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Notations

Rd : space of variables x = (x1, · · · , xd).
~e2 = (1, 0) : unit vector of R2.
(er, eθ, ez) : cylindrical coordinates of R3.
∂t,

∂
∂t

: partial derivative with respect to time.
∂j,

∂
∂xj

: partial derivative with respect to space.
D
Dt

: material derivative (∂t + v · ∇).
· : scalar product.
× : vector cross product.
x⊥ : perpendicular vector x = (−x2, x1) (rotation of x with angle π

2
).

∇ : gradient operator.
∇⊥ : gradient perpendicular ∇⊥ = (−∂2, ∂1).
div : divergence operator.
curl : curl operator.
∆ : Laplacien operator.
F (u), û : Fourier transform of u.
Lp : Lebesgue space.
S : Schwartz space.
S ′ : tempered distributions space.
Hs : Sobolev space.
Lip : space of Lipschitzian functions.
LL : space of log-Lipschitz functions.
∆q, Sq : inhomogeneous cut-off operators.
∆̇q, Ṡq : homogeneous cut-off operators.
Tuv : paraproduct of u with respect to v.
R(u, v) : remainder operator of u and v.
Bs
p,r : inhomogeneous Besov space.

Ḃs
p,r : homogeneous Besov space.

BV : space of bounded variations functions.
Cs : Hölder space.
LβTB

s
p,r, L̃

β
TB

s
p,r : mixed space-time spaces.

Xt,λ : admissible family of vector fields.
∂Xtu : directional derivative of u along Xt.
[∆, Xt] : commutator between ∆ and Xt.
Cε(Xt,λ) : anisotropic H’́older space.
Cε

Σ : co-normal space associated to closed curve Σ with C1+ε regularity.





1 Introduction and overview of
the main results

The current thesis treats essentially the local/global persistence of geometric
structures for the planar Boussinesq system in different cases in the context of a
smooth patch. Specifically, we show that if the initial vorticity is a smooth patch,
that is to say, a characteristic function of a bounded domain with an adequate
regularity, then the transported patch keeps its initial regularity through the time.
Afterwards, we study the inviscid limit when the viscosity parameter (resp. diffusion
parameter) goes to zero and quantify the rate of convergence.

This dissertation comprises four chapters and an appendix.

In the first Chapter, we state the main results for each chapter and a brief outline
of the proof.

In the second Chapter, we carefully collect some general materials and gather
specific tools used along the next three chapters of the thesis.

The third Chapter cares with the optimal rate of convergence in stratified Boussi-
nesq system. First, we handle with the global well-posedness issue for the viscous
Boussinesq system in space dimension two, where the boundary of the initial vor-
ticity is a Jordan curve with C1+ε Hölder regularity, with 0 < ε < 1. We prove,
globally in time, that the velocity vector field is a Lipschitz function by means of
logarithmic estimate due to J.-Y. Chemin [19]. Second, we discuss the inviscid limit
problem when the viscosity goes to zero and we evaluate the rate of convergence
in Lebesgue spaces. In particular, when the patch vortex is of Rankine’s type, we
establish that this rate of convergence is optimal.

The last Chapter is devoted to the study of the local persistence of a smooth
vortex patch for the Boussinesq system with zero viscosity. We prove that if the
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1 Introduction and overview of the main results

initial vorticity is a smooth vortex patch, then the regularity of the transported patch
persists locally in time and the corresponding velocity vector field is a Lipschitz
function. Thereafter, our second task is to explore the rate of convergence among
velocities, densities and involved flows.

We end this dissertation with an appendix chapter, where we describe the Boussi-
nesq model and its origin. In addition, we explain the relationship between the 3d-
axisymmetric Euler equations with swirl flows and the inviscid 2d- Boussinesq equa-
tions.

1.0.1 A brief concise on vortex patches problem

The objective in this dissertation is to study the dynamic of vortices for some evolu-
tion equations resulting from fluid mechanics. In particular, we focus our attention
on models like Euler and Navier-Stokes equations incompressible stratified where
the stratification occurs in the buoyancy term. The dynamic of vortices is a very
old subject but always useful for the study in many aspects. It goes back to the
works of Helmholtz [40], Kelvin [56], Kirchhoff [57] and other references. Here, we
will give some important results that fit with our subject. To be precise, let us recall
that the Euler equations for an ideal incompressible fluid defined in the whole space
Rd are given by 

∂tv + v · ∇v +∇p = 0, if (t, x) ∈ R+ × Rd,
divv = 0,

v|t=0 = v0.

(E)

where v = (v1, v2, · · · , vd) represents the velocity vector field, p is a scalar function
designates the pressure. In (E), the first equation is the momentum conservation
equation and the second one means the mass conservation.
In (1933), Wolibner [73] proved that (E) is locally well-posed for smooth initial
data. Later on Kato and Ponce [55] established the local well-posedness in the
framework of Sobolev spaces Hs for s > d

2
+ 1 and the maximal solution belonging

to C([0, T ?];Hs), satisfied the blow-up criterion

T ? < +∞⇒
∫ T ?

0

‖∇v(τ)‖L∞dτ = +∞.
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This criterion is very limited in applications and other criterion, equivalent to the
first one presented above, was proven later by Beale, Kato and Majda [6]. It is related
with the vorticity ω, which is defined in any dimension by the anti-symmetric matrix
of the velocity gradient. This criterion reads as follows

T ? < +∞⇒
∫ T ?

0

‖ω(τ)‖L∞dτ = +∞.

We point out that further extensions of [55] have been implemented in various
function spaces for example of type Besov, Hölder, Tribel, · · · , for instance see
[14, 19, 71, 79]. We mention that the global well-posedness problem of classical so-
lution is still now an open problem except the space dimension two which is proved
by Wolibner [73], and by Ukhovskii and Yudovich [70] in the three dimensional case
with axisymmetric initial data. The global existence of solutions for Euler equations
in dimension two of space, derives from the special structure of vorticity ω which
satisfies a transport equation named Helmholtz equation{

∂tω + v · ∇ω = 0,

ω|t=0 = ω0.
(1.1)

By the characteristic method, we can find infinite conservation laws, that is to say,
for all p ∈ [1,∞]

‖ω(t)‖Lp = ‖ω0‖Lp . (1.2)

These laws are the key point to prove the global existence of Kato’s classical solu-
tions. We mention that the vorticity theory for incompressible fluids was founded
by Helmholtz [40] who has formulated the principal laws that it governs. Here, we
recall the dynamic of vortices in the case of dimension two of space. For this subject,
we mention that the incompressibility of the fluid divv = 0 implies the existence of
a stream function Ψ such that v = ∇⊥Ψ, and so ∆Ψ = ω.
We observe that the connection between the vorticity and the stream function is of
Poisson’s kind, so

Ψ(·, x) =
1

2π

∫
R2

log |x− y|ω(·, y)dy.

It follows that the velocity can be recovered from the vorticity by the well-known
Biot-Savart law

v(·, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(·, y)dy.

7



1 Introduction and overview of the main results

1.1 Vortex patches: general presentation

We embark on this paragraph with a brief concise about Yudovich’s solutions. Let
us denote that the vorticity-velocity formulation associated with Euler equations
(1.1) and the conservation laws (1.2) give a more opportunity to Yudovich [75] to
relax the hyperbolic regularity following Kato and formulate a new concept of weak
solutions global in time for Euler equations in the following sense.

Definition 1.1.1. Let ω0 ∈ L1(R2)∩L∞(R2). We say that (v, ω) is a weak solution
for (E) if and only if

(i) ω ∈ L∞
(
R+;L1(R2) ∩ L∞(R2)

)
,

(ii) v = ∇⊥∆−1ω,

(iii) for all φ ∈ C1
(
R+;C1

0(R2)
)
, we have∫

R+×R2

(
∂tφ+ v · ∇φ

)
ωdtdx = −

∫
R2

φ(0, x)ω0(x)dx.

From the above definition, Yudovich succeed to recover the Euler equations globally
in time as soon as ω0 ∈ L1(R2) ∩ L∞(R2). More precisely, he demonstrated the
following theorem.

Theorem 1.1.2. Let ω0 ∈ L1(R2) ∩ L∞(R2). Then (E) admits a unique solution
globally in time

ω ∈ L∞
(
R+;L1(R2) ∩ L∞(R2)

)
in the sense of definition 1.1.1. As well, the velocity v admits a unique flow ψ ∈
C(R+ × R2) expressed by the integral equation

ψ(t, x) = x+

∫ t

0

v(τ, ψ(τ, x))dτ.

Furthermore, this flow is an homeomorphism preserves the Lebesgue measure and
satisfies the following degenerate regularity

ψ(t)− I ∈ Ce
−t‖ω0‖

L1∩L∞ .

This theorem is remarkable in so far as it is viable to define uniquely a flow in no
Lipschitzian context. We also explicit the vorticity at each time in accordance of
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1.1 Vortex patches: general presentation

characteristic method ω(t, x) = ω0(ψ−1(t, x)). In this case, the vorticity is trans-
ported by the flow. An important sub-class of Yudovich’s class under study en-
compasses the so-called vortex patches, meaning that if the initial vorticity is the
characteristic function of a bounded planar domain: ω0 = 1Ω0 , then the transported
vorticity by the flow ψ, being a vortex patch of the domain Ωt , ψ(t,Ω0) and the
dynamic is reduced to the evolution of the boundary of the patch that moves with
the flow. However, if γt is a parametrization of this boundary, that it to say

∂tγ(t, s) = v(t, γ(t, s)).

The Biot-Savart law and the vorticity is a patch imply that the velocity is given
by

v(t, x) =
1

2π

∫ 2π

0

log |x− γ(t, s)|∂sγ(t, s)ds,

so, the equation of γ becomes

∂tγ(t, s) =
1

2π

∫ 2π

0

log |γ(t, s)− γ(t, τ)|∂τγ(t, τ)dτ. (1.3)

The evolution of the regularity of the boundary can’t be ensured from Yudovich’s
theory, which in turn does not give helpful information about the boundary’s reg-
ularity of the transported patch. This is due to the lack of flow’s regularity, that
is ψ degenerates in time. For the optimality of such result and for more details we
refer to [5] and [19].

The regularity persistence of the boundary was solved for the first time by Chemin
in his famous work [19]. He proved that, when the boundary of the initial patch
is of Hölderian class of type C1+ε where 0 < ε < 1, then the transported patch
that moves with the flow keeps it’s initial regularity through the time. Chemin’s
proof is essentially based on a logarithmic estimate witch relies the Lipschitz norm
of velocity with the co-normal regularity of vorticity transported by the flow. More
accurately, Chemin’s result is read as follows

Theorem 1.1.3. Let 0 < ε < 1, X0 be a family of admissible vector fields of the
plan and v0 be a free-divergence vector field over R2 belongs to C1

? such that its
vorticity ω0 ∈ La ∩ Cε(X0) with a > 1. Then (E) admits a unique global solution
v ∈ L∞loc(R;Lip) and ∇v ∈ La.
Furthermore, if ψ is the flow associated to the velocity v, then we have ∂X0ψ ∈
L∞loc(R;Cε). In addition, Xt the push-forward of X0 by the flow ψ is also an admis-
sible family and we have ‖ω(t)‖Cε(Xt) ∈ L∞loc(R).

9



1 Introduction and overview of the main results

We mention here that the vortex patch problem was posed by Yudovich [75] in
some smooth vessel, and this problem was renewed interest by Majda [7] in the
whole plane with vorticity bounded and compactly supported. Numerical results
was improved by Zabusky and al. [76]. Furthermore, Alinhac [4] has proved that
the last equation develops instabilities close to the blow-up in finite time. Chemin’s
paradigm is different and it consists to propagate the tangential regularity of Euler
equations for arbitrary time. The notion of tangential regularity with respect to
an admissible family of vector fields was introduced by Bony [12] in the study of
hyperbolic equations and it was refined to study semi linear PDE’s by Alinhac [4]
and Chemin [19]. We recall also that Bertozzi and Constantin [10] have established
similar result to the Chemin’s one with a shorter proof but their approach works
well only in the context of dimension two of space, however the Chemin’s method
can be used for higher dimension and in the viscous case that, for example, Gamblin
and Saint-Raymond in [34] proved the well-posedness of three dimensional vortex
patches for Euler equations but locally in time. In the same period, Serfati [67]
proved a version of persistence of striated regularity in slightly less generality than
Chemin’s result [19].
For the viscous case especially Navier-Stokes equations

∂tv + v · ∇v − µ∆v +∇p = 0, if (t, x) ∈ R+ × R2,
divv = 0,

v|t=0 = v0,

(NS)

the situation is different and contributes some hardness. Among them, the dissipa-
tion term µ∆ω breaks instantly the patch structure and does not commute with the
admissible family. Consequently, the tangential derivative ∂Xtω evolves the following
transport-diffusion equation(

∂t + v · ∇ − µ∆)∂Xtω = −µ[∆, Xt]ω,

where the vorticity formulation associated to (NS) is given by{
∂tω + v · ∇ω − µ∆ω = 0,

ω|t=0 = ω0.

The successful attempt in this way dates back to Danchin [22], where he claimed
that if the initial patch belongs to the Hölderian class C1+ε with 0 < ε < 1, then the
velocity is lipschitzian uniformly to the viscosity term and the transported vorticity
by the viscous flow is of class C1+ε′ , ε′ < ε. Even though, to treat the term µ[∆, Xt]

10



1.2 Main results and headlines of the proof

he required to propagate the Besov regularity Bε
p,∞ for an equation of type{ (

∂t + v · ∇ − µ∆)a = f + µg,

a|t=0 = a0.

Let us denote that this regularity is limited to p <∞ which explain the artificial lose
for the boundary regularity. Later, Hmidi in [41] has validated this smoothing effect
in the Hölderian case corresponding to p = ∞. For the proof, he explored some
smoothing effect of an equation of type transport-diffusion by means of Lagrangian
coordinates.
The smooth vortex patch problem for 2d-Boussinesq equations was studied firstly
by Hmidi and Zerguine [52]. The authors established a global well-posedness result
in the frame work of vortex patch issue. Furthermore, they proved that the trans-
ported domain that moves with the flow preserves its initial Hölderian regularity. In
[78], Zerguine studied the same equations by replacing the usual Laplacian by the
fractional one (−∆)

1
2 and deduced a sharper result compared to the Euler equations.

Other results in the same context can be found in [13, 15, 26, 25, 32, 43, 49, 48, 50]
and the references therein.

1.2 Main results and headlines of the proof

This section comprises two main topics. The first one gives an affirmative answer
to the question of global well-posedness for stratified Navier-Stokes equations or
full viscous Boussinesq equations. Next, we study the inviscid limit whenever the
viscosity goes to zero and give an optimal rate convergence in Lp spaces which ex-
tends the result of [1] for Navier-Stokes equations for p = 2. We reach the optimal
rate when the vorticity is of Rankine type. The second topic deals with the persis-
tence of geometric structures for partial viscous Boussinesq equations. Indeed, we
have proved the local well-posedness of solutions in the framework of regular vortex
patches and investigated the convergence of solutions of the equations towards the
inviscid Boussinesq equations when the diffusivity tends to zero.

11



1 Introduction and overview of the main results

1.2.1 First Topic

Let us recall that stratified Navier-Stokes system couples a Navier-Stokes perturbed
equation with a transport diffusion type equation for density. It reads as follows:

∂tvµ + vµ · ∇vµ − µ∆vµ +∇pµ = ρµ~e2 if (t, x) ∈ R+ × R2,
∂tρµ + vµ · ∇ρµ −∆ρµ = 0 if (t, x) ∈ R+ × R2,
divvµ = 0,

(vµ, ρµ)|t=0 = (v0
µ, ρ

0
µ).

(Bµ)

Where vµ(t, x) ∈ R2 denotes the velocity vector field which assumed to be incom-
pressible, ρµ(t, x) ∈ R the density and pµ(t, x) ∈ R the pressure. The coefficient µ
designates the kinematic viscosity of the fluid and the vector unity ~e2 = (0, 1). Ap-
plying the curl operator to the first equation in (Bµ), we deduce a vorticity- density
formulation given by

∂tωµ + vµ · ∇ωµ − µ∆ωµ = ∂1ρµ if (t, x) ∈ R+ × R2,
∂tρµ + vµ · ∇ρµ −∆ρµ = 0 if (t, x) ∈ R+ × R2,
vµ = ∇⊥∆−1ωµ,

(ρµ, ωµ)|t=0 = (ρ0
µ, ω

0
µ).

(VDµ,κ)

We have established three main results for the system (Bµ) in Chapter three. The
first one deals with the global in time existence and uniqueness of solution with
vortex patch initial data. The second one treats the inviscid limit of the problem
towards the stratified Euler equations when the viscosity vanishes. In the last result
we give an optimal rate of convergence for vortices if the initial patches are of
Rankine type. Here we shall give our main results and explore the ideas of the
proofs.
Our first main result is presented in the theorem bellow

Theorem 1.2.1. Let Ω0 be a simply connected bounded domain such that its bound-
ary ∂Ω0 is C1+ε with 0 < ε < 1. Let ω0

µ = 1Ω0 and ρ0
µ ∈ L1 ∩L∞, then the following

assertions hold.

(i) The system (Bµ) admits a unique global solution (vµ, ρµ) such that

(vµ, ρµ) ∈ L∞loc(R+;Lip)× L∞loc(R+;L1 ∩ L∞).

12



1.2 Main results and headlines of the proof

More precisely, there exists C0 , C(ε,Ω0) > 0 independent of the viscosity such
that, for all µ ∈]0, 1[ and for all t ∈ R+ we have

‖∇vµ(t)‖L∞ ≤ C0e
C0t log2(1+t). (1.4)

(ii) The boundary of the transported domain Ωµ(t) , Ψµ(t,Ω0) is C1+ε for every
t ≥ 0 uniformly on µ, where Ψµ denotes the viscous flow associated to vµ.

The proof is essentially based on the Chemin’s work [19] to obtain a lipschitz norm for
the velocity by means of logarithmic estimates which requires a co-normal regularity
of vorticity ∂Xt,λω in Cε−1, 0 < ε < 1, where Xt,λ is an admissible family of vector
fields which is tangential to the boundary and verifies a transport equation of type

(∂t + vµ · ∇)∂Xt,λ = Xt,λ · ∇vµ.

The difference between the inviscid case and the viscous one is that this family does
not commute with the Laplacian operator. In contrast, we have

(∂t + vµ · ∇ − µ∆)∂Xt,λωµ = −µ[∆, Xt,λ]ωµ + ∂Xt,λ∂1ρµ, (1.5)

where [∆, Xt,λ] is the commutator between ∆ and Xt,λ. Thus the difficulties reduce
to bound the terms [∆, Xt,λ]ωµ and ∂Xt,λ∂1ρµ which apparently need more regularity
to be well-defined than what is initially prescribed. In [63], we have treated the first
term by using the formalism developed in [22, 41] for 2d−incompressible Navier-
Stokes equations. To bound the second term, we diagonalize the vorticity-density
formulation and introduce a new unknown named coupled function defined by

Γµ , (1− µ)ωµ − ∂1∆−1ρµ.

We recall tha the notion of coupled function was introduced in [50]. This function
satisfies an equation of a transport-diffusion type

∂tΓµ + vµ · ∇Γµ − µ∆Γµ = [∂1∆−1, vµ · ∇]ρµ , Hµ.

Then ∂Xt,λΓ satisfies the following equation

(∂t + vµ · ∇ − µ∆)∂Xt,λΓµ = −µ[∆, Xt,λ]Γµ + ∂Xt,λHµ.

Thus, the heart work in this case is to deal with the two quantities in the right hand
side of the last equation.

13



1 Introduction and overview of the main results

Our second outcome concerning the rate of convergence of velocities, densities and
vortices of Boussinesq equations (Bµ) towards the inviscid one, when the viscosity
µ tends to zero in the frame work of Lebesgue spaces. More precisely, we have

Theorem 1.2.2. Let (vµ, ρµ), (v, ρ), (ωµ, ρµ) and (ω, ρ) be the solutions of (Bµ),
(B0), (VDµ) and (VD0) respectively with the same initial data such that

ω0
µ = ω0 = 1Ω0 ,

where Ω0 is a C1+ε simply connected bounded domain. Then for all t ≥ 0, µ ∈]0, 1[

and p ∈ [2,+∞[ we have

(i) ‖vµ(t)− v(t)‖Lp + ‖ρµ(t)− ρ(t)‖Lp ≤ C0e
eC0t log

2(2+t)
(µt)

1
2

+ 1
2p .

(ii) ‖ωµ(t)− ω(t)‖Lp ≤ C0e
eC0t log

2(1+t)
(µt)

1
2p .

We recall that the inviscid limit problem for Navier-Stokes equations towards Euler
equations was studied by Constantin [20] for initial velocity v0 ∈ Hs, with s > 4 and
the rate of convergence in the Lebesque space L2 is bounded by µt. However, Chemin
proved in [18] a rate of convergence equal to (µt)

1
2
e−Ct for initial data of Yudovich’s

type. In [21], Constantin and Wu obtained a rate of convergence controlled by (µt)
1
2

for vortex patch’s initial data. Later, Abidi and Danchin [1] enhanced the last result,
that the rate of convergence will be controlled by (µt)

3
4 in L2 space. Furthermore,

the obtained result is optimal for initial vortices with Rankine vortex patch. In
[63], we have succeed to extend this result for the Boussinesq system. We mention
here that we have obtained a rate of convergence in the Lebesgue spaces Lp for
p ∈ [2,+∞[ controlled by (µt)

1
2

+ 1
2p for velocities and densities, whilst the vortices

are bounded by (µt)
1
2p .

Let us notice that the difference between the rates of convergence between velocities
and their vortices is equal to 1

2
. In fact, really there is a gain of one derivative

between them.
Finally, we present our interesting result in this way, witch gives an affirmative
answer for the optimality of the rate of convergence between vortices for initial data
of Rankine type vortex patch.

Theorem 1.2.3. We assume that ρ0
µ and ρ0 being constants and ω0

µ = ω0 = 1D with
D the unit disc. Then there exist two positive constants C1 and C2 independent on
µ and t, such that for µt ≤ 1, and p ∈ [2,+∞[ we have

C1(µt)
1
2p ≤ ‖ωµ(t)− ω(t)‖Lp ≤ C2(µt)

1
2p ,

14



1.2 Main results and headlines of the proof

with C1 and C2 depending on p.

If p = 2, we find the same result obtained in [1]. Our proof presented here is
completely different from that given by [1] which is specific to the case p = 2 by
using the explicit form of Fourier transform of the Rankine vortex patch. Our
approach is based essentially on the computation in physical variables using the
explicit form of the heat kernel.

1.2.2 Second topic

The second subject of the present thesis concerns the local persistence of geometric
structures for partial viscous Boussinesq system under vortex patch initial data. The
system in question couples a perturbed 2d-Euler equations with a transport-diffusion
equation for density. More accurately, we have

∂tvκ + vκ · ∇vκ +∇pκ = ρκ~e2, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0,

vκ|t=0 = v0
κ, ρκ|t=0 = ρ0

κ.

(Bκ)

Where κ designates the molecular diffusivity of the fluid.
As we have seen above, the Boussinesq equations (Bκ) are a perturbation of (E),
it will be of interest to ask whether the known results for Euler equations can be
extended to the Boussinesq system as well. The topic of local/global posedness for
(Bκ) for κ > 0 is of great interest. We recall here, that Chae in [15] succeed to prove
that (Bκ) is globally well-posed whenever (v0, ρ0) ∈ Hs × Hs, with s > 2. This
result was improved later by Hmidi and Keraani in [45], where they imposed that

(v0, ρ0) ∈ B
1+ 2

p

p,1 ×B
−1+ 2

p

p,1 ∩Lr, with r > 2. In this direction, Hmidi and Zerguine [51]
established similar result in the setting of fractional laplacian (−∆)

α
2 , α ∈]1, 2]. In

[26], Danchin and Paicu extended weak solutions of Yudovich’s type to the system
(Bκ). Another results concerning this subject can be found in [1, 9, 16, 17, 25, 33]
and the references therein.
In [62], we are interested by the study of the vortex patch problem for the system
(Bκ) and to investigate the convergence towards the inviscid system when the dif-
fusivity parameter κ goes to zero. Note that the limit system is simply obtained by

15



1 Introduction and overview of the main results

taking κ = 0, so we get
∂tv + v · ∇v +∇p = ρ~e2, t ≥ 0, x ∈ R2

∂tρ+ v · ∇ρ = 0,

div v = 0.

(B0)

We point out that for the latter system, local well-posedness can be implemented in
various function spaces similarly to Euler equations. For instance, Chae and Nam
showed in [16] that (B0) is locally well-posed in Sobolev spaces Hs with s > 2. This

result was extended to critical Besov spaces B
1+ 2

p

p,1 , p ∈]1,∞[ by Liu, Wang and
Zhang in [54]. The global existence of classical solutions is an outstanding open
problem.
In [39], Hassainia and Hmidi proved that the system (B0) is locally well-posed with
initial patch has a regular/singular structure. Our goal in [62] was to extend this
result for the system (Bκ). The first main result of Chapter four is summarized in
the following Theorem where we deal with local theory for the vortex patch problem
uniformly with respect to the parameter κ. More precisely, we have

Theorem 1.2.4. Let κ ∈ [0, 1] and consider a bounded domain Ω0 in R2 whose
boundary ∂Ω0 is a Jordan curve of C1+ε−regularity, with 0 < ε < 1. Let v0

κ be a
divergence-free vector field such that its vorticity ω0

κ = 1Ω0 and the initial density
ρ0
κ ∈ L2 ∩ C1+ε with ∇ρ0

κ ∈ L2.
Then there exists T > 0 independent of κ such that the system (Bκ) admits a unique
local solution

(vκ, ρκ) ∈
(
L∞
(
[0, T ];Lip(R2)

))2

.

Furthermore, for all t ∈ [0, T ] the boundary ∂Ωt is a Jordan curve of class C1+ε,
with Ωt = Ψt(Ω0).

Here, an interesting remark is that the initial condition ρ0
κ ∈ C1+ε doesn’t persist

in time. Indeed, ρκ(t) ∈ C1+ε requires more regularity on the velocity sharper than
the lipschitzian one.
The proof of this Theorem is to derive the Lipschitz norm of the velocity locally in
time uniformly on κ. For this aim, we walk in the footsteps of Chemin’s approach
[19]. Thus we shall control ‖∇vκ(t)‖L∞ with respect to the co normal regularity of
the vorticity ∂Xt,λωκ in Cε−1, with 0 < ε < 1 by means of logarithmic estimate. The
family of vector fields Xt = (Xt,λ)λ∈Λ obeys to the equation (4.2). The tangential
derivative of the vorticity ∂Xtωκ satisfies similarly to (4.3)

(∂t + vκ · ∇)∂Xt,λωκ = ∂Xt,λ∂1ρκ

16



1.2 Main results and headlines of the proof

This follows from the fact that the vorticity-density formulation of (Bκ) is given
by 

∂tωκ + vκ · ∇ωκ = ∂1ρκ, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0,

(VDκ)

We can write the term in the right-hand side of the first equation of (VDκ) as
follows

∂Xt∂1ρκ = ∂1(∂Xtρκ) + [∂Xt , ∂1]ρκ

and keeping in mind that the commutator [∂Xt , ∂1]ρκ behaves well, then the problem
reduces to follow the regularity of ∂Xtρκ in Cε. It is straightforward that the quantity
∂Xtρκ satisfies the following evolution equation

(∂t + vκ · ∇ − κ∆)Xt,λρκ = −κ[∆, Xt,λ]ρκ. (1.6)

Thus, the commutator term contributes with additional obstructs. The heart work
is to treat carefully the commutator by means of the maximal smoothing effect of
the transport -diffusion equation as in [22, 41]. The last step in the proof is doing
by a classical argument introduced in [19], by building an initial admissible family
X0 such that the initial vortex patch 1Ω0 belongs to the anisotropic space Cε(X0)

and check the regularity of the transported boundary by the flow associated to the
velocity vector field.
Our second main result of Chapter four is dedicated to study the inviscid limit prob-
lem of the system (Bκ) towards (B0) when the diffusivity κ vanishes, in the Lebesgue
spaces Lp. We have established a rate of convergence for velocities, densities and
the associated flows. More accurately, we have

Theorem 1.2.5. Let (vκ, ρκ) and (v, ρ) be the solutions of (Bκ) and (B0) respec-
tively with the same initial data given by Theorem 4.1.1. Then the following asser-
tions hold true.

(i) For every p ∈ [2,∞]

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖Lp + ‖ρκ(t)− ρ(t)‖Lp

)
≤ C0κ

1/4+1/2p.

(ii) If Ψκ and Ψ denote the flow associated to vκ and v respectively. Then we have

sup
t∈[0,T ]

‖Ψκ(t)−Ψ(t)‖L∞ ≤ C0κ
1/4,
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1 Introduction and overview of the main results

where C0 = C(‖∇ρ0‖L2∩L∞ , T ).

The proof of the rate of convergence for velocities and densities is done by using
some classical Lp-estimates, the classical complex interpolation between Lebesgue
spaces and the so-called Gagliardo-Nirenberg inequality. For the rate of convergence
for flows, we use the integral equation of the flow associated to the velocity vector
field v:

Ψ(t, x) = x+

∫ t

0

v(τ,Ψ(τ, x))dτ

and some general estimates associated to the flow.

18



2 Preliminaries

In this Chapter, we have gathered all the ingredients that are usefull during this
dissertion. We start by introducing the Littlewood-Paley theory, in particular, the
decomposition of the unity, Bernstein’s lemma, pardifferential calculus and state a
few properties related to this subject. Afterward, we define some functional spaces
like Besov, Hölder and bounded variations spaces and characterize them in terms of
dyadic blocks and announce the main embedding theorems. Next, we shall discuss
some properties concerning some commutator estimates by means of the so-called
Bony’s decomposition. Moreover, we furnish some useful technical lemmas, in partic-
ular two smoothing effects estimates for transport and transport-diffusion equations
governing respectively the time evolution of the density and the vorticity.

2.1 An outline about Littlewood-Paley theory

We embark this section by a brief concise about Littlewood-Paley theory. We state
by so-called dyadic decomposition of the unity and some of their properties, alike
Bernstein’s lemma and paradifferential calculus.
So, let χ be a smooth radial function supported in a ball B(0, 4

3
) such that

χ(ξ) =

{
1 if |ξ| ≤ 3

4

0 if |ξ| ≥ 1,

and define the function ϕ as follows

ϕ(ξ) = χ(
ξ

2
)− χ(ξ)

We can easily check that ϕ is supported in the annulus C(0, 3
4
, 8

3
).
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2 Preliminaries

A nice properties of the functions χ and ϕ are listed in the following proposition.

Proposition 2.1.1. Let C(0, 3
4
, 8

3
) and C̃ = B(0, 2

3
) + C(0, 3

4
, 8

3
) be two annulus. The

following assertions hold
q ≥ 1 =⇒ 2qC̃ ∩ 2pC = ∅, (2.1)

|q − p| ≥ 2 =⇒ supp ϕ(2−q·) ∩ supp ϕ(2−p·) = ∅, (2.2)

q ≥ 1 =⇒ supp χ ∩ supp ϕ(2−q·) = ∅, (2.3)

χ(ξ) + Σq≥0ϕ(2−qξ) = 1. (2.4)

Proof. To prove (2.1) we proceed by absurd by assuming that 2qC̃ ∩ 2pC 6= ∅ and
that p ≥ q. This provides us

|p− q| ≥ 2 =⇒ 2qC̃ ∩ 2pC = ∅, (2.5)

which implies that 2p 3
4
≤ 2q+1 4

3 , hence p−q ≤ 1. This contradicts the fact |p−q| ≥ 2.
For (2.2), let C ′ be the annulus centered at origin with two radius 1

α
and 2α with

0 < α < 1, and choosing a radial function θ ∈ C∞0 with values in [0, 1], supported in
C that equal to 1 in a neighborhood of C ′. Set

S(ξ) = Σq∈Zθ(2
−qξ),

then, in view of (2.1), we can deduce that this sum is locally finite in Rd�{0}. So,
we get S ∈ C∞ and ∪q∈Z2qC ′ = Rd�{0}. From the properties of θ, one can said that
S is strictly positive. Let us prove that the function defined by ϕ = θ

S
is suitable.

Clearly we have ϕ ∈ C∞(C).
On the other hand, we observe that the function 1 − Σq≥0ϕ(2−qξ) is in C∞ class.
From supp θ ⊂ C, we obtain that

|ξ| ≥ 4

3
=⇒ Σq≥0ϕ(2−qξ) = 1. (2.6)

Hence, by assuming
χ(ξ) = 1− Σq≥0ϕ(2−qξ),

we get (2.4) and (2.2). The estimate (2.3) is a consequence of (2.6) and (2.5).

The following Bernstein’s lemma describes a bound on the derivatives of a function
in the Lb−norm in terms of the value of the function in the La−norm, under the
assumption that the Fourier transform of the function is compactly supported. For
more details we refer to [5, 19].
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2.1 An outline about Littlewood-Paley theory

Lemma 2.1.2. Let R1 < R2. There exists a constant C > 0 such that for 1 ≤ a ≤
b ≤ ∞, for every function u ∈ La and every k ∈ N, we have

(i) (Direct Bernstein’s inequality) If supp û ⊂ B(0, R1λ), then

sup
|α|=k
‖∂αu‖Lb ≤ Ckλq

(
k+d
(

1
a
− 1
b

))
‖u‖La ,

(ii) (Reverse Bernstein’s inequality) If supp û ⊂ C(0, R1λ,R2λ), then

C−kλk‖u‖La ≤ sup
|α|=k
‖∂αu‖La ≤ Ckλk‖u‖La .

Proof. By changing variables by setting v(x) = u( 1
λ
x), the proof reduces to the case

λ = 1. Let φ ∈ D(Rd) be equal to 1 in neighborhood of the ball B(0, R1), and let
g being its Fourier inverse transform. One can observe that û(ξ) = φ(ξ)û(ξ). We
deduce that

u(x) =

∫
Rd
g(y)u(x− y)dy.

By derivation, we have

∂αu(x) =

∫
Rd
∂αg(y)u(x− y)dy.

Applying Young’s inequality, we get

‖∂αu‖Lb ≤ ‖∂αg‖Lc‖u‖La ,
1

c
=

1

b
− 1

a
+ 1.

Now, we bound the term ‖∂αg‖Lc in the following way

‖∂αg‖Lc ≤ ‖∂αg‖L∞ + ‖∂αg‖L1

≤ ‖(1 + | · |2)d∂αg‖L∞
≤ ‖(Id−∆)d((·)αφ)‖L1

≤ Ck.

To prove the second point of Bernstein’s lemma, we now assume that φ is compactly
supported away from the origin and takes value 1 over the annulus C(0, R1, R2).
Then in view of |ξ|2k = Σ|α|=k(iξ)

α(−iξ)α, we claim that

û(ξ) = Σ|α|=k
((iξ)α(−iξ)α

|ξ|2k
φ(ξ)

)
û(ξ),
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and
û(ξ) = Σ|α|=k

(iξ)α

|ξ|2k
φ(ξ)∂αû(ξ).

Setting ĝα(ξ) = (iξ)α

|ξ|2k φ(ξ), so we deduce that

û(ξ) = F
(
Σ|α|=k(gα) ∗ ∂αu)

)
(ξ).

Young’s inequality leads to

C−k−1‖u‖La ≤ sup
|α|=k
‖∂αu‖La .

2.1.1 Cut-off operators

Through the functions χ and ϕ, we state the so-called Littlewood-Paley or cut-off
operators, as well as the low frequency cut-off operators. To be precise, we have

Definition 2.1.3. Let u ∈ S ′. Then the cut-off operators are defined as follows

∆−1u , χ(D)u, ∆qu , ϕ(2−qD)u, if q ∈ N.

while the low frequency cut-off operators are given by

Squ ,
∑
j≤q−1

∆ju for q ≥ 0

Where in general case, f(D) can be seen as the pseudo-differential operator u 7−→
F−1(fû) with constant symbol.

The cut-off operators defined above are characterized by means of Fourier transform.
Especially, we have

Proposition 2.1.4. Let u, v ∈ S ′. We have

(i) supp F(∆qu) ⊂ C(0, 3
4
2q, 8

3
2q), supp F(∆−1u) ⊂ B(0, 3

4
), supp F(Squ) ⊂

2qB(0, 4
3
), supp F(Sq−1u∆qv) ⊂ C(0, 1

12
2q, 10

3
2q),

(ii) ∆qu ≡ 2qdh(2q·)∗u, ∆−1u ≡ h̃∗u, F(Squ) = χ(2−q·)∗u, where h = F−1(ϕ)

and h̃ = F−1(χ),
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2.1 An outline about Littlewood-Paley theory

(iii) |p− q| ≥ 2 =⇒ ∆p∆qu ≡ 0, |p− q| ≥ 4 =⇒ ∆q(Sp−1u∆pv) ≡ 0,

Proof. (i) By definition we have F(∆qu)(ξ) = φ(2−qξ)u(ξ) and the fact that
supp φ ⊂ C(0, 3

4
, 8

3
), we deduce that

supp F(∆qu) ⊂ C
(
0,

3

4
2q,

8

3
2q
)
.

(ii) For u ∈ S ′ we have F(∆qu)(ξ) = φ(2−qξ)u(ξ) = F
(
F−1(φ(2−q·))û

)
. Since

F−1 is an isomorphism from S ′ into itself, we get that

∆qu ≡ F−1(φ(2−q·)) ∗ u.

Using the change of variables η = 2−qξ to obtain

F−1(φ(2−q·))(x) =

∫
Rd
ei2

qx·ηφ(η)dη = 2qdh(2qx).

(iii) In view of ∆qu = F−1φ(2−q·) ∗ u, Young’s inequality leads to

‖∆qu‖Lp ≤ ‖2qdh(2q·)‖L1‖u‖Lp .

The fact that ‖2qdh(2q·)‖L1 = 2qd
∫
Rd h(2qx)dx. Hence, by a change of variable,

it follows that
‖2qdh(2q·)‖L1 = ‖h‖L1 .

For q = −1, the proof can be done in a similar way.

Likewise, we can define the homogeneous cut-off operators ∆̇q and Ṡq as follows

∀q ∈ Z ∆̇q = ϕ(2qD)u, Ṡq =
∑
j≤q−1

∆̇jv.

We mention that ∆̇q and Ṡq satisfy the same assertions as in the previous proposi-
tion.

Remark 2.1.5. Let us mention that
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(i) the cut-off operators ∆q (resp. ∆̇q) map Lp into itself with norms independent
of q and p , it suffices to apply (ii) in Proposition 2.1.4 and Young’s inequality,

(ii) we have (formally) the following Littlewood-Paley decomposition of unity,

I =
∑
q≥−1

∆q, I =
∑
q∈Z

∆̇q.

Indeed, in the inhomogeneous Besov spaces the above decomposition makes a
sense in S ′ in the following way: for u ∈ S ′, then u = limq→∞ Squ. For
f ∈ S we have 〈u−Squ, f〉 = 〈u, f −Sqf〉. Since the Fourier transform is an
isomorphism of S into itself, so it suffices to establish our claim in S , that
is limq→∞ χ(2q f̂) = f̂ .

From the properties above, the Bernstein Lemma 4.2.7 for ∆d (resp. ∆̇d) and Sq
(resp. Ṡq) can be viewed as follows.

Corollary 2.1.6. There exists a constant C > 0 such that for 1 ≤ a ≤ b ≤ ∞, for
every function u and every q ∈ N ∪ {−1}, we have

(i)

sup
|α|=k
‖∂αSqu‖Lb ≤ Ck2q

(
k+d
(

1
a
− 1
b

))
‖Squ‖La ,

(ii)
C−k2qk‖∆qu‖La ≤ sup

|α|=k
‖∂α∆qu‖La ≤ Ck2qk‖∆qu‖La .

2.1.2 Besov spaces

Definition 2.1.7. For (s, p, r) ∈ R× [1,∞]2. The inhomogeneous Besov space Bs
p,r

(resp. the homogeneous Besov space Ḃs
p,r) is the set of all temepred distributions

u ∈ S (resp. u ∈ S
′

|P) such that

‖u‖Bsp,r ,
(

2qs‖∆qu‖Lp
)
`r
<∞.(

resp. ‖u‖Ḃsp,r ,
(

2qs‖∆̇qu‖Lp
)
`r(Z)

<∞
)
.

With P denotes the set of polynomials of Rd.
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2.1 An outline about Littlewood-Paley theory

Proposition 2.1.8. The spaces Bs
p,r (resp. the homogeneous Besov spaces Ḃs

p,r)

equipped with ‖u‖Bsp,r (resp. ‖u‖Ḃsp,r) are normed spaces.

Some remarks are in order.

Remark 2.1.9. From the definition above, we can verify immediately that

(i) The definition of the Bs
p,r (resp. the homogeneous Besov space Ḃs

p,r) are inde-
pendent of the choice of χ and ϕ employed for defining the cut-off operators
∆q (resp. ∆̇q), and changing χ and ϕ give an equivalent norm.

(ii) For all s ∈ R, Bs
2,2 coincides with the nonhomogeneous Sobolev space Hs. More

precisely, there exists a constant C such that for all s ∈ R we have

C−|s|−1‖u‖2
s ≤ Σq2

2qs‖∆qu‖2
L2 ≤ C |s|+1‖u‖2

s,

where ‖u‖2
s =

∫
Rd
(
1 + |ξ|2

)s|û(ξ)|2dξ.

(iii) As a consequence of the corollary 2.1.6, the following embedding holds true.

Bs
p,r ↪→ Bs′

p,r′ if s
′ < s or s = s′, r′ ≥ r

and
Bs
p,r ↪→ B

s−d( 1
p
− 1
p′ )

p′,r if p ≥ p′.

2.1.2.1 Paradifferential calculus

The algorithm of paraproduct was introduced by Bony [12]. It consists to write the
product of two tempered distributions u and v into three pieces. Specifically, we
have the following definition for paraproduct and remainder terms.

Definition 2.1.10. For a given u, v ∈ S ′ we have

uv = Tuv + Tvu+ R(u, v),

with

Tuv =
∑
q

Sq−1u∆qv, R(u, v) =
∑
q

∆qu∆̃qv and ∆̃q = ∆q−1 + ∆q + ∆q+1.
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2 Preliminaries

In the product uv, the interactions between the frequencies of u and v are mixed,
the paraproduct enables us to separate the different types of interactions: Tuv and
Tvu which collect the interactions between low frequencies and high frequencies of u
and v, and R the interaction between similar frequencies of u and v. The way how
these bilinear operators act on Besov spaces is described bellow.

Proposition 2.1.11. For all s ∈ R, there exists a constant C such that for any
(p, r) ∈ [1,∞]2 we have

‖Tuv‖Bsp,r ≤ C‖u‖L∞‖v‖Bsp,r ,

for all (u, v) ∈ L∞ ×Bs
p,r.

Proof. From proposition 2.1.4, Sq−1u∆qv is spectrally supported in an annulus 2qC̃.
Thus, by definition of cut-off operators, we infer that

‖Sq−1u∆qv‖Lp ≤ ‖u‖L∞‖∆qv‖Lp .

Remark 2.1.9 achieves the proof.

The continuity properties of the remainder term are listed in the following proposi-
tion.

Proposition 2.1.12. For all (s1, s2) ∈ R2 with s1 + s2 > 0, there exists a constant
C such that for all (p1, p2, r1, r2) ∈ [1,∞]4 with 1

p
= 1

p1
+ 1

p2
≤ 1 and 1

r
= 1

r1
+ 1

r2
≤ 1,

we have
‖R(u, v)‖

B
s1+s2
p,r

≤ C‖u‖Bs1p1,r1‖v‖Bs2p2,r2 ,

for all u ∈ Bs1
p1,r1

and v ∈ Bs2
p2,r2

.

To claim such estimate, we need the following technical lemma

Lemma 2.1.13. Let B be a ball of Rd, s ∈ R+ and (p, r) ∈ [1,∞]2. Let (uq)q∈N be
a sequence of smooth functions such that

supp ûq ⊂ 2qB, and ‖(2qs‖uq‖Lp)q∈N‖lr <∞.

Then, we have

u =
∑
q∈

uq ∈ Bs
p,r, and ‖u‖Bsp,r ≤ C‖(2qs‖uq‖Lp)q∈N‖`r .

26



2.1 An outline about Littlewood-Paley theory

Proof. The fact that ‖uq‖Lp ≤ C2−qs, for any q ∈ N and s is positive, imply that
(uq)q∈ converges in Lp. Thus, we will study ∆juq. Proposition 2.1.4, ensures that
there exists an integer N such that

j ≥ q +N =⇒ 2jC ∩ 2qB = ∅,

where B and C are a ball and an annulus as defined in proposition 2.1.4. This,
implies that

j ≥ q +N =⇒ F(∆juq) = 0 =⇒ ∆juq = 0.

Besides, we have

‖∆juq‖Lp 6 ‖
∑

q≥j−N

∆juq‖Lp

6
∑

q≥j−N

‖∆juq‖Lp

6
∑

q≥j−N

‖uq‖Lp .

Hence, we get

2js‖∆juq‖Lp 6
∑

q≥j−N

‖2js∆juq‖Lp

6
∑

q≥j−N

2(j−q)s2qs‖uq‖Lp

= (ck) ∗ (dl),

where ck = 1[−N,∞[(k)e−ks and dl = 2ls‖ul‖Lp . This completes the proof.

Proof. of proposition 2.1.12. By definition, the remainder term spectrally supported
in a ball. Thus, Hölder’s inequality gives

2q(s1+s2)‖∆q−iu∆qv‖Lp ≤
1∑

i=−1

‖∆q−iu‖Lp1‖∆qv‖Lp2 .

The last estimate is nothing but the sum of three series which are the product of
two series of type `r1 and `r2 respectively. This gives the desired estimate.

From the previous results, we bound the product uv in the framework of Besov
spaces. More precisely, we have
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Proposition 2.1.14. For any real positive number s and any (p, r) ∈ [1,∞]2, L∞∩
Bs
p,r is an algebra space. Furthermore, there exists a constant C such that

‖uv‖Bsp,r ≤ C
(
‖u‖L∞‖v‖Bsp,r + ‖u‖Bsp,r

)
‖v‖L∞ .

The proof will be done by exploring once again Bony’s decomposition definition and
the two previous propositions of paraproduct and remainder terms.
We end up this part by studying the action of smooth functions on Besov spaces.
More accurately, we have the following theorem

Theorem 2.1.15. Let f be a smooth functions, s a positive real number and (p, r) ∈
[1,∞]2. If u belongs to L∞ ∩Bs

p,r, then f ◦ u belongs to Bs
p,r and

‖f ◦ u‖Bsp,r ≤ C(s, f, ‖u‖L∞)‖u‖Bsp,r .

We observe that if s > d
p
or if s = d

p
and r = 1, then Bp,r is included in L∞. This

implies that Bp,r is stable under the action of f by composition.

Proof. Let us introduce the telescopic series∑
q

fq with fq , f(Sq+1u)− f(Squ).

As (Squ)q∈ converges to u in Lp, and f(0) = 0, we obtain

f(u) =
∑
q

fq.

Applying Taylor formula of order 1, one gets

fq = mq∆qu with mq ,
∫ 1

0

f ′(Squ+ t∆qu)dt.

To estimate the terms mq, let us recall the following formula, in general case

∂αv(a) =
∑

∑p
j=1 αj=|α|,|αj |≥1

(
Πp
j=1∂

αja
)
v(p)(a).

28



2.1 An outline about Littlewood-Paley theory

Applying this formula on mq, one gets

∂αmq =
∑

∑p
j=1 αj=|α|,|αj |≥1

∫ 1

0

(
Πp
j=1∂

αj(Squ+ t∆qu)
)
f (p+1)(Squ+ t∆qu)dt.

To conclude the proof, we need the following lemma, which can be found in [77].

Lemma 2.1.16. Let s ∈ R+ and (p, r) ∈ [1,∞]2. There exists a constant Cs such
that if (uq)q∈N is a sequence of smooth functions that satisfies(

sup
|α|≤[s]+1

2q(s−[α])‖∂αuq‖Lp
)
q
∈ `r,

then, we have

u =
∑
q∈

uq ∈ Bs
p,r and ‖u‖Bsp,r ≤ Cs

(
sup

|α|≤[s]+1

2q(s−[α])‖∂αuq‖Lp
)
q
‖`r .

Thus, one can write

‖∂αmq‖L∞ ≤ Cα(f)
∑

∑
j=1pαj=|α|,|αj |≥1

∫ 1

0

(
Πp
j=12q|αp|‖u‖L∞

)
≤ Cα(f, ‖u‖L∞)2q|α|.

Using Leibniz formula and the previous lemma once again, we obtain

‖∂αfq‖Lp ≤
∑
β≤α

Cα
β 2q|β|Cβ(f, ‖u‖L∞)2q|α|−|β|)‖∆qu‖Lp

This yields to

‖∂αfq‖Lp ≤α (f, ‖u‖L∞)2q|α|‖∆qu‖Lp

≤ cqα(f, ‖u‖L∞)2−q(s−|α|‖u‖Bp,rs .

This achieves the proof.
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2.1.2.2 Hölder spaces

Now, we intend to recall the notion of Hölder spaces, witch we used repeatedly
during this thesis. For more details, we refer to [5, 19]. Firstly, let us remember the
classical definition of Hölder spaces.

Definition 2.1.17. Let r ∈ R+\N

(i) When 0 < r < 1, the Hölder space denoted by Cr is the set of all bounded
functions u in Rd, such that there exists a constant C, for all x and y in Rd

we have
|u(x)− u(y)| ≤ C|x− y|r.

(ii) When r > 1, the Hölder space Cr is the set of all functions u such that for all
multi-index α with |α| ≤ [r], we have

∂αu ∈ Cr−[r]

equipped with the norm

‖̃u‖r = Σ|α|≤[r]

(
‖∂αu‖L∞ + sup

x 6=y

|∂αu(x)− ∂αu(y)|
|x− y|r−[r]

)
.

The first thing to do is to characterize the Hölder spaces already invoked for r ∈
R+\N by means of cut-off operators. Specifically, we have

Proposition 2.1.18. (i) There exists a constant C, such that for all r ∈ R+\N
and for all function u in Cr, we have

‖u‖Cr , sup
q

2qr‖∆qu‖L∞ ≤
Cr+1

[r]!
‖̃u‖Cr

(ii) Let B a ball in Rd and u ∈ S ′ with u =
∑

q uq, supp ûq ⊂ 2qB. There exists
a constant C such that, if the sequence (2qr‖uq‖L∞)q∈N is bounded, then

‖̃u‖Cr ≤ C

(
1

r − [r]
+

1

[r] + 1− r

)
‖uq‖Cr .
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2.1 An outline about Littlewood-Paley theory

Proof. To prove (i), we use the integral definition of ∆q

∆qu(x) = 2qd
∫
Rd
h
(
2q(x− y)

)
u(y)dy.

Since h = F−1(φ) with φ identically vanishes in a neighborhood of the origin, thus
we have ∫

Rd
xαh(x)dx = 0.

It follows that

∆qu(x) = 2qd
∫
Rd
h
(
2q(x− y)

)(
u(y)−

[r]∑
k=1

1

k!
Dku(x)(y − x)(k)

)
dy. (2.7)

By a Taylor formula of order [r], one gets

u(y)−
[r]∑
k=1

1

k!
Dku(x)(y−x)(k) =

∫ 1

0

(1− t)[r]−1

[r − 1]!

(
D[r]u(x+t(y−x))−D[r]u(x)

)
·(y−x)([r])dt.

The fact that ∂αu belongs to Cr−[r], gives

|u(y)−
[r]∑
k=1

1

k!
Dku(x)(y − x)(k)| ≤ C

[r]!
|y − x|r‖̃u‖Cr .

This implies that

|∆qu(x)| ≤ C

[r]!
2qd‖̃u‖Cr

∫
Rd
|x− y|rh(2q(x− y))|dy.

The proof of (ii) is deeply based on the remark that ‖uq‖L∞ ≤ C2−qr. This yields,
by means of Bernstein’s lemma, that the sequence (∂αuq)q∈N converges in L∞, so for
any α ∈ Nd such that |α| ≤ [r], we get

∂αu ∈ L∞, ‖∂αu‖L∞ ≤ C sup
q∈N

2qr‖uq‖L∞ . (2.8)

To reach the proof, we must study the case of partial derivatives of order [r]. To do
this, we explore the following frequential decomposition.

|∂αu(x)− ∂αu(y)| ≤
∑
q<N

|∂αuq(x)− ∂αuq(y)|︸ ︷︷ ︸
(I)

+
∑
q≥N

|∂αuq(x)− ∂αuq(y)|︸ ︷︷ ︸
(II)

,

where N is a parameter that will be chosen later. To get bound term (I) in the
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right-hand side, we apply the mean value theorem, thus, we deduce that

|∂αuq(x)− ∂αuq(y)| ≤ C|x− y| sup
|β|=[r]+1

‖∂βuq‖L∞ .

Using again Bernstein’s lemma, it holds

|∂αuq(x)− ∂αuq(y)| ≤ C|x− y|2−q(r−[r]−1) sup
q∈N

2qr‖uq‖L∞ . (2.9)

For the second term (II), we write

|∂αuq(x)− ∂αuq(y)| ≤ 21−qr sup
q∈N

2qr‖uq‖L∞ .

By virtue of (2.9), we achieve that

|∂αu(x)− ∂αu(y)| ≤ C(sup
q∈N

2qr‖uq‖L∞)
( N∑
q=0

2−q(r−[r]−1)|x− y|+
∑
q≥N

2−q(r−[r])
)
.

Exploiting (2.8), we can suppose that |x− y| ≤ 1. By choosing

N = [−log2|x− y|] + 1,

this completes the proof.

In general case, where r ∈ R, the Hölder spaces are defined as follows

Definition 2.1.19. Let r ∈ R. The Hölder space Cr is the set of all u ∈ S ′ such
that

‖u‖Cr , sup
q

2qr‖∆qu‖L∞ < +∞.

Let us denote that these spaces are Banach spaces equipped with the norm ‖·‖Cr .

Proposition 2.1.20. Let C̃ be an annulus in Rd. There exists a constant C, such
that for a given real r and a sequence (uq)q∈N converges towards u in S ′ with
supp ûq ⊂ 2qC̃, we have

sup
q

2qr‖uq‖L∞ < +∞⇔ u ∈ Cr, ‖u‖Cr ≤ C |r|+1 sup
q

2qr‖uq‖L∞ .

Proof. First we bound ‖uq‖L∞ . From the hypothesis on the support of ûq, there
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2.1 An outline about Littlewood-Paley theory

exists an integer N such that

∆qu =
∑

q/|p−q|≤N

∆puq.

Since ∆p : L∞ → L∞ is continuous, it follows that

‖∆puq‖L∞ ≤
∑

q/|p−q|≤N

‖uq‖L∞ .

Even more, 2q ≤ C2p because |p− q| ≤ N . This gives the desired estimation.

Remark 2.1.21. Since r is an integer, the obtained space is denoted sometimes by
Cr
? and called Hölder-Zygmund space.

We end this subsection by the relationship between Besov spaces Bs
p,r and the

so-called bounded variations spaces still denoted BV . For this purpose, we embark
with the following definition.

Definition 2.1.22. The space of functions of bounded variations denoted BV (Rd)
(or simply BV ), is the space of all functions u ∈ L1 whose first order partial deriva-
tives in the distributional sense are finite signed Random measures, that is to say,
for all i = 1, · · · , d, there exists a finite signed measure λi : B(Rd)→ R such that
for all φ ∈ C∞c (Rd), we have∫

Rd
u
∂φ

∂xi
dx = −

∫
Rd
φdλi.

The measure λi is called the weak, or distributional, partial derivative of u with
respect to xi and is denoted Diu. Let us setting

Du = (D1u, · · · , Ddu), ∀u ∈ BV.

Thus, if u ∈ BV , then Du ∈ Mb(Rd;Rd), then the total variation measure of Du,
defined by

|Du|(E) = sup{
∑
j≥1

|Du(Ej)|}, E ∈ B(Rd),

where the supremum is taken over all partitions {Ej} ⊂ B(Rd) of E, is a finite
Radon measure with B(Rd) denotes a Borel σ−algebra. Furthermore, we have

|Du|(Rd) = ‖Du‖Mb(Rd;Rd) = sup
{ d∑

i=1

∫
Rd
φidDiu : φ ∈ C0(Rd;Rd), ‖φ‖C0(Rd;Rd) ≤ 1

}
<∞.
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Definition 2.1.23. Let u ∈ L1
loc(Rd). Define the variation of u in Rd as follows

V (u,Rd) = sup
{ d∑

i=1

∫
Rd

∂φi
∂xi

udx : φ ∈ C∞c (Rd;Rd), ‖φ‖C∞c (Rd;Rd) ≤ 1
}
.

The motivation to state the spaces BV is for the purpose to uphold the statement
of the following axle result used in the next chapters. Especially we have

Proposition 2.1.24. Let Ω be a bounded domain which its boundary is a Jordan
curve of C1+ε−regularity, with 0 < ε < 1. Then 1Ω ∈ L∞ ∩BV .

Before giving the proof, let us firstly characterize Besov spaces by means of bounded
variations spaces. For that, given a function u : Rd → R, for every h ∈ R, i =

1, · · · , d and x ∈ Rd, we define

∆h
i u(x) = u(x+ hei)− u(x),

where ei is the ith vector of canonical basis in Rd. If d = 1, we write ∆hu = ∆h
1u.

Definition 2.1.25. Let 0 < s < 1 and (p, r) ∈ [1,∞]2. A function u ∈ L1
loc(Rd)

belongs to the Besov space Bs
p,r if and only if the following norm is finite.

‖u‖Bsp,r = ‖u‖Lp + |u|Bsp,r <∞,

with

|u|Bsp,r ,


∑d

i=1

( ∫ +∞
0
‖∆h

i u‖rLp dh
h1+sr

) 1
r if r <∞,∑d

i=1 suph>0
1
hs
‖∆h

i u‖Lp if r =∞.

We mention that Bs
p,r is a Banach space. For a proof see [59] page 416.

Worthwhile results relates Besov spaces with bounded variations spaces are an-
nounced bellow.

Theorem 2.1.26. Let 0 < t < s < 1 and (p, r) ∈ [1,∞]2. Then, there exists a
positive constant C = C(t, r) such that for all u ∈ Bs

p,r, we have

|u|Btp,r ≤ |u|Bsp,r + C‖u‖Lp .

In particular Bs
p,r ⊂ Bt

p,r.
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2.1 An outline about Littlewood-Paley theory

Proof. We distinguish two cases.
• First case: 1 ≤ r < +∞. For 0 < h < 1 we have hs < ht. Then, we can write

(∫ ∞
0

‖∆h
i u‖rLp

dh

h1+tr

) 1
r ≤

(∫ 1

0

‖∆h
i u‖rLp

dh

h1+tr

) 1
r

+
(∫ ∞

1

‖∆h
i u‖rLp

dh

h1+tr

) 1
r

≤
(∫ 1

0

‖∆h
i u‖rLp

dh

h1+sr

) 1
r

+ 2‖u‖Lp
(∫ ∞

0

dh

h1+tr

) 1
r
,

where in the last term of the right-hand side we have used the definition of ∆h
i and

the convergence of the integral
∫∞

0
dh

h1+tr
. Thus, we get the desired estimate for this

case.
• Second case: r = +∞. For the proof, we must replace the integral by supremum.
That is to say

sup
h>0

1

ht
‖∆h

i u‖Lp ≤ sup
0<h<1

1

ht
‖∆h

i u‖Lp + sup
h≥1

1

ht
‖∆h

i u‖Lp ≤ sup
0<h<1

1

hs
‖∆h

i u‖Lp + 2‖u‖Lp .

This accomplishes the proof.

Furthermore, we have the following embedding

Theorem 2.1.27. Let 0 < s < 1 and(p, r) ∈ [1,∞]2. Then, there exists a constant
C = C(s, r) such that for all u ∈ W 1,p, we have

|u|Bsp,r ≤ C‖u‖W 1,p .

In particular W 1,p ⊂ Bs
p,r.

Proof. For 1 ≤ r <∞, we remark that

(∫ ∞
0

‖∆h
i u‖rLp

dh

h1+sr

) 1
r
6 ‖ ∂u

∂xi
‖Lp
(∫ 1

0

dh

h1+(s−1)r

) 1
r

+ 2‖u‖Lp
(∫ ∞

1

dh

h1+sr

) 1
r

≤
( 1

(1− s)r

) 1
r ‖ ∂u
∂xi
‖Lp + 2

( 1

sr

) 1
r ‖u‖Lp .

If r =∞, we infer that

sup
h>0

1

hs
‖∆h

i u‖Lp 6 sup
0<h<1

1

hs−1
‖ ∂u
∂xi
‖Lp + sup

h≥1

1

hs
‖∆h

i u‖Lp

= ‖ ∂u
∂xi
‖Lp + 2‖u‖Lp .
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For p = 1, we have the following strong result, that we are going to use in Chapter
three (see proposition 3.5.2).

Theorem 2.1.28. Let 0 < s < 1 and 1 ≤ r ≤ +∞. Then, there exists a positive
constant C = C(s, r) such that for all u ∈ BV , we have

‖u‖Bs1,r ≤ C‖u‖BV .

In particular BV ⊂ Bs
1,r.

Proof. The proof can be done in the same way as the previous theorem, with the
following difference

‖∆h
i u‖L1 ≤ h|Diu|(Rd),

where the last estimate is deduced from the following result giving in [59] page 413:∫
Rd
|u(x+ hei)− u(x)dx| ≤ h|Diu|(Rd)

and
lim
h→0+

∫
Rd

u(x+ hei)− u(x)

h
dx = |Diu|(Rd),

for all u ∈ BV .
Conversely, if u ∈ L1, such that

lim inf
h→0+

∫
Rd

u(x+ hei)− u(x)

h
dx <∞,

then u ∈ BV .

2.2 Regularity for transport-diffusion and transport

equations

This section gives details on the transport-diffusion and transport equations, in
particular, the regularity persistence and the maximal regularity in Besov spaces.
Firstly, we embark on the following proposition which deals with the persistence of
Besov regularities in a transport-diffusion regime.

Proposition 2.2.1. Let (s, r, p) ∈]− 1, 1[×[1,∞]2, f0 ∈ Bs
p,r and g ∈ L1

loc(R+;Bs
p,r).

Let v be a smooth free-divergence vector field and f be a smooth solution of the
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2.2 Regularity for transport-diffusion and transport equations

transport-diffusion equation{
∂tf + v · ∇f − µ∆f = g

f|t=0 = f0.
(TDµ)

Then for every t ≥ 0 we have

‖f(t)‖Bsp,r ≤ CeCV (t)
(
‖f0‖Bsp,r +

∫ t

0

e−CV (τ)‖g(τ)‖Bsp,rdτ
)
,

with

V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ

and C a constant which depends only on s and not on the viscosity. For the limit
case

s = −1, r =∞ and p ∈ [1,∞] or s = 1, r = 1 and p ∈ [1,∞]

the above estimate remains true despite, we change V (t) by Z(t)
def
= ‖v‖L1

tB
1
∞,1

. In
addition if f = curl v, then the above estimate holds true for all s ∈ [1,+∞[.

Proof. We will only restrict ourselves to the proof of the limiting cases s = ∓1. The
rest cases are done for example in [5]. To begin with, we localize the equation (TDµ)
via the operator ∆q. Let fq , ∆q, gq , ∆qg. Then, they satisfy

∂tfq + (v · ∇)fq − ν∆fq = gq + (v · ∇)fq − (v · ∇fq)
= gq

2 − [∆q, v · ∇]f.

Multiply the previous equation by |fq|p−2fq, so Hölder’s inequality yields

‖fq(t)‖Lp ≤ ‖f 0
q ‖Lp +

∫ t

0

‖gq(τ)‖Lpdτ +

∫ t

0

∥∥∥[∆q, v(τ) · ∇]f(τ)
∥∥∥
Lp
dτ.

The famous Bony’s decomposition, see definition 2.1.10 allows us to write

[∆q, v · ∇]f = ∆qR(vj, ∂jf) + ∆qT∂jfv
j − T ′∆q∂jf

uj + [∆q, Tuj ]∂jf

:=
4∑
i=1

M i
q ,

where T ′vu stands for Tvu+R(v, u). Here, we have used Enstein’s convention for the
summation over the repeated indices. We treat the first quantity M 1

q by exploring
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the definition 2.1.10 to state

M 1
q =

∑
k≥q−3

∆q∂j(∆kf∆̃kv
j).

By means of Bernstein lemma 4.2.7, it follows for s = −1 that

sup
q≥−1

2−q‖M 1
q ‖Lp . ‖f‖B−1

p,∞
‖v‖B1

p,∞ (2.10)

To estimate M 2
q , we write

M 2
q = ∆T∂jfv

j =
∑
|q−k|≤4

∆q(Sk−1∂jf∆kv
j).

The Bernstein and Young inequalities lead to

sup
q

2−q‖M 2
q ‖Lp . sup

q
2−q‖Sq−1f‖Lp2q‖∆qv

j‖Lp (2.11)

. ‖v‖B1
∞,∞ sup

q

∑
−1≤m≤q−2

2m−q2−m‖∆mf‖Lp

. ‖f‖B−1
p,∞
‖v‖B1

∞,∞ .

Concerning the member M 3
q , we obviously check that it can be rewritten as follows

M 3
q = T∆q∂jfv

j =
∑
k≥q−2

Sk+2∆q∂j∆kv
j.

We apply once again the Bernstein inequality, we shall have

2−q‖M 3
q ‖L∞ . 2−q‖∆q‖Lp

∑
k≥q−2

2q−k2k‖∆kv‖L∞ ,

Therefore the convolution inequality yields

sup
q≥−1

2−q‖M 3
q ‖Lp . ‖f‖B−1

p,∞
‖v‖B1

p,∞ . (2.12)

For the last member we write

M 4
q = [∆q, Tvj ]∂jf =

∑
|k−q|≤4

[∆q, Sk−1v
j]∆k∂jf.
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2.2 Regularity for transport-diffusion and transport equations

The following estimate is classical (see for example [19]),

‖[∆q, Sk−1v
j]∆k∂jf‖L∞ . 2−q‖∇Sk−1v‖L∞‖∂j∆kf‖Lp

. 2k−q‖∇v‖L∞‖∆kf‖Lp .

This implies
sup
q≥−1

2−q‖M 4
q ‖L∞ . ‖f‖Bsp,∞‖∇v‖L∞ . (2.13)

Gathering the estimates (2.10), (2.11), (2.12) and (2.13) to obtain

sup
q≥−1

2−q
∥∥∥[∆q, v · ∇]f

∥∥∥
Lp

. ‖f‖B−1
p,∞
‖v‖B1

p,∞ .

This implies

‖f(t)‖B−1
∞,∞

. ‖f0‖Bs
∞,∞ +

∫ t

0

‖g(τ)‖B−1
p,∞
dτ +

∫ t

0

‖f(τ)‖B−1
p,∞
‖v(τ)‖B1

p,1
dτ.

To conclude the desired result it suffices to apply Gronwall’s inequality.
Let us now move to the case s = 1 which will briefly explained. We estimate M 1

q

as follows ∑
q

2q‖M 1
q ‖Lp .

∑
k≥q−3

2q−k2k‖∆kf‖Lp2k‖∆̃kv
j‖L∞

. ‖f‖B1
p,1
‖v‖B1

∞,∞ .

For the second member we have∑
q

2q‖M 2
q ‖Lp .

∑
q

2q‖Sq−1∂jf‖Lp‖∆qv
j‖L∞

. ‖∇f‖Lp‖v‖B1
∞,1

. ‖f‖B1
p,1
‖v‖B1

∞,1
.

Similarly, the third and last members will done like the first one.

Another important result was founded an enormous applications in two last chapters
cares with the maximal smoothing effect regularity for equation (TDµ) in mixed
space-time spaces L̃rtBs

p1,p2
and reads as follows.
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Theorem 2.2.2. Let (p, p1, r, θ1) ∈ [1,+∞]4 with p ≤ p1. Let s ∈ R satisfy{
s < 1 + d

p1
or s ≤ 1 + d

p1
, if r = 1,

s > −dmin
{

1
p1
, 1
p′

}
or s > −1− d

{
1
p1
, 1
p′

}
, if divv = 0.

(2.14)

There exists a constant C, depending only on d, r, s, and s − 1 − d
p1
, such that for

any smooth solution f of (TDµ) with µ ≥ 0, and θ ∈ [θ1,∞], the following a priori
estimate holds true.

µ
1
θ ‖f‖

L̃θt Ḃ
s+2

θ
p,r

≤ CeCVp1 (t)
(
‖f 0‖Ḃsp,r + µ

1
θ1
−1‖g‖

L̃
θ1
t Ḃ

s−2+ 2
θ1

p,r

)
, ∀t ∈ R+, (2.15)

with 
Vp1(t) ,

∫ t
0
‖∇v(τ)‖

Ḃ
d
p1
p1,∞∩L∞

dτ if s < d
p1

+ 1,

Vp1(t) ,
∫ t

0
‖∇v(τ)‖

Ḃ
d
p1
p1,1
∩L∞

dτ if s = d
p1

+ 1,

Proof. The proof will be done in the spirit of [5, 46]. Roughly speaking, it consists
first in localizing in frequency the evolution equation and second in rewriting the
equation in Lagrangian coordinates. This will lead to some technical difficulties,
especially, when we have to treat a commutator term coming from the commutation
between the Laplacian and the regularized flows. To start with, let fq = ∆̇qf and
gq = ∆̇qg, thereafter we localize (TDµ) by applying ∆̇q to get

(∂t + Ṡq−1v · ∇ − µ∆)fq = gq + (Ṡq−1v − v) · ∇fq − [∆̇q, v · ∇]f = Aq.

Let Ψq be the flow of the regularized velocity vector field Ṡq−1v defined by

Ψq(t, x) = x+

∫ t

0

Ṡq−1v(τ,Ψq(τ, x))dτ. (2.16)

Set f̄q(t, x) = fq(t,Ψq(t, x)), ḡq(t, x) = gq(t,Ψq(t, x)) and Āq(t, x) = Aq(t,Ψ(t, x)).
An elementary calculus gives

(∂t − µ∆)f̄q = ḡq + Āq + µBq, Bq = ((∆fq)(t,Ψ(t, x))−∆f̄q). (2.17)

At this stage of the proof one can remark that the function f̄q is not necessarily
localized in frequency. Thus in order to quantify the smoothing effects we need once
again to localize (2.17). Now, let j ∈ N then applying the cut-off operator ∆̇j to
the equation (2.17) gives

(∂t − µ∆)∆̇j f̄q = ∆̇j ḡq + ∆̇jAq + µ∆̇jBq = ∆̇jB̄q,j. (2.18)
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2.2 Regularity for transport-diffusion and transport equations

Let us denote that the previous equation can be seen as a particular heat equation,
so, in view of

‖∆̇je
−µt∆h‖Lp ≤ e−cµt2

2j‖∆̇jh‖Lp (2.19)

we end up with

‖∆̇j f̄q‖Lp ≤ Ce−cµt2
2j‖∆̇j f̄q‖Lp + C

∫ t

0

e−cµ(t−τ)22j‖B̄q,j(τ)‖Lpdτ.

To treat the quantity ‖B̄q,j(τ)‖Lp , we write

‖B̄q,j(τ)‖Lp ≤ ‖∆̇j ḡq(τ)‖Lp + ‖∆̇jĀq(τ)‖Lp + µ‖∆̇jBq‖Lp . (2.20)

We first start on the term ‖∆̇jĀq(τ)‖Lp . Based on the formula (2.16) and a serious
calculus lead to

Āq = ∆fq − Tr
(
∇Ψq ·D2fq ◦Ψq ·DΨq

)
−Dfq ◦Ψq ·∆Ψq (2.21)

= Tr
(
(I−∇Ψq) ·D2fq ◦Ψq ·DΨq

)
− Tr

(
D2fq ◦Ψq · (I−DΨq)

)
−Dfq ◦Ψq ·∆Ψq,

with in general case DF represents the Jacobian matrix of F , and ∇F denotes the
transposed matrix of DF . If F has a d components, we thus set JF , detDF .
Consequently,

‖∆̇jĀq‖Lp ≤ C
(
‖DΨq‖+ 1

)
‖I−DΨq‖L∞‖D2fq ◦Ψq‖Lp +C‖∆Ψq‖L∞‖Dfq ◦Ψq‖Lp .

In accordance with Bernstein’s inequality combined with an adequate change of
variable when computing the Lp−norm guided to

‖Dfq ◦Ψq‖Lp ≤ C2q
∥∥JΨ−1

q

∥∥ 1
p

L∞
‖fq‖Lp ,

‖D2fq ◦Ψq‖Lp ≤ C22q
∥∥JΨ−1

q

∥∥ 1
p

L∞
‖fq‖Lp .

Since the flows Ψq and Ψ−1
q satisfy the classical estimates

‖DΨ±1
q (t)‖L∞ ≤ eV (t), (2.22)

‖DΨ±1
q (t)− I‖L∞ ≤ eV (t) − 1,

‖D2Ψ±1
q (t)‖L∞ ≤ eV (t)

∫ t

0

‖D2v(τ)‖L∞eV (τ)dτ,

combined with Bernstein’s inequality

‖∆̇jĀq‖Lp ≤ Ce2q
(
eCV (t) − 1

)
‖fq‖Lp . (2.23)
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For the term ‖∆̇j ḡq(τ)‖Lp , we employ once again Bernstein’s inequality to find

‖∆̇j ḡq(τ)‖Lp ≈ 2−j‖∆̇jDḡq(τ)‖Lp .

We also have Dḡq = Dgq ◦Ψq ·D. Again Bernstein’s inequality and (2.22) give

‖∆̇j ḡq‖Lp ≤ CeCV (t)2q−j‖ḡq‖Lp . (2.24)

Step by step, we also get

‖∆̇jBq‖Lp ≤ CeCV (t)2q−j‖Bq‖Lp . (2.25)

On the other hand, always Bernstein’s inequality implies

‖(Ṡq−1v − v) · ∇fq‖Lp ≤ C2q‖Ṡq−1v − v‖L∞‖fq‖Lp

≤ C
∑
q′≥q

2q−q
′‖∇∆q′v‖L∞‖fq‖Lp

≤ C‖∇v‖B0
∞,∞‖fq‖Lp ,

combined with (2.25), we eventually get

‖∆̇jBq‖Lp ≤ CeCV (t)2q−jcq(t)2
−qsVp1(t)‖f(t)‖Bsp,r , (2.26)

with ‖cj(t)‖`r = 1 and Vp1 as defined in the statement of Theorem 2.2.2.

Putting together (2.23), (2.24) and (2.26) and plug them in (2.18), taking the
Lθ−norm over [0, t], and multiplying by µ

1
θ 22 j

θ to obtain

µ
1
θ 22 j

θ ‖∆̇j f̄q‖LθtLp ≤ C
(
‖∆̇jf

0
q ‖Lp + 2q−jµ

− 1
θ′1 2
−2 j

θ1 eCV (t)‖gq‖Lθ1t Lp

+22(q−q′)µ
1
θ e2 j

θ

(
eCV (t) − 1

)
‖fq‖LθtLp + 2q−j

∫ t

0

cq(τ)2−qsVp1(τ)eCV (τ)‖f‖Bsp,rdτ
)
,

with θ′1 represents for the conjugate exponent of θ1.

Multiplying the both sides of the last estimate by 2qs2
2
θ

(q−j) to conclude that

µ
1
θ 2q(s+

2
θ

)‖∆̇j f̄q‖LθtLp ≤ C
(

2
2
θ

(q−j)2qs‖∆̇jf
0
q ‖Lp + µ

− 1
θ′1 2

(1+ 2
θ

+ 2
θ′1

)(q−j)
eCV (t)2

q(s− 2
θ′1

)
‖gq‖Lθ1t Lp

+22(q−j)µ
1
θ 2q(s+

2
θ

)
(
eCV (t) − 1

)
‖fq‖LθtLp (2.27)

+2(1+ 2
θ

)(q−j)
∫ t

0

cq(τ)Vp1(τ)eCV (τ)‖f‖Bsp,rdτ
)
.
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2.2 Regularity for transport-diffusion and transport equations

Now, let N ∈ N be a fixed number that will be chosen later. Since

fq =
∑

j≤q−N

∆̇j f̄q ◦Ψ−1
q +

∑
j≤q−N

∆̇j f̄q ◦Ψ−1
q .

Because Ψ−1
q preserves Lebesgue’s measure then for t ∈ [0, T ] we get

‖fq‖LθtLp ≤ eCV (t)

( ∑
j≤q−N

‖∆̇j f̄q‖LθtLp +
∑

j≥q−N

‖∆̇j f̄q‖LθtLp
)
.

To treat the term
∑

j≤q−N ‖∆̇j f̄q‖LθtLp , a Lemma 2.4 page 56 in [5] allows us for
t ∈ [0, T ] to write∑
j≤q−N

‖∆̇j f̄q‖Lp ≤ C2−q
∥∥JΨ−1

q

∥∥
L∞
‖fq(t)‖Lp

(∥∥DJΨ−1
q

∥∥
L∞

∥∥JΨq

∥∥
L∞

+2q−N
∥∥DΨq

∥∥
L∞

)
.

In accordance with (2.22), the two quantities JΨ−1
q

and JΨq are bounded by eCV (t).
On the other hand

DJΨ−1
q
· h = D

(
detDΨ−1

q

)
· h =

d∑
m=1

det
(
DΨ−1

1,q, . . . , D
2Ψ−1

m,q · h, . . . , DΨ−1
d,q

)
.

Again (2.22) furnishes

∥∥DJΨ−1
q

∥∥
L∞

≤ eCV (t)

∫ t

0

∥∥D2Sq−1v(τ)
∥∥
L∞
eCV (τ)dτ

≤ CeCV (t)2q
∫ t

0

∥∥∇v(τ)
∥∥
L∞
eCV (τ)dτ

≤ CeCV (t)2q
(
eCV (t) − 1

)
.

Then it happens∑
j≤q−N

‖∆̇j f̄q‖LθtLp ≤ CeCV (t)
(
2−N + eCV (t) − 1

)
‖fq‖LθtLp . (2.28)

Now, let us move to bound
∑

j≥q−N ‖∆̇j f̄q‖LθtLp . For this purpose, the fact ∆jf
0
q = 0

for |j − q| > 1 and summing (2.27) over j ≥ q −N , it holds∑
j≥q−N

µ
1
θ 2q(s+

2
θ

)‖∆̇j f̄q‖LθtLp ≤ C
(

2qs‖f 0
q ‖Lp + eCV (t)23Nµ

− 1
θ′1 2

q(s− 2
θ′1

)
‖gq‖Lθ1t Lp

+22N
(
eCV (t) − 1

)
µ

1
θ 2q(s+

2
θ

)‖fq‖LθtLp

+23N

∫ t

0

cq(τ)Vp1(τ)eCV (τ)‖f‖Bsp,rdτ
)
.

43



2 Preliminaries

Plugging this and (2.28) into (2.27), we conclude that

µ
1
θ 2q(s+

2
θ

)‖fq‖LθtLp ≤ CeCV (t)
(

2qs‖f 0
q ‖Lp + 23Nµ

− 1
θ′1 2

q(s− 2
θ′1

)
‖gq‖Lθ1t Lp

+
(
2−N + 22N

(
eCV (t) − 1

))
µ

1
θ 2q(s+

2
θ

)‖fq‖LθtLp

+23N

∫ t

0

cq(τ)Vp1(τ)eCV (τ)‖f(τ)‖Bsp,rdτ
)
.

It is easy to check that there exists two absolute constants N ∈ N and C1 > 0 such
that

V (t) ≤ C1 ⇒
(
2−N + 22N

(
eCV (t) − 1

))
µ

1
θ 2q(s+

2
θ

) ≤ 1

2
.

Indeed, we start with taking t such that V (t) ≤ 1, which is possible since
limt→0 V (t) = 0. Next, we choose N in order to have 2C2−N ≤ 1

4
. Now, we

take V (t) sufficiently small such that 22N
(
eCV (t)− 1

)
µ

1
θ 2q(s+

2
θ

) ≤ 1
4
. This proves the

above assertion. Under this assumption V (t) ≤ C1, one has

µ
1
θ 2q(s+

2
θ

)‖fq‖LθtLp ≤ CeCV (t)
(

2qs‖f 0
q ‖Lp + µ

− 1
θ′1 2

q(s− 2
θ′1

)
‖gq‖Lθ1t Lp

+

∫ t

0

cq(τ)Vp1(τ)‖f(τ)‖Bsp,rdτ
)
.

To close our claim, we perform an `r summation, we get for t ∈ [0, T ] and θ ∈ [θ1,∞],

µ
1
θ ‖f‖

L̃θt Ḃ
s+2

θ
≤ C

(
‖f 0‖Ḃsp,r + µ

− 1
θ′1 ‖g‖

L
θ1
t Ḃ

s− 2
θ′1

+

∫ t

0

Vp1(τ)‖f(τ)‖Bsp,rdτ
)
.(2.29)

This gives the desired result for small time. In order to get the estimate for arbitrary
time t >, we consider a partition (ti)1≤i≤L of [0, t] such that∫ ti+1

ti

‖∇v(τ)‖L∞ ≈ C1.

Then reproducing the same calculation to obtain the aimed result. This completes
the proof of the Theorem.

One can wonder if the estimates stated in Theorem 2.2.3 remain true in nonho-
mogeneous Besov spaces. On one hand, the block ∆−1f corresponding to the low
frequencies of f cannot be handled by mean of (2.19). On the other hand, if we
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2.2 Regularity for transport-diffusion and transport equations

take f · ∇v = 0 in (TDµ), one obtains the following simple heat equation{
∂tf − µ∆f = g,

f|t=0 = f 0.

Thus, the solution of this equation is given by

f(t, x) = eµt∆f 0(x) +

∫ t

0

eµ(t−τ)∆g(τ, x)dτ.

It is not difficult to verify that

‖∆−1f(t)‖Lp ≤ ‖∆−1f
0‖Lp +

∫ t

0

‖∆−1g(τ)‖Lpdτ,

consequently, if 1 ≤ θ ≤ θ1 ≤ ∞,

‖∆−1f(t)‖
L
θ1
t Lp
≤ t

1
θ1 ‖∆−1f

0‖Lp + t
1+ 1

θ1
− 1
θ ‖∆−1g‖LθtLp .

Of course the other cut-off operators may be treated as in the homogeneous case,
see Theorem 2.2.2.
We end up with the following statement.

Theorem 2.2.3. Let (p1, p, r) ∈ [1,+∞]3, with p1 ≤ p and s ∈ R fulfills (2.14)
and Vp1 be defined as in Theorem 2.2.2. Then there exists a constant C which
depends only on d, r, s, and s− 1− d

p1
, so for any smooth solution f of (TDµ) and

1 ≤ θ1 ≤ θ ≤ ∞, we have

µ
1
θ ‖f‖

L̃θtB
s+2

θ
p,r

≤ CeC(1+µt)
1
θ Vp1 (t)

(
(1+µt)

1
θ ‖f 0‖Bsp,r+(1+µt)

1+ 1
θ
− 1
θ1 µ

1
θ1
−1‖g‖

L̃
θ1
t B

s−2+ 2
θ1

p,r

)
.

(2.30)

Remark 2.2.4. If r =∞, then both Theorems 2.2.2 and 2.2.3 hold true with

Vp1(t) ,
∫ t

0

‖∇v(τ)‖
Ḃ

d
p1
p1,1

, Vp1(t) ,
∫ t

0

‖∇v(τ)‖
B

d
p1
p1,1

,

respectively, in the borderline case

s = −dmin
{ 1

p1

,
1

p′

}
or s = −1− d

{ 1

p1

,
1

p′

}
, if divv = 0.
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2.3 Striated regularity of the vorticity

We start this section by stating a brief concise about the origin of the vortex patch
topic for Euler’s equations. These equations are given by the following Cauchy
problem 

∂tv + v · ∇v +∇p = 0,

divv = 0;

v|t=0 = v0.

(E)

Let us denote that the set equations (E) model the motion of inviscid fluids. For
better understanding it is very convenient to use the vorticity formulation for that
equations. This quantity ω is very efficient in the analysis of fluid dynamics, in
particular, it measures how fast the fluid rotates and can be identified as a scalar
function ω = ∂1v

2−∂2v
1 in dimension two of space. To derive an evolution equation

of ω, taking the curl operator to the momentum equation in (E) one obtains
∂tω + v · ∇ω = 0,

v = ∇⊥∆−1ω,

ω|t=0 = ω0.

(2.31)

Obviously (2.31) is a nonlinear transport equation, so, the characteristic method
ensures that ω(t,Ψ(t, x)) = ω0(x), with Ψ refers to the flow of velocity vector
field. The fact that Ψ preserves Lebesgue’s measure, then it follows for t ≥ 0 that
‖ω(t)‖Lp = ‖ω0‖Lp for p ∈ [1,∞[, the case where p =∞ can be done by a maximum
principle. By summarizing for t ≥ 0 we obtain the following infinite conservation
laws, that is

‖ω(t)‖Lp = ‖ω0‖Lp , p ∈ [1,∞]. (2.32)

These infinite conservation laws (2.32) enable to Yudovich to relax the hyperbolic
regularity and to formulate a weak solution to (2.31) in the following way.

Definition 2.3.1. Let ω0 ∈ L1(R2) ∩ L∞(R2). The couple (v, ω) is said a weak
solution for (2.31) with initial date ω0 if and only if

(i) ω ∈ L∞
(
R+;L1(R2) ∩ L∞(R2)

)
,

(ii) v = N2 ? ω with N2 = 1
2π
|x|2,
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2.4 On the vortex patches topic

(iii) For every ϕ ∈ C1
c (R+ × R2),∫

R+×R2

ω(∂tϕ+ v · ∇ϕ)dtdx = −
∫
R2

ϕ(0, x)ω0(x)dx.

As a consequence from the previous definition, Yudovich [75] was able to work
slightly below the Lipschitzian regularity. More precisely, he demonstrates the fol-
lowing theorem.

Theorem 2.3.2. Let ω0 ∈ L1(R2) ∩ L∞(R2) then the system (E) admits a unique
solution ω ∈ L∞

(
R+;L1(R2) ∩ L∞(R2)

)
in the sense of the Definition 2.3.1. More-

over, the corresponding velocity possesses a unique flow Ψ defined via the integral
equation;

Ψ(t, x) = x+

∫ t

0

v(τ,Ψ(τ, x))dτ.

Even though, Ψ is an isomorphism preserves Lebesgue’s measure of regularity

Ψ− I ∈ Ce−αt .

This theorem is prominent in so far as one can uniquely define the flow in a non-
Lipschitzian framework. This allows us to explicit the vorticity by ω(t,Ψ(t, x)) =

ω0(x). We said in this situation that the vorticity is transported by the flow Ψ

(mappings trajectories). One of the consequences of the explicit vorticity’s form is
the global persistence of geometric structures like "vortex" (a characteristic function
of a bounded domain). In other words, if the initial vorticity ω0 = 1Ω0 with Ω0 is a
bounded domain, so for t ≥ 0 we have ω(t) = 1Ωt with Ωt = Ψ(t,Ω0) the patch that
moves through the time. Nevertheless, Yudovich’s Theorem 2.3.2 does not allow
us to forecast what happens for the regularity of the boundary of Ωt since the flow
admits a regularity that degenerates over time, which is moreover an optimal result
according to an example of [5].

2.4 On the vortex patches topic

This section addresses the main ingredients about the smooth vortex in general
case. We start with the push-forward of a family of vector field, thereafter we
treat the particular case, where the vector field is in free-divergence which satisfies
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a package of properties. Among them that it evolves an inhomogeneous transport
equation and a commutation with the material derivative ∂t + v ·∇. Afterwards, we
define the anisotropic Hölder spaces and their connection with the famous so-called
stationary logarithmic estimate. Finally, we give some interpretation geometric of
striated regularity of the vorticity.

2.4.1 Push-forward: definitions and properties

Given a smooth family of a vector fields X : Rd → Rd and a smooth function
f : Rd → R. The derivative’s concept of f in the direction X is denoted generally
by ∂Xf and defined by

X(f) = ∂Xf =
d∑
i=1

X i∂if = X · ∇f.

This is the Lie derivative of the function f with respect to the vector fieldX, denoted
usually by LXf and in the previous formula we adopt different notations for this
object.

Definition 2.4.1. Let X, Y : Rd → Rd be a two family of vector fields. Their
commutator is defined as the Lie bracket [X, Y ] which is given in the coordinates
system by

[X, Y ]i =
d∑
j=1

(Xj∂jY
i − Y j∂jX

i)

= ∂XY
i − ∂YX i.

We observe that the previous identity can also be written in the following form

∂X∂Y − ∂Y ∂X = ∂∂XY−∂YX .

Let us denote that if f is not sufficiently smooth, for example f ∈ L∞ and X a
family of vector field we define ∂Xf in a weak sense as

∂Xf = div(Xf)− fdivX. (2.33)

Next, we define the push-forward of a vector field X by a diffeomorphism Φ on Rd

by the following statement.
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Definition 2.4.2. Let X : Rd → Rd be a vector field and Φ be a diffeomorphism of
RN . The push-forward of X by Φ, denoted by Φ?X or Φ ↑ X is defined by

(φ?X)(x) =
(
X · ∇Φ

)
(Φ−1(x)).

Let us mention that the important factor in the push forward process of a vector
field by a diffeomorphism changes the base point and is accompanied by a linear
transformation which describes the modification of the tangent space due to the
action of the diffeomorphism.
In the particular case, where X is replaced by a smooth time-dependent vector
field v(t, ·), we recall that this vector generates a flow map which is considered as a
solution of the following differential equation

∂tΨ(t, x) = v(t,Ψ(t, x)), Ψ(0, x) = x.

When v(t, ·) belongs to the Lipschitz class, so, the flow map is a diffeomorphism
from Rd into itself. Consequently, the push-forward for a given family of vector
fields X0 by the flow Ψ(t, ·) is the time-dependent family of vector fields (Xt) that
can be written in the local coordinates as follows:

Xt(x) =
(
X0 · ∇Ψ(t, x)

)(
Ψ−1(t, x)

)
. (2.34)

The first important property of such family is that it evolves the following inhomo-
geneous transport equation

∂tXt + v · ∇Xt = Xt · ∇v. (2.35)

Another main feature of the family (Xt) given by the equation (2.35) reflects in its
commutation with the material derivative Dt = ∂t+v ·∇. This implies an important
consequence about the dynamics of the tangential regularity of the vorticity subject
to the system (5.5). Actually, one obtains easily the following result.

Proposition 2.4.3. Let X be the push-forward of a smooth family of vector fields
X0 defined by (2.34). Then X commutes with the transport operator Dt = ∂t + v ·∇
in the sense

[X,Dt] = ∂XDt −Dt∂X = 0.
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Proof. By definition we have:

[X,Dt] = XDt −DtX

= X · ∇(∂t + v · ∇)− (∂t + v · ∇)X · ∇
= X · ∇∂t +X · ∇v · ∇+ v ·X · ∇2 − ∂tX · ∇ −X · ∂t∇− v · ∇X · ∇ −X · v∇2

= X · ∇v · ∇ − ∂tX · ∇ − v · ∇X · ∇.

By virtue of the formula (2.35), we find the desired identity.

The vortex patch topic have been handled in its early stages with the bidimensional
incompressible Euler equations. A vortex patch, meaning that the initial vorticity
ω0 is the characteristic function of some bounded domain Ω0. According to Yu-
dovich’s theorem the system (E) admits a global solution with bounded vorticity.
Furthermore, that solution generates a flow map Ψ(t, ·), and ω satisfies

∂tω + v · ∇ω = 0, v(t, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ω(t, y)dy.

We may conclude that ω(t, ·) is the characteristic function of the domain transported
by the flow:

ω(t, ·) = 1Ωt(·), Ωt = Ψ(t,Ω0).

We remark that ω(t, ·) ∈ L1∩L∞ does not imply that the velocity v is Lipschitz, see,
Theorm 2.3.2, so Ψ(t, ·) need not be Lipschitz either. Consequently, the previous
relation does not enough to propagate the initial smoothness of the transported
patch. However, we shall require more smoothness, for example, if ∂Ω0 is a C1+ε

Jordan curve for some ε ∈]0, 1[, then ∂Ωt preserves this regularity through the
time.

2.4.2 Results related to striated regularity

Let us present that if ω = 1Ω where Ω is a C1+ε Jordan curve of R2, then ω is "more
regular" in the direction which is tangent to ∂Ω. In fact, for any smooth vector filed
X which is tangent to ∂Ω, we have

∂Xω , X1∂1ω +X2∂2ω = 0.
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Due to the fact that div(Xω)−∂Xω = ωdivX, we can derive that if X is sufficiently
smooth and has a bounded divergence then div(Xv) is in L∞ in lieu of being a linear
combination of derivatives of L∞ function if ω merely bounded. This motivates the
following definition.

Definition 2.4.4. A family X = (Xλ)λ∈Λ of vector fields over R2 is said to be
nondegenerate whenever

I(X) , inf
x∈R2

sup
λ∈Λ
| Xλ(x) |> 0.

Let ε ∈]0, 1[ and X = (Xλ)λ∈Λ be a nondegenerate family of Cε vector fields over
R2 with divXλ ∈ Cε . A bounded function ω is said to be in the normed Hölder
anisotropic space Cε(X) if it satisfies

‖ω‖Cε(X) ,
1

I(X)

(
‖ω‖L∞ sup

λ∈Λ
‖̃Xλ‖Cε + sup

λ∈Λ
‖∂Xλω‖Cε−1

)
,

with ‖̃Xλ‖Cε = ‖Xλ‖Cε + ‖divXλ‖Cε.

Next, we state some regularity properties of the family X = (Xt) in Lp−norms with
p ∈ [2,∞]. To be precise, we will prove:

Proposition 2.4.5. Let p ∈ [2,∞] and X0 ∈ Lp(R2). Then Xt ∈ Lp(R2) for any
t > 0 and

‖X0‖Lpe−V (t) ≤ ‖Xt‖Lp ≤ ‖X0‖Lpe−V (t). (2.36)

Proof. We distinguish two cases.
•First case p ∈ [2,∞[. Multiplying (2.35) by |Xt|p−2Xt and integrate by parts over
R2, so incompressibility condition and Hölder inequality leading

1

p

d

dt
‖Xt‖pLp ≤ ‖∇v(t)‖L∞‖Xt‖pLp .

However, Gronwall’s inequality gives for any T > 0

‖Xt‖Lp ≤ ‖X0‖LpeV (t).

For the first inequality of (2.36), apply the time derivative to ∂X0Ψ(t, x), invoking
(2.35) and (2.34) to obtain

∂t∂X0Ψ(t, x) = ∇v
(
t,Ψ(t, x)

)
· ∂X0Ψ(t, x), ∂X0Ψ(0, x) = X0.
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The time reversibility of this equation gives the desired estimate.
•Second case p = ∞. Employ the continuity with repect to p it suffices to take
p→∞. The proposition is then proved.

One of the fundamental tools to derive the Lipschitzian norm of the velocity is
the following estimate, which states that any velocity vector field with striated
vorticity is Lipschitz and may be bounded in terms of ‖ω‖L∞ and logarithmic of
‖ω‖Cε(X). This logarithmic estimate dates back to J.Y. Chemin [19] to treat the
Euler equations.

Theorem 2.4.6. Let ε ∈]0, 1[ and X = (Xt,λ)λ∈Λ be a family of vector fields as
in Definition 2.4.4. Let v be a free-divergence vector field such that its vorticity ω
belongs to L2 ∩ Cε(X). Then there exists a constant C depending only on ε, such
that

‖∇v‖L∞ ≤ C

(
‖ω‖L2 + ‖ω‖L∞ log

(
e+
‖ω‖Cε(X)

‖ω‖L∞

))
. (2.37)

Proof. The proof is very hard and requires the Biot-Savart law and an intense parad-
ifferential calculus. For more details, we refer to [5, 19].

We recall that it was shown in [19] that the striated regularity is transported for
all time by the Eulerian flow. As a consequence, one can get that a regular vortex
patch of C1+ε regularity remains so for all time. We mention that other proofs have
been provided by Bertozzi and Constantin [10] and by Serfati [67]. The situation
of singular vortex patches for Euler equations was treated by Danchin [23] and for
Navier-Stokes equations by Hmidi [42]. The case of vortex patches in bounded
domain was studied by Depauw [29] in dimension two of space and by Dutrifoy [30]
in dimension three. More singular solutions as the so called vortex sheet was treated
by Delort [28].
We end this paragraph with a precise interpretation of the boundary regularity and
the tangent space which will be explored in the proof of the principal theorems of
the next chapters.

Definition 2.4.7. Let 0 < ε < 1, then we have the following definitions.
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(1) A closed curve Σ is said to be C1+ε−regular if there exists f ∈ C1+ε(R2) such
that Σ is a locally zero sets of f , that is to say, there exists a neighborhood V
of Σ such that

Σ = f−1{0} ∩ V, ∇f(x) 6= 0 ∀x ∈ V. (2.38)

(2) A vector field X with Cε−regularity is said to be tangent to Σ if X ·∇f|Σ = 0.
The set of such vector field is denoted by T εΣ .

Given a compact curve Σ of the regularity C1+ε, with 0 < ε < 1. The striated or
co-normal space Cε

Σ associated to Σ is defined by

Cε
Σ ,

{
u ∈ L∞(R2);∀X ∈ T εΣ , (divX = 0)⇒ div(Xu) ∈ Cε−1

}
.

According Danchin’s result [22], the class Cε
Σ doesn’t covers only the vortex patch

of the type ω0 = 1Ω0 , but also encompass the so-called general vortex patch. Specif-
ically, we have the following result proved in [22].

Proposition 2.4.8. Let Ω0 be a C1+ε−bounded domain, with 0 < ε < 1. Then for
every function f ∈ Cε, we have

f1Ω0 ∈ Cε
Σ.
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3 Optimal rate of convergence in
stratified Boussinesq system

This Chapter is the subject of the following publication:

H. Meddour and M. Zerguine: Optimal rate of convergence in Stratified Boussinesq
system, Dynamics of PDE, Vol.15, No.4, (2018), 235–263.

3.1 Introduction

This chapter is mainly motivated by the analysis of the initial value problem for
the stratified Navier-Stokes system. This system of partial differential equations
governs the evolution of a viscous incompressible fluid like the atmosphere and the
ocean where one should take into account the friction forces and the stratification
under the Boussinesq approximation, see [65]. The state of the fluid is described
by a triplet (vµ, pµ, ρµ) where vµ(t, x) denotes the velocity field which is assumed
to be incompressible and the thermodynamical variables pµ(t, x) and ρµ(t, x) which
are two scalar functions representing respectively the pressure and the density. The
equations being solved take the form

∂tvµ + vµ · ∇vµ − µ∆vµ +∇pµ = ρµ~e2 if (t, x) ∈ R+ × R2,
∂tρµ + vµ · ∇ρµ − κ∆ρµ = 0 if (t, x) ∈ R+ × R2,
divvµ = 0,

(vµ, ρµ)|t=0 = (v0
µ, ρ

0
µ).

(Bµ,κ)

The two coefficients µ, κ stand respectively for the kinematic viscosity and molecular
diffusivity and ~e2 = (0, 1). For a better understanding of the system (Bµ,κ) it is more
convenient to write it using the vorticity-density formulation. Thus the vorticity
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ω , ∂1v
2 − ∂2v

1 and the density satisfy the equivalent system,
∂tωµ + vµ · ∇ωµ − µ∆ωµ = ∂1ρµ if (t, x) ∈ R+ × R2,
∂tρµ + vµ · ∇ρµ − κ∆ρµ = 0 if (t, x) ∈ R+ × R2,
vµ = ∇⊥∆−1ωµ,

(ρµ, ωµ)|t=0 = (ρ0
µ, ω

0
µ).

(VDµ,κ)

It is clear that (Bµ,κ) coincides with the classical incompressible Navier-Stokes sys-
tem when the initial density ρ0

µ is identically constant. For a general review on the
mathematical theory of the Navier-Stokes system we refer for instance to [5, 60]. We
notice that the system (VDµ,κ) is the subject of intensive research activities espe-
cially in the last decades. A lot of results have been obtained and we shall restrict
the discussion to some of them. When the coefficients µ and κ are strictly positive,
it was proved in [13, 37] that the system (Bµ,κ) admits a unique global solution
for arbitrarily large data. For µ > 0, κ = 0 the global well-posedness problem was
solved independently by Chae [15] and Hou and Li [53] for smooth initial data in
Sobolev spaces Hs, s > 2. Those results were improved by Abidi and Hmidi in [2] for
(v0, ρ0) ∈ B−1

∞,1∩L2×B0
2,1. Later, Danchin and Paicu investigated in [25] the global

well-posedness for any initial data (v0, ρ0) in L2 × L2. The opposite case µ = 0 and
κ > 0 is also well-explored. Actually, Chae proved in [15] the global well-posedness
for (v0, ρ0) ∈ Hs × Hs for s > 2 which was later improved by Hmidi and Keraani

in [45] for critical Besov spaces, that is, (v0, ρ0) ∈ B
2
p

+1

p,1 × B
−1+ 2

p

p,1 ∩ Lr, r > 2. The
global existence in the framework of Yudovich solutions was accomplished in [26] by
Danchin and Paicu for (v0, ρ0) ∈ L2 × L2 ∩B−1

∞,1 and ω0 ∈ Lr ∩ L∞ with r ≥ 2. For
other connected topics we refer the reader to [45, 49, 48, 51, 58, 64, 72].

The main focus of the current chapter is twofold. In the first part, we study the
persistence regularity of the vortex patches for (Bµ,κ) for κ = 1, denoted simply
by (Bµ). In the second part we shall deal with the strong convergence towards the
limit system when the viscosity µ goes to zero. The limit system is nothing but the
stratified Euler equations,

∂tv + v · ∇v +∇p = ρ~e2 if (t, x) ∈ R+ × R2,
∂tρ+ v · ∇ρ−∆ρ = 0 if (t, x) ∈ R+ × R2,
divv = 0,

(v, ρ)|t=0 = (v0, ρ0).

(B0)

Before giving more details about our main contribution we shall review some aspects
of the vortex patch problem for the viscous/inviscid incompressible fluid. Recall first
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the classical Navier-Stokes equations,
∂tv + v · ∇v − µ∆v +∇p = 0 if (t, x) ∈ R+ × R2,
divv = 0,

v|t=0 = v0.

(NSµ)

Notice that the incompressible Euler system (E), denoted sometimes by (NS0), is
given by 

∂tv + v · ∇v +∇p = 0 if (t, x) ∈ R+ × R2,
divv = 0,

v|t=0 = v0.

(E)

We point out that the global existence of classical solutions for Euler system is based
on the structure of the vorticity which is transported by the flow, that is,

∂tω + v · ∇ω = 0.

This provides an infinite family of conservation laws and in particular we get for all
p ∈ [1,∞]

‖ω(t)‖Lp = ‖ω0‖Lp . (3.1)

We mention that the conservation laws (3.1) served as a suitable framework for
Yudovich [75] to relax the classical hyperbolic theory and show that (NSµ) and (E)
are globally well-posed whenever ω0 ∈ L1 ∩ L∞. In this pattern, the velocity is no
longer in the Lipschitz class but belongs to the log−Lipschitz space, denoted by
LL1. It is known that with this regularity the associated flow Ψ is continuous with
respect to (t, x)−variables and the vorticity can be recovered from its initial value
according to the formula,

ω(t,Ψ(t, x)) = ω0(x). (3.2)

In particular, when the initial vorticity ω0 = 1Ω0 is a vortex patch with Ω0 being
a regular bounded domain, then the advected vorticity remains a vortex patch rel-
ative to a domain Ωt , Ψ(t,Ω0) which is homeomorphic to Ω0. It is important
to emphasize that the regularity persistence of the boundary does not follow from
the general theory of Yudovich because the flow is not in general better than Ce−αt

where α depends on ω0. This problem was solved by Chemin who proved in [19]
that when the initial boundary is C1+ε then the boundary of the patch keeps this

1The space LL is the set of bounded functions u such that

‖u‖LL , sup
0<|x−y|<1

|u(x)− u(y)|
|x− y| log e

|x−y|
.
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regularity through the time. Broadly speaking, Chemin’s strategy is entirely based
on the control of Lipschitz norm of the velocity by means of logarithmic estimate of
‖ω‖Cε(X) with Cε(X) is an anisotropic Hölder space associated to an adequate fam-
ily of vector fields that capture the conormal regularity of the velocity (see section
4.2.5).

The study for the viscous case was initiated by Danchin in [22] who proved that if
ω0 = 1Ω0 , such that the domain Ω0 is C1+ε then the velocity vµ is Lipschitz uniformly
with respect to the viscosity µ. He also showed that the transported vorticity by
the viscous flow Ψµ remains in the class C1+ε′ , ∀ε′ < ε. Note that contrary to the
Hölderian regularity, there is no loss of regularity in the Besov spaces Bε

p,∞, ∀ p <∞.
For the borderline case p = ∞ Hmidi showed in [41] that this loss of regularity is
artificial and his proof is mainly related to some smoothing effects for the transport-
diffusion equation using Lagrangian coordinates. There is a large literature dealing
with this subject and some connected topics and for more details we refer the reader
to the papers [10, 29, 32, 34, 41] and the references therein.

It could be interesting to extend some of the foregoing results to the stratified Navier-
Stokes system (Bµ). The investigation of this system with initial vorticity of patch
type has been started recently in [52] for µ = 0. It was proved that if the boundary
of the initial patch is smooth enough then the velocity is Lipschitz for any positive
time and the transported domain Ωt preserves its initial regularity. In addition,
the vorticity can be decomposed into a singular part which is a vortex patch term
and a regular part, which is deeply related to the smoothing effect for density, i.e.
ω(t) = 1Ωt + ρ̃(t). Later, Zerguine studied in [78] the same system but the usual
dissipation operator −∆ is replaced by the critical fractional Laplacian (−∆)

1
2 . He

obtained sharper results compared to the incompressible Euler equations [19, 52]
and describes the asymptotic behavior of the solutions for large time.

We are now ready to state the first main result, dealing with the global well-
posedness for the system (Bµ) under a vortex patch initial data. More precisely,
we have:

Theorem 3.1.1. Let Ω0 be a simply connected bounded domain such that its bound-
ary ∂Ω0 is C1+ε with 0 < ε < 1. Let ω0

µ = 1Ω0 and ρ0
µ ∈ L1 ∩ L∞ then the following

assertions hold.

(i) The system (Bµ) admits a unique global solution (vµ, ρµ) such that

(vµ, ρµ) ∈ L∞loc(R+;Lip)× L∞loc(R+;L1 ∩ L∞).
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More precisely, there exists C0 , C(ε,Ω0) > 0 such that, for all µ ∈]0, 1[ and for all
t ∈ R+ we have

‖∇vµ(t)‖L∞ ≤ C0e
C0t log2(1+t). (3.3)

(ii) The boundary of the transported domain Ωµ(t) , Ψµ(t,Ω0) is C1+ε for every
t ≥ 0 uniformly on µ, where Ψµ denotes the viscous flow associated to vµ.

Let us give a bunch of comments about Theorem 3.1.1 in the following few re-
marks.

Remark 3.1.2. Compared to the incompressible Navier-Stokes system, we see that
a Lipschitz norm of the velocity has a logarithmic growth for large time. This is due
to the logarithmic factor in the growth of the vorticity, namely we have:

‖ωµ(t)‖L∞ ≤ C0 log2(1 + t).

Remark 3.1.3. When the viscosity µ is identically zero, we obtain the same result
as in [52] for the stratified Euler system (B0), that is to say:

‖∇v(t)‖L∞ ≤ C0e
C0t log2(1+t). (3.4)

Now we shall briefly outline the ideas of the proof which is done in the spirit of the
pioneering work of Chemin [19]. In order to get a bound for the quantity ‖∇vµ(t)‖L∞
we first show that the co-normal regularity of the vorticity ∂Xωµ is controlled in Cε−1,
with 0 < ε < 1. We then take advantage of the logarithmic estimate to derive the
Lipschitz norm of the velocity, with X is a family of selected vector fields which
satisfies the transport equation,

∂tX + vµ · ∇X = X · ∇vµ.

As it was pointed in [22, 41] the situation in the viscous case is more delicate than
the inviscid one due to the Laplacian operator which does not commute with the
family X. Actually, the evolution of the directional derivative ∂Xωµ is governed by
an inhomogeneous transport-diffusion equation,

(∂t + vµ · ∇ − µ∆)∂Xωµ = −µ[∆, X]ωµ + ∂X∂1ρµ, (3.5)

where [∆, X] denotes the commutator between ∆ and X. Thus the difficulties
reduce to understanding the terms [∆, X]ωµ and ∂X∂1ρµ which apparently need
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more regularity to be well-defined than what is initially prescribed. To circumvent
the problem for the first term we shall use the formalism developed in [22, 41] for
2d−incompressible Navier-Stokes system. However, to deal with the second term
we find more convenient to diagonalize the system written in the vorticity-density
formulation and introduce the coupled function Γµ , (1 − µ)ωµ − ∂1∆−1ρµ in the
spirit of [50]. This function satisfies the following transport-diffusion equation,

∂tΓµ + vµ · ∇Γµ − µ∆Γµ = [∂1∆−1, vµ · ∇]ρµ , Hµ.

By applying the directional derivative ∂X to the last equation we find

(∂t + vµ · ∇ − µ∆)∂XΓµ = −µ[∆, X]Γµ + ∂XHµ.

At a formal level, and this will be justified rigorously as we shall see in the proofs, we
see thatHµ is of order zero with respect to ρµ according to the smoothing effect of the
singular operator ∂1∆−1. Thus instead of manipulating ∂X∂1ρµ in the equation (4.3)
which consumes two derivatives we need just to understand ∂XHµ which exhibits a
good behavior on ρµ as it was revealed in [52].

The second part of this chapter is devoted to the inviscid limit problem which is in
fact well-explored for the classical Navier-Stokes system (NSµ). We mention that
for smooth initial data the convergence towards Euler equations holds true and
the rate of convergence in the energy space L2 is bounded by µt, see [7] for initial
data v0 ∈ Hs with s > 4. In [18], Chemin proved a strong convergence in L2 for
Yudovich’s initial data and obtained that the rate is controlled by (µt)

1
2
e−Ct , which

degenerating in time. To obtain a better result, Constantin and Wu [21] had to
work under vortex patch structure and they obtained (µt)

1
2 . Afterwards, Abidi and

Danchin [1] improved this result and showed that the rate of convergence is exactly
(µt)

3
4 which is proved to be optimal for the Rankine vortex.

Our second main result reads as follows.

Theorem 3.1.4. Let (vµ, ρµ), (v, ρ), (ωµ, ρµ) and (ω, ρ) be the solutions of (Bµ),
(B0), (VDµ) and (VD0) respectively with the same initial data such that ω0

µ = ω0 =

1Ω0, where Ω0 is a C1+ε simply connected bounded domain. Then for all t ≥ 0, µ ∈
]0, 1[ and p ∈ [2,+∞[ we have:

(i) ‖vµ(t)− v(t)‖Lp + ‖ρµ(t)− ρ(t)‖Lp ≤ C0e
eC0t log

2(2+t)
(µt)

1
2

+ 1
2p .

(ii) ‖ωµ(t)− ω(t)‖Lp ≤ C0e
eC0t log

2(1+t)
(µt)

1
2p .
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3.1 Introduction

Remark 3.1.5. When ρ0
µ and ρ0 are constants and p = 2 we get the result of Abidi

and Danchin [1].

The proof of Theorem 3.1.4 will be done using the approach of [1] by combining
some classical ingredients like Lp−estimates, real interpolation results and some
smoothing effects for the density and the vorticity.

The last result is dedicated to prove that (µt)
1
2p is optimal for vortices in the case

of Rankine initial data.

Theorem 3.1.6. We assume that ρ0
µ and ρ0 being constants and ω0

µ = ω0 = 1D with
D the unit disc. Then there exist two positive constants C1 and C2 independent on
µ and t, such that for µt ≤ 1, and p ∈ [2,+∞[ we have:

C1(µt)
1
2p ≤ ‖ωµ(t)− ω(t)‖Lp ≤ C2(µt)

1
2p ,

with C1 and C2 depending on p.

Note that the approach that we shall propose here is different from [1] which is
specific for p = 2. The proof of Abidi and Danchin uses the explicit form of Fourier
transform of the Rankine vortex given through Bessel function combined with its
asymptotic behavior. Nevertheless, these tools are useless for p 6= 2 and the alterna-
tive is to make the computations in the physical variable using the explicit structure
of the heat kernel.

For the reader’s convenience, we provide a brief outline of this chapter. Section
2, starts with few important results about the Littlewood-Paley decomposition,
para-differential calculus and some functional spaces. Moreover, we state some use-
ful technical lemmas, in particular two smoothing effects estimates for transport-
diffusion equations governing respectively the density and the vorticity evolution.
Section 3, mainly treats the general version of Theorem 3.1.1. Section 4 is divided
into two parts. The first one is dedicated to the upper bound rate of convergence.
The second part deals with the optimality of the rate of convergence between the
vortices. We end with an appendix where we give the proof of some technical propo-
sitions.
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3 Optimal rate of convergence in stratified Boussinesq system

3.2 Tools

Before proceeding, we specify some of the notations we will constantly use during this
work. We denote by C a positive constant which may be different in each occurrence
but it does not depend on the initial data. We shall sometimes alternatively use the
notation X . Y for an inequality of type X ≤ CY with C independent of X and
Y . The notation C0 means a constant depend on the involved norms of the initial
data.

3.2.1 Littlewood-Paley theory

Our results mostly rely on Fourier analysis methods based on a nonhomogeneous
dyadic partition of unity with respect to the Fourier variable. The so-called
Littlewood-Paley decomposition enjoying particularly "nice" properties. These
properties are the basis for introducing the important scales of Besov and Hölder
spaces and for their study.

Let χ ∈ D(R2) be a reference cut-off function, monotonically decaying along rays
and so that 

χ ≡ 1 if ‖ξ‖ ≤ 1
2

0 ≤ χ ≤ 1 if 1
2
≤ ‖ξ‖ ≤ 1

χ ≡ 0 if ‖ξ‖ ≥ 1.

Define ϕ(ξ) , χ( ξ
2
)− χ(ξ). We obviously check that ϕ ≥ 0 and

supp ϕ ⊂ C , {ξ ∈ R2 :
1

2
≤ ‖ξ‖ ≤ 1}.

Then we have the following elementary properties, see for example [?, ?].

Proposition 3.2.1. Let χ and ϕ be as above. Then the following assertions are
hold.

(1) Decompositon of the unity:

∀ξ ∈ R2, χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1.
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3.2 Tools

(2) Almost orthogonality in the sense of `2:

∀ξ ∈ R2,
1

2
≤ χ2(ξ) +

∑
q≥0

ϕ2(2−qξ) ≤ 1.

The Littlewood-Paley or cut-off operators are defined as follows.

Definition 3.2.2. For every u ∈ S ′(R2), setting

∆−1u , χ(D)u, ∆qu , ϕ(2−qD)u if q ∈ N, Squ ,
∑
j≤q−1

∆ju for q ≥ 0.

Some properties of ∆q and Sq are listed in the following proposition.

Proposition 3.2.3. Let u, v ∈ S ′(R2) we have

(i) |p− q| ≥ 2 =⇒ ∆p∆qu ≡ 0,

(ii) |p− q| ≥ 4 =⇒ ∆q(Sp−1u∆pv) ≡ 0,

(iii) ∆q, Sq : Lp → Lp uniformly with respect to q and p.

(iv)
u =

∑
q≥−1

∆qu.

Likewise the homogeneous operators ∆̇q and Ṡq are defined by

∀q ∈ Z ∆̇q = ϕ(2qD)u, Ṡq =
∑
j≤q−1

∆̇jv. (3.6)

Now, we will recall the definition of the Besov spaces.

Definition 3.2.4. For (s, p, r) ∈ R × [1,+∞]2. The inhomogeneous Besov space
Bs
p,r (resp. the homogeneous Besov space Ḃs

p,r) is the set of all tempered distributions
u ∈ S ′ (resp. u ∈ S ′|P) such that

‖u‖Bsp,r ,
(

2qs‖∆qu‖Lp
)
`r
<∞.(

resp. ‖u‖Ḃsp,r ,
(

2qs‖∆̇qu‖Lp
)
`r(Z)

<∞
)
.

We have denoted by P the set of polynomials.
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3 Optimal rate of convergence in stratified Boussinesq system

Remark 3.2.5. We notice that:

(1) If s ∈ R+\N, the Hölder space noted by Cs coincides with Bs
∞,∞.

(2)
(
Cs, ‖ · ‖Cs

)
is a Banach space coincides with the usual Hölder space Cs with

equivalent norms,

‖u‖Cs . ‖u‖L∞ + sup
x 6=y

|u(x)− u(y)|
|x− y|s

. ‖u‖Cs . (3.7)

(3) If s ∈ N, the obtained space is so-called Hölder-Zygmund space and still denoted
by Bs

∞,∞.

3.2.2 Paradifferential calculus

The well-known Bony’s decomposition [12] enables us to split formally the product
of two tempered distributions u and v into three pieces. In what follows, we shall
adopt the following definition for paraproduct and remainder:

Definition 3.2.6. For a given u, v ∈ S ′ we have

uv = Tuv + Tvu+ R(u, v),

with

Tuv =
∑
q

Sq−1u∆qv, R(u, v) =
∑
q

∆qu∆̃qv and ∆̃q = ∆q−1 + ∆q + ∆q+1.

The mixed space-time spaces are stated as follows.

Definition 3.2.7. Let T > 0 and (s, β, p, r) ∈ R × [1,∞]3. We define the spaces
LβTB

s
p,r and L̃

β
TB

s
p,r respectively by:

LβTB
s
p,r ,

{
u : [0, T ]→ S ′ ; ‖u‖LβTBsp,r =

∥∥(2qs‖∆qu‖Lp
)
`r

∥∥
LβT

<∞
}
,

L̃βTB
s
p,r ,

{
u : [0, T ]→ S ′ ; ‖u‖L̃βTBsp,r =

(
2qs‖∆qu‖LβTLp

)
`r
<∞

}
.

The relationship between these spaces is given by the following embeddings. Let
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3.2 Tools

ε > 0, then {
LβTB

s
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s−ε
p,r if r ≥ β,

LβTB
s+ε
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s
p,r if β ≥ r.

(3.8)

Accordingly, we have the following interpolation result.

Corollary 3.2.8. Let T > 0, s1 < s < s2 and ζ ∈ (0, 1) such that s = ζs1+(1−ζ)s2.
Then we have

‖u‖L̃aTBsp,r ≤ C‖u‖ζ
L̃aTB

s1
p,∞
‖u‖1−ζ

L̃aTB
s2
p,∞
. (3.9)

The following Bernstein inequalities describe a bound on the derivatives of a function
in the Lb−norm in terms of the value of the function in the La−norm, under the
assumption that the Fourier transform of the function is compactly supported. For
more details we refer [5, 19].

Lemma 3.2.9. There exists a constant C > 0 such that for 1 ≤ a ≤ b ≤ ∞, for
every function u and every q ∈ N ∪ {−1}, we have

(i)

sup
|α|=k
‖∂αSqu‖Lb ≤ Ck2q

(
k+2
(

1
a
− 1
b

))
‖Squ‖La ,

(ii)
C−k2qk‖∆qu‖La ≤ sup

|α|=k
‖∂α∆qu‖La ≤ Ck2qk‖∆qu‖La .

A noteworthy consequence of Bernstein inequality (i) is the following embedding:

Bs
p,r ↪→ B s̃

p̃,r̃ whenever p̃ ≥ p,

with
s̃ < s− 2

(1

p
− 1

p̃

)
or s̃ = s− 2

(1

p
− 1

p̃

)
and r̃ ≤ r.

3.2.3 Useful results

This paragraph is reserved to some useful properties freely used throughout this
article. The most results concerning the system (VDµ) rely strongly on a priori
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3 Optimal rate of convergence in stratified Boussinesq system

estimates in Besov spaces for the transport-diffusion equation:{
∂ta+ v · ∇a− µ∆a = f

a|t=0 = a0.
(TDµ)

We start by the persistence of Besov regularity for (TDµ), whose proof may be found
for example in [5].

Proposition 3.2.10. Let (s, r, p) ∈] − 1, 1[×[1,∞]2 and v be a smooth divergence
free vector-field. We assume that a0 ∈ Bs

p,r and f ∈ L1
loc(R+;Bs

p,r). Then for every
smooth solution a of (TDµ) and t ≥ 0 we have

‖a(t)‖Bsp,r ≤ CeCV (t)

(
‖a0‖Bsp,r +

∫ t

0

e−CV (τ)‖f(τ)‖Bsp,rdτ
)
,

with

V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ

and C a constant which depends only on s and not on the viscosity. For the limit
case

s = −1, r =∞ and p ∈ [1,∞] or s = 1, r = 1 and p ∈ [1,∞]

the above estimate remains true despite we change V (t) by Z(t)
def
= ‖v‖L1

tB
1
∞,1

. In
addition if a = curl v, then the above estimate holds true for all s ∈ [1,+∞[.

Next, we state the maximal smoothing effect result for (TDµ) in mixed time-space
spaces, whose proof was developped in [44].

Proposition 3.2.11. Let s ∈] − 1, 1[, (p1, p2, r) ∈ [1,+∞]3 and v be a divergence
free vector field belonging to L1

loc(R+;Lip). Then for every smooth solution a of
(TDµ) we have

µ
1
r ‖a‖

L̃rtB
s+2

r
p1,p2

≤ CeCV (t)(1 + µt)
1
r

(
‖a0‖Bsp1,p2 + ‖f‖L1

tB
s
p1,p2

)
, ∀t ∈ R+. (3.10)

The asymptotic behavior in Lp−norm with p ∈ [2,∞] of every (ωµ, ρµ) solution of
(VDµ) is given by the following proposition. To be precise we have:

Proposition 3.2.12. Let (ωµ, ρµ) be a smooth solution of (VDµ) such that ρ0 ∈
L1 ∩ Lp and ω0 ∈ L2 ∩ Lp with p ∈ [2,∞]. Then for t ≥ 0,

‖ωµ(t)‖Lp + ‖∇ρµ‖L1
tL

p ≤ C0 log2− 2
p (1 + t).
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3.3 Smooth vortex patch problem

Remark 3.2.13. This property has been recently accomplished by [52] for Stratified
Euler equations (Bµ), with µ = 0. We point out that the proof of such estimate
remains available in our case with minor modifications due to the laplacien term,
which has a good sign.

We end this paragraph by the Calderón-Zygmund estimate which constitutes a deep
statement of harmonic analysis.

Proposition 3.2.14. Let p ∈]1,∞[ and v be a divergence-free vector field which its
vorticity ω ∈ Lp. Then ∇v ∈ Lp and

‖∇v‖Lp ≤ c
p2

p− 1
‖ω‖Lp , (3.11)

with c being a universal constant.

3.3 Smooth vortex patch problem

In this section we will give a detailed proof for the first main result stated in Theorem
3.1.1. We will inspire the general ideas from Chemin’s result, we then follow the
argument performed more recently by [52, 78] for Stratified Euler system. For this
aim, we will state the general framework study of the vortex patch problem.

3.3.1 Vortex patch tool box

Before entering into details of the proof of the Theorem 3.1.1, we will state few
important ingredients concerning the study of vortex patch problem. We will start
with the concept of an admissible family of vector fields and some related properties,
from which we will derive the notion of anisotropic Hölder space. At the end, we
state the so-called stationnary logarithmic estimate which is the key step to prove
that the velocity is a Lipschitz function.

Definition 3.3.1. Let ε ∈]0, 1[. A family of vector fields X = (Xλ)λ∈Λ is said to be
admissible if and only if the following assertions hold.

• Regularity:
∀λ ∈ Λ Xλ, divXλ ∈ Cε.
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3 Optimal rate of convergence in stratified Boussinesq system

• Non-degeneray:
I(X) , inf

x∈Rd
sup
λ∈Λ

∣∣Xλ(x)
∣∣ > 0. (3.12)

Setting
‖̃Xλ‖Cε , ‖Xλ‖Cε + ‖divXλ‖Cε . (3.13)

Definition 3.3.2. Let X = (Xλ)λ∈Λ be an admissible family. The action of each
factor Xλ on u ∈ L∞ is defined as the directional derivative of u along Xλ by the
formula,

∂Xλu = div(uXλ)− udivXλ.

The anisotropic Hölder spaces, denoted by Cε(X) are defined below.

Definition 3.3.3. Let ε ∈]0, 1[ and X be an admissible family of vector fields. We
say that u ∈ Cε(X) if and only if:

• u ∈ L∞ and satisfies

∀λ ∈ Λ, ∂Xλu ∈ Cε−1, sup
λ∈Λ
‖∂Xλu‖Cε−1 < +∞.

• Cε(X) is a normed space with

‖u‖Cε(X) ,
1

I(X)

(
‖u‖L∞ sup

λ∈Λ
‖̃Xλ‖Cε + sup

λ∈Λ
‖∂Xλu‖Cε−1

)
.

Now, let us take an initial family of vector-field X0 = (X0,λ)λ∈Λ and define its time
evolution Xt =

(
Xt,λ)λ∈Λ by

Xt,λ(x) , (X0,λΨ)(t,Ψ−1(t, x)), (3.14)

that is Xt is the vector-field X0 transported by the flow Ψ associated to v. From
this definition the evolution family Xt satisfies the following transport equation.

Proposition 3.3.4. Let v be a Lipschitzian vector-field, Ψ its flow and Xt =

(Xt,λ)λ∈Λ is the family defined by (4.12). Then the following equation holds true.{
(∂t + v · ∇)Xt,λ = ∂Xt,λv if (t, x) ∈ R+ × R2

Xt,λ|t=0 = X0,λ.
(3.15)
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3.3 Smooth vortex patch problem

To prove the Theorem 3.1.1, we state the following stationnary logarithmic estimate
initially introduced by Chemin [19]. More precisely,

Theorem 3.3.5. Let ε ∈]0, 1[ and X = (Xλ)λ∈Λ be a family of vector fields as in
Definition 4.2.11. Let v be a divergence-free vector field such that its vorticity ω
belongs to L2 ∩ Cε(X). Then there exists a constant C depending only on ε, such
that

‖∇v‖L∞ ≤ C

(
‖ω‖L2 + ‖ω‖L∞ log

(
e+
‖ω‖Cε(X)

‖ω‖L∞

))
. (3.16)

We shall now make precise to the boundary regularity and the tangent space used
in the proof of Theorem 3.1.1.

Definition 3.3.6. Let ε > 0.

1. A closed curve Σ is said to be C1+ε−regular if there exists f ∈ C1+ε(R2) such
that Σ is locally a zero set of f , i.e., there exists a neighborhood V of Σ such
that

Σ = f−1{0} ∩ V, ∇f(x) 6= 0 ∀x ∈ V. (3.17)

2. A vector field X with Cε−regularity is said to be tangent to Σ if X ·∇f|Σ = 0.
The set of such vector fields will be denoted by T εΣ .

Given a compact curve Σ of the class C1+ε, 0 < ε < 1. The co-normal space Cε
Σ

associated to Σ is defined by

Cε
Σ ,

{
u ∈ L∞(R2);∀X ∈ T εΣ , (divX = 0)⇒ div(Xu) ∈ Cε−1

}
.

The following Danchin’s result stated in [24], showing that Cε
Σ contains the char-

acteristic function of a bounded open domain surruonded by the curve Σ. More
generally we have:

Proposition 3.3.7. Let Ω0 be a C1+ε−bounded domain, with 0 < ε < 1 and f ∈
Cε(R2), then we have:

f1Ω0 ∈ Cε
Σ.

According to the previous proposition, we strive to give a general version of the
Theorem 3.1.1 which allows to deal with more general structures than the vortex
patches. Thus we have:
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3 Optimal rate of convergence in stratified Boussinesq system

Theorem 3.3.8. Let 0 < ε < 1, X0 be a family of admissible vector fields and v0
µ be

a free-divergence vector field such that ω0
µ ∈ L2∩Cε(X0). Let ρ0

µ ∈ L1∩L∞, then for
µ ∈]0, 1[ the system (Bµ) admits a unique global solution (vµ, ρµ) ∈ L∞loc(R+;Lip)×
L∞(R+;L1 ∩ L∞). More precisely:

‖∇vµ(t)‖L∞ ≤ C0e
C0t log2(1+t). (3.18)

Furthermore, we have:

‖ωµ(t)‖Cε(Xt) + ‖∂Xtψµ(t)‖Cε ≤ C0e
exp{C0t log2(2+t)}.

Proof. The most difficult point in the proof is to estimate suitably the quantity ωµ
in Cε(Xt) norm. For this aim, we shall use the following coupled function Γµ defined
by Γµ = (1−µ)ωµ−Lρµ, with L = ∂1∆−1. After few computations, we obtain that
Γµ evolves the following inhomogenous transport-diffusion equation:

(∂t + vµ · ∇ − µ∆)Γµ = [L, vµ · ∇]ρµ. (3.19)

To simplify the presentation in what follows, we temporarily drop the viscosity
parameter µ.
By virtue of (3.15) of the Proposition 3.3.4, one can check that the quantity ∂Xt,λΓ

satisfies the equation,

(∂t + v · ∇ − µ∆)∂Xt,λΓ = Xt,λ{[L, v · ∇]ρ} − µ[∆, Xt,λ]Γ. (3.20)

According to [22, 41], the commutator [∆, Xt,λ] can be decomposed as the sum of
two terms in the following way:

µ[∆, Xt,λ]Γ = F + µG,

with
F , 2µT∇Xi

t,λ
∂i∇Γ + 2µT∂i∇Γ∇X i

t,λ + µT∆Xi
t,λ
∂iΓ + µT∂iΓ∆X i

t,λ.

and
G , 2R(∇X i

t,λ, ∂i∇Γ) + R(∆X i
t,λ, ∂iΓ).

Here, we have used Enstein’s convention for the summation over the repeated indices.
Thus the equation (3.20) takes the following form,

(∂t + v · ∇ − µ∆)∂Xt,λΓ = Xt,λ{[L, v · ∇]ρ} − (F + µG),
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3.3 Smooth vortex patch problem

Applying Theorem 3.38 page 162 in [5], one gets

(3.21)∥∥∂XλΓ
∥∥
L∞t C

ε−1 ≤ CeCV (t)
(
‖∂X0,λ

Γ0‖Cε−1 + ‖∂Xλ{
[
L, v · ∇]ρ}‖L1

tC
ε−1

+(1 + µt)‖F‖L∞t Cε−3 + µ‖G‖L̃1
tC

ε−1

)
.

Recall from [5, 41] the following two inequalities

‖F‖L∞t Cε−3 ≤ C‖Γ‖L∞t L∞‖Xλ‖L∞t Cε .

and
‖G‖L̃1

tC
ε−1 ≤ C‖Γ‖L̃1

tB
2
∞,∞
‖Xλ‖L∞t Cε .

Combining with (3.21), one finds

(3.22)∥∥∂XλΓ
∥∥
L∞t C

ε−1 ≤ CeCV (t)
(
‖∂X0,λ

Γ0‖Cε−1 + ‖∂Xλ{
[
L, v · ∇]ρ}‖L1

tC
ε−1

+(1 + µt)‖Γ‖L∞t L∞‖Xλ‖L∞t Cε + µ‖Γ‖L̃1
tB

2
∞,∞
‖Xλ‖L∞t Cε

)
.

• Estimate of ‖∂X0,λ
Γ0
∥∥
Cε−1 . From the definition of the function Γ we have:∥∥∂X0,λ

Γ0
∥∥
Cε−1 ≤

∥∥∂X0,λ
ω0
∥∥
Cε−1 +

∥∥∂X0,λ
Lρ0

∥∥
Cε−1 . (3.23)

On the one hand, from Definition 4.2.13 we write∥∥∂X0,λ
ω0
∥∥
Cε−1 . ‖ω0‖Cε(X0). (3.24)

On the other hand, employing the fact Cε is an algebra, then we obtain the general
result

‖∂Xλu‖Cε−1 ≤ ‖div(uXλ)‖Cε−1 + ‖u divXλ‖Cε−1 (3.25)

. ‖uXλ‖Cε + ‖u divXλ‖L∞

. ‖u‖Cε ‖̃Xλ‖Cε .

Consequently ∥∥∂X0,λ
Lρ0

∥∥
Cε−1 . ‖̃X0,λ‖Cε‖Lρ0‖Cε .

Concerning ‖Lρ0‖Cε , using the fact that L is of order −1. Then Bernstein’s inequal-
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3 Optimal rate of convergence in stratified Boussinesq system

ity yields for p ≥ 2
1−ε ,

‖Lρ0‖Cε ≤ ‖Lρ0‖L∞ + sup
q∈N

2qε‖∆qLρ0‖L∞ (3.26)

. ‖Lρ0‖L∞ + sup
q∈N

2q(ε−1+2/p)‖∆qρ
0‖Lp .

Furtheremore, L have a non local structure, i.e.,

Lρ(t, x) ,
1

2π

∫
R2

(x1 − y1)

|x− y|2
ρ(t, y)dy,

and so
|Lρ(t, x)| ≤ 1

2π

∫
R2

|ρ(t, y)|
|x− y|

dy =

(
1

2π| · |
? |ρ(t, ·)|

)
(x).

Applying the convolution product properties and ‖ρ(t)‖L1∩L∞ ≤ ‖ρ0‖L1∩L∞ , we
obtain

‖Lρ(t)‖L∞ . ‖ρ(t)‖L1∩L∞ (3.27)

. ‖ρ0‖L1∩L∞ .

Putting together (3.26) and (3.27). Then in view of ∆q : Lp → Lp is continuous and
Lp = [L1, L∞] 1

p
, we deduce

‖Lρ0‖Cε ≤ ‖ρ0‖L1∩L∞ .

Therefore ∥∥∂X0,λ
Lρ0

∥∥
Cε−1 ≤ C0‖̃X0,λ‖Cε (3.28)

More generally for t > 0 ∥∥∂Xt,λLρ(t)
∥∥
Cε−1 ≤ C0‖̃Xt,λ‖Cε , (3.29)

Inserting (3.24) and (3.28) in (3.23) to get∥∥∂X0,λ
Γ0
∥∥
Cε−1 ≤ C0

(
1 + ‖̃X0,λ‖Cε

)
. (3.30)

• Estimate of ‖∂Xλ{
[
L, v · ∇]ρ}‖L1

tC
ε−1 . To estimate this term we write again in

view of (3.25),

‖∂Xλ{
[
L, v · ∇]ρ}‖L1

tC
ε−1 . C‖̃Xt,λ‖L∞t Cε

∥∥∥[L, v · ∇]ρ∥∥∥
L1
tC

ε
.

Then in accordance with the Proposition 3.5.1 stated in appendix, the last estimate
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3.3 Smooth vortex patch problem

becomes
‖∂Xt,λ{

[
L, v · ∇]ρ}‖L1

tC
ε−1 ≤ C0‖̃Xt,λ‖L∞t Cεt. (3.31)

• Estimate of ‖Γ‖L∞t L∞. By definition we have for µ ∈]0, 1[,

‖Γ‖L∞t L∞ ≤ ‖ω‖L∞t L∞ + ‖Lρ‖L∞t L∞ . (3.32)

Thanks to the Proposition 3.2.12 we have for t > 0,

‖ω(t)‖L∞ ≤ C0 log2(2 + t).

Note that the term ‖Lρ‖L∞t L∞ will be done exactly as in (3.27). Then in view of
the last estimate, (3.32) takes the form

‖Γ‖L∞t L∞ ≤ C0 log2(2 + t). (3.33)

• Estimate of ‖Γ‖L̃1
tB

2
∞,∞

. Applying the maximal smoothing effect (4.8) to the
equation (3.19), it happens

µ‖Γ‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + µt)

(
‖Γ0‖B0

∞,∞ +
∥∥[L, v · ∇]ρ∥∥

L1
tB

0
∞,∞

)
.

Using the fact L∞ ↪→ B0
∞,∞ and Cε ↪→ B0

∞,∞ for ε > 0, it follows

µ‖Γ‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + µt)

(
‖Γ0‖L∞ +

∥∥[L, v · ∇]ρ∥∥
L1
tC

ε

)
,

and, in turn, using once more the Proposition 3.5.1, we get

µ‖Γ‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + µt)

(
‖Γ0‖L∞ + C0t

)
, (3.34)

For ‖Γ0‖L∞ , applying the same argument as in (3.27), we deduce

‖Γ0‖L∞ ≤ ‖ω0‖L∞ + ‖ρ0‖L1∩L∞

together with (3.34), it holds that for µ ∈]0, 1[

µ‖Γ‖L̃1
tB

2
∞,∞
≤ C0e

CV (t)(1 + t)2. (3.35)

Plugging (3.30), (3.31), (3.33), (3.35) in (3.22), then after few computations we
obtain for µ ∈]0, 1[∥∥∂XλΓ

∥∥
L∞t C

ε−1 ≤ C0e
CV (t)(1 + t2) log2(2 + t)

(
1 + ‖̃Xλ‖L∞t Cε

)
. (3.36)
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3 Optimal rate of convergence in stratified Boussinesq system

But, ∥∥∂Xt,λω(t)
∥∥
Cε−1 ≤

∥∥∂Xt,λLρ(t)
∥∥
Cε−1 +

∥∥∂Xt,λΓ(t)
∥∥
Cε−1

combined with (3.27), (3.29) and (3.36) we get

(3.37)∥∥∂Xt,λω(t)
∥∥
Cε−1 ≤ C0e

CV (t)(1 + t2) log2(2 + t)
(
1 + ‖̃Xλ‖L∞t Cε

)
+ C0‖̃Xλ‖L∞t Cε

≤ C0e
CV (t)(1 + t2) log2(2 + t)

(
1 + ‖̃Xλ‖L∞t Cε

)
.

The term ‖̃Xλ‖L∞t Cε may be bounded by taking advantage of (3.15) and the Propo-
sition 3.2.10, we thus have

‖Xt,λ‖Cε ≤ CeCV (t)

(
‖X0,λ‖Cε +

∫ t

0

e−CV (τ)‖Xτ,λv(τ)‖Cεdτ
)
. (3.38)

According to [5, 19], the quantity ‖∂Xt,λv‖Cε satisfies,

‖∂Xt,λv‖Cε ≤ C
(
‖∂Xt,λω‖Cε−1 + ‖divXt,λ‖Cε‖ω(t)‖L∞ + ‖Xt,λ‖Cε‖∇v(t)‖L∞

)
.

Plug the last estimate in (3.38) to obtain

‖Xt,λ‖Cε ≤ CeCV (t)

(
‖X0,λ‖Cε + C

∫ t

0

e−CV (τ)
(
‖∂Xτ,λω(τ)‖Cε−1 (3.39)

+‖divXτ,λ‖Cε‖ω(τ)‖L∞ + ‖Xτ,λ‖Cε‖∇v(τ)‖L∞
))
dτ.

To conclude, it is enough to treat the term divXt,λ. To do this, we apply "div" to
(3.15) and using the fact divv = 0, we deduce that divXt,λ evolves the equation

(∂t + v · ∇)divXt,λ = 0.

Again the Proposition 3.2.10 gives

‖divXt,λ‖Cε ≤ CeCV (t)‖divX0,λ‖Cε . (3.40)

Combining (3.39) and (3.40), then (4.10) allows us to write

‖̃Xt,λ‖Cε ≤ CeCV (t)

(
‖̃X0,λ‖Cε

(
1 + ‖ω‖L1

tL
∞
)

+C

∫ t

0

e−CV (τ)
(
‖∂Xτ,λω(τ)‖Cε−1 + ‖Xτ,λ‖Cε‖∇v(τ)‖L∞

)
dτ

)
.
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3.3 Smooth vortex patch problem

Then, the Proposition 3.2.12 implies

‖̃Xt,λ‖Cε ≤ C0e
CV (t)

(
log2(2 + t) + C

∫ t

0

e−CV (τ)
(
‖∂Xτ,λω(τ)‖Cε−1

+‖Xτ,λ‖Cε‖∇v(τ)‖L∞
)
dτ

)
,

Gronwall’s inequality asserts that

‖̃Xt,λ‖Cε ≤ C0e
CV (t)

(
log2(2 + t) + C

∫ t

0

e−CV (τ)‖∂Xτ,λω(τ)‖Cε−1dτ

)
,

combined with (3.37), it holds for t > 0

e−CV (t)‖̃Xt,λ‖Cε ≤ C0(1 + t)(1 + t2) log2(2 + t)

+C0C

∫ t

0

(1 + τ 2) log2(2 + τ)e−CV (τ)‖̃Xτ,λ‖L∞τ Cεdτ.

Setting φ1(t) = C0(1 + t)(1 + t2) log2(2 + t) and φ2(t) = C0C(1 + t2) log2(2 + t), then
for t > 0 the last estimate becomes

e−CV (t)‖̃Xt,λ‖Cε ≤ φ1(t) +

∫ t

0

φ2(τ)e−CV (τ)‖̃Xτ,λ‖L∞τ Cεdτ.

Again Gronwall’s inequality gives

e−CV (t)‖̃Xt,λ‖Cε ≤ φ1(t) +

∫ t

0

φ1(τ)φ2(τ)e
∫ t
τ φ2(τ ′)dτ ′dτ.

After a few computations we shall have for t > 0

‖̃Xt,λ‖Cε ≤ C0e
C0t3 log2(2+t)eCV (t),

accordingly (3.37) becomes

‖∂Xt,λω(t)‖Cε−1 ≤ C0e
C0t3 log2(2+t)eCV (t).

Putting together the last two estimates, we end up with

‖̃Xt,λ‖Cε + ‖∂Xt,λω(t)‖Cε−1 ≤ C0e
C0t3 log2(2+t)eCV (t), ∀λ ∈ Λ. (3.41)

On the other hand, according to the Definition 4.2.13, we recall that:

‖ω(t)‖Cε(Xt) =
1

I(Xt)

(
‖ω‖L∞ sup

λ∈Λ
‖̃Xt,λ‖Cε + sup

λ∈Λ
‖∂Xt,λω(t)‖Cε−1

)
. (3.42)
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3 Optimal rate of convergence in stratified Boussinesq system

The required estimate for ω in Cε(Xt) norm follows by showing that Xt defined in
(4.12) is a non degenerate family, that is to say, I(Xt) > 0 . For that purpose, we
derive Xt,λ ◦Ψ(t, x) , ∂X0,λ

Ψ(t, x) with respect to time and using the fact{
∂
∂t

Ψ(t, x) = v(t,Ψ(t, x))

Ψ(0, x) = x,

it follows {
∂t∂X0,λ

Ψ(t, x) = ∇v(t,Ψ(t, x))∂X0,λ
Ψ(t, x)

∂X0,λ
Ψ(0, x) = X0,λ.

One deduce that this equation is a time reversible. Thus Gronwall’s inequality
asserts that

|X0,λ(x)|±1 ≤ |∂X0,λ
Ψ(t, x)|eV (t).

In accordance with (3.12) and (4.12), one has

I(Xt) ≥ I(X0)e−V (t) > 0. (3.43)

Consequently, (3.41), (3.42) and (3.43) leading to

‖ω(t)‖Cε(Xt) ≤ C0e
C0t3 log2(2+t)eCV (t). (3.44)

Now, we are in position to apply the logarithmic estimate (4.14). By virtue of (3.44),
the Proposition (3.2.12), the increasing of the function (0,∞) 3 ζ 7→ ζ log(e+ a/ζ)

and the decreasing of (0,∞) 3 ζ 7→ log(e+ a/ζ), it holds

‖∇v(t)‖L∞ ≤ C0

(
log(2 + t) + log2(2 + t) log

(
e+
‖ω(t)‖Cε(Xt)
log2(2 + t)

))

≤ C0

(
log(2 + t) + t3 log4(2 + t) + log2(2 + t)

∫ t

0

‖∇v(τ)‖L∞dτ
)
.

Hence, the growth of the exponential function and Gronwall’s inequality yield

‖∇v(t)‖L∞ ≤ C0e
C0t log2(2+t), (3.45)

combining this estimate with (3.44), we get

‖ω(t)‖Cε(Xt) ≤ C0e
expC0t log2(2+t).

To finalize, let us estimate ∂Xt,λΨ(t). First, we employ that ∂X0,λ
Ψ(t) = Xt,λ ◦Ψ(t)
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3.3 Smooth vortex patch problem

for every λ ∈ Λ, then by virtue of (4.5) we thus have

‖Xt,λ ◦Ψ(t)‖Cε ≤ ‖Xt,λ‖Cε‖∇Ψ(t)‖εL∞
≤ ‖Xt,λ‖CεeCV (t) ∀λ ∈ Λ.

Here we have used the classical estimate e−CV (t) ≤ ‖∇Ψ±1(t)‖L∞ ≤ eCV (t). Hence,
(3.45) ensures that

‖Xt,λ ◦Ψ(t)‖Cε ≤ C0e
expC0t log2(2+t), (3.46)

this concludes the proof.

3.3.2 Proof of Theorem 3.1.1.

The proof of the Theorem 3.1.1 requires two principal steps:

(1) The velocity vector fields is a Lipschitz function globally in time, which im-
mediately follows from Theorem 4.3.1.

(2) The persistence of Hölderian regularity in time of the transported patch, i.e.,
∂Ωt is a simple curve with C1+ε−regularity given by the following scheme:

(2.i) Fabricate an initial admissible family X0 = (X0,λ)λ∈{0,1}, which enables
us to show that 1Ω0 ∈ Cε(X0) and parametrize its boundary ∂Ω0 by a
simple curve.

(2.ii) The regularity of evolution family Xt = (Xt,λ)λ∈{0,1} and the boundary
∂Ωt, with Ωt = Ψ(t,Ω0).

(2.i) Since ∂Ω0 is a curve of the class C1+ε. Consequently, (1) of the Definition 3.3.6
ensures the existence of a local chart (f0, V0), with V0 is a neighborhood of ∂Ω0 such
that {

f0 ∈ C1+ε(R2), ∇f0(x) 6= 0 on V0

∂Ω0 = f−1
0 ({0}) ∩ V0,

On the other hand, let χ ∈ D(R2), 0 ≤ χ ≤ 1 and

supp χ ⊂ V0, χ(x) = 1 ∀x ∈ W0,
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3 Optimal rate of convergence in stratified Boussinesq system

where W0 is a small neighborhood of ∂Ω0 such that W0 b V0. Next, define for every
x ∈ R2 the family X0 = (X0,λ)λ∈{0,1} by:

X0,0(x) = ∇⊥f0(x) and X0,1(x) = (1− χ(x))

(
1

0

)
. (3.47)

It is worthwhile to examine the admissibility of the family X0 = (X0,λ)λ∈{0,1}. First,
we obviously check that X0 = (X0,λ)λ∈{0,1} is non-degenerate, and that each compo-
nent X0,λ and its divergence are in Cε(R2), then according to Definition 4.2.11, we
conclude that X0 = (X0,λ)λ∈{0,1} is an admissible family.
Second, X0 = (X0,λ)λ∈{0,1} is a tangential family (see, (2)-Definition 3.3.6) with
respect to Σ = ∂Ω0, i.e.,

X0,λ ∈ T ε|Σ, ∀λ ∈ {0, 1}.

Indeed, for the component X0,0, clearly we have:

X0,0(x) · ∇f0(x) = ∇⊥f0(x) · ∇f0(x) = 0, ∀x ∈ ∂Ω0,

while for the component X0,1, using the fact χ ≡ 1 on W0, we immediately obtain

X0,1(x) · ∇f0(x) = (1− χ(x))∂1f0(x)

= 0.

(2.ii) For every λ ∈ {0, 1} and x ∈ R2, we set Xt,λ(x) =
(
∂X0,λ

Ψ
)(
t,Ψ−1(t, x)

)
.

Using the same argument as in (3.40), (3.41) and (3.43), we infer that (Xt) still
remains non-degenerate for every t ≥ 0, and that each Xt,λ still has components and
divergence in Cε. This means that Xt = (Xt,λ)λ∈{0,1} is an admissible family for all
t ≥ 0.
Now, we will parametrize the boundary ∂Ω0. To do this, let x0 ∈ ∂Ω0 and define
the curve γ0 by the following ordinary differential equation{

∂σγ
0(σ) = X0,0(γ0(σ))

γ0(0) = x0.

By classical arguments we can see that γ0 belongs to C1+ε(R,R2). A natural way
to define the evolution parametrization of ∂Ωt is to set for every t ≥ 0,

γ(t, σ) , Ψ(t, γ0(σ)).
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Clearly that γ(t, ·) is the transported of γ0 by the flow Ψ. By applying the criterion
differentiation with respect to σ, we readily get

∂σγ(t, σ) =
(
∂X0,0Ψ

)
(t, γ0(σ)).

On the other hand, ∂X0,0Ψ ≡ X0,0 ◦Ψ, thus we have from estimate 3.46 of the The-
orem 4.3.1 that ∂X0,0ψ ∈ L∞loc(R+; Cε), accordingly γ(t) belongs to L∞loc(R+; C1+ε).
This tells us the regularity persistence of the boundary ∂Ωt and so the proof of the
Theorem 3.1.1 is accomplished.

3.4 The rate convergence

3.4.1 General statement

In this paragraph we are interested in the rate convergence between (vµ, ρµ) and
(v, ρ), the solutions of (Bµ) and (B0). To be precise, we will provide a more general
version of the Theorem 3.1.4. For this purpose, we state the following auxiliary
result which shows that any vortex patch with smooth bounded domain belongs to
Ḃ

1
p
p,∞.

Proposition 3.4.1. Let Ω0 be a C1+ε−bounded domain, with 0 < ε < 1, then the

function 1Ω0 belongs to Ḃ
1
p
p,∞, with p ∈ [2,∞[.

Proof. We follow the formalism performed in [61] with more details. Since Ω0 is
C1+ε−bounded domain, then in view of C1+ε ↪→ Lip we deduce that 1Ω0 ∈ L∞∩BV ,
with BV 2 is the Banach space of functions with bounded variation. By means of
the Proposition 3.5.2 stated in the appendix, we have

BV ↪→ Ḃ1
1,∞

2BV is the space of functions of bounded variations defined by

BV (R2) ,
{
u ∈ L1(R2) : ∀i = 1, . . . , 2, ∃λi ∈Mb(R2,R2);

∫
R2

u
∂ϕ

∂xi
dx = −

∫
R2

ϕdλi ∀ϕ ∈ D(R2)
}

equipped with the norm
‖u‖BV , ‖u‖L1 + |Du|(R2),

where |Du|(R2) is the total variation of measure Du.
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3 Optimal rate of convergence in stratified Boussinesq system

In particular for q ∈ Z
‖∆̇q1Ω0‖L1 . 2−q‖1Ω0‖BV ,

combined with Lp = [L1, L∞] 1
p
, we deduce

‖∆̇q1Ω0‖Lp . ‖∆̇q1Ω0‖
1
p

L1‖∆̇q1Ω0‖
1− 1

p

L∞

. 2−
q
p‖1Ω0‖BV ‖1Ω0‖L∞

. 2−
q
p‖1Ω0‖L∞∩BV .

Here we have used the fact that ∆̇q maps continuously L∞ into it self. Thus we
obtain for q ∈ Z

2−
q
p‖∆̇q1Ω0‖Lp ≤ C‖1Ω0‖L∞∩BV .

Taking the supremum over q ∈ Z, we finally obtain that 1Ω0 ∈ Ḃ
1
p
p,∞

Now, we state the general version of the Theorem 3.1.4. Roughly speaking we
have:

Theorem 3.4.2. Let (vµ, ρµ) and (v, ρ) be the solutions of (Bµ) and (B0) respectively
with (v0

µ, ρ
0
µ) and (v0, ρ0) their initial data. Let ω0

µ, ω
0 be their vorticties with ω0

µ ∈

L∞∩B
1
p
p,∞, ω0 ∈ L1∩L∞ and ρ0, ρ0

µ ∈ L1∩p. Setting Π(t) = ‖vµ−v‖Lp +‖ρµ−ρ‖Lp,
then we have the following rate of convergence.

Π(t) ≤ CeC(t+Vµ(t)+V (t))
(

Π(0) + (µt)
1
2

+ 1
2p (1 + µt)

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖ρ0
µ‖Lp

))
p ∈ [2,∞[,

where

Vµ(t) =

∫ t

0

‖∇vµ(τ)‖L∞dτ, V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ.

The proof of the previous Theorem requires the following interpolation result.

Proposition 3.4.3. Let (p, r, η) ∈ [1,∞]2×]−1, 1[ and vµ be a free divergence vector
field depicted by the Biot-Savart law vµ = ∆−1∇⊥ωµ, i.e.,

vµ(t, x) =
1

2π

∫
R2

(x− y)⊥

|x− y|2
ωµ(t, y)dy.

Then the following estimate holds true.

‖∆vµ‖LrtLp ≤ C‖ωµ‖
1+η
2

L̃rtB
η
p,∞
‖ωµ‖

1−η
2

L̃rtB
2+η
p,∞
.
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3.4 The rate convergence

Proof. To prove this estimate, let N ∈ N be a parameter that will be chosen ju-
diciously later. The fact ∆vµ = ∇⊥ωµ, interpolation in frequency and Bernstein
inequality enable us to write

(3.48)

‖∆vµ‖LrtLp ≤
∑
q≤N

‖∆q∇⊥ωµ‖LrtLp +
∑
q>N

‖∆q∇⊥ωµ‖LrtLp

≤
∑
q≤N

2q(1−η)2qη‖∆qωµ‖LrtLp +
∑
q>N

2q(−1−η)2q(2+η)‖∆qωµ‖LrtLp

≤ 2N(1−η)‖ωµ‖L̃rtBηp,∞ + 2−N(1+η)‖ωµ‖L̃rtB2+η
p,∞
.

Now, we choose N such that

2N(1−η)‖ωµ‖L̃rtBηp,∞ ≈ 2−N(1+η)‖ωµ‖L̃rtB2+η
p,∞
,

whence

22N ≈
‖ωµ‖L̃rtB2+η

p,∞

‖ωµ‖L̃rtBηp,∞
. (3.49)

Inserting (3.49) in (3.48), we obtain the desired estimate and so the proof is com-
pleted.

Proof of the Theorem 3.4.2. We set U = vµ − v,Θ = ρµ − ρ and P = pµ − p. We
intend to estimate the quantity ‖U‖Lp+‖Θ‖Lp . To do this, making few computations
we discover that U and Θ evolve the nonlinear equations,

∂tU + (vµ · ∇)U − µ∆vµ +∇P = Θe2 − (U · ∇)v (t, x) ∈ R+ × R2,

∂tΘ + (vµ · ∇)Θ−∆Θ = −U · ∇ρ (t, x) ∈ R+ × R2,

divU = 0,

U|t=0 = U0, Θ|t=0 = Θ0.

(B̃µ)

• Estimate of ‖U(t)‖Lp. Multiply the first equation in (B̃µ) by U |U |p−2, and
integrating by parts over the space variables R2, then in view of divvµ = divv = 0,
it follows

1

p

d

dt
‖U(t)‖pLp ≤

∫
R2

∣∣∇P · U |U |p−2
∣∣dx+ µ

∫
R2

∣∣∆vµ · U |U |p−2
∣∣dx

+

∫
R2

∣∣(U · ∇)v · U |U |p−2
∣∣dx+

∫
R2

∣∣Θe2 · U |U |p−2
∣∣dx.
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3 Optimal rate of convergence in stratified Boussinesq system

Hölder’s inequality yields

1

p

d

dt
‖U(t)‖pLp ≤ ‖∇P (t)‖Lp‖U(t)‖p−1

Lp + µ‖∆vµ(t)‖Lp‖U(t)‖p−1
Lp

+‖∇v‖L∞‖U(t)‖pLp + ‖Θ(t)‖Lp‖U(t)‖p−1
Lp ,

so, integrating in time over [0, t], we obtain

‖U(t)‖Lp ≤ ‖U0‖Lp +

∫ t

0

‖∇P (τ)‖Lpdτ + µ

∫ t

0

‖∆vµ(τ)‖Lpdτ (3.50)

+

∫ t

0

‖∇v(τ)‖L∞‖U(τ)‖Lpdτ +

∫ t

0

‖Θ(τ)‖Lpdτ.

Concerning the term ‖∇P‖Lp , applying the "div" operator to the first equation of
(B̃µ), one finds after easy algebraic computations

−∆P = div
(
U · ∇(vµ + v)

)
+ ∂2Θ,

then we have
−∇P = ∇∆−1div

(
U · ∇(vµ + v)

)
+∇∆−1∂2Θ.

The boundedness of Riesz transform on Lp, p ∈]1,∞[ into it self leading to

‖∇P‖Lp . ‖U‖Lp
(
‖∇vµ‖L∞ + ‖∇v‖L∞

)
+ ‖Θ‖Lp .

Inserting the above estimate into (3.50), we deduce that

‖U(t)‖Lp . ‖U0‖Lp +

∫ t

0

‖U(τ)‖Lp
(
‖∇vµ(τ)‖L∞ + ‖∇v(τ)‖L∞

)
dτ (3.51)

+µ

∫ t

0

‖∆vµ(τ)‖Lpdτ +

∫ t

0

‖Θ(τ)‖Lpdτ.

• Estimate of ‖Θ‖L1
tL

p . Multiply the second equation in (B̃µ) by Θ|Θ|p−2, and
integrating by parts over R2. Then by virtue of divvµ = divv = 0, it happens

1

p

d

dt
‖Θ(t)‖pLp + (p− 1)

∫
R2

|∇Θ(t)|2|Θ(t)|p−2dx ≤
∫
R2

∣∣U(t) · ∇ρ(t)||Θ(t)|p−1dx,

owing to Hölder’s inequality, we shall have

1

p

d

dt
‖Θ(t)‖pLp + (p− 1)

∫
R2

|∇Θ(t)|2|Θ(t)|p−2dx ≤ ‖U(t)‖Lp‖∇ρ(t)‖L∞‖Θ(t)‖p−1
Lp .
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Since the second term of the left-hand side has a non-negative sign, one obtains

d

dt
‖Θ(t)‖Lp . ‖U(t)‖Lp‖∇ρ(t)‖L∞ .

Integrating in time over [0, t], we get

‖Θ(t)‖Lp . ‖Θ0‖Lp +

∫ t

0

‖U(τ)‖Lp‖∇ρ(τ)‖L∞dτ. (3.52)

Putting together (3.51) and (3.52), we readily get

‖U(t)‖Lp + ‖Θ(t)‖Lp . ‖U0‖Lp + ‖Θ0‖Lp +

∫ t

0

‖U(τ)‖Lp
(
‖∇vµ(τ)‖L∞

+‖∇v(τ)‖L∞
)
dτ + µ

∫ t

0

‖∆vµ(τ)‖Lpdτ

+

∫ t

0

‖Θ(τ)‖Lpdτ +

∫ t

0

‖U(τ)‖Lp‖∇ρ(τ)‖L∞dτ.

Since Π(t) , ‖U(t)‖Lp + ‖Θ(t)‖Lp , then after few caculations we find that

Π(t) . Π(0) +

∫ t

0

(
1 + ‖∇vµ(τ)‖L∞ + ‖∇v(τ)‖L∞ + ‖∇ρ(τ)‖L∞

)
Π(τ)dτ

+µ

∫ t

0

‖∆vµ(τ)‖Lpdτ.

Using Gronwall’s inequality, we can write

Π(t) . eCte
C(Vµ(t)+V (t)+‖∇ρ‖

L1
t L
∞ )(

Π(0) + µ‖∆vµ‖L1
tL

p

)
. (3.53)

We now turn to the estimate of the principal term µ‖∆vµ‖L1
tL

p which provides the
desired rate of convergence. Take in Proposition 3.4.3 η = 1

p
and r = 1 to obtain

µ‖∆vµ‖L1
tL

p ≤ µ‖ωµ‖
1
2

+ 1
2p

L̃1
tB

1
p
p,∞︸ ︷︷ ︸

I

‖ωµ‖
1
2
− 1

2p

L̃1
tB

2+ 1
p

p,∞︸ ︷︷ ︸
II

. (3.54)

For the term I, applying the Hölder inequality in the time variable, we deduce that

I ≤ µt
1
2

+ 1
2p‖ωµ‖

1
2

+ 1
2p

L̃∞t B
1
p
p,∞

.
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3 Optimal rate of convergence in stratified Boussinesq system

Put r =∞, s = 1
p
, p1 = p, p2 =∞, Proposition 4.2.9 tell us

‖ωµ‖
L̃∞t B

1
p
p,∞
≤ CeCVµ(t)

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

)
.

Hence
I ≤ CeCVµ(t)µt

1
2

+ 1
2p

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

) 1
2

+ 1
2p
.

Concerning II, a new use of the Proposition 4.2.9 gives for r = 1, s = 1
p
, p1 = p, p2 =

∞ the following

‖ωµ‖
L̃1
tB

2+ 1
p

p,∞
≤ CeCVµ(t)µ−1(1 + µt)

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

)
.

Accordingly, we infer

II ≤ CeCVµ(t)µ
1
2p
− 1

2 (1 + µt)
1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

) 1
2
− 1

2p
.

Combining I and II, (3.54) becomes

µ‖∆vµ‖L1
tL

p . CeCVµ(t)(µt)
1
2

+ 1
2p (1 + µt)

1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

)
.

By means of the embedding L̃1
tB

1
p

p,1 = L1
tB

1
p

p,1 ↪→ L1
tB

1
p
p,∞, the last estimate takes the

form

µ‖∆vµ‖L1
tL

p . CeCVµ(t)(µt)
1
2

+ 1
2p (1 + µt)

1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L̃1
tB

1
p
p,1

)
together with (3.53), one obtains

Π(t) . Ce
C(t+Vµ(t)+V (t)+‖∇ρ‖

L1
t L
∞ )
(

Π(0) + (µt)
1
2

+ 1
2p (1 + µt)

1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+‖∇ρµ‖
L̃1
tB

1
p
p,1

))
.

For the term ‖∇ρ‖L1
tL
∞ in the exponential, applying the Propositon 3.2.12 the last

estimate takes the form

Π(t) . CeC(t+Vµ(t)+V (t))

(
Π(0) + (µt)

1
2

+ 1
2p (1 + µt)

1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖∇ρµ‖
L̃1
tB

1
p
p,1

))
.

(3.55)
To end the proof of our claim, let us estimate ‖∇ρµ‖

L̃1
tB

1
p
p,1

. Note that ∇ maps

continuously B
1+ 1

p

p,1 into B
1
p

p,1, then the Proposition 4.2.9 combined with Lp ↪→ B
1
p
−1

p,1
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3.4 The rate convergence

gives for p > 1

‖ρµ‖
L̃1
tB

1
p+1

p,1

≤ CeCVµ(t)(1 + t)‖ρ0
µ‖

B
1
p−1

p,1

(3.56)

≤ CeCVµ(t)(1 + t)‖ρ0
µ‖Lp .

Plugging (3.56) in (3.55), we find that

Π(t) . CeC(t+Vµ(t)+V (t))

(
Π(0)+(µt)

1
2

+ 1
2p (1+µt)

1
2
− 1

2p

(
‖ω0

µ‖
B

1
p
p,∞

+‖ρ0
µ‖Lp

))
. (3.57)

Hence the proof of the Theorem 3.4.2 is accomplished.

3.4.2 Proof of Theorem 3.1.4

(i) Substituting (3.3) and (3.4) into (3.57) and the fact 1Ω0 ∈ B
1
p
p,∞, it happens for

µ ∈]0, 1[

Π(t) . C0e
eC0t log

2(1+t)

(µt)
1
2

+ 1
2p .

(ii) To estimate ωµ−ω in Lp−norm, using the definition of ωµ and ω we shall have

‖ωµ(t)− ω(t)‖Lp ≤ ‖∇(vµ(t)− v(t))‖Lp

combined with B0
p,1 ↪→ Lp and Bernstein inequality leads to

‖ωµ(t)− ω(t)‖Lp . ‖vµ(t)− v(t)‖B1
p,1
. (3.58)

On the other hand, let N be a fixed number that will be chosen later. Again
Bernstein’s inequality leading to

(3.59)

‖vµ(t)− v(t)‖B1
p,1
≤

∑
q≤N

2q‖∆q(vµ(t)− v(t))‖Lp +
∑
q>N

2−
q
p2

q
p‖∆q∇(vµ(t)− v(t))‖Lp

. 2N‖vµ(t)− v(t)‖Lp + sup
q≥−1

2
q
p‖ωµ(t)− ω(t)‖Lp

∑
q>N

2−
q
p

. 2N‖vµ(t)− v(t)‖Lp + 2−
N
p ‖ωµ(t)− ω(t)‖

B
1
p
p,∞
.

In the second line we have used the fact

‖∆q∇(vµ(t)− v(t))‖Lp ≈ ‖∆q(ωµ(t)− ω(t))‖Lp , ∀q ∈ N.
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3 Optimal rate of convergence in stratified Boussinesq system

Taking

2N(1+ 1
p

) ≈
‖ωµ(t)− ω(t)‖

B
1
p
p,∞

‖vµ(t)− v(t)‖Lp
.

Then (3.58) and (3.59) lead us

‖vµ(t)− v(t)‖B1
p,1

. ‖vµ(t)− v(t)‖
1
p+1

Lp ‖ωµ(t)− ω(t)‖
p

1+p

B
1
p
p,∞

,

whence (3.58) yields

‖ωµ(t)− ω(t)‖Lp ≤ ‖vµ(t)− v(t)‖
1
p+1

Lp ‖ωµ(t)− ω(t)‖
p
p+1

B
1
p
p,∞

,

in accordance with the Theorem 3.1.4, it holds

‖ωµ(t)− ω(t)‖Lp ≤ C0e
eC0t log

2(2+t)

(µt)
1
2p (1 + µt)‖ωµ(t)− ω(t)‖

B
1
p
p,∞
.

To finalize, let us estimate ‖ωµ(t) − ω(t)‖
B

1
p
p,∞

. To do this, using the persistence of

Besov spaces explicitly formulated in the Proposition 3.2.10, one gets

‖ωµ(t)− ω(t)‖
B

1
p
p,∞

≤ ‖ωµ(t)‖
B

1
p
p,∞

+ ‖ω(t)‖
B

1
p
p,∞

≤ CeC(Vµ(t)+V (t))

(
‖ω0

µ‖
B

1
p
p,∞

+ ‖ω0‖
B

1
p
p,∞

+ ‖∇ρµ‖
L1
tB

1
p
p,∞

+‖∇ρ‖
L1
tB

1
p
p,∞

)
.

The last two terms of the right-hand side stem from (3.56). Then thanks to (3.3)
and (3.4), we end up with

‖ωµ(t)− ω(t)‖
B

1
p
p,∞
≤ C0e

eC0t log
2(2+t)

(µt)
1
2p (1 + µt).

This achieves the proof of the aimed estimate.

3.4.3 Optimality of the rate of convergence

In this paragraph we shall give the proof of Theorem 3.1.6 by showing that (µt)
1
2p is

optimal in Lp norm in the case of a circular vortex patch and ρ0
µ and ρ0 are constant

densities.
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3.4 The rate convergence

Proof of Theorem 3.1.6. Since the initial data ω0
µ = ω0 = 1D are radial then this

structure is preserved in the evolution and thus

vµ · ∇ωµ, v · ∇ω = 0.

Therefore the equation of ωµ (resp. ω) takes the following form

∂tωµ − µ∆ωµ = 0, ∂tω = 0.

Recall that the solutions of the above equations are given by

ωµ(t, x) = Kµt ? ω
0
µ(x), ω(t, x) = ω0(x), (3.60)

where Kµt is the heat kernel defined by

Kµt(x) ,
1

4πµt
e−
|x|2
4t

and satisfies ∫
R2

Kµt(x)dx = 1.

On the other hand, setting W (t, x) = ωµ(t, x)− ω(t, x). Then in view of (3.60), we
have

W (t, x) =

∫
R2

Kµt(x− y)[1D(y)− 1D(x)]dy.

For |x| < 1 we have

W (t, x) =

∫
{|y|≥1}

Kµt(x− y)dy

=
1

4πµt

∫
{|y|≥1}

e−
|x−y|2
4µt dy.

Introduce Z(t, x) = W (t,
√
µtx) and make the change of variables y =

√
µtz, one

gets

Z(t, x) =
1

4π

∫
{|z|≥ 1√

µt
}
e−
|x−z|2

4 dz, |x| ≤ 1√
µt
. (3.61)

Let µt ≤ 1, then

‖W (t)‖Lp(R2) ≥ ‖W (t)‖Lp(1−
√
µt≤|x|≤1) (3.62)

≥ (µt)
1
p‖Z(t)‖Lp( 1√

µt
−1≤|x|≤ 1√

µt
).
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3 Optimal rate of convergence in stratified Boussinesq system

Now, our task is to prove the following requirement,

‖Z(t)‖Lp( 1√
µt
−1≤|x|≤ 1√

µt
) ≥ C2(µt)−

1
2p . (3.63)

For this purpose, we plug the identity |x− z|2 , |x|2 + |z|2 − 2〈x, z〉 into (3.61),

Z(t, x) =
1

4π
e−
|x|2
4

∫
{|z|≥ 1√

µt
}
e−
|z|2
4

+ 1
2
〈x,z〉dz.

By rotation invariance, the above equation becomes

Z(t, x) =
1

4π
e−
|x|2
4

∫ 2π

0

∫ +∞

1√
µt

e−
r2

4
+ 1

2
r|x| cos θrdrdθ

≥ 1

4π
e−
|x|2
4

∫ π
2

0

∫ +∞

1√
µt

e−
r2

4
+ 1

2
r|x| cos θrdrdθ.

Since cos θ ≥ 1− θ2

2
for θ ≥ 0, then we find

|Z(t, x)| ≥ 1

4π

∫ +∞

1√
µt

e−
|x|2
4
− r

2

4
+
r|x|
2

(∫ π
2

0

e−
1
4
r|x|θ2dθ

)
rdr

=
1

4π

∫ +∞

1√
µt

e−
1
4

(|x|−r)2
(∫ π

2

0

e−
1
4
r|x|θ2dθ

)
rdr.

Here, we have used Fubini’s theorem. For the second integral of the right-hand side,
using the change of variables α = 1

2

√
r|x|θ, we get

|Z(t, x)| ≥ 1

2π

∫ 2√
µt

1√
µt

e−
1
4

(|x|−r)2
(∫ √r|x|π

4

0

e−α
2 dα√

r|x|

)
rdr. (3.64)

Since r|x| ≥ 1√
µt

(
1√
µt
− 1
)
≈ 1

µt
≥ 1, then we obtain that

∫ √r|x|π
4

0

e−α
2 dα√

r|x|
≥ 1√

r|x|

∫ π
4

0

e−α
2

dα =
c√
r|x|

.

Consequently for 1√
µt
− 1 ≤ |x| ≤ 1√

µt
, the formula (3.64) takes the following form

|Z(t, x)| ≥ C

∫ 2√
µt

1√
µt

e−
1
4

(|x|−r)2
√

r

|x|
dr.
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3.4 The rate convergence

But, r
|x| ≥

1√
µt

√
µt = 1 and hence

|Z(t, x)| ≥ C

∫ 2√
µt

1√
µt

e−
1
4

(|x|−r)2dr.

Making the change of variables k = r − |x|, we readily get

|Z(t, x)| ≥ C

∫ 2√
µt
−|x|

1√
µt
−|x|

e−
1
4
k2dk.

However, 1√
µt
− |x| ≤ 1 and 2√

µt
− |x| ≥ 1√

µt
. This leads to

|Z(t, x)| ≥ C

∫ 1√
µt

1

e−
1
4
k2dk ≥ C > 0.

Therefore, for 1√
µt
− 1 ≤ |x| ≤ 1√

µt
, it follows

|Z(t, x)| ≥ C. (3.65)

Taking the Lp−norm for (3.65) over the annulus 1√
µt
− 1 ≤ |x| ≤ 1√

µt
, it holds

‖Z(t)‖Lp( 1√
µt
−1≤|x|≤ 1√

µt
) ≥ C

[
L

(
1√
µt
− 1 ≤ |x| ≤ 1√

µt

)] 1
p

≥ C

[
π

(
2√
µt
− 1

)] 1
p

≥ C̃(µt)−
1
2p ,

where L is the Lebesgue measure over R2. Hence,

‖Z(t)‖Lp( 1√
µt
−1≤|x|≤ 1√

µt
) ≥ C1(µt)−

1
2p .

This leads to the desired estimate stated in (3.63). Combining the last estimate
with (3.62), we end up with

‖W (t)‖Lp(R2) ≥ C1(µt)
1
2p .

Now, the proof is completed.
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3 Optimal rate of convergence in stratified Boussinesq system

3.5 Appendix

This section teats the detailed proof of two Propositions 3.5.1, 3.5.2 which are used
respectively during the proof of Theorem 4.3.1 and Proposition 3.4.1.

Proposition 3.5.1. Let ε ∈]0, 1[, ρ be a smooth function and v be a smooth
divergence-free vector field on R2 with vorticity ω. Assume that v ∈ L2, ω ∈ L2∩L∞

and ρ ∈ L2 ∩ Lp, with p > 2
1−ε . Then the following statement holds true,∥∥[L, v · ∇]ρ∥∥

Cε
≤ C0.

Proof. Recall from [52] the following commutator estimate,

∥∥[L, v · ∇]ρ∥∥
Cε

. ‖v‖L2‖ρ‖L2 + ‖ω‖L2∩L∞‖ρ‖Lp , p >
2

1− ε
. (3.66)

Let us estimate the first term of the right-hand side of (3.66). To do this, we apply
the energy estimate for the velocity equation, we shall have

‖v(t)‖L2 ≤ ‖v0‖L2 +

∫ t

0

‖ρ(τ)‖L2dτ.

A new use of [52] gives

(1 + t)
1
2‖ρ(t)‖L2 . ‖ρ0‖L1∩L2

thus we obtain
‖v(t)‖L2 ≤ C0(1 + t)

1
2 .

Combining the last two estimates, we readily get

‖v(t)‖L2‖ρ(t)‖L2 ≤ C0. (3.67)

An usual interpolation inequality between the Lebesgue spaces yields for p ∈ [2,+∞[

‖ρ(t)‖Lp ≤ ‖ρ(t)‖
2
p

L2‖ρ0‖
1− 2

p

L∞ (3.68)

≤ C0(1 + t)−
1
p .

Here we have used the maximum principle for the density equation. Putting together
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3.5 Appendix

(3.67), (3.68) and Proposition 3.2.12, we finally get∥∥[L, v · ∇]ρ∥∥
Cε
≤ C0 + C0(1 + t)−

1
p log2(2 + t)

≤ C0.

This completes the proof.

For the reader’s convenience we state the following classical result.

Proposition 3.5.2. The following Sobolev embedding is hold.

BV ↪→ Ḃ1
1,∞.

Proof. According to [59, 68] the equivalent norm to Ḃs
p,r is defined for ` ∈ N∗, 0 <

s < ` and (p, r) ∈ [1,∞]2 by

‖|u‖|Ḃsp,r ,

(∫
RN
|h|−sr‖∆`

hf(x)‖rLp
dh

|h|N

) 1
r

.

Here the difference operators ∆`
h are given by

∆1
h = ∆h, ∆`+1

h = ∆h ◦∆`
h ∀` ∈ N∗,

where ∆h is defined for every u ∈ S ′(RN) and h ∈ RN by

∆hu(x) , u(x+ h)− u(x).

From (3.6), we have for q ∈ Z and x ∈ R2

∆̇qu(x) = 22q

∫
R2

F−1ϕ(2q(x− y))u(y)dy,

with F−1ϕ denotes the inverse Fourier of ϕ. As ϕ(0) = 0 then

∆̇qu(x) = 22q

∫
R2

F−1ϕ(2q(x− y))
(
u(y)− u(x)

)
dy.
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3 Optimal rate of convergence in stratified Boussinesq system

So, by making a change of variable z = 2d(x− y), we obtain

∆̇qu(x) = 22q

∫
R2

F−1ϕ(2q(x− y))(u(y)− u(x))dy

=

∫
R2

F−1ϕ(z)(u(x− 2−qz)− u(x))dz

=

∫
R2

F−1ϕ(z)∆hu(x)dz, h = −2−qz.

Fubini’s theorem implies

‖∆̇qu‖L1 ≤
∫
R2

F−1ϕ(z)‖∆hu‖L1dz. (3.69)

We recall from Theorem 13.48 page 415 in [59] the following result

‖∆hu‖L1 ≤ |h||Du|(R2)

= 2−q|z||Du|(R2).

Consequently
‖∆hu‖L1 ≤ 2−q|z|‖u‖BV .

Inserting the last estimate in (3.69), we get for q ∈ Z

‖∆̇qu(x)‖L1 ≤ 2−q‖u‖BV
∫
R2

F−1ϕ(z)|z|dz.

By taking the supremum over q ∈ Z, we obtain the aimed estimate.
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4 Local persistence of geometric
structures for Boussinesq
system with zero viscosity

This Chapter is the subject of the following publication:

H. Meddour: Local persistence of geometric structure for Boussinesq system with
zero viscosity. Mathematicki Vesnik, Vol. 71, no. 4, (2019), 285–303.

4.1 Introduction

We are mainly concerned with studying the local well-posedness theory for the
partial viscous Boussinesq system given by the coupled equations,

∂tvκ + vκ · ∇vκ +∇pκ = ρκ~e2, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0.

(Bκ)

It describes the evolution of stratified incompressible fluids in R2 under the influence
of the gravity force which is proportional to ρκ in the direction ~e2 = (0, 1); for the
derivation of this model, see for instance [65]. Above, the velocity vector field vκ ∈ R2

is solenoidal, πκ ∈ R is the pressure and ρκ ∈ R+ is the density. The parameter
κ ≥ 0 denotes the molecular diffusivity of the fluid. We will consider the Cauchy
problem to the Boussinesq system by prescribing the initial data

vκ|t=0 = v0
κ, ρκ|t=0 = ρ0

κ.
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

Note that if the initial density vanishes ρ0
κ ≡ 0 and therefore the system (Bκ) reduces

to the classical Euler equations given by
∂tv + v · ∇v +∇p = 0,

div v = 0,

v|t=0 = v0.

(E)

One of the basic feature in the dynamics of Euler equations is related to the vorticity
ω , ∂1v

2 − ∂2v
1 which is transported by the flow,

∂tω + v · ∇ω = 0,

ω|t=0 = ω0,

v = N2 ? ω,

(4.1)

where, N2 is the Biot-Savart kernel defined by

N2(x) = ∇⊥E2(x), E2(x) =
1

2π
log ‖x‖, ∇⊥ , (−∂2, ∂1).

Let us denote by Ψ = (Ψt) the flow (particle-trajectory mapping) associated to the
time-dependent velocity vector field v, so that

∂tΨt(x) = v(t,Ψt(x)), Ψ0(x) = x.

Thus the solution of (4.1) is determined explicitely by ω(t,Ψt(x)) = ω0(x) and
admits in turn an infinite conservation laws. For example, all the Lp norms are
time invariant, that is, ‖ω(t)‖Lp = ‖ω0‖Lp for p ∈ [1,∞]. Under this pattern,
Yudovich succeed in [75] to obtain global unique weak solutions for the system (E)
whenever ω0 ∈ L1∩L∞. Furthermore, the velocity vector field, which is not necessary
Lipschitz, belongs to the class of log−Lipschitz functions and the corresponding flow
map Ψ is a planar homeomorphism. Notice that Yudovich’s class encompasses vortex
patches, that is, ω0 is represented by the characteristic function of a bounded domain
Ω0 ⊂ R2. This structure is preserved during the time, meaning that ω(t) = 1Ωt ,
with Ωt = Ψt(Ω0) is the patch that moves with the flow.

In-depth study of vortex patches, whose dynamics is governed by the motion of
closed curves in the complex plane, has led to several questions especially about the
boundary regularity. A remarkable result in this way is due to Chemin [19] (see
also P. Serfati [67]), ensures that when the boundary ∂Ω0 belongs to the Hölderian
class C1+ε, with 0 < ε < 1, then the regularity of ∂Ωt is shown to be retained
over the time. Actually, Chemin’s strategy requires essentially the control of the
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Liscphitz norm of the velocity with respect to the co-normal regularity ∂Xtω of the
vorticity in Hölder spaces Cε−1 by means of logarithmic estimate. The choice of
the family Xt = (Xt,λ)λ∈Λ can be done in such way that it is non-degenerate and
being tangential to ∂Ωt. The vector field Xt,λ is the push-forward of X0,λ by the
flow Ψ(t),

(∂t + v · ∇)Xt,λ = ∂Xt,λv. (4.2)

Those vector fields commute with the transport operator ∂t + v · ∇, and conse-
quently

(∂t + v · ∇)∂Xt,λω = 0. (4.3)

This allows to follow the tangential regularity of the vorticity which is a central step
in the study of the vortex patch issue.

As the Boussinesq system (Bκ) is in some sense a perturbation of (E), it will be of
interest to ask whether the known results for Euler equations can be extended to the
Boussinesq system as well. The topic of local/global posedness for (Bκ) for κ > 0

has drawn great attention and widely studied during the last years. Particularly,
worth mentioning that Chae showed in [15] that (Bκ) is globally well-posed whenever
(v0, ρ0) ∈ Hs×Hs, with s > 2. This result was improved later by Hmidi and Keraani

in [45], where they imposed that (v0, ρ0) ∈ B
1+ 2

p

p,1 × B
−1+ 2

p

p,1 ∩ Lr, with r > 2. In the
same fashion, Hmidi and Zerguine [51] established similar result in the setting of
fractional laplacian (−∆)

α
2 , α ∈]1, 2]. In [26], Danchin and Paicu extended weak

solutions of Yudovich’s type to the system (Bκ). For further discussions about this
subject, we refer to [2, 3, 9, 16, 17, 25, 33] and the references therein.

In this chapter we intend to conduct a detailed study of the vortex patch problem
for the system (Bκ) and to investigate the convergence towards the inviscid system
when the parameter κ goes to zero. Note that the limit system is simply obtained
by taking κ = 0, that is

∂tv + v · ∇v +∇p = ρ~e2, t ≥ 0, x ∈ R2

∂tρ+ v · ∇ρ = 0,

div v = 0.

(B0)

We point out that for the latter system local well-posedness can be implemented in
various function spaces similarly to Euler equations. For instance, Chae and Nam
showed in [16] that (B0) is locally well-posed in Sobolev spaces Hs with s > 2. This

result was extended to critical Besov spaces B
1+ 2

p

p,1 , p ∈]1,∞[ by Liu, Wang and
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

Zhang in [54]. The global existence of classical solutions is an outstanding open
problem.

The study of the vortex patch problem for the system (Bκ) was done in [52]
with κ = 1. It is shown that if the boundary of the initial vortex patch belongs
to C1+ε for 0 < ε < 1 then the velocity is a Lipschitz function globally in time
and the transported patch, that is, Ωt keeps its initial regularity. Furthermore,
the vorticity is given by the decomposition ω(t) = 1Ωt + ρ̃(t), with ρ̃ a smooth
function. A similar result has been done recently in [78] for the system (Bκ) with
critical fractional dissipation which has obtained a sharper result compared to the
incompressible Euler equations [19]. In the same spirit, Hassainia and Hmidi [39]
showed that the system (B0) is locally well-posed whenever the initial patch has a
regular/singular structure. The related subject about the aforementionned topics
are selected in [27, 29, 32, 34, 38, 41, 45, 63] and the references therein.

At this stage, the first main result of this chapter is summarized in the following
Theorem where we deal with local theory for the vortex patch problem uniformly
with respect to the parameter κ. More accurately we have:

Theorem 4.1.1. Let κ ∈ [0, 1] and consider a bounded domain Ω0 in R2 whose
boundary ∂Ω0 is a Jordan curve of C1+ε−regularity, with 0 < ε < 1. Let v0

κ be a
divergence-free vector field such that its vorticity ω0

κ = 1Ω0 and the initial density
ρ0
κ ∈ L2 ∩ C1+ε with ∇ρ0

κ ∈ L2. Then there exists T > 0 independent of κ such that

the system (Bκ) admits a unique local solution (vκ, ρκ) ∈
(
L∞
(
[0, T ];Lip(R2)

))2

.

Furthermore, for all t ∈ [0, T ] the boundary ∂Ωt is a Jordan curve of class C1+ε,
with Ωt = Ψt(Ω0).

Remark 4.1.2. We note that the initial condition ρ0
κ ∈ C1+ε doesn’t persist in time,

that is ρκ(t) ∈ C1+ε being false in general for any positive time. Because the velocity
field requires more regularity than the Lipschitz one.

The main step in the proof of Theorem 4.1.1 is to get an estimate for the Lipschitz
norm of the velocity locally in time uniformly on κ ∈ [0, 1]. For this purpose, we will
employ the original Chemin’s approach [19]. Thus we shall control ‖∇vκ(t)‖L∞ with
respect to the co-normal regularity of the vorticity ∂Xtωκ in Cε−1, with 0 < ε < 1 by
means of logarithmic estimate. The family of vector fileds Xt = (Xt,λ)λ∈Λ obeys to
the equation (4.2). The tangential derivative of the vorticity ∂Xtωκ satisfies similarly
to (4.3)

(∂t + vκ · ∇)∂Xt,λωκ = ∂Xt,λ∂1ρκ
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This follows from the fact that the vorticity-density formulation of (Bκ) is given
by 

∂tωκ + vκ · ∇ωκ = ∂1ρκ, t ≥ 0, x ∈ R2

∂tρκ + vκ · ∇ρκ − κ∆ρκ = 0,

div vκ = 0,

(VDκ)

Writing ∂Xt∂1ρκ = ∂1(∂Xtρκ)+ [∂Xt , ∂1]ρκ and keeping in mind that the commutator
behaves well, then the problem reduces to follow the regularity of ∂Xtρκ in Cε. It is
straightforward that the quantity ∂Xtρκ satisfies the following evolution equation

(∂t + vκ · ∇ − κ∆)Xt,λρκ = −κ[∆, Xt,λ]ρκ. (4.4)

Observe that for the inviscid case, we check easily that the co-normal derivative of
the density is transported by the flow which simplifies a lot the analysis see [39].
In our context the commutator term contributes with additional drawbacks. The
remedy is to treat carefully the commutator using the maximal smoothing effect of
the transport diffusion equation in the spirit of the approach developed in [22, 41].

Our second main result deals with the inviscid limit problem. To be precise we
have:

Theorem 4.1.3. Let (vκ, ρκ) and (v, ρ) be the solutions of (Bκ) and (B0) respec-
tively with the same initial data given by Theorem 4.1.1. Then the following asser-
tions hold true.

(i) For every p ∈ [2,∞]

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖Lp + ‖ρκ(t)− ρ(t)‖Lp

)
≤ C0κ

1/4+1/2p.

(ii) If Ψκ and Ψ denote the flow associated to vκ and v respectively. Then we have

sup
t∈[0,T ]

‖Ψκ(t)−Ψ(t)‖L∞ ≤ C0κ
1/4,

where C0 = C(‖∇ρ0‖L2∩L∞ , T ).

The proof of the above theorem relies on some classical Lp-estimates, the classical
complex interpolation between Lebesgue spaces and the so-called Gagliardo Neren-
berg inequality.
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

Outline of the chapter

Next section starts with a brief overview about the Littlewood-Paley theory, par-
ticularly the cut-off operators, paradifferential calculus. Thereafter, we undertake
the concept of Besov, Hölder spaces and their connections with worthwhile lemmas
concerning the persistence of Besov spaces and maximal regularity for a transport-
diffusion equation. In Section 3, we state the general version of the Thoerem 4.1.1.
For the sake of clarity, we divide its proof in several steps. Section 4 encloses the
proof of Theorem 4.1.3.

4.2 Basic tools

This preparatory section comprises some basic tools that we shall freely used
during this work. It starts with a short introduction to the Littlewood-Paley the-
ory through the dyadic decomposition of unity, cut-off operators and Besov spaces.
Afterwards, we state Bernstein’s inequalities and Bony’s decomposition which are
required in particular, when it comes to the analysis of the commutator estimates.
At the end, we state some technical lemmas freely used trough this work.

4.2.1 Notations

Throughout this chapter, we will adopt the following notations.
• We denote by C a positive constant which may be different in each occurrence
but it does not depend on the initial data. We shall sometimes alternatively use the
notation X . Y for an inequality of the type X ≤ CY with C is independent of X
and Y . The notation C0 means a constant depending on the involved norms of the
initial data.
• The space S ′(R2) stands for the set of tempered distributions defined on R2.
• For any u ∈ S ′(R2) both û and Fu (resp. F−1u) denote the Fourier transform
(resp. Inverse Fourier transform) of u.
• For every p ∈ [1,∞], ‖ · ‖Lp denotes the norm in the Lebesgue space Lp.
• The norm in the mixed space time Lebesgue space Lp([0, T ], Lr(R2)) is denoted
by ‖ · ‖LpTLr .
• For any pair of operators P and Q, the commutator [P,Q] is defined by PQ−QP .
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4.2 Basic tools

• B(0, R) denotes the ball centered at origin with radius R > 0.
• A (0, R1, R2) represents the annulus centered at origin with radii R1 < R2.

4.2.2 Brief review on the Littlewood-Paley theory

We start by the so-called Littlewood-Paley decomposition, based on a nonhomo-
geneous dyadic partition of unity with respect to the Fourier variables. For this
purpose, let χ ∈ D(R2) be a radial cut-off function, monotonically decaying along
rays and so that

χ(ξ) =

{
1 if ‖ξ‖ ≤ 1

2

0 if ‖ξ‖ ≥ 1,

with supp χ ⊂ B(0, 1). Furthermore, define ϕ(ξ) , χ( ξ
2
) − χ(ξ), ϕ ≥ 0; thus we

have supp ϕ ⊂ A (0, R1, R2) and,

∀ξ ∈ R2, χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1.

The Littlewood-Paley or frequency cut-off operators (∆q)q≥−1 are defined for
u ∈ S ′(R2) by

∆qu =

{
χ(D)u if q = −1

ϕ(2−qD)u if q ≥ 0,

where in general case f(D) stands the pseudo-differential operator u 7→ F−1(fFu)

with constant symbol. Also, the sequence (Sq)q≥0 of lower frequencies is defined for
q ≥ 0 as follows

Squ ,
∑
j≤q−1

∆ju.

Few basic properties of the cut-off operators (∆q)q≥−1 and (Sq)q≥0 are listed in the
following proposition.

Proposition 4.2.1. Let u, v ∈ S ′(R2). Then we have

(i) |p− q| ≥ 2 =⇒ ∆p∆qu ≡ 0,

(ii) |p− q| ≥ 4 =⇒ ∆q(Sp−1u∆pv) ≡ 0,

(iii) ∆q, Sq : Lp → Lp uniformly with respect to q and p.
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

(iv)
u =

∑
q≥−1

∆qu.

With these notations at our disposal, we now provide the definition of the inhomo-
geneous Besov space.

Definition 4.2.2. For (p, r, s) ∈ [1,+∞]2×R, the inhomogeneous Besov space Bs
p,r

is defined by
Bs
p,r = {u ∈ S ′(R2) : ‖u‖Bsp,r < +∞},

where

‖u‖Bsp,r ,


(∑

q≥−1 2rqs‖∆qu‖rLp
)1/r

if r ∈ [1,+∞[,

supq≥−1 2qs‖∆qu‖Lp if r = +∞.

Remark 4.2.3. We notice that:

(i) If s ∈ R+\N, the Hölder space noted by Cs coincides with Bs
∞,∞.

(ii)
(
Cs, ‖ · ‖Cs

)
is a Banach space coincides with the usual Hölder space Cs with

equivalent norms,

‖u‖Cs . ‖u‖L∞ + sup
x 6=y

|u(x)− u(y)|
|x− y|s

. ‖u‖Cs . (4.5)

(iii) If s ∈ N, the obtained space is so-called Hölder-Zygmund space and still noted
by Bs

∞,∞.

4.2.3 Paradifferential calculus

The well-known Bony’s decomposition [12] enables us to split formally the product
of two tempered distributions u and v into three pieces. Specifically:

Definition 4.2.4. For a given u, v ∈ S ′ we have

uv = Tuv + Tvu+ R(u, v),

where
Tuv =

∑
q

Sq−1u∆qv, R(u, v) =
∑
q

∆qu∆̃qv,
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with the notation
∆̃q = ∆q−1 + ∆q + ∆q+1.

Tuv is called paraproduct of v by u and R(u, v) the remainder term.

The mixed space-time spaces are stated as follows.

Definition 4.2.5. Let T > 0 and (β, p, r, s) ∈ [1,∞]3 × R. The spaces LβTB
s
p,r and

L̃βTB
s
p,r are defined respectively by:

LβTB
s
p,r ,

{
u : [0, T ]→ S

′
; ‖u‖LβTBsp,r =

∥∥(2qs‖∆qu‖Lp
)
`r

∥∥
LβT

<∞
}
,

L̃βTB
s
p,r ,

{
u : [0, T ]→ S

′
; ‖u‖L̃βTBsp,r =

(
2qs‖∆qu‖LβTLp

)
`r
<∞

}
.

The relationship between these spaces is given by the following embeddings. Let
ε > 0, then {

LβTB
s
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s−ε
p,r if r ≥ β,

LβTB
s+ε
p,r ↪→ L̃βTB

s
p,r ↪→ LβTB

s
p,r if β ≥ r.

(4.6)

Accordingly, we have the following interpolation result.

Corollary 4.2.6. Let T > 0, s1 < s < s2 and η ∈]0, 1[ such that s = ηs1 +(1−η)s2.
Then we have

‖u‖L̃βTBsp,r ≤ C‖u‖η
L̃βTB

s1
p,∞
‖u‖1−η

L̃βTB
s2
p,∞
. (4.7)

Now we shall state Bernstein’s inequalities, see for instance [5, 19].

Lemma 4.2.7. There exists a constant C > 0 such that for 1 ≤ a ≤ b ≤ ∞, for
every function u and every q ∈ N ∪ {−1}, we have

(i)

sup
|α|=k
‖∂αSqu‖Lb ≤ Ck2q

(
k+2
(

1
a
− 1
b

))
‖Squ‖La ,

(ii)
C−k2qk‖∆qu‖La ≤ sup

|α|=k
‖∂α∆qu‖La ≤ Ck2qk‖∆qu‖La .

A noteworthy consequence of Bernstein’s inequality (i) is the following embedding:

Bs
p,r ↪→ B s̃

p̃,r̃ whenever p̃ ≥ p,
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

with
s̃ < s− 2

(1

p
− 1

p̃

)
or s̃ = s− 2

(1

p
− 1

p̃

)
and r̃ ≤ r.

4.2.4 Useful results

The most results concerning the system (VDκ) rely strongly on a priori estimates in
Besov spaces for the transport-diffusion equation:{

∂ta+ v · ∇a− κ∆a = f

a|t=0 = a0.
(TDκ)

We start by the persistence of Besov regularity for (TDκ), whose proof may be found
for example in [5, 44].

Proposition 4.2.8. Let (s, r, p) ∈] − 1, 1[×[1,∞]2 and v be a smooth divergence-
free vector field. We assume that a0 ∈ Bs

p,r and f ∈ L1
loc(R+;Bs

p,r). Then for every
smooth solution a of (TDκ) and t ≥ 0 we have

‖a(t)‖Bsp,r ≤ CeCV (t)
(
‖a0‖Bsp,r +

∫ t

0

e−CV (τ)‖f(τ)‖Bsp,rdτ
)
,

with

V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ

and C being a constant which depends only on s and not on κ.

Next, we state the maximal smoothing effect result for (TDκ) in mixed time-space
spaces, whose proof can be found in [5, 44].

Proposition 4.2.9. Let (s, p1, p2, r) ∈]− 1, 1[×[1,+∞]3 and v be a divergence- free
vector field belonging to L1

loc(R+;Lip). Then for every smooth solution a of (TDκ)
we have

κ
1
r ‖a‖

L̃rtB
s+2

r
p1,p2

≤ CeCV (t)(1 + κt)
1
r

(
‖a0‖Bsp1,p2 + ‖f‖L1

tB
s
p1,p2

)
, ∀t ∈ R+. (4.8)

We end this paragraph by the Calderón-Zygmund estimate which is a deep result of
harmonic analysis.
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Proposition 4.2.10. Let p ∈]1,∞[ and v be a divergence-free vector field whose
vorticity ω ∈ Lp. Then ∇v ∈ Lp and

‖∇v‖Lp ≤ C
p2

p− 1
‖ω‖Lp , (4.9)

with C being a universal constant.

4.2.5 Vortex patch tool box

In this section we state some aspects and properties about admissible family of
vector fields often used in the definition of anisotropic Hölder spaces.

Definition 4.2.11. Let ε ∈]0, 1[. A family of vector fields X = (Xλ)λ∈Λ is said to
be admissible if and only if the following assertions hold.

(i) Regularity: Xλ, divXλ ∈ Cε ∀λ ∈ Λ.

(ii) Non-degeneracy: I(X) , infx∈R2 supλ∈Λ

∣∣Xλ(x)
∣∣ > 0.

The class X is equipped with the norm

‖̃Xλ‖Cε , ‖Xλ‖Cε + ‖divXλ‖Cε . (4.10)

Definition 4.2.12. Let X = (Xλ)λ∈Λ be an admissible family. The action of each
member Xλ on u ∈ L∞ is defined as the directional derivative of u along Xλ by the
formula

∂Xλu = div(uXλ)− u divXλ.

Now, we are in position to define the anisotropic Hölder spaces.

Definition 4.2.13. Let ε ∈]0, 1[ and X be an admissible family of vector fields. We
say that u ∈ Cε(X) if and only if u ∈ L∞ and satisfies for all λ ∈ Λ, ∂Xλu ∈ Cε−1

and supλ∈Λ ‖∂Xλu‖Cε−1 < +∞. The set Cε(X) is equipped with the canonical norm

‖u‖Cε(X) ,
1

I(X)

(
‖u‖L∞ sup

λ∈Λ
‖̃Xλ‖Cε + sup

λ∈Λ
‖∂Xλu‖Cε−1

)
. (4.11)

Let v be a time-dependent Lipschitz vector field and Ψ(t) its flow. The time evolution
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

of a given initial family X0 = (X0,λ)λ∈Λ is defined by,

Xt,λ(x) , X0,λΨ(t,Ψ−1(t, x)). (4.12)

Notice that Xt is nothing but the push-forward of X0 by the flow Ψ(t), and from
straightforward algebraic computations one finds that{

(∂t + v · ∇)Xt,λ = ∂Xt,λv if (t, x) ∈ R+ × R2

Xt,λ|t=0 = X0,λ.
(4.13)

One of the main feature of the family (Xt,λ)λ∈Λ is its commutation with the transport
operator ∂t + v · ∇. This implies an important consequence about the dynamics of
the tangential regularity of the vorticity subject to the system (VDκ). Actually, one
obtains easily the following result.

Proposition 4.2.14. Let (ωκ, ρκ) be a solution of the system (VDκ) and Xt ,

(Xt,λ)λ∈Λ be a family of vector fields satisfying the equations (4.13). Then we have(
∂t + vκ · ∇

)
∂Xt,λωκ = ∂Xt,λ∂1ρκ.

The following result deals with a special logarithmic result involving striated regu-
larity for the vorticity, see for instance [19].

Theorem 4.2.15. Let ε ∈]0, 1[ and X = (Xλ)λ∈Λ be a family of vector fields as in
the Definition 4.2.11. Let v be a divergence-free vector field such that its vorticity
ω belongs to L2 ∩Cε(X). Then there exists a constant C depending only on ε, such
that

‖∇v(t)‖L∞ ≤ C

(
‖ω(t)‖L2 + ‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(X)

‖ω(t)‖L∞

))
. (4.14)

We end this section with the following geometric definition.

Definition 4.2.16. Let ε > 0. A closed curve Σ is said to be of class C1+ε, if
there exists f ∈ C1+ε(R2) such that Σ is locally a zero set of f , i.e., there exists a
neighborhood V of Σ such that

Σ = f−1({0}) ∩ V, ∇f(x) 6= 0 ∀x ∈ V. (4.15)
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4.3 Smooth vortex patch

This section cares with more general class of initial data than the vortex patches
stated in Theorem 4.1.1. This theorem is a consequence of the following one.

Theorem 4.3.1. Let κ ∈ [0, 1], ε ∈]0, 1[ and take an admissible family of vector
fields X0 = (X0,λ)λ∈Λ according to the Definition 4.2.11. Let v0

κ be the initial velocity
with divv0

κ = 0, and such that its vorticity ω0
κ ∈ L2 ∩ Cε(X0). Assume that the

initial density ρ0
κ ∈ L2 ∩ C1+ε(X0) with ∇ρ0

κ ∈ L2. Then there exist a time T > 0

independent of κ and a unique solution (vκ, ρκ) for the system (Bκ), such that

• vκ ∈ L∞
(
[0, T ];Lip(R2)

)
and ωκ ∈ L∞

(
[0, T ];L2 ∩ L∞

)
;

• ρκ ∈ L∞
(
[0, T ];L2 ∩ Lip(R2)

)
.

Moreover, the family of vector fields transported by the flow defined in (4.12) still
remains, at every time, admissible of the class Cε and

ρκ(t) ∈ C1+ε(Xt), ωκ(t) ∈ Cε(Xt). (4.16)

We emphasize that the estimates of the solution in the above spaces are uniform with
respect to κ ∈ [0, 1].

The proof of Theorem 4.3.1 follows several steps that will be detailed in the following
subsections. To simplify the notations, we will omit the index κ.

4.3.1 A priori estimates for the vorticity and density

We intend to establish the following elementary persistence results on weak regular-
ities.

Proposition 4.3.2. Let (v, ρ) be a smooth solution of the system (Bκ) defined on
[0, T ]. Then, for every p ∈ [1,∞] and t ∈ [0, T ] the following assertions hold.

(i) ‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖LpeCV (t),

(ii) κ‖∇ρ‖L̃1
tB

2
∞,∞
≤ C(1 + κt)‖∇ρ0‖L∞eCV (t),

105



4 Local persistence of geometric structures for Boussinesq system with zero viscosity

(iii) ‖ω(t)‖Lp ≤ ‖ω0‖Lp + ‖∇ρ0‖LpeCV (t)t,

with the notation

V (t) =

∫ t

0

‖∇v(τ)‖L∞dτ.

Proof. (i) Applying the partial derivative ∂j to the density equation of (Bκ), one
obtains

∂t∂jρ+ v · ∇(∂jρ)− κ∆(∂jρ) = −∂jv · ∇ρ (4.17)

from which we infer the following classical estimate,

‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖Lp +

∫ t

0

‖∇ρ(τ)‖Lp‖∇v(τ)‖L∞dτ.

Gronwall’s inequality ensures that

‖∇ρ(t)‖Lp ≤ ‖∇ρ0‖LpeV (t).

(ii) Applying Proposition 4.2.9 to (4.17), one obtains

κ‖∇ρ(t)‖L̃1
tB

2
∞,∞
≤ CeCV (t)(1 + κt)

(
‖∇ρ0‖B0

∞,∞ +

∫ t

0

‖∇v(τ) · ∇ρ(τ)‖B0
∞,∞dτ

)
.

Then using the embedding L∞ ↪→ B0
∞,∞, one gets

κ‖∇ρ(t)‖L̃1
tB

2
∞,∞

≤ CeCV (t)(1 + κt)

(
‖∇ρ0‖L∞ +

∫ t

0

‖∇v(τ)‖L∞‖∇ρ(τ)‖L∞dτ
)

≤ CeCV (t)(1 + κt)
(
‖∇ρ0‖L∞ + ‖∇ρ‖L∞t L∞

)
.

Inserting the estimate (i) for p = ∞ into the last quantity of the above inequality,
we finally get

κ‖∇ρ(t)‖L̃1
tB

2
∞,∞
≤ C(1 + κt)‖∇ρ0‖L∞eCV (t). (4.18)

(iii) The Lp−estimate for the vorticity can be derived without any difficulty from
the first equation of (VDκ),

‖ω(t)‖Lp ≤ ‖ω0‖Lp +

∫ t

0

‖∇ρ(τ)‖Lpdτ

that we combine with (i) in order to get the desired estimate.
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4.3 Smooth vortex patch

4.3.2 A priori estimates for the co-normal regularity of the
density

The main result of this paragraph is to prove the persistence of the tangential
regularity for the density. This latter unknown obeys to the following transport-
diffusion equation {

∂tρ+ v · ∇ρ− κ∆ρ = 0

ρ|t=0 = ρ0.
(TDκ)

Proposition 4.3.3. Let v be a smooth free-divergence vector field and Xt =

(Xt,λ)λ∈Λ be the family defined in (4.12). Assume that ρ is a smooth solution of
(TDκ), then for every t ≥ 0 we have

‖∂Xt,λρ(t)‖Cε . eCV (t)(1 + κt)
(
‖∂X0,λ

ρ0‖Cε + ‖∇ρ0‖L∞‖X‖L̃∞t Cε
)
. (4.19)

Proof. Applying the directional derivative ∂Xt,λ to (TDκ), one gets{
∂t∂Xt,λρ+ v · ∇∂Xt,λρ− κ∆∂Xt,λρ = −κ[∆, Xt,λ]ρ

∂Xt,λρ|t=0 = ∂X0,λ
ρ0,

(4.20)

where [∆, Xt,λ] stands for the commutator between ∆ andXt,λ. According to [22, 41],
the commutator κ[∆, Xt,λ]ρ can be decomposed as follows

κ[∆, Xt,λ]ρ = F + κG,

where

F = 2κR(∇X i
t,λ, ∂i∇ρ) + κR(∆X i

t,λ, ∂iρ)

:= κF1 + κF2

and
G = 2T∇Xi

t,λ
∂i∇ρ+ 2T∂i∇ρ∇X i

t,λ + T∆Xi
t,λ
∂iρ+ T∂iρ∆X

i
t,λ.

To bound ∂Xt,λρ in Cε we apply Theorem 2 page 1461 in [41] to (4.20) which implies
that

‖∂Xt,λρ(t)‖Cε ≤ CeCV (t)
(
‖∂X0,λ

ρ0‖Cε + ‖F‖L̃1
tC

ε + (1 + κt)‖G‖L̃∞t Cε−2

)
(4.21)
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

• Estimate of ‖F‖L̃1
tC

ε. Using Bernstein’s inequality, one gets

‖∆qF1‖L1
tL
∞ ≤ C

∑
j≥q−4

‖∆j∇X‖L∞t L∞‖∆j∂i∇ρ‖L1
tL
∞ (4.22)

≤ C
∑
j≥q−4

‖∆jX‖L∞t L∞22j‖∆j∇ρ‖L1
tL
∞

≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

2−qε.

Multiplying both sides by 2qε and taking the supremum over q, it holds

‖F1‖L̃1
tC

ε ≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (4.23)

The estimate of F2 can be done in a similar way and one finds that

‖F2‖L̃1
tC

ε ≤ C‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (4.24)

Finally, combining (4.23) and (4.24), we end up with

‖F‖L̃1
tC

ε ≤ Cκ‖X‖L̃∞t Cε‖∇ρ‖L̃1
tB

2
∞,∞

. (4.25)

• Estimate of ‖G‖L̃∞t Cε−2. From the definition we have the splitting

G = 2T∇Xi
t,λ
∂i∇ρ+ 2T∂i∇ρ∇X i

t,λ + T∆Xi
t,λ
∂iρ+ T∂iρ∆X

i
t,λ

= 2G1 + 2G2 +G3 +G4.

We start by estimating G1 in L̃∞t Cε−2. For every q ≥ −1 we have from Bernstein’s
inequality

‖∆qG1‖L∞ ≤
∑
|j−q|≤4

‖∆q

(
Sj−1∇X∆j∂i∇ρ

)
‖L∞

≤ C
∑
|j−q|≤4

2j‖Sj−1∇X‖L∞‖∆j∇ρ‖L∞ .

Multiplying both sides by 2q(ε−2) and using once again Bernstein’s inequality we
deduce that

2q(ε−2)‖∆qG1‖L∞ ≤ C
∑
|j−q|≤4

2j2q(ε−2)
∑
l≤j−2

‖∆l∇X‖L∞‖∆j∇ρ‖L∞

≤ C
∑
|j−q|≤4

2q(ε−2)2j‖∆j∇ρ‖L∞
∑
l≤j−2

2l(1−ε)2lε‖∆lX‖L∞

≤ C‖X‖Cε
∑
|j−q|≤4

2(j−q)(2−ε)‖∆j∇ρ‖L∞ .
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4.3 Smooth vortex patch

Since L∞ ↪→ B0
∞,∞, then

‖G1‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (4.26)

The estimate of G2 is quite similar to G1 and one obtains

‖G2‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (4.27)

As to G3 we write for every q ≥ −1

‖∆qG3‖L∞ ≤ C
∑
|j−q|≤4

‖∆q

(
Sj−1∆X∆j∂iρ

)
‖L∞

≤ C
∑
|j−q|≤4

‖Sj−1∆X‖L∞‖∆j∇ρ‖L∞

≤ C‖∇ρ‖L∞
∑
|j−q|≤4

∑
l≤j−2

22l‖∆lX‖L∞ .

Multiplying both sides by 2q(ε−2), we obtain

2q(ε−2)‖∆qG3‖L∞ ≤ C‖X‖Cε‖∇ρ‖L∞
∑
|j−q|≤4
l≤j−2

2(q−l)(ε−2)

≤ C‖X‖Cε‖∇ρ‖L∞ .

Consequently,
‖G3‖L̃∞t Bε−2

∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (4.28)

The estimate of G4 is quite similar to the preceding ones

‖G4‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (4.29)

Putting together (4.26), (4.27), (4.28) and (4.29), we get

‖G‖L̃∞t Bε−2
∞,∞
≤ C‖X‖L∞t Cε‖∇ρ‖L∞t L∞ . (4.30)

Now, substituting (4.25) and (4.30) in (4.21), we end up with

‖∂Xt,λρ(t)‖Cε ≤ CeCV (t)
(
‖∂X0,λ

ρ0‖Cε+κ‖∇ρ‖L̃1
tB

2
∞,∞
‖X‖L̃∞t Cε+(1+κt)‖∇ρ‖L∞t L∞‖X‖L∞t Cε

)
.

(4.31)
By invoking (i)-(ii) of the Proposition 4.3.2 we obtain

‖∂Xt,λρ(t)‖Cε ≤ CeCV (t)
(
‖∂X0,λ

ρ0‖Cε + (1 + κt)‖∇ρ0‖L∞‖X‖L̃∞t Cε
)
.
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

Hence
‖∂Xt,λρ(t)‖Cε ≤ C0e

CV (t)(1 + κt)
(
1 + ‖X‖L̃∞t Cε

)
.

4.3.3 A priori estimates for the co-normal regularity ∂Xt,λ
ω

In this paragraph we shall focus on the estimate of the conormal regularity ∂Xt,λω
in the Hölder space Cε−1. For this aim we prove

Proposition 4.3.4. Let (v, ρ) be any smooth solution of the system (Bκ) on [0, T ],
and take any time dependent family of vector field Xt = (Xt,λ)λ∈Λ transported by the
flow of v. Then we have for all t ∈ [0, T ], λ ∈ Λ

(i) I(Xt,λ) ≥ I(X0,λ)e
−V (t),

(ii) ‖divXt,λ‖Cε ≤ ‖divX0,λ‖CεeCV (t) for every λ ∈ Λ,

(iii) ‖∂Xt,λω(t)‖Cε−1 +‖̃Xt,λ‖Cε ≤ C
(
‖∂X0,λ

ω0‖Cε−1 +‖̃X0,λ‖Cε+‖∂X0,λ
ρ0‖Cε

)
eCΦ(t),

with
Φ(t) := (t+ κt2)‖∇ρ0‖L∞eCV (t) + V (t) + t

Proof. (i) Let us bound from below I(Xt,λ) by applying the time derivative to
∂X0,λ

Ψ(t, x) and invoking the fact

Xt,λ(Ψ(t, x)) = ∂X0,λ
Ψ(t, x)

and ∂tΨ(t, x) = v(t, ψ(t, x)) with Ψ(0, x) = x. We deduce that

∂t∂X0,λ
Ψ(t, x) = ∇v(t,Ψ(t, x)) · ∂X0,λ

Ψ(t, x), ∂X0,λ
Ψ(0, x) = X0,λ.

The time reversibility of this equation combined with Gronwall’s inequality tell us

|X0,λ(x)| ≤ eV (t)
∣∣∂X0,λ

Ψ(t, x)
∣∣, ∀(λ, x) ∈ Λ× R2.

In view of (ii)-Definition 4.2.11 we get the desired estimate.
(ii) Applying "div" operator to (4.13), an easy computation combined with divv = 0
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4.3 Smooth vortex patch

shows us that divXt,λ satisfies

(∂t + v · ∇)divXt,λ = 0.

Using Proposition 4.2.8 yields

‖divXt,λ‖Cε ≤ CeCV (t)‖divX0,λ‖Cε . (4.32)

(iii) To bound ∂Xt,λω in Cε−1, we first recall from Proposition 4.2.14 that

(∂t + v · ∇)∂Xt,λω = ∂Xt,λ∂1ρ.

In accordance with Proposition 4.2.8, we readily get

∥∥∂Xt,λω(t)
∥∥
Cε−1 ≤ CeCV (t)

(∥∥∂X0,λ
ω0
∥∥
Cε−1 +

∫ t

0

e−CV (τ)‖∂Xτ,λ∂1ρ(τ)‖Cε−1dτ
)
.

(4.33)
Let us estimate ‖∂Xτ,λ∂1ρ(τ)‖Cε−1 . To do this, starting by the identity

∂Xτ,λ∂1ρ = ∂1(∂Xτ,λρ)− ∂∂1Xτ,λρ

combined with the following estimate proved in Corollary 1 of [39]

‖∂jX · ∇f‖Cε−1 ≤ C‖∇f‖L∞ ‖̃X‖Cε

one obtains in particular

‖∂Xt,λ∂1ρ(t)‖Cε−1 ≤ ‖∂Xt,λρ(t)‖Cε + ‖∇ρ(t)‖L∞ ‖̃Xt,λ‖Cε .

Plugging the last estimate into (4.33), it follows

‖∂Xt,λω(t)‖Cε−1 ≤ CeCV (t)

(
‖∂X0,λ

ω0‖Cε−1 +

∫ t

0

e−CV (τ)‖∂Xτ,λρ(τ)‖Cεdτ(4.34)

+

∫ t

0

e−CV (τ)‖∇ρ(τ)‖L∞ ‖̃Xτ,λ‖Cεdτ
)
.

For the term ‖∂Xt,λρ(t)‖Cε , we may apply (4.31) and (4.18) and therefore (4.34)
becomes

e−CV (t)‖∂Xt,λω(t)‖Cε−1 . ‖∂X0,λ
ω0‖Cε−1 + ‖∂X0,λ

ρ0‖Cεt (4.35)

+

∫ t

0

e−CV (τ)(1 + κτ)
(
‖∇ρ0‖L∞ + ‖∇ρ‖L∞τ L∞

)
‖̃Xλ‖L∞τ Cεdτ.
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4 Local persistence of geometric structures for Boussinesq system with zero viscosity

To estimate ‖̃Xλ‖L∞t Cε , we apply again Proposition 4.2.8 to (4.13),

‖Xt,λ‖Cε ≤ CeCV (t)
(
‖X0,λ‖Cε +

∫ t

0

e−CV (τ)‖∂Xτ,λv(τ)‖Cεdτ
)
.

As to ‖∂Xt,λv(t)‖Cε we use the following estimate proved in [5, 19],

‖∂Xt,λv(t)‖Cε . ‖∇v(t)‖L∞ ‖̃Xt,λ‖Cε + ‖∂Xt,λω(t)‖Cε−1 .

That we get

‖Xt,λ‖Cε ≤ CeCV (t)

(
‖X0,λ‖Cε+

∫ t

0

e−CV (τ)
(
‖∇v(τ)‖L∞ ‖̃Xτ,λ‖Cε+‖∂Xτ,λω(τ)‖Cε−1

)
dτ

)
.

Since ‖̃Xt,λ‖Cε = ‖Xt,λ‖Cε + ‖divXt,λ‖Cε , then the last estimate combined with (ii)
provides

e−CV (t)‖̃Xt,λ‖Cε . ‖̃X0,λ‖Cε+

∫ t

0

e−CV (τ)
(
‖∇v(τ)‖L∞ ‖̃Xτ,λ‖Cε+‖∂Xτ,λω(τ)‖Cε−1

)
dτ.

(4.36)
Adding (4.35) and (4.36) and setting Π(t) := e−CV (t)

(
‖∂Xt,λω(t)‖Cε−1 + ‖̃Xt,λ‖Cε

)
,

we find

Π(t) . Π(0)+‖∂X0,λ
ρ0‖Cεt+

∫ t

0

(
(1+κτ)(‖∇ρ0‖L∞+‖∇ρ‖L∞τ L∞)+‖∇v(τ)‖L∞+1

)
Π(τ)dτ.

Using Gronwall’s inequality we obtain

Π(t) .
(
Π(0) + ‖∂X0,λ

ρ0‖Cε
)
e(1+κt)t‖∇ρ0‖L∞+(1+κt)t‖∇ρ‖L∞t L∞+CV (t)+Ct.

Finally, from Proposition 4.3.2-(i) we deduce that

Π(t) .
(
Π(0) + ‖∂X0,λ

ρ0‖Cε
)
e(1+κt)t‖∇ρ0‖L∞eCV (t)+CV (t)+Ct. (4.37)

4.3.4 Regularity persistence

This part is concerned with the regularity persistence of the prescribed initial reg-
ularity. The basic ingredient is to get an estimate for the Lipschitz norm of the
velocity for short time. The main result is the following.
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4.3 Smooth vortex patch

Proposition 4.3.5. Under the assumptions of the Theorem 4.3.1, the solution (v, ρ)

of (Bκ) can be defined on an interval [0, T ] such that T is related to the size of the
initial data with the persistence result:

∀t ∈ [0, T ], ‖ω(t)‖L2∩L∞ + ‖ω(t)‖Cε(Xt) + ‖∇v(t)‖L∞ + ‖̃Xt,λ‖Cε ≤ C0, (4.38)

with C0 a constant depending on the initial data.

Proof. The basic ingredient of the proof is to get an a priori estimate for the Lipschitz
norm of the velocity over a time interval [0, T ] that can be quantified with respect
to the initial data. By virtue of Proposition 4.3.2-(iii) and Proposition 4.3.4-(iii)
we deduce that

‖∂Xt,λω(t)‖Cε−1 + ‖ω(t)‖L∞ ‖̃Xt,λ‖Cε ≤ C0e
CΦ(t),

with the estimate
0 ≤ Φ(t) ≤ C0(1 + t2)eCV (t). (4.39)

Therefore combining this estimate with the definition 4.2.13 and Proposition 4.3.4-
(i) yields

‖ω(t)‖Cε(Xt) ≤ C0e
CΦ(t). (4.40)

Thus plugging this estimate into the logarithmic estimate (4.14) and using Propo-
sition 4.3.2 we find

‖∇v(t)‖L∞ ≤ C
(
‖ω0‖L2 + t‖∇ρ0‖L2eCV (t)

)
+ C‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(Xt)
‖ω(t)‖L∞

)
.

(4.41)
As the function x ∈]0,+∞[ 7→ x log(e+ a/x) is strictly increasing and x ∈]0,+∞[ 7→
log(e+ a/x) is strictly decreasing then we obtain

‖ω(t)‖L∞ log

(
e+
‖ω(t)‖Cε(Xt)
‖ω(t)‖L∞

)
≤ C0(1 + t)eCV (t) log

(
e+
‖ω(t)‖Cε(Xt)

C0

)
Notice that we have used the following estimate which follows from Proposition
4.3.2-(iii)

‖ω(t)‖L∞ ≤ C0(1 + t)eCV (t).

Consequently (4.41) becomes

‖∇v(t)‖L∞ ≤ C0(1 + t)eCV (t) + C0(1 + t)eCV (t) log

(
e+
‖ω(t)‖Cε(Xt)

C0

)
.(4.42)
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Applying (4.39) and (4.40) we get

‖∇v(t)‖L∞ ≤ C0(1 + t)eCV (t) + C0(1 + t)eCV (t)
(
1 + Φ(t)

)
≤ C0(1 + t2)eC

∫ t
0 ‖∇v(τ)‖L∞dτ . (4.43)

From this we deduce the existence of T > 0 depending on the initial data through
C0 such that

∀t ∈ [0, T ], ‖∇v(t)‖L∞ ≤ 2C0, (4.44)

which implies in turn that all the involved norms are bounded over the time interval
[0, T ]. The proof of Theorem 4.3.1 follows easily from Proposition 4.3.5. Indeed, up
to now we have established the suitable a priori estimates required for the regularity
persistence which are enough to construct a unique solution for short time. This
latter part concerning the construction of the solutions is classical and is well-detailed
in various references such as [19, 39].

4.3.5 Proof of Theorem 4.1.1.

The proof of Theorem 4.1.1 follows from Theorem 4.3.1. To see this, it suffices to
build an initial admissible family X0 = (X0,λ)0≤λ≤1 such that 1Ω0 ∈ Cε(X0) and to
check the regularity persistence of the boundary. This is very classical and was done
first in [19], and for the convenience of the reader we shall reproduce here the basic
ingredients. Since the initial boundary ∂Ω0 is a Jordan curve in the class C1+ε, then
according to the definition 4.2.16, there exists a local chart (f0, V0), with V0 is a
neighborhood of ∂Ω0 such that{

f0 ∈ C1+ε(R2), ∇f0(x) 6= 0 on V0

∂Ω0 = f−1
0 ({0}) ∩ V0.

On the other hand, take χ ∈ D(R2), with 0 ≤ χ ≤ 1 and

supp χ ⊂ V0, χ(x) = 1 ∀x ∈ W0,

where W0 is a small neighborhood of ∂Ω0 strictly contained in V0. Next, define the
family X0 = (X0,λ)λ∈{0,1} by:

X0,0(x) = ∇⊥f0(x) and X0,1(x) = (1− χ(x))

(
1

0

)
. (4.45)
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We observe that X0 = (X0,λ)λ∈{0,1} is non-degenerate, and each member X0,λ with
its divergence belong to Cε(R2), then according to the Definition 4.2.11, we conclude
that X0 is an admissible family. Moreover, from the identity

∇ω0(x) = −~n(x)dσ∂Ω0

with ~n being the outward unit normal vector to the boundary and dσ∂Ω0 is the
arc-length measure on ∂Ω0, we check easily that

∀λ ∈ {0, 1}, X0,λ(x) · ∇ω0(x) = 0.

In addition, since ρ0 ∈ C1+ε(R2) then ρ0 ∈ C1+ε(X0). Consequently, in view of the
Theorem 4.3.1, the system (Bκ) is locally well-posed, with the persistence regularity
detailed in Proposition 4.3.5. i.e., there exists a unique local solution (vκ, ρκ) ∈(
L∞
(
[0, T ];Lip(R2)

))2

for (Bκ).
Now, it remains to check the regularity of the transported boundary ∂Ωt. We
parametrize the boundary ∂Ω0 by defining the periodic curve γ0 ∈ C1+ε([0, 2π];R2)

as the solution of the following ordinary differential equation{
∂σγ

0(σ) = X0,0(γ0(σ))

γ0(0) = x0, x0 ∈ ∂Ω0.

To define the evolution parametrization of ∂Ωt, we simply set for t ≥ 0,

γ(t, σ) , Ψ(t, γ0(σ)).

Clearly, the curve γ(t, ·) is the transport of γ0 by the flow Ψt and by the criterion
of differentiation with respect to σ, we readily get

∂σγ(t, σ) =
(
∂X0,0Ψ

)
(t, γ0(σ)).

Since ∂X0,0Ψ(t) ≡ Xt,0 ◦Ψ(t), with Xt,0 is the push-forward of X0,0 by the flow Ψ(t),
then in view of the classical estimate

‖Xt,0 ◦Ψ(t)‖Cε ≤ ‖Xt,0‖Cε‖∇Ψ(t)‖εL∞
≤ ‖Xt,0‖CεeCV (t)

≤ C0,

where we have used the fact ‖∇Ψ(t)‖L∞ ≤ eCV (t) and the estimates of Proposi-
tion 4.3.5. Therefore ∂X0,0Ψ(t) ∈ L∞([0, T ]; Cε) and t ∈ [0, T ] 7→ γt belongs to

115



4 Local persistence of geometric structures for Boussinesq system with zero viscosity

L∞([0, T ];C1+ε([0, 2π];R2). This concludes the regularity persistence of the bound-
ary ∂Ωt and so the proof of the Theorem 4.1.1 is finished.

4.4 Inviscid limit for velocities and densities

This section cares essentially with the proof of the Theorem 4.1.3.

4.4.1 Proof of Theorem 4.1.3

(i) Setting U = vκ − v, Θ = ρκ − ρ and P = πκ − π. Then, a straightforward
computation provides that (U,Θ, P ) satisfies,

∂tU + vκ · ∇U +∇P = Θe2 − U · ∇v (t, x) ∈ R+ × R2,

∂tΘ + vκ · ∇Θ− κ∆Θ = −U · ∇ρ+ κ∆ρ (t, x) ∈ R+ × R2,

div U = 0,

U|t=0 = U0, Θ|t=0 = Θ0.

(4.46)

• First case: p = 2. Dotting U−equation (resp. Θ−equation) by U (resp. Θ)
respectively. After some integration by parts and the convective terms integrate to
zero, due to the fact div vκ = div v = 0. Thus we have

1

2

d

dt
‖U(t)‖2

L2 ≤ ‖Θ(t)‖L2‖U(t)‖L2 + ‖U(t)‖2
L2‖∇v(t)‖L∞ (4.47)

≤ 1

2

(
‖Θ(t)‖2

L2 + ‖U(t)‖2
L2

)
+ ‖U(t)‖2

L2‖∇v(t)‖L∞

≤ C
(
‖∇v(t)‖L∞ + 1

)(
‖Θ(t)‖2

L2 + ‖U(t)‖2
L2

)
and

1

2

d

dt
‖Θ(t)‖2

L2 + κ‖∇Θ(t)‖2
L2 ≤ κ‖∇ρ(t)‖L2‖∇Θ(t)‖L2 + ‖U(t)‖L2‖∇ρ(t)‖L∞‖Θ(t)‖L2

≤ κ

2
‖∇ρ(t)‖2

L2 +
κ

2
‖∇Θ(t)‖2

L2 +
1

2
‖∇ρ(t)‖L∞

(
‖U(t)‖2

L2 + ‖Θ(t)‖2
L2

)
.

Here, we have used two times Young’s inequality. Carrying over the term
κ
2
‖∇Θ(t)‖2

L2 , to the left-hand side, thus we have

1

2

d

dt
‖Θ(t)‖2

L2 ≤
κ

2
‖∇ρ(t)‖2

L2 +
1

2
‖∇ρ(t)‖L∞

(
‖U(t)‖2

L2 + ‖Θ(t)‖2
L2

)
. (4.48)
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Collecting (4.47) and (4.48), and define Σ(t) = ‖U(t)‖2
L2 + ‖Θ(t)‖2

L2 , it happens

d

dt
Σ(t) ≤ κ‖∇ρ(t)‖2

L2 + Σ(t)
(
‖∇v(t)‖L∞ + ‖∇ρ(t)‖L∞ + 1

)
.

Gronwall’s inequality then implies

Σ(t) ≤ e
V (t)+‖∇ρ‖

L1
t L
∞+t(

Σ(0) + κ‖∇ρ‖2
L1
tL

2

)
. (4.49)

For the two terms ‖∇ρ‖L1
tL
∞ and ‖∇ρ‖2

L1
tL

2 , we employ the proposition 4.3.2-(i)
(which remains true for κ = 0) for p =∞ and p = 2. Then, in view of Σ(0) = 0 we
have

Σ(t) ≤ κeC(V (t)+‖∇ρ0‖L∞ (eCV (t)+1)t)‖∇ρ0‖2
L2t. (4.50)

Even though, all the involved norms are bounded over [0, T ], we infer that

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖L2 + ‖ρκ(t)− ρ(t)‖L2

)
≤ C0κ

1/2. (4.51)

• Second case: 2 < p ≤ ∞. Using in general case the following classical complex
interpolation

‖f‖Lp ≤ C‖f‖2/p

L2 ‖f‖1−2/p
L∞ .

Then, in view of (4.51) we deduce that

‖vκ(t)− v(t)‖Lp + ‖ρκ(t)− ρ(t)‖Lp ≤ C0κ
1
p
(
‖vκ(t)− v(t)‖1−2/p

L∞ + ‖ρκ(t)− ρ(t)‖1−2/p
L∞

)
(4.52)

To get bound the two last quantities, employing in general case the so-called
Gagliardo-Nirenberg inequality

‖f‖L∞ . ‖f‖1/2

L2 ‖∇f‖1/2
L∞ . (4.53)

Thus we get in view of (4.44), (4.51) and proposition4.3.2-(i) that

‖vκ(t)− v(t)‖L∞ ≤ ‖vκ(t)− v(t)‖1/2

L2 ‖∇vκ(t)−∇v(t)‖1/2
L∞

≤ ‖vκ(t)− v(t)‖1/2

L2

(
‖∇vκ(t)‖L∞ + ‖∇v(t)‖L∞

)1/2

≤ C0κ
1/4.
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Similarly

‖ρκ(t)− ρ(t)‖L∞ ≤ ‖ρκ(t)− ρ(t)‖1/2

L2 ‖∇ρκ(t)−∇ρ(t)‖1/2
L∞

≤ ‖ρκ(t)− ρ(t)‖1/2

L2

(
‖∇ρκ(t)‖L∞ + ‖∇ρ(t)‖L∞

)1/2

≤ C0κ
1/4‖∇ρ0‖1/2

L∞e
C(Vκ(t)+V (t))

≤ C0κ
1/4.

Plugging the last two estimates in (4.52), then with the notation C0 =

C(‖∇ρ0‖L2∩L∞ , T ), we could obtain for p ∈ [2,∞]

sup
t∈[0,T ]

(
‖vκ(t)− v(t)‖Lp + ‖ρκ(t)− ρ(t)‖Lp

)
≤ C0κ

1/4+1/2p (4.54)

this finishes the proof of (i).
(ii) Recall that

Ψκ(t, x) = x+

∫ t

0

vκ(τ,Ψκ(τ, x))dτ, Ψ(t, x) = x+

∫ t

0

v(τ,Ψ(τ, x))dτ

We intend to prove that (Ψκ)κ converges uniformly towards Ψ locally in time when
κ goes to 0. To do this, we have for every κ > 0

(4.55)

|Ψκ(t, x)−Ψ(t, x)| ≤
∫ t

0

∣∣vκ(τ,Ψκ(τ, x)
)
− v
(
τ,Ψκ(τ, x)

)∣∣dτ︸ ︷︷ ︸
(I)

+

∫ t

0

∣∣v(τ,Ψκ(τ, x)
)
− v
(
τ,Ψ(τ, x)

)∣∣dτ︸ ︷︷ ︸
(II)

The term (I) comes immediately from (4.54), that is for t ∈ [0, T ]

(I) ≤ C0κ
1/4.

Concerning (II), using the following general estimate

∣∣f ◦Ψκ − f ◦Ψ
∣∣ =

∣∣f ◦Ψκ − f ◦Ψ
∣∣

|Ψκ −Ψ|
|Ψκ −Ψ|

≤ ‖∇f‖L∞‖Ψκ −Ψ‖L∞ .

Thus we have

(II) ≤
∫ t

0

‖∇v(τ)‖L∞‖Ψκ(τ)−Ψ(τ)‖L∞dτ.
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Adding (I) and (II) and insert them in (4.55), we shall get for x ∈ R2

|Ψκ(t, x)−Ψ(t, x)| . C0κ
1/4 +

∫ t

0

‖∇v(τ)‖L∞‖Ψκ(τ)−Ψ(τ)‖L∞dτ. (4.56)

Gronwall’s inequality implies for every t ∈ [0, T ]

‖Ψκ(t)−Ψ(t)‖L∞ . C0κ
1/4,

which achieves the proof of (ii), so the Theorem 4.1.3.
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5 Appendix

5.1 Description of the models

5.1.1 Effects of rotation and stratification

The atmosphere and ocean are shallow layers of fluid on a sphere. Shallow or super-
ficial because their thickness is much less than their horizontal extent. Their motion
is strongly influenced by two effects: rotation and stratification.In this subsection,
we consider how the equations of motion are affected by these effects. First, we
consider some elementary effects of rotation on a fluid and derive the Coriolis and
centrifugal forces. Then, we discuss the Boussinesq approximation to the equations
of motion that are appropriate for large-scale flow in the ocean.

Example. In most geophysical systems, the fluid density varies, but not greatly,
around a mean value. For example, the average temperature and salinity in the
ocean are T = 4◦C and S = 34.7, to which corresponds a density ρ = 1028kg/m3 at
surface pressure. Variations in density within one ocean basin rarely exceed 3kg/m3.
Even in estuaries where fresh river waters S = 0 ultimately turn into salty seawater’s
S = 34.7, the relative density difference is less than 3/100.

By contrast, the air of the atmosphere becomes gradually more rarefied with
altitude, and its density varies from a maximum at ground level to nearly zero at
great heights, thus covering a 100/100 range of variations. Most of the density
changes, however, can be attributed to hydrostatic pressure effects, leaving only a
moderate variability caused by other factors. Furthermore, weather patterns are
confined to the lowest layer, the troposphere approximately 10km thick, within
which the density variations responsible for the winds are usually no more than
5/100.
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5.1.2 Equations of motion in rotating frame

Newton’s second law of motion, that the acceleration of a body is proportional to
the imposed force divided by the body’s mass, applies in so-called inertial frames of
reference, that is to say, frames that are stationary or moving only with a constant
rectilinear velocity relative to the distant galaxies. Now, the earth spins round its
own axis with a period of almost 24 hours and so the surface of the earth manifestly
is not an inertial frame. Nevertheless, it is very convenient to describe the flow
relative to earth’s surface (which in fact is moving at speeds of up to a few hundreds
of meters per second), rather than in some inertial frame. This necessitates recasting
the equations into a form that is appropriate in a rotating frame of reference.

5.1.3 Rate of change of vector

Consider first a vector C of constant length rotating relative to an inertial frame
at a constant angular velocity Ω. Then in rotating frame with that same angular
velocity it appears stationary and constant. If in small interval of time δt the vector
C rotates through a small angle δλ then the change in C (see Figure 1.), is given
by

δC = |C| cosϑδλm, (5.1)

where m is the unit vector in the direction of change of C, which is perpendicular
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to both C and Ω. But the rate of change of the angle λ is just, by definition, the
angular velocity so that δλ = |Ω|δt and

δC = |C||Ω| sin ϑ̂mδt = Ω×C δt, (5.2)

using the definition of the vector cross product ×, where ϑ̂ = π
2
− ϑ is the angle

between Ω and C. Thus (dC
dt

)
I

= Ω×C, (5.3)

where the left-hand side is the rate of change of C.

Now consider a vector B that changes in the inertial frame. In a small time δt
the change in B is related to the change seen in the inertial frame by

(δB)I = (δB)R + (δB)rot (5.4)

where the terms are, respectively, the change seen in the inertial frame, the change
due to the vector itself changing as measured in the rotating frame, and the change
due to the rotation. Using (5.2), we can write (δB)rot = Ω×Bδt, and so the rates
of change of the vector B in the rates of change of the vector B in the inertial and
rotating frames are related by(dB

dt

)
I

=
(dB
dt

)
R

+ Ω×B. (5.5)

This relation applies to a vector B that, as measured at any one time, is the same
in both inertial and rotating frames.

5.1.3.1 Velocity and acceleration in rotating frame

The velocity of a body is not measured to be the same in the inertial and rotating
frames, so care must be taken when applying (5.5) to velocity. First apply (5.5) to
r, the position of a particle. We get(dr

dt

)
I

=
(dr
dt

)
R

+ Ω× r, (5.6)

or
vI = vR + Ω× r. (5.7)
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Above, vR and vI refer to the relative and inertial velocity, respectively, and (5.7)
connect the two later quantities. Using once again (5.5) for the time variation of
vR, we must obtain (dvR

dt

)
I

=
(dvR
dt

)
R

+ Ω× vR, (5.8)

or, we employ (5.7), to get( d
dt

(vI −Ω× r)
)
I

=
(dvR
dt

)
R

+ Ω× vR, (5.9)

since (dvI
dt

)
I

=
(dvR
dt

)
R

+ Ω× vR +
dΩ

dt
× r + Ω×

(dr
dt

)
I
. (5.10)

So, in view of (dr
dt

)
I

=
(dr
dt

)
R

+ Ω× r = vR + Ω× r, (5.11)

if we suppose that the rate of rotation is constant, (5.10) becomes(dvR
dt

)
R

=
(dvI
dt

)
I
− 2Ω× vR −Ω× (Ω× r). (5.12)

This equation may be interpreted as follows. The term on the left-hand side is the
rate of change of the relative velocity as measured in the rotating frame. The first
term on the right-hand side is the rate of change of the inertial velocity as measured
in the inertial frame. The second and third terms on the right-hand side are the
Coriolis force and the centrifugal force per unit mass.

Centrifugal force

If r⊥ is the perpendicular distance from the axis of rotation (see Figure.1 and sub-
stitute r for C), then, because Ω is perpendicular to r⊥, we get Ω × r = Ω × r⊥.
Then, the fact that Ω× (Ω× r⊥) = (Ω · r⊥)Ω− (Ω · Ω)r⊥ and noting that the first
term vanishes, we deduce that the centrifugal force per unit mass is expressed as
follows

Fce = −Ω× (Ω× r) = Ω2r⊥. (5.13)

Sometimes, the centrifugal force is written as the gradient of a scalar potential

Fce = −∇Φce, (5.14)

where Φce = −Ω2(r⊥)2

2
= − (Ω×r⊥)2

2
.
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Coriolis force

The Coriolis force per unit mass is expressed by

FCo = −2Ω× vR. (5.15)

It plays a central role in much of geophysical fluid dynamics. Some basic properties
of Coriolis force are cited bellow.

(i) There is no Coriolis force on bodies that are stationary in the rotating frame.

(ii) The Coriolis force acts to deflect moving bodies at right angles to their direc-
tion of travel.

(iii) The Coriolis force does no work on a body because it is perpendicular to the
velocity, so

vR · (Ω× vR) = 0.

Momentum equation in rotating frame

Since (5.11) simply relates the accelerations of a particle in the inertial and rotating
frames, then in the rotating frame of reference, the momentum equation is reads as
follows

Dv

Dt
+ 2Ω× v = −1

ρ
∇p−∇Φ, (5.16)

where we have integrated the centrifugal term into the potential Φ and we have
dropped the subscript R. Henceforth, unless we need to be explicit, all velocities
without a subscript will be considered to be relative to the rotating frame.

Mass and tracer conservation in a rotating frame

Let φ be a scalar field which obeys in the inertial frame

Dφ

Dt
+ φ∇ · vI = 0. (5.17)
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Now, observes in both rotating and inertial frame measure the same value of φ.
Furthermore, Dφ

Dt
is the rate of change of φ associated with a material parcel, and

hence is reference frame invariant. Thus, we can write

(
Dφ

Dt
)R = (

Dφ

Dt
)I , (5.18)

where (Dφ
Dt

)R = (∂φ
∂t

)R + vR · ∇φ and (Dφ
Dt

)I = (∂φ
∂t

)I + vI · ∇φ and the local temporal
derivatives (∂φ

∂t
)R and (∂φ

∂t
)I are evaluated at fixed locations in the rotating and

inertial frames, respectively. Using (5.7), one gets

∇ · vI = ∇ · (vR + Ω× r) = ∇ · vR, (5.19)

because ∇· (Ω× r) = 0. Thus, collecting (5.18) and (5.19), (5.17) is equivalent to

Dφ

Dt
+ φ∇ · vR = 0. (5.20)

This means that, the equation for the evolution of a scalar field whose measured
value is the same in rotating and inertial frames is unchanged by the presence of
rotation. In particular, the mass conservation equation is unchanged by the presence
of rotation.

Cartesian approximations: the tangent plane

The f-plane

Though the rotation of the earth is central for many dynamical phenomena, the
sphericity of the earth is not always so, this is especially true for phenomena on a
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scale somewhat smaller than global where the use of spherical coordinates becomes
awkward, and it is more convenient to use a locally Cartesian representation of the
equations. Referring to the red line in Figure 2. we will define a plane tangent
to the surface of the earth at a latitude ϑ0, and then use a Cartesian coordinate
system (x, y, z) to describe motion on that plane. For small excursions on the plane,
(x, y, z) = (aλ cosϑ0, a(ϑ − ϑ0), z). Then, the velocity is v = (u, v, w), so that u, v
and w are the components of the velocity in the tangent plane. Thus, the momentum
equations for the flow in this plane are expressed by

∂u

∂t
+ (v · ∇)u+ 2(Ωyw − Ωzv) = −1

ρ

∂p

∂x
(5.21)

∂v

∂t
+ (v · ∇)v + 2(Ωzu− Ωxw) = −1

ρ

∂p

∂y
(5.22)

∂w

∂t
+ (v · ∇)w + 2(Ωxv − Ωyu) = −1

ρ

∂p

∂z
− g, (5.23)

where the rotation vector Ω = Ωxi+ Ωyj+ Ωzk and Ωx = 0, Ωy = Ω cosϑ0 and Ωz =

Ω sinϑ0. If we make the traditional approximation, and so ignore the components
of Ω not in the direction of the local vertical, then the above equations become

Du

Dt
− f0v = −1

ρ

∂p

∂x
,

Dv

Dt
+ f0u = −1

ρ

∂p

∂y
,

Dw

Dt
= −1

ρ

∂p

∂z
− g, (5.24)

where f0 = 2Ωz = 2Ω sinϑ0. Defining the horizontal velocity vector u = (u, v, 0),
the first two equations may be written as

Du

Dt
+ f0 × u = −1

ρ
∇zp, (5.25)

where Du
Dt

= ∂u
∂t

+ v · ∇u and f0 = 2Ω sinϑ0k = f0k and k is the direction perpen-
dicular to the plane.

The β-plane approximation

The magnitude of the vertical component of rotation varies with latitude, and this
has important dynamical consequences. We can approximate this effect by allowing
the effective rotation vector to vary. Thus, for small variations in latitude, we note
that

f = 2Ω sinϑ = 2Ω sinϑ0 + 2Ω(ϑ− ϑ0) cosϑ0,
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then on the tangent plane we may simulate this by allowing the Coriolis parameter
to vary as

f = f0 + βy,

where f0 = 2Ω sinϑ0 and β = ∂f
∂y

= 2Ω cosϑ0
a

. This important approximation is known
as the β-plane approximation which captures the most important dynamical effects
of sphericity. The β-plane horizontal momentum equations are read as follows

Du

Dt
+ f × u = −1

ρ
∇zp, (5.26)

where f = (f0+βy)k. The mass conservation equations in the β-plane approximation
are the same as the usual Cartesian f−plane equations.

5.1.4 Equations for a stratified ocean: the Boussinesq
approximation

The density variations in the ocean are quite small compared to the mean density,
and we may exploit this to derive the motion equations. Let us first examine how
much density does vary in the ocean.

Variation of density in the ocean

The variations of density in the ocean are due to three effects: the compression
of water by pressure (still denoted by ∆pρ), the thermal expansion of water if its
temperature changes (∆Tρ), and the saline contraction if its salinity changes(∆Sρ).
How big are these? An appropriate equation of state to approximately evaluate
these effects is the linear one

ρ = ρ0[1− βT (T − T0) + βS(S − S0) + βpp], (5.27)

where βT ≈ 2 × 10−4K−1, βS ≈ 10−3g/kg−1 and βp = 1/(ρ0c
2
s) ≈ 4.4 × 10−10Pa−1,

with cs ≈ 1500ms−1.
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5.1.5 The Boussinesq equations

The Boussinesq equations are a set of equations that exploit the smallness of density
variations in liquids. First, let us note

ρ = ρ0 + δρ(x, y, z, t) = ρ0 + ρ̂(z) + ρ′(x, y, z, t) = ρ̃(z) + ρ′(x, y, z, t), (5.28)

where ρ0 is a constant and we assume that

|ρ̂|, |ρ′|, |δρ << ρ0. (5.29)

We need to assume that |ρ′| << |ρ̂|, but this is usually the case of ocean. The
horizontal gradients (gradients at constant z, ∇z) satisfy ∇zp = ∇zp

′ = ∇zδp.
To obtain the Boussinesq equations we will just use the first expression of (5.28).
Associated with the reference density is a reference pressure that is defined to be
hydro-static balance with it. That is to say

p = p0(z) + δp(x, y, z, t), (5.30)

where |δp| << p0 and
dp0

dz
= −gρ0. (5.31)

5.1.5.1 Momentum equations

Let ρ = ρ0 + δρ, then the momentum equation reads as follows

(ρ0 + δρ)
(Dv

Dt
+ 2Ω× v

)
= −∇δp− ∂p0

∂z
k− g(ρ0 + δρ)k. (5.32)

If δρ
ρ0
<< 1, then we may neglect the term δρ on the left-hand side and the equation

becomes
Dv

Dt
+ 2Ω× v = −∇Φ + bk, (5.33)

where Φ = − δp
ρ0

and b = −gδρ
ρ0

is the buoyancy. We should not neglect the term
gδρ, for there is no reason to believe it to be small: δρ may be small, but g is big.
Equation (5.33) is the momentum equation in the Boussinesq approximation, and it
is common to say that the Boussinesq approximation ignores all variations of density
of fluid in the momentum equation, except when associated with the gravitational
term. For most large-scale motions in the ocean the deviation pressure and density
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fields are also approximately in hydro-static balance. Hence, in this case the vertical
component of (5.33) becomes

∂Φ

∂z
= b. (5.34)

A condition for (5.34) to hold is that vertical accelerations are small compared to
gδρ
ρ0

, and not compared to the acceleration due to the gravity itself.

5.1.5.2 Mass continuity

The mass continuity equation is given by

Dρ

Dt
+ (ρ0 + δρ)∇ · v = 0. (5.35)

Provided that time scales advectivily (witch means that D
Dt

scales in the same way
as v · ∇), then we may approximate this equation by

∇ · v = 0. (5.36)

which is the same as that for a constant density fluid. This absolutely does not
allow one to go back and use (5.35) to say that Dδρ

Dt
= 0, the evolution of density is

given by the thermodynamic equation in conjunction with an equation of state, and
this should not be confused with the mass conservation equation.

5.1.5.3 Thermodynamic equation and equation of state

The Boussinesq equations are closed by the addition of an equation of state, a
thermodynamic equation and a salinity equation. If we neglect the salinity, the
thermodynamic equation is given by

Dρ

Dt
− 1

c2
s

Dp

Dt
= −Q̇(

ρ0βT
cp

) ≈ −cp/(Tρ0βT ), (5.37)

where Q̇ is the heating rate per unit mass, with the oceanic values cp ≈ 4 ×
103Jkg−1K−1, βT ≈, 2 × 10−4K−1 and cs ≈ 1500ms−1. Using (5.28) and (5.30),
(5.37) can be written as

Dδρ

Dt
− 1

c2
s

Dp0

Dt
= −Q̇(

ρ0βT
cp

), (5.38)
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or, using (5.31), it holds that

D

Dt
(δρ+

ρ0g

c2
s

z) = −Q̇(
ρ0βT
cp

). (5.39)

The term in brackets on left-hand side is the potential density. The severest approx-
imation to this is to neglect the second term there, and noting that b = −gδρ

ρ0
, one

gets
Db

Dt
= ḃ, (5.40)

where ḃ = gβT Q̇/cp.
Hence, the equations of momentum, mass continuity and thermodynamic form a
closed set, called the simple Boussinesq equations.

Remark 5.1.1. (i) In the ocean, the compressibility effect can be important and
it is convenient to write the thermodynamic equation as

Dbσ
Dt

= ḃσ, (5.41)

where bσ is the potential buoyancy, with

bσ = −g δρθ
ρ0

= − g

ρ0

(δρ+
ρ0gz

c2
s

) = b− g z

Hρ

, (5.42)

with Hρ = c2
s/g. Buoyancy itself is obtained from

¯
σ by the equation of state

b = bσ + g z
Hρ

.

(ii) In many applications we may need to use a still more accurate equation of
state. In that case we replace(5.40) by the thermodynamic equations

DΘ

Dt
= Θ̇,

DS

Dt
= Ṡ, (5.43)

where Θ is an appropriate thermodynamic state variable, such as potential
enthalpy or entropy, S is salinity, and an equation of state then gives the
buoyancy. The equation of state has the general form b = b(Θ, S, p).

Mean stratification and the buoyancy frequency

The processes that cause density to vary in the vertical often differ from those that
cause it to vary in the horizontal. For this reason it is sometimes useful to write
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ρ = ρ0 + ρ̂(z)+ρ′(x, y, z, t) and define b̃(z) ≡ −g ρ̂
ρ0

and b′ ≡ −g ρ′
ρ0
. Using the hydro-

static equation to evaluate pressure, the thermodynamic equation (5.37) becomes,

Db′

Dt
+N2w = 0, (5.44)

where D
Dt

remains a three-dimensional operator and

N2(z) =
(db̃
dz
− g2

c2
s

)
=
db̃σ
dz

, (5.45)

where b̃σ = b̃ − g z
Hρ

. The quantity N2 is a measure of the mean stratification of
the fluid, and is equal to the vertical gradient of the mean potential buoyancy. N
is known as the buoyancy frequency. Equations (5.44) and (5.45) also hold in the
simple Boussinesq equations, but with c2

s =∞.

Summary of Boussinesq equations

The simple Boussinesq equations for an inviscid fluid are expressed by

• momentum equations Dv
Dt

+ f × v = −∇φ+ Θk,

• mass conservation divv = 0,

• buoyancy equation Db
Dt

= ḃ,

A more general form replaces the buoyancy equation by

• thermodynamic equation DΘ
Dt

= Θ̇,

• salinity equation DS
Dt

= Ṡ,

• equation of state b = b(Θ, S, z).

To better understand this topic, we refer to Beckers and Roisin [8], Geoffrey [35],
Pedlosky [65], Turner [69] and the references therein.

132



5.2 A particular case: 2d-Boussinesq equations

5.2 A particular case: 2d-Boussinesq equations

After this narrative, detailed of 3d-Boussinesq equations, where the rotation and
stratification are the pivotal hypothesis for the fluid motion, now, and in what
follows, we restrict ourselves to the Boussinesq equations in space dimension two.
In this case the parameter of Coriolis force f = 0 and v(t, x) = (v1(t, x), v2(t, x)),
is the distribution of the fluid velocity localized at x ∈ R2 at a time t ∈ R+. More
precisely, the set of Boussinesq equations take the following expression:

∂tv + v · ∇v = −∇p+ ρ~e2 if (t, x) ∈ R+ × R2,
∂tρ+ v · ∇ρ = 0 if (t, x) ∈ R+ × R2,
divv = 0.

(5.46)

Mathematically, the 2d-Boussinesq equations serve as a lower-dimensional model
of the 3d-hydrodynamics equations. In fact, the 2d-Boussinesq equations retain
some key features of the 3d-Euler and Navier-Stokes equations such as the vortex
stretching mechanism. The inviscid 2d-Boussinesq equations are formally identical
to the Euler equations for the 3d-axisymmetric swirling flows. The fundamental
issue of whether classical solutions to the 3d-Euler and Navier-Stokes equations can
develop finite time singularities remains outstandingly open and the study of the
2d-Boussinesq equations may shed light on this problem.

Let us recall that the velocity vector field v is said to be axisymmetric if it is
decomposed in cylindrical coordinates (er, eθ, rz)

1 as follows

v(t, r, θ, z) = vr(r, z, t)er + vθ(r, z, t)eθ + vz(r, z, t)ez.

The corresponding vorticity ω = curlv = ∇ × v associated to such velocity takes
the form

ω = −∂zvθer + ωθeθ +
1

r
∂r(rv

θ)ez, (5.47)

where ωθ = ∂zv
r − ∂rv

z. Observing that ∂θer = ∂reθ = 0, we can find that the
component vθ of the velocity and the vorticity equations in this case are expressed
by {

D̃
Dt
vθ = −vr

r
vθ,

D̃
Dt
ωθ = 1

r
(ωθvr − vθωr) + ωr∂rv

θ + ωz∂zv
θ,

(5.48)

1x = (x1, x2, z) ∈ R3, er = (x1

r ,
x2

r , 0)
t, eθ = (x2

r ,−
x1

r , 0)
t, ez = (0, 0, 1)t and r =

√
x21 + x22
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where D̃
Dt

= ∂t + vr∂r + vz∂z.
Thus, one can deduce the following equations


D̃
Dt

(rvθ) = 0
D̃
Dt

(ω
θ

r
) = − 1

r2
ωrvθ + 1

r
ωr∂rv

θ + 1
r
ωz∂zv

θ

= − 1
r4
∂z
(
(rvθ)2

)
.

(5.49)

Hence, the axial vorticity ωθ intensifies through gradients of the quantity (rvθ)2

which moves with the flow, that is to say

D̃

Dt
(rvθ)2 = 0 (5.50)

Let us return to the 2d-Boussinesq equations and show how it models the 3d-Euler
equations axisymmetric with swirl mentioned above. Applying the curl operator to
the first equation of (5.46) and taking into account that divv = 0, the vorticity-
density formulation associated to (5.46) is expressed as follows

∂tω + v · ∇ω = ∂1ρ if (t, x) ∈ R+ × R2,
∂tρ+ v · ∇ρ = 0 if (t, x) ∈ R+ × R2,
v = ∇⊥∆−1ω.

(5.51)

or 
D
Dt
ω = ∂1ρ if (t, x) ∈ R+ × R2,

D
Dt
ρ = 0 if (t, x) ∈ R+ × R2,

v = ∇⊥∆−1ω.

(5.52)

A direct observation leads to show that there is analogy between (5.49), (5.50) and
(5.52). However, we have correspondence between the previous sets of equations as
follows

r ←→ x2, xz ←→ x1,

vr ←→ v2, vz ←→ v1,

ωθ ←→ ω, (rvθ)2 ←→ ρ.

With this correspondence, we observe that the 2d-Boussinesq equations are formally
identical to the 3d-Euler equations axisymmetric with swirl. This provides us to
evaluate all external variable coefficients in (5.49) and (5.50) at r = 1. Consequently,
away from the axis of singularities r = 0 for swirling flows, one can expect the
qualitative behavior of solutions for the two system of equations to be identical. We
recall, to name but few, that E and Shou [31] exploited this analogy to study the
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nonlinear development of potential singularities in the 2d-Boussinesq equations with
initial data analogous to those imposed by Grauer and Sideris [36] or Pumir and
Siggia [66] for 3d-axisymmetric Euler equations. For a more detailed explanation,
we can see Bertozzi and Majda [11], Wu [74] and other references related to this
subject.
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  :ملخص

ة الأبعاد. ـالشامل/المحلي لصنفين من معادلات بوسينسك ثنائيالاستمرار طروحة الحالية بدراسة تتعلق الأ
من ناحية معادلات بوسينسك ذات لزوجة كاملة، نبرهن أنه من أجل دوران إبتدائي عبارة عن رقعة 

للزمن، كما أن الرقعة التي تتحرك دوامة ملساء فإن السرعة المرفقة بها هي دالة ليبشتز شاملة بالنسبة 
ى ذلك، ننشئ ـافة إلـي. بالإضـولالأ انتظامهاحافظ على ـللسرعة، ت مرفقـبر التدفق الـن عـق الزمـوف
صفر ونبرهن أن معدل التقارب الذي تم الحصول ـى الـر اللزجة لما معامل اللزوجة يؤول إلـهاية غيـالن

دومة، نتعامل نسك ذات لزوجة معـن. فيما يخص معادلات بوسيـي حالة دوامة رانكيـل فـعليه هو الأمث
هذه الحالة نثبت أن السرعة هي دالة ليبشتز محلية بالنسبة للزمن. ندرس أيضا فـي  ة،ـمع نفس المسأل

سرعات، يؤول إلى الصفر، وهذا يمكننا من قياس الفرق بين ال الانبعاثالنهاية غير اللزجة لما معامل 
 قات المرفقة.والتدف كثافاتلا

 .النهاية غير اللزجة ،الشامل/المحليرار تمالاس ،معدل التقارب ،رقعة دوامة ،معادلات بوسينسك الكلمات المفتاحية:

 

Abstract:  

The current dissertation presents the investigation of the global/local persistence 

of geometric structures for two kinds of bi-dimensional Boussinesq system. In 

broad terms for the full viscous Boussinesq equations, we exhibit as soon as the 

initial vorticity is a smooth vortex patch, then the related velocity is a 

Lipschitzian function globally in time and the patch that moves through the time 

keeps its initial regularity. We also establish the inviscid limit when the viscosity 

vanishes and we clear that the obtained rate of convergence is optimal in the case 

of the Rankine vortex. Regarding the Boussinesq system with zero viscosity, we 

treat the same as before, yet the velocity is only a Lipschitzian function locally in 

time. We also provide the inviscid limit whenever the diffusivity vanishes. This 

enables us to measure the difference between velocities, densities and the 

corresponding flows.  

Key words: Boussinesq system, vortex patches, rate of convergence, global/local 

well-posedness, inviscid limit. 

 

Résumé :  

La thèse actuelle porte sur la persistance globale/locale des structures 

géométriques pour deux types d’équations de Boussinesq bidimensionnel. En 

premier lieu, nous démontrons pour le système de Boussinesq complétement 

visqueux que si la vorticité initiale a une structure de poche régulière, alors la 

vitesse associée est une fonction Lipschitzienne globalement en temps et et le 

transporté de la poche initiale par le flot associé à la vitesse, préserve sa 

régularité initiale au cours du temps. Nous établissons également la limite non 

visqueuse lorsque la viscosité tend vers zéro et nous précisons que le taux de 

convergence obtenu est optimal dans le cas des poches de type Rankine. En ce qui 

concerne le système de Boussinesq partiellement visqueux, nous prouvons la 

persistance locale en temps des structures géométriques des solutions pour des 

donnés initiales de même types. Nous fournissons également la limite non 

visqueuse quand la diffusivité tend vers zéro. Cela nous permet de mesurer la 

différence entre les vitesses, les densités et les flots associés. 

Mots clés : Système de Boussinesq, poches de tourbillons, taux de convergence, 

régularité globale/locale, limite non visqueuse. 
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