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Notation

t ∈ R+ or (0,∞): The time variable.
x = (x1, x2, x3) ∈ R3: The spacial variable.

v(t, x) ∈ R3: The distribution of the fluid velocity
localized in x ∈ R3 , at time t > 0.

ρ(t, x) ∈ R: The mass density of the fluid.

p(t, x) ∈ R: The force of internal pressure.

ρ~ez: The influence of the buoyancy force in the fluid motion in
the vertical direction ~ez = (0, 0, 1).

µ > 0: The viscosity of the fluid.

κ > 0: The molecular diffusion of the fluid.

divv = 0 : The fluid is incompressible.

(~er, ~eθ, ~ez): The cylindrical base.

x = (r, z, θ): The components of x in cylindrical coordinates.

Ω: {(r, z) ∈ R2 : r > 0}

v(t, r, θ, z) = (vr(t, r, z), 0, vz(t, r, z)): Axisymmetric flow without swirl.

ωθ = ∂zv
r − ∂rvz: The component of the vorticity along ~eθ .

d

dt
: ∂t + v · ∇ The convective derivative.

v · ∇: vr∂r + vz∂z in cylindrical case.

∆: ∂2
r + 1

r
∂r + ∂2

z in cylindrical case.

Bs
p,r: {u ∈ S ′; ‖u‖Bsp,r =

(∑
j≥−1 2rjs‖∆ju‖rLp

)1/r
<∞}

with (s, p, r) ∈ R× [1,∞]2.

Ḃs
p,r: {u ∈ S ′; ‖u‖Ḃsp,r =

(∑
j∈Z 2rjs‖∆̇ju‖rLp

)1/r
<∞}

with (s, p, r) ∈ R× [1,∞]2.





Bs,t
p,q(R3): {u ∈ S ′; ‖u‖Bs,tp,q =

(∑
j,k≥−1 2jsq2ktq‖∆h

j∆
v
ku‖

q
Lp

)1/q
<∞}

with (s, t, p, q) ∈ R2 × [1,∞]2? Anisotropic Besov spaces.

Hs,t: Bs,t
2,2.

Hs(R3): {u ∈ S ′/û ∈ L2
Loc(Rd) and ‖u‖2

Hs =
∫
Rd(1 + |ξ|2)s|û(ξ)|2dξ <∞}.

Ḣs(R3): {u ∈ S ′/û ∈ L1
Loc(Rd) and ‖u‖2

Ḣs =
∫
Rd |ξ|

2s|û(ξ)|2dξ <∞}.

Mp
q(R3): {f ∈ LqLoc/ supR

3
p
(

1
|B|

∫
B
|f |q
) 1
q <∞} with 1 < q ≤ p <∞

the Morrey space on R3.

M (R3): {µ : B(R3)→ [0,∞]/µ(K) <∞} with K is a compact set.

C0(R3): The continuous functions space on R3.

〈·, ·〉: The pairing between M (R3) and C0(R3).

µ = µac + µsc + µpp: The Lebesgue decomposition of µ.

µac ⊥ µsc ⊥ µpp: µac, µsc and µpp are concentrated on pairwise disjoint sets.

µac: Absolutely continuous part of µ.

µsc: Singular continuous part of µ which has no atom.

µpp: Punctual part of µ.

‖µ‖M (R3): Total variation of µ.

⇀: Weak convergence in M (R3).



1 General introduction

The current thesis occupies the study of some problems raised by the incompress-
ible three-dimensional fluid mechanics. It mainly deals with the Boussinesq system.
Through it, we will present and comment on the results obtained in our research
concerning the well-posedness of the studied system. It comprises five chapters. We
embark on a general introduction, where we state the system in question in the
axisymmetric framework and a brief concise for its derivation. To simplify our pre-
sentation we start, in particular with the Navier-Stokes system, which is a special
case of this system, where the density is constant. Then we present the most im-
portant results achieved by previous researchers, then we focus on the most recent
ones that are directly related to our research.

In the second Chapter, we provide the basic tools freely used throughout this
thesis, which allow us to understand the rest Chapters. We begin by some vocabulary
of fluid mechanics like the vortex and its explanation, illustrated by many examples,
Biot-Savart law which can be viewed as the source to recuperate the velocity through
the vorticity, a brief reminder on the theory semi-groups and some applications to
solve evolution problems in the general case. We end with some phrases on the
measure theory.

The third Chapter mainly deals with the global well-posedness of the axisym-
metric Boussinesq system in critical Lebesgue spaces. Such spaces contribute some
difficulties like the velocity in this situation do not belong to the energy space.
To remedy this problem and derive the local existence in time, we handle with the
equivalent Duhamel’s formula for vorticity -density equations and we apply the fixed
point formalism in some appropriate function spaces combined with the axisymmet-
ric Biot-Savart law. Even so, we find another difficulty arises from vorticity and
density which are defined in different spaces endowed with different norms. For this
purpose, we introduce a new unknown which satisfying the same equation than the
vorticity. To deduce the global well-posedness we combine the Bootstrap method in
Lebesgue spaces with some a priori estimates for vorticity and density though the
coupled function.
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1 General introduction

The fourth Chapter is dedicated also to studying the global well-posedness of the
axisymmetric Boussinesq system with a finite measure as initial data provided that
the atomic part is small enough. More precisely, we shall extend the results already
obtained in the previous chapter, but the situation, in this case, is very hard to
deal with it, in other words, the question is how to give a rigorous sense to some
quantity if the initial density is a finite measure. To surmount this problem, we
shall introduce some terminology about the measure theory, in particular, the push
forward of a measure with a specific function and we state a new concept called an
axisymmetric measure. To establish the local well-posedness, we employ the fixed
point method combined with the smallness of the atomic part and some properties
of the associated semi-groups, while the global well-posedness is also derived from
the Bootstrap argument and some asymptotic estimates.

We conclude this thesis with an appendix in which we shed light on the derivation
of the system in question for better understanding. It is dedicated to the physical
side and is considered a new aspect of knowledge for us from the physical aspect,
where we pass from pure mathematics to fundamental mathematics dedicated to
physics.

1.1 Boussinesq system

The environmental concerns raised by the potential impact of industrial activities
on the climate and the accompanying changes in the atmosphere and oceans are the
decisive issue of our time, and this has led many researchers in various branches of
science to try understanding the phenomena of geophysical fluid dynamics, especially
in light of the tremendous numerical progress, counting on the modelling of these
phenomena in simple ways to give global previsions as numerical solutions. Despite
the efforts carried out by researchers for the purpose of geophysical fluid dynamics,
the models presented are still very complex. We try to highlight one of these models
which is called the Boussinesq approximation.

In geophysical fluid dynamics, density variations may arise at low speeds due to
the changes in temperature or humidity like in atmosphere, or salinity as in oceans
which give rise to buoyancy forces. The effect of these density changes can be expres-
sive even if the fractional change in density is small. The Boussinesq approximation
retains density variations in gravity term responsible for the buoyancy effect but
disregards them in the inertial term. The outcome of this analysis in the space is
the following full viscous Boussinesq system


∂tv + v · ∇v − µ∆v +∇p = ρ~ez if (t, x) ∈ R+ × R3,
∂tρ+ v · ∇ρ− κ∆ρ = 0 if (t, x) ∈ R+ × R3,
divv = 0,
(v, ρ)|t=0 = (v0, ρ0).

(Bµ,κ)

2



1.1 Boussinesq system

Usually, v(t, x) refers to the distribution of the fluid velocity localized in x ∈ R3

at a time t ∈ (0,∞) with free-divergence, the scalar function ρ(t, x) designates the
mass density in the modelling of geophysical fluids and p(t, x) is the force of internal
pressure. The non-negative parameters µ and κ represent respectively the kinematic
viscosity and molecular diffusivity of the fluid which can be seen as the inverse of
Reynolds numbers and ρ~ez models the influence of the buoyancy force in the fluid
motion in the vertical direction ~ez = (0, 0, 1).

Notice that the system (Bµ,κ) seriously omnipresent in the mathematics commu-
nity either theoretically or experimentally because that arises in many phenomena
like thermal convection, dynamic of geophysical fluids, and optimal mass transport
topic, see, e.g. [13, 74]. Also, we mention that for 2D and µ = κ = 0, (Bµ,κ) has a
close resemblance with three-dimensional Euler axisymmetric swirling flows.

When the initial density is constant, the Boussinesq system (Bµ,κ) can be reduced
to the classical Navier-Stokes equations. This provides us the following system

∂tv + v · ∇v − µ∆v +∇p = 0 if (t, x) ∈ R+ × R3,
divv = 0,
v|t=0 = v0.

(NSµ)

The first successful attempt goes back to J. Leray’s paper in the thirties of the
last century, where he established the global existence of weak solutions in energy
space for any dimension. Nevertheless, the uniqueness of such solutions has been
till now an open question, unless for the two-dimensional case. Lately, the local
well-posedness issue in the setting of mild solutions for (NSµ) was done by H. Fujita
and T. Kato [32] for initial data belonging to the critical Sobolev space Ḣ

1
2 in the

sense of scale invariance which means that the (NSµ) is the fact that it is invariant
under the transformation

v(t, x) 7→ vλ(t, x) , λv(λ2t, λx). (1.1)

In other words, if v is a solution of (NSµ) on [0, T ] with initial data v0, then vλ
is a solution on [0, λ−2T ] with intial data v0λ , λv0(λ·). More similar results are

established in several functional spaces like L3, Ḃ
−1+ 3

p
p,∞ and BMO−1. It should

be noted that these types of solutions are globally well-posed in time for initial
data sufficiently small with respect to the viscosity, except in two-dimension, see
[63, 76].

We point out that the topic of blow-up in finite time of smooth solutions with
large initial data of (NSµ) is still now not known, except in some partial situations.
Chemin et all. Investigated in a series of references [22, 23] that (NSµ) is, in
fact, global in time where the initial data which are not small in any critical space
but satisfies some structure like oscillations or slow variations in one direction. For
another connected subject, we refer to [16, 48, 69, 83] and the references therein.

3



1 General introduction

About the system (Bµ,κ) we will give a brief overview of the existing results. K.
Moffat is among the first to raise the global existence problem of solutions for the
Boussinesq model in his XXI Century Problem 3, see [75].

�Suppose that the velocity field v is itself " driven " by in-homogeneity of the
ρ-field, according to some well-defined dynamical prescription (e.g. ρ could

represent temperature variation in a gravity field, the flow being driven by the
buoyancy force in the Boussinesq approximation). The problem is to examine the

evolution of the ρ-field in the neighborhood of its saddle-points, to determine
whether singularities of ∇ρ can develop, and to examine the influence of weak

molecular diffusivity κ in controlling the approach to such singularities.�

Lately, D. Cordoba, C. Fefferman and R. De La Llave [24] presented a kinematic
argument which shows that if a volume preserving field has these singularities, then
some integrals related to the vector field must diverge. They also showed that if the
vector fields satisfy certain partial differential equations (Navier-Stokes, Boussinesq),
then the integrals must be finite. These singularities are therefore absent in the
solutions of the above equations. In dimension two of spaces, the system (Bµ,κ) was
tackled by lot of authors in various functional spaces and different values for the
parameters κ and µ. For a details literature, we refer to some selected references
[49, 51, 52, 55, 62, 70, 82].

Before sketching some theoretical keystone results on the well-posedness topic for
the three-dimensional viscous Boussinesq system (Bµ,κ), first, let us point out again
that the topic of global existence and uniqueness for (NSµ) in the general case is
till now an open problem in PDEs. It is therefore incumbent upon us to seek out
a subclass of vector fields which in turn leads to some conservation quantities, and
so the global well-posedness result. Such subclass involves rewriting (NSµ) under
vorticity formulation by applying the "curl" operator to the momentum equation,
which is defined by ω = ∇× v. Thus, we get:{

∂tω + v · ∇ω − µ∆ω = ω · ∇v if (t, x) ∈ R+ × R3,
ω|t=0 = ω0.

(1.2)

According to Beale-Kato-Majda criterion in [8], we have the following blow-up cri-
terion

T ? <∞⇔
∫ T ?

0

‖ω(τ)‖L∞dτ = +∞. (1.3)

So, the control ω in L1
tL
∞ is a key step for the global well-posedness of solutions

for (NSµ). Notice that for the 2D case, we have ω · ∇v ≡ 0, then we immediately
deduce for t ≥ 0 that ‖ω(t)‖Lp ≤ ‖ω0‖Lp for all p ∈ [1,∞]. According to (1.3), this
latter boundedness is the main tool to achieve the global well-posedness. However,
for three-dimensional flow the situation is more complicated due to the presence of
stretching term ω ·∇v, which contributes additional drawbacks for the fluid motion.
In the class of axisymmetric flows without swirl, the velocity vector field v can be

4



1.1 Boussinesq system

decomposed in cylindrical coordinates (~er, ~eθ, ~ez) as follows:

v(t, r, θ, z) = vr(t, r, z)~er + vz(t, r, z)~ez,

where for every x = (x1, x2, z) ∈ R3 we have

x1 = r cos θ, x2 = r sin θ, r > 0, 0 ≤ θ < 2π.

Above, the triplet (~er, ~eθ, ~ez) represents the usual frame of unit vectors in the radial,
azimuthal and vertical directions with the notation

~er =
(x1

r
,
x2

r
, 0
)
, ~eθ =

(
− x2

r
,
x1

r
, 0
)
, ~ez = (0, 0, 1).

For these flows the vorticity ω takes the form ω , ωθ~eθ, with

ωθ = ∂zv
r − ∂rvz. (1.4)

An elementary calculus claims that ω · ∇v close to vr

r
ω and ωθ obeys the following

inhomogeneous transport-diffusion equation{
∂tωθ + v · ∇ωθ − µ

(
∆− 1

r2

)
ωθ = vr

r
ωθ

ωθ |t=0 = ω0.
(1.5)

By taking Π = ωθ
r
, we check obviously that Π satisfies{

∂tΠ + v · ∇Π− µ
(
∆ + 2

r
∂r
)
Π = 0

Π|t=0 = Π0,
(1.6)

with homogeneous Neumann condition at the boundary r = 0. The fact that divv =
0 and ∆ + 2

r
∂r has a good sign enable us for t ≥ 0 to write

‖Π(t)‖Lp ≤ ‖Π0‖Lp , p ∈ [1,∞]. (1.7)

This latter boundedness offers a good setting to Ladyzhenskaya [61], independently
Ukhovksii and Yudovich [80] fifty years ago to establish that (NSµ) is global well-
posed in time as soon as v0 ∈ H1 and ω0,

ω0

r
∈ L2 ∩ L∞. Lately, this result was

relaxed by S. Leonardi, J. Màlek, J. Necăs and M. Pokornýin [64] for initial velocity
v0 in H2 . But it is possible to obtain the same result under the weaker hypothesis
H

1
2 .

Now, we shed light on the 2D Navier Stokes system under rough initial data.
We recall that the study of this system in vorticity formulation with singular initial
data has attracted by many authors. Worth motioning that Ben Artzi in [5] proved
that (NSµ) is well-posed for initial vorticity laying in L1(R2). His approach is based
entirely on elementary comparison principles for linear parabolic equations. In the
context of finite measure, Cottet in [25], independently Giga, Miyakawa, and Osada
in [41] have granted a global result when the initial vorticity ω0 belongs to M (R2)
(where M (R2) is the space of Radon measures with finite mass). The uniqueness
issue in this situation seems very hard for an arbitrary initial data in M (R2). For

5



1 General introduction

this purpose, Giga, Miyakawa and Osada imposed that the atomic part of ω0 is small
enough. The interpretation of [41] that the size requirement only entails the atomic
part of the measure coming from the axial estimate

lim sup
t↑0

t1−
1
p‖et∆µ‖Lp ≤ Cp‖µpp‖M (R2), p ∈ (1,∞],

with ‖µpp‖M (R2) refers to the total variation of the atomic part of µ ∈M (R2). The
case of a large Dirac mass was solved recently by C. E. Wayne and Th. Gallay in
[35] by using a completely different approach where it is based on entropy estimates.
This latter’s result was early enhanced by Gallagher and Gallay in [33], where they
established that if ω0 ∈ M (R2), there exists a unique solution ω ∈ C

(
(0,∞);L1 ∩

L∞
)
and so we have ‖ω(t, ·)‖L1 ≤ ‖ω0‖M (R2). In addition, they demonstrated that

such solution is continuously dependent on initial data, deducing that the Navier-
Stokes equations are globally well-posed in 2D case. For large literature, we refer
the reader to [39].

The global regularity topic of (Bµ,κ) in dimension three of spaces has received
considerable attention. As shown in [27], for κ = 0 R. Danchin and M. Paicu inves-
tigated that (Bµ,κ) is locally well-posed in time in any dimension in the framework of
Fujita-Kato’s and Leray’s solutions. Next, in axisymmetric case H. Abidi, T. Hmidi
and S. Keraani proved in [3] that (Bµ,κ) is globally well-posed by rewriting it under
vorticity-density formulation: ∂tωθ + v · ∇ωθ − vr

r
ωθ =

(
∆− 1

r2

)
ωθ − ∂rρ if (t, x) ∈ R+ × R3

∂tρ+ v · ∇ρ = 0,
(ωθ, ρ)|t=0 = (ω0, ρ0),

(1.8)

with, the notation v · ∇ = vr∂r + vz∂z and ∆ = ∂2
r + 1

r
∂r + ∂2

z . Consequently, the
quantity Π = ωθ

r
solves the equation

∂tΠ + v · ∇Π− (∆ +
2

r
∂r)Π = −∂rρ

r
. (1.9)

They assumed that v0 ∈ H1(R3), Π0 ∈ L2(R3), ρ0 ∈ L2∩L∞ with supp ρ0∩(Oz) = ∅
and Pz(supp ρ0) is a compact set in R3, especially to remove the violent singularity
of ∂rρ

r
, with Pz being the orthogonal projector over (Oz). These results are improved

later by T. Hmidi and F. Rousset in [53] for κ ≥ 0 by dropping the assumption on the
support of the density. Their paradigm is heavily based on the coupling between
the two equations of the system (1.10) by introducing a new unknown which is
called coupled function. In the same way, C. Miao and X. Zheng have succeeded
in [71] to recover the system (1.8) globally in time, where they replaced the full
dissipation by a horizontal one by keeping the same conditions as in [3] expect the
initial density ρ0 ∈ H1 ∩ L∞ and ∂zω0 ∈ L2. Taking advantage of the coupled
function introduced in [53], another result was established later by the same authors
[72] with the presence of horizontal dissipation in both equations for initial data
(v0, ρ0) ∈ H1(R3)×H1,0(R3) with Π0 ∈ L2(R3) and ∂zω0 ∈ L2(R3), with H1,0(R3) =
B0,1

2,2 anisotropic Besov space. More recently, P. Dreyfuss and H. Houamed treated
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in [29] the uniqueness issue of the Boussinesq equations with horizontal dissipation,
and they proved the global well-posedness if the axisymmetric initial data (v0,Π0, ρ0)
lies in H1(R3) × L2(R3) × L2(R3), improving some conditions to that of [72]. In
the same fashion, in [47] H. Houamed and M. Zerguine demonstrated that (Bµ,κ)
is globally well-posed in time for κ = 0 and axisymmetric initial data (v0, ρ0) ∈(
H

1
2 ∩ Ḃ0

3,1

)
(R3)×

(
L2 ∩ Ḃ0

3,1

)
(R3). Their idea is inspired from [1, 27, 53].

1.1.1 Aims

The objective of this thesis is to derive the same results recently obtained by Gallay
and Sverák in [36] for the viscous axisymmetric Boussinesq system (Bµ,κ) expressed
by the following vorticity-density formulation. ∂tωθ + v · ∇ωθ − vr

r
ωθ =

(
∆− 1

r2

)
ωθ − ∂rρ

∂tρ+ v · ∇ρ−∆ρ = 0
(ωθ, ρ)|t=0 = (ω0, ρ0).

(1.10)

The significant remark is that the axisymmetric flows without swirl constitutes a
special class relatively simple to study compared to other three-dimensional incom-
pressible flows, although it still contains interesting examples, such as circular vortex
filaments or toroidal vortex rings. Notice that the study of these flows is due to the
similarity between this category and the 2D flows for which it has a huge amount
of studies and results. The importance of the 2D flows arises in the observation
that the fluid’s motion is essentially flat, meaning that the velocity of the fluid in
some characteristic spatial directions is negligible compared to the velocity in the
perpendicular plane. This situation often occurs for liquids in thickness layers, or
for rapidly rotating fluids where the Coriolis force strongly alternates displacements
along the axis of rotation. Typical examples are geophysical flows, for which are
agreed upon by the geometry of the field (atmosphere or ocean) and the effect of
earth’s rotation to make the 2D approximation accurate and effective.

1.2 Main results

In this section, we will discuss the results obtained for the global well-posedness for
the 3D−axisymmetric Boussinesq system (Bµ,κ). In particular, it is shown that this
system is generally well-posed for optimal regularities, also called critical regulari-
ties.

This study is motivated by the work published recently by Gallay and Sverák in
[36] for the axisymmetric three-dimensional Navier-Stokes system (NSµ). In [36] the
authors studied this system with initial data in L1(Ω), where they proved the global
existence of an infinite energy solution. More precisely, they proved the following
theorem

7



1 General introduction

Theorem 1.2.1. For any initial data ω0 ∈ L1(Ω), with Ω = {(r, z) ∈ R2, r > 0}
endowed with the measure drdz, the axisymmetric vorticity equation (1.5) for µ = 1
admits a unique global mild solution

ωθ ∈ C0
(
[0,∞), L1(Ω)

)
∩ C0

(
(0,∞), L∞(Ω)

)
.

The solution satisfies ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω) for all t > 0, and
limt→0 t

1− 1
p‖ωθ(t)‖Lp(Ω) = 0, for 1 < p ≤ ∞,

limt→∞ t
1− 1

p‖ωθ(t)‖Lp(Ω) = 0, for 1 ≤ p ≤ ∞.

If in addition, the axisymmetric vorticity is non-negative and has finite impulse

I =

∫
Ω

r2ω0(r, z)drdz <∞,

then
lim
t→∞

t2ωθ(r
√
t, z
√
t, t) =

I

16π
re−

r2+z2

4 , (r, z) ∈ Ω,

where, the convergence holds in Lp(Ω) for 1 ≤ p ≤ ∞. In particular ‖ωθ(t)‖Lp(Ω) =

θ(t−2+ 1
p ) as t→∞ in that case.

Remark 1.2.2. The local well-posedness claim was expected, because the class of
initial data considered by the authors covers by at least two existence results in the
literature, like ωθ ∈ L1(Ω), so ω = ωθ~eθ belongs to the Morrey space M3/2(R3).
From Giga and Miyakawa’s result in [40], the Navier-Stokes system in R3 admits
a unique local solution. On the other hand, under the same assumption on the
vorticity, the velocity field v given by the Biot-Savart law in R3 belongs to the space
BMO−1(R3). So, thanks to the result of Koch and Tataru [48] the local existence
is guaranteed.

The second result due to Gallay and Sverák is the generalization of the previous
result, where they assumed that the initial vorticity is a finite measure whose atomic
part is sufficiently small with respect to the viscosity. Their result is structured in
the following theorem.

Theorem 1.2.3. There exist positive constants ε and C such that, for any initial
data ω0 ∈ M (Ω), with ‖ω0,pp‖tv ≤ ε, the axisymmetric vorticity equation (1.5) for
µ = 1 has a unique global mild solution

ωθ ∈ C0
(
(0,∞), L1(Ω) ∩ L∞(Ω)

)
satisfying

lim sup
t→0

‖ωθ(t)‖L1(Ω) <∞, lim sup
t→0

t
1
4‖ωθ(t)‖L 4

3 (Ω)
≤ Cε

and such that ωθ(t) ⇀ ω0 as t→ 0. Moreover, the asymptotic estimates for t→∞
given in Theorem 1.2.1 hold without change.
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1.2 Main results

Let us briefly give outlines of the proof of the previous theorems. For the local
existence issue, they rewrite the equation (1.5) for µ = 1 as follows

∂tωθ + div?(vωθ)−
(
∆− 1

r2

)
ωθ = 0. (1.11)

Thereafter, they associate Duhamel’s formula to the last equation (1.11) in the
following way.

ωθ(t) = S(t)ω0 +

∫ t

0

S(t− τ)div?(vωθ)(τ)dτ, (1.12)

with div? = ∂r+∂z,∆ = ∂2
r+∂2

z+ 1
r
∂r in the axisymmetric setting and (S(t))t≥0 refers

to the semi-group family associated to the differential operator ∆− 1
r2 . Afterward,

they applied the fixed-point formalism to (1.12) in an appropriate functional space,
so, by using Biot-Savart’s law and the asymptotic properties of the semigroup, they
derived local existence. For uniqueness, they explored a technique due to Brezis,
while the globality and the asymptotic behavior of the solution in the neighborhood
of infinity are guaranteed by a priori estimations in appropriate functional spaces.

Our contribution in this field is divided into three parts. The first one deals
with the global well-posedness of axisymmetric viscous Boussinesq system in critical
Lebesgue space L1(Ω)×L1(R3). The second one treats a partial extension of the first
result when the initial vorticity is a finite measure, in other words, (ω0, ρ0) ∈M (Ω)×
L1(R3), where M (Ω) is the set of finite measure. In the last part, we give a global
extension where all the initial data are finite measure (ω0, ρ0) ∈M (Ω)×M (R3).

1.2.1 When all initial data is Lebesgue integrable

This subsection addresses to state the first main result for initial data (ω0, ρ0)
in L1(Ω) × L1(R3), where Lp(Ω), Lp(R3) respectively equipped by the following
norms:

‖ωθ‖Lp(Ω) =


(∫

Ω
|ωθ(r, z)|pdrdz

) 1
p if p ∈ [1,∞),

essup(r,z)∈Ω|ωθ(r, z)| if p =∞.

and

‖Π‖Lp(R3) =


(∫

Ω
|Π(r, z)|prdrdz

) 1
p if p ∈ [1,∞),

essup(r,z)∈Ω|Π(r, z)| if p =∞.

Let us denote that the spaces L1(Ω) and L1(R3) are scale invariant, in the sense

‖λ2ω0(λ·)‖L1(Ω) = ‖ω0‖L1(Ω), ‖λ3ρ0(λ·)‖L1(R3) = ‖ρ0‖L1(R3).

The emergence of the term ∂rρ in the first equation of (1.10) leads to complications
in the computations, in particular when we deal in a critical space, which prompted
us to define a new function named ρ̃ , rρ which solves
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1 General introduction

∂tρ̃+ div?(vρ̃) =
(
∂2
r + ∂2

z +
1

r
∂r −

1

r2

)
ρ̃− 2∂rρ.

We can easily see that ρ̃ satisfy the same equation as ωθ. To achieve our aim we will
handle with the following system.

∂tωθ + v · ∇ωθ − vr

r
ωθ =

(
∆− 1

r2

)
ωθ − ∂rρ, (t, r, z) ∈ R+ × Ω

∂tρ̃+ div?(vρ̃) =
(
∂2
r + ∂2

z + 1
r
∂r − 1

r2

)
ρ̃− 2∂rρ, , (t, r, z) ∈ R+ × Ω

∂tρ+ v · ∇ρ−∆ρ = 0, (t, x) ∈ R+ × R3

(ωθ, ρ)|t=0 = (ω0, ρ0).

,

(1.13)

At this stage we are ready to show that the system (1.13) is globally well-posed.
More precisely, our first main result is the following.

Theorem 1.2.4. Let (ω0, ρ0) ∈ L1(Ω) × L1(R3) be axisymmetric initial data, then
the system (1.10) admits a unique global mild solution. More precisely we have:

(ωθ, rρ) ∈
(
C0
(
[0,∞);L1(Ω)

)
∩ C0

(
(0,∞);L∞(Ω)

))2

ρ ∈ C0
(
[0,∞);L1(R3)

)
∩ C0

(
(0,∞);L∞(R3)

)
Furthermore, for every p ∈ [1,∞], there exists some constant Kp(D0) > 0, for which,
and for all t > 0 the following statements hold

‖(ωθ(t), rρ(t))‖Lp(Ω)×Lp(Ω) ≤ t−(1− 1
p

)Kp(D0).

‖ρ(t)‖Lp(R3) ≤ t−
3
2

(1− 1
p

)Kp(D0),

where
D0 , ‖(ω0, ρ0)‖L1(Ω)×L1(R3).

Remark 1.2.5. First, we note that the assumption ω0 ∈ L1(Ω) doesn’t imply in
general that the associated velocity v is in L2(Ω) space. Indeed if v ∈ (L2(R2))2 and
if ω ∈ L1(R2), we always have

∫
R2 ωdx = 0. So, the obtained solution is never of

finite energy. This mismatch of functional spaces for the vorticity and the velocity
field is specific to dimension two. Consequently, the classical energy estimate is not
available to derive a uniform bound for the velocity. In dimension three, if ω(t, x) is
a solution of the vorticity equation with ω0 ∈ (L

3
2 (R3))3), the velocity field obtained

by Biot-Savart’s law is indeed a solution for the velocity equation in (L3(R3))3. In
this case, we do not gain anything in generality by studying the equation for the
vorticity.

Theorem 1.2.4 is proved by rewriting the system (1.13) in terms of a fixed point
problem for a functional constructed using an appropriate pair of semi-group. Un-
der adequate smallness assumptions, the Picard fixed point theorem then allows to
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1.2 Main results

obtain a unique local solution. This approach is particularly efficient if the func-
tional space used is critical. For this we define the Banach space of contraction
XT ×XT × ZT where the XT and ZT are defined by:

XT =
{
f ∈ C0

(
(0, T ], L4/3(Ω)

)
: ‖f‖XT <∞

}
,

ZT =
{
h ∈ C0

(
(0, T ], L4/3(R3)

)
: ‖h‖ZT <∞

}
,

equipped with the following norms

‖f‖XT = sup
0<t≤T

t1/4‖f(t)‖L4/3(Ω), ‖h‖ZT = sup
0<t≤T

t3/8‖h(t)‖L4/3(R3).

As we mentioned before the main difficulty in the proof is the estimation of the term
∂rρ, for this we defined the function ρ̃. We take advantage of the fact that it has
the same semi-group as ωθ, and it helps us with weighted estimates to estimate the
nonlinear term in ρ−equation. We showed that the local solution often constructed
can be extended to the global one by introducing two new unknown functions Γ =
Π− ρ

2
and Γ̃ where Γ̃ = rΓ following [53] with Π = ωθ

r
, which solve respectively

{
∂tΓ + v · ∇Γ− (∆ + 2

r
∂r)Γ = 0 if (t, x) ∈ R+ × R3,

Γ|t=0 = Γ0.
,

and {
∂tΓ̃ + div∗(vΓ̃)− (∆− 1

r2 )Γ̃ = 0 if (t, x) ∈ R+ × Ω,
Γ̃|t=0 = Γ̃0.

The previous functions Γ and Γ̃ play the same role in a priori estimates for (1.10) as
the function Π with respect to the Navier-Stokes system, where we do such estimates
for (Γ, Γ̃, ωθ, ρ, ρ̃) in Lebesgue spaces.

1.2.2 When the initial data is finite measure

It is natural to ask whether the results obtained in Theorem 1.2.4 remain valid in the
space of finite measures, especially since the latter contains the Lebesgue space L1?
We have succeed to answer this question in the affirmative in two steps, where we
have restricted in a first step the fact that the vorticity ω0 is only a finite measure,
taking advantage of the results obtained by [36]. Thus, the local existence of the
solution cost us to impose the smallness condition on the punctual part of the initial
vorticity ω0,pp.

To streamline the above topic, we fix some notations freely used in the last chap-
ters. Let us start by recalling that C0(Ω) (resp C0(R3)) the set of all continu-
ous functions over Ω (resp R3) that vanish at infinity and on the boundary ∂Ω

11
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and M (Ω) (resp M (R3)) the class of all real-valued finite measures over the half-
plane Ω (resp R3). Notice that the pairing between M (Ω) and C0(Ω) is defined by
〈µ, ϕ〉 =

∫
Ω
ϕ(x)dµ(x). Consequently, M (Ω) endowed with the norm

‖µ‖M (Ω) , sup
{ϕ∈C0(Ω),‖ϕ‖L∞(Ω)≤1}

|〈µ, ϕ〉|, µ ∈M (Ω).

is a Banach space. For f ∈ L1(Ω) define the measure µf by 〈µf , ϕ〉 =
∫

Ω
f(x)ϕ(x)dx,

where dx designates the Lebesgue measure. It can easily be seen that µf ∈M (Ω),
thus we deduce that L1(Ω) can be identified as a closed subspace of M (Ω) and
‖µf‖M (Ω) = ‖f‖L1(Ω). Each µ ∈M (Ω) can be decomposed in unique way as

µ = µac + µsc + µpp, µac ⊥ µsc ⊥ µpp

and
‖µ‖M (Ω) = ‖µac‖M (Ω) + ‖µsc‖M (Ω) + ‖µpp‖M (Ω).

where, in the sequel we denote by:
• µac is a measure which is absolutely continuous with respect to Lebesgue measure,
that is dµac

dx
= f for some f ∈ L1(Ω).

• µsc is a singular continuous measure which has no atom but is supported on a set
of zero Lebesgue measure.
• µpp is punctual part (an atomic measure), µpp =

∑
n≥1 λnδan , (λn) ⊂ R, (an) ⊂ Ω,

with δan stands to be the Dirac measure supported at an ∈ Ω.
We will explore the second main result which treats principally the global well-
posedness issue for the system (1.10) whenever the initial data (ω0, ρ0) ∈M (Ω) ×
L1(R3) and some convergence. More precisely the first result in this framework is
given by the following theorem

Theorem 1.2.6. There exist non negative constants ε and C such that the following
hold. Let (ω0, ρ0) ∈M (Ω)×L1(R3) with ρ0 axisymmetric and ‖ω0,pp‖M (Ω) ≤ ε, then,
the Boussinesq system (1.10) admits a unique global axisymmetric mild solution
(ωθ, ρ) satisfying

(ωθ, ρ) ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
× C0

(
[0,∞);L1(R3)

)
∩ C0

(
(0,∞);L∞(R3)

)
,

rρ ∈ C0
(
[0,∞);L1(Ω)

)
∩ C0

(
L∞(0,∞);L∞(Ω)

)
.

Furthermore, for every p ∈ (1,∞], we have

lim sup
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) = lim sup
t→0

t1−
1
p‖rρ(t)‖Lp(Ω) = 0

and
lim sup
t→0

t1−
1
p‖ωθ(t)‖Lp(Ω) ≤ Cε.

Moreover, we have

lim sup
t→0

‖ωθ(t)‖L1(Ω) <∞, lim
t→0
‖ρ(t)− ρ0‖L1(R3) = 0

and ωθ(t) ⇀ ω0 as t→ 0.
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The proof of local existence in Theorem 1.2.6 is almost the same as the proof of
Theorem 1.2.4 where the initial data is L1−integrable, with minor changes due to
the fact that we are not act with the same data. We can say that all the difficulties
appeared in the proof of weak convergence of ωθ to ω0, where we combined the idea
cited in [36, 34] and the coupled function Γ̃.
For the global existence, since we are concerned with the behavior of the solution
when t is big enough and the fact that the solution is Lebesgue’s integrable when
t > 0, then the global existence and all the a priori estimates which proved in the
first Theorem 1.2.4 remain valid.

The study in the case where all the initial data laying in M (Ω) ×M (R3) is
more delicate, because we do not have an explicit relation between ρ̃0 ∈M (Ω) and
ρ0 ∈M (R3) - especially as we are forced to use the equation of ρ̃-. In other words,
how to define a measure on Ω from a measure on R3, in addition, does the constructed
measure keep the property of axisymmetry? Furthermore, the constructed measure
must not disturb the weak continuity of the solution near t = 0. We overcame these
difficulties firstly by using the concept of "push-forward measure" which is in fact
an image of a measure by a measurable function. Thanks to this concept we were
able to define an axisymmetric measure, then define a measure that answers our
questions.
The last main result is presented in the following theorem.

Theorem 1.2.7. There exists a non negative constant ε > 0 such that the following
hold. Let (ω0, ρ0) ∈ M (Ω) ×M (R3) with ρ0 being axisymmetric in the sense of
Definition 4.2.3 and

‖ω0,pp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε, (1.14)

then, the Boussinesq system (1.10) admits a unique global mild axisymmetric solu-
tion (ωθ, ρ) such that

(ωθ, ρ) ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
× C0

(
(0,∞);L1(R3) ∩ L∞(R3)

)
,

rρ ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
.

Furthermore, for every p ∈ (1,∞], we have

lim sup
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) ≤ Cε, lim sup
t→0

t1−
1
p‖(ωθ(t), rρ(t))‖Lp(Ω)×Lp(Ω) ≤ Cε

and
lim sup
t→0

‖(ωθ(t), ρ(t))‖L1(Ω)×L1(R3) <∞.

Moreover, we have that (ωθ(t), ρ(t)) ⇀ (ω0, ρ0) as t→ 0.

Let us briefly sketch the proof of the Theorem 1.2.7. It is essentially based on the
proof of the weak convergence of the solution towards the initial data. After having
indicated the existence of such solution by an argument of the fixed point under a
condition of smallness to the punctual part of the initial data.
The major difficulty encountered is the convergence of the nonlinear term in
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Duhamel’s formula associated to the equation of ωθ or ρ̃ (almost the same equa-
tion) to 0, because the differential operators ∂r and div do not commute with S1.
For this we have rewritten the equation of ρ̃ in terms of S2. By this remedy we
have succeeded in proving the convergence. Concerning the globality of solution is
deduced by the same way from the second theorem because the solution for t > 0 is
more regular more precisely, it is in the Lebesgue spaces.
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2 Preliminary Chapter

In this preliminary chapter, we gather the basic ingredients freely explored in the
course of this work. We start with the definition of critical spaces based on scale
invariance. As our research is devoted to axisymmetric incompressible fluids based
on the study of the vorticity equation combined with the density one, we thought it
best to present the vortex as a physical ingredient. To simplify the presentation, we
have focused on the two-dimensional Navier-Stokes equation. We embark this para-
graph by defining this ingredient and give some illustrative examples, to conclude
with the famous Biot-Savart Law, which allows to recover velocity from the vortex.
Before concluding this chapter with some concepts related to positive measures, we
mention the definition of semi-groups and some properties

2.1 Scaling invariance

The definition of critical spaces is based on the properties of invariance by dilatation
and translation of the solutions of a partial differential evolution equation (PDE).
Let’s be more explicit we have the following definition.

Definition 2.1.1. A partial differential evolution equation is said to be scale in-
variant if there are two parameters α and β such that for any λ > 0, we have : if
the initial vector field v0(x) generates a solution v(t, x), then the solution associated
with the rescaled data λαv0(λx) is λαv(λβt, λx).

Example 2.1.2. - The Boussinesq system
∂tv + v · ∇v − µ∆v +∇p = ρ~ez x ∈ R3, t ∈ (0,∞),
∂tρ+ v · ∇ρ− κ∆ρ = 0 x ∈ R3, t ∈ (0,∞),
divv = 0,
(v, ρ)|t=0 = (v0, ρ0).

(Bµ,κ)

is invariant by the transformation

v(t, x) 7→ λv(λ2t, λx); ρ(t, x) 7→ λ3ρ(λ2t, λx)

- Navier Stokes system
∂tv + v · ∇v − µ∆v +∇p = 0 if x ∈ R3, t ∈ (0,∞),
divv = 0,
v|t=0 = v0.

(NSµ)
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is invariant by the transformation

v(t, x) 7→ λv(λ2t, λx)

Remark 2.1.3. If (v, ρ) is a solution of (Bµ,κ) associated with the initial condi-
tion (v0, ρ0) on [0, T ] × Rd , then for all λ > 0 and x0 ∈ Rd, (vλ(t, x), ρλ(t, x)) =
(λv(λ2t, λx), λ3ρ(λ2t, λx)) is a solution of (Bµ,κ) associated with the initial condition
(λv0(λ(x− x0)), λ3ρ0(λ(x− x0))) on [0, λ−2T ]× Rd.

Definition 2.1.4. A Banach space X ↪→ S ′ is said to be critical for the initial
conditions of (Bµ,κ) if its norm satisfies

∀λ > 0,∀x0 ∈ Rd, ‖v0‖X = λ‖v0

(
λ(·−x0)

)
‖X , and ‖ρ0‖X = λ3‖ρ0

(
λ(·−x0)

)
‖X

Remark 2.1.5. [27] The critical spaces for the velocity of the Boussinesq system (Bµ,κ)
are the same as for the Navier-Stokes system (NSµ), As for density, it requires two
derivatives more than the velocity.

Example 2.1.6. Let us consider the Navier Stokes system (NSµ), according to the
above definition the following spaces are critical

Lq(R+, Lr(Rd)); with
2

q
+
d

r
= 1.

Remark 2.1.7. [39]

1- Any critical space X for (NSµ) verifies X ↪→ Ḃ−1
∞,∞.

2- We have the following chain of inclusions:

Ld ↪→ Ḃ
−1+ d

p
p,q ↪→ Ḃ

−1+ d
p̃

p̃,q̃ ↪→ ∂BMO ↪→ Ḃ−1
∞,∞

with 2 ≤ p ≤ p̃ <∞ and 2 ≤ q ≤ q̃ <∞.

Definition 2.1.8. We say that a space X is critical for the vorticity if its norm
satisfies

∀λ > 0, ∀x0 ∈ Rd, ‖ω‖X = λ2‖ω
(
λ(· − x0)

)
‖X

Example 2.1.9. L1(Rd) and M (Rd) are critical spaces for the vorticity.

2.2 Vortex

The solution of the momentum equations is often complicated by the presence of
pressure terms. However, in some circumstances, it is possible to get rid of them, by
relying on other parameters of motion. Among these parameters, there is a quantity
that plays a fundamental role in the description of the movement of a fluid: it is
the "vortex".
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2.2 Vortex

Definition 2.2.1. The vortex is defined as half of the curl of the velocity: ω =
1
2
∇× v, which is a vector. The coefficient 1

2
ensures that the magnitude is exactly

equal to the local angular velocity ω3 of a fluid particle. The magnitude ω2/2 is
called the vortex intensity or the vorticity.

In other words, in a fluid in motion with a local velocity v = (v1, v2, v3), the vor-
tex in cartesian coordinates is the vector where its components are defined by the
expression: ω= (ω1, ω2, ω3) are related to those of the velocity by the relations:

ω1 =
1

2

(
∂v3

∂y
− ∂v2

∂z

)
, ω2 =

1

2

(
∂v1

∂z
− ∂v3

∂x

)
, ω3 =

1

2

(
∂v2

∂x
− ∂v1

∂y

)

2.2.1 Interpretation and Examples

To understand and illustrate the information carried by this vortex vector, let us
consider the differences between the displacements of two very close points P and
Q within a small fluid particle, which we assume to be two-dimensional.
Let δx and δy the components of the vector PQ. We have

δv = v(Q)− v(P ) =
∂v

∂x
δx+

∂v

∂y
δy,

which we can write it as:

δv1 =
∂v1

∂x
δx+

1

2

(
∂v1

∂y
+
∂v2

∂x

)
δy +

1

2

(
∂v1

∂y
− ∂v2

∂x

)
δy,

δv2 =
∂v2

∂y
δy︸ ︷︷ ︸

dilatation

+
1

2

(
∂v2

∂x
+
∂v1

∂y

)
δx︸ ︷︷ ︸

pure deformation

+
1

2

(
∂v2

∂x
− ∂v1

∂y

)
δx︸ ︷︷ ︸

rotation

.

These expressions show that, in a very general way, the displacement PQ has three
distinct contributions. The first one represents the dilatation of the fluid particle,
which is identically zero in the case of a fluid with invariant density (incompressible)

where
∂v1

∂x
+
∂v2

∂y
= 0. The second one represents the pure deformation and has the

characteristic of not involving any block rotation of the particle, but a simple shear.
As for the third one, it represents the block rotation of the fluid particle around an
axis perpendicular to the plane of the figure passing through the point P , with the

angular velocity ω3 =
1

2

(
∂v2

∂x
− ∂v1

∂y

)
, without any shear, as shown in the figure

(2.1)

Let us now give some examples of vortex structures, represented in figure (2.2).

On the example of figure (2.2(a)), we can notice that the vortex is concentrated
in the center of the structure, where the velocity distribution is close to that of a

17



2 Preliminary Chapter

Figure 2.1: Illustration of the displacements δv1 = −ω3δy and δv2 = ω3δx where ω3 = ζ
of various points Q of a particle supposed to be square, showing its rotation
in block with the angular velocity ω3.

Figure 2.2: Simple examples of vortex structures: (a) rectilinear vortex schematizing a
tornado , (b) toric vortex schematizing a round of smoke.

18



2.2 Vortex

block rotation, of the form ωr. Otherwise, the velocity is annulled out quite quickly
as soon as we leave this structure, since the velocity distribution then becomes
proportional to 1/r and keeps the quantity Γ = 2πrv2 invariant, which is nothing
other than the circulation of the velocity on the circle of radius r, or even the flow
of the vortex vector through the portion of flat surface limited by this circle. This
often leads to schematize the vortex structures as vortex lines, by attributing to
each the circulation of the velocity:

Γ =

∮
C

v · ds = 2

∫
S

ω · ndS (2.1)

The second equality of (2.1), deduced from the Stokes formula, shows that the
circulation of the velocity Γ is necessarily equal to the double of the flow of the
vortex through the surface S limited by the contour C. Note that, since the vortex
vector is a pure rotational , its divergence is zero. Thus, this vector field is part of
the conservative fields, like the magnetic field and the density of electric current. Its
flow Γ through a portion of surface S therefore constitutes an invariant of a vortex
tube, just like the flow which circulates in a pipe, or the electric current which passes
through a conductive fill of electricity. Since this flow cannot vary from end to end,
a vortex tube must either close in on itself, as in the case of the smoke ring (2.2
(b)), or go from one wall to another.

The vortex equation

To simplify, let us limit ourselves to the case of an incompressible fluid, whose motion
satisfies the Navier-Stokes equation.

∂tv + v · ∇v +∇p = ν∆v (2.2)

To know the dynamics of the vortex, we take the rotational of the Navier-Stokes
equation (2.2), taking into account divv = 0, we acquire

∂tω + (v · ∇)ω = (ω · ∇)v + ν∆ω. (2.3)

The interpretation of equation(2.3) is: For the first member, which is the particle
derivative of the vortex vector, as well as for the last term, which represents the
diffusion of the vortex by viscosity. The question then arises, what is the meaning

of the term (ω·∇)v = ω
∂v

∂s
, especially since it has no equivalent in the Navier-Stokes

equation?
To answer this question, consider a small section MN = δs of a vortex line, as
shown in figure (2.3) . Neglecting the viscous term, generally which is the case of
air and water, the vortex equation (2.3) can be written

1

ω

dω

dt
=
∂v

∂s
(2.4)
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2 Preliminary Chapter

Figure 2.3: figure 3. Illustration of the variation of the vector MN = δs linked to the
difference to in velocity between its ends M and N .

Moreover, according to the construction performed on figure (2.3), the relative vari-
ation of the vector δs is given by

1

δs

d

dt
(δs) =

∂v

∂s
(2.5)

These two equations (2.4) and (2.5) show that the two vectors ω and δs have identical
dimensional behaviors: their relative elongation and rotation coincide exactly. Fluid
mechanics are thus accustomed to calling (ω ·∇)v the term for the production of
vorticity by stretching of the vortex lines.

2.2.2 Biot-Savart Law

We also recall that for the Navier Stokes equations we can recover the velocity v
from the vorticity by a non-local operator. To achieve this, it may be advantageous
to introduce, in addition to ω, a second function of v1 and v2, the latter is called the
stream function Ψ.
Its composition goes back to the well-known relation div(curlA) = 0 for any vector
A = (Ax, Ay, Az), then we can choose the vector A such that v = curlA, thanks to
the definition of the rotational, plus that the flow is in the plane (xoy), we can find
the following relations: 

v1 = −∂Az
∂y

v2 =
∂Az
∂x

(2.6)

Let’s pose now Ψ = Az(x, y), then

v = (v1, v2) = ∇⊥Ψ := (−∂2Ψ, ∂1Ψ) (2.7)
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2.2 Vortex

This function satisfies the continuity equation, moreover the vorticity ω 1 is easily
expressed as a function of Ψ

ω = ∂1v2 − ∂2v1 = ∂2
1Ψ + ∂2

2Ψ = ∆Ψ

The solution to this equation is given by a convolution with the Newtonian potential
with ω as shown by the following lemma

Lemma 2.2.2. [68] Suppose that f ∈ L1(Rd) ∩ C1(Rd) and
∫
|x|≥1
|f(x)| log |x|dx <

∞, for d = 2. Then there exists a solution v ∈ C2(Rd) to the Poisson equation

−∆v = f

given by the convolution

v(x) =

∫
Rd
N(x− y)f(y)dy

where N(·) is given by

N(x) =

{
− 1

2π
log |x|; d = 2

− |x|2−d
(2−d)ωd

; d > 2.
(2.8)

with ωd is the area of unit sphere in Rd given by ωd =
2π

d
2

Γ(d
2
)
. This solution can be

differentiated under the integral to yield

∇v(x) =
1

ωd

∫
Rd

x− y
|x− y|d

f(y)dy.

Then
Ψ(t, x) =

1

2π

∫
R2

log |x− y|ω(t, y)dy

Because we can compute the gradient of Ψ by differentiating under the integral, the
velocity v can be recovered from Ψ by

v(t, x) =

∫
R2

K2(x− y)ω(t, y)dy (2.9)

where the kernel K2(·) is defined by

K2 =
1

2π

(
− x2

|x|2
,
x1

|x|2
)t (2.10)

Equation (2.9) is the famous law of Biot Savart
1The word vorticity refers to the rate of rotation of the vortex, which is a scalar quantity like
kinetic energy. Its local value within a mass of fluid rotating with angular velocity ω3 is ω2/2.
The rotating mass of fluid represents what is typically called an eddy, which, during its lifetime,
may be considered as a single object
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2 Preliminary Chapter

2.3 Semigroups of linear operators

In this section, we present some of the main points of the theory of semigroups and
evolution equations. The study of the linear part of semigroup theory began in the
1930s with the work of E. Hille, Y. Yosida and R. Phillips on semigroups of linear
operators in Banach spaces. The initial idea of this theory came from an article by
G. Peano of 1887 where he wrote the system of differential equations in a matrix
form. For more details see [[4] [30],[73]]

du1

dt
= a11u1 + a12u2 + · · ·+ a1nun + f1(t)

...
dun
dt

= an1u1 + an2u2 + · · ·+ annun + fn(t)

(2.11)

in a matrix form as
u′(t) = Au(t) + f(t) (2.12)

where u(t) = (u1(t), u2(t), · · · , un(t))t , f(t) = (f1(t), f2(t), · · · , fn(t))t and A = (aij)
and solved it by means of the explicit formula

u(t) = etAu(0) +

∫ t

0

e(t−s)Af(s)ds (2.13)

where etA =
∑∞

k=0
1
k!
tkAk. So he transformed a complicated one-dimensional problem

to a formally simpler one in a higher dimension.

2.3.1 Definitions and basic properties

Let X be a Banach space

Definition 2.3.1. A one parameter family T (t) with 0 ≤ t <∞ of bounded linear
operators from X into X is a semigroup of bounded linear operator on X if

i T (0) = I, (I is the identity operator on X.)

ii T (s+ t) = T (s)T (t) for every s, t ≥ 0 (the semigroup property.)

A semigroup of bounded linear operators T (t) is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

T (t)x− x
t

exists}
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2.3 Semigroups of linear operators

and
Ax = lim

t→0

T (t)x− x
t

=
d+T (t)x

dt
|t=0, for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t). D(A) is the domain of A.

Remark 2.3.2. If T (t) is uniformly continuous semigroup of bounded linear operators
then

lim
s→t
‖T (s)− T (t)‖ = 0

Corollary 2.3.3. [73] Let T (t) be uniformly continuous of bounded linear operators,
then

i There exists a constant ω ≥ 0 such that ‖T (t)‖ ≤ eωt.

ii There exists a unique bounded linear operator A such that T (t) = etA.

iii The operator A is the infinitesimal generator of T (t).

iv t 7→ T (t) is differentiable and

dT (t)

dt
= AT (t) = T (t)A

.

2.3.2 Strongly continuous semigroup of bounded linear
operators

Definition 2.3.4. A semigroup T (t), 0 ≤ t < ∞, of bounded linear operators on
X is a strongly continuous semigroup of bounded linear operators if

lim
t→0

T (t)x = x, ∀x ∈ X (2.14)

A strongly continuous semigroup of bounded linear operators on X will be called a
semigroup of class C0 or C0−semigroup.

Theorem 2.3.5. [73] Let T (t) be C0−semigroup. There exist constants ω ≥ 0 and
M ≥ 0 such that

‖T (t)‖ ≤Meωt for 0 ≤ t <∞. (2.15)

Remark 2.3.6. If ω = 0, T (t) is called uniformly bounded and if moreover M = 1 it
is called C0−semigroup of contraction.

Lemma 2.3.7. [30] For the generator (A,D(A)) of a C0−semigroup T (t), t ≥ 0,
the following properties hold

i A : D(A) ⊆ X → X is a linear operator.
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ii If x ∈ D(A), then T (t)x ∈ D(A) and

d

dt
T (t)x = T (t)Ax = AT (t)x, for every t ≥ 0.

iii For every t ≥ 0 and x ∈ X, one has

T (t)x− x = A

∫ t

0

T (s)xds, if x ∈ X

=

∫ t

0

T (s)Axds, if x ∈ D(A).

2.3.3 The Hille-Yosida Theorem

In the previous subsection we saw that for any semigroup T (t), 0 ≤ t < ∞, there
is an associated infinitesimal generator operator, so it is natural to ask whether an
unbounded operator on X is the infinitesimal generator of a C0−semigroup? The
Hille-Yosida theorem is central in the theory of semigroups, providing a clear answer
to this question.

Theorem 2.3.8 (Hille-Yosida). [73] A linear (unbounded) operator A is the in-
finitesimal generator of C0−semigroup of contraction if and only if

i A is closed and and D(A) = X.

ii The resolvant set ρ(A) of A contains R+ and for every λ > 0, ‖R(λ : A)‖ ≤ 1
λ
.

Where the resolvant set ρ(A) of A is the set of all complex numbers λ for which
λI − A is inversible .i.e (λI − A)−1 is bounded linear operator in X. The family
R(λ : A) = (λI−A)−1; λ ∈ ρ(A) of bounded linear operators is called the resolvant
of A.

Definition 2.3.9 (differentiable Semigroup). A C0−semigroup T (t) is called differ-
entiable for t > t0 if for all x ∈ X the map t 7→ T (t)x is differentiable for t > t0.

2.4 Well-Posedness for Evolution Equations

One of the fundamental problems of operator semigroup theory is how to express
the solution of an evolution problem using the semigroup generated by the differ-
ential operator. Now, since we want to apply this abstract theory to solve partial
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2.4 Well-Posedness for Evolution Equations

differential equations, we must work in infinite dimensions. So our main object will
be the study of evolution problems of the form:{

u′(t) + Au(t) = f(t), on (0, T )
u(0) = x.

(2.16)

where the independent variable t represents time, u(·) is a function with values in a
Banach space X, f : (0, T )→ X , A : D(A)→ X is a linear operator and x ∈ X.

2.4.1 The abstract Cauchy problem

The homogeneous initial value problem

Definition 2.4.1. The initial value problem

(ACP )

{
u′(t) = Au(t), on t ≥ 0
u(0) = x.

(2.17)

is called the abstract Cauchy problem associated to (A,D(A)) and the initial value
x.

Definition 2.4.2. A function u : R+ → X is called a classical solution of (ACP )
if is continuously differentiable with respect to X, u(t) ∈ D(A) for all t ≥ 0 and
(ACP ) holds.

By using Lemma 2.3.7 and Theorem 1.24 in [73] we get, if A is the generator of a
strongly continuous semigroup, then the semigroup yields solutions of the associated
abstract Cauchy problem. This illustrates by the following result.

Proposition 2.4.3. [30] Let (A,D(A)) be the generator of the C0−semigroup T (t),
t ≥ 0. Then for every x ∈ D(A), the function

u : t 7→ u(t) = T (t)x

is the unique classical solution of (ACP ).

Theorem 2.4.4. [73] If A is the infinitesimal generator of a differentiable semi-
group, then for every x ∈ X the initial value problem (APC) has a unique solution.

Remarks 2.4.5. 1- If the C0−semigroup generated by the infinitesimal operator A
is not differentiable, then in general, if x /∈ D(A), the problem of initial value

(APCh)

{
u′(t) = Au(t), on t > 0
u(0) = x.

(2.18)

does not have a solution.

2- The function t 7→ T (t)x is a generalized solution of the problem (2.18) wich called
a mild solution.
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The inhomogeneous initial value problem

In this case the problem is given by{
u′(t) + Au(t) = f(t), on (0, T )
u(0) = x.

(2.19)

where f : (0, T )→ X, A is the infinitesimal generator of C0−semigroup T (t).

Definition 2.4.6. A function u : [0, T ) → X is a classical solution of (2.19) on
[0, T ) if u is continuous on [0, T ), continuously differentiable on (0, T ), u(t) ∈ D(A)
for 0 < t < T and (2.19) is satisfied on [0, T ).

Let T (t) be the C0−semigroup generated by A and u the solution of (2.19). Then
the function g : [0, T )→ X defined by g(s) = T (t− s)u(s) is differentiable and

g′(s) = T (t− s)f(s) (2.20)

By integration from 0 to t of (2.20), we obtain

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds (2.21)

Definition 2.4.7. Let A be the infinitesimal generator of C0−semigroup T (t). Let
x ∈ X and f ∈ L1

(
[0, T );X

)
. The function u ∈ C

(
[0, T );X

)
given by

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T. (2.22)

is the mild solution of the infinitesimal value problem (2.19) on [0, T ).

Remark 2.4.8. In general, the continuity of the function f is not sufficient to guar-
antee the existence of the classical solution of problem (2.19) for x ∈ D(A). The
following example illustrates this remark.

Example 2.4.9. Let A be the infinitesimal generator of C0−semigroup T (t) and
let x ∈ X be such that T (t)x /∈ D(A) for all t ≥ 0. Let f(t) = T (t)x, so the function
f is continuous for all t ≥ 0. Now consider the following problem{

u′(t) = Au(t) + T (t)x
u(0) = 0

(2.23)

Note that the problem (2.23) has no solution even though u(0) = 0 ∈ D(A), because
the mild solution of (2.23) is

u(t) =

∫ t

0

T (t− s)T (s)x = tT (t)x

is not differentiable for t > 0, and therefore cannot be the solution of (2.23).
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The following theorem gives the conditions which guarantee the existence of a clas-
sical solution.

Theorem 2.4.10. [73] Let A be the infinitesimal generator of C0−semigroup T (t).
Let f ∈ L1

(
[0, T );X

)
be continuous on (0, T ) and let

v(t) =

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T.

The problem (2.19) has a solution u on (0, T ) for every x ∈ D(A) if the following
conditions is satisfied

i v(t) is continuously differentiable on (0, T ).

ii v(t) ∈ D(A) for 0 < t < T and Av(t) is continuous on (0, T ).

If (2.19) has a solution u for some x ∈ D(A), then v satisfied both (i) and (ii).

2.5 About Measure Theory and Integration

This section is devoted to a reminder on the measure theory and integration we
start with the definitions and properties of a few kinds of measures, then we give the
main theorems used in this study. Before presenting these concepts, we ask what
is Measure Theory. And what is Integration Theory? In short, Measure theory is
concerned with the distribution of mass over a set X, while integration theory is the
theory of weighted sums of functions over a set X when the weights are specified
by a mass distribution µ.

–Measurable spaces

Definition 2.5.1. A collection of sets M ⊂P(X) is called an σ−algebra if

i X ∈M .

ii A ∈M ⇒ Ac ∈M .

iii If {An, n ≥ 1} ⊂M then ∪n∈N∗An ∈M .

The elements of M are called the measurable parts of X. We say that (X,M ) is a
measurable space.
–Definition of a measure

Definition 2.5.2. Let (X,M ) be a measurable space. Then a set function µ on M
is called a measure if
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i µ(A) ∈ [0,∞] for all A ∈M .

ii µ(∅) = 0.

iii For any disjoint collection of sets A1, A2, .... ∈ M , then µ(∪n≥1An) =∑
n≥1 µ(An).

We say that (X,M , µ) is a measured space.
We now present some special measures that we need during our studies.

–Absolutely continuous measure

Definition 2.5.3. Let (X,M ) be a measurable space and let µ and ν be two
measures on (X,M ). The measure µ is said to be dominated by ν or absolutely
continuous with respect with ν and written as µ� ν if

ν(A) = 0⇒ µ(A) = 0; ∀A ∈M

Proposition 2.5.4. The property µ � ν is equivalent to the following statement
for any ε > 0 there exists δ > 0, such that µ(A) < ε for every A with ν(A) < δ.

Example 2.5.5. • The measure µ(A) =
∫
A
|x|dx on the real line is absolutely

continuous with respect to the Lebesgue measure.

• The measure supported at 0 (µ(A) = 1 iff 0 ∈ A) is not absolutely continu-
ous with respect to the Lebesgue measure, and is a singular measure.

–Density of measure

Definition 2.5.6. Let (X,M , µ) be a measured space, and let f : X → [0,∞] a
measurable function. We define an application ν : M → [0,∞] by

ν(A) =

∫
A

fdµ =

∫
f1Adµ. (2.24)

Then ν is a measure on (X,M ) called a measure of density f with respect to µ.

Remark 2.5.7. Note that the measure ν defined by (2.24) is absolutely continuous
with respect to µ because if A ∈M verifies that µ(A) = 0, then ν(A) = 0 .

–Singular measure

Definition 2.5.8. Let (X,M ) be a measurable space and let µ and ν be two
measures on (X,M ). The measure µ is called singular with respect to ν and written
as µ ⊥ ν if there exists a set B ∈M such that

µ(B) = 0 and ν(Bc) = 0

.
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Example 2.5.9. The Dirac measure δ0 is not absolutely continuous with respect to
Lebesgue measure.

Remark 2.5.10. Note that if µ is singular w.r.t. ν implies that ν is singular w.r.t.
µ. Therefore, the notion of singularity between two measures µ and ν is symmetric
but that of absolutely continuity is not.

–Borel and Radon Measures

Definition 2.5.11. Let X a topological space.

1- A measure on the Borel σ-algebra B(X) is called a Borel measure on X.

2- A Borel measure µ on X is called a Radon measure if for every B in B(X) and
ε > 0, there exists a compact set Kε ⊂ B such that

|µ|(B \Kε) < ε

where |µ| = µ+ + µ− the total variation of µ and µ+, µ− are the positive and
negative parts of µ.

2.5.1 The Lebesgue-Radon-Nikodym theorem

The following theorem is known as the Radon Nikodym Theorem, it considered as
one of the key facts of the theory of measure

Theorem 2.5.12. [10] Let µ and ν be two finite measures on a space (X,M ). The
measure µ is absolutely continuous with respect to the measure ν precisely when there
exists a ν−integrable function f such that µ is given by

µ(A) =

∫
A

fdν; ∀A ∈M

We denote µ by f.ν. The function f is called the density of measure µ with respect

to ν (or the Radon - Nikodym density) and is denoted by
dµ

dν
.

Among the results of Radon Nikodym’s theorem, Lebesgue’s decomposition

Theorem 2.5.13. [10] Let µ and ν be two finite measures on a σ−algebra M .
Then, there exists a measure ν0 on M and a ν−integrable function f such that

µ = f.ν + ν0, ν0 ⊥ ν

For the proof of the two previous theorems, you can consult the following two
references [[6] and [10]]
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Remark 2.5.14. The decomposition of the singular part of a regular Borel measure
on real line can be refined as follows (see [45])

µ = µac + µsc + µpp

with

• µac is the absolutely continuous part.

• µsc is the singular continuous part.

• µpp is the pure ponctuel part.

Example 2.5.15. The Cantor measure ( the probability measure on the real line
whose cumulative distribution function is the Cantor function) is an exemple of a
singular contiuous measure.

–Lebesgue’ s dominated convergence theorem (DCT)

Theorem 2.5.16. [6] Let (fn)n≥1 be a sequence of measurable function from a
measure space (X,M , µ) to R and let g be a measurable nonnegative function on
(X,M , µ). Suppose that for each x ∈ X

1- |fn(x)| ≤ g(x) for all n ≥ 1.

2- limn→∞ fn(x) = f(x).

Then, f is integrable and

lim
n→∞

∫
fndµ =

∫
fdµ =

∫
lim
n→∞

fndµ

.
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3 On the global well-posedness of
axisymmetric Boussinesq system
in critical Lebesgue spaces

This chapter is the subject of the following publication:

Adalet Hanachi, Haroune Houamed and M. Zerguine: On the global well-posedness
of axisymmetric Boussinesq system in critical Lebesgue spaces. Discrete and Con-
tinuous Dynamical Systems - A, 2020, 40 (11) : 6473-6506.

3.1 Introduction

The contribution of this chapter will be focused on the global existence and unique-
ness topic in three-dimensional case of the axisymmetric viscous Boussinesq system
in critical Lebesgue spaces. We aim at deriving analogous results for the classical
two-dimensional and three-dimensional axisymmetric Navier-Stokes equations re-
cently obtained in [34, 36]. Roughly speaking, we show essentially that if the initial
data (v0, ρ0) is axisymmetric and (ω0, ρ0) belongs to the critical space L1(Ω)×L1(R3),
with ω0 is the initial vorticity associated to v0 and Ω = {(r, z) ∈ R2 : r > 0}, then
the viscous Boussinesq system has a unique global solution.
T. Gallay and V. Sverák in [36] essentially used the fixed-point argument in an ap-
propriate functional space coupled with estimations based mainly on the properties
of the semigroup. Since our system is given by a coupling between the velocity field
v(t, x) and the density ρ(t, x) according to the equations:

∂tv + v · ∇v − µ∆v +∇p = ρ~ez, if (t, x) ∈ R+ × R3,
∂tρ+ v · ∇ρ− κ∆ρ = 0, if (t, x) ∈ R+ × R3,
divv = 0,
(v, ρ)|t=0 = (v0, ρ0),

(Bµ,κ)
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and the first equation of (Bµ,κ) is a non-homogeneous Navier-Stokes equation, so
under vorticity-density formulation for µ = κ = 1 ∂tωθ + v · ∇ωθ − vr

r
ωθ =

(
∆− 1

r2

)
ωθ − ∂rρ, if (t, r, z) ∈ R+ × Ω,

∂tρ+ v · ∇ρ−∆ρ = 0, if (t, x) ∈ R+ × R3,
(ωθ, ρ)|t=0 = (ω0, ρ0),

(3.1)

where v · ∇ = vr∂r + vz∂z and ∆ = ∂2
r + 1

r
∂r + ∂2

z , we can check that the linear
vorticity equation keeps the same semigroup, that is the reason why we try to inspire
a couple of semigroups that achieve the same goals as their semigroup. Although we
succeeded in forming this pair, we only could estimate the solution in the functional
space after creating a new function rρ so a new equation. Fortunately it admits the
same semigroup as the vorticity equation. Thanks to this new function, we could
estimate the term ∂rρ, which was considered as an obstacle in the estimations.

As we pointed out in the introduction the global regularity of (Bµ,κ) in dimension
three of spaces has received a considerable attention. Let us mention in particular
R. Danchin and M. Paicu [27], H. Abidi, T. Hmidi and S. Keraani [3], T. Hmidi
and F. Rousset [53], C. Miao and X. Zheng [[71], [72]], P. Dreyfuss and H. Houamed
[29], H. Houamed and M. Zerguine[47].

In the present chapter, we are interested to study the global well-posedness of
axisymmetric Boussinesq system (3.1) in critical Lebesgue space in other words,
(ω0, ρ0) ∈ L1(Ω)× L1(R3).

During this work, we will fix some notations which be useful in the sequel. First,
we endow the half-space Ω = {(r, z) ∈ R2 : r > 0} with the two-dimensional measure
drdz and define for p ∈ [1,∞] the Lebesgue space Lp(Ω) as the set of measurable
functions ωθ : Ω→ R such that the norm

‖ωθ‖Lp(Ω) =


(∫

Ω
|ωθ(r, z)|pdrdz

) 1
p if p ∈ [1,∞),

essup(r,z)∈Ω|ωθ(r, z)| if p =∞.

and

‖Π‖Lp(R3) =


(∫

Ω
|Π(r, z)|prdrdz

) 1
p if p ∈ [1,∞),

essup(r,z)∈Ω|Π(r, z)| if p =∞.

For the reader’s convenience, we provide a brief headline of this chapter. In
section 2, we briefly depict the framework that exists regarding the axisymmetric
Biot-Savart law. Many results could be spent in explaining this framework in detail,
in particular, the relation between the velocity vector field and its vorticity by means
of stream function. Along the way, we recall some weighted estimates which will
be crucial in the sequel. Afterwards, we focus in the linear equation of (3.1) and
some characterization of their associated semigroup, in particular the Lp → Lq

estimate as in two-dimension space. Section 3, mainly treats the well-posedness
topic for the system (3.1). The main tool in local well-posedness is the fixed point
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argument on the product space combined with a few techniques about the semigroup
estimates. We conclude this section by investigating some global a priori estimates
through coupling the system (3.1) and introducing the new unknowns Γ and Γ̃.
Considering these latest quantities will be a helpful to derive the global existence
for the equivalent system (3.1) and consequently the system (Bµ,κ).

3.2 Setup and preliminary results

In this section we recall some basic tools which will be employed in the subsequent
sections. In particular, we develop the Biot-Savart law in the framework of axisym-
metric vector fields, and we study the linear equation associated to the system (3.1),
usually specialized to the local existence.

3.2.1 The tool box of Axisymmetric Biot-Savart law

Recalling that in the cylindrical coordinates and in the class of axisymmetric vector
fields without swirl the velocity is given by v = (vr, 0, vz) with vr and vz are inde-
pendently of θ−variable, ωθ its vorticity defined from Ω into R by ωθ = ∂zv

r − ∂rvz
and the divergence-free condition divv = 0 under homogeneous boundary conditions
vr = ∂rv

z = 0, turns out to be

∂r(rv
r) + ∂z(rv

z) = 0.

In this case, it is not difficult to build a scalar function Ω 3 (r, z) 7→ ψ(r, z) ∈ R
which called axisymmetric stream function and satisfying

vr = −1

r
∂zψ, vz =

1

r
∂rψ. (3.2)

Consequently, one obtains that ψ evolves the following linear elliptic inhomogeneous
equation

−1

r
∂2
rψ +

1

r2
∂rΨ−

1

r
∂2
zψ = ωθ,

with the boundary conditions ψ(0, z) = ∂rψ(0, z) = 0. By setting L = −1
r
∂2
r +

1
r2∂r − 1

r
∂2
z , one finds the following boundary value problem{

Lψ(r, z) = ωθ(r, z) if (r, z) ∈ Ω
ψ(r, z) = ∂rψ(r, z) = 0 if (r, z) ∈ ∂Ω,

(3.3)

where ∂Ω = {(r, z) ∈ R2 : r = 0}. It is evident that L is an elliptic operator of
second order, then according to [79], L is invertible with an inverse L−1 (For more
details see Appendix ). Consequently, the boundary value problem (3.3) admits a
unique solution given by

Ψ(r, z) , L−1ωθ(r, z) =

∫ ∞
−∞

∫ ∞
0

√
r̃r

2π
F

(
(r − r̃)2 + (z − z̃)2

r̃r

)
ωθ(r̃, z̃)dr̃dz̃, (3.4)
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where the function F :]0,∞[→ R is expressed as follows:

F (s) =

∫ π

0

cosαdα(
2(1− cosα) + s

)1/2
. (3.5)

Remark 3.2.1. Although F in (3.5) cannot be expressed as an elementary functions,
but it has nice asymptotic properties near s = 0 and s = ∞ listed in the following
proposition. For more details about the proof, see [31, 79].

Proposition 3.2.2. Let F be the function defined in (3.5), then the following as-
sertions are hold.

i F (s) = 1
2

log 1
s

+log 8−2+O
(
s log 1

s

)
and F ′(s) = − 1

2s
+O

(
log 1

s

)
as s→ 0+.

ii F (s) = π
2s3/2

+O
(

1
s5/2

)
and F ′(s) = − 3π

4s5/2
+O

(
1

s7/2

)
as s→∞.

iii For every k ∈ N?, we have

|F (s)| . min

((1

s

)ε
,
(1

s

) 1
2
,
(1

s

) 3
2

)
, ε ∈]0,

1

2
[.

and
|F (k)(s)| . min

((1

s

)k
,
(1

s

)k+ 1
2
,
(1

s

)k+ 3
2

)
, s ∈]0,∞[.

iv The maps s 7→ sαF (s) and s 7→ sβF ′(s) are bounded for 0 < α ≤ 3
2
and

1 ≤ β ≤ 5
2
respectively.

Now, let

K(r, z, r̃, z̃) =

√
r̃r

2π
F

(
(r − r̃)2 + (z − z̃)2

r̃r

)
. (3.6)

Thus in view of (3.4), Ψ takes the form

Ψ(r, z) =

∫ ∞
−∞

∫ ∞
0

K(r, z, r̃, z̃)ωθ(r̃, z̃)dr̃dz̃,

with K can be seen as the kernel of the last integral representation. The last es-
timate combined with (3.2) claim that there exists a genuine connection between
the velocity and its vorticity, namely, axisymmatric Biot-Savart law which reads as
follows

vr(r, z) =

∫ ∞
−∞

∫ ∞
0

Kr(r, z, r̃, z̃)ωθ(r̃, z̃)dr̃dz̃, vz(r, z) =

∫ ∞
−∞

∫ ∞
0

Kz(r, z, r̃, z̃)ωθ(r̃, z̃)dr̃dz̃.

(3.7)
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Remark 3.2.3. At first glance, the comparison between the usual Biot-Savart law in
R3

v(x) = − 1

4π

∫
R3

x− y
|x− y|3

× ωθ(y)dy

and the axisymmetric biot-savart law (3.7) seems that the latter is more compli-
cated and have no advantage. But (3.7) indeed capture certain characteristics of
axisymmetric fields without swirl.

Here, with the notation ξ2 = (r−r̃)2+(z−z̃)2

r̃r
we have

Kr(r, z, r̃, z̃) = − 1

π

z − z̃
r3/2r̃1/2

F ′(ξ2) (3.8)

and

Kz(r, z, r̃, z̃) =
1

π

r − r̃
r3/2r̃1/2

F ′(ξ2) +
1

4π

r̃1/2

r3/2

(
F (ξ2)− 2ξ2F ′(ξ2)

)
. (3.9)

A worthwhile property of the kernels Kr and Kz are given in the following result.
For more details about the proof, see [36].

Proposition 3.2.4. Let (r, z, r̃, z̃) ∈ Ω× Ω, then we have

|Kr(r, z, r̃, z̃)|+ |Kz(r, z, r̃, z̃)| ≤ C(
(r − r̃)2 + (z − z̃)2

)1/2
. (3.10)

Now, we state the first consequence of the above result, in particular the Lp → Lq

between the velocity and its vorticity. Specifically we have:

Proposition 3.2.5. Let v be an axisymmetric velocity vector associated to the vor-
ticity ωθ via the axisymmetric Biot-Savart law (3.7). Then the following assertions
are hold.

(i) Let (p, q) ∈]1, 2[×]2,∞[, with p < q and 1
p
− 1

q
= 1

2
. For ωθ ∈ Lp(Ω), then

v ∈ (Lq(Ω))2 and
‖v‖Lq(Ω) ≤ C‖ωθ‖Lp(Ω). (3.11)

(ii) Let (p, q) ∈ [1, 2[×]2,∞], with p < q, and define σ ∈]0, 1[ by 1
2

= σ
p

+ 1−σ
q
. Then

for ωθ ∈ Lp(Ω) ∩ Lq(Ω), we have v ∈ (L∞(Ω))2 and

‖v‖L∞(Ω) ≤ C‖ωθ‖σLp(Ω)‖ωθ‖1−σ
Lq(Ω). (3.12)

Proof. (i) Combining (3.7) and (3.10), we get

|vr(r, z)| ≤ C

∫ ∞
−∞

∫ ∞
0

|ωθ(r̃, z̃)|(
(r − r̃)2 + (z − z̃)2

)1/2
dr̃dz̃,
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and
|vz(r, z)| ≤ C

∫ ∞
−∞

∫ ∞
0

|ωθ(r̃, z̃)|(
(r − r̃)2 + (z − z̃)2

)1/2
dr̃dz̃.

The last two integrals of the right hand side are be seen as a singular integral. So,
by hypothesis 1

p
− 1

q
= 1

2
, Hardy-Littlewood-Sobolev theorem, see e.g. [19, Theorem

6.1.3] yields the desired estimate.
(ii) Let R > 0, then in view of (3.10) we have

|v(r, z)| .
∫

ΩR

|ωθ(r − r̃, z − z̃)|
(r̃2 + z̃2)

1
2

dr̃dz̃ +

∫
Ω\ΩR

|ωθ(r − r̃, z − z̃)|
(r̃2 + z̃2)

1
2

dr̃dz̃,

where ΩR = {(r, z) ∈ Ω : 0 < r ≤ R,−R ≤ z ≤ R}. Thus, Hölder’s inequality
implies

|v(r, z)| . ‖ωθ‖Lq(Ω)R
1− 2

q + ‖ωθ‖Lp(Ω)
1

R
2
p
−1
.

It is enough to take R =
(
‖ωθ‖Lp(Ω)/‖ωθ‖Lq(Ω)

)`
, with ` = σ

1−2/q
= 1−σ

2/p−1
. Then by

an easy computations we achieve the estimate.

In the axisymmetric case the weighted estimates practice a decisive role to bound
some quantities like rαv in Lebesgue spaces for some α. Now, we state some of them
which their proofs can be found in [31, 36].

Proposition 3.2.6. Let α, β ∈ [0, 2] be such that β − α ∈ [0, 1[, and assume that
p, q ∈]1,∞[ satisfy

1

p
− 1

q
=

1 + α− β
2

.

Assume that rβωθ ∈ Lp(Ω), then rαv ∈ (Lq(Ω))2 and the following bound holds true.

‖rαv‖Lq(Ω) ≤ C‖rβωθ‖Lp(Ω). (3.13)

Proposition 3.2.7. Let v be the axisymmetric velocity vector associated to the vor-
ticity ωθ via the axisymmetric Biot-Savart law (3.7). Then the following weighted
estimates are hold.

‖v‖L∞(Ω) ≤ C‖rωθ‖1/2

L1(Ω)‖ωθ/r‖
1/2
L∞(Ω), (3.14)

and ∥∥∥vr
r

∥∥∥
L∞(Ω)

≤ C‖ωθ‖1/3

L1(Ω)‖ωθ/r‖
2/3
L∞(Ω). (3.15)

3.2.2 Characterizations of semi-groups associated with the
linear equation

We focus on studying the linearized boundary initial value problem associated to
the system (3.1) and we state some properties of their semipgroups. Specifically, we
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consider 
∂tωθ −

(
∆− 1

r2

)
ωθ = 0,

∂tρ−∆ρ = 0,
(ωθ, ρ)|t=0 = (ω0, ρ0)

(3.16)

in the product space Ω × R3, with Ω = {(r, z) ∈ R2 : r > 0} is the half-space
by prescribing the homogeneous Dirichlet conditions at the boundary r = 0 for ωθ
variable. For (ω0, ρ0) ∈ L1(Ω)× L1(R3), the solution of (3.16) is given explicitly by{

ωθ(t) = S1(t)ω0,
ρ(t) = S2(t)ρ0,

where (S1(t))t≥0 and (S2(t))t≥0 being respectively the semigroups or evolution oper-
ators associated to the dissipative operators (∆− 1

r2 ) and ∆.

Such are characterized by the following explicit formula, namely we have:

Proposition 3.2.8. The family (S1(t),S2(t))t≥0 associated to (3.16) is expressed by
the following

(S1(t)ω0)(r, z) = 1
4πt

∫
Ω
r̃1/2

r1/2 N1

(
t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ω0(r̃, z̃)dr̃dz̃,

(S2(t)ρ0)(r, z) = 1
4πt

∫
Ω
r̃1/2

r1/2 N2

(
t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ρ0(r̃, z̃)dr̃dz̃,

(3.17)

where the functions ]0,+∞[3 t 7→ N1(t),N2(t) ∈ R are defined for every t > 0 by
N1(t) = 1√

πt

∫ π/2
−π/2 e

− sin2 α
t cos(2α)dα,

N2(t) = 1√
πt

∫ π/2
−π/2 e

− sin2 α
t dα.

(3.18)

Proof. We assume that (ωθ, ρ) solving (3.16), then a straigthforward computations
claim that (ω, ρ), with ω = ωθ~eθ satisfying the usual heat equation ∂tω − ∆ω = 0
and ∂tρ−∆ρ = 0 in R3 with initial data (ω(0, ·), ρ(0, ·)). Therefore, for every t > 0
we have 

ω(t, x) = 1
(4πt)3/2

∫
R3 e

− |x−x̃|
2

4t ω(0, x̃)dx̃,

ρ(t, x) = 1
(4πt)3/2

∫
R3 e

− |x−x̃|
2

4t ρ(0, x̃)dx̃.

(3.19)

In the cylindrical basis (~er, ~eθ, ~ez), we write x = (r cos θ, r sin θ, z) and x̃ =

(r̃ cos θ̃, r̃ sin θ̃, z̃), hence the first equation of (3.19) takes the form

(3.20)

ωθ(t, r, z)

 − sin θ
cos θ

0

 =
1

(4πt)3/2

∫ ∞
0

∫
R

∫ π

−π
e−
|x−x̃|2

4t ω0(r̃, z̃)

 − sin θ̃

cos θ̃
0

 r̃dθ̃dz̃dr̃

= I1.
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Since, |x− x̃|2 = (r − r̃)2 + (z − z̃)2 + 4rr̃ sin2
(
θ−θ̃

2

)
, thus we have

I1 =
1

(4πt)

∫ ∞
0

∫
R

(
1

(4πt)1/2

∫ π

−π
e
−rr̃ sin2 θ−θ̃

2
t

 − sin θ̃

cos θ̃
0

 r̃dθ̃

)
e−

(r−r̃)2+(z−z̃)2
4t ω0(r̃, z̃)dz̃dr̃.

(3.21)
To treat I1, we set α = θ−θ̃

2
then we have

1√
4πt

∫ π

−π
e
−rr̃ sin2 θ−θ̃

2
t (− sin θ̃)r̃dθ̃ = − 1√

πt

∫ θ/2+π/2

θ/2−π/2
e
−rr̃ sin2 α

t

(
sin θ cos 2α− cos θ sin 2α

)
r̃dα

= − 1√
πt

∫ +π/2

−π/2
e
−rr̃ sin2 α

t

(
sin θ cos 2α

)
r̃dα

− 1√
πt

∫ +π/2

−π/2
e
−rr̃ sin2 α

t

(
cos θ sin 2α

)
r̃dα.

For t ∈]0,∞[, define

N1(t) =
1√
πt

∫ π/2

−π/2
e−

sin2 α
t cos(2α)dα.

Then the last estimate becomes

1

(4πt)
1
2

∫ π

−π
e
−rr̃ sin2 θ−θ̃

2
t (− sin θ̃)r̃dθ̃ =

r̃1/2

r1/2
N1

( t
rr̃

)
(− sin θ).

Similarly,
1

(4πt)1/2

∫ π

−π
e
−rr̃ sin2 θ−θ̃

2
t cos θ̃r̃dθ̃ =

r̃1/2

r1/2
N1

( t
rr̃

)
cos θ.

Combining the last two estimates and plug them in I1 we reach the desired estimate.

For the second equation in (3.19) we express the density formula in (~er, ~eθ, ~ez)
basis

ρ(t, r, z) =
1

4πt

∫
Ω

(
1

2
√
πt

∫ π

−π
e−

rr̃ sin2( θ−θ̃2 )

t r̃dθ̃

)
e−

(r−r̃)2+(z−z̃)2
4t ρ(0, r̃, z̃)dr̃dz̃. (3.22)

Setting

I2 =
1

2
√
πt

∫ π

−π
e−

rr̃ sin2
(
θ−θ̃

2

)
t r̃dθ̃.

The same variable α = θ−θ̃
2

allows us to write

I2 =
1√
πt

∫ π/2

−π/2
e−

rr̃ sin2 α
t r̃dα =

√
r̃

r
N2

( t
rr̃

)
,

with N2 is defined for t > 0 by

N2(t) =
1√
πt

∫ π/2

−π/2
e−

sin2 α
t dα.

Plug I2 in (3.22), we get the result. This reached the proof of the Proposition.
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The following Proposition provides some asymptotic behavior of the functions
N1 and N2 near 0 and ∞, will be fundamental in the sequel.

Proposition 3.2.9. Let N1,N2 :]0,∞[→ R be the functions defined in (3.18). Then
the following statements are hold.

(i) N1(t) = 1− 3t
4

+O(t2) and N ′
1 (t) = −3

4
+O(t) when t ↓ 0;

(ii) N1(t) = π1/2

4t3/2
+O

(
1
t5/2

)
and N ′

1 (t) = −3π1/2

8t5/2
+O

(
1
t7/2

)
when t ↑ ∞;

(iii) N2(t) = 1− t
4

+O(t2) and N ′
2 (t) = −1

4
+O(t) when t ↓ 0;

(iv) N2(t) = π1/2

t1/2
− π5/2

12t3/2
+ O

(
1
t5/2

)
and N ′

2 (t) = − π1/2

12t3/2
− π5/2

8t5/2
+ O

(
1
t7/2

)
when

t ↑ ∞.

Proof. (i) Substituting ζ = sinα√
t

in N1, we shall have

N1(ζ) =
1√
π

∫ 1√
t

− 1√
t

e−ζ
2 1− 2tζ2√

1− tζ2
dζ

=
2√
π

∫ 1√
t

0

e−ζ
2 1− 2tζ2√

1− tζ2
dζ

=
2√
π

(∫ 1
2
√
t

0

e−ζ
2 1− 2tζ2√

1− tζ2
dζ +

∫ 1√
t

1
2
√
t

e−ζ
2 1− 2tζ2√

1− tζ2
dζ

)
= II1 + II2.

Note that limt↓0 II2 = 0, so the behavior of N1 near 0 comes from II1. Hence, let
us deal with II1, we insert the Taylor expansion of the function ζ → 1√

1−tζ2
in the

integral of II1 to obtain

II1 =
2√
π

∫ 1
2
√
t

0

e−ζ
2

(1− 3

2
tζ2 − t2ζ4)dζ +O(t3).

It is straightforward to show that∫ ∞
0

e−ζ
2

dζ =

√
π

2
,

∫ ∞
0

ζ2e−ζ
2

dζ =

√
π

4
,

∫ ∞
0

ζ4e−ζ
2

dζ = −3

√
π

8
.

Consequently, limt↓0 II1 = 1. Combining all the previous quantities, we find the
asymptotic behavior of II1 near 0, that is,

II1 = 1− 3

4
t+O(t2).
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By derivation of II1, we find the behavior of N ′
1 .

(ii) The Mac Laurin’s expansion of the function α 7→ e−
sin2 α
t at 0 is given by

e−
sin2 α
t = 1− α2

t
+O

( 1

t2

)
.

Thus we get

N1(t) =
1√
πt

∫ π/2

−π/2

(
1− α2

t

)
cos 2αdα +O

( 1

t
5
2

)
.

After an easy computations we achieve the estimate.
(iii) To prove this assertion, setting y = sinα√

t
in N2 and we split the integral into

two parts, one has

N2(t) =
2√
π

(∫ 1
2
√
t

0

e−y
2√

1− ty2
dy +

∫ 1√
t

1
2
√
t

e−y
2√

1− ty2
dy

)
.

We follow the same steps as N1. For the second integral in right-hand side, we have

2√
π

∫ 1√
t

1
2
√
t

e−y
2√

1− ty2
dy =

2√
π

∫ 1√
t

1
2
√
t

e−y
2

(
√

1−
√
ty)(

√
1 +
√
ty)

dy

≤ Ce−
1
4t

∫ 1√
t

1
2
√
t

1√
1−
√
ty
dy.

Let us observe that the last estimate goes to 0 as t ↓ 0, so the asymptotic behavior
of N2 near 0 comes only from the first integral. To be precise, it is clear that
t 7→ 1√

1−ty2
is bounded function whenever 0 < y < 1

2
√
t
and

lim
t↓0

2√
π

∫ 1
2
√
t

0

e−y
2

dy ≈ 1.

Thus, the expansion of the function x 7→ (1− x)−
1
2 for x = ty2 enuble us to write

N2(t) =
2√
π

∫ 1
2
√
t

0

e−y
2
(

1 +
ty2

2

)
dy +O(t2)

= 1− t

4
+O(t2).

(iv) Using the fact sinα ' α near 0, then we get

N2(t) =
1√
πt

∫ π
2

−π
2

e−
α2

t dα.

We set y = α√
t
, clearly that y ↓ 0 as t ↑ ∞ and the power expansion of the function

ey near 0 yields the asymptotic expansion, whereas N ′
2 is a direct derivative of N2

expansion.
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Remark 3.2.10. (i) It should be noted that the functions t 7→ N1(t) and t 7→ N2(t)
are decreasing over ]0,∞[, but the proof seems very hard.

(ii) The functions t 7→ tαN1(t), t 7→ tαN2(t) and t 7→ tβN ′
1 (t), t 7→ tβN ′

2 (t) are
bounded for 0 ≤ α ≤ 1

2
and 0 ≤ β ≤ 3

2
.

Other nice properties of (Si(t))t≥0, with i = 1, 2, in particular the estimate
Lp → Lq are given in the following result.

Proposition 3.2.11. The family ((S1(t), S2(t))t≥0 associated to (3.16) is a strongly
continuous semigroup of bounded linear operators in Lp(Ω) × Lp(R3) for any p ∈
[1,∞). Furthermore, for 1 ≤ p ≤ q ≤ ∞ the following assertions are hold.

(i) For (ω0, ρ0) ∈ Lp(Ω)× Lp(R3), we have for every t > 0

‖(S1(t)ω0, S2(t)ρ0)‖Lq(Ω)×Lq(R3) ≤
C

t
1
p
− 1
q

‖(ω0, ρ0)‖Lp(Ω)×Lp(R3). (3.23)

(ii) For f = (f r, f z) ∈ Lp(Ω)× Lp(Ω), we have for every t > 0

‖S1(t)div?f‖Lq(Ω) ≤
C

t
1
2

+ 1
p
− 1
q

‖f‖Lp(Ω). (3.24)

(iii) For f = (f r, f z) ∈ Lp(R3)× Lp(R3), we have every t > 0

‖S2(t)divf‖Lq(R3) ≤
C

t
1
2

+ 1
p
− 1
q

‖f‖Lp(R3) (3.25)

Here, div?f = ∂rf
r + ∂zf

z (resp. divf = ∂rf
r + ∂zf

z + fr

r
) stands the divergence

operator over R2 (resp. the divergence operator over R3 in the axisymmetric case).

Proof. (i) We follow the proof of [36] with minor modifications, for this aim let
(r, z), (r̃, z̃) ∈ Ω, we will prove the following worth while estimates

1
4πt

r̃1/2

r1/2 N1

(
t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ≤ C

t
e−

(r−r̃)2+(z−z̃)2
5t ,

1
4πt

r̃1/2

r1/2 N2

(
t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ≤ C

t
e−

(r−r̃)2+(z−z̃)2
5t .

(3.26)

We distinguish two cases r̃ ≤ 2r and r̃ > 2r.
• r̃ ≤ 2r. Employing the fact t 7→ (tαN1(t), tαN2(t)) is bounded for α ∈ [0, 1

2
], see,

(ii)-Remark 3.2.10 and t 7→ e−t is decreasing, we get the result.
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• r̃ > 2r. The remark r̃ ≤ 2
(
(r−r̃)2+(z−z̃)2

) 1
2 , a new use of t 7→ (tαN1(t), tαN2(t))

is bounded for α ∈ [0, 1
2
] and te−

t2

4 ≤ Ce−
t2

5 for t ≥ 0 leading to

1

4πt

r̃1/2

r1/2
Ni

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ≤ C

t

(
(r − r̃)2 + (z − z̃)2

4t

) 1
2

e−
(r−r̃)2+(z−z̃)2

4t

≤ C

t
e−

(r−r̃)2+(z−z̃)2
5t , i ∈ {1, 2}.

Next, from (3.26) and the last estimate we write

|S1(t)ω0|+ |S2(t)ρ0| ≤
1

4πt

∫
Ω

∣∣∣∣ r̃1/2

r1/2
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ω0(r̃, z̃)

∣∣∣∣dr̃dz̃
+

1

4πt

∫
Ω

∣∣∣∣ r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ρ0(r̃, z̃)

∣∣∣∣dr̃dz̃
≤ C

t

∫
Ω

e−
(r−r̃)2+(z−z̃)2

5t

(
|ω0(r̃, z̃)|+ |ρ0(r̃, z̃)|

)
dr̃dz̃.

The last line can be seen as a convolution product, then Young’s inequality gives
the desired estimate.
(ii) By definition for every (r, z) ∈ Ω, we have

(
S1(t)div?f

)
(r, z) =

1

4πt

∫
Ω

r̃1/2

r1/2
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t (∂r̃f

r(r̃, z̃) + ∂z̃f
z(r̃, z̃))dr̃dz̃

=
1

4πt

∫
Ω

r̃1/2

r1/2
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ∂r̃f

r(r̃, z̃)dr̃dz̃

+
1

4πt

∫
Ω

r̃1/2

r1/2
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ∂z̃f

z(r̃, z̃)dr̃dz̃

= II1 + II2.

After an integration by parts, it happens

II1 =
1

4πt

∫
Ω

r̃1/2

r1/2

(
t

rr̃2
N ′

1

( t
rr̃

)
−
( 1

2r̃
+
(r − r̃

2t

))
N1

( t
rr̃

))
e−

(r−r̃)2+(z−z̃)2
4t f r(r̃, z̃)dr̃dz̃

and

II2 = − 1

4πt

∫
Ω

r̃1/2

r1/2

(z − z̃
2t

)
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t f z(r̃, z̃)dr̃dz̃.

We proceed by the same manner as above, that is to say, the fact that the functions
N1,N ′

1 and t 7→ tαN1(t), t 7→ tαN ′
1 (t) are bounded, see Remark 3.2.10, one finds

|II1| ≤
C

t
3
2

∫
Ω

e−
(r−r̃)2+(z−z̃)2

5t |f r(r̃, z̃)|dr̃dz̃,

and
|II2| ≤

C

t
3
2

∫
Ω

e−
(r−r̃)2+(z−z̃)2

5t |f z(r̃, z̃)|dr̃dz̃.
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Together with Young’s inequality, we obtain (3.24).
(iii) Let (r, z) ∈ Ω, then we have

S2(t)divf(r, z) =
1

4πt

∫
Ω

r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t

(
∂r̃f

r(r̃, z̃) + ∂r̃f
z(r̃, z̃) +

1

r̃
f r(r̃, z̃)

)
dr̃dz̃

=
1

4πt

∫
Ω

r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ∂r̃f

r(r̃, z̃)r̃dz̃

+
1

4πt

∫
Ω

r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t ∂z̃f

z(r̃, z̃)r̃dz̃

+
1

4πt

∫
Ω

r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t

1

r̃
f r(r̃, z̃)dr̃dz̃

= III3 + III4 + III5. (3.27)

The two terms III3 and III4 ensue by the same argument as in (ii). It remains to
treat the term III5 in the following way

III5 =
1

4πt

∫
Ω

r̃1/2

r1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t

1

r̃
f r(r̃, z̃)dr̃dz̃

=
1

4πt

∫
Ω

1

(rr̃)1/2
N2

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t f r(r̃, z̃)dr̃dz̃. (3.28)

The fact that (·/rr̃)1/2N2(·/rr̃) is bounded guided to

|III5| ≤
C

t3/2

∫
Ω

e−
(r−r̃)2+(z−z̃)2

4t |f r(r̃, z̃)|dr̃dz̃.

By pluging the last estimate in (3.28) and combine it with (3.27), it follows

|S2(t)divf | ≤ C

t3/2

∫
Ω

e−
(r−r̃)2+(z−z̃)2

5t

(
|f r(r̃, z̃)|+ |f z(r̃, z̃)|

)
dr̃dz̃.

Then a new use of Young’s inequality leading to the result.

To close our claim, it remains to establish that R+ 3 t 7→ S1(t) (resp. R+ 3
t 7→ S2(t)) is continuous on Lp(Ω) (resp. on Lp(R3)). We restrict ourselves only for
(S1(t))t≥0. Let ω0 ∈ Lp(Ω) and define its extension on R2 by ω̃0 which equal to 0
outside of Ω. Thus, in view the change of variables r̃ = r +

√
tϑ and z̃ = z +

√
tγ,

the statement (3.17) takes the form

(S1(t)ω0)(r, z) =
1

4π

∫
R2

(
1+

√
tϑ

r

)1/2

N1

(
t

r(r +
√
tϑ)

)
e−

β2+γ2

4 ω̃0(r+
√
tϑ, r+

√
tγ)dϑdγ.

The fact
1

4π

∫
R2

e−
ϑ2+γ2

4 dϑdγ = 1

leading to

(S1(t)ω0)(r, z)− ω0(r, z) =
1

4π

∫
R2

e−
ϑ2+γ2

4 Υ(t, r, z, ϑ, γ)dϑdγ, (3.29)
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where

Υ(t, r, z, ϑ, γ) =

(
1 +

√
tϑ

r

)1/2

N1

(
t

r(r +
√
tϑ)

)
ω̃0(r +

√
tϑ, r +

√
tγ)− ω̃0(r, z).

Taking the Lp−estimate of (3.29), then with the aid of the following Minkowski’s
integral formula in general case(∫

X1

(∫
X2

F (x1, x2)dλ2(x2)
)p
dλ1(x1)

)1/p

≤
∫
X2

(∫
X1

F (x1, x2)pdλ1(x1)

)1/p

dλ2(x2),

one obtains for p ∈ [1,∞) that

‖(S1(t)ω0)(r, z)− ω0(r, z)‖Lp(Ω) ≤
1

4π

∫
R2

e−
ϑ2+γ2

4 ‖Υ(t, r, z, ϑ, γ)‖Lp(Ω)dϑdγ.

Now, we must establish that ‖Υ(t, r, z, ϑ, γ)‖Lp(Ω) → 0 as t → 0. To do this, let
r > 0 and r +

√
tϑ > 0. Writting(

1 +
√
t
ϑ

r

)1/2

N1

(
t

r(r +
√
tϑ)

)
=

( r̃
r

)1/2

N1

( t
rr̃

)
≤ C

|r − r̃|√
t
≤ C(1 + |ϑ|).

Therefore

‖Υ(t, ·, ·, ϑ, γ)‖Lp(Ω) ≤ C(1 + |ϑ|)
(
‖ω0(·+

√
tϑ, ·+

√
tγ)‖Lp(Ω) + ‖ω0‖Lp(Ω)

)
≤ C(1 + |ϑ|)‖ω0‖Lp(Ω).

On the other hand, it is clear to verify that
(

1 +
√
tϑ
r

)1/2

N1

(
t

r(r+
√
tϑ)

)
goes to 1

as t → 0. Thus Lebesgue’s dominated convergence asserts for (ϑ, γ) ∈ R2 that
‖Υ(t, r, z, ϑ, γ)‖Lp(Ω) → 0 when t→ 0. A new use of Lebesgue’s dominated conver-
gence, we finally deduce

‖(S1(t)ω0)(r, z)− ω0(r, z)‖Lp(Ω) → 0, t→ 0, (3.30)

which accomplished the proof.

In the spirit of Proposition 3.5 in [36], another weighted estimates for the linear
semigroup (3.17) is shown in the following proposition, the proof of which can be
done by the same reasoning as in the previous proposition.

Proposition 3.2.12. Let 1 ≤ p ≤ q ≤ ∞, i ∈ {1, 2} and (α, β) ∈ [−1, 2], with
α ≤ β. Assume that rβf ∈ Lp(Ω), then

‖rαSi(t)f‖Lq(Ω) ≤
C

t
1
p
− 1
q

+
(β−α)

2

‖rβf‖Lp(Ω). (3.31)

In addition, if (α, β) ∈ [−1, 1], α ≤ β and rβf ∈ Lp(Ω), then

‖rαSi(t)div?f‖Lq(Ω) ≤
C

t
1
2

+ 1
p
− 1
q

+
(β−α)

2

‖rβf‖Lp(Ω). (3.32)
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We end this section by recalling the following classical estimate on the heat kernel
in dimension three, the proof of which is left to the reader.

Proposition 3.2.13. Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ Lp(R3), then

‖S2(t)f‖Lq(R3) ≤
C

t
3
2

( 1
p
− 1
q

)
‖f‖Lp(R3). (3.33)

3.3 Main results

At this stage, we are ready to state the main result of this chapter. To be precise,
we will prove the following theorem.

Theorem 3.3.1. Let (ω0, ρ0) ∈ L1(Ω) × L1(R3) be axisymmetric initial data, then
the system (3.1) admits a unique global mild solution. More precisely we have:

(ωθ, rρ) ∈
(
C0
(
[0,∞);L1(Ω)

)
∩ C0

(
(0,∞);L∞(Ω)

))2

(3.34)

ρ ∈ C0
(
[0,∞);L1(R3)

)
∩ C0

(
(0,∞);L∞(R3)

)
(3.35)

Furthermore, for every p ∈ [1,∞), there exists some constant Kp(D0) > 0, for
which, and for all t > 0 the following statements hold

‖(ωθ(t), rρ(t))‖Lp(Ω)×Lp(Ω) ≤ t−(1− 1
p

)Kp(D0). (3.36)

‖ρ(t)‖Lp(R3) ≤ t−
3
2

(1− 1
p

)Kp(D0), (3.37)

where
D0 , ‖(ω0, ρ0)‖L1(Ω)×L1(R3).

A few comments about the previous Theorem are given by the following remark.

Remark 3.3.2. It is worth pointing out the hypothesis ωθ is in L1(Ω) doesn’t implies
generally that the associated velocity v is in L2(Ω) space. Consequently, the classical
energy estimate is not available to derive a uniform bound for the velocity.

The proof is organized in two parts. The first one cares with the local well-
posedness topic for (3.1) in the spirit of Gallay and Sverák [36]. We make use of
fixed point-method for a system equivalent to (3.1) on product space equipped with
an adequate norm with the help of the axisymmetric Biot-Savart law and some
norm estimates between the velocity and vorticity. But in our context, we should
deal carefully wih the additional terms ∂rρ and ∂rρ

r
which contributes a singularity

over the axe (Oz). The remedy is to hide those terms by creating a new function ρ̃
and exploiting the coupling structure of the system (3.1) for κ = 1 for introducing
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a new unknown functions Γ and Γ̃ in the spirit of [53] by setting Γ = ωθ
r
− ρ

2
, and

Γ̃ = rΓ. A straightforward computation shows that Γ and Γ̃ solve, respectively{
∂tΓ + v · ∇Γ− (∆ + 2

r
∂r)Γ = 0,

Γt=0 = Γ0.
(3.38)

{
∂tΓ̃ + v · ∇Γ̃− vr

r
Γ̃− (∆− 1

r2 )Γ̃ = 0,

Γ̃t=0 = rΓ0.
(3.39)

In fact, in the second part, we shall investigate some a priori estimates for the coupled
functions in order to derive the global regularity for the system in question. Signif-
icant properties of the new unknowns, such as the maximum principle, are gained
in this transition and Γ evolves a similar equation and keeps the same boundary
conditions than Π in the case of the axisymmetric Navier-Stokes without swirl, see
(1.6). As consequence, the function Γ (and eventually Γ̃ after some technical com-
putations) satisfies the boundedness estimate as in (1.7) which will be crucial in the
process of deriving the global regularity of our solutions.

3.3.1 Local existence of solutions

We will explore the aforementioned results and some preparatory topics in the pre-
vious sections, we shall scrutinize the local well-posedness issue for the system (3.1).
For this reason, we rewrite it in view of the divergence-free condition in the following
form

∂tωθ + div?(vωθ) =
(
∂2
r + ∂2

z + 1
r
∂r − 1

r2

)
ωθ − ∂rρ if (t, r, z) ∈ R+ × Ω,

∂tρ+ div(vρ)−∆ρ = 0 if (t, x) ∈ R+ × R3,
(ωθ, ρ)|t=0 = (ω0ρ0).

(3.40)

The direct treatment of the local well-posedness topic for (3.40) in the spirit of
[36] for initial data (ω0, ρ0) in the critical space L1(Ω) × L1(R3) contributes many
technical difficulties. This motivates to add the following new uknown ρ̃ , rρ which
solves

∂tρ̃+ div?(vρ̃) =
(
∂2
r + ∂2

z +
1

r
∂r −

1

r2

)
ρ̃− 2∂rρ. (3.41)

We can be easily seen that ρ̃ satisfying the same equation as ωθ with additional
source term and their variations are in Ω.

To achieve our topic we will handle with the following equivalent integral formu-
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lation
ωθ(t) = S1(t)ω0 −

∫ t
0
S1(t− τ)div?

(
v(τ)ωθ(τ)

)
dτ −

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ̃(t) = S1(t)ρ̃0 −
∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ − 2

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ(t) = S2(t)ρ0 −
∫ t

0
S2(t− τ)div

(
v(τ)ρ(τ)

)
dτ.

(3.42)
In order to analysis the above system, we will be working in the following Banach
spaces

XT =
{
f ∈ C0

(
(0, T ], L4/3(Ω)

)
: ‖f‖XT <∞

}
,

ZT =
{
h ∈ C0

(
(0, T ], L4/3(R3)

)
: ‖h‖ZT <∞

}
,

equipped with the following norms

‖f‖XT = sup
0<t≤T

t1/4‖f(t)‖L4/3(Ω)

‖h‖ZT = sup
0<t≤T

t3/8‖h(t)‖L4/3(R3).

Now, our task is to prove the following result.

Proposition 3.3.3. Let (ω0, ρ0) ∈ L1(Ω)× L1(R3), then there exists T = T (ω0, ρ0)
such that (3.42) admits a unique local solution satisfying

(ωθ, rρ, ρ) ∈ C
(
(0, T ];XT

)
× C

(
(0, T ];XT

)
× C

(
(0, T ];ZT

)
. (3.43)

Proof. We will proceed by the fixed point theorem in the product space XT =
XT ×XT × ZT equipped by the norm

‖(ωθ, ρ̃, ρ)‖XT , ‖ωθ‖XT + ‖ρ̃‖XT + ‖ρ‖ZT .

For t ≥ 0, define the free part (ωlin(t), ρ̃lin(t), ρlin(t)) =
(
S1(t)ω0,S1(t)(rρ0),S2(t)ρ0

)
,

where
(
S1(t), S2(t)

)
is given in Proposition 3.2.8. In accordance with the (i)-

Proposition 3.2.11, it is not difficult to check that for (ω0, ρ0) ∈ L1(Ω) × L1(R3)
we have for T > 0

sup
0<t≤T

t1/4‖ωlin(t)‖
L

4
3 (Ω)
≤ C‖ω0‖L1(Ω). (3.44)

and
sup

0<t≤T
t1/4‖ρ̃lin(t)‖

L
4
3 (Ω)
≤ C‖rρ0‖L1(Ω) = C‖ρ0‖L1(R3). (3.45)

On the other hand, the fact that

‖ρlin(t)‖
L

4
3 (R3)

= ‖r
3
4ρlin(t)‖

L
4
3 (Ω)

together with (3.31) stated in Proposition 3.2.12, we further get

sup
0<t≤T

t3/8‖ρlin(t)‖
L

4
3 (R3)

≤ C‖rρ0‖L1(Ω) = C‖ρ0‖L1(R3). (3.46)
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Combining (4.32), (4.33) and (4.34) to obtain that (ωlin, ρ̃lin, ρlin) ∈XT .

Next, define the following quantity which will be useful later

Λ(ω0, ρ0, T ) = C‖(ωlin, ρ̃lin, ρlin)‖XT
. (3.47)

We claim that Λ(ω0, ρ0, T ) → 0 when T → 0. To do this, we employ the fact
(L4/3(Ω) ∩ L1(Ω))× (L4/3(R3) ∩ L1(R3)) is a dense space in L1(Ω)× L1(R3). Then
for every ε > 0 and every (ω0, ρ0) ∈ L1(Ω)×L1(R3) there exists (φ, ψ) ∈ (L4/3(Ω)∩
L1(Ω))× (L4/3(R3) ∩ L1(R3)) such that

‖(ω0, ρ0)− (φ, ψ)‖L1(Ω)×L1(R3) < ε.

On account of (i)-Proposition 3.2.11 we write

‖ωlin(t)‖L4/3(Ω) = ‖S1(t)(ω0 − φ+ φ)‖L4/3(Ω)

≤ ‖S1(t)(ω0 − φ)‖L4/3(Ω) + ‖S1(t)φ‖L4/3(Ω)

≤ C

t1/4
‖ω0 − φ‖L1(Ω) + C‖φ‖L4/3(Ω)∩L1(Ω).

Multiply the both sides by t1/4 and taking the supremum over (0, T ] to get

sup
0<t≤T

t1/4‖ωlin(t)‖L4/3(Ω) ≤ C‖ω0 − φ‖L1(Ω) + CT 1/4‖φ‖L4/3(Ω)∩L1(Ω)

≤ Cε+ CT 1/4‖φ‖L4/3(Ω)∩L1(Ω).

Thus, by setting
C0(ω0, T ) = sup

0<t≤T
t1/4‖ωlin(t)‖L4/3(Ω) (3.48)

and let T (resp. ε) goes to 0, one deduces

lim
T→0

C0(ω0, T ) = 0. (3.49)

By the same reasoning as above, it holds

sup
0<t≤T

t1/4‖ρ̃lin(t)‖L4/3(Ω) ≤ Cε+ CT 1/4‖φ‖L4/3(Ω)∩L1(Ω),

with
C1(ρ̃0, T ) = sup

0<t≤T
t1/4‖ρ̃lin(t)‖L4/3(Ω). (3.50)

Likewise
lim
T→0

C1(ρ̃0, T ) = 0. (3.51)

For ρlin, a new use of Propositions 4.2.13 and 3.2.12 yield

‖ρlin(t)‖L4/3(R3) = ‖S2(t)(ρ0 − ψ + ψ)‖L4/3(R3)

≤ ‖S2(t)(ρ0 − ψ))‖L4/3(R3) + ‖S2(t)ψ‖L4/3(R3)

≤ C

t3/8
‖ρ0 − ψ‖L1(R3) + ‖ψ‖L4/3(R3)
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Now, we multiply the both sides by t3/8 and taking the supremum over (0, T ] to
deduce

sup
0<t≤T

t3/8‖ρlin(t)‖L4/3(R3) ≤ C‖ρ− ψ‖L1(R3) + CT 3/8‖ψ‖L4/3∩L1(R3) (3.52)

≤ Cε+ CT 3/8‖ψ‖L4/3∩L1(R3).

Similarly, by putting

C2(ρ0, T ) = sup
0<t≤T

t3/8‖ρlin(t)‖L4/3(R3), (3.53)

we shall obtain that
lim
T→0

C2(ρ0, T ) = 0. (3.54)

Collecting (3.49), (3.51) and (3.54), so that by (3.47), we end up with

lim
T→0

Λ(ω0, ρ0, T ) = 0.

Now, we are ready to contract the integral formulation (3.42) in XT . Doing so,
define for (ωθ, ρ̃, ρ) ∈XT the map

(0, T ] 3 t 7→ T (t)(ωθ, ρ̃, ρ) ∈ L4/3(Ω)× L4/3(Ω)× L4/3(R3)

by

T (t)(ωθ, ρ̃, ρ) =

∫ t0 S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ +

∫ t
0
S1(t− τ)∂rρ(τ)dτ∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ + 2

∫ t
0
S1(t− τ)∂rρ(τ)dτ∫ t

0
S2(t− τ)div

(
v(τ)ρ(τ)

)
dτ

 . (3.55)

We aim at estimating T (t)(ωθ, ρ̃, ρ) in L4/3(Ω)× L4/3(Ω)× L4/3(R3). Due to simi-
larity of the first two lines of (3.55), we will restrict ourselves to analyse the first and
the third ones. For

∫ t
0
S1(t− τ)div?

(
v(τ)ωθ(τ)

)
dτ , we employ (3.23) in Proposition

3.2.11 and Hölder’s inequality with respect to time to obtain

‖
∫ t

0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ‖

L
4
3 (Ω)

.
∫ t

0

1

(t− τ)
1
2

+1− 3
4

‖v(τ)ωθ(τ)‖L1(Ω)dτ

.
∫ t

0

1

(t− τ)
3
4

‖v(τ)‖L4(Ω)‖ωθ(τ)‖
L

4
3 (Ω)

dτ.

Thanks to (3.11), it follows that

‖
∫ t

0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ‖

L
4
3 (Ω)

.
∫ t

0

1

(t− τ)
3
4

‖ωθ(τ)‖2

L
4
3 (Ω)

dτ

.
∫ t

0

dτ

(t− s) 3
4 τ

1
2

‖ωθ‖2
XT

. t−
1
4‖ωθ‖2

XT
.
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We show next how to estimate
∫ t

0
S1(t−τ)∂rρ(τ)dτ in L

4
3 (Ω). In view of Proposition

(3.2.12) for α = 0 and β = 3
4
, we get

‖
∫ t

0

S1(t− τ)∂rρ(τ)dτ‖
L

4
3 (Ω)

.
∫ t

0

1

(t− τ)
1
2

+
3
4−0

2

‖r
3
4ρ‖

L
4
3 (Ω)

dτ

.
∫ t

0

1

(t− τ)
7
8

‖ρ‖
L

4
3 (R3)

dτ

.
∫ t

0

dτ

(t− τ)
7
8 τ

3
8

‖ρ‖ZT

. t−
1
4‖ρ‖ZT .

The above estimates combined with (3.47) provide the following inequality

‖ωθ‖XT ≤ Λ(ω0, ρ0, T ) + C‖ωθ‖2
XT

+ C‖ρ‖ZT . (3.56)

As explained above, the estimate of
∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ can be done along

the same lines, so we have

‖
∫ t

0

S1(t− τ)div?
(
v(τ)ρ̃(τ)

)
dτ‖

L
4
3 (Ω)

. t−
1
4‖ωθ‖XT ‖ρ̃‖XT . (3.57)

we deduce then the following estimate for ρ̃

‖ρ̃‖XT ≤ Λ(ω0, ρ0, T ) + C‖ωθ‖XT ‖ρ̃‖XT + C‖ρ‖ZT . (3.58)

Let us move to estimate the last line in (3.55). Under the remark div(vρ) = vr

r
ρ +

div?(vρ), we write∫ t

0

‖S2(t− τ)div
(
v(τ)ρ(τ)

)
‖L4/3(R3)dτ ≤

∫ t

0

∥∥∥S2(t− τ)
(vr(τ)

r
ρ(τ)

)∥∥∥
L4/3(R3)

dτ

(3.59)

+

∫ t

0

‖S2(t− τ)div?(v(τ)ρ(τ))‖L4/3(R3)dτ

So, for the first term, we shall apply (3.31) stated in Proposition 3.2.12 for α = 3
4

and β = 2 to get∫ t

0

∥∥∥S2(t− τ)
(vr(τ)

r
ρ(τ)

)∥∥∥
L4/3(R3)

dτ =

∫ t

0

∥∥∥r3/4S2(t− τ)
(vr(τ)

r
ρ(τ)

)∥∥∥
L4/3(Ω)

dτ

.
∫ t

0

1

(t− τ)1−3/4+(2−3/4)/2
‖vr(τ)rρ(τ)‖L1(Ω)dτ

.
∫ t

0

1

(t− τ)7/8
‖vr(τ)‖L4(Ω)‖ρ̃(τ)‖L4/3(Ω)dτ

.
∫ t

0

1

(t− τ)7/8τ 1/2
‖ωθ‖XT ‖ρ̃‖XT dτ

. t−3/8‖ωθ‖XT ‖ρ̃‖XT .
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Therefore

t3/8
∫ t

0

∥∥∥S2(t− τ)
(vr(τ)

r
ρ(τ)

)∥∥∥
L4/3(R3)

dτ . ‖ωθ‖XT ‖ρ̃‖XT .

The second term of the r.h.s. in (3.59), will be done by a similar way as above, but
we employ (3.32) in Proposition 3.2.12 for α = 3

4
and β = 1, one may write

t3/8
∫ t

0

‖S2(t− τ)div?(v(τ)ρ(τ))‖L4/3(R3)dτ . ‖ωθ‖XT ‖ρ̃‖XT .

Gathering the last two estimates and insert them in (3.59), one has

t3/8
∫ t

0

‖S2(t− τ)div
(
v(τ)ρ(τ)

)
‖L4/3(R3)dτ . ‖ωθ‖XT ‖ρ̃‖XT ,

combined with (3.53), it follows

‖ρ‖ZT ≤ C2(ρ0, T ) + ‖ωθ‖XT ‖ρ̃‖XT . (3.60)

Collecting (3.56), (3.58) and (3.60) we finally find the nonlinear system

‖ωθ‖XT ≤ Λ(ω0, ρ0, T ) + C‖ωθ‖2
XT

+ ‖ρ‖ZT . (3.61)

‖ρ̃‖XT ≤ Λ(ω0, ρ0, T ) + C‖ωθ‖XT ‖ρ̃‖XT + ‖ρ‖ZT . (3.62)
‖ρ‖ZT ≤ Λ(ω0, ρ0, T ) + C‖ωθ‖XT ‖ρ̃‖XT . (3.63)

In order to better justify the contraction argument, let us denote

BT (R) , {(a, b) ∈ XT ×XT : ‖(a, b)‖XT×XT < R}.

and we claim, for R, T sufficiently small, (ωθ, ρ̃) ∈ BT (R).
By substituting (3.63) into (4.37) and (3.62), the contraction argument is satisfied
if

3Λ(ω0, ρ0, T ) + C̃R2 < R.

Since Λ(ω0, ρ0, T )→ 0 when T → 0, then an usual argument leads to the existence
of T ? > 0 for which ‖ωθ‖XT + ‖ρ̃‖XT remains bounded by R for all T < T ?. Finally
by substituting this latest in (3.63) we deduce that ‖ρ‖ZT remains bounded as well
for all T < T ?. The local existence and uniqueness follow then from classical fixed-
point arguments. The continuity of the solution will be treated after the proof of
the next proposition.
This ends the proof of Proposition 3.3.3.

Remark 3.3.4. In fact in the proof of the local existence above we skip two steps by
assuming that ρ̃ = rρ, the rigorous proof should be as the following: In a first step
instead of dealing with (3.42), we need first to solve the system

ωθ(t) = S1(t)ω0 −
∫ t

0
S1(t− τ)div?

(
v(τ)ωθ(τ)

)
dτ −

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ̃(t) = S1(t)ρ̃0 −
∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ − 2

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ(t) = S2(t)ρ0 −
∫ t

0
S2(t− τ)div

(
v(τ) ρ̃

r
(τ)
)
dτ

(3.64)
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by following the idea developed in the previous proof, and finally we check that
ρ̃ = rρ by solving a heat-type equation evolving the quantity ρ̃ − rρ with 0 initial
data.

Remark 3.3.5. In the light of Remark 4.2 from [36], the local lifespan T given by
Proposition 3.3.3 above can not be bounded from below, by using only the norm
‖(ω0, ρ0)‖L1(Ω)×L1(R3). However, in the case where (ω0, ρ0) ∈

(
L1(Ω)

)
× L1(R3)) ∩(

Lp(Ω) × Lp(R3)
)
, for some p > 1, it is easy to provide explicitly a lower bound

on T from an upper bound of ‖(ω0, ρ0)‖Lp(Ω)×Lp(R3), by making use of Propositions
3.2.11, 3.2.12, and 4.2.13.

We supply the above local well-posedness result by the following properties of the
solution constructed in the previous part. Especially, we will prove.

Proposition 3.3.6. For any p ∈ (1,∞), we have

lim
t→0

t(1−
1
p

)‖ωθ(t)‖Lp(Ω) = 0,

lim
t→0

t(1−
1
p

)‖rρ(t)‖Lp(Ω) = 0,

lim
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) = 0.

Proof. The proof is based principally on a bootstrap argument similar to that of
[36]. For this aim, we will use the notaions

Np(f, T ) , sup
0<t≤T

t(1−
1
p

)‖f‖Lp(Ω), Jp(f, T ) , sup
0<t≤T

t
3
2

(1− 1
p

)‖f‖Lp(R3).

Mp(f0, T ) , sup
0<t≤T

t(1−
1
p

)‖S1(t)f0‖Lp(Ω),

Fp(f0, T ) , sup
0<t≤T

t
3
2

(1− 1
p

)‖S2(t)f0‖Lp(R3).

From the properties of the semi-groups S1 and S2, we have for all p ∈ (1,∞]

lim
T→0

Mp(ω0, T ) = lim
T→0

Mp(rρ0, T ) = lim
T→0

Fp(ρ0, T ) = 0. (3.65)

In addition, from the local existence the desired inequalities hold also for p = 4
3
,

assuming for a moment that the L1(Ω) × L1(R3)-norm of (ωθ(t), ρ(t)) is bounded
for all t small enough (for t < T , with T denotes the local time of existence given
by the local existence theorey). Thus, by interpolation the proposition in question
holds for all p ∈ (1, 4

3
]. In order to extend it to the other values of p we consider the

Duhamel formula (3.42), and we will argue as in the local existence part, thus we
omit some steps to make the presentation simpler. In view of Proposition 3.2.12,
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we write

‖ωθ(t)‖Lp(Ω) ≤ ‖S1(t)ω0‖Lp(Ω) + C

∫ t
2

0

‖ωθ‖2
Lq(Ω)

(t− τ)
2
q
− 1
p

dτ

+ C

∫ t

t
2

‖ωθ(τ)‖Lq1 (Ω)‖ωθ(τ)‖Lq2 (Ω)

(t− τ)
1
q1

+ 1
q2
− 1
p

dτ

+ C

∫ t
2

0

‖ρ(τ)‖
L

4
3 (R3)

(t− τ)
1
2

+ 3
4
− 1
p

+ 3
8

dτ

+ C

∫ t

t
2

‖ρ(τ)‖Lp(R3)

(t− τ)
1
2

+ 1
2p

dτ.

Under the conditions

1

2
≤ 2

q
− 1

p
,

1

2
≤ 1

q1

+
1

q2

− 1

p
< 1, (3.66)

we shall obtain

Np(ωθ, T ) ≤Mp(ω0, T ) + Cp,qNq(ωθ, T )2 + Cq1,q2Nq1(ωθ, T )Nq2(ωθ, T )

+ CpJ 4
3
(ρ, T ) + CpJp(ρ, T ). (3.67)

We recall that ρ̃ evolves the same equation as ωθ, so we have

Np(ρ̃, T ) ≤Mp(ρ̃0, T ) + Cp,qNq(ωθ, T )Nq(ρ̃, T ) + Cq1,q2Nq1(ωθ, T )Nq2(ρ̃, T )

+ CpJ 4
3
(ρ, T ) + CpJp(ρ, T ). (3.68)

Finally, to claim similar estimate for Jp(ρ, T ), first we write

‖ρ(t)‖Lp(R3) ≤ ‖S2(t)ρ0‖Lp(R3) + C

∫ t
2

0

‖ωθ‖L 4
3 (Ω)
‖ρ̃‖

L
4
3 (Ω)

(t− τ)
1
2

+1− 1
p

+
1− 1

p
2

dτ

+ C

∫ t

t
2

‖ωθ(τ)‖Lq1 (Ω)‖ρ̃(τ)‖Lq2 (Ω)

(t− τ)
1
2

+ 1
α
− 1
p

+
1− 1

p
2

dτ,

with
1

α
=

1

q1

+
1

q2

− 1

2
.

Under the additional condition on p, q1, q2

1

q1

+
1

q2

− 3

2p
<

1

2

and for q = 4
3
, we obtain

Jp(ρ, T ) ≤ Fp(ρ0, T ) + CpN 4
3
(ωθ, T )N 4

3
(ρ̃, T ) + Cq1,q2Nq1(ωθ, T )Nq2(ρ̃, T ). (3.69)
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Plugging (3.69) in (3.67) and (3.68) for q = 4
3
, and by denoting

Up(T ) , Np(ωθ, T ) +Np(ρ̃, T ), Vp(T ) ,Mp(ω0, T ) +Mp(ρ̃0, T ) + Fp(ρ0, T ),

we deduce, that

Up(T ) ≤ Cp,q1,q2
(
Vp(T ) + U 4

3
(T )2 + J 4

3
(ρ, T ) + Uq1(T )Uq2(T )

)
.

Now, to cover all the range p ∈ (4
3
,∞), we proceed by the following bootstrap

algorithm:
• For q1 = q2 = 4

3
we can check that Up(T )→ 0 as T → 0 for all 1 < p < 3

2
.

• Next, by taking q1 = q2 sufficiently close to 3
2
, we obtain the same result, for all

p < 9
5
.

• For q1 = q2 = 8
5
, the estimate in question will hold then for all p < 2.

• Taking q1 sufficiently close to 2, the result follows for all p < 3
2
q2 and for all q2 < 2.

• Finally, we define the sequence pn by p0 = 4
3
and pn sufficiently close to 3

2
pn−1,

by induction, we find that pn is sufficiently close to (3
2
)np0. Hence, letting n goes to

∞, we can cover all the range p <∞, and thus we obtain

Up(T )→ 0, T → 0, for all p ∈ (1,∞).

Finally, substituting this latest into (3.69), leads to

Jp(T )→ 0, T → 0, for all p ∈ (1,∞). (3.70)

This ends the proof of Proposition 3.3.6 provided that we prove the existence of
some C0 > 0 for which

‖(ωθ(t), ρ̃(t), ρ(t))‖L1(Ω)×L1(Ω)×L1(R3) ≤ C0‖(ω0, ρ0)‖L1(Ω)×L1(R3).

From the definition of Γ̃, we have

‖ωθ(t)‖L1(Ω) ≤ ‖Γ̃(t)‖L1(Ω) + ‖ρ̃(t)‖L1(Ω)

and since ρ̃ = rρ, our claim is equivalent to

‖(Γ̃(t), ρ(t))‖L1(Ω)×L1(R3) ≤ C0‖(ω0, ρ0)‖L1(Ω)×L1(R3). (3.71)

Let us then prove (3.71), we will restrict ourselves to the estimates of the nonlinear
terms since the linear part can be dealt with by applying the properties of the semi-
groups proved in the previous section. Thus, according to the equations of Γ̃ and ρ,
we need to show that∫ t

0

‖S1(t− τ)div?(vΓ̃)(τ)‖L1(Ω)dτ . ‖(ω0, ρ0)‖L1(Ω)×L1(R3), (3.72)

and ∫ t

0

‖S2(t− τ)div(vρ)(τ)‖L1(R3)dτ . ‖(ω0, ρ0)‖L1(Ω)×L1(R3) . (3.73)
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For (3.72), Hölder inequality, axisymmetric Biot-Savart law and the definition of XT

norm, we write∫ t

0

‖S1(t− τ)div?(vΓ̃)(τ)‖L1(Ω)dτ .
∫ t

0

1

(t− τ)
1
2

‖v(τ)‖L4(Ω)‖Γ̃(τ)‖
L

4
3 (Ω)

dτ

.
∫ t

0

1

(t− τ)
1
2

‖ωθ(τ)‖
L

4
3 (Ω)
‖Γ̃(τ)‖

L
4
3 (Ω)

dτ

. ‖ωθ‖XT ‖Γ̃‖XT
∫ t

0

1

(t− τ)
1
2 τ

1
2

dτ

. ‖ωθ‖XT ‖Γ̃‖XT .

For (3.73), we have

‖S2(t− τ)div(vρ)(τ)‖L1(R3) = ‖rS2(t− τ)div(vρ)(τ)‖L1(Ω) ,

then in view of Proposition 3.2.12, we infer that∫ t

0

‖rS2(t− τ)div(vρ)(τ)‖L1(Ω) dτ .
∫ t

0

1

(t− τ)
1
2

‖vrρ(τ)‖L1(Ω) dτ,

So, the definition of ρ̃ = rρ and Hölder inequality yield to

‖S2(t− τ)div(vρ)(τ)‖L1(R3) .
∫ t

0

1

(t− τ)
1
2

‖v(τ)‖L4(Ω) ‖ρ̃(τ)‖
L

4
3 (Ω)

dτ.

The rest of the estimate is then similar to the proof of (3.73) above by replacing
Γ̃ by ρ̃. Finally, (3.72) and (3.73) follow from the local existence theory given by
Proposition 3.3.3.

3.3.2 Continuity of the solution

Our last task of this section is to reach the continuity of the solution stated in (3.34)
and (3.35) of the main Theorem 3.3.1. For this aim, we briefly outline the continuity
of ωθ, the rest of quantities can be treated along the same lines. So, we will show
that

ωθ ∈ C0
(
(0, T ?);Lp(Ω)

)
, ∀p ∈ [1,∞).

To do so, let 0 < t0 ≤ t < T ?, so we have

ωθ(t)− ωθ(t0) =
(
S1(t− t0)− I

)
ωθ(t0)−

∫ t

t0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ

−
∫ t

t0

S1(t− τ)∂rρ(τ)dτ. (3.74)

The first term (free part) is derived by the same manner as in (3.30), that is to say,

lim
t→t0
‖
(
S1(t− t0)− I

)
ωθ(t0, ·)‖Lp(Ω) → 0. (3.75)
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Concerning the second term in the r.h.s of (3.74), (3.24) in Proposition 3.2.8 provides

‖
∫ t

t0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ‖Lp(Ω) .

∫ t

t0

1

(t− τ)
1
2

‖v(τ)‖L∞(Ω)‖ωθ(τ)‖Lp(Ω)dτ.

By virtue of the following interpolation estimate, see, Proposition 2.3 in [36], we
have for some 1 < q1 < 2 < q2 <∞

‖v(τ)‖L∞(Ω) . ‖ωθ(τ)‖σLq1‖ωθ(τ)‖1−σ
Lq2 , with σ =

q1

2

q2 − 2

q2 − q1

∈ (0, 1),

one may conclude that

‖
∫ t

t0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ‖Lp(Ω)

. essupτ∈(t0,T ?)

(
‖ωθ(τ)‖Lp(Ω)‖ωθ(τ)‖σLq1‖ωθ(τ)‖1−σ

Lq2

) ∫ t

t0

dτ

(t− τ)
1
2

. essupτ∈(t0,T ?)

(
‖ωθ(τ)‖Lp(Ω)‖ωθ(τ)‖σLq1‖ωθ(τ)‖1−σ

Lq2

)
(t− t0)

1
2 ,

which is sufficient to obtain

lim
t→t0
‖
∫ t

t0

S1(t− τ)div?
(
v(τ)ωθ(τ)

)
dτ‖Lp(Ω) = 0. (3.76)

Let us move to the last term of (3.74) for which we distinguish two cases for p. For
p ∈ (1,∞), (3.32) stated in Proposition 3.2.12 for α = 0 and β = 1

p
yield

‖
∫ t

t0

S1(t− τ)∂rρ(τ)dτ‖Lp(Ω) .
∫ t

t0

1

(t− τ)
1
2

+ 1
2p

‖r
1
pρ(τ)‖Lp(Ω)dτ, (3.77)

and the fact that ρ ∈ L∞
(
(0, T ?);Lp(R3)

)
ensures that

‖
∫ t

t0

S1(t− τ)∂rρ(τ)dτ‖Lp(Ω) . essupτ∈(t0,T ?)‖ρ(τ)‖Lp(R3)(t− t0)
1
2

(1− 1
p

)

combined with (3.77), one has

lim
t→t0
‖
∫ t

t0

S1(t− τ)∂rρ(τ)dτ‖Lp(Ω) = 0. (3.78)

For the case p = 1, we will work with Γ̃ instead of ωθ to avoid the source term ∂rρ.
The fact ‖rρ‖L1(Ω) = ‖ρ‖L1(R3) leads to

‖ωθ(t)− ωθ(t0)‖L1(Ω) ≤ ‖Γ̃(t)− Γ̃(t0)‖L1(Ω) + ‖ρ(t)− ρ(t0)‖L1(R3),

so, the continuity of ‖ωθ(·)‖Lp(Ω) relies then on the continuity of ‖Γ̃(·)‖Lp(Ω) and
‖ρ(·)‖L1(R3).
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On the one hand, seen that the equation of Γ̃ governs the same equation to that of
ωθ, but without the source term ∂rρ, hence we follow then the same appraoch as
above to prove that

lim
t→t0
‖Γ̃(t)− Γ̃(t0)‖L1(Ω) = 0. (3.79)

On the other hand, ρ solve a transport-diffusion equation, for which the continuity
property is well-known to hold, thus we skip the details. Therefore

lim
t→t0
‖ωθ(t)− ωθ(t0)‖L1(Ω) = 0.

Combining the last estimate with (3.75), (3.76) and (3.78), we achieve the result.

In the case p = 1 and t0 = 0, we should just be careful about the term ∂rρ which
can be completely avoided in the estimates by using the coupled functions Γ and Γ̃,
the details are left to the reader.

3.4 Global existence

To reach the global existence for the local solution constructed in sections 3.3.1, we
will establish some a priori estimates in Lebesgue spaces. For this target,

(ωθ, rρ, ρ) ∈ C0
(
(0, T ];Lp(Ω)× Lp(Ω)× Lp(R3)

)
, p ∈ [1,∞), T ∈ (0, T ?).

be a solution of the integral formulation (3.42) and so does (ωθ, ρ) to the differential
equation (3.40) associted to initial data (ω0, ρ0) ∈ L1(Ω)×L1(R3), where T ? denotes
the maximal time of existence. Our basic idea is to couple the system (3.40) by
introducing the new unknown Γ = Π− ρ

2
following [53] with Π = ωθ

r
. Some familiar

computations show that Γ obeys{
∂tΓ + v · ∇Γ− (∆ + 2

r
∂r)Γ = 0 if (t, x) ∈ R+ × R3,

Γ|t=0 = Γ0.
(3.80)

For our analysis, we need to introduce again the unknown Γ̃ , rΓ = ωθ − ρ̃
2
, which

solves {
∂tΓ̃ + div?(vΓ̃)− (∆− 1

r2 )Γ̃ = 0 if (t, r, z) ∈ R+ × Ω,
Γ̃|t=0 = Γ̃0.

(3.81)

The role of the new function Γ (resp. Γ̃) for the viscous Boussineq system (Bµ,κ) is
the same that Π (resp. ωθ) for the Navier-Stokes equations (NSµ). For this aim, it
is quite natural to treat carefully the properties of Γ and Γ̃.

The starting point of our analysis says that Γ enjoys the strong maximum principle.
We will prove the following.
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Proposition 3.4.1. We assume that Γ0(x1, x2, z) > 0 (or, < 0), then
Γ(t, x1, x2, z) > 0 (or, < 0) for any (x1, x2, z) ∈ R3 and t > 0.

Proof. We follow the formalism recently accomplished in [31]. Up to a regularization
of Γ by standard method we can achieve the result as follows: we suppose that
Γ0(x1, x2, z) > 0 (likewise the case Γ0(x1, x2, z) < 0). Due to the singularity of the
term 2

r
∂rΓ, we can not apply directly the maximum principle. To surmuont this

hitch, we can be appropriately interpreted the term ∆ + 2
r
∂r as the Laplacian in R5.

Thus we recast (3.80) in ]0,∞[×R5 by setting

Γ(t, x1, x2, x3, x4, z) = Γ
(
t,
√
x2

1 + x2
2 + x2

3 + x2
4, z
)

and

v(t, x1, x2, x3, x4, z) = vr
(
t,
√
x2

1 + x2
2 + x2

3 + x2
4, z
)
er

+ vz
(
t,
√
x2

1 + x2
2 + x2

3 + x2
4, z
)
ez.

Above,

r =
√
x2

1 + x2
2 + x2

3 + x2
4, er =

(x1

r
,
x2

r
,
x3

r
,
x4

r
, 0
)
, ez = (0, 0, 0, 0, 1)

Thus the equation (3.80) becomes{
∂tΓ + v · ∇5Γ−∆5Γ = 0 if (t, x) ∈ R+ × R5,
Γ|t=0 = Γ0,

(3.82)

where ∇5 and ∆5 designate the gradient and Laplacian operators over R5 respec-
tively. Consequently, by the strong maximum principle for (3.82), we deduce that

Γ > 0 in ]0,∞[×R5,

which leads to
Γ > 0 in ]0,∞[×R3.

Thus, the proof is completed.

The second result cares with the classical Lp−estimate for Γ and showing that
t 7→ ‖Γ(t)‖Lp(R3) is strictly decreasing function for p ∈ [1,∞]. We will establish the
following.

Proposition 3.4.2. Let v be a smooth divergence-free vector field on R3 and Γ be
smooth solution of (3.80). Then the following assertion holds.

‖Γ(t)‖Lp(R3) ≤ ‖Γ0‖Lp(R3), p ∈ [1,∞]. (3.83)

In particular, for p ∈ [1,∞] the map t 7→ ‖Γ(t)‖Lp(R3) is strictly decreasing.
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3.4 Global existence

Proof. Thanks to the Proposition 3.4.1, we can assume that Γ0 > 0, thus we have
Γ(t) > 0 for t ∈ [0, T ]. We developp an integration by parts and taking into account
the Γ−equation, the fact that divv = 0 and the boundary condition over ∂Ω, one
has

d

dt
‖Γ(t)‖pLp(R3) = p

∫
Ω

∂tΓ(t)Γp−1(t)rdrdz

= −p
∫

Ω

v · (∇Γ)Γp−1rdrdz + p

∫
Ω

(∆Γ)Γp−1rdrdz

+ 2p

∫
Ω

(∂rΓ)Γp−1drdz

= −p(p− 1)

∫
Ω

|∇Γ|2Γp−2rdrdz +

∫
Ω

∂rΓ
pdrdz

= −p(p− 1)

∫
Ω

|∇Γ|2Γp−2rdrdz +

∫
R

Γp(t, 0, z)ηrdz

= −p(p− 1)

∫
Ω

|∇Γ|2Γp−2rdrdz −
∫
R

Γp(t, 0, z)dz < 0. (3.84)

where η = (ηr, ηz) = (−1, 0) is a outward normal vector over Ω. Thus, integrating
in time to obtain the aimed estimate for positive solutions.

Generally, if Γ0 changes its sign, we procced as follows: we split Γ(t) = Γ+(t)−Γ−(t),
where Γ± solves the following linear equation with the same velocity{

∂tΓ
± + v · ∇Γ± − (∆ + 2

r
∂r)Γ

± = 0 if (t, x) ∈ R+ × R3,
Γ±|t=0 = max(±Γ0, 0) ≥ 0.

(3.85)

Arguiging as above to obtain that Γ± satisfies (3.83). Thus we have:

‖Γ(t)‖Lp(R3) ≤ ‖Γ+(t)‖Lp(R3) + ‖Γ−(t)‖Lp(R3) (3.86)
≤ ‖Γ+

0 ‖Lp(R3) + ‖Γ−0 ‖Lp(R3) = ‖Γ0‖Lp(R3).

If Γ0 6= 0, we distinguish two cases: Γ0 > 0 or Γ0 < 0. For this two cases the last
inequality is strict and consequently (3.83) is also strict. Therefore, t 7→ ‖Γ(t)‖L1(R3)

is strictly decreasing for t = 0, and analogously we deduce that is strictly decreasing
over [0, T ].

Now, we state a result which deals with the asymptotic behavior of the coupled
function Γ in Lebegue spaces Lp(R3). Specifically, we have.

Proposition 3.4.3. Let ρ0,
ω0

r
∈ L1(R3), then for any smooth solution of (3.80)

and 1 ≤ p ≤ ∞, we have

‖Γ(t)‖Lp(R3) ≤
C

t
3
2

(1−1/p)
‖Γ0‖L1(R3), (3.87)

where Γ0 = Π0 − ρ0

2
.
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Proof. Due to (3.83), the estimate (3.87) is valid for p = 1.

From the estimate (3.84) we have for p = 2n

d

dt
‖Γ(t)‖pLp(R3) = p

∫
Ω

∂tΓ(t)Γp−1(t)rdrdz (3.88)

= −p(p− 1)

∫
Ω

|∇Γ|2Γp−2rdrdz −
∫ ∞
−∞

Γp(t, 0, z)dz

≤ −p(p− 1)

∫
R3

|∇Γ|2Γp−2dx

= −p(p− 1)

∫
Ω

∣∣∣∣2p∇Γ
p
2

∣∣∣∣2rdrdz = −4(p− 1)

p

∫
Ω

∣∣∇Γ
p
2

∣∣2rdrdz.
Thanks to the well-known Nash’s inequality in general case∫

RN
|f |2dx ≤ C

(∫
RN
|∇f |2dx

)1−γ(∫
RN
|f |dx

)2γ

, γ =
2

N + 2
. (3.89)

one obtains for N = 3

− d

dt

∫
Ω

Γp(t)rdrdz ≥ 4(p− 1)

p
C

(∫
Ω

∣∣Γ p
2

∣∣rdrdz)−4/3(∫
Ω

Γprdrdz

)5/3

.

To simplify the presentation, setting Ep(t) = ‖Γ(t)‖pR3 =
∫

Ω
|Γ(t)|prdrdz, then the

last inequality becomes

− d

dt
Ep(t) ≥

4(p− 1)

p
CE

−4/3
p/2 (t)E5/3

p (t) (3.90)

We prove (3.87) for p = 2n with nonnegative integers n by induction. Assume that
(3.87) is true for q = 2k with k ≥ 0, and let p = 2k+1. Combined with (3.90)

− d

dt
Ep(t) ≥

4(p− 1)C

p

(
Cq
q t
− 3

2
(q−1)‖Γ0‖qL1(R3)

)−4/3
E5/3
p (t).

Thus we have

3

2

d

dt

(
Ep(t)

)−2/3

=
− d
dt
Ep(t)

E
5/3
p (t)

≥ 4(p− 1)C

p
C−4q/3
q ‖Γ0‖−4q/3

L1(R3)t
2(q−1)

=
4(p− 1)C

p
C−2p/3
q ‖Γ0‖−2p/3

L1(R3)t
(p−2).

Hence, integrating in time le last inequality yields

E−2/3
p (t) ≥ E−2/3

p (0) +
8C

3p
C−2p/3
q ‖Γ0‖−2p/3

L1(R3)t
p−1.

After a few easy computations, we derive the following

‖Γ(t)‖Lp(R3) = E
1
p
p (t) ≤

( 3p

8C

) 3
2p
Cq‖Γ0‖L1(R3)t

−3/2(1−1/p).
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By setting Cp =
(

3p
8C

) 3
2p
Cq, then (3.87) remains true for p = 2k+1. Let us observe

that

Cp =
( 3p

8C

) 3
2p
Cq =

( 3

8C

) 3

2k+2

2
3(k+1)

2k+2 C2k

≤
( 3

8C

) 3
4

∑
k≥0

1

2k

2
3
4

∑
k≥0

k+1

2k C1 , C∞

which means that C∞ is independtly of p. Letting p→∞, we deduce that

‖Γ(t)‖L∞(R3) ≤ C∞t
−3/2‖Γ0‖L1(R3). (3.91)

For the other values of p, we proceed by complex interpolation to get

‖Γ(t)‖Lp(R3) ≤ C‖Γ(t)‖1/p

L1(R3)‖Γ(t)‖1−1/p

L∞(R3),

combined with (3.91), so the proof is completed.

Next, we recall some a priori estimates for ρ−equation in Lebesgue spaces. To be
precise, we have.

Proposition 3.4.4. Let ρ0 ∈ L1(R3) and p ∈ [1,∞], then there exists some non-
negative universal constant Cp > 0 depending only on p such that for any smooth
solution of ρ−equation in (3.1), we have

(i) ‖ρ(t)‖Lp(R3) ≤ ‖ρ0‖Lp(R3),

(ii) ‖ρ(t)‖Lp(R3) ≤ Cp

t
3
2 (1− 1

p )
‖ρ0‖L1(R3).

Proof. (i) Can be done by a routine compuations as shown in Proposition 3.4.2,
while (ii) can be obtained along the same way as Proposition 3.4.3.

We should mention also that the constant Cp is bounded with respect to p (see the
proof of Proposition 3.4.3), and according to the proof of Proposition 3.4.3 C∞ is
given by

C∞ ,
( 3

8C

)
2

3
4

∑
k≥0

k+1

2k C1 <∞ (3.92)

Now, we will prove another type of estimates for the quantities Γ̃, ρ̃ and ωθ. Namely,
we establish.

Proposition 3.4.5. Let ρ0,
ω0

r
∈ L1(R3) and p ∈ [1,∞], then there exist a nonneg-

ative constants C̃p, Kp, depending only on p and the initial data, such that for any
smooth solution of (3.40), (3.41) and (3.81), we have
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3 On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue
spaces

(i) ‖Γ̃(t)‖Lp(Ω) ≤ C̃p(D0)

t
1− 1

p
,

(ii) ‖ρ̃(t)‖Lp(Ω) ≤ Kp(D0)

t
1− 1

p
,

(iii) ‖ωθ(t)‖Lp(Ω) .
C̃p(D0)+Kp(D0)

t
1− 1

p
,

where
D0 = ‖(ω0, ρ0)‖L1(Ω)×L1(R3) (3.93)

and

sup
p∈[1,∞)

C̃p(s) , C̃∞(s) <∞, C̃p(s)→ 0, as s→ 0, ∀p ∈ [1,∞]. (3.94)

Proof. Let us point out that (iii) is a consequence of (i) and (ii). Thus, we shall
focus ourselves to prove (i) and (ii).

(i) Due to the similarity of the equation of Γ̃ and the one of ωθ for the Navier-Stokes
(NSµ) treated in [36], we follow the approach stated in Proposition 5.3 in [36]. The
key point consists to employ the following estimate,∥∥∥vr

r

∥∥∥
L∞(Ω)

.
1

t
‖(ω0, rρ0)‖L1(Ω). (3.95)

Indeed, Proposition 2.6 in [36] gives∥∥∥vr
r

∥∥∥
L∞(Ω)

. ‖ωθ‖
1
3

L1(Ω)

∥∥∥ωθ
r

∥∥∥ 2
3

L∞(Ω)
,

by using the fact that ∥∥∥ωθ
r

∥∥∥
L∞(Ω)

=
∥∥∥ωθ
r

∥∥∥
L∞(R3)

combined with ωθ
r

= ρ
2

+Γ, together with Propositions 3.4.3 and 3.4.4, lead to (3.95).
So, the inequality (i) follows then by exploring (3.95) and repeating the outlines of
the proof of Proposition 5.3 from [36], the details are left to the reader. We should
only mention that the constant C̃p in our proposition is the same as the one from
proposition 5.3 in [36], which guaranties (3.94).

(ii) The estimate obviously holds for p = 1, whereas in the rest of the proof we shall
deal with p > 3. The case p ∈ (1, 3] follows by interpolation.

We multiply the ρ̃−equation by |ρ̃|p−1, after some integrations by parts we obtain

1

p

d

dt
‖ρ̃(t)‖pLp(Ω) ≤ −4

(p− 1)

p2

∫
Ω

|∇(|ρ̃|
p
2 )|2drdz

+

∣∣∣∣− ∫
Ω

div?(vρ̃)|ρ̃|p−1drdz −
∫

Ω

∂rρ|ρ̃|p−1drdz

∣∣∣∣. (3.96)

62



3.4 Global existence

On the one hand, a straightforward computation give

−
∫

Ω

div?(vρ̃)|ρ̃|p−1drdz =

(
1− 1

p

)∫
Ω

vr

r
|ρ̃|pdrdz,

then (3.95) provides

−
∫

Ω

div?(vρ̃)|ρ̃|p−1drdz ≤ CD0

(
1− 1

p

)
t−1

∫
Ω

|ρ̃|pdrdz, (3.97)

where D0 is given by (3.93).

On the other hand, the fact −∂rρ = −∂r ρ̃
r

+ ρ̃
r2 yields

−
∫

Ω

∂rρ|ρ̃|p−1drdz =

(
1− 1

p

)∫
Ω

|ρ̃|p

r2
drdz.

Next, let us write ∫
Ω

|ρ̃|p

r2
drdz = I1 + I2, (3.98)

with
I1 ,

∫
Ω

|ρ̃|p

r2
1{r≤t1/2}drdz, I2 ,

∫
Ω

|ρ̃|p

r2
1{r>t1/2}(r, z)drdz.

For p > 3 we have,

I1 =

∫
Ω

rp−3|ρ|p1{r≤t1/2}rdrdz ≤ t
p−3

2 ‖ρ‖pLp(R3).

So, by virtue of Proposition 3.4.4, we infer that

I1 ≤ Cp
p t
−pGp

0, (3.99)

where G0 , ‖ρ0‖L1(R3), and Cp is the constant given by Proposition 3.4.4.

For the term I2 an easy computation yields

I2 ≤ t−1

∫
Ω

|ρ̃|pdrdz. (3.100)

Therefore, (3.99) and (3.100) give rise to

−
∫

Ω

∂rρ|ρ̃|p−1drdz ≤ p− 1

p

(
Cp
p t
−pGp

0 + t−1

∫
Ω

|ρ̃|pdrdz
)
. (3.101)

Finally, Nash’s inequality allows us to write∫
Ω

|ρ̃|pdrdz .
(∫

Ω

|∇(|ρ̃|
p
2 )|2drdz

) 1
2
(∫

Ω

|ρ̃|
p
2drdz

)
. (3.102)
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Since p > 3, so we have 1 < p
2
< p, and then by interpolation method, it happens(∫

Ω

|ρ̃|
p
2drdz

)
.

(∫
Ω

|ρ̃|drdz
) p

2(p−1)
(∫

Ω

|ρ̃|pdrdz
) p−2

2(p−1)

.

Plugging the last inequality in (3.102), it holds(∫
Ω

|ρ̃|pdrdz
) p

2(p−1)

.

(∫
Ω

|∇(|ρ̃|
p
2 )|2
) 1

2
(∫

Ω

|ρ̃|drdz
) p

2(p−1)

.

Since the inequality we aim to prove holds for p = 1, accordingly

CG
− p
p−1

0

(∫
Ω

|ρ̃|pdrdz
) p

p−1

≤
(∫

Ω

|∇(|ρ̃|
p
2 )|2drdz

)
. (3.103)

Thus, by gathering (3.97), (3.101) and (3.103) and insert them in (3.96), it happens

f ′(t) . (p− 1)

(
− C

p
G
− p
p−1

0

(
f(t)

) p
p−1 + (CD0 + 1)t−1f(t) + Cp

p t
−pGp

0

)
, (3.104)

where, f(t) ,
∫

Ω
|ρ̃(t)|pdrdz.

We recall that one may deduce from Proposition 3.3.6, for all p ∈ [1,∞)

f(t) ≤ ep(D0)pt−(p−1), ∀ 0 < t < T ?, (3.105)

for some ep(D0) > 0.

In a first step, we will show that f(t) is finite for all t > 0, then we prove that the
decay property (3.105) holds as well for all t > 0, for a suitable non negative constant
Kp(G0). Indeed, the first step is easy, one should remark that (3.104) implies

f ′(t) . (p− 1)
(

(CD0 + 1)t−1f(t) + Cp
p t
−pGp

0

)
.

Via, Gronwall inequality on (t0, t), for some 0 < t0 < T ?, we get for all t > t0

f(t) ≤
(
f(t0) + Cp

p t
1−p
0

)( t

t0

)(p−1)(CD0+1)

, (3.106)

which ensures that f(t) is finite for all t > 0.

Now, let us denote

T̃ , sup
{
t > 0 : f(t) < Kp

p(D0)t−(p−1)
}
, (3.107)

where Kp(D0) will be chosen later, and we will prove that (3.105) holds as well for
all t ∈ [T̃ , T̃ + ε], for some ε > 0, this should be enough to contradict the fact that
T̃ < ∞, and we shall conclude then that (3.105) is true for all t > 0. If T̃ is finite
then we deduce

f(T̃ ) = Kp
p(D0)T̃−(p−1). (3.108)
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Now, define g by
g(t) , f(t)−Kp

p(D0)t−(p−1).

By virtue of (3.104) and (3.108), we find out that

g′(T̃ ) ≤ T̃−p(p− 1)

(
− C

p
G
− p
p−1

0

(
Kp(D0)

) p2

p−1 +Kp
p(D0) + Σp(D0)

)
, (3.109)

where Σp(D0) = CD0 + 1 + Cp
pD

p
0. Since p2

p−1
> p, then if we choose Kp

p(D0) large
enough, in terms of Σp(D0) and G0, we may conclude that

g′(T̃ ) < 0,

which in particular gives, for ε� 1

g(T̃ + ε) ≤ g(T̃ ) = 0.

This means that (3.105) holds for t = T̃ + ε, which contracits the fact that T̃ is
finite. The choice of Kp(D0) can be made as

Kp(D0) = max

{(
C−1pG

p
p−1

0

(
CD0 + 2 + Cp

pD
p
0

)) 1
p

, 1

}
. (3.110)

and we end with, for all p > 3

‖ρ̃‖Lp(Ω) ≤ Kp(D0)t−(1− 1
p

). (3.111)

By denoting

K∞(D0) , lim
p→∞

max

{(
C−1pG

p
p−1

0

(
CD0 + 2 + Cp

∞D
p
0

)) 1
p

, 1

}
= 1 + C∞D0,

from Proposition 3.4.4, C∞ is finite, hence K∞(D0) is also finite, thus by letting
p→∞ in (3.111), we end up with

‖ρ̃(t)‖L∞(Ω) ≤ K∞(D0)t−1.

Remark 3.4.6. As pointed out for the Navier-Stokes equations in Remark 5.4 from
[36], for the global existence part in our case, we only need to mention that due to
Proposition 3.4.5 (resp. Proposition 3.4.4) the Lp(Ω) norms of ωθ(t) and rρ(t) (resp.
the Lp(R3) of ρ(t)) can not blow-up in finite time, hence in view of Remark 3.3.5, it
turns out that any constructed solution in the previous section is global for positive
time, in addition of that, all the assertions (3.34)−(3.37) follow as a consequence of
Propositions 3.4.4 and 3.4.5.
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Remark 3.4.7. To be more precise about the assertions (3.34) and (3.35) in the case
of L∞, remark that the constants C̃p(D0) and Kp(D0) given by the last Proposition
above do not blow-up as p goes to infinity, which we do not know whether it holds
true or not for the constants that appear in the bootstrap argument in the proof
of Proposition 3.3.6, this is why we did not say any thing about the L∞ case in
the local existence part. As fact of matter, now while we know that the triplet(
ωθ(t0), rρ(t0), ρ(t0)

)
holds to be in L∞(Ω) × L∞(Ω) × L∞(R3), for all t0 > 0, we

can prove that the map
t 7→

(
ωθ(t), rρ(t), ρ(t)

)
is continious with value in L∞(Ω)×L∞(Ω)×L∞(R3) just by following exactely the
same procedure we showed in the case p ∈ (1,∞).
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4 Remarks on the global
well-posedness of the
axisymmetric Boussinesq system
with rough initial data

This chapter is the subject of the following manuscript:

Adalet Hanachi, Haroune Houamed and M. Zerguine: Remarks on the global well-
posedness of the axisymmetric Boussinesq system with rough initial data. Submitted
in Journal of Mathematical Physics 2021.

4.1 Introduction

In this chapter, we deal with the global well-posedness of 3D axisymmetric viscous
Boussinesq system in the context that initial vorticity ω0 and initial density ρ0 are
both finite Radon measures. The existense and uniqueness will cost us to impose a
condition of smallness to the punctual part of the initial data (ω0, ρ0). This result
is considered as an extension of the previous result whenever the initial data is only
Lebesgue integrable.

The success of many researchers in proving the global well posedness for the
Navier-Stokes system despite the initial data is singular, has suggests whether this
extension remains valid for the Boussinesq system. We were able to answer this
question in the affirmative. Before giving this result, it is appropriate to state the
most important results in this regard for the Navier Stokes system.

∂tv + v · ∇v − µ∆v +∇p = 0 if (t, x) ∈ R+ × R3,
divv = 0,
v|t=0 = v0.

(NSµ)

As we mentioned earlier in the introduction the global regularity of (NSµ) with
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a singular initial data has received a considerable attention. Let us mention in
particular Cottet in [25], and independently Giga, Miyakawa, and Osada in [41]
have established a global result when the initial vorticity ω0 belongs to M (R2).

This latter result was early enhanced by Gallagher and Gallay in [33], where they
established that if ω0 ∈ M (R2), there exists a unique solution ω ∈ C

(
(0,∞);L1 ∩

L∞
)
so have ‖ω(t, ·)‖L1 ≤ ‖ω0‖M (R2) and demonstrated also that such solution is in

fact continuously dependent on initial data, deducing that Navier-Stokes equations
is globally well-posed in 2D case. For large literature we refer the reader to [39].

For 3D Navier-Stokes equations the classical paradigm à la Leray and à la Kato
remains valid. In terms of vorticity ω = ∇× v, the situation is very worse because
of the additional term ω · ∇v in ω’s equation. In other words, we have{

∂tω + v · ∇ω − µ∆ω = ω · ∇v x ∈ R3, t ∈ (0,∞),
ω|t=0 = ω0.

(4.1)

The appearance of the term ω·∇v is due to the higher dimension and is often referred
to as the vorticity stretching term. Note that for 2D case, we have ω · ∇v ≡ 0, we
immediately deduce for t ≥ 0 that ‖ω(t)‖Lp ≤ ‖ω0‖Lp for p ∈ [1,∞]. According
to Beale, Kato and Majda criterion [8] this latter boundedness is the main tool
to achieve global well-posedness, controlling ω in L1

loc(R+;L∞). Unhappily, for 3D
case, this criterion breaks down because of the stretching term which is one of the
main sources of difficulties in the well-posedness theory of 3D Navier Stokes. To
remedy this situation, we will restrict our selves to axisymmetric velocity vector
fields without swirling. More precisely, the velocity v having the form

v(t, x) = vr(t, r, z)~er + vz(t, r, z)~ez. (4.2)

Here, (r, θ, z) refers to the cylindrical coordinates in R3, defined by setting x =
(r cos θ, r sin θ, z) with 0 ≤ θ < 2π and the triplet (~er, ~eθ, ~ez) indicates the usual
frame of unit vectors in the radial, toroidal and vertical directions with the notation

~er =
(x1

r
,
x2

r
, 0
)
, ~eθ =

(
− x2

r
,
x1

r
, 0
)
, ~ez = (0, 0, 1).

The formula (4.2) allows us to reduce the vorticity to the forme ω , ωθ~eθ with
ωθ = ∂zv

r−∂rvz. In this case, the stretching term ω ·∇v closes to vr

r
ω, in particular

the time evolution of ωθ reads as follows

∂tωθ + (v · ∇)ωθ − µ∆ωθ + µ
ωθ
r2

=
vr

r
ωθ, (4.3)

with the notation v · ∇ = vr∂r + vz∂z and ∆ = ∂2
r + 1

r
∂r + ∂2

z . Moreover, it easy to
check that the quantity Π = ωθ

r
obeys the following transport–diffusion equation

∂tΠ + v · ∇Π− µ
(

∆ +
2

r
∂r

)
Π = 0, Π|t=0 = Π0. (4.4)
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First, we remark that Π satisfies almost the same equation as ω in the bidimension-
nal situation. Thus, the axisymmetric structure is considered in some sense as a
reduction of dimension. Second, an Lp− estimate for (4.4) gives

‖Π(t)‖Lp ≤ ‖Π0‖Lp , p ∈ [1,∞]. (4.5)

This estimate provided a good framework for establish the global well-posedness for
(NSµ) by many researchers, like M. Ukhoviskii and V. Yudovich [80], O. Ladyzhen-
skaya [61], S. Leonardi, J. Màlek, J. Necăs and M. Pokorný in [64] and H. Abidi
[1].

The majority of aforementioned results are accomplished within the framework of
finite energy solutions. Further, in terms of the vorticity for rough initial data, the
system (NSµ) has tackled by many authors. It sould be emphisized that in [31], H.
Feng and V. Sverák recently settled a global result in time for (NSµ), in a particular
case that the initial vorticity ω0 is supported on a circle. This result developed lately
by Th. Gallay and V. Sverák [36] in the more general case. They also proved that
the system (NSµ) is globally well-posed in time whenever ω0 ∈ L1(Ω).

Such result was extended by the same authors to the case ω0 is only a finite measure
with a small atomic part (see [36]). More recently, the same authors proved in [37]
that the atomic part of the initial measure can be taken arbitrary large for stemming
from circular vortex filaments, i.e ω0 = γδr̄,z̄, with γ, r̄ > 0 and z̄ ∈ R. However, the
well-posedness in the general case of arbitrary measures is still open.

As regards to 3D Boussinesq system (Bµ,κ), the well-posedness subject has been
considerably explored. Danchin and Paicu revisited in [27] the solutions à la Leray
and à la Fujita-Kato for (Bµ,κ) in the case κ = 0 and demonstrated that solutions are
global and unique in time under smallness condition. In the same way, Abidi-Hmidi-
Keraani [3] asserted that (Bµ,κ) admits a unique global solution in axisymmetric
setting whenever v0 ∈ H1(R3), Π0 ∈ L2(R3), ρ0 ∈ L2∩L∞ with (supp ρ0)∩(Oz) = ∅
and Pz(supp ρ0) is a compact set in R3 to prohibit the violent singularity ∂rρ

r
, with

Pz being the orthogonal projector over (Oz). By the same process, this problem
has been considered by Hmidi-Rousset in [53] for κ > 0. First, they declined the
assumption on the support of the density. Second, they took advantage of the
coupling phenomena between the vorticity and the density by introducing a new
unknown Γ = Π− ρ

2
which satisfies the equation

∂tΓ + v · ∇Γ−
(

∆ +
2

r
∂r

)
Γ = 0, Γ|t=0 = Γ0.

We can easily notice that Γ plays the same role as Π for the Navier-Stokes system
(NSµ).

The main interest of Γ is to derive by a simple way a priori estimates for Π. More
recently, H. Houamed and M. Zerguine conducted a new result in the sense that
exploited the axisymmetric structure on the velocity and the crititical regularity à
la Fujita-Kato to assert that (Bµ,κ), for κ = 0, possesses a unique global solution as
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long as and (v0, ρ0) ∈ H 1
2∩Ḃ0

3,1×L2∩Ḃ0
3,1. Finally, in the case κ = µ > 0, we succeed

lately in [44] in performing a new result of global well-posedeness for (Bµ,κ) in the
setting of (ω0, ρ0) is axisymmetric and belonging to the critical Lebesgue spaces
L1(Ω) × L1(R3) whose idea inspired from [36] concerning Navier-Stokes equations
(NSµ).

4.1.1 Aims

The current chapter occupies with a topic of the global well-posedness for the system
(Bµ,κ) given under vorticity-density formulation1 ∂tωθ + v · ∇ωθ − vr

r
ωθ −

(
∆− 1

r2

)
ωθ = −∂rρ,

∂tρ+ v · ∇ρ−∆ρ = 0
(ωθ, ρ)|t=0 = (ω0, ρ0).

(4.6)

We aim to extend our result latterly established in [44] to the larger class of initial
data of measure type, i.e, for (ω0, ρ0) ∈M (Ω)×M (R3), where, M (X) denotes the
set of finite Radon measures on X ∈ {R3,Ω} being such that

‖µ‖M (X) , sup
{ϕ∈C0(X),‖ϕ‖L∞(X)≤1}

|〈µ, ϕ〉| <∞, (4.7)

with 〈·, ·〉 symbolizes the pairing between M (X) and C0(X) which is defined by

〈µ, ϕ〉 ,
∫
X
ϕ(x)dµ(x).

Due to (4.7) the space M (Ω) is the topological dual of C0(Ω), so the Banach-Alaoglu
theorem, insures that the unit ball in M (Ω) is a sequentially compact set for the
weak topology in the following sense:

lim
n→∞
〈µn, ϕ〉 = 〈µ, ϕ〉. (4.8)

Each µ ∈M (Ω) can be decomposed in unique way as

µ = µac + µsc + µpp, µac ⊥ µsc ⊥ µpp (4.9)

and
‖µ‖M (Ω) = ‖µac‖M (Ω) + ‖µsc‖M (Ω) + ‖µpp‖M (Ω).

where, in the sequel we denote by:
• µac is a measure which is absolutely continuous with respect to Lebesgue measure,

1For simplicity, we take κ = µ = 1. However, we should mention that our arguments hold also
for κ = µ > 0.
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that is
dµac
dx

= f for some f ∈ L1(Ω),
• µsc is a singular continuous measure which has no atom but is supported on a set
of zero Lebesgue measure.
• µpp is is punctual part (an atomic measure), µpp =

∑
n≥1 λnδan , (λn) ⊂ R, (an) ⊂

Ω, with δan stands to be the Dirac measure supported at an ∈ Ω.

4.1.2 Statement of the main results

This subsection addresses to state the main results of this chapter and thrash out
the headlines of their proofs.

The main contribution of this chapter is dedicated to extending the result of
Theorem 3.3.1 to more general case of initial data, that is to say the initial data
belonging to the class of finite measure over Ω×R3. Specifically, we shall prove the
following theorem.

Theorem 4.1.1. There exists a non negative constant ε > 0 such that the following
hold. Let (ω0, ρ0) ∈ M (Ω) ×M (R3) with ρ0 being axisymmetric in the sense of
Definition 4.2.3 and

‖ω0,pp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε, (4.10)

then, the Boussinesq system (4.6) admits a unique global mild axisymmetric solution
(ωθ, ρ) such that

(ωθ, ρ) ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
× C0

(
(0,∞);L1(R3) ∩ L∞(R3)

)
,

rρ ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
.

Furthermore, for every p ∈ (1,∞], we have

lim sup
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) ≤ Cε, lim sup
t→0

t1−
1
p‖(ωθ(t), rρ(t))‖Lp(Ω)×Lp(Ω) ≤ Cε

and
lim sup
t→0

‖(ωθ(t), ρ(t))‖L1(Ω)×L1(R3) <∞.

Moreover, we have that (ωθ(t), ρ(t)) ⇀ (ω0, ρ0) as t→ 0.

Few remarks are in order.
Remark 4.1.2. Observe that Theorem 4.1.1 covers a class of initial data which is
considerably larger than the one treated by Theorem 3.3.1. However, the smallness
condition for the atomic parts is crucial in our arguments to guarantee the existence
and the uniqueness. Nevertheless, we should point out that it is probably possible
to construct global solutions for arbitrary large initial data (see [31] for a precise
result of that in the case of the vortex rings). Such result is based on smoothing out
the initial data, hence, the uniqueness is to be dealt with separately to the existence
part, which, on the other hand, stands to be open in general for the time being even
for the case the Navier-Stokes equations.
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Remark 4.1.3. The serious drawback that arises in Theorem 4.1.1 is how to give
a rigorous and suitable sense to the initial data associated with the quantity rρ if
the initial density ρ0 is a finite measure. More precisely, it is important to make
a choice that does not perturb the weak continuity of the solution near t = 0.
To get around this, we should understand and give some general notions on the
axisymmetric measures in R3 (see, the next section). In broad terms, one should
notice that, with Theorem 3.3.1 on the hand, the most challenging part in the proof
of Theorem 4.1.1 is the understanding of the solution near t = 0. Indeed, after some
t0 > 0, the solution becomes more regular and, hence, the arguments of Theorem
3.3.1 would apply to garantee estimates alike (3.36) and (3.37), globally in time. In
other words, to be more precise on the main novel part in Theorem 4.1.1, we refer
to Theorem 4.3.7 that we shall prove at the end of this chapter.

Remark 4.1.4. Remark that the case p =∞ is missing in the statement of Theorem
3.3.1. However, as we shall see later on, the estimates of Theorem 3.3.1 hold also in
this case. To justify our claim, we will outline the idea to get the L∞-estimate in
the proof of Proposition 4.3.3 below.

Structure of the chapter. We discuss concisely the steps of the proof of Theorem
4.1.1 and the structure of the chapter. The local well-posedness will be done via
the classical fixed point formalism in an adequate functional spaces as in the proof
of Theorem 4.3.1. But before doing so, as noticed in the proof of Theorem 3.3.1,
since the quantity rρ will play a significant role in our analysis, we have to give a
suitable sense to the limit of rρ(t), as t tends to 0, in the case of initial measure-
type density ρ0. For a better understanding of this limit, we state in Section 4.2
a succinct about the measure theory, in particular the push forward of a measure
by a measurable function in the general case. This can be also considered as a
preamble to introduce the concept of axisymmetric measures. In the second part of
Section 4.2, we shall recall some nice properties of the semi–groups associated to the
system in study. Thereafter, Section 4.3 contains three parts: In the first one, we
prove a result which can be seen as an intermediate case between Theorem 3.3.1 and
Theorem 4.1.1 where we assume that (ω0, ρ0) ∈M (Ω)×L1(R3). The details of the
proof we provide in this part should help to simplify the presentation of the proof
of Theorem 4.1.1. Then, in the second part, we shall prove a general version of the
local well-posedness (see Theorem 4.3.7) which implies the local results of Theorem
4.1.1. Finally, in the last part of Section 4.3, we outline the idea that allows to
globalize the local results we prove in the first two parts.

4.2 The framework preliminaries

In this preparatory section, we gather the basic ingredients freely explored during
this work. We begin with a self-contained abstract on some notions from measures
theory. Then, we recall some estimates of the heat semi-group in Lebesgue spaces.
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4.2.1 Results on measure theory

We embark on the measure tool, where we state the notion of the push-forward
of measure, some properties, and we give a new concept about the axisymmetric
measure. To illustrate this notion, we introduce two examples. Overall, we claim
the action of the axisymmetric measure on the heat semigroup. We end this section
with some properties concerning the restriction of any axisymmetric measure on Ω
to define the quantity rρ.

Definition 4.2.1. Let (X1,Σ1) and (X2,Σ2) be two measurable spaces and µ be
a positive measure on (X1,Σ1). Let F be a measurable mapping from X1 into X2.
The push-forward measure of µ by F , denoted F?µ, is defined as

F?µ :Σ2 → [0,∞]

B 7−→ F?µ(B) , µ(F−1(B)).

The main feature of the above definition is the fact that it is useful in the following
generalization formula of change of variable (see Sections 3.6–3.7 in [10])

Theorem 4.2.2. A measurable function g on X2 is integrable with respect to the
push-forward measure F?µ if and only if the composition g ◦ F is integrable with
respect to the measure µ. As well, we have∫

X2

gd(F?µ) =

∫
X1

g ◦ Fdµ. (4.11)

The typical example that concerns the axisymmetric structure given as follows. For
α ∈ [0, 2π), define Rα : R3 → R3 by x 7→ Rαx, with

Rα ,

 cosα − sinα 0
sinα cosα 0

0 0 1

 , xt = (x1, x2, x3). (4.12)

An elementary calculus shows that Rα is an orthogonal 3 × 3 matrix, with R−1
α =

R−α. In addition, by exploring Definition 4.2.1, for µ ∈ M (R3), we can define
its push-forward measure Rαµ as an element of M (R3). Moreover, Theorem 4.2.2
provides us the following identity

〈Rαµ, ϕ〉 = 〈µ, ϕ ◦R−α〉, ∀ϕ ∈ C0(R3).

Based on that, we state the following definition.

Definition 4.2.3 (Axisymmetric measure). A Radon measure µ ∈ M (R3) is
said to be axisymmetric if and only if it is stable by the push-forward mapping Rα,
for all α ∈ [0, 2π). i.e, if

Rαµ = µ, ∀α ∈ [0, 2π). (4.13)
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Remark 4.2.4. The above definition says that the measure µ is axisymmetric if and
only if it is stable by the push-forward mapping Rα, for all α ∈ [0, 2π). We can,
moreover, check that this definition is equivalent to

µ(B) =
1

2π

∫ 2π

0

Rαµ(B)dα, ∀B ∈ B(R3).

Or, also equivalently

dµ =
1

2π

∫ 2π

0

d(Rαµ)dα.

To illustrate the above definition we state here two typical examples of an axisym-
metric measure.

• Absolutely continuous axisymmetric measures : If µ ∈ Mac(R3), then there
exists an integrable function fµ ∈ L1(R3) such that

µ(B) =

∫
B

fµ(x)dx, ∀B ⊂ R3.

In this case, we can check that µ is axisymmetric in the sense of Definition
4.2.3 if and only if fµ is an axisymmetric function in the classical sense.

• Atomic axisymmetric measures : Let a ∈ R3 and µ = δa, one can check that µ
is axisymmetric in the sense of Definition 4.2.3 if and only if {a} is stable by
rotation around the (oz) axis. In other words, δa is axisymmetric if and only if
a ∈ (oz). More generally, if A ⊂ R3, then µ = δA is axisymmetric if and only
if, there exists (r, z) ∈ R+ × R such that

A =
⋃

θ∈[0,2π]

{
(r cos θ, r sin θ, z)

}
.

As a consequence of the above properties, we have the following elementary result.

Proposition 4.2.5. Let µ ∈M (R3) be an axisymmetric measure, then the function
x 7→ et∆µ(x) is axisymmetric.

Proof. We need to show that, for all α ∈ [0, 2π), there holds

et∆µ(x) = et∆µ(Rαx).

To do so, we write

et∆µ(Rα(x)) =
1

(4πt)
3
2

∫
R3

e−
|Rαx−y|2

4t dµ(y)

=
1

(4πt)
3
2

∫
R3

e−|Rα|
2 |x−R−αy|

2

4t dµ(y).
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Now, exploring the fact that |Rα|2 = 1 and by taking gt,x(y) = 1

(4πt)
3
2
e−
|x−y|2

4t , then
Theorem 4.2.2 implies

et∆µ(Rα(x)) =

∫
R3

gt,x ◦R−α(y)dµ(y)

=

∫
R3

gt,x(y)d(Rαµ(y))

Now, because µ is an axisymmetric measure, we infer that for all α ∈ [0, 2π)∫
R3

gt,x(y)d(Rαµ(y)) =

∫
R3

gt,x(y)dµ(y).

This completes the proof.

Remark 4.2.6. For any PDE in general, and for the Boussinesq system in particular,
if we are looking for special solutions, then, we need to impose some kind of suitable
compatibility condition for the initial data that fits well with the desired structure
of the solutions. Definition 4.2.3 plays exactly that role here. In other words, it
provides the requirement of the structure of the initial data that allows to study the
existence of axisymmetric solutions. Proposition 4.2.5 is then a typical example of
the propagation of this special geometric structure of the initial data for all times
t > 0.

Remark 4.2.7. Let us also mention that a similar result to Proposition 4.2.5 would
apply to more general equations such as

f = et∆µ+B(f, f), (4.14)

if B is a bi-linear operator, preserving the axisymmetric structure2, and if a contrac-
tion argument is applicable to the system (4.14) in some time-space Banach space
XT . Indeed, the proof of such result relies on proving that the sequence{

fn = et∆µ+B(fn−1, fn−1), n ≥ 1,
f0 = et∆µ.

converges to some axisymmetric limit f in the space XT . This can be done easily
under the aforementioned assumptions on B and on the space XT .

Lemma 4.2.8 (Action on test functions). Let µ be an axisymmetric measure,
then, for any ϕ ∈ C0(R3), we have that

〈µ, ϕ〉 = 〈µ, ϕaxi〉 ,

where, ϕaxi is the axisymmetric part of ϕ given by

ϕaxi ,
1

2π

∫ 2π

0

ϕ ◦Rαdα. (4.15)

2 In the case of the Boussinesq system, B takes the form B(ρ, ρ) =
∫ t

0
e(t−s)∆(v · ∇ρ)(s)ds, and

v is related to ρ through the Navier-Stokes equations.
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Proof. The definition of axisymmetric measure and the identity 4.13 allow us to
write

〈µ, ϕ〉 = 〈R−αµ, ϕ〉, ∀α ∈ [0, 2π).

Then, straightforward computation yield

〈µ, ϕ〉 =
1

2π

∫ 2π

0

〈R−αµ, ϕ〉dα

=
1

2π

∫ 2π

0

〈µ, ϕ ◦Rα〉dα

= 〈µ, 1

2π

∫ 2π

0

ϕ ◦Rαdα〉

= 〈µ, ϕaxi〉.

The lemma is then proved.

Remark 4.2.9. We point out again that the function ϕaxi is indeed axisymmetric due
to the following elementary computation, valid for all θ ∈ [0, 2π)

ϕaxi ◦Rθ =
1

2π

∫ 2π

0

ϕ ◦Rα+θdα

=
1

2π

∫ 2π+θ

θ

ϕ ◦Rγdγ

=
1

2π

∫ 2π

0

ϕ ◦Rγdγ

= ϕaxi.

Lemma 4.2.8 says then that, when we deal with axisymmetric measures, we can
restrict our test functions to be axisymmetric ones.

Now, let us define the function F as the mapping from Ω × [0, 2π) into R3, with
Ω = (0,∞)× R, given by

F(r, z, θ) , Rθ · (r, 0, z)t = (r cos θ, r sin θ, z). (4.16)

The following proposition will serve latter to prove our main Theorem 4.1.1.

Proposition 4.2.10. Let µ be an axisymmetric measure in M (R3). Then, the
mapping µ̃ defined on C0(Ω) as

〈µ̃, ψ〉 ,
∫
R3

φψdµ, ∀ψ ∈ C0(Ω)

φψ(x, y, z) , ψ(
√
x2 + y2, z),

(4.17)

belongs to M (Ω) and satisfies, for any function ϕ ∈ C0(R3) and for all θ ∈ [0, 2π)∫
Ω

ϕaxi ◦ F(r, z, θ)dµ̃(r, z) =

∫
Ω

ϕaxi ◦ F(r, z, 0)dµ̃(r, z) =

∫
R3

ϕdµ, (4.18)
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where, ϕaxi is given by (4.15). Moreover, we have that

‖µ̃‖M (Ω) = ‖µ‖M (R3). (4.19)

Furthermore, the following holds. If µ = µac+µpp+µsc is the Lebesgue decomposition
of µ with µac, µpp and µsc denote, respectively, the absolute continuous part of µ, its
atomic and its singular continuous part, then, µ̃ = µ̃ac + µ̃pp + µ̃sc with

‖µ̃ac‖M (Ω) = ‖µac‖M (R3),

‖µ̃pp‖M (Ω) = ‖µpp‖M (R3),

‖µ̃sc‖M (Ω) = ‖µsc‖M (R3).

Remark 4.2.11. Remark that, in view of Lemma 4.2.8, the equality (4.18) yields, for
any axisymmetric function ϕ ∈ C0(R3) and for all θ ∈ [0, 2π)∫

Ω

ϕ ◦ F(r, z, θ)dµ̃(r, z) =

∫
Ω

ϕ ◦ F(r, z, 0)dµ̃(r, z) =

∫
R3

ϕdµ, (4.20)

Proof. From the definition of µ̃, we can easily check that it belongs to M (Ω). We
shall then focus on the proof of (4.18). Remark first that the fact that ϕaxi is
axisymmetric insures

ϕaxi ◦ F(r, z, θ) = ϕaxi ◦ F(r, z, 0), ∀(r, z, θ) ∈ Ω× [0, 2π).

which is a direct consequence of the fact that

ϕaxi(x, y, z) = ϕaxi(
√
x2 + y2, 0, z) = ϕaxi ◦ F(

√
x2 + y2, z, 0), ∀(x, y, z) ∈ R3.

(4.21)
The first equality on the l.h.s of (4.18) follows then. For the second equality, we
only have to use the definition of µ̃ together with (4.21) to infer that∫

Ω

ϕaxi ◦ F(r, z, 0)dµ̃(r, z) =

∫
R3

ϕaxidµ.

Consequently, the equality on the r.h.s on (4.18) follows by applying Lemma 4.2.8.

Now, concerning the size of µ̃, we only outline the proof of (4.19), meanwhile, the
proof of the estimates for the decomposed parts is straightforward (see also the two
examples below). From the definition of µ̃, it is easy to check that

‖µ̃‖M (Ω) 6 ‖µ‖M (R3).

On the other hand, (4.18) provides the converse inequality

‖µ‖M (R3) 6 ‖µ̃‖M (Ω).

This ends the proof of Proposition 4.2.10
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For the sake of clarity, we provide the following two typical examples:

• An example in Mac(R3) : If µ is an axisymmetric measure in Mac(R3), then,
its associated density fµ is an axisymmetric function in L1(R3). In this case, µ̃
is the measure in M (Ω) associated to the L1(Ω)-density function fµ̃ give by

fµ̃(r, z) = 2πr fµ(r, 0, z).

• An example in Mpp(R3): We saw that µ = δA is an axisymmetric measure if
and only if A is invariant by rotation around the axis (oz) (i.e, A is a circle
with axis (oz)). In this case, we have

〈µ̃, ψ〉 = 〈δA, φψ〉

=
∑

(a1,a2,a3)∈A

ψ(
√
a2

1 + a2
2, a3)

=
〈
δÃ, ψ

〉
,

where, Ã =
{

(
√
a2

1 + a2
2, a3) : (a1, a2, a3) ∈ A)

}
. In particular, if A =

(0, 0, a) then µ̃ = δ(0,a) and more generally, for any r > 0, if Ar =
∪θ∈[0,2π) {(r cos θ, r sin θ, a)}, then µ̃ = δ(r,a).

4.2.2 Semi-group estimates

In this subsection, we recall some technical results concerning the semi-groups ap-
pearing in the study of the Boussinesq system in question. For more details about
these results, we refer the reader to [44, 34, 36].

In the sequel, we shall be using the following notations: For i ∈ {1, 2}, we denote
by (Si(t))t≥0 the semi-groups defined as the propagators associated with the following
two linear equations respectively{

∂tf −
(
∆− 1

r2

)
f = 0,

f|t=0 = f0.
(4.22)

{
∂tf −∆f = 0,
f|t=0 = f0.

(4.23)

The following proposition states some Lp − Lq estimates in the case of initial data
inM(Ω). The proof can be found in [36].

Proposition 4.2.12. For any µ ∈M (Ω), we have

sup
t>0

t1−
1
q ‖S1(t)µ‖Lq(Ω) ≤ C‖µ‖M (Ω), q ∈ [1,∞] (4.24)
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and

Lq(µ) , lim sup
t↑0

t1−
1
q ‖S1(t)µ‖Lq(Ω) ≤ C‖µpp‖M (Ω), q ∈ (1,∞], (4.25)

where, µpp is the atomic part of µ.

Finally, in the spirit of the previous proposition, we state a quite similar estimates
for the semi–group S2(t) in the space R3 instead of Ω. The proof is similar to the
proof of Proposition 4.2.12

Proposition 4.2.13. Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ Lp(R3), then

‖S2(t)f‖Lq(R3) ≤
C

t
3
2

( 1
p
− 1
q

)
‖f‖Lp(R3). (4.26)

Moreover, if f = µ ∈M (R3), then the above estimate holds by taking p = 1 and by
replacing ‖f‖L1(R3) by ‖f‖M (R3). In addition of that, the following assertion holds

L̃q(µ) , lim sup
t→0

t
3
2

(1− 1
q

)‖S2(t)µ‖Lq(R3) ≤ C‖µpp‖M (R3), ∀q 6= 1, (4.27)

where, µpp is the atomic part of µ.

4.3 Proof of the main results

4.3.1 Median case: Only the initial vorticity is a finite
measure

Before stating the proof of the main result, we embark this section by a particular
result concerning the global well-posedness topic for (4.6) in the case where the
initial density is Lebesgue-integrable and the initial vorticity is a finite measure.
The arguments of the proof for this result will be considered as the platform to
proving the Theorem 4.1.1.

Theorem 4.3.1. There exist non negative constants ε and C such that the following
hold. Let (ω0, ρ0) ∈ M (Ω) × L1(R3) with ρ0 axisymmetric and ‖ω0,pp‖M (Ω) ≤ ε,
then, the Boussinesq system (4.6) admits a unique global axisymmetric mild solution
(ωθ, ρ) satisfying

(ωθ, ρ) ∈ C0
(
(0,∞);L1(Ω) ∩ L∞(Ω)

)
× C0

(
[0,∞);L1(R3)

)
∩ C0

(
(0,∞);L∞(R3)

)
,

rρ ∈ C0
(
[0,∞);L1(Ω)

)
∩ C0

(
L∞(0,∞);L∞(Ω)

)
.

Furthermore, for every p ∈ (1,∞], we have

lim sup
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) = lim sup
t→0

t1−
1
p‖rρ(t)‖Lp(Ω) = 0

79
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and
lim sup
t→0

t1−
1
p‖ωθ(t)‖Lp(Ω) ≤ Cε.

Moreover, we have

lim sup
t→0

‖ωθ(t)‖L1(Ω) <∞, lim
t→0
‖ρ(t)− ρ0‖L1(R3) = 0

and ωθ(t) ⇀ ω0 as t→ 0.

The proof of Theorem 4.3.1 will be done in four steps. We begin with the proof of
the local well-posedness for the integral equations (4.30) below (Proposition 4.3.2),
where, we cover the limits stated in Theorem 4.3.1 for p = 4

3
. Then, we provide a self

contained proof of the remaining cases of p by a bootstrap argument (Proposition
4.3.3). Thereafter, we establish the contunuity in time and the convergence to the
initial data in Proposition 4.3.5. Finally, the globalization the local solution we
construct in step one is postponed to the end of the next section.

All in all, along the proof of the three incoming propositions, we will only highlight
the big lines of the proof since the idea is the pretty much similar to the section 3.3.
Nevertheless, we shall provide the details of the crucial new technical issues.

First, note that the Boussinesq system (4.6) can be written in the following form
∂tωθ + div?(vωθ)−

(
∂2
r + ∂2

z + 1
r
∂r − 1

r2

)
ωθ = −∂rρ

∂tρ+ div(vρ)−∆ρ = 0
(ωθ, ρ)|t=0 = (ω0, ρ0).

(4.28)

Hence, according to the result of the section 3.3 the direct treatment of the local
well-posedness topic for (4.28) in the spirit of [36] for initial data (ω0, ρ0) in the
critical space requires the introduction of a new quantity ρ̃ , rρ. The outcome
system of this new unknown is given by the following parabolic equation

∂tρ̃+ div?(vρ̃)−
(
∂2
r + ∂2

z +
1

r
∂r −

1

r2

)
ρ̃ = −2∂rρ. (4.29)

Thus, we shall consider the following system
ωθ(t) = S1(t)ω0 −

∫ t
0
S1(t− τ)div?

(
v(τ)ωθ(τ)

)
dτ −

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ̃(t) = S1(t)ρ̃0 −
∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ − 2

∫ t
0
S1(t− τ)∂rρ(τ)dτ

ρ(t) = S2(t)ρ0 −
∫ t

0
S2(t− τ)div

(
v(τ)ρ(τ)

)
dτ.

(4.30)
where ρ̃0 = rρ0. In order to study the above system, we use the Banach spaces.

XT =
{
f ∈ C0

(
(0, T ], L4/3(Ω)

)
: ‖f‖XT <∞

}
,
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ZT =
{
h ∈ C0

(
(0, T ], L4/3(R3)

)
: ‖h‖ZT <∞

}
,

equipped with the following norms

‖f‖XT = sup
0<t≤T

t1/4‖f(t)‖L4/3(Ω), ‖h‖ZT = sup
0<t≤T

t3/8‖h(t)‖L4/3(R3).

The local wellposedness of (4.30) is then given by the following proposition

Proposition 4.3.2. There exist non negative constants ε and C such that the follow-
ing hold. Let (ω0, ρ0) ∈M (Ω)× L1(R3) with ρ0 axisymmetric and ‖ω0,pp‖M (Ω) ≤ ε,
then, (4.30) admits a unique local solution (ωθ, ρ̃, ρ), defined for all positive t 6 T =
T (ω0, ρ0) such that

(ωθ, ρ̃, ρ) ∈ C
(
(0, T ];XT

)
× C

(
(0, T ];XT

)
× C

(
(0, T ];ZT

)
. (4.31)

Moreover, if the size of initial data is small enough, the local time of existence T
can be taken arbitrarily large.

Proof. We closely follow the demonstration of Proposition 3.3.3 with minor mod-
ifications due to the particularity of initial data. In view of Proposition 3.2.11,
Proposition 3.2.12 and Proposition 4.2.12, we have for T > 0

sup
0<t≤T

t1/4‖S1(t)ω0‖L 4
3 (Ω)
≤ C‖ω0‖M (Ω). (4.32)

and
sup

0<t≤T
t1/4‖S1(t)ρ̃0‖L 4

3 (Ω)
≤ C‖rρ0‖L1(Ω) = C‖ρ0‖L1(R3). (4.33)

On the other hand, the fact that

‖S2(t)ρ0‖L 4
3 (R3)

= ‖r
3
4S2(t)ρ0‖L 4

3 (Ω)

together with the first estimate stated in Proposition 3.2.12, we further get

sup
0<t≤T

t3/8‖S2(t)ρ0‖L 4
3 (R3)

≤ C‖rρ0‖L1(Ω) = C‖ρ0‖L1(R3). (4.34)

Combining (4.32), (4.33) and (4.34) to obtain
(
ωlin, ρ̃lin, ρlin

)
∈XT with

(ωlin(t), ρ̃lin(t), ρlin(t)) = (S1(t)ω0, S1(t)ρ̃0,S2(t)ρ0)

and
XT , XT ×XT × ZT

Now, from (4.32), (4.33) and (4.34), we have

Λ(ω0, ρ̃0, ρ0, T ) , C‖(ωlin, ρ̃lin, ρlin)‖XT
≤ C0

(
‖ω0‖M (Ω) + ‖ρ0‖L1(R3)

)
. (4.35)
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Moreover, according to (4.25) and (4.27), we have3

lim sup
T→0

Λ(ω0, ρ̃0, ρ0, T ) ≤ εC (4.36)

The estimates of the bilinear terms can be done as in the proof of Proposition 3.3.3.
Hence, we get the nonlinear system

‖ωθ‖XT ≤ ‖ωlin‖XT + C‖ωθ‖2
XT

+ C‖ρ‖ZT

‖ρ̃‖XT ≤ ‖ρ̃lin‖XT + C‖ωθ‖XT ‖ρ̃‖XT + C‖ρ‖ZT

‖ρ‖ZT ≤ ‖ρlin‖ZT + C‖ωθ‖XT ‖ρ̃‖XT .

(4.37)

for some universal constant C > 0. By substituting ‖ρ‖ZT in the two first equations
of (4.37), we readily get

‖ωθ‖XT + ‖ρ̃‖XT ≤ Λ(ω0, ρ̃0, ρ0, T ) + C̃
(
‖ωθ‖XT + ‖ρ̃‖XT

)2
. (4.38)

To complete the contraction argument, let us fix R > 0 such that 2C̃R < 1 and
define the ball

BT (R) , {(a, b) ∈ XT ×XT : ‖(a, b)‖XT×XT < R},

for (ωθ, ρ̃) ∈ BT (R) the contraction argument is satisfied if Λ(ω0, ρ̃0, ρ0, T ) ≤ R/2.
The last requirement can be realized in either case

— C0

(
‖ω0‖M (Ω) + ‖ρ0‖L1(R3)

)
≤ R/2 for any T > 0, or

— Cε ≤ R/2 for T > 0 is small enough, depending on ω0,pp and ρ0 (this is possible
because Λ(ω0, ρ̃0, ρ0, T )→ Cε when T → 0).

In other words, we can prove the global well-posedness if the initial data is sufficiently
small, or the local well-posedness if only the atomic part ω0,pp is small. The rigorous
construction of the solution can be done by the standard fixed point schema. This
concludes the proof of Proposition 4.3.2.

Remark that the local solution constructed above becomes instantly integrable after
time t > 0. Hence, all the a priori estimates proved in first Theorem 3.3.1 remains
valid for all t > 0. However, for the sake of completeness, we provide in the following
proposition the precise statement of more properties of our solution.

Proposition 4.3.3. Let (ωθ, ρ̃, ρ) be the solution of (4.30) obtained by Proposition
4.3.2 associated to initial data (ω0, ρ̃0, ρ0) ∈M (Ω)×L1(Ω)×L1(R3). Then for any
p ∈ (1,∞], we have

lim
t→0

t(1−
1
p

)‖ωθ(t)‖Lp(Ω) ≤ C‖ω0,pp‖M (Ω), (4.39)

3Remark that since ρ0 ∈ L1(R3), then ρ0,pp = 0.
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lim
t→0

t(1−
1
p

)‖ρ̃(t)‖Lp(Ω) = 0, (4.40)

lim
t→0

t
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) = 0. (4.41)

For p = 1, the above quantities are bounded as t→ 0.

Remark 4.3.4. As aforementioned, Proposition 4.3.3 can be proved along the same
lines as the proof of Proposition 3.3.6. However, we should mention that the case
p =∞ is missing in Proposition 3.3.6, therefore, we provide below a complimentary
proof that treats this case as well.

Proof. Let us first recall the following notation from Proposition 3.3.6

Np(f, T ) , sup
0<t≤T

t(1−
1
p

)‖f‖Lp(Ω), Jp(f, T ) , sup
0<t≤T

t
3
2

(1− 1
p

)‖f‖Lp(R3).

Mp(f0, T ) , sup
0<t≤T

t(1−
1
p

)‖S1(t)f0‖Lp(Ω), Fp(f0, T ) , sup
0<t≤T

t
3
2

(1− 1
p

)‖S2(t)f0‖Lp(R3).

According to Proposition 3.2.11, Proposition 3.2.12 and Proposition 4.2.12 we find
for all p ∈ (1,∞]

lim
t→0

Mp(ω0, T ) ≤ C‖ω0,pp‖M (Ω) (4.42)

and
lim
t→0

Mp(ρ̃0, T ) = lim
t→0

Fp(ρ0, T ) = 0. (4.43)

Thanks to the Proposition 4.3.2, the result in the case p = 4
3
is already proved. By

interpolation we find the result for p ∈ (1, 4
3
] as long as the L1(Ω)× L1(R3)− norm

of (ωθ(t), ρ(t)) remains bounded in a neighborhood of t = 0. Let us suppose for a
moment that this is true and we get back to prove this claim later.

Doing so, it remains to prove the result for p > 4
3
. For this purpose, we can proceed

by a bootstrap argument as in the proof of Proposition 4.3.3.

In view of Proposition 3.2.5, Proposition 3.2.11 and Proposition 3.2.12, we have

‖ωθ(t)‖Lp(Ω) ≤ ‖S1(t)ω0‖Lp(Ω) + C

∫ t
2

0

‖ωθ‖2
Lq(Ω)

(t− τ)
2
q
− 1
p

dτ + C

∫ t

t
2

‖ωθ(τ)‖Lq1 (Ω)‖ωθ(τ)‖Lq2 (Ω)

(t− τ)
1
q1

+ 1
q2
− 1
p

dτ

+ C

∫ t
2

0

‖ρ(τ)‖
L

4
3 (R3)

(t− τ)
13
8
− 1
p

dτ + C

∫ t

t
2

‖ρ(τ)‖Lp(R3)

(t− τ)
1
2

+ 1
2p

dτ.

Under the conditions

1

2
≤ 2

q
− 1

p
,

1

2
≤ 1

q1

+
1

q2

− 1

p
< 1, (4.44)
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Thus, straightforward computation yields

Np(ωθ, T ) ≤Mp(ω0, T )+Cp,qNq(ωθ, T )2+Cq1,q2Nq1(ωθ, T )Nq2(ωθ, T )+CpJ 4
3
(ρ, T )+CpJp(ρ, T ).

(4.45)
Since ρ̃ satisfies a similar equation to that of ωθ, we infer that

Np(ρ̃, T ) ≤Mp(ρ̃0, T ) + Cp,qNq(ωθ, T )Nq(ρ̃, T )

+ Cq1,q2Nq1(ωθ, T )Nq2(ρ̃, T ) + CpJ 4
3
(ρ, T ) + CpJp(ρ, T ).

(4.46)

Finally, similar arguments yield4

Jp(ρ, T ) ≤ Fp(ρ0, T ) + CpN 4
3
(ωθ, T )N 4

3
(ρ̃, T ) + Cq1,q2Nq1(ωθ, T )Nq2(ρ̃, T ), (4.47)

for any q1, q2 such that
1

q1

+
1

q2

− 3

2p
<

1

2
. (4.48)

Now, by plugging (4.47) in (4.45) and (4.46), we find for q = 4
3

Np(ωθ, T ) ≤ Cp,q1,q2
(
Mp(ω0, T ) + Fp(ρ0, T ) +N 4

3
(ωθ, T )2 +N 4

3
(ωθ, T )N 4

3
(ρ̃, T )

+J 4
3
(ρ, T ) +Nq1(ωθ, T )Nq2(ωθ, T ) +Nq1(ωθ, T )Nq2(ρ̃, T )

)
,

and

Np(ρ̃, T ) ≤ Cp,q1,q2
(
Mp(ρ̃0, T ) + Fp(ρ0, T ) +N 4

3
(ωθ, T )N 4

3
(ρ̃, T )

+ J 4
3
(ρ, T ) +Nq1(ωθ, T )Nq2(ρ̃, T )

)
.

Now, to cover all the range p ∈ (4
3
,∞), we can proceed by a bootstrap argument as

in Proposition 3.3.6. The only difference we should point out here is the fact that
lim
T→0

Mp(ω0, T ) is not necessary zero, but, it satisfies

lim
T→0

Mp(ω0, T ) 6 C‖ω0,pp‖M (Ω), ∀p ∈ (1,∞].

Thus, we obtain

lim
T→0

Np(ωθ, T ) 6 C‖ω0,pp‖M (Ω), and lim
T→0

Np(ρ̃, T ) = 0, for all p ∈ (1,∞).

Finally, substituting this latest into (4.47), leads to

lim
T→0

Jp(ρ, T ) = 0, for all p ∈ (1,∞).

In order to treat the case p = ∞, we need to avoid some technical issues arising
from the restriction (4.48). To this end, we chose first q1 = 3

2
, q2 = 4 and p =∞ in

4We refer also to inequality (3.69) for more details.
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(4.45) and (4.46). Remark that this choice of (q1, q2, p) is admissible by the relation
(4.44), hence, we obtain

N∞(ωθ, T ) ≤ f1(T ) + CJ∞(ρ, T ). (4.49)

N∞(ρ̃, T ) ≤ f2(T ) + CJ∞(ρ, T ), (4.50)

with

f1(T ) = M∞(ω0, T )+CN 4
3
(ωθ, T )2+CN 3

2
(ωθ, T )N4(ωθ, T )+CJ 4

3
(ρ, T ) 6

T→0
C‖ω0,pp‖M (Ω),

f2(T ) = M∞(ρ̃0, T )+CN 4
3
(ωθ, T )N 4

3
(ρ̃, T )+CN 3

2
(ωθ, T )N4(ρ̃, T )+CJ 4

3
(ρ, T ) −→ 0

T→0
.

Now, we need to deal with J∞(ρ, T ). By exploring again the properties of the heat
semi-group as in the case p <∞, we infer that

‖ρ(t)‖L∞(R3) ≤ ‖S2(t)ρ0‖L∞(R3)+C

∫ t
2

0

‖ωθ‖L 4
3 (Ω)
‖ρ̃‖

L
4
3 (Ω)

(t− τ)
1
2

+ 3
2

dτ+C

∫ t

t
2

‖v(τ)‖L∞(R3) ‖ρ(τ)‖Lq(R3)

(t− τ)
1
2

+ 3
2q

dτ.

(4.51)
To assert that the last term on the r.h.s above is finite, we need to chose q such that
1
2

+ 3
2q
< 1. A possible choice is then q = 6. On the other hand, remark that due to

the Biot-Savart law, we have, for some 1 < m < 2 < ` <∞

‖v(τ)‖L∞(Ω) . ‖ωθ(τ)‖αLm(Ω) ‖ωθ(τ)‖1−α
L`(Ω) , for α =

m

2

`− 2

`−m
∈ (0, 1).

Moreover, since m, ` <∞, the previous estimates of ωθ together with a straightfor-
ward computation yield

‖v(τ)‖L∞(Ω) . τ−
1
2 . (4.52)

Finally, we infer that

t
3
2 ‖ρ(t)‖L∞(R3) ≤ t

3
2 ‖S2(t)ρ0‖L∞(R3)+CN 4

3
(ωθ, T )N 4

3
(ρ̃, T )+J6(ρ, T ) sup

τ∈(0,T )

(
τ

1
2 ‖v(τ)‖L∞(Ω)

)
.

It is easy then to conclude that

lim
T→0

J∞(ρ, T ) = 0,

and, therefore, we get from (4.49) and (4.50)

lim
T→0

N∞(ωθ, T ) 6 C‖ω0,pp‖M (Ω), and lim
T→0

N∞(ρ̃, T ) = 0.

This ends the proof of Proposition 4.3.3 provided that we prove the following claim

‖(ωθ(t), ρ̃(t), ρ(t))‖L1(Ω)×L1(Ω)×L1(R3) . ‖(ω0, ρ0)‖M (Ω)×L1(R3) .

From the definition of Γ̃ and the fact ρ̃ = rρ, the above claim is equivalent to

∥∥(Γ̃(t), ρ(t))‖L1(Ω)×L1(R3) . ‖(ω0, ρ0)‖M (Ω)×L1(R3) . (4.53)
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Let us then prove that (4.53). We will restrict ourselves to the estimates of the
nonlinear terms since the linear parts can be treated by applying the properties of
semi-groups recalled in the previous section. So, according to the equations of Γ̃
and ρ, we must show that

∫ t

0

∥∥∥S1(t− τ)div?(vΓ̃)(τ)
∥∥∥
L1(Ω)

dτ . ‖(ω0, ρ0)‖M (Ω)×L1(R3) (4.54)

and ∫ t

0

‖S2(t− τ)div(vρ)(τ)‖L1(R3) dτ . ‖(ω0, ρ0)‖M (Ω)×L1(R3) . (4.55)

For (4.54), Hölder’s inequality, Biot Savart law and the definition of the space XT

lead to∫ t

0

∥∥∥S1(t− τ)div?(vΓ̃)(τ)
∥∥∥
L1(Ω)

dτ .
∫ t

0

1

(t− τ)
1
2

‖v(τ)‖L4(Ω)

∥∥∥Γ̃(τ)
∥∥∥
L

4
3 (Ω)

dτ

.
∫ t

0

1

(t− τ)
1
2

‖ωθ(τ)‖
L

4
3 (Ω)

∥∥Γ̃(τ)
∥∥
L

4
3 (Ω)

dτ

.
∫ t

0

1

(t− τ)
1
2 τ

1
2

dτ ‖ωθ‖XT
∥∥Γ̃‖XT

. ‖ωθ‖XT
∥∥Γ̃‖XT .

To treat (4.55), we use the fact that

‖S2(t− τ)div(vρ)(τ)‖L1(R3) = ‖rS2(t− τ)div(vρ)(τ)‖L1(Ω) ,

then we use first Proposition 3.2.12 to infer that∫ t

0

‖rS2(t− τ)div(vρ)(τ)‖L1(Ω) dτ .
∫ t

0

1

(t− τ)
1
2

‖vrρ(τ)‖L1(Ω) dτ.

Therefore, the identity ρ̃ = rρ, Hölder’s inequality and the Biot–Savart law yield

‖S2(t− τ)div(vρ)(τ)‖L1(R3) .
∫ t

0

1

(t− τ)
1
2

‖v(τ)‖L4(Ω) ‖ρ̃(τ)‖
L

4
3 (Ω)

dτ

. ‖ωθ‖XT ‖ρ̃‖XT .

Hence, the estimates in XT lead to (4.54) and (4.55), thereafter, (4.53) follows.

To complete the proof of the Theorem 4.3.1, it remains to outline the proof of
the continuity of the solution and the convergence to the initial data. Precisely, we
shall prove the following

Proposition 4.3.5. Let (ω0, ρ0) be the initial data to system (4.6) that satisfies the
assumptions of Theorem 4.3.1. Let (ωθ, rρ, ρ) be the local solution given by the fixed
point argument such that

(ωθ, rρ) ∈
(
L∞
(
(0, T );L1(Ω)∩L∞(Ω)

))
×
(
L∞
(
[0, T );L1(Ω)

)
∩L∞

(
(0, T );L∞(Ω)

))
,
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ρ ∈ L∞
(
[0, T );L1(R3)

)
∩ L∞

(
(0, T );L∞(R3)

)
.

Then

(ωθ, rρ) ∈
(
C0
(
(0, T );L1(Ω)∩L∞(Ω)

))
×
(
C0
(
[0, T );L1(Ω)

)
∩C0

(
(0, T );L∞(Ω)

))
,

(4.56)

ρ ∈ C0
(
[0, T );L1(R3)

)
∩ C0

(
(0, T );L∞(R3)

)
. (4.57)

Moreover, we have the following convergence to the initial

ωθ(t) ⇀ ω0, as t→ 0 (4.58)

and
lim
t→0
‖ρ(t)− ρ0‖L1(R3) = 0. (4.59)

Proof. Assertions (4.56) and (4.57) concern the continuity of the solution away from
0, this can be done by the same way as in previous Subsection 3.3.2, since the solution
satisfies, for all t0 ∈ (0, T ](

ωθ(t0), ρ̃(t0), ρ(t0)
)
∈ Lp(Ω)× Lp(Ω)× Lp(R3), ∀p ∈ [1,∞].

Let us now investigate the convergence to the initial data (4.58) and (4.59). It
should be noted that the major difficulty in this part is the weak convergence of
the vorticity towards the initial datum. We begin with the proof of the limit (4.59)
which does not differ a lot from the proof given in Subsection 3.3.2.

Indeed, (4.59) is an easy consequence of

lim sup
t→0

‖ρ(t)− S2(t)ρ0‖L1(R3) = 0 (4.60)

Hence, we should focus on the proof of (4.60), for t > 0. By using Proposition 3.2.12
for α = β = 1, we get

‖ρ(t)− S2(t)ρ0‖L1(R3) ≤
∫ t

0

‖rS2(t)div(v(τ)ρ(τ))‖L1(Ω)dτ

.
∫ t

0

1

(t− τ)
1
2

‖v(τ)rρ(τ))‖L1(Ω)dτ

.
∫ t

0

1

(t− τ)
1
2

‖v(τ)‖L4(Ω)‖rρ(τ))‖
L

4
3 (Ω)

dτ.

Then, Biot–Savart’s law yields,

‖ρ(t)− S2(t)ρ0‖L1(R3) .
∫ t

0

1

(t− τ)
1
2

‖ωθ(τ)‖
L

4
3 (Ω)
‖ρ̃(τ))‖

L
4
3 (Ω)

dτ

. ‖ωθ‖XT ‖ρ̃‖Xt
∫ t

0

1

(t− τ)
1
2 τ

1
2

≤ C‖ωθ‖XT ‖ρ̃‖Xt .
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Thus (4.60) follows from the fact that lim
t→0
‖ρ̃‖Xt = 0.

We turn now to prove (4.58) and we follow the idea in [36]. We begin by proving
the following claim

lim sup
t→0

‖ωθ(t)− S1(t)ω0‖L1(Ω) = 0 (4.61)

As mentioned earlier, the linear term of ∂rρ is an obstacle in the L1-estimate of ωθ.
To avoid the estimation of this term, we use the coupling Γ̃ = ωθ − ρ̃

2
. First, note

that (4.59) gives

lim sup
t→0

‖ρ̃(t)− S1(t)ρ̃0‖L1(Ω) = 0. (4.62)

Thus (4.61) is equivalent to the following assertion

lim sup
t→0

‖Γ̃(t)− S1(t)Γ̃0‖L1(Ω) = 0, (4.63)

where, Γ̃0 = ω0 − ρ̃0

2
∈M (Ω). Let us define the functional F by

(Fg)(t) ,
∫ t

0

S1(t− τ)div?(v(τ)g(τ))dτ.

We emphasize that the following estimate holds true, for any g ∈ XT

‖Fg(t)‖L1(Ω) + ‖Fg‖Xt 6 C̃‖ωθ‖Xt‖g‖Xt , ∀t 6 T. (4.64)

The proof of (4.64) can be done by using the estimates of subsection 4.2.2. On the
other hand, from the equation of Γ̃, we have

Γ̃− Γ̃lin =
(
F(Γ̃lin)−F(Γ̃)

)
−F(Γ̃lin) (4.65)

where Γ̃lin(·) = S1(·)Γ̃0. Let R be the radius of the ball in which we applied the
fixed-point argument to construct the local solution5. Hence, we have

‖ρ̃lin‖XT + ‖ωlin‖XT + ‖ρ̃‖XT + ‖ωθ‖XT ≤ 2R

Let us also define the two quantities δ and `p(ω0) by

δ , lim sup
T→0

‖Γ̃− Γ̃lin‖XT

and
`p(ω0) , lim sup

t→0
t1−

1
p‖F(ωlin)(t)‖Lp(Ω), p ∈ [1,∞].

Note first that, we have

lim sup
T→0

‖ρ̃− ρ̃lin‖XT = lim sup
T→0

‖F(ρlin)‖XT = 0.

5That is to say, R is such that 2C̃R < 1, where C̃ > 0 is defined by (4.38)
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Similarly, by a bootstrap argument (Proposition 4.3.3), we can prove that

lim sup
t→0

t1−
1
p‖F(ρlin)‖Lp(Ω) = 0, ∀p ∈ [1,∞].

Thus, by definition of Γ̃lin and by linearity of the functional F , we deduce that

lim sup
t→0

t1−
1
p‖F(Γ̃lin)‖Lp(Ω) = `p(ω0), p ∈ [1,∞]. (4.66)

We resume now from (4.65). Note that (4.64) together with (4.66) yield

δ ≤ C̃ lim sup
t→0

(
‖ωθ‖Xt‖Γ̃− Γ̃lin‖Xt

)
+ ` 4

3
(ω0)

≤ 2C̃Rδ + ` 4
3
(ω0).

We end up with δ = 0 because, `p(ω0) = 0, for all p ∈ [1,∞] 6, and 2C̃R < 1.

We are now in position to prove (4.63). Again, using (4.65) and (4.64) infer that

lim sup
t→0

‖Γ̃(t)− Γ̃lin(t)‖L1(Ω) ≤ C‖ωθ‖XT lim sup
t→0

‖Γ̃− Γ̃lin‖Xt + `1(ω0) = 0,

where, we have used the fact that δ = `1(ω0) = 0. Consequently, we obtain, in view
of (4.62)

lim sup
t→0

‖ωθ(t)− ωlin(t)‖L1(Ω) = 0.

This ends the hard part of the proof. To prove the weak limit towards to initial
vorticity, we only need to use the fact that7

ωlin(t, r, z) =
1

4πt

∫
Ω

r̃1/2

r1/2
N1

( t
rr̃

)
e−

(r−r̃)2+(z−z̃)2
4t dω0(r̃, z̃).

From the above formula, we can check then that ωlin ⇀ ω0 and finally (4.58) follows.
The proof of the proposition is then achieved.

Remark 4.3.6. We should point out that, the propositions we proved in this subsec-
tion do not say anything about the global well-posedness, it is all about the local
theory. However, one can prove that the local solution we construct in Proposition
4.3.2 can be in fact extended to be global in time. We postpone the details of that
to the the last subsection of this chapter.

6See the last part in [36, Section 4] and [34, Section 2.3.4] for a detailed proof of the fact `p(ω0) = 0.
7See Section 3.2.2 .
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4.3.2 Proof of Theorem 4.1.1: All initial data are finite
measures

In this subsection, we shall outline the proof of Theorem 4.1.1. More precisely, we
will focus on the local well-posedness matter then we give the details for the proof
of the global estimates at the end of this section.

As we pointed out before, the most challenging part is how to give a rigorous and
suitable sense to the initial data of the quantity rρ if the initial density ρ0 is only
a finite measure. Also, it is important to make a choice that does not perturb the
continuity of the solution near t = 08. In the case where ρ0 is an axisymmetric
function in L1(R3), we saw in the proof of Theorem 4.3.1 that ρ̃0 = rρ0 ∈ L1(Ω)
with

‖ρ̃0‖L1(Ω) =
1

2π
‖ρ0‖L1(R3).

Hence, the general case where ρ0 is axisymmetric measure should fulfill this proper-
ties as well. More precisely, if ρ0 is a finite axisymmetric measure in M (R3), then,
we should look for a measure ρ̃0 in M (Ω) that satisfies

‖ρ̃0‖M (Ω) =
1

2π
‖ρ‖M (R3). (4.67)

The best candidate is then inspired by Proposition 4.2.10. More precisely, we shall
define ρ̃0 as 

〈ρ̃0, ψ〉 , 1
2π

∫
R3

φψdρ0, ∀ψ ∈ C0(Ω)

φψ(x, y, z) , ψ(
√
x2 + y2, z),

(4.68)

The factor 1
2π

is added for a compatibility reason9 and all the results of Proposition
4.2.10 and the remark thereafter hold modulo that factor.

In the sequel, we denote by C∞c,axi(R3) the space of axisymmetric functions ϕ be-
longing to C∞c (R3) and satisfying the following boundary conditions

ϕ|r=0 = ∂rϕ|r=0 = 0.

For such test function ϕ, we also adopt the identification ϕ ◦ F ≈ ψ, where F is
defined by (4.16). Moreover, for simplicity we write

〈f, ψ〉Ω

instead of
〈f, ϕ ◦ F〉Ω ,

8Or at least the weak continuity near t = 0 as we will see later on.
9see identity (4.90) which is why we should define ρ̃0 by (4.68).
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for any distribution f on Ω. Let us consider µ to be any measure inM(Ω) and we
set the goal of this part to the understanding of the following integral system

ωθ(t) = S1(t)ω0 −
∫ t

0
S1(t− τ)div?

(
v(τ)ωθ(τ)

)
dτ −

∫ t
0
S1(t− τ)∂rρ(τ)dτ,

ρ̃(t) = S1(t)µ−
∫ t

0
S1(t− τ)div?

(
v(τ)ρ̃(τ)

)
dτ − 2

∫ t
0
S1(t− τ)∂rρ(τ)dτ,

ρ(t) = S2(t)ρ0 −
∫ t

0
S2(t− τ)div

(
v(τ) ρ̃

r
(τ)
)
dτ.

(4.69)
Above, for t > 0 and (r, z) = (

√
x2 + y2, z), we consider the identification of ax-

isymmetric functions

ωθ = ωθ(t, x, y, z) = ωθ(t, r, z), ρ = ρ(t, x, y, z) = ρ(t, r, z)

and ρ̃ is, for now, an unknown function of the form ρ̃ = ρ̃(t, r, z). Remark that the
system (4.69) is equivalent to (Bµ,κ) if (ωθ, ρ̃, ρ) is regular enough and if ρ̃ = rρ and
µ = rρ0, at least for integrable initial density.

The following theorem, which is the main result of this section, is a general version
of the local results in Theorem 4.1.1.

Theorem 4.3.7. Let (ω0, ρ0, µ) be in M (Ω) ×M (R3) ×M (Ω), such that ρ0 is
axisymmetric in the sense of Definition 4.2.3. Then, the following hold

(i) Local well-posedness of (4.69). There exists a non negative constant ε such
that, if

‖ω0,pp‖M (Ω) + ‖µpp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε, (4.70)

then, there exists T = T (ω0, ρ0, µ) > 0 for which (4.69) has a unique solution,
defined on [0, T ], and satisfying, for all p ∈ [1,∞]

sup
t∈(0,T ]

{
t1−

1
p ‖(ω(t), ρ̃(t))‖Lp(Ω)×Lp(Ω) + t

3
2

(1− 1
p

) ‖ρ(t)‖Lp(R3)

}
. ‖(ω0, µ)‖M (Ω)×M (Ω)+‖ρ0‖M (R3) .

(4.71)

(ii) Weak convergence to the initial data. For all ϕ ∈ C∞c,Axi(R3), we have10

lim
t→0
〈ωθ(t)|ψ〉Ω = 〈ω0|ψ〉Ω (4.72)

lim
t→0
〈ρ̃(t)|ψ〉Ω = 〈µ|ψ〉Ω , (4.73)

lim
t→0
〈ρ(t)|ϕ〉R3 = 〈ρ0|ϕ〉R3 . (4.74)

(iii) Local well-posedness of the Boussinesq system (Bµ,κ). Moreover, if µ =
ρ̃0 is given by (4.68), then the condition on the size of the initial data (4.70)
can be replaced by

‖ω0,pp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε̃, (4.75)

10We recall that we are using the identification ψ ≈ ϕ ◦ F.
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for some ε̃ > 0. Also, we have

lim
t→0
〈ρ̃(t)|ψ〉Ω = lim

t→0
〈rρ(t)|ψ〉Ω = 〈ρ̃0|ψ〉Ω , ∀ψ ∈ C∞c (Ω),

ρ̃(t) = rρ(t), ∀t > 0

and (ωθ, ρ) is actually the unique solution of the Boussinesq system (Bµ,κ) on
[0, T ].

Proof. We prove the results of the above theorem in the order given in its statement
• Proof of (i): Local well-posedness of system (4.69).
We have to prove the existence of some T > 0, and a unique solution (ωθ, ρ̃, ρ) ∈
XT×XT×ZT to (4.69). This can be done by a fixed point argument, more precisely,
by following exactly the same idea explored in the proof of Theorem 4.3.1. To do
so, the free part (S1(t)ω0,S1(t)µ,S2(t)ρ0) has to be small enough in XT ×XT ×ZT ,
as T is close to zero and the nonlinear parts have to be estimated by using the
properties of the semi-groups stated in the subsection 4.2.2. Indeed, by employing
the results of the subsection 4.2.2 we can get the same estimates obtained in the
proof of Proposition 4.3.2

‖ωθ‖XT ≤ ‖S1(·)ω0‖XT + C‖ωθ‖2
XT

+ C‖ρ‖ZT

‖ρ̃‖XT ≤ ‖S1(·)µ‖XT + C‖ωθ‖XT ‖ρ̃‖XT + C‖ρ‖ZT

‖ρ‖ZT ≤ ‖S2(.)ρ0‖ZT + C‖ωθ‖XT ‖ρ̃‖XT ,

(4.76)

for some universal constant C > 0. The system (4.76) yields then to the following
estimate, up to a suitable modification in C

AT , ‖ωθ‖XT + ‖ρ̃‖XT ≤ A0,T + CA2
T , (4.77)

where, A0,T is given by

A0,T
def
= ‖S1(·)ω0‖XT + ‖S1(·)µ‖XT + C‖S2(.)ρ0‖ZT . (4.78)

The local well-posedness follows then by usual arguments if lim
T→0

A0,T is small enough.

Now, in order to measure the size of A0,T for small T , we use Proposition 4.2.12 and
Proposition 4.2.13 to get

lim
T→0

A0,T ≤ ‖ω0,pp‖M (Ω) + ‖µpp‖M (Ω) + C ‖ρ0,pp‖M (R3) , (4.79)

which gives, for some C̃ > 0

lim
T→0

A0,T ≤ C̃
(
‖ω0,pp‖M (Ω) + ‖µpp‖M (Ω) + ‖ρ0,pp‖M (R3)

)
. (4.80)

Thus, if the r.h.s. of the last inequality above is small enough, then the fixed point
argument guarantees the local well-posedness of (4.69). That is to say, there exist
ε > 0, such that if

‖ω0,pp‖M (Ω) + ‖µpp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε, (4.81)

92



4.3 Proof of the main results

then there exists T > 0 for which (4.69) has a unique solution (ωθ, ρ̃, ρ) in XT ×
XT × ZT .
Remark that the fixed point argument gives in particular the estimate (4.71) for
p = 4

3
. The proof of estimate (4.71) for all p ∈ [1,∞] can be done by a Bootstrap

argument. The details of that are exactly the same as in the proof of Proposition
4.3.3. Assertion (i) is then proved.
• Proof of (ii): Weak convergence to the initial data.
Let us introduce the following linear operators

F1(f)(t) =

∫ t

0

S1(t− τ)div?(vf)(τ)dτ,

F2(g)(t) =

∫ t

0

S2(t− τ)div(vg)(τ)dτ

and

G(ρ)(t) =

∫ t

0

S1(t− τ)∂rρ(τ)dτ,

where, v is the velocity associated with the unique solution (ωθ, ρ̃, ρ) constructed in
the previous step. Hence, our integral system (4.69) can be rewritten as

ωθ(t) = S1(t)ω0 −F1(ωθ)(t)− G(ρ)(t)

ρ̃(t) = S1(t)µ−F1(ρ̃)(t)− 2G(ρ)(t)

ρ(t) = S2(t)ρ0 −F2( ρ̃
r
)(t),

(4.82)

First, we point out that, for every ϕ ∈ C∞c (R3) and ψ ∈ C∞c (Ω), we have

lim
t→0

∫
Ω

S1(t)ω0ψdrdz =

∫
Ω

ψ(r, z)d(ω0(r, z)),

lim
t→0

∫
Ω

S1(t)µψdrdz =

∫
Ω

ψ(r, z)d(µ(r, z)),

lim
t→0

∫
R3

S2(t)ρ0ϕdx =

∫
R3

ϕ(x)d(ρ0(x)).

Thus, in order to prove the convergence to the initial data in (4.82), we need to
show that the terms containing the operators F1, F2 and G tend weakly to zero as
t goes to 0. Let us begin by proving that

lim
t→0

∫
R3

F2(
ρ̃

r
)(t)ϕ(x)dx = 0. (4.83)

Remark that the operators div and S2(t) commute, whereas an integration by parts
followed by the Proposition 3.2.12 and Biot–Savart law yield, in view of the notation
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∇̃ϕ = (∇ϕ) ◦ F∣∣∣∣ ∫
R3

F2(
ρ̃

r
)ϕ(x)dx

∣∣∣∣ . ∫ t

0

∫
Ω

∣∣rS2(t− τ)(v
ρ̃

r
) · ∇̃ϕ(r, z)

∣∣drdzdτ
.
∫ t

0

‖ωθ(τ)‖
L

4
3 (Ω)
‖ρ̃(τ)‖

L
4
3 (Ω)

dτ‖∇̃ϕ‖L∞(Ω)

.
∫ t

0

dτ

τ
1
2

‖ωθ‖XT ‖ρ̃‖XT ‖∇̃ϕ‖L∞(Ω)

. t
1
2‖ωθ‖XT ‖ρ̃‖XT ‖∇̃ϕ‖L∞(Ω),

This is enough to guarantee (4.83).
For the rest of the limits, we will restrict our selves to the ones appearing in the
equation of ρ̃ due to the similarity of the equations of ρ̃ and ωθ. Let us point out
first that the operators ∂r and S1(t) do not commute. To overcome this issue, let us
rewrite the equation of ρ̃ in terms of S2. To do so, owing to the fact that

div?(vρ̃) = div(vρ̃)− vr

r
ρ̃,

then the equation of ρ̃, given by

∂tρ̃−∆ρ̃+ div?(vρ̃) +
ρ̃

r2
= −2∂rρ,

can be written in the integral form as

ρ̃(t) = S2(t)µ−
∫ t

0

S2(t− τ)div(vρ̃)dτ +

∫ t

0

S2(t− τ)
(vr
r
ρ̃
)
dτ −

∫ t

0

S2(t− τ)
ρ̃

r2
dτ

− 2

∫ t

0

S2(t− τ)∂rρdτ. (4.84)

Except of the first term on the r.h.s above, all the rest of terms should go to 0 (in
distributional sense) in order to reach our claim. Indeed, by using the fact that the
operator div commutes with S2(t), Proposition 3.2.12 and the Biot-Savart law, we
obtain∣∣∣∣ ∫ t

0

∫
Ω

S2(t− τ)div(vρ̃)ψ(r, z)drdzdτ

∣∣∣∣ . ∫ t

0

∫
Ω

∣∣S2(t− τ)(vρ̃) · ∇ψ(r, z)
∣∣drdzdτ

.
∫ t

0

‖ωθ(τ)‖
L

4
3 (Ω)
‖ρ̃(τ)‖

L
4
3 (Ω)

dτ‖∇ψ‖L∞(Ω).

We continue as in the proof of (4.83) to obtain∣∣ ∫ t

0

∫
Ω

S2(t− τ)div(vρ̃)ψ(r, z)drdzdτ
∣∣ . t

1
2‖ωθ‖XT ‖ρ̃‖XT ‖∇ψ‖L∞(Ω),

which tends to 0 as t goes to 0. For the 3rd term on the r.h.s of (4.84), we proceed
by using again Proposition 3.2.12, and the Biot–Savart law to infer that∣∣∣∣ ∫ t

0

∫
Ω

S2(t− τ)
(vr
r
ρ̃
)
ψ(r, z)drdzdτ

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫
Ω

rS2(t− τ)
(vr
r
ρ̃
)ψ(r, z)

r
drdzdτ

∣∣∣∣
.
∫ t

0

‖ωθ(τ)‖
L

4
3 (Ω)
‖ρ̃(τ)‖

L
4
3 (Ω)

dτ‖ψ
r
‖L∞(Ω).
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Again, we continue as in the proof of (4.83) to get∣∣∣∣ ∫ t

0

∫
Ω

S2(t− τ)
(vr
r
ρ̃
)
ψ(r, z)drdzdτ

∣∣∣∣ . t
1
2‖ωθ‖XT ‖ρ̃‖XT ‖

ψ

r
‖L∞(Ω),

which tends to 0 as t goes to 0. For the 4th term on the r.h.s of (4.84), we use again
Proposition 3.2.12 and the Biot–Savart law to find that∣∣∣∣ ∫ t

0

∫
Ω

S2(t− τ)
ρ̃

r2
ψ(r, z)drdzdτ

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫
Ω

r2S2(t− τ)
ρ̃

r2

ψ(r, z)

r2
drdzdτ

∣∣∣∣
.
∫ t

0

‖ρ̃(τ)‖
L

4
3 (Ω)

dτ‖ ψ
r2
‖L4(Ω)

.
∫ t

0

dτ

τ
1
4

‖ρ̃‖XT ‖
ψ

r2
‖L4(Ω)

. t
3
4‖ρ̃‖XT ‖

ψ

r2
‖L4(Ω),

which tends to 0 as t goes to 0. Finally, for the last term in (4.84), implementing
again Proposition 3.2.12 and Biot–Savart law yield∣∣∣∣ ∫ t

0

∫
Ω

S2(t− τ)∂rρψ(r, z)drdzdτ

∣∣∣∣ =

∣∣∣∣ ∫ t

0

∫
Ω

r
3
4S2(t− τ)∂rρ

ψ(r, z)

r
3
4

drdzdτ

∣∣∣∣
.
∫ t

0

1

τ
1
2

‖r
3
4ρ(τ)‖

L
4
3 (Ω)

dτ‖ ψ
r

3
4

‖L4(Ω)

.
∫ t

0

1

τ
1
2

‖ρ(τ)‖
L

4
3 (R3)

dτ‖ ψ
r

3
4

‖L4(Ω)

.
∫ t

0

dτ

τ
7
8

‖ρ‖ZT ‖
ψ

r
3
4

‖L4(Ω)

. t
1
8‖ρ‖ZT ‖

ψ

r
3
4

‖L4(Ω),

which tends to 0 as t goes to 0. All in all, we deduce that ρ̃(t) tends to µ (in
distributional sense) as t goes to 0. Similar arguments can be used to prove that
ωθ(t) tends to ω0 when t goes to 0.
Remark 4.3.8. We should point out that the computations of this step hold true
whenever the test function ψ is in C1(Ω) such that

‖∇ψ‖L∞(Ω) + ‖ψ
r
‖L∞(Ω) + ‖ψ

r
‖L4(Ω) + ‖ ψ

r2
‖L4(Ω) <∞. (4.85)

Such a condition is automatically satisfied if we take ψ = ϕ ◦ F, for any ϕ ∈
C∞c,Axi(R3). Indeed, the boundary conditions on the test function belonging to
C∞c,Axi(R3), together with Taylor expansion near r = 0 would clearly imply (4.85).

• Proof of (iii): Local well-posedness of the Boussinesq system (µ = ρ̃0).
Now, we assume that µ and ρ0 are connected by the formula (4.68). That is, we set
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µ = ρ̃0, where 
〈ρ̃0, ψ〉 , 1

2π

∫
R3

φψdρ0, ∀ψ ∈ C0(Ω),

φψ(x, y, z) , ψ(
√
x2 + y2, z).

(4.86)

Proposition 4.2.10 and the remark thereafter yield, for all ϕ ∈ C∞c,Axi(R3)

1

2π
〈ρ0|ϕ〉R3 = 〈ρ̃0|ϕ ◦ F〉Ω = 〈ρ̃0|ψ〉Ω , (4.87)

and
‖ρ̃0,pp‖M (Ω) =

1

2π
‖ρ0,pp‖M (R3) .

This estimate on the size of ‖ρ̃0,pp‖M (Ω) can be used then in (4.80) to obtain, for
some C̃0 > 0

lim
T→0

A0,T ≤ C̃0

(
‖ω0,pp‖M (Ω) + ‖ρ0,pp‖M (R3)

)
.

Hence, it is obvious that, up to a modification in ε given by (4.81), then (4.81) can
be replaced by

‖ω0,pp‖M (Ω) + ‖ρ0,pp‖M (R3) ≤ ε̃. (4.88)

The local well-posedness of (4.69) is then guaranteed as long as (4.88) is satisfied.
This ends the proof of the first part of (iii). Now, since ρ(t) is axisymmetric, belong-
ing to L1(R3) for all t > 0, then rρ(t) belongs to L1(Ω) and a change of variables
gives

1

2π
〈ρ(t)|ϕ〉R3 = 〈rρ(t)|ϕ ◦ F〉Ω . (4.89)

Hence, the weak limits (as t tends to 0) proved in the previous step, together with
(4.87) and (4.89) yield

lim
t→0
〈rρ(t)|ϕ ◦ F〉Ω =

1

2π
lim
t→0
〈ρ(t)|ϕ〉R3 =

1

2π
〈ρ0|ϕ〉R3 = 〈ρ̃0|ϕ ◦ F〉Ω . (4.90)

Consequently, for all ψ ∈ C∞c (Ω), we obtain

lim
t→0
〈rρ(t)|ψ〉Ω = 〈ρ̃0|ψ〉Ω = lim

t→0
〈ρ̃(t)|ψ〉Ω . (4.91)

Moreover, remark that for all t > 0, the quantity σ(t) , rρ(t) satisfies the equation

∂tσ −
(

∆− 1

r2

)
σ + div?(vρ̃) = −2∂rρ.

This, together with (4.91) yield to the following system for σ{
∂tσ −

(
∆− 1

r2

)
σ + div?(vρ̃) = −2∂rρ, (t, r, z) ∈ R+

∗ × Ω,
σ|t=0 = ρ̃0,

(4.92)
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where the initial condition is to be understood in the weak sense given by (4.91).
We recall, on the other hand, that ρ̃ satisfies the system{

∂tρ̃−
(
∆− 1

r2

)
ρ̃+ div?(vρ̃) = −2∂rρ, (t, r, z) ∈ R+

∗ × Ω,
ρ̃|t=0 = ρ̃0

(4.93)

One finds then that the quantity ρ̃ − rρ satisfies a heat equation with zero inputs.
It is easy then to deduce that rρ(t) = ρ̃(t), for all t > 0.
We emphasize that this characterization of ρ̃ would imply that (ωθ, ρ) solves the
Boussinesq system. Moreover, all the estimates proved for ρ̃ hold for for the quantity
rρ. Theorem 4.3.7 is then proved.

4.3.3 Global well-posedness

The results proved in Theorem 4.3.7 provide information only on the local well-
posedness whenever the initial data (ω0, ρ0) is suitable and lies in M (Ω)×M (R3).
However, one can in fact extend the local solution to be defined for all t > 0.
Indeed, from the proof of Theorem 4.3.7, we deduce that there exists t0 ∈ (0, T )
such (ωθ(t0), ρ(t0)) ∈ L1(Ω)×L1(R3). Hence, Theorem 3.3.1 insures the existence of
a unique solution of the Boussinesq system with initial data (ωθ(t0), ρ(t0)), denoted
for now by (ω̄, ρ̄). This solution is defined on [t0,∞) and satisfies in particular, for
all p ∈ [1,∞]

sup
t>t0

(t− t0)1− 1
p‖(ω̄(t), rρ̄(t))‖Lp(Ω)×Lp(Ω) + sup

t>t0
(t− t0)

3
2

(1− 1
p

)‖ρ̄(t)‖Lp(R3) <∞.

On the other hand, the local solution (ωθ, ρ) constructed in Theorem 4.3.7 satisfies,
for all p ∈ [1,∞]

sup
t∈[t0,T ]

(t− t0)1− 1
p‖(ωθ(t), rρ(t))‖Lp(Ω)×Lp(Ω) + sup

t∈[t0,T ]

(t− t0)
3
2

(1− 1
p

)‖ρ(t)‖Lp(R3) <∞.

To conclude, we only need to use the above estimates and repeat the arguments
leading to the uniqueness in the proof of Theorem 4.3.7 to end up with (ωθ, ρ) ≡
(ω̄, ρ̄) on [t0, T ]. This proves that the local solution is uniquely extendable to a global
one.
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5 Appendix

5.1 Derivation of the Navier-Stokes-Boussinesq
equations

Our goal in this section is to develop the equations that control the motion of a strat-
ified fluid in a rotating environment. These equations are then somewhat simplified
by taking advantage of the so-called Boussinesq approximation. In 1903, Boussinesq
stated for the first time the conditions under which the famous " Approximation "
applied:
Il fallait encore observer que, dans la plupart des mouvements provoqués par la
chaleur sur nos fluides pesants, les volumes ou les densités se conservent à trés
peu prés, quoique la variation correspondante du poids de l’unité de volume soit
justement la cause des phénomènes qu’il s’agit d’analyser. De là résulte la possibil-
ité de négliger les variations de la densité là oû elles ne sont pas multipliées par la
gravité g, tout en conservant dans les calculs leur produit par celle-ci. [12]
Boussinesq’s equations are given by a system that combines the velocity field and
the density.

Without appreciable loss of precision, we can note that the Boussinesq approx-
imation is based on the following remark: In most geophysical systems, the fluid
density varies, slightly around a mean value. [77].

For example for air which is compressible or seawater (where the salinity is negligi-
ble), it can be assumed in most cases that the density of the fluid ρ, does not deviate
much from one mean reference value, ρ0, so we can write.

ρ = ρ0 + ρ′(x, y, z, t), |ρ′| << ρ0 (5.1)

where the variance is ρ′ due to the stratification present in the fluid or from the fact
that its movement is small compared to the reference value ρ0.
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5.1.1 Continuity equation

Thanks to the fundamental principle in fluid mechanics is that :the mass be con-
served which we can formulate mathematically as

∂ρ

∂t
+

∂

∂x
(ρv1) +

∂

∂y
(ρv2) +

∂

∂z
(ρv3) = 0 (5.2)

where (v1, v2, v3) are the three components of velocity, due to (5.1), we can write

ρ0

(∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

)
+ ρ′

(∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

)
+
(∂ρ′
∂t

+ v1
∂ρ′

∂x
+ v2

∂ρ′

∂y
+ v3

∂ρ′

∂z

)
= 0 (5.3)

Geophysical flows indicate that the relative variations of density in time and space
are not larger than - and usually much less than - the relative variations of the
velocity field. Consequently the terms of the third group in (5.3) are of the same
order as - if not much less than - those of the second. While the terms of this second
group are always much lower than those of the first because |ρ′| << ρ0. Therefore,
only this first group of terms needs to be kept, and we write

∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
= 0 (5.4)

Remark 5.1.1. From a physical point of view, the conservation of mass has become
the conservation of volume.

5.1.2 Derivation of velocity equations

Momentum equations

Newton’s second law says " mass times acceleration equals the sum of forces. "
Recall that in the frame where we neglect the rotation, the absolute acceleration
has the following three components (dv1

dt
, dv2

dt
, dv3

dt
). In fluid is better stated per unit

volume with density replacing mass (due to ρ = m
V
), so the Newton’s second law

gives 

x : ρ
dv1

dt
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z

y : ρ
dv2

dt
= −∂p

∂y
+
∂τxy

∂x
+
∂τ yy

∂y
+
∂τ yz

∂z

z : ρ
dv3

dt
= −∂p

∂z
− ρg +

∂τxz

∂x
+
∂τ yz

∂y
+
∂τ zz

∂z

(5.5)
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where −∇p is the pressure force and the viscous force is due to the derivatives of
the stress tensor where its components is given by

τxx = µ(
∂v1

∂x
+
∂v1

∂x
); τxy = µ(

∂v1

∂y
+
∂v2

∂x
); τxz = (

∂v1

∂z
+
∂v3

∂x
)

τ yy = µ(
∂v2

∂y
+
∂v2

∂y
); τ yz = µ(

∂v2

∂z
+
∂v3

∂y
);

τ zz = µ(
∂v3

∂z
+
∂v3

∂z
);

(5.6)

About the extraction of these components you can see [46]. µ is called the coefficient
of dynamic viscosity.

Remark 5.1.2. Let us mention that the acceleration in a fluid is not counted as the
rate of change in velocity at a fixed location but as the change in velocity of a fluid
particle as it moves along with the flow, the time derivatives in the acceleration

components
dv1

dt
,
dv2

dt
and

dv3

dt
, consist of both the local time rate of change and the

so-called advective terms:

d

dt
=

∂

∂t
+ v1

∂

∂x
+ v2

∂

∂y
+ v3

∂

∂z

Remark 5.1.3. Note that the Navier-Stokes equations result of (5.5) after series of
algebraic manipulations. The significant role in the simplification is due to the
incompressibility condition (divv = 0).

The treatment of the two first equations of the previous system (5.5) is the same
due to the appearance of ρ only in the left side. Like |ρ′| << ρ0 and with kinematic
viscosity ν = µ

ρ0
, we find 

dv1

dt
= − 1

ρ0

∂p

∂x
+ ν∆v1

dv2

dt
= − 1

ρ0

∂p

∂y
+ ν∆v2.

(5.7)

We turn now to addressing the third equation z−momentum equation, where ρ is
appearing in both sides of the equation. With respect to the term on the left, we
deal with it in the same way as before, i.e. we neglect ρ′ compared to ρ0. While
for the right-hand side, that is not available, because there is a ρ multiplied by g,
which indicates the weight of the fluid. That weight causes the pressure to increase
with depth (or the pressure decreases with height, depending on whether one thinks
of the ocean or Atmosphere). With the ρ0 part of the density goes a hydrostatic
pressure p0, which is a function of z only:

p = p0(z) + p′(x, y, z, t) with p0(z) = P0 − ρ0gz
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so that
dp0

dz
= −ρ0g, and the equation of z−momentum becomes

dv3

dt
= − 1

ρ0

∂p′

∂z
− ρ′g

ρ0

+ ν∆v3 (5.8)

At this point, we cannot simplify further because the term ρ′g is responsible for
the buoyancy forces which are considered a crucial ingredient in geophysical fluid
dynamics.

Remark 5.1.4. Note that the hydrostatic pressure p0(z) can be subtracted from p in
the reduced momentum equations (5.7), because it has no derivatives with respect
to x and y, and is dynamically inactive.

Remark 5.1.5. The equations (5.7) and (5.8) can be seen as three equations providing
the three velocity components v1, v2 and v3. An equation for ρ is given by the
conservation of mass.

To better understand this topic, we refer to Beckers and Roisin [77] , Geoffrey[38],
Turner [81] and the references therein.

5.2 About axisymmetric Biot Savart Law

Recalling that in the cylindrical coordinates and in the class of axisymmetric vec-
tor fields without swirl the velocity is given by v = (vr, 0, vz) with vr and vz are
independtly of θ−variable, ωθ its vorticity defined from Ω into R3 by

ω = curlv = curl
( vr

0
vz

)
=
( 0
∂zv

r − ∂rvz
0

)
(5.9)

Remark 5.2.1. For any vector field v = vθeθ, we have

curlv = curl
( 0
vθ
0

)
=
( −∂zvθ

0
∂r(rvθ)

r

)
. (5.10)

From (5.9) and (5.10), we notice that the application v 7→ curlv takes any axisym-
metric fields without swirl to axisymmetric fields of the form ωθeθ which is " pure
swil" and vice versa.

The divergence-free condition divv = 0 turns out to be

divv =
1

r
∂r(rv

r) + ∂zv
z = 0.

therefore
∂r(rv

r) + ∂z(rv
z) = 0. (5.11)
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the equation (5.11) can be written as

curl
( rvz

0
−rvr

)
= 0. (5.12)

Remark 5.2.2. If the flow is irrotational (its rotation is zero at any point), in math-
ematical terms, the velocity vector is then the gradient of the potential

Thanks to the remark 5.2.2 and under the homogeneous boundary conditions vr =
∂rv

z = 0, we can build a scalar function Ω 3 (r, z) 7→ ψ(r, z) ∈ R which called
axisymmetric stream function and satisfying

∇ψ =
( ∂rψ
∂zψ

)
=
( rvz

−rvr
)

(5.13)

Hence (5.13) can be written as

vr = −1

r
∂zψ, vz =

1

r
∂rψ. (5.14)

and ( vr

0
vz

)
=
( −1

r
∂zψ
0

1
r
∂rψ

)
= curl

( 0
ψ
r

0

)
(5.15)

Consequently, one obtains that ψ evolves the following linear elliptic inhomogeneous
equation

−1

r
∂2
rψ +

1

r2
∂rψ −

1

r
∂2
zψ = ωθ,

with the boundary conditions ψ(0, z) = ∂rψ(0, z) = 0. By setting L = −1
r
∂2
r +

1
r2∂r − 1

r
∂2
z , one finds the following boundary value problem{

Lψ(r, z) = ωθ(r, z) if (r, z) ∈ Ω
ψ(r, z) = ∂rψ(r, z) = 0 if (r, z) ∈ Ω,

(5.16)

where ∂Ω = {(r, z) ∈ R2 : r = 0}. To solve the elliptic problem (5.16), it is efficient
to write the solution v in terms of vector potential A i.e v = curlA. In accordance
with (5.15), we can write A as

A =
( 0
Aθ
0

)
=
( 0

ψ
r

0

)
(5.17)

We aim at estimating A, to do this it suffices to evaluate Aθ at points x with
cylindrical coordinates (r, 0, z). Recall that in cartesian coordinates A is given as

A(x) =

∫
R3

G(x− y)ω(y)dy (5.18)

with G(x) = 1
4π

1
|x| .
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Remark 5.2.3. The last result is due to curlcurl = −∆ +∇div.

Let (r′, θ′, z′) be the cylindrical coordinates of y. A straightforward computation
yields

A(x) =

∫ +∞

−∞

∫ +∞

0

∫ 2π

0

ωθ

4π
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

( − sin θ′

cos θ′

0

)
r′dθ′dr′dz′

(5.19)
By setting

A(r, r′, z, z′) =

∫ 2π

0

r′

4π
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

( − sin θ′

cos θ′

0

)
dθ′ (5.20)

Thus in view of (5.20), and the fact∫ 2π

0

r′ sin θ′dθ′√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

= 0

(5.20) takes the form

A(r, r′, z, z′) =
( 0
Aθ(r, r

′, z, z′)
0

)
(5.21)

with

Aθ(r, r
′, z, z′) =

∫ 2π

0

r′ cos θ′dθ′√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

(5.22)

Plug (5.22) in (5.19), we get

A(x) = Aθ(r, z)eθ(x)

where

Aθ(r, z) =

∫ +∞

−∞

∫ +∞

0

Aθ(r, r
′, z, z′)ωθ(r

′, z′)dr′dz′ (5.23)

Combining (5.23) and (5.17) to obtain

ψ(r, z) =

∫ +∞

−∞

∫ +∞

0

rAθ(r, r
′, z, z′)ωθ(r

′, z′)dr′dz′ (5.24)

Combining the last formula (5.24) with the problem (5.16), it results that the formula
(5.24) inverts the operator L and therefore the function rAθ(r, r′, z, z′) is considered
as Green’s function of the operator L . After a suitable change of variables, we find

ψ(r, z) , L−1ωθ(r, z) =

∫ ∞
−∞

∫ ∞
0

√
r̃r

2π
F

(
(r − r̃)2 + (z − z̃)2

r̃r

)
ωθ(r̃, z̃)dr̃dz̃, (5.25)

where the function F :]0,∞[→ R is expressed as follows:

F (s) =

∫ π

0

cosαdα(
2(1− cosα) + s

)1/2
. (5.26)

Consequently, the boundary value problem (5.16) admits a unique solution.
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 :ملخص
حيث تركزت دراستنا حول نظام بوسينسك والذي يعتبر  الموائع،يكانيكا لمالمهمة واضيع المالتي تناولت أحد  العديدأطروحتنا هذه من بين  

مليون دولار.  جائزة لها تالتي خصص الاستثنائية وهذا الأخير يعتبر من بين المسائل .تعميما لنظام نافييه ستوكس أين تكون الكثافة فيه ثابتة
إن من بين الدوافع لهذه الدراسة وجود تشابه محوريا. من خلال هذه الأطروحة قمنا بدراسة وجود ووحدانية الحل لنظام بوسينسك المتماثل 

بعاد حيث تلعب ثنائية الأ  وبين الحالةبين حالة التماثل المحوري والتي يكون فيها شعاع السرعة في الإحداثيات الأسطوانية مستقلا عن الزاوية 
في دراستنا هذه على نتائج تخص نظام نافييه ستوكس المتماثل محوريا وبما  اعتمدنادورا كبيرا في إثبات الوجود والوحدانية. دراسة الدوامة 

، مةعلى مجموعة تختلف عن مجموعة تعريف الدوا احيث يكون هذا الأخير معرف ،أن نظام بوسينسك يشمل مجهولا إضافيا وهو الكثافة
لا نهائية وفي  المحلي لحل ذو طاقةيلعب دورا فعالا في إثبات الوجود و السابقين المجهولينأنشأنا مجهولا جديدا يقوم بالموازنة بين  لذلك

حيث واجهنا  ،المعطيات الأولية من فضاء القياسات المنتهيةلتشمل حالة وسعت هذه الدراسة كما التقديرات الأولية لأجل شمولية الحل. 
لأجل ذلك قمنا بإنشاء بعض المفاهيم كالقياس المتناظر محوريا ومن . ومناسب للمعطيات الأولية تحديا كبيرا وهو كيفية إعطاء معنى مدقق

 خلال بعض القضايا التي أثبتناها استطعنا إثبات أن نظام بوسينسك المتماثل محوريا في هذه الحالة موضوع جيدا. 
 .الشامل الجيد التموضع محوريا، المتماثلة القياسات الحرجة، الفضاءات محوريا، المتماثل بوسينسك نظام المفتاحية: الكلمات

Abstract: 
This thesis is one of many studies that deal with one of the important subjects of fluid mechanics, 

where our study is focused on the Boussinesq system, which is a generalization of the Navier-Stokes 

system. It is one of the premium problems, which is specified for its resolution a price of one million 

dollars. In this thesis, we have studied the existence and uniqueness of the solution of the 

axisymmetric Boussinesq system. This study is motivated by the existence of a similarity between 

the axisymmetric case, in which the velocity in cylindrical coordinates is independent of the angle, 

and the two-dimensional case, where the study of the vorticity plays a major role in proving the 

existence and uniqueness. In this study, we have relied on the results of the axisymmetric Navier-

Stokes system. Since the Boussinesq system has an additional unknown, which is the density, where 

is defined on a different set from the defining set of the vorticity, we have defined a new unknown 

that balances the previous ones. The new unknown plays an important role in proving the local 

existence of an infinite energy solution and in the a priori estimates. This study has also been extended 

to include the case of initial data in the space of finite measures. The most challenging part is how to 

give a rigorous and suitable sense to the initial data of the new unknown. For this, we created concepts 

such as the axisymmetric measure and through some results; we were able to prove that the 

Boussinesq system is well posed in this case. 

keywords: Axisymmetric Boussinesq system, Critical Spaces, Axisymmetric Measure, Global Well- 

Posedness. 

Résumé : 
Cette thèse fait partie des nombreuses études qui traitent l'un des sujets importants de la mécanique 

des fluides, où notre étude s'accentue sur le système de Boussinesq, qui est une généralisation du 

système de Navier-Stokes. C'est l'un des rares problèmes dont il lui a été attribué le prix d’un million 

de dollars. Dans cette thèse, nous avons étudié l'existence et l'unicité de la solution du système de 

Boussinesq axisymétrique. Cette étude est motivée par l'existence d'une similitude entre le cas 

axisymétrique, dont lequel la vitesse en coordonnées cylindriques est indépendante de l'angle, et du 

cas bidimensionnel, où l'étude du tourbillon joue un rôle majeur pour prouver l'existence et l’unicité. 

Dans cette étude, nous nous sommes appuyés sur les résultats du système de Navier-Stokes 

axisymétrique, et puisque le système de Boussinesq a un inconnu supplémentaire, qui est la densité, 

où est définie sur un ensemble différent de celui du tourbillon, nous avons défini un nouveau inconnu 

qui équilibre les inconnus précédents. Le nouveau inconnu joue un rôle important dans la preuve de 

l'existence locale d'une solution d'énergie infinie et dans les estimations à priori. Cette étude a 

également été étendue au cas des données initiales dans l'espace des mesures finies. Le plus difficile 

est de donner un sens rigoureux et adapté aux données initiales du nouvel inconnu. Pour cela, nous 

avons créé des concepts tels que la mesure axisymétrique et à travers quelques résultats nous avons 

pu prouver que le système Boussinesq est bien posé dans ce cas. 
Mots clés : Système de Boussinesq Axisymétrique, Espaces Critique, Mesure Axisymétrique, Bien-

Posé globale. 
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