW2,…TWn} be the set of tactics’ weight of  T, and TV={TV1, TV2,…TVn} be 

the attribute values of T, respectively, then 
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𝐶𝑊𝑖 =
|𝑇𝑊𝑖|

∑ |𝑇𝑊𝑖|
𝑛
𝑖=1

 (12) 

is the contribution weight of the contribution link relating the tactic Ti with the sub-

responsibility RSi, where  CW1+CW2+…+CWn= 1. 

By using attribute values and contribution weight of tactics, the attribute values of atomic sub-

responsibilities can be propagated from these tactics using the following equation.   

𝐴𝑅𝑉𝑖 = ∑ 𝑇𝑉𝑖 ∗ 𝐶𝑊𝑖

𝑛

𝑖=1

 (13), 

where ARVi is the attribute value of RSi propagated from T by multiplying TV’s values by 

CW’s contribution weights (Figure  6.3 (b)). For instance, the atomic responsibility H shown 

in this figure has two contribution weights (0.37, 0.63) linked to two tactic nodes (M, N) that 

have the attribute values (-0.29, 0.5), respectively. Therefore, the attribute value of H is 

calculated by propagating the attribute values of M and N through the contribution weights as 

follows. 

ARVH= (0.37*-0.29) + (0.63*0.5) ≈ 0.21. 

Step 2.2. Sub-responsibility to sub-responsibility recursive propagation using decomposition 

weight 

As we have mentioned above, a top responsibility node is divided into a set of sub-

responsibilities recursively, each of which has a weight called the decomposition weight. This 

weight reflects the importance of a sub-responsibility in achieving its parent node. Accordingly, 

calculating a decomposition weight is performed as follows. 

Let RSi= {SRS1, SRS2,… SRSn} be the set of child sub-responsibilities of the parent 

responsibility RSi, and RVi= {SRV1, SRV2,…SRVn} be the set of attribute values of these sub-

responsibilities, respectively, then 

𝐷𝑊𝑖 =
|𝑆𝑅𝑉𝑖|

∑ |𝑆𝑅𝑉𝑖|
𝑛
𝑖=1

 (14) 

is the decomposition weight of the decomposition link relating RSi to its child sub-

responsibilities, where DW1+DW2+…+DWn= 1. 

To propagate attribute values from lower sub-responsibilities nodes to parent nodes recursively, 

we use the following equation:   

𝑅𝑉𝑖 = ∑ 𝑆𝑅𝑉𝑖 ∗ 𝐷𝑊𝑖

𝑛

𝑖=1

 (15), 
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where RVi is the attribute value of the parent RSi propagated from sub-responsibilities by 

multiplying attribute values of child nodes by the corresponding decomposition weights (Figure 

6.3 (c)). For instance, the parent node C shown in this figure has two children sub-

responsibilities (G, H) that have the attribute values (0.7, 0.21), in which the decomposition 

weights are 0.77 and 0.23, respectively. Therefore, the attribute value of C is calculated by 

propagating the attribute values of G and H through their decomposition weights as follows. 

RVC= (0.7*0.77) + (0.21*0.23) ≈ 0.59.  

Step 2.3. Sub-responsibility to main responsibility propagation, calculating RSI 

In this last step, RTA calculates the metric RSI by propagating attribute values from sub-

responsibilities to the top responsibility using the same equations defined in the previous step 

as follows.  

Let TR= {SRS1, SRS2,… SRSn} be the set of sub-responsibilities of the top responsibility TR, 

and RV= {SRV1, SRV2,…SRVn} be the set of attribute values of the child sub-responsibilities, 

and DW={DW1, DW2,…,DWn} be the decomposition weight of RV, respectively, then 

𝑅𝑆𝐼 = ∑ 𝑆𝑅𝑉𝑖

𝑛

1

∗ 𝐷𝑊𝑖  (16), 

where RSI is the attribute value and the satisfaction indicator of the top responsibility TR 

propagated from the lower sub-responsibilities (Figure 6.3 (d)). 

RSI represents the final evaluation score that assesses the achievement of the NFR 

responsibilities assigned to promote the quality attribute under assessment. The service RTA 

compares this score with the score of the best-case scenario (e.g., all tactics are satisfied) and 

the score of the worst-case scenario (e.g., all tactics are unsatisfied) to indicate the position of 

the current evaluation in the satisfaction scale. 

In the example shown in figure 6.3, RSI is equal to 1.17 in case all tactic nodes are strongly 

satisfied (optimal) or it is equal to 0.718 when all tactics are satisfied. Consequently, the 

obtained score of 0.71 is considered satisfied because it is very close to the value of 0.718.  

The outcome of assessing NFR-responsibilities is to detect bad-implemented and non-fulfilled 

tactics, which helps architects in sanitizing the architecture before deploying the system. The 

sanitization consists of refining the architecture with minor and medium changes in order to fix 

the emerged defects since carrying out major changes to the architecture at this development 

stage can be hard to achieve.    
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6.2.3 Late-assessment and final analysis service (LAFA) 

LAFA is the last service called by MS-QuAAF to finalize the evaluation effort. It consists of 

generating the final assessment report using dedicated metrics. These metrics are calculated 

using an evaluation matrix that encapsulates both RDA and RTA’s metrics, which means that 

architecture state 1 and state 2 are covered by the same matrix. The evaluation consists of 

measuring the closeness between the matrix values that represent the previously obtained 

assessment results and the optimum values contained in separate vectors called the optimal 

vectors. The closeness metrics consist of calculating the Euclidean distance (ED) between the 

matrix and the optimal vectors. The obtained results permit us to make final judgments on 

architecture quality at both the design and implementation stages and thus finalizing the 

assessment effort by generating a concluding evaluation report. 

6.2.3.1 Evaluation model 

The evaluation model consists of constructing a global evaluation matrix that encompasses both 

architecture states (state 1, state 2), in which alternatives (rows) represent quality requirements, 

and attributes (columns) represent metrics. More specifically, two metrics are used in this 

evaluation model, which are QuARF and RSI calculated previously by RDA and RTA. 

Consequently, the matrix is constructed as follows.  

Let 

- QA= {QAi/ i ∈ N} be the set of stakeholders’ quality attributes, where N= {1, 2, …n}. 

Figure 6.3. An example of a quantitative evaluation using RST 
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- S= {Sk/ k ∈ P} be the set of architecture states, where P= {1, 2}. 

- M= {QuARF, RSI} be the set of metrics used in the final assessment, then 

                                𝑄𝑢𝐴𝑅𝐹    𝑅𝑆𝐼 

X= (Xij)nx2 =

𝑄𝐴1

⋮
𝑄𝐴𝑛

(
𝑋11       𝑋12

⋮       ⋮
𝑋𝑛1      𝑋𝑛2

)  

is the evaluation matrix constructed by n quality attributes and two assessment metrics, in which 

each Xij represents the measurement results of QAi by the metric Mj, where i ∈ N, and j ∈ {1,2}. 

By using these metrics, we guarantee an inclusive assessment by combining the states S1, and 

S2 in the same matrix. Each horizontal and vertical vector of matrix X is compared to the 

corresponding optimal vector using the closeness metrics. LAFA depends on these metrics to 

output the final assessment report. 

6.2.3.2 Assessing quality using Euclidean distance as a closeness measure 

Definition 7: Euclidean distance between two vectors (O’Neill, 2014) 

Let A= (A1, A2, … An), and B= (B1, B2, … Bn) be two non-zero real vectors, then 

𝑑(𝐴, 𝐵) = ‖𝐴 − 𝐵‖ = √(𝐴1 − 𝐵1)2 + (𝐴2 − 𝐵2)2 + ⋯ + (𝐴𝑛 − 𝐵𝑛)2 (17) 

is the Euclidean distance between the vector A and the vector B.  

Definition 8: The closeness measure 

The closeness measure (metric) denoted by clos (A, B) is the Euclidean distance d (A, B) 

between the vectors A and B. The closer the value of clos (A, B) is to 0 the closer the vector A 

is to B. Additionally, the metric clos is a judgment of magnitude and not of orientation, which 

means that the orientation of the vectors A and B does not matter in calculating clos (A, B).  

MS-QuAAF defines two types of closeness measure, horizontal closeness, and vertical 

closeness. In the former, each row of the matrix is compared to the optimal vector. In the latter, 

we calculate the closeness between each column of the matrix and the optimal vector.   

Definition 9: The horizontal closeness metric (ClosH) 

ClosH consists of calculating the Euclidean distance between each row of the matrix X and the 

corresponding optimal vector. More accurately, each alternative represents a vector that 

contains QuARF and RSI assessment values. ClosH permits post-evaluating each quality 

attribute by comparing these vectors’ values to the optimal assessment values by performing 

the following steps. 

Step 1. Calculating the closeness of alternatives 

Let X= (Xij)nx2 be the evaluation matrix, H ={H1, H2,…, Hn} be the set of optimal vectors in 

which, each Hi= {max
𝑖 ∈ 𝑛

𝑄𝑢𝐴𝑅𝐹𝑄𝐴𝑖, max
𝑖 ∈ 𝑛

𝑅𝑆𝐼𝑄𝐴𝑖}={1, max
𝑖 ∈ 𝑛

𝑅𝑆𝐼𝑄𝐴𝑖}, then the closeness between 

each alternative QAi and the corresponding Hi is calculated by Eq. (17) as follows. 

𝐶𝑙𝑜𝑠𝐻𝑄𝐴𝑖 = √(𝐻𝑄𝑢𝐴𝑅𝐹 − 𝑋𝑖1)2 + (𝐻𝑅𝑆𝐼 − 𝑋𝑖2)2 (18) 

Step 2. Results interpretation 
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Calculating ClosH permits judging software architecture as a whole by including evaluation 

results of design and implementation stages of each QAi in the final evaluation model (matrix 

X). The closer the value of ClosH is to 0, the better is the satisfaction of the quality attribute 

QAi. The obtained value can lead to two main scenarios: 

 ClosHQAi is close to 0: this scenario means that the design rules and NFR responsibilities 

are both satisfied.  

 ClosHQAi is considerably greater than 0: this scenario can be interpreted as follows. 

- Design rules are not fulfilled, which may affect NFR responsibilities assigned to QAi 

negatively.  

- Design rules are fulfilled contrary to NFR responsibilities, which can be interpreted as 

a partial architecture deviation that concerns only the architecture facet AFi associated 

with QAi. 

Other scenarios and interpretations can be emerged according to the value of ClosHQAi. 

Definition 10: The vertical closeness metric (ClosV) 

ClosV consists of calculating the Euclidean distance between each column of the matrix X and 

the corresponding optimal vector. Each column represents a vector that contains the assessment 

values of all quality attributes of one architecture state. For instance, the first column contains 

the measurement values of all quality attributes using the metric QuARF. Contrary to ClosH, 

ClosV permits evaluating the overall quality through each metric Mi against the optimal 

assessment values by performing the following steps. 

Step 1. Calculating the closeness of attributes (columns) 

Let X= (Xij)nx2 be the evaluation matrix, V= {VQuARF, VRSI} be the set of optimal vectors in 

which, VQuARF= {𝑚𝑎𝑥 𝑄𝑢𝐴𝑅𝐹𝑄𝐴1, 𝑚𝑎𝑥 𝑄𝑢𝐴𝑅𝐹𝑄𝐴2, …, 𝑚𝑎𝑥 𝑄𝑢𝐴𝑅𝐹𝑄𝐴𝑛}= {1,1,…1}, and 

VRSI= {𝑚𝑎𝑥 𝑅𝑆𝐼𝑄𝐴1, 𝑚𝑎𝑥 𝑅𝑆𝐼𝑄𝐴2, …, 𝑚𝑎𝑥 𝑅𝑆𝐼𝑄𝐴𝑛},   then the closeness between each column 

Mj and the corresponding Vj is calculated by Eq. (17) as follows. 

𝐶𝑙𝑜𝑠𝑉𝑀𝑗
= √(𝑉𝑗1 − 𝑋𝑗1)2 + (𝑉𝑗2 − 𝑋𝑗2)2 + ⋯ + (𝑉𝑗𝑛 − 𝑋𝑗𝑛)2 (19) 

Step 2. Results interpretation 

Calculating ClosV permits measuring the overall architecture quality in a separate way. More 

specifically, we measure the overall quality (all QAs) at the design stage using the metrics 

QuARF, and we measure it at the implementation stage using the metric RSI. The obtained 

value of ClosV can lead to the following scenarios: 

 ClosVQuARF and ClosVRSI are close to 0: the overall quality at both development stages 

is satisfied. The opposite scenario emerges when ClosV is remarkably greater than 0. 

 ClosVQuARF is close to 0 and ClosVRSI is not close to 0: this scenario means that the 

implemented architecture does not meet the designed one, which can be interpreted as 

an overall architecture deviation. This type of deviation is called architecture erosion 

(de Silva & Balasubramaniam, 2012).  
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 ClosVQuARF and ClosVRSI are not close to 0: this scenario represents a total architecture 

defectiveness in which, both the designed and implemented architecture have deviated 

from the predefined specifications.   

 ClosVQuARF is not close to 0 and ClosVRSI is close to 0: this scenario occurs when the 

detected design flaws (non-fulfilled rules) are fixed before proceeding with the 

implementation stage.  

Other intermediate values can produce other scenarios. It is up to evaluators to interpret the 

emerged scenarios.   

LAFA uses ClosH and ClosV to conclude the evaluation effort by producing the final 

assessment report according to the emerged evaluation scenarios. Architects and evaluators can 

approve or disapprove deviations calculated by those closeness measures. Accepted deviations 

can be addressed and treated in the next system releases. In the next chapter, we will conduct 

an empirical study to check the usefulness of the defined metrics suite (Table 6.3) in evaluating 

architecture quality. 

Metrics Services Measurement scope 

QuARF RDA One quality attribute at a time (state 1) 

QuARD RDA One quality attribute at a time (state 1) 

OVF RDA Overall at state 1 

OVD RDA Overall at state 1 

RSI RTA One quality attribute at a time (state 2) 

ClosH LAFA One quality attribute at a time (state 1, and state 2) 

ClosV LAFA Overall at state 1, and state 2 

Table 6.3. MS-QuAAF metrics suite 

6.3 Conclusion  

In this chapter, we have depicted exclusively and in detail, the quality evaluator module and the 

evaluation process performed through it. Once architecture facets are extracted using the facet 

projector module, they will be sent directly to the quality evaluator to be assessed. The latter 

consists of three services that cover the evaluation of architecture at two main development 

stages, which are the conceptual design and implementation stages. More specifically, we have 

provided the theoretical aspect of these services by presenting all the mathematical equations 

used to calculate the evaluation metrics defined within each service. These metrics are generic 

because they can be applied to assess any quality attribute on the condition that the architectural 

decisions taken to promote these attributes are specified at the early development stages and 

placed in the NFR catalog.  

The first service called RDA is dedicated to analyzing and gauging the defectiveness of the 

designed architecture against the design rules specified at the early stages of the development 

process. This service provides four metrics to calculate design-time architectural defects that 

represent the parts of the design that do not comply with architectural decisions taken earlier 
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and specified at the meta-model level. These defects are calculated at the facet level for each 

involved quality attribute and subsequently, the overall defect of the whole architecture is 

deduced. We have attributed weights to rules to obtain more accurate evaluation results. The 

larger the weight of a rule, the higher the severity of its defectiveness and vice versa.  

The second service called RTA is dedicated to assessing the implemented architecture. It 

provides the metric RSI, which is an indicator used to gauge the satisfaction of NFR 

responsibilities by applying a responsibility decomposition analysis. The latter consists of 

creating, analyzing, and assessing quantitatively a responsibilities tree called the 

Responsibilities Satisfaction Tree (RST). We have introduced also weights on the leaf nodes 

(tactics nodes) of RST to boost up the accuracy of RSI and the equity between the involved 

responsibilities. The larger the weight of a tactic, the higher its impact on promoting the 

corresponding quality attribute. The outcome of assessing NFR-responsibilities through RST is 

to detect non-fulfilled tactics, which would help architects in sanitizing the architecture before 

deploying the system. However, it is very complicated and costly to apply major changes to 

architecture at this advanced development stage.  

The third service called LAFA is dedicated to drawing conclusions on the architecture quality 

by analyzing the scenarios that can emerge after calculating the metrics ClosH and ClosV. 

Finally, a global assessment report is generated accordingly.  

In the next chapter, we will provide an implementation of these services by conducting an 

experimental evaluation through two case studies. 



 

 

 

 

 

 



 

Chapter 7 

An experimental evaluation of the 

framework MS-QuAAF: A case study 
 

In the previous chapter, we have presented the evaluations services defined within the quality 

evaluator module. More specifically, we have presented the theoretical aspect of this module 

by providing the mathematical definition for each evaluation metric through a set of equations. 

In this chapter, we will provide a concrete implementation of each evaluation service through 

an experimental evaluation, in which two case studies will be treated and discussed. The 

implementation will illustrate how to use the proposed metrics to assess software architecture 

during the development process. First, we will start by providing the research methodology 

followed to answer the research questions asked at the beginning of this dissertation (the 

introduction). Second, we will present the target architecture that will be assessed during the 

experimental evaluation. Third, we will present the experiment process, which includes 

architecture specification, design-time evaluation, NFR responsibilities evaluation, and the 

final assessment report. Finally, the answers to the research questions will be provided.  

Additionally, we will present a prototype of the MS-QuAAF tool used to assist evaluators 

during the assessment process.  
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7.1 The experimental evaluation protocol 

The main goal of performing an experimental evaluation is to answer the research questions 

asked earlier in this dissertation. These questions address many concerns, such as the ability of 

the framework to assess software architectures and the effectiveness and accuracy of the 

proposed metrics. At the beginning of this section, we evoke the research question asked before 

as follows. 

 RQ1: Is the proposed framework capable of calculating the defectiveness of the designed 

architecture?
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This question aims to evaluate the effectiveness of the metrics QuARF (Quality Attribute Rules 

Fulfillment), QuARD (Quality Attribute Rules Defectiveness), OVF (Overall Fulfillment), and 

OVD (Overall Defectiveness). 

 RQ2: Is the proposed framework capable of estimating the satisfaction of NFR 

responsibilities of the implemented architecture? 

This question aims to evaluate the effectiveness of the metric RSI (Responsibilities Satisfaction 

Indicator). 

 RQ3: Are the proposed metrics capable of deducing architecture deviations?  

This question aims to evaluate the effectiveness of the metrics ClosH (horizontal closeness) and 

ClosV (Vertical closeness) in assessing quality and detecting architecture deviations.  

 RQ4: Does the proposed framework help in enhancing architecture quality?  

This question aims to evaluate the usefulness and the effectiveness of MS-QuAAF in enhancing 

the architecture quality at the design and implementation stages.  

However, before putting the framework under assessment, we have defined a must-follow 

protocol that determines how we should run the experimental evaluation. The protocol includes 

the following steps: 

a. Selecting the research methodology: In this step, we have selected the research 

methodology that will be used during the experimental evaluation (case study, 

experiment, survey, etc.). 

b. Selecting target architectures: In this step, we have selected the software architectures 

that will be assessed using MS-QuAAF’s services.  

c. Configuring the groups involved in the experiment: In this step, we have chosen the 

staff that will be involved during the evaluation (designers and developers). 

d. Launching the experiment: In this step, we have started the experimental evaluation.  

7.1.1 The research methodology 

The research methodology followed during the experimental evaluation to answer the above 

questions is a case study. This research methodology can provide us with research results from 

real-world projects, which would be difficult to achieve with other research methodologies 

(Runeson et al., 2012). Moreover, case studies allow finding out what happens, especially 

within a specific environment.  

7.1.1.1 Research purpose 

Different research purposes are served by different research strategies including case studies. 

Three main research purposes can be distinguished: explanatory, exploratory, and descriptive 

(Runeson & Höst, 2009; Wohlin & Aurum, 2015). Explanatory research is applied to seeking 

explanations for a problem, mostly in a form of causal relationships. Exploratory research is 
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applied to determining what is happening, searching for new insights, and generating ideas and 

hypotheses. Descriptive research aims to portray the status of a phenomenon or situation. 

According to this classification, our case study falls into the explanatory category. The defined 

research questions tend to explain and examine the (causal) relationships between the data 

collected from the experimental evaluation (number of violated rules, weights, NFR 

responsibilities satisfaction, etc.) and quality attributes satisfaction.  

The first RQ examines the relation between design rules (tactics, constraints, etc.) violation, the 

weight of these rules, and architecture defectiveness rates calculated through the metrics 

QuARF, QuARD, OVF, and OVD. The statistical analysis must determine the ability and 

effectiveness of these metrics in calculating the defectiveness of the designed architecture. It 

displays also the causal relation between rules infringements and the calculated defectiveness 

by the dedicated service and metrics.  

The second RQ examines the relationship between NFR responsibilities, their weights, their 

satisfaction degrees, and the satisfaction of the associated quality attributes. The statistical 

analysis must display the causal relationship between NFR responsibilities fulfillment 

calculated through the metric RSI and quality attributes achievements. It determines also the 

ability of the metric RSI to calculate NFR responsibilities satisfaction of the realized 

(implemented) architecture. 

The third RQ examines the relationship between the previously obtained results at design and 

implementation stages, and architecture deviation using the metrics ClosH and ClosV. The 

statistical analysis must display the relation between these results and deviations. It allows also 

determining the effectiveness of these metrics in assessing quality and detecting architecture 

deviations.  

The fourth RQ allows examining the relationship between the proposed metrics within their 

services and architecture quality improvement. 

7.1.1.2 Case study design 

After we had formulated research questions, we adhered to the protocol of the case study design 

defined in (Perry et al., 2004; Runeson et al., 2012). According to this protocol, the design of a 

case study can be divided into three steps: planning, data collection, and data analysis.  

a. Planning. In this phase, we have defined the case (the phenomenon in its real context), fixed 

its objective (explanatory), and selected the method used to collect data and evidence. In this 

context, data will be collected from the experimental evaluation performed using MS-

QuAAF. Additionally, we have planned and selected the type of case study that we will 

conduct in this experimental evaluation. There are four known types of case studies (Perry 

et al., 2004): holistic single-case, embedded single-case, holistic multiple-case, and 

embedded multiple-case. Our case study belongs to the embedded single-case category, in 
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which two analysis units are included (figure 7.1). The first unit is the architecture of an 

auction web application (SA1), whereas the second unit is the architecture of a desktop data 

visualization tool  

b. Data collection. According to (Wohlin & Aurum, 2015), archival research, surveys, 

experiments, and simulation are the commonly used quantitative data collection methods. In 

this dissertation, data are mainly collected from the experimental evaluation. Among the 

collected data, we can find the number of macro-groups, the number of rules within each 

macro-group, the number of violated rules in each macro-group, weights of macro-groups, 

the satisfaction score attributed to each tactic node of the RST (Responsibilities Satisfaction 

Tree), and the weight of each tactic node. 

c. Data analysis. The data analysis method conducted in this dissertation tends to be statistical. 

All the equations defined in chapter 6 are used to treat and analyze the previously collected 

data. In the design stage, the defectiveness rates from the macro-group extent to the overall 

extent are calculated and interpreted. In the implementation stage, the satisfaction degree of 

NFR responsibilities associated with each quality attribute is calculated and interpreted. The 

obtained results in both development stages are also used for the final assessment report 

through an evaluation matrix.  

All the interpretations in this phase aim to be causal (sections 7.2.2, 7.2.3, and 7.2.4). The 

obtained results through metrics at both development stages are related directly to quality 

attributes achievement and architecture deviations. For instance, high architecture 

defectiveness (QuARF is very close to zero) may cause high degradation of the associated 

quality attribute, or violating rules rated as extremely or strongly important (associated with 

high weights) may cause the increase of architecture defectiveness. 

 

 

 

 

 

 

 

 

 

7.1.2 Target architecture 

In this study, we have proposed two academic software architectures to evaluate MS-QuAAF. 

This choice is constrained by the fact that specification, design, and implementation of 

industrial real-world projects are very hard to obtain due to the restricted policy of their owners 

and copyright protection. Furthermore, we wanted to get involved in the development process 

from the beginning to evaluate the effectiveness of the proposed metrics in assessing and 

enhancing the architecture quality throughout this process. The first proposed architecture 

Figure 7.1. The structure of our embedded single-case study 
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(SA1) concerns an auction web application that manages online auctions. The second 

architecture (SA2) concerns a data visualization desktop tool. These applications can be 

described as follows. 

- The auction application (figure 7.2 (a)) allows bidders to search, select, and purchase 

bids. Its architecture is organized around five components: the J2EE server, the client, 

the broker, the client-side proxy, and the server-side proxy. The broker represents an 

intermediary that attempts to search the appropriate server to satisfy clients’ requests. A 

client cannot connect to a server without passing by the broker. This separation allows 

replacing failed servers dynamically. Proxies are used to relate clients and servers to the 

broker. The most important component in this system is the J2EE server. The latter is 

architecturally organized as a set of layers or tiers, which makes it a multi-tier server. If 

a bidder executes an action (e.g., purchasing), a message will be sent from the top layer 

to the bottom ones. The first layer (the presentation layer) comprises java Servlets that 

would allow generating dynamically the user interface to log into the system to execute 

the desired actions. The second layer (the business layer) encompasses the business 

components, which are the Enterprise Java Beans (EJB). The third layer (data access 

layer) provides services (e.g., Java Database Connectivity) that would allow the 

connection to the auction database and execute the desired queries. 

- The visualization application (figure 7.2 (b)) is a tool that allows reading data sources, 

such as databases and CSV files as input and displaying the chosen graphical 

representation (charts, graphs…etc.) as output. The architecture of this tool follows a 

layered architecture pattern, in which there are exactly three layers. The top layer 

permits converting data sources into temporary data models. The second layer contains 

adapters that convert the temporary models, such as Excel and database models into a 

generic data model. The third layer contains different types of charts and graphs used to 

represent the generic data model visually. However, to access this layer, the generic data 

model of the second layer should connect to the façade component to use the desired 

graphical elements (to reduce complexity), which means that the third layer adopts the 

façade architectural pattern.  

7.1.3 Groups configuration 

According to the number and size of the projects under-experiment, we have formed and 

supervised two development groups of master's degree students (Table 7.1). These students are 

trainees in a Startup software development company called SDI consulting1.  The first group is 

assigned to the auction application project, whereas the second one is assigned to the data 

visualization project. The first group includes two designers with short experience in Alloy 

(Jackson, 2012, 2019) language, and three java programmers. On the other hand, the second 

group comprises two moderate OCL (Object Constraint Language) (About the Object 

                                                           
1 Société de Développent Informatique 
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Constraint Language Specification Version 2.4, n.d.) designers and two Java programmers. We 

provided each group with the corresponding architecture specification that includes functional 

and non-functional requirements.  Accordingly, designers from each group have proceeded with 

the design process relying on these specifications (meta-models). More specifically, the yielded 

design artifacts for both projects consist of a set of UML diagrams, particularly the component 

and class diagrams. After the design stage has been completely accomplished, we have assessed 

the produced design through the service RDA. Subsequently, designers have coordinated with 

programmers to explain to them the design and the architectural constraints (rules) made to 

promote the specified quality attributes. By finishing this stage, the mission of both teams was 

considered accomplished, and the second phase of evaluation has started by calling RTA and 

LAFA, respectively. 

Figure 7.2. A conceptual representation of the target architectures SA1 and SA2 

 

7.1.4 The MS-QuAAF tool prototype 

In order to facilitate, expedite, and automatize the evaluation process through MS-QuAAF, it 

would be better to develop a tool that implements the architecture and the philosophy of the 

framework. In this dissertation, we have developed a prototype tool based on the architecture 

of MS-QuAAF. More specifically, the tool encompasses two main modules: the facet projector 

and the quality evaluator (figure 5.1). The first module implements the concept of facet 

projection to assist architects in extracting facets from large meta-models. The second module 

 Group 1 Group 2 

# Members 5 students 4 students 

Project  The auction application (SA1) The data visualization application (SA2) 

Design skills Alloy, UML OCL, UML 

Programming skills J2EE (Jakarta EE) Java  

# Designers 2 students 2 students 

# Programmers 3 students 2 students 
Table 7.1. Development groups’ configuration 
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implements the evaluation services RDA, RTA, and LAFA to calculate the proposed evaluation 

metrics.   

Figure 7.3 shows the main window of the MS-QuAAF tool. This window provides a simple 

and intuitive flat design that encompasses a set of buttons from which we can launch all the 

evaluation services. The first row of these buttons displays three child windows, each of which 

allows starting and exploiting the services RDA, RTA, and LAFA, respectively. In the second 

row, the button called Facets is dedicated to extracting architecture facets. In this prototype, the 

facet projector supports only the language Alloy; however, it is easy to add other specification 

languages by providing the corresponding implementation. 

The tool should connect to the NFR catalog to extract data, such as the architecture name, 

stakeholders’ quality attributes, and design rules. Moreover, the evaluation results obtained 

through metrics are stored in this catalog. The latter can be defined and implemented using 

many techniques, such as databases, XML, or any other techniques that best fit the architects’ 

needs. In our prototype, we have used a relational database and XML technology to manipulate 

architectures’ data. Figure 7.4 shows an Entity/Relation diagram that portrays the main entities 

of the NFR catalog: 

- Architecture: This entity represents the architecture under assessment. 

- Quality attribute: This entity represents the target quality attributes. The obtained 

evaluation results (QuARF, QuARD, etc.) are stored within this entity. 

- Macro-group: This entity depicts the macro-groups that will be used by the service 

RDA. 

- Rule: This entity encompasses design rules that will be analyzed by the framework. 

Figure 7.3. The main window of the MS-QuAAF tool prototype 
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Furthermore, we have used XML, particularly with the second service RTA where RST trees 

are mapped to XML documents to facilitate the process of calculating the metric RSI. It should 

be noted that it is possible to implement the NFR catalog fully in XML; however, using 

relational databases to manage some parts of the catalog (particularly data used by RDA) can 

provide us total control on data, and thus avoiding flaws and anomalies (e.g., rules redundancy). 

Examples of using the tool will be depicted in the rest of this chapter. 

 

 

 

 

 

 

 

 

7.2 The Experimental evaluation process 

The experimental evaluation can be divided into four major phases, which are the architecture 

specification, the design-time evaluation, the implementation-time evaluation, and the final 

assessment report. 

7.2.1 Architecture specification 

Architecture specification is the cornerstone on which the proposed evaluation is based. 

According to the target quality attributes of each project, we have specified SA1 and SA2 in a 

detailed manner taking into account the design skills of each group. The specification permits 

the construction of the NFR catalog for each architecture. The selection of quality attributes is 

motivated by the business goals of these projects. Table 7.2 depicts the quality attributes and 

the specification language for both projects as follows.  

7.2.1.1 Specifying SA1 using Alloy 

Alloy is a general-purpose first-order specification language that uses predicates and facts to 

specify systems. We have used Alloy to specify SA1 taking into account the desired quality 

attributes, which are maintainability, performance, and availability. The specification consists 

of defining a set of rules to promote each one of these attributes (70 rules in total). For instance, 

to promote the server’s maintainability, the main architecture decision made is to adopt the 

J2EE architecture, which follows the multi-tier architectural style. To promote availability, we 

defined rules that manage the communication between clients, servers, and the broker 

component. Listing 7.1 shows an excerpt of the Alloy specification of SA1, which depicts the 

following elements (see Appendix A). 

Figure 7.4. An Entity/Relation diagram of the NFR catalog 
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- The main entities of the system are expressed as Alloy Signatures, such as layers, EJB 

components, database components, broker components, and Java Servlets 

- The relationships between these components are expressed as Alloy relations. 

- Design rules, which are expressed as Alloy facts, predicates, and within signatures 

declaration. These rules should keep the system consistent by managing and constraining 

the relationships: component-component, component-layer, and layer-layer.  

For instance, to promote maintainability, we have defined some rules as follows. 

- Adopting the multi-tier J2EE architecture as the main architectural style of the server. 

- The architecture is divided into three layers (tiers). 

- The first tier (the lower layer) should contain only the components that interact with the 

auction database to execute clients’ queries. 

- The second tier should contain only the business components (EJBs). 

- The third tier (the top layer) should contain only the presentation components, which 

are Java Servlets.  

- Messages can only be sent from the third layer to the second layer, from the second 

layer to the first layer, and from the first layer to the third one.  

- The degree of coupling between two components should not exceed 5. 

- If the degree of coupling exceeds 5 then insert an intermediary component. 

To promote performance, we have specified some rules as follows. 

- The number of layers should not exceed five. A high number of layers will decrease 

performance (Bass et al., 2012). 

- Use Java DataSource instead of the DriverManager to connect to the database. 

- Use connection pooling to data sources to boost up performance. 

- Use PreparedStatment instead of ordinary statements. 

- Use batched SQL queries. 

Most rules, particularly the main rules that manage the structure of the system and the 

relationships between layers and components were specified with Alloy. However, some 

behavior rules that necessitate a considerable Alloy specification effort were specified using 

natural language in order to reduce the complexity of the specified model and to facilitate the 

design of the system (e.g., improving bandwidth).  

 SA1 SA2 

Quality attributes Maintainability, performance, 

availability 

Maintainability, extensibility 

# Rules 70 45 

Specification language Alloy OCL 
Table 7.2. Quality attribute, number of rules, and specification language of SA1 and SA2 
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7.2.1.2 Specifying SA2 using OCL and eclipse Ecore 

OCL is a pure formal specification language that can be used to specify application-specific 

constraints. We have used OCL constraints to specify SA2 according to the desired quality 

attributes, which are maintainability and extensibility (45 rules). Practically, we have used The 

OcLineEcore plugin (figure 7.5) that allows enriching Ecore and UML meta-models with OCL 

constraints inside the Eclipse Modeling Framework (EMF). Accordingly, we have embedded 

OCL constraints (invariants) within the Ecore meta-model that describes the architecture SA2 

(see Appendix B). We have found that adopting this embedded specification philosophy allows 

enriching meta-models and thus enhancing understandability and readability unlike using 

separate OCL specifications. In this context, we have not used separate OCL specifications 

because it requires an extra effort to understand the final meta-model and the mapping to the 

OCL constraints. 

Listing 7.2 shows the specification of the SA2 meta-model and the embedded OCL constraints. 

This specification depicts the main classes of the system, which are 

- Architectural layers: Architecture, Reader_Layer, Converter_Layer, and 

Renderer_Layer. These layers are expressed as classes, each of which contains attributes 

and operations (methods). 

- Architectural components: Data_Reader, Data_Converter, and Data_Renderer. These 

components are also expressed as classes, each of which is encompassed within the 

corresponding layer. 

- Interfaces: DataAdapter and Façade. These interfaces should be implemented by the 

above elements. 

- OCL constraints: Constraints are mostly expressed as OCL invariants. These constraints 

are embedded within the system’s classes, interfaces, and their declared operations 

bodies.  

For example, to promote maintainability, the following subset of OCL invariants is specified 

(some rules are similar to the maintainability rules of SA1). 

- Follow the layered architectural style as the primary architectural pattern of SA2, in 

which the number of layers is exactly three (it differs a little bit from the multi-tier style 

defined in SA1, particularly in message circulation). 

- The first layer should contain data readers, such as CSV, MS Excel, and databases 

readers. 

- The second layer should contain data converters 

- Data converters should transform inputted data to a standardized format (tabular format) 

specified by the interface DataAdapter.  

- The third layer should encompass rendering components charged with displaying data 

in diverse graphical formats (e.g., charts). 

- The third layer should adhere to the Façade pattern specified by the interface Façade. 



Chapter 7. Experimental evaluation  145 

- The interface Façade is responsible for granting access to the third layer and selecting 

the appropriate rendering components subsequently.  

- The first layer should not receive any message, whereas the third layer is not allowed to 

send any message (unlike SA1).  

To promote extensibility (Bass et al., 2005), we have defined rules that allow adding new 

components and functionalities without affecting the system design. Accordingly, we have 

defined rules that allow the system to be extensible without affecting the layered style: 

- To add a new rendering type, it suffices to add the corresponding rendering component 

to the third layer and re-implementing the façade interface. 

- To add a new converter, it suffices to add the corresponding converter component to the 

third layer. 

- To support a new data format, it suffices to add a new reader to the first layer. 

- Adding new components will not affect the messages sending and receiving paradigm. 

- A layer is allowed to add new components. 

- Adding new layers is allowed without exceeding five layers. 

- To add or modify data format, it suffices to re-implement the interface DataAdapter. 

However, we have designed the system to be extensible to a precise extent. Making the system 

extensible to a large extent may affect maintainability and harden the system maintenance. 

Therefore, we have preferred maintainability at the expense of extensibility (tradeoff between 

maintainability and extensibility). 

  

Figure 7.5. The OCLinEcore plugin used to embed OCL invariants within EMF. 
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Listing 7.1. The Alloy meta-model of SA1 

1  module J2EE_Server4   

3  abstract sig Component {coupledTo:Component} 

4  sig intermediaryComponent extends Component {} 

5  abstract sig layer {contains: some Component, message:one layer} 

6  //sig intermediaryLayer extends layer {} 

7  abstract sig Servlet_auction extends Component{calls:Ejb_auction} 

8  abstract sig Ejb_auction extends Component{} 

9  abstract sig Service_auction extends Component{} 

10 one sig Server{divided_into:some layer, deliver:Response  ->  Broker, addC: set 

intermediaryComponent} 

... 

16 ///////Declaring the broker///////// 

17 sig Client {send:Request ->Broker} 

18 sig Registry {contents: Service} 

... 

25 ///////////Declaring Layers or Tiers////////// 

26 //layer03 

27 one sig Presentation_Layer extends layer {} 

28 sig login extends Servlet_auction {} 

29 sig Account {searches:search_article, buys:buy_article, pays:pay_article} 

.... 

33  

34 //Layer02 

35 one sig Business_Layer extends layer {} 

36 one sig login_Ejb extends Ejb_auction {connect:login_DB} 

… 

40  

41 //Layer01 

42 one sig Data_Layer extends layer {} 

43 one sig DB extends Service_auction{} 

44 sig login_DB extends Service_auction{openAccount:Account} 

.... 

49 ///The presentation layer must contain only Servlet Components 

50 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, l:Presentation_Layer |s 

in l.contains && e not in l.contains  && r not in l.contains} 

51  

52 ///The Buisiness layer must contain only EJBs Components 

53 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, l:Business_Layer|e in 

l.contains && s not in l.contains  && r not in l.contains} 

.... 

58 // the architecture is divided into three layers, which are the presentation, data, and 

Business Layers  

59 fact {all l:layer, a: Server | l in a.divided_into} 

... 

64 //Datasource,connection pooling to enhance performance 

65 one sig Connection_DB{pooledTo:DataSource, execute:Query}//using pooling to enhance 

performance 

... 

70 fact {all q:Query| q.belongTo=PreparedStatement} 

71 fact {all q:Query| q.executedAs=Batch} 

72  

73 //////messages rules between layers 

74 //the presentation layer can send messages to the business layer and not vice versa 

75 fact {all p:Presentation_Layer, b:Business_Layer| p.message in b} 

… 

81 fact {all p:Presentation_Layer, b:Business_Layer,d:Data_Layer|p.message not in p && 

82      b.message not in b && d.message not in d} 

83  

84 /////Coupling between component 

85 //coupling between 2 components should be lesser than 8 

86 fact{all c:Component | #c.coupledTo <=7} 

87 // a component cannot be coupled to it self 

88 fact{all c:Component |c not in c.coupledTo} 

...... 

90 fact {all c:Component, c1:intermediaryComponent, s:Server |#c.coupledTo<=7 implies c1 

not in s.addC} 

91  

92  

93 ///////////Some of the broker design rules 

94 fact {all r:Registry, s:Service|s in r.contents && r in s.resides && contents=~resides} 

95  

96 //Rule 1: the number of requests must be equal to the number of responses. 

97 fact {all c:Client|all  s:Server |#c.send=#s.deliver && # Response=#Request } 

98  

99 fact{one b:Broker|send.b in~sentBy &&#send.b =#~sentBy } 

100 

101 //A server can't deliver a response without receiving a request                    
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Listing 7.2. The OCL embedded specification within the Ecrore meta-model of SA2 

1  import ecore : 'http://www.eclipse.org/emf/2002/Ecore' ; 

2   

3  package testView : testView = 'http://www.example.org/testView' 

4  { 

5   class Architecture 

6   { 

7    attribute Arch_id : String[?]; 

8    attribute newAttribute : String[?]; 

9    property divided : Layer[+|1] { ordered }; 

10  

11   /* 

12    * the recommended number of layers 

13    */ 

14   invariant layer_count: self.divided->size()=3; 

15  

16   /* 

17    * the maximum layer capacity 

18    */ 

19   .... 

35  } 

36  class Layer 

37  { 

.... 

50   operation sendMessage(m : Layer[?]) : Boolean[?] 

51   {/* */ 

52    body: Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Reader_Layer) 

or    p.oclIsTypeOf(Converter_Layer) then sendMessage(p) 

53     else 

54     not sendMessage(p) 

55     endif); 

56   } 

.... 

66  } 

67  class Renderer_Layer extends Layer 

68  { 

.... 

75   invariant 

76   MsgDirection1:  

77    

78   Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Reader_Layer) or p. 

  oclIsTypeOf(Converter_Layer) then  

79    not self.sendMessage(p) 

80     

81    else  self.sendMessage(p) endif); 

82  

.... 

88    

89   Layer.allInstances()->forAll(p|if  p.oclIsTypeOf(Converter_Layer)  then  

90    self.receiveMessage(p) 

91     

92    else  not self.receiveMessage(p) endif); 

93  

.... 

104  invariant selectRenderer:  

105  self.follow.allowAccess() implies self.follow.selectRenderer()->size()=1; 

106 

.... 

110  invariant content:  

111     self.contain-> forAll(p| p.oclIsTypeOf(Data_Renderer) ); 

112 } 

113 class Converter_Layer extends Layer 

123  let send : Renderer_Layer = self.call in 

124  if self.call.oclIsTypeOf(Renderer_Layer)then sendMessage(send)else not 

sendMessage(send) endif; 

..... 

...  

132   not self.receiveMessage(send); 

133 

134  /* 

135   * A Converter Layer should contain only the conversion objects 

136   */ 

137  invariant content:  

138     self.contain-> forAll(p| p.oclIsTypeOf(Data_Converter) ); 

139 } 

140 class Reader_Layer extends Layer 

141 { 

142  property call : Converter_Layer[1]; 
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In both architecture specifications, rules do not have the same architectural weight.  In the NFR 

catalog, we have assigned to each specified rule an importance level according to a four-level 

importance scale. Table 7.3 depicts the importance scale used to classify rules according to their 

contribution to promoting the corresponding quality attributes. This classification facilitated the 

creation of macro-groups and the calculation of their weights.  Hence, violating extremely and 

strongly important rules will engender a disastrous impact on the intended design and 

architecture quality. For instance, omitting the broker in SA1 or violating the layered style rules 

in SA2 may affect severely the availability and the maintainability attributes, respectively. On 

the other hand, rules at a lower importance level can cause architectural damages and quality 

degradation to a lesser extent.  

In the next phases, we will use the defined metrics to evaluate the quality of the designed and 

implemented architecture using the rules specified in the current phase.   

Importance scale Rules example (SA1) Rules example (SA2) 

Extremely 

important 

Clients and server should 

communicate through the broker 

(availability) 

A layer can only use the services of its 

adjacent lower layer (maintainability) 

Strongly important The server should follow the J2EE 

layered architecture 

(maintainability) 

Adding new data sources should be 

realized by adding data adapters in the 

second layer (extensibility) 

Moderately 

important 

The size of classes and JSP pages 

should be reduced (performance and 

maintainability) 

Using the façade style in the third 

layer to reduce complexity 

(maintainability and extensibility) 

Slightly important Use image caching and data 

compressing (performance) 

Inserting intermediaries to reduce 

high coupling (maintainability and 

extensibility) 

Table 7.3. Examples of SA1 and SA2’s general rules with their importance level 

7.2.2 Design-time evaluation 

This evaluation phase starts after the accomplishment of the design stage, in which designers 

of each group should follow the corresponding architecture specification. However, this is not 

always the case because designers may infringe on some rules, which causes the deviation of 

the designed architecture from the specified one. In this phase, the evaluation effort is divided 

into five steps, each of which can be performed automatically or semi-automatically, except 

step 4 that necessitates architects to analyze and check the design to uncover rules violations. 

Step1. Facets projection 

In this step, we have projected facets from the NFR catalog of each project according to the 

target quality attributes. We extracted from SA1 three facets, which are AF1, AF2, and AF3 
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related to maintainability, performance, and availability, respectively (Table 7.6). From SA2, 

we have extracted two facets, which are AF4, AF5 mapped to maintainability and extensibility, 

respectively (Table 7.7). Each facet encompasses architectural decisions made to promote the 

relevant quality attribute. We have used the facet projector of the MS-QuAAF tool to project 

architectural facets by implementing the projection algorithm (see chapter 5) defined in (Kadri 

et al., 2020). 

The facet projector GUI (Graphical User Interface) provides an easy and straightforward way 

to extract facets from the overall Alloy meta-models through the following steps (figure 7.6). 

a) Loading the Alloy specification that depicts SA1 (.als file) into the left window panel 

by clicking on the button Load. 

b) Specifying the projection query in the top window panel. The query was written as 

“Select Component (*), layer (*), Server, Message (*), Account from SA1 into AF1 

where quality_attribute =Maintainability’’. The query designates the elements to be 

extracted from SA1 according to the projection criterion Maintainability. These 

elements represent Alloy Signatures (close to the notion of classes in the object-oriented 

paradigm), Facts, and Predicates mapped to the criterion. The annotation (*) indicates 

to the facet projector to extract the signature and all its inherited signatures. Each Alloy 

fact related to the selected signatures is also extracted. 

c) Selecting the designated Alloy elements using the associated checkboxes. 

d) Creating the facet AF1 by clicking on the button Create Facet. The yielded facet is 

displayed in the right window panel. 

e) Saving AF1 by clicking on the button Save Facet. 

The produced facet is divided into two logical parts (see the example shown in section 5.3.6). 

The first part represents the declaration of Alloy signatures and the relationships between them. 

Among these signatures, we can find architectural layers, Servlets, EJBs, etc. The second part 

of AF1 represents the relevant Alloy facts (rules), such as components that must exist in each 

layer, the relationships between these components, coupling degree, etc. These facts are 

supposed to be followed by designers and developers to promote the maintainability attribute. 

Step2. Creating macro-groups 

In this step, we have sliced facets into a set of macro-groups according to the importance scale 

depicted in table 7.3. As a result, four macro-groups (MG1, MG2, MG3, and MG4) have been 

created from each extracted facet; in which each macro-group represents a subset of rules. In 

this context, MG1, MG2, MG3, and MG4 contain the extremely, strongly, moderately, and 

slightly important rules, respectively. The slicing process was performed automatically 

according to the importance level assigned to each architectural decision in the NFR catalog. 
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Figure 7.6. Extracting a facet through the Facet projector GUI 

Step3. Calculating macro-groups weight 

Calculating the weight of macro-groups consists of creating the pairwise comparison matrix 

(Table 7.4) using the eq. (7) and the Saaty scale (Table 6.2). More specifically, the matrix is 

filled using a pairwise comparison between macro-groups according to the importance levels 

of the Saaty scale. For instance, MG1 is of strong importance than MG3 (the attributed value is 

5), and MG1 is almost extremely important than MG4. Inversely, MG3 and MG4 are compared 

to MG1.  

Table 7.4. The initial Pairwise comparison matrix          Table 7.5. The normalized comparison matrix 

                     

  

 

 

 

 

 

After we had filled the matrix with the comparison values, we normalized this matrix using eq. 

(8). More specifically, we divided each value by the sum of the corresponding column 

calculated in table 7.4, which gave us a new matrix (table 7.5). The latter was used to calculate 

the weight of each macro-group using eq. (9) as follows. 

  MG1 MG2 MG3 MG4 

MG1 1 2.00 5.00 8.00 

MG2 0.50 1 3.00 6.00 

MG3 0.20 0.33 1 3.00 

MG4 0.12 0.17 0.33 1 

Sum 1.82 3.5 9.33 18 

  MG1 MG2 MG3 MG4 

MG1 0.54 0.57 0.55 0.45 

MG2 0.27 0.28 0.32 0.33 

MG3 0.11 0.094 0.1 0.16 

MG4 0.066 0.048 0.035 0.055 
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WMG1= (0.54 + 0.57 + 0.55 + 0.45)/4=0.527, WMG2= (0.27 + 0.28 + 0.32 + 0.33)/4= 0.3, WMG3= 

(0.11 + 0.094 + 0.1 + 0.16)/4=0.118=, and WMG4= (0.066 + 0.048 + 0.035 + 0.055)/4=0.052, 

where WMG1 + WMG2 + WMG3 + WMG4=1. 

These weights will be used in the next step to calculate design-time metrics to assess state 1 of 

both SA1 and SA2. 

Step4. Calculating QuARF, QuARD, OVF, and OVD 

This step requires architects to perform design reviews to uncover the potential rules 

infringements. Therefore, we have analyzed the design to verify its conformance to the 

architecture specification. Subsequently, we have calculated QuARF and QuARD to measure 

rules fulfillment and defectiveness. 

Table 7.6 and Table 7.7 show the measurement results of SA1 and SA2, respectively. The 

following sub-steps are performed in sequence to obtain these results as follows. 

a) Calculating macro-groups fulfillment (MGF): to calculate MGFi, we have analyzed each 

macro-group to extract the number of violated rules. For instance, the notation MG1 (8:2) in 

the third column of table 7.6 and table 7.7 means that the number of MG1’s rules (facet AF1) 

is 8, in which there are 2 rules violated by designers. Therefore, the MGF of MG1 is 

calculated using eq. (1) and eq. (2) as follows. 

MGF1= (1+1+1+1+1+1+0+0) *0.527/8≈0.4, where 0.527 is the weight of MG1, and 8 is the 

total number of rules of MG1. It is to be noted that the optimal value of MGF1 is equal to 

0.527 if all rules are satisfied. Similarly, we calculated MGF2, MGF3, and MGF4 of all 

quality attributes for both projects.  

b) Calculating QuARF and QuARD (fourth and fifth columns): QuARF of each quality 

attribute is calculated by summing the MGF of all macro-groups using eq. (3).  For instance, 

the QuARF and QuARD of maintainability of SA1 are calculated as follows. 

QuARF maintainability=0.4+0.17+0.079+0.029=0.68. 

Subsequently, we calculated the maintainability QuARD using eq. (5) as follow. 

QuARD maintainability= (1-0.68) *100=32%. 

In the same way, we calculated QuARF and QuARD of all quality attributes for SA1 and 

SA2. 

c) Calculating OVF and OVD: the overall rules fulfillment OVF of each architecture is 

calculated using eq. (4) as follows. 

OVFSA1= (0.68+0.63+0.79)/3=0.7. 

OVFSA2= (0.77+0.87)/2=0.82. 

Subsequently, the overall defectiveness is calculated using eq. (6) as follows. 
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OVDSA1= (1-0.7) *100=30 %. 

OVDSA2= (1-0.82) *100=18 %. 

Quality 

attributes 
Facets Macro-groups score (#rules: #violated rules) QuARF QuARD 

Maintainability AF1 
MG1 (8:2) MG2 (9:4) MG3 (6:2) MG4 (7:3) 

0,67 33 % 
0,4 0,17 0,079 0,029 

Performance AF2 
MG1 (6:2) MG2 (7:3) MG3 (5:2) MG4 (4:1) 

0,63 37 % 
0,35 0,17 0,07 0,038 

Availability AF3 
MG1 (5:0) MG2 (4:2) MG3 (5:2) MG4 (5:1) 

0,79 21 % 
0,527 0,15 0,07 0,04 

Table 7.6. Calculating QuARF and QuARD of SA1 

Quality 

attributes 
Facets Macro-groups score (#rules: #violated rules) QuARF QuARD 

Maintainability AF4 
MG1 (6:1) MG2 (7:2) MG3 (7:3) MG4 (5:1) 

0,77 23 % 
0,44 0,22 0,067 0,041 

Extensibility AF5 
MG1 (3:0) MG2 (7:2) MG3 (5:2) MG4 (4:0) 

0,87 13 % 
0,527 0,22 0,071 0,051 

Table 7.7. Calculating QuARF and QuARD of SA2 

Using the MS-QuAAF tool 

The MS-QuAAF tool made the above steps of calculating architecture defectiveness transparent 

to the user because QuARF and QuARD are calculated automatically by one button click. It 

suffices to follow two simple steps to obtain the desired results. First, the user is invited to select 

the quality attribute under assessment from a list of stakeholders’ attributes. This list is obtained 

automatically by interrogating the NFR catalog (figure 7.7). Second, by clicking the button 

next, a second page that contains macro-groups and their rules will be displayed to the user 

(figure 7.8). The latter should select the satisfied rules within each macro-group, and then click 

the button calculate to display the obtained results. 

Figure 7.7. Selecting the target quality attribute 
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Figure 7.8. Calculating QuARF and QuARD using the MS-QuAAF tool 

Subsequently, the obtained results can be saved in the NFR catalog by clicking the button Save. 

Step 5. Results interpretation and discussion 

Calculating QuARF and QuARD allowed us to judge both architectures after the completion of 

the design stage. Figure 7.9 reflects the obtained results of the maintainability and extensibility 

attributes in the form of a double ring representation. The external ring represents macro-

groups, in which the size of sectors reflects the importance level of the involved macro-groups. 

The internal ring represents the defectiveness (red zones) and fulfillment (green zones) rate of 

each macro-group. More specifically, figure 7.9 (a) shows that the facet AF1 mapped to the 

maintainability attribute suffers from many architectural defects, which increased the 

defectiveness rate up to 33%. Mainly, this is due to the violation of some rules rated as 

extremely and strongly important. Besides, the infringement of MG3 and MG4’s rules caused 

some damages but to a limited extent.  On the other hand, figure 7.9 (b) shows that the 

extensibility attribute (AF5) has fewer defects, in which the defectiveness is equal to 13 %. This 

is the consequence of satisfying all extremely important rules and most of the other rules. For 

the other attributes, performance (AF2) is the most defective one (37%); however, availability 

(AF3) and maintainability (AF4) have lesser defects (21% and 23%, respectively) because most 

of their high-prioritized rules are satisfied. 

The defects that affected the quality attributes of SA1 increased the overall architecture 

defectiveness to 30% (Figure 7.10 (a)). This is the result of the deviation from the rules specified 

earlier, especially the highly important ones. At the same time, the OVD of SA2 is lesser (18%) 

because the conformance to the architectural specifications is higher than SA1 (Figure 7.10 

(b)). 
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Calculating defectiveness and detecting deviations at this stage permit fixing flaws before 

proceeding with the implementation stage. However, the accuracy of the obtained results 

depends on the quality of architecture specification, the ability to determine correctly the 

importance level of the specified rules, and the correctness of performing rules analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.3 NFR responsibilities evaluation (implementation-time) 

This evaluation phase starts after the accomplishment of the implementation stage, in which the 

assigned NFR responsibilities are measured by the RSI metric. The evaluation effort in this 

phase is performed in three main steps as follows. 

Step 1. Constructing RST 

To calculate RSI for both architectures (state 2), we need to construct for each quality attribute 

the corresponding RST (see section 6.2.2.1). Figure 7.11 illustrates the RST of the performance 

attribute of SA1. The main responsibility called promoting performance is divided into a set of 

sub-responsibilities (blue boxes), such as improving bandwidth and enhancing databases 

response time. The decomposition is performed iteratively until no further sub-responsibilities 

can be divided. Subsequently, we attached tactic nodes (yellow boxes) to each atomic sub-

Figure 7.10. Overall architectural defects 

Figure 7.9. A graphical representation of architecture defectiveness of AF1 and AF5 



Chapter 7. Experimental evaluation  155 

responsibility (bottommost responsibilities) to construct the final RST tree as output. In the 

same way, we created RSTs for the other quality attributes. 

Step 2. Calculating RSI  

Calculating RSI consists of performing a set of sub-steps sequentially starting from the RST’s 

bottommost nodes until we reach the top responsibility (see section 6.2.2.2). Figure 7.11 shows 

an example of calculating the performance’s RSI of the web auction application as follows.  

Step 2.1. A judgment score (-1, -2, 1, or 2) is attributed to each tactic node according to the 

satisfaction degree of the upper sub-responsibilities. This step requires the intervention of 

architects and evaluators to attribute these scores (in this experiment, this task is performed by 

us). This can be achieved, for instance, by analyzing and inspecting the source code, reverse 

engineering (generating UML class diagrams from code), and testing to verify the 

implementation and the achievement of tactics. For example, the improve bandwidth sub-

responsibility is judged by checking the size of web pages, their loading time, and the 

implementation of the reducing HTTP requests tactic. The enhance database response sub-

responsibility is judged based on performing a source code analysis to verify the 

implementation of the Batching queries and connection pooling tactics. 

Step 2.2. The weight of each tactic is calculated using eq. (10). For instance, the caching tactic 

consists of two NFR rules: 

 R1: enabling cache-control for images, scripts, and styles. This rule belongs to MG1 

(weight=0.527). 

 R2: using CSS sprites to reduce round trips between servers and clients. This rule 

belongs to MG2 (weight= 0.3). 

Therefore, the weight of caching tactic= 0.527+0.3≈ 0.83. It should be noted that this step and 

all the succeeding steps are performed automatically. 

Step 2.3. The attribute values are calculated for each tactic node using eq. (11). For example, 

the connection pooling tactic= 2 * 0.95= 1.9. 

Step 2.4. The attribute values of atomic sub-responsibilities are propagated from tactic nodes 

with regard to the contribution weights using eq. (12) and eq. (13). For example, the enhance 

DB response sub-responsibility= (1 *0.63 * 0.25) + (2 * 0.95 * 0.75) = 1.58. 

Step 2.5. The attribute values are propagated from sub-responsibilities to parent sub-

responsibilities (e.g., improving bandwidth) according to the decomposition weights using eq. 

(14) and eq. (15). For example, the propagation of attribute values to the upper sub-

responsibility called Improve bandwidth= (0.83 * 0.27) + (0.17 * 0.05) + (1.76 * 0.56) + (0.37 

* 0.12) = 1.26. 
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Step 2.6.  The RSI of the top responsibility is calculated by the same propagation technique 

using eq. (14) and eq. (16), in which we found RSI=0.78. 

Moreover, we found that RSI=0.73 if all tactics are moderately satisfied and 1.46 if all tactics 

are strongly satisfied. The obtained results mean that NFR responsibilities assigned to 

performance are slightly better than moderate satisfaction, which means that performance is 

promoted to a reasonable extent. However, RSI is considerably lesser than the strongly satisfied 

value because some tactics are moderately satisfied, and others are evidently unsatisfied, such 

as multithreading and choosing the most performant server tactics. 

Similarly, we calculated RSI for other quality attributes (Table 7.8). It is obvious that the RSI 

of availability, maintainability (SA2), and extensibility are very close to the strong satisfaction 

values. However, the maintainability of SA1 is lesser than the optimum score because of some 

unsatisfied and moderately satisfied responsibilities. 

Quality 

attributes 

Architecture RSI Moderate 

satisfaction 

Strong 

satisfaction 

Maintainability  SA1 1.6 1.07 2.14 

Performance SA1 0.78 0.73 1.46 

Availability SA1 1.7 0.88 1.75 

Maintainability SA2 1.55 0.8 1.6 

Extensibility  SA2 1.54 0.79 1.58 
Table 7.8. The obtained RSIs of SA1 and SA2. 

Using the MS-QuAAF tool prototype to calculate RSI 

The MS-QuAAF tool offers the user the possibility to calculate RSI automatically starting from 

step 2.2. Three simple steps are required to calculate RSI using this prototype tool as follows. 

Figure 7.11. Calculating the RSI metric of the performance attribute 
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a) The Responsibility Satisfaction Tree (RST) of performance is converted into the 

corresponding XML representation (listing 7.3). Each responsibility and tactic node is 

mapped to the appropriate XML element. The responsibility XML element encompasses the 

attributes that depict the type of the responsibility, its name, and the parent node. The tactic 

XML element contains the attributes that depict the score and the weight assigned to the 

corresponding tactic node. Using the XML format to represent RST eased significantly the 

process of calculating RSI and reduced its complexity. It suffices to use an XML parser (we 

have used the Java DOM parser) to navigate through the different elements of the XML 

document and perform the required RSI computation.  

b) The tool invites the user to load the appropriate XML document using the button Load 

(figure 7.12). By clicking this button, a highlighted XML text will be displayed in the 

dedicated text panel. 

c) Once the XML document is loaded, the user can obtain the RSI of the desired quality 

attribute by clicking on the button Calculate. Additionally, the user can get the RSIs of the 

same quality attribute in case all tactics are moderately satisfied, unsatisfied, strongly 

satisfied, and strongly unsatisfied. All the results are displayed below the XML text panel. 

Listing 7.3. An XML representation of the RST of performance 

<?xml version="1.0" encoding="UTF-8"?> 

<qa name="Performance" arch_id="arch1"> 

<resp type="root" id="1" value="" name="promoting performance">  

<resp type="sub_resp" id="2" linkto ="1" value="" name="introducing concurrency">  

<tactic score="-1"  weight="0.95" value="" linkto="2">Using Thread pooling tactics </tactic> 

</resp> 

<resp type="sub_resp" id="3" linkto ="1" value="" name="improving bandwidth"> 

  <resp type="sub_resp" id="7" linkto ="3" value="" name="improving page loading"> 

  <tactic score="1"  weight="0.83"  value="" linkto="7">using thread pooling tactics </tactic> 

... 

  <resp type="sub_resp" id="10" linkto ="3" value="" name="reducing communications"> 

  <tactic score="1"  weight="0.37"  value="" linkto="10">reducing http requests </tactic> 

  </resp> 

</resp> 

<resp type="sub_resp" id="4" linkto ="1" value="" name="enhancing DB response"> 

... 

<tactic score="-1"  weight="0.42"  value="" linkto="5">choosing best server </tactic> 

</resp> 

<resp type="sub_resp" id="6" linkto ="1" value="" name="controlling layers"> 

<tactic score="2"  weight="0.53"  value="" linkto="6">number if layers is less or equal to 4 </tactic> 

</resp> 

</resp> 

</qa> 



Chapter 7. Experimental evaluation  158 

 

7.2.4 Final assessment report 

The last phase of the experiment consists of concluding the evaluation effort by producing the 

final assessment report (listing 7.4). For this purpose, the metrics ClosH and ClosV are used 

through the service LAFA. These metrics depend on the Euclidean distance to measure where 

the actual architecture quality stands. More specifically, we used these metrics in the 

experiment as follows.  

Step1. Creating the evaluation matrices  

For each project, we have created the evaluation matrices X1 (table 7.9) and X2 (table 7.10) as 

follows (see section 6.2.3.1) 

Table 7.9. The evaluation matrix X1                                             Table 7.10. The evaluation matrix X2 

 

  

 

X1= (X1ij) 3x2 and X2= (X2ij) 2x2 contain the assessment values obtained previously of the 

architectures SA1 and SA2, respectively, using QuARF and RSI. These matrices will be used 

by ClosH and ClosV in the next step to measure the closeness against the optimum values.  

Step 2. Calculating ClosH and ClosV 

Step 2.1. Calculating ClosH 

Quality attributes QuARF RSI 

Maintainability 0.67 1.6 

Performance  0.63 0.78 

Availability  0.79 1.7 

Quality attributes QuARF RSI 

Maintainability  0.77 1.55 

Extensibility  0.87 1.54 

Figure 7.12. Calculating RSI of performance using the MS-QuAAF tool 
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The Euclidean distance between each horizontal vector of the evaluation matrices and the 

corresponding optimal vector is calculated using eq. (18). Table 7.11 shows the results of 

calculating ClosH of all quality attributes for the architectures SA1 and SA2. For instance, 

ClosH performance is calculated by measuring the closeness between the performance vector that 

contains the values <0.63, 0.78> and the optimal vector that contains the values <1, 1.46>. 

Similarly, we calculated the ClosH of all quality attributes. 

Architecture  Quality 

attributes 

QuARF RSI Optimum 

QuARF 

Optimum 

RSI 

ClosH 

SA1 Maintainability  0.67 1.6 1 2.14 0.63 

Performance  0.63 0.78 1 1.46 0.77 

Availability  0.79 1.7 1 1.75 0.21 

SA2 Maintainability  0.77 1.55 1 1.6 0.23 

Extensibility  0.87 1.54 1 1.58 0.13 
Table 7.11. ClosH results 

Step2.2. Calculating ClosV 

Calculating ClosV consists of measuring the closeness between each vertical vector of the 

evaluation matrices and the corresponding optimal vector using eq. (18). Table 7.12 shows the 

results of calculating ClosVQuARF and ClosVRSI of the architectures SA1 and SA2. For example, 

ClosVRSI of SA1 is calculated by measuring the Euclidean distance between the vertical vector 

<1.6, 0.78, 1.7> of the matrix X1 and the optimal vector <2.14, 1.46, 1.75> (Table 7.11). 

Architecture  ClosVQuARF ClosVRSI 

SA1 0.53 0.87 

SA2 0.26 0.064 
Table 7.12. ClosV results 

Step 3. Results interpretation and the final report 

ClosH permits to judge the satisfaction of each quality attribute inclusively at the design and 

implementation stages. Table 7.11 shows that the obtained ClosH of maintainability and 

performance of SA1 is averagely greater than zero, which means they are moderately close to 

the optimal values.  This is mostly due to the obtained QuARF scores that indicate the existence 

of several architecture defects at design time, and thus the deviation from the specified 

architectural decisions. Besides, there are some NFR responsibilities that are not satisfied at the 

implementation stage, which contributed to increasing the distance from the optimal values. 

Figure 7.13 (b) illustrates the distance between the performance vector and the optimum vector 

(ClosH performance=0.77). This distance is the largest in this experiment, which means that 

performance is the less satisfying quality attribute. 

On the other hand, the obtained ClosH of availability, maintainability (SA2), and extensibility 

are sufficiently close to zero, which we consider as a very satisfactory result (especially for the 

extensibility). Mainly, this is due to the low defectiveness rate at design time and the satisfaction 
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of the most assigned NFR responsibilities of the implemented architecture. Figure 7.13 (a) 

illustrates a very short distance (ClosH extensibility=0.13) between the extensibility vector and the 

optimum vector, which implies that extensibility is the most satisfying quality attribute in this 

experiment. Conclusively, ClosH converges to zero as QuARF and RSI increase and achieve 

the best scores.   

ClosV permits to judge the overall architecture quality at the design stage and the 

implementation stages separately. Table 7.12 shows that the obtained ClosVQuARF of SA1 is 

somewhat greater than zero, which means that the overall designed architecture suffers from 

some architecture defects. These defects are mainly caused by the infringements of some 

important architectural decisions of the facets AF1 and AF2 related to the maintainability and 

performance attributes, respectively (Table 7.6).  However, the attained ClosVQuARF of SA2 is 

close to zero to a certain extent, which means that the designed architecture is healthy despite 

a few architecture defects that affected the facets AF4 and AF5 related to the maintainability 

and extensibility attributes, respectively (Table 7.7).  

On the other hand, the obtained ClosVRSI of SA1 is greater than zero, which means that the 

overall quality of the implemented architecture is somewhat far from the desired results. The 

defective architecture at the design time and therefore, the dissatisfaction of some important 

NFR responsibilities at the implementation stage (especially for maintainability and 

performance) have contributed to increasing the distance from the optimal values. Contrarily, 

the attained ClosVRSI of SA2 is very close to zero (ClosVRSI=0.064), which means that the 

implemented architecture has achieved the optimal values. This is due to the very short 

Euclidean distance between the maintainability and extensibility vectors and the corresponding 

optimum vectors. Similar to ClosH, ClosVQuARF and ClosVRSI converge to zero as QuARF and 

RSI increase, respectively. 

 

 

 

 

 

The final report can be also generated as an XML document (listing 7.4). The elements 

encompassed within the tag ClosH describe the state of each target quality attribute. The ED 

(Euclidean Distance) attribute represents the value of ED of the parent quality attribute tag, 

whereas the max_ED attribute represents the worst-case scenario if all rules are completely 

violated (the optimal value is zero). The XML element QA_Deviation depicts the deviation 

Figure 7.13. The ED between extensibility and performance vectors and the optimum vectors 
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from the architectural decisions made to promote a quality attribute, whereas the element 

QA_health illustrates the healthiness of such attribute.  

The XML element ClosV encompasses the elements that depict the overall architecture state at 

the design and implementation stages. These elements illustrate the severity of deviation of the 

designed architecture from the specified (the design_deviation XML element) one and the 

implemented architecture from the designed one (the implementation_deviation XML element).  

Listing 7.4. The final evaluation report of SA1 structured as an XML document 

(Appendix C) 

<?xml version="1.0" encoding="UTF-8"?> 

<arch id="arch1"> 

<evaluation_stage name="late_assessment"> 

<ClosH> 

<QA name="performance" ED="0.77" Max_ED="4.14"> 

<comment> 

The ED between performance and the optimum value is 0.77, wheras the max distance is 4.14</comment> 

<QA_Deviation> 

<severity> Moderatly close to the optimal value</severity> 

<cause> Architectural defects at design time </cause> 

<cause> responsibilities are not satisfied at the implementation stage</cause> 

<details> 

…. 

</details> 

</QA_Deviation> 

<qa_health> partially healthy</qa_health> 

</QA> 

<QA name="maintainability" ED="0.63" Max_ED="4.5"> 

..... 

</ClosH> 

<ClosV> 

<quarf_overall value="0.53"> 

<comment> architecture suffers from some architecture defects </comment> 

<design_deviation> 

<severity> acceptable</severity> 

<cause> Some rules of architecture facets AF1 and AF2 are violated</cause> 

<details> 

…… 

</details> 

<design_health> relatively healthy</design_health> 

.... 

<rsi_overall value="0.87"> 

<comment> Somewhat far from the desired results</comment> 

<implementation_deviation> 

<severity> acceptable</severity> 

<cause> Some high weighted responsibilities are not satisfied</cause> 

<details> 

….. 

</details> 

<implementation_health> relatively healthy</implementation_health> 

</implementation_deviation> 

.... 

</arch> 
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7.3 Answering the research questions 

RQ1: Is the proposed framework capable of calculating the defectiveness of the designed 

architecture? As shown in section 7.2.2, the evaluation started after the accomplishment of the 

design stage, in which we extracted the concerned facets and subsequently regrouped design 

rules into weighted macro-groups. The experiment showed that the defined metrics of this stage 

are capable of calculating architecture defectiveness more accurately and equitably despite the 

specification language. More specifically, these metrics depend on the weight of rules to 

calculate defectiveness, which means that violating rules rated as extremely important do not 

have the same impact on the designed architecture as violating rules rated as moderately 

important.  As a result, we found that architecture SA1 has a defectiveness rate (33%) greater 

than SA2 (18%) because SA1 has infringed some rules classified as extremely and strongly 

important contrarily to SA2 where most violated rules are ranked as moderately and slightly 

important. 

RQ2: Is the proposed framework capable of estimating the satisfaction of NFR responsibilities 

of the implemented architecture? As shown in section 7.2.3, the evaluation started after the 

accomplishment of the implementation stage, in which we created an RST tree for each quality 

attribute to calculate the relevant RSI. The experiment demonstrated that the metric RSI is 

capable of estimating the satisfaction of the assigned NFR responsibilities more accurately and 

effectively by involving the decomposition, contribution, and tactic weights in a bottom-up 

measurement process. More precisely, tactics do not have the same weight, which implies their 

satisfaction and dissatisfactions do not have the same impact on the implemented architecture. 

Consequently, the obtained RSIs of SA1 and SA2 proved that dissatisfying highly ranked 

responsibilities have affected the architecture negatively more than dissatisfying low ranked 

responsibilities. These results strengthen the accuracy and effectiveness of using weighted 

RSTs in calculating RSI.  

RQ3: Are the proposed metrics capable of deducing architecture deviations? As shown by 

section 7.2.4, the metrics ClosH and ClosV are capable of detecting two types of deviations. 

The former is the deviation of the designed architecture from the specified one. The latter is the 

deviation of the implemented architecture from the designed one. This type of deviation is 

called architecture erosion. Moreover, the deviation can be identified partially at the facet level 

using ClosH or entirely (the whole architecture) using ClosV. At the facet level, the deviation 

concerns only the mapped quality attribute, in which some architectural decisions taken to 

promote this attribute are violated. On the other hand, the overall deviation concerns the overall 

architecture with all targeted quality attribute at the design and implementation stages 

RQ4: Does the proposed framework help in enhancing architecture quality? We believe that 

MS-QuAAF can contribute to improving the architecture quality on the condition that detected 

irregularities are adjusted to conform specifications (especially at the design stage where most 

of the changes are still inexpensive and possible). The metrics of the design stage permit 
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detecting violated rules, which can help to fix these rules before the implementation stage. The 

reparation procedure helps in boosting up the quality of the designed architecture, and hence 

the implemented architecture subsequently. Besides, the metric RSI can help in enhancing the 

implemented architecture by detecting unsatisfied NFR responsibilities. However, repairing 

flaws at this stage can be performed to a limited extent since carrying out major changes can be 

very expensive and hard to achieve. 

7.4 Threats to validity 

In this dissertation, we discuss three types of threats to validity: internal, external, and construct. 

To the internal validity, we can declare three main internal threats. First, the architecture 

evaluation performed through MS-QuAAF’s services depends entirely on architecture 

specifications that constitute meta-models against which the conformance of the designed and 

implemented architecture is assessed. More specifically, the evaluation accuracy has a direct 

correlation with the quality and exactitude of these meta-models. Therefore, performing 

evaluation against inconsistent or wrongly defined meta-models will affect certainly the 

evaluation outcomes. To mitigate this threat, architecture specifications must be performed and 

reviewed by experienced architects to produce correct and consistent meta-models.  

The second threat is the type of specification languages used to specify architecture. In this 

dissertation, the evaluation worked properly against OCL and Alloy meta-models since we have 

decent experience with these two languages (especially Alloy) that we find suitable for 

specifying rules and constraints. However, we expect difficulties with informal specifications 

due to the ambiguity of this type of specification (Jackson, 2019). To mitigate this threat, it 

would be better to specify architecture with formal languages that have the ability to express 

structures, relationships, properties, and constraints.  

The third threat concerns assigning satisfaction scores to the RST’s tactic nodes to evaluate the 

achievement of the NFR responsibilities (section 7.2.3). Attributing these scores is based on 

architects’ estimation, which depends on their experience and the understanding level of the 

target architecture. Consequently, providing inaccurate scores will jeopardize the correctness 

of the subsequent evaluation steps, and thus obtaining erroneous RSIs.  

To the external validity, the main external threat is the type and size of the selected 

architectures. In this dissertation, we have selected two different types of software architectures 

(web-based and desktop) with different sets of target quality attributes to be evaluated by MS-

QuAAF. Although, these architectures are academic, small, and unsophisticated compared to 

commercial, large, and real-world software architectures, we believe that the proposed 

evaluation methodology and metrics can be generalized to be applied to any well-specified 

architecture despite its type, size, and complexity. At the same time, we cannot estimate the 

time required to evaluate large architectures with various design rules and numerous lines of 

code, neither the required evaluation effort. 
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To the construct validity, the main threat is excluding some AE factors (section 5.2.2), such as 

cost, schedule, and architects’ performance and experience from the measures (e.g., the ability 

to calculate defectiveness and NFR responsibilities satisfaction) used to assess the effectiveness 

of MS-QuAAF. These factors may influence the evaluation process and its outcome. For 

instance, using the framework by experienced architects may give more accurate evaluation 

results than inexperienced ones. However, it is hard to quantify the experience and use it as a 

measure to judge the effectiveness of the framework.  The cost (evaluation budget) factor is 

also excluded as a measure since the case study involves academic projects conducted in an 

academic non-industrial context. To minimize this threat (which affects the construct 

effectiveness) and ensuring that the experiment will provide a respectable degree of exactitude, 

we conducted an embedded case study that encompasses two units of analysis. Each unit 

represents a different type of software project that is specified with a different specification 

language, and designed and implemented by a different group using a different development 

technology. We evaluated each architecture separately using the same metrics, and we obtained 

the expected evaluation outcomes and inferences for both projects. 

7.5 Conclusion  

In this last chapter, we have provided an implementation of the framework MS-QuAAF through 

an embedded case study that encompasses two analysis units (architectures SA1 and SA2). The 

implementation consists of conducting an experimental evaluation that adheres to the protocol 

of the case study design indicated above. To gauge the effectiveness of the framework, we have 

used two different architectures specified with two different languages and developed using 

different technologies. The evaluation was performed after the accomplishment of the design 

and implementation stages using the proposed metric suite. Furthermore, we have developed a 

prototype tool to assist evaluators during the evaluation process. The latter is divided into four 

main phases. First, we have extracted architecture facets mapped to the target quality attributes. 

Second, we have assessed the designed architecture against the specified one. Third, we have 

assessed the implemented architecture through the goal decomposition analysis technique. 

Fourth, we have generated the final assessment report. The experimental evaluation had allowed 

us to validate the metrics suite proposed within the framework MS-QuAAF, and thus approved 

our contribution to the software architecture evaluation domain.  



 

 



 

Chapter 8 

Conclusion 

 
This chapter concludes this dissertation by summarizing the key finding of this research by 

answering the research questions. Additionally, it discusses the contributions of the proposed 

approach, its limitation and weaknesses, and perspectives and future work. 
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8.1 Research aims and overall findings  

For many decades, software quality is considered very critical and central for organizations, 

and a key component for business success in a highly demanding and competitive software 

market. In this context, software architecture has been considered as the appropriate level to 

deal with quality attributes. As the demand for satisfying these attributes increases, the size and 

complexity of architecture increase. Researchers, as well as practitioners, have realized that the 

achievement of quality attributes is constrained by the software architecture of these systems 

and the architectural decisions made at this level. Various methods have been proposed to 

evaluate software architecture, especially at the early stages of the development process. 

However, according to the literature study that we had conducted, we found that these methods 

suffer from many drawbacks: a) the evaluation is performed, either at the design time or 

implementation stage, b) most methods support the evaluation of one or two quality attributes, 

especially quantitative methods, c) qualitative methods lack statistical significance, d) 

architecture erosion analysis is not included, and e) most methods lack tool support. 

This research has attempted to overcome the stated shortcomings by proposing a new evaluation 

methodology within a multi-service evaluation framework called MS-QuAAF. Taking into 

account the research aims, we have been in confrontation with many research questions during 

the development of this framework. The answers to these questions reflect the main findings of 

this research. The first question states whether the framework is capable of calculating the 

defectiveness of architecture at the design stage. We have found that the defined metrics of this 

stage (QuARF, QuARD, OVF, and OVD.) are adept at calculating architecture defectiveness 

more accurately and equitably despite the specification language. This is due to the weights that 

we have introduced on design rules to calculate defects. In this connection, violating rules rated
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as extremely important does not have the same impact on the designed architecture as violating 

rules rated as moderately important. The second question indicates whether the framework is 

able to estimate the satisfaction of NFR responsibilities after the accomplishment of the 

implementation stage. We have found that the metric RSI is capable of estimating the 

satisfaction of the assigned NFR responsibilities more accurately and effectively by involving 

the decomposition, contribution, and tactic weights in a bottom-up measurement process. The 

third question stipulates whether the framework is adept at deducing architecture deviations. 

We have found that the framework is capable of detecting two types of architecture deviations 

through the metrics ClosH and ClosV. The first type is the deviation of the designed architecture 

from the specified one. The second type is the deviation of the implemented architecture from 

the designed one. The fourth question indicates whether the framework is capable of enhancing 

the quality of software architecture. The framework can contribute to improving the architecture 

quality during the evaluation process on the condition that detected defects and irregularities 

are adjusted to conform to architecture specifications.  

8.2 Contributions 

This dissertation contributes to the component-based software architecture quality control and 

evaluation. Primarily, it addresses the problematic of software quality and architecture 

evaluation, in which two main issues were considered. The first issue concerns the increased 

size and complexity of the target architectures. The second issue concerns architecture 

evaluation and how to overwhelm the shortcomings stated during the literature study. 

Accordingly, we have proposed two modules within MS-QuAAF to resolve these issues. The 

facet projector module is dedicated to dealing with architecture complexity, whereas the quality 

evaluator module is dedicated to assessing architecture quality. The contributions of this 

dissertation can be classified as follows.  

8.2.1 Architecture modeling and slicing contributions 

Software architectures are so complex, which means that describing them in a one-dimensional 

fashion is impossible (Bass et al., 2012). This implies that software architectures are not flat but 

rather multi-dimensional entities that encompass multiple facets and views. The tremendous 

complexity can make the architecture evaluation even harder and trickier. Therefore, we should 

expand our view to handle the architecture from multiple sides and angles according to 

stakeholders’ quality attributes. To overcome the complexity issues, we have proposed the 

concept of architecture facets. The essence of facets is to hide the information that is not 

necessary for the evaluation task to be undertaken; therefore, it exposes only elements of 

interest mapped to the quality attribute under assessment. More concretely, a facet encompasses 

only the architectural decisions made (topology, tactics, constraints, etc.) to promote this 

attribute.  

To extract facets, we have proposed the concept of model projection depicted in detail in (Kadri 

et al., 2020, 2021a). The projection is a procedure that transforms a portion of the source meta-
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models that specify the overall architecture into a new reduced destination meta-model that 

represents the facet. The transformation consists of extracting from the source model only 

elements of interest through executing a projection query. Model projection is a language-

independent algorithm that allows reducing complexity and downsizing models iteratively. 

Therefore, we contribute to meta-model slicing and reduction techniques by proposing a 

projection procedure used to reduce the size and complexity of architectures despite their 

specification language. We believe that depicting software architecture as facets through 

projection can enhance understandability significantly, thus streamlining quality assessment 

and monitoring. 

8.2.2 Architecture evaluation contributions 

In this dissertation, we have proposed MS-QuAAF, a multi-service evaluation framework 

dedicated specifically to assessing software architectures quantitatively. In the context of 

architecture evaluation, we have made four primary contributions through the quality evaluator 

module as follows. 

All-inclusiveness. MS-QuAAF is a generic framework that supports the evaluation of all quality 

attributes. The evaluation effort is independent of quality attributes and their relevant quality 

models. The independency is promoted by the proposed generic metrics that direct the ability 

of the framework to evaluate any inputted quality attribute. However, this is feasible as long as 

the architectural decisions supposed to promote these attributes are stated within the 

architecture specification. More specifically, architectural decisions constitute meta-models to 

which target architectures must adhere. Therefore, the evaluation consists of verifying the 

properties and the conformance of these architectures against the specified meta-models using 

the proposed metrics. 

Continuous evaluation. Providing continuous architecture assessment is the evaluation 

philosophy of MS-QuAAF. Most of the proposed evaluation methods assess architecture at the 

early stages of the development process. Contrarily, MS-QuAAF has the ability to evaluate two 

architecture states that emerge respectively after the accomplishment of the design and 

implementation stages. This implies that the framework provides long evaluation support by 

covering two crucial development stages, and even after major maintenance activities. This is 

achievable because we defined for each architecture state the appropriate services and metrics. 

NFR responsibilities assessment. In this dissertation, we have proposed a new concept called 

NFR responsibilities to evaluate implemented architectures. For each quality attribute, NFR 

responsibilities are decomposed iteratively to construct the relevant RST (Responsibilities 

Satisfaction Tree). The latter is used within a newly proposed technique called the responsibility 

decomposition analysis (inspired by the goal analysis technique) to assess architecture 

quantitatively after the accomplishment of the implementation stage. Introducing tactic, 
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contribution, and decomposition weights on RSTs have contributed significantly to increasing 

the accuracy of the obtained evaluation results.  

Architecture deviation detection. MS-QuAAF incorporates a feature that allows detecting 

architecture erosion. In this dissertation, we contribute to the domain of architecture erosion by 

proposing a mathematical approach to detect architecture deviation. This approach relies on the 

Euclidean Distance to calculate the closeness between the obtained evaluation results and the 

optimum results. Two types of deviation can be estimated. The deviation of the designed 

architecture from the specified one, and the deviation of the implemented architecture from the 

designed one. Architects and evaluators can approve or disapprove deviations calculated by the 

proposed closeness measures. Accepted deviations can be addressed and treated in the next 

architecture releases. 

8.2.3 Applicative contribution 

A prototype tool that implements the architecture and philosophy of the framework has been 

developed to facilitate, expedite, and automatize the evaluation process. The tool is called MS-

QuAAF Tools and it encompasses two main modules: the facet projector and the quality 

evaluator. The first module implements the concept of facet projection to assist architects in 

extracting facets from large meta-models. The second module implements the evaluation 

services RDA, RTA, and LAFA to calculate the proposed evaluation metrics, thus reducing the 

effort during the evaluation process.   

8.3 Limitations and perspectives 

Although the contributions that we have made through MS-QuAAF, some issues and 

limitations can be reported during evaluation.  

The consistency of architecture specification perspective. The quality and exactitude of 

architecture specifications have a great impact on the accuracy of the obtained evaluation 

results. Therefore, performing evaluation against inconsistent or wrongly defined meta-models 

will affect certainly the evaluation outcomes. A language like Alloy allows checking the 

consistency of the specified meta-models through assertions, whereas most other languages do 

not incorporate this feature. Our perspective in this situation is to add support for verifying the 

consistency of the specified meta-models, at least for the most known specification languages. 

Adding this feature will strengthen the framework and makes its evaluation results more 

accurate and trustworthy.  

The dependency on architecture specification perspective. The architecture evaluation 

performed through MS-QuAAF’s services depends entirely on architecture specifications that 

constitute meta-models against which the conformance of the designed and implemented 

architecture is assessed. The All-inclusiveness feature means that the framework can assess any 

inputted quality attribute. However, this is achievable as long as the architectural decisions 

supposed to promote these attributes exist in the NFR catalog. Consequently, the framework is 
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unable to assess quality attributes that have no corresponding architecture specification in this 

catalog. Our perspective is to enable the assessment of these attributes by incorporating reverse 

engineering support that allows extracting the design from the source code. Subsequently, the 

extracted design will be assessed against the architectural tactics and patterns used usually to 

promote these attributes.  

The responsibility satisfaction analysis perspective. In this dissertation, we have proposed the 

responsibility decomposition analysis to assess the implemented architecture by decomposing 

the top responsibility iteratively to construct the corresponding RST tree. Each RST is mapped 

to one quality attribute. However, it is difficult to apply this type of evaluation where top 

responsibilities are not easily mapped to a tree or graph structure. Moreover, assigning 

satisfaction scores to the RST’s tactic nodes is based on architects’ estimation, which depends 

on their experience and the understanding of the target architecture. Consequently, providing 

inaccurate scores will threaten the accuracy of the obtained evaluation results. For the first 

limitation, our perspective is to enrich the second service dedicated to assessing the 

implemented architecture with another evaluation approach that can be applied to 

responsibilities that cannot be mapped to a tree structure. For the second limitation, our 

perspective is to improve the responsibility decomposition analysis technique and define new 

approaches and tools (e.g., reverse engineering tools) to help architects in judging tactic nodes 

more accurately.  

Applicative perspective. The MS-QuAAF tools prototype that we have developed provides the 

primary services to extract facets and calculate metrics. We would like to upgrade this prototype 

to a complete quality assessment and monitoring tool. First, the facet projector module in the 

current version offers the possibility to create facets semi-automatically. Our perspective is to 

make this creation a fully automatic one-step procedure. Second, the quality evaluator module 

allows only calculating metrics through the three evaluation services. Our perspective is to 

enrich the framework with other tools that can help architects during the architecture analysis, 

such as a reverse engineering tool that facilitates the comparison between the implemented and 

designed architecture. Third, converting the MS-QuAAF tools into an Eclipse plugin that can 

be integrated within other development environments, thus enhancing the quality of the final 

software product. 

Architecture-Driven Modernization perspectives. In the context of Architecture-Driven 

Modernization (ADM), our perspective is to develop a new set of metrics to evaluate and 

monitor architecture quality during the modernization of large legacy systems. We have already 

integrated the concept of facet projection within ADM to facilitate quality control (Aouag et 

al., 2020). Future work will focus on developing this new set of metrics either as a part of MS-

QuAAF or as a separate framework.  
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Appendix A 

Alloy concise specification of the auction 

web architecture 

1  module J2EE_Server4 

2   

3  abstract sig Component {coupledTo:Component} 

4  sig intermediaryComponent extends Component {} 

5  abstract sig layer {contains: some Component, message:one layer} 

6  //sig intermediaryLayer extends layer {} 

7  abstract sig Servlet_auction extends Component{calls:Ejb_auction} 

8  abstract sig Ejb_auction extends Component{} 

9  abstract sig Service_auction extends Component{} 

10 one sig Server{divided_into:some layer, deliver:Response  ->  Broker, 

addC: set intermediaryComponent} 

11  

12 sig article {registredIn:DB} 

13 sig bidder{has: login} 

14  

15  

16 ///////Declaring the broker///////// 

17 sig Client {send:Request ->Broker} 

18 sig Registry {contents: Service} 

19 sig Service {resides:Registry} 

20 abstract sig Message{} 

21 sig Response extends Message {deliveredBy:Server} 

22 sig Request extends Message {sentBy:Client} 

23 one sig Broker {locates: some Service, ForwardResponseTo:some Client, 

ForwardRequestTo:some Server} 

24  

25 ///////////Declaring Layers or Tiers////////// 

26 //layer03 

27 one sig Presentation_Layer extends layer {} 

28 sig login extends Servlet_auction {} 

29 sig Account {searches:search_article, buys:buy_article, 

pays:pay_article} 

30 sig search_article extends Servlet_auction {} 

31 sig buy_article extends Servlet_auction{} 

32 sig pay_article extends Servlet_auction {} 

33 sig pay_DB extends Service_auction{update:article some-

>Connection_DB} 

34 //Layer02 

35 one sig Business_Layer extends layer {} 

36 one sig login_Ejb extends Ejb_auction {connect:login_DB} 

37 one sig search_Ejb extends  Ejb_auction  {searches:search_DB} 

38 one sig buy_Ejb extends  Ejb_auction  {buys:buy_DB} 

39 one sig pay_Ejb extends  Ejb_auction  {pays:pay_DB} 

40  

41 //Layer01 
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 42 one sig Data_Layer extends layer {} 
43 one sig DB extends Service_auction{} 

44 sig login_DB extends Service_auction{openAccount:Account} 

45 sig search_DB extends Service_auction{finds: article set -

>Connection_DB} 

46 sig buy_DB extends Service_auction{update:article some-

>Connection_DB} 

47 

48  

49 ///The presentation layer must contain only Servlet Components 

50 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, 

l:Presentation_Layer |s in l.contains && e not in l.contains  && r not 

in l.contains} 

51  

52 ///The Buisiness layer must contain only EJBs Components 

53 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, 

l:Business_Layer|e in l.contains && s not in l.contains  && r not in 

l.contains} 

54 /*The Data access layer must contain only  Components that provide  

55          DB connections, login, and execution of users' queries*/ 

56 fact {all s:Servlet_auction, e:Ejb_auction, r:Service_auction, 

l:Data_Layer|r in l.contains && s not in l.contains  && e not in 

l.contains} 

57  

58 // the architecture is divided into three layers, which are the 

presentation, data, and Business Layers  

59 fact {all l:layer, a: Server | l in a.divided_into} 

60  

61 // the number of layers should be less than or equal to 4 

62 fact {one a: Server |   #a.divided_into<=5} 

63  

64 //Datasource,connection pooling to enhance performance 

65 one sig Connection_DB{pooledTo:DataSource, execute:Query}//using 

pooling to enhance performance 

66 one sig DataSource{linkedTo:DB}//using data source 

67 sig Query{belongTo:QueryType, executedAs: QueryExecution} 

68 enum QueryType{Statement,PreparedStatement} 

69 enum QueryExecution {Normal,Batch} 

70 fact {all q:Query| q.belongTo=PreparedStatement} 

71 fact {all q:Query| q.executedAs=Batch} 

72  

73 //////messages rules between layers 

74 //the presentation layer can send messages to the business layer and 

not vice versa 

75 fact {all p:Presentation_Layer, b:Business_Layer| p.message in b} 

76 //the business layer can send messages to the data layer and not vice 

versa 

77 fact {all  b:Business_Layer, d:Data_Layer| b.message in d} 

78 //the data layer can send messages to the presentation layer and not 

vice versa 

79 fact {all  d:Data_Layer, p:Presentation_Layer| d.message in p} 

80 //a layer cannot send a message to itself 

81 fact {all p:Presentation_Layer, 

b:Business_Layer,d:Data_Layer|p.message not in p && 

82 b.message not in b && d.message not in d} 

83  
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84 /////Coupling between component 

85 //coupling between 2 components should be lesser than 8 

86 fact{all c:Component | #c.coupledTo <=7} 

87 // a component cannot be coupled to it self 

88 fact{all c:Component |c not in c.coupledTo} 

89 //coupling degree between 2 component is greater than 7 imply 

inserting an intermediary components 

90 fact {all c:Component, c1:intermediaryComponent, s:Server 

|#c.coupledTo<=7 implies c1 not in s.addC} 

91  

92  

93 ///////////Some of the broker design rules 

94 fact {all r:Registry, s:Service|s in r.contents && r in s.resides && 

contents=~resides} 

95  

96 //Rule 1: the number of requests must be equal to the number of 

responses. 

97 fact {all c:Client|all  s:Server |#c.send=#s.deliver && # 

Response=#Request } 

98  

99 fact{one b:Broker|send.b in~sentBy &&#send.b =#~sentBy } 

100 

101//A server can't deliver a response without receiving a request                    

102fact {all s:Server |one b:Broker|some b.ForwardRequestTo implies  

some s.deliver &&  

103#(deliver.b.Response)=#(b.ForwardRequestTo) } 

104//each client must receive a response if he/she sent a request 

105 fact {all c:Client |one b:Broker|some b.ForwardResponseTo implies  

some c.send &&  

106 #(send.b.Request)=#(b.ForwardResponseTo) } 

107 

108///////////////////// 

109// a bidder can buy only articles that can be found in the database 

110 fact {all s:search_DB |all b:buy_DB | b.update in s.finds} 

111 

112 fact {all g:login |g.calls in login_Ejb} 

113 fact {all s:buy_article |s.calls in buy_Ejb} 

114 fact {all s:search_article |s.calls in search_Ejb} 

115 fact {all s:pay_article |s.calls in pay_Ejb} 

116 

117// if a bidder pays some money, that means he bought some items 

118 fact {all a:Account | some a.pays implies some a.buys &&    

#a.buys=#a.pays} 

119// if a bidder buy some items that's means he found those item in the 

auction database 

120 fact {all a:Account, s:search_DB| some a.buys implies some s.finds  

} 

121 

122 pred test{} 

123 

124 

125//Run predicate test 



Appendices  188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 run test for 1 login, 1 search_article,  1 buy_article, 1 

pay_article, 1 login_Ejb,1 search_Ejb, 1 buy_Ejb,  

127 1 pay_Ejb, 1 Account, 1 login_DB, 1 search_DB,1 buy_DB, 1 pay_DB, 3 

article, exactly 1 bidder, 128exactly 1 Client, 1 Server,1  Registry, 2  
Message, 1 Service,1 Query,1 intermediaryComponent 
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Appendix B 

OCL embedded specification of the 

visualization tool architecture 
 
1 import ecore : 'http://www.eclipse.org/emf/2002/Ecore' ; 
2 
3 package testView : testView = 'http://www.example.org/testView' 
4 { 
5 class Architecture 
6 { 
7 attribute Arch_id : String[?]; 
8 attribute newAttribute : String[?]; 
9 property divided : Layer[+|1] { ordered }; 
10 
11 /* 
12 * the Recommended number of layer 
13 */ 
14 invariant layer_count: self.divided->size()=3; 
15 
16 /* 
17 * the maximum number of layer 
18 */ 
19 invariant layer_max_count: self.divided->size()<=5; 
20 
21 /* 
22 * All the layers are distinct 
23 */ 
24 invariant distinct_layer: self.divided->forAll(l1,l2:Layer|l1<>l2 implies 
l1.type<>l2.type); 
25 
26 /* 
27 * the minimum layer capacity 
28 */ 
29 invariant min_capacity: self.divided->forAll(l1:Layer|l1.capacity>0); 
30 
31 /* 
32 * the maximum layer capacity 
33 */ 
34 invariant max_capacity: self.divided->forAll(l1:Layer|l1.capacity<10); 
35 } 
36 class Layer 
37 { 
38 operation addComponent(added : Boolean[?]) : Boolean[?] 
39 { 
40 body: if getCapacity()<10 then added else not added endif; 
41 } 
42 operation removeComponent(removed : Boolean[?]) : Boolean[?] 
43 { 
44 body: if getCapacity()>1 then removed else not removed endif; 
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45 } 
46 operation getCapacity() : ecore::EInt[?] 
47 { 
48 body: capacity; 
49 } 
50 operation sendMessage(m : Layer[?]) : Boolean[?] 
51 { 
52 body: Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Reader_Layer) or 
p.oclIsTypeOf(Converter_Layer) then sendMessage(p) 
53 else 
54 not sendMessage(p) 
55 endif); 
56 } 
57 operation receiveMessage(m : Layer[?]) : Boolean[?] 
58 { 
59 body: Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Converter_Layer) or 
p.oclIsTypeOf(Renderer_Layer) then receiveMessage(p) 
60 else 
61 not receiveMessage(p) 
62 endif); 
63 } 
64 attribute type : String[?]; 
65 attribute capacity : ecore::EInt[?]; 
66 } 
67 class Renderer_Layer extends Layer 
68 { 
69 property contain#reside : Data_Renderer[+|1] { ordered }; 
70 property follow : Facade[1]; 
71 
72 /* 
73 * A Renderer Layer cannot send any message to the converter and reader layers 
74 */ 
75 invariant 
76 MsgDirection1: 
77 
78 Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Reader_Layer) or 
     p.oclIsTypeOf(Converter_Layer) then 
79 not self.sendMessage(p) 
80 
81 else self.sendMessage(p) endif); 
82 
83 /* 
84 * A Renderer Layer can receive messages only from the converter layer 
85 */ 
86 invariant 
87 MsgDirection2: 
88 
89 Layer.allInstances()->forAll(p|if p.oclIsTypeOf(Converter_Layer) then 
90 self.receiveMessage(p) 
91 
92 else not self.receiveMessage(p) endif); 
93 
94 /* 
95 * if the Renderer Layer receive a message from the converter layer, then it should 
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allow access to its components 
96 */ 
97 invariant MsgReceived: 
98 Layer.allInstances()->forAll(p|self.receiveMessage(p) implies 
self.follow.allowAccess()); 
99 
100 /* 
101 * if the Renderer Layer allows access then it should select and provide the desired 
Rendering component 
102 */ 
103 invariant selectRenderer: 
104 self.follow.allowAccess() implies self.follow.selectRenderer()->size()=1; 
105 
106 /* 
107 * A Renderer Layer should contain only the Renderer objects, such as charts, 
tables, etc. 
108 */ 
109 invariant content: 
110 self.contain-> forAll(p| p.oclIsTypeOf(Data_Renderer) ); 
111 } 
112 class Converter_Layer extends Layer 
113 { 
114 property call : Renderer_Layer[1]; 
115 property contain#reside : Data_Converter[+|1] { ordered }; 
116 
117 /* 
118 * A Converter Layer can send messages only to the renderer layer 
119 */ 
120 invariant 
121 MsgDirection1: 
122 let send : Renderer_Layer = self.call in 
123 if self.call.oclIsTypeOf(Renderer_Layer)then sendMessage(send)else not 
sendMessage(send) endif; 
124 
125 /* 
126 * A Converter Layer cannot receive messages from the the Renderer layer 
127 */ 
128 invariant MsgDirection2: 
129 let send : Renderer_Layer = self.call in 
130 
131 not self.receiveMessage(send); 
132 
133 /* 
134 * A Converter Layer should contain only the conversion objects 
135 */ 
136 invariant content: 
137 self.contain-> forAll(p| p.oclIsTypeOf(Data_Converter) ); 
138 } 
139 class Reader_Layer extends Layer 
140 { 
141 property call : Converter_Layer[1]; 
142 property contain#reside : Data_Reader[+|1] { ordered }; 
143 
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144 /* 
145 * A Reader Layer can send messages only to the converter layer 
146 */ 
147 invariant 
148 MsgDirection1: 
149 let send : Converter_Layer = self.call in 
150 if self.call.oclIsTypeOf(Converter_Layer)then sendMessage(send)else not 
sendMessage(send) endif; 
151 
152 /* 
153 * A Reader Layer cannot receive a message from the converter layer 
154 */ 
155 invariant MsgDirection2: 
156 let send : Converter_Layer = self.call in 
157 not self.receiveMessage(send); 
158 
159 /* 
160 * A Reader Layer should contain only the data readers 
161 */ 
162 invariant content: 
163 self.contain-> forAll(p| p.oclIsTypeOf(Data_Reader) ); 
164 } 
165 class Data_Renderer 
166 { 
167 property reside#contain : Renderer_Layer[1]; 
168 attribute type : String[?]; 
169 property input#output : Data_Converter[1]; 
170 
171 /* 
172 * There is one Data converter attached to all renderer 
173 */ 
174 invariant convertCount: 
175 self.input->size()=1; 
176 
177 /* 
178 * A Renderer object should reside within the Renderer_Layer 
179 * (Reinforcing the Containing rules specified above) 
180 */ 
181 invariant layer: 
182 self.reside=Renderer_Layer; 
183 } 
184 class Data_Converter 
185 { 
186 operation convert(d : Data_Reader[?]) : Boolean[?]; 
187 property reside#contain : Converter_Layer[1]; 
188 property conform : DataAdapter[1]; 
189 property input#output : Data_Reader[1]; 
190 property output#input : Data_Renderer[1]; 
191 
192 /* 
193 * A data converted by the Converter object should be conform to the structure 
194 * specified by the DataAdapter Interface 



Appendices  193 

 

195 */ 
196 invariant 
197 conformTo: 
198 if self.convert(self.input)=true then self.conform.isConform() 
199 else 
200 not self.conform.isConform() endif; 
201 
202 /* 
203 * A converter Component can handle one data reader at time 
204 */ 
205 invariant ReaderCount: 
206 self.input->size()=1; 
207 
208 /* 
209 * A data converter output can be rendered by one renderer at time 
210 */ 
211 invariant outputCount: 
212 self.output->size()=1; 
213 
214 /* 
215 * A data converter object should reside within the Converter_Layer 
216 * (Reinforcing the Containing rules specified above) 
217 */ 
218 invariant layer: 
219 self.reside=Converter_Layer; 
220 } 
221 class Data_Reader 
222 { 
223 property reside#contain : Reader_Layer[1]; 
224 property output#input : Data_Converter[1]; 
225 
226 /* 
227 * All data reader objects are treated by one data converter 
228 * 
229 */ 
230 invariant outputCount: 
231 self.output->size()=1; 
232 
233 /* 
234 * A Reader object r should reside within the Reader_Layer 
235 * (Reinforcing the Containing rules specified above) 
236 */ 
237 invariant layer: 
238 self.reside=Reader_Layer; 
239 } 
240 abstract class DataAdapter { interface } 
241 { 
242 /* produced data by the data converter component should be conform to the common 
tabular format */ 
243 operation isConform() : Boolean[?] 
244 { 
245 body: if isTabular=true then isConform() else not isConform() endif; 
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246 } 
247 operation getColumnCount() : ecore::EInt[?] 
248 { 
249 body: ColumnCount; 
250 } 
251 operation getRowCount() : ecore::EInt[?] 
252 { 
253 body: RowCount; 
254 } 
255 attribute ColumnCount : ecore::EInt[?]; 
256 attribute RowCount : ecore::EInt[?]; 
257 attribute isTabular : Boolean[?]; 
258 
259 /* 
260 * The number of columns of the tabular format should be greater than zero 
261 */ 
262 invariant max_column_count: 
263 ColumnCount>0; 
264 
265 /* 
266 * the number of rows producer by the data converter should not be equal to zero 
267 */ 
268 invariant max_row_count: 
269 RowCount>0; 
270 
271 /* 
272 * data should be always converted to a tabular format 
273 */ 
274 invariant tabular: 
275 isTabular=true; 
276 } 
277 abstract class Facade { interface } 
278 { 
279 operation allowAccess() : Boolean[?]; 
280 
281 /* 
282 * allowing access to the renderer layer 
283 */ 
284 operation denyAccess() : Boolean[?]; 
285 
286 /* 
287 * forbidding access to the renderer layer 
288 */ 
289 operation selectRenderer() : Data_Renderer[?]; 
290 } 
291 } 
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Appendix C 

The general XML structure of the final 

evaluation report 

 

<?xml version="1.0" encoding="UTF-8"?> 
<arch id="arch1"> 
<evaluation_stage name="late_assessment"> 
<ClosH> 
<QA name="performance" ED="0.77" Max_ED="4.14"> 
<comment> 
The ED between performance and the optimum value is 0.77, wheras the max 
distance is 4.14 
</comment> 
<QA_Deviation> 
<severity> 
Moderatly close to the optimal value 
</severity> 
<cause> 
Architectural defects at design time   
</cause> 
<cause> 
responsibilities are not satisfied at the implementation stage 
</cause> 
<details> 
... 
</details> 
</QA_Deviation> 
<qa_health> partially healthy</qa_health> 
</QA> 
<QA name="maintainability" ED="0.63" Max_ED="4.5"> 
<comment> 
The ED between performance and the optimum value is 0.77, wheras the max 
distance is 4.14 
</comment> 
<QA_Deviation> 
<severity> 
Moderatly close to the optimal value 
</severity> 
<cause> 
Architectural defects at design time and some NFR responsibilities   
are not satisfied at the implementation stage... 
</cause> 
</QA_Deviation> 
</QA> 
</ClosH> 
<ClosV> 
<quarf_overall value="0.53"> 
<comment> 
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architecture suffers from some architecture defects 
</comment> 
<design_deviation> 
<severity> 
acceptable 
</severity> 
<cause> 
Some rules of architecture facets AF1 and AF2 are violated 
</cause> 
<details> 
... 
</details> 
<design_health> relatively healthy</design_health> 
</design_deviation> 
</quarf_overall > 
<rsi_overall value="0.87"> 
<comment> 
Somewhat far from the desired results 
</comment> 
<implementation_deviation> 
<severity> 
acceptable 
</severity> 
<cause> 
Some high weighted responsibilities are not satisfied 
</cause> 
<details> 
... 
</details> 
<implementation_health> relatively healthy</implementation_health> 
</implementation_deviation> 
</rsi_overall > 
</rsi_overall> 
</evaluation_stage> 
</arch> 
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