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Chapter 1

Introduction

Optimization in science, engineering, economics, and industry, it is essential for

students and practitioners alike to develop an understanding of optimization algorithms.Knowledge

of the capabilities and limitations of these algorithms leads to a better understanding of

their impact on various applications, and points the way to future research on improving

and extending optimization algorithms and software.

Dantzig�s [7] development of the simplex method in the late 1940s marks the

start of the modern era in optimization. This method made it possible for economists

to formulate large models and analyze them in a systematic and e¢ cient way. Dantzig�s

discovery coincided with the evelopment of the �rst digital computers, and the simplex

method became one of the earliest important applications of this new and revolutionary

technology. From those days to the present, computer implementations of the simplex

method have been continually improved and re�ned. They have bene�ted particularly

from interactions with numerical analysis, a branch of mathematics that also came into
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its own with the appearance of digital computers, and have now reached a high level of

sophistication.

Today, linear programming and the simplex method continue to hold sway as the

most widely used of all optimization tools. Since 1950, generations of workers in manage-

ment, economics, �nance, and engineering have been trained in the business of formulating

linear models and solving them with simplex-based software. Often, the situations they

model are actually nonlinear, but linear programming is appealing because of the advanced

state of the software, guaranteed convergence to a global minimum, and the fact that un-

certainty in the data can make complicated nonlinear models look like overkill. Nonlinear

programming may make inroads as software develops, and a new class of methods known

as interior-point methods has proved to be faster for some linear programming problems.

In the 1980s it was discovered that many large linear programs could be solved

e¢ ciently by formulating them as nonlinear problems and solving them with various mod-

i�cations of nonlinear algorithms such asNewton�s method. One characteristic of these

methods was that they required all iterates to satisfy the inequality constraints in the prob-

lem strictly, so they soon became known as interior-point methods. By the early 1990s, one

class primal�dual methods had distinguished itself as the most e¢ cient practical approach

and proved to be a strong competitor to the simplex method on large problems.

The motivation for interior-point methods (IPMs) arose from the desire to �nd

algorithms with better theoretical properties than the simplex method. The simplex method

[7] can be quite ine¢ cient on certain problems. Roughly speaking, the time required to

solve a linear programmay be exponential in the size O(2n) of the problem, as measured
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by the number of unknowns and the amount of storage needed for the problem data. In

practice, the simplex method is much more e¢ cient than this bound would suggest, but

its poor worst-case complexity motivated the development of new algorithms with better

guaranteed performance. Among them is the ellipsoid method proposed by Khachiyan [19] ,

which �nds a solution in time that is at worst polynomial in the problem size. Unfortunately,

this method approaches its worst-case bound on all problems and is not competitive with

the simplex method.

Karmarkar�s projective algorithm [17], announced in 1984, also has the polyno-

mial complexity property, Padberg [32] proposed a new potential function for the conver-

gence., but it came with the added inducement of good practical behavior. The initial

claims of excellent performance on large linear programs were never fully borne out, but

the announcement prompted a great deal of research activity and a wide array of methods

described by such labels as �a¢ ne-scaling,� �logarithmic barrier,� �potential reduction,�

�path-following,� �primal�dual,� and �infeasible interior-point.� All are related to Kar-

markar�s original algorithm, and to the log-barrier approach, but many of the approaches

can be motivated and analyzed independently of the earlier methods.

Interior-point methods share common features that distinguish them fromthe sim-

plex method. Each interior-point iteration is expensive to compute and can make signi�cant

progress towards the solution and their polynomial complexity appeared in the mid-�fties,

while the simplex method usually requires a larger number of inexpensive iterations.The

simplex method works its way around the boundaryof the feasible polytope, testing a se-

quence of vertices in turn until it �nds the optimal one. Interior-point methods approach
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the boundary of the feasible set only in the limit. They may approach the solution either

from the interior or the exterior of the feasible region, but they never actually lie on the

boundary of this region.

However, it should be pointed out that (technically speaking), these methods have

theoretical and numerical disadvantages, among others: the problem of initialization and

the excessive cost of iteration related to management choices and of the step of displacement.

We have made a theoretical, algorithmic and numerical contribution to the solution

of problems in particular linear complementarity monotone problems . Our objectif in

this thesis is the study of the complexity analysis and the numerical implementation of

an interior-point algorithm based on a new kernel function. The algorithm based on the

strategy of the central path and on a method for �nding a new search directions for the

monotone linear complementarity problem, where we show that the short-step algorithm

deserves the best current polynomial complexity.

This thesis consists of four chapters and is organised as follows:

In chapter1, to introduce some notions of a convixity and a mathematical pro-

gramming and we will make a synthesis on convex problems and their solution methods.

The chapter2 we will introduce two families of interior points methods. The

primal-dual trajectory methods were introduced in the late 1980s as a variant of the Kar-

markar approach and were fully developed in the early Karmarkar approach, and were fully

developed in the early 1990s.We use the linear complementarity methods (LCP ) for solving

the (QP ):We will discuss the study of the families of interior-point programming, the most

well known in optimization, are the following: The reduction of the projective potential
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(Karmarkar�s algorithm) and the central path method (CPM).

The third chapter we present an interior-point algorithm for solving an opti-

mization problem using the central path method. By an equivalent reformulation of the

central path, we obtain a new search direction which targets at a small neighborhood of the

central path. For a full-Newton step interior-point algorithm based on this search direc-

tion, the complexity bound of the algorithm is the best known for linear complementarity

problem.

The last chapter we present two primal-dual small-step and large-step central

path algorithms for solving a monoton linear complementarity program based on kernel

function . Without forgetting of course, to conclude our thesis with by a conclusion and

prespectives.
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Chapter 2

Preliminaries and fondamental

concepts

In this chapter we will introduce some notions of a convixity and a mathematical

programming and we will make a synthesis on convex problems and their solution methods.

2.1 Convexity concepts

In this section, we present a reminder of the fundamental notions of the convexity

properties which will serve as a basis for the following.

De�nition 1 D is a convex set if only if D contains line segment between any two points

in the D; such as:

8x1; x2 2 D; 0 � � � 1 =) �x1 + (1� �)x2 2 D:
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De�nition 2 D is a convex polyhedron if it is of the following form:

D =
�
x 2 Rn : atix � bi; i = 1;m

	
::

where ai are a non-zero vector of Rn and bi are a scalar for i = 1;m:

� We can write D under a matix form, as follow:

D = fx 2 Rn : Ax � bg ; where: A = (ati)mi=1 2 Rm�n and b = (bi)mi=1 2 Rm:

De�nition 3 Sn is an n_simplex if it is of the following form:

Sn =

(
x 2 Rn+ :

nX
i=1

xi = 1

)
:

De�nition 4 A point x 2 Sn is considred to be extremal (or vertex of Sn) if we have:

8t 2 [0; 1]; 8(y; z) 2 S2n : x = (1� t)y + tz =) x = y = z:

De�nition 5 f is called convex function into the convex subset D if only if the condition

hold:

8 � 2 [0; 1]; 8 x; y 2 D : f(�x+ (1� �)y) � �f(x) + (1� �)f(y):

De�nition 6 f is called strictly convex function into the convex subset D if only if the

following condition:

Forall 0 < � < 1 and all x1; x2 2 D;x 6= y : f(�x1 + (1� �)x2) < �f(x1) + (1� �)f(x2):

De�nition 7 f is called (strictly) concave over a convex set D if �f is (strictly) convex

over D:
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2.1.1 First and second order characterizations of convex functions

Theorem 8 Suppose f : D � Rn �! R is twice di¤erentiable over an open domain. Then,

the following are equivalent:

1. f is convex.

2. f(y) � f(x) +rf(x)T (y � x); forall x; y 2 D.

3. r2f(x) � 0, forall x 2 D.

Corollary 9 Consider an unconstrained optimization problem8>><>>:
min f(x)

x 2 Rn
;

where f is convex and di¤erentiable. Then, any point x that satis�es rf(�x) = 0 is a global

minimum.

1. rf(x) = 0 is always a necessary condition for local optimality in an unconstrained

problem. The theorem states that for convex problems, rf(x) = 0 is not only neces-

sary, but also su¢ cient for local and global optimality.

2. In absence of convexity, rf(x) = 0 is not su¢ cient even for local optimality (e.g.,

think of f(x) = x3 and x = 0).

3. Another necessary condition for (unconstrained) local optimality of a point x was

r2f(x) � 0. Note that a convex function automatically passes this test.
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2.1.2 Strict convexity and uniqueness of optimal solutions

Characterization of Strict Convexity

Recall that a function

f : Rn �! R is strictly convex if 8x; y;x 6= y;8� 2 (0; 1),

f(x+ (1� �)y) < f(x) + (1� �)f(y):

Like we mentioned before, if f is strictly convex, then f is convex (this is obvious

from the de�nition) but the converse is not true (e.g., f(x) = x; x 2 R).

Second order su¢ cient condition r2f(x) > 0;8x 2 D =) f strictly

convex on D:

First order characterization A function f is strictly convex on Rn if and

only if f(y) > f(x) +rT f(x)(y � x);8x; y 2 D;x 6= y:

There are similar characterizations for strongly convex functions. For example, f

is strongly convex if and only if there exists m > 0 such that

f(y) � f(x) +rT f(x)(y � x) +m ky � xk2 ;8x; y 2 D;

or if and only if there exists m > 0 such that

r2f(x) � mI;8x 2 D:

Example 10 The function (x; y) 7�! f(x; y) = x2 + y2 + xy is convex on R2; where

Of(x; y) =

0BB@2 1

1 2

1CCA ; we remak that, the sign of the principal minors of the hessian matrix

are: 2 > 0; 3 > 0 in this case we can conclude that, f is a convex function.
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Example 11 The function (x; y) 7�! f(x; y) = �y2 � exp(x) is convex on R2; where

Of(x; y) =

0BB@� exp(x) 0

0 �2

1CCA ; we remak that, the sign of the principal minors of the hessian

matrix are: � exp(x) < 0; 2 exp(x) > 0 in this case we can�t conclude anything about f .

In this situation we calculat O(�f(x; y)) =

0BB@exp(x) 0

0 2

1CCA ; then, we have exp(x) > 0 and

2 exp(x) > 0; (�f) is concave so f is a convex function.

2.2 Mathematical programming

Mathematical programming, and more speci�cally optimization, is aimed at solv-

ing problems in which one seeks to determine which of a large number of candidate solutions

gives the best performance. Speci�cally, one seeks to �nd a solution that satis�es a set of

constraints that minimizes or maximizes a given function. The application of mathematical

programming is expanding and is found in several �elds.

For the problem of minimizing a function f : 
 �! R over a subset D of the

domain 
 � Rn of the function, we use the notation

min

8>>>>>><>>>>>>:

f(x)

s:t

x 2 D

; (PM)

Here, s:t: is an abbrevation for the phrase subject to the condition.

The elements of the set D are called the feasible points or feasible solutions of the optimiza-

tion problem. The function f is the objective function.

Observe that +1 as a function value of the objective function in a minimization problem.
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The (optimal) value zmin of the minimization problem is by de�nition

zmin =

8>><>>:
infff(x)=x 2 Dg if D 6= ;;

+1 if D = ;:

The optimal value is thus a real number if the objective function is bounded below and

not identically equal +1 on the set D; the value is -1 if the function is not bounded below

on D; and the value is +1 if the objective function is identically equal to +1 on D or if

D = ;: In general, D is written as follows

D =
�
x 2 
 � Rn; gi(x) � 0;8i = 1; n , hj(x) = 0;8j = 1;m

	
;

where gi; hj are a function de�nit to 
 into R:

Our aim in (MP ) is to try to �nd the solution x 2 D with the smallest value of

the objective function, where it is a feasible set of (MP ):

2.2.1 Classi�cation of optimization problem

There are many di¤erent optimization algorithms in di¤erent scienti�c applica-

tions. However, many methods are only valid for certain types of problems. Thus, it is

important to be familiar with the characteristics of the problem in order to identify an

appropriate technics for its resolution.

Optimization problems are classi�ed according to the mathematical characteris-

tics of the objective function f , constraints gi; hj and optimization variables. There is a

particular class of problems which particularly concerns the �eld of operational research,

where the aim is to �nd the optimal permutation of optimization variables.
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Resolution of a mathematical programming (MP )

De�nition 12 A solution x� 2 D is a global solution of (MP ) if f(x�) � f(x); 8x 2 Rn

and f(x�) the optimal value.

De�nition 13 A solution x 2 D is a local minimum of (MP ) if f(x�) � f(x); 8x 2

D \ B"(x) where B"(x) = fx 2 Rn : kx� x�k < "g is an open ball of radius " > 0 centred

in x�.

Remark 14 Note that the global minimum is not necessarily unique, but the optimal value

is.

Existence and unicity solution

Theorem 15 (Weierstrass [9]) Let D � Rn be compact,and let f : D �! R be a

continuous function on D: Then f attaints a maximum and a minimum on D; i.e., there

exists points z1 and z2 in D such that

f(z1) � f(x) � f(z2); x 2 D:

Theorem 16 If D is closed not empty of Rn, f is continuous and coercive on D (i.e.

lim
kxk!+1

f(x) = +1) then (MP ) admits at least one optimal solution.

Theorem 17 If D is non-empty convex of Rn, f is strictly convex on D then (MP ) admits

an optimal solution at most.

2.2.2 Conditions of optimality

Why do we need optimality conditions?
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In order to analyse or e¤ectively solve an optimization problem, it is fundamental

to have the conditions for optimality at one�s disposal. In fact, these are not only used to

check the validity of the solutions obtained, but often the study of these conditions leads

to the development of the resolution algorithms themselves. The approach considered here

for obtaining conditions is based on the notions of descent and admissible direction.

The development of optimal conditions in the presence of constraints is based on

the same intuition as in the case without constraints: it is impossible to go down from a

minimum.

Theorem 18 (Karush-Kuhn-Tucker. linear constraints)Let f : Rn �! R a function

di¤erentiable on D, If x is a local minimum of the problem (MP ), then it exits a vector

y 2 Rm and � 2 Rn+ such that:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

rf(x�) +
nX
i=1

�irgi(x�) +
mX
i=1

yjrhj(x�) = 0 conditions of optimality

�igi(x
�) = 0; i = 1; n  complementarity conditions

hj(x
�) = 0; j = 1; :::;m

:

If, in addition, f ; gi; hj are convex, the previous conditions are both necessary

and su¢ cient for x to be an global optimum for (MP ).

Lagrangian Duality The Lagrangian associated with this problem is the

function L : D � Rn+ � Rm �! R, de�ned by :

L(x; �; �) = f(x) +
nX
i=1

�igi(x) +
mX
i=1

yjhj(x);
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we put:

�(x) = max
�;�
fL(x; �; �); x � 0g

=

8>>>>>><>>>>>>:

f(x) if: gi(x) � 0;8i = 1; :::; n and hj(x) = 0;8j = 1; :::;m

+1 else

:

so:

�� = min
x2D

�(x) = min ff(x); x 2 Dg :

The dual problem associated with the primal problem is :

�� = max
(�;�)

min
x2D
fL(x; �; �)g:

Where: �1 � �� � ��:

1. We can not use the conditions of KKT , if we don�t have the quali�cation of constraints

in x�:

2. If (MP ) is a convex program, for x� is a global minimum the condition of KKT is

necessary and su¢ sante.

Constraints quali�cation

If a set D is a convex polyheder (i.e. all constraints are a¢ ne functions), then by

de�nition the constraints are quali�ed at every feasible point.

If a set D is a convex and �D 6= ; ; then the constraints are quali�ed everywhere,

this is Slater�s condition.

A constraint of inequality gi(x) � 0 is said to be saturated in x 2 D if gi(x) = 0:
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Remark 19 The full resolution of (MP ) deals in order with the following points:

1. The existence of an optimal solution.

2. The characterization of the solution (this is the optimality conditions).

3. Elaboration of algorithms to calculat this solution.Optimization algorithm

We will present an algorithm to converge towards an optimal solution of the prob-

lem (MP ). Most constrained optimization algorithms exploit the optimality conditions to

determine local minima. We will give here some de�nitions.

2.2.3 Description

An algorithm is de�ned by an application A, of D in D, where D is the set of

feasible solutions, allowing the generation of an elements sequence of D by the formula:8>>>>>><>>>>>>:

x0 2 D; k = 0 initialization step

xk+1 = A(xk); k = k + 1 iterations

:

We are talking about the algorithm of the interior-points, if instead of using D we

will use its interior with �D 6= ;:

So to de�ne an algorithm is none other than to build a (xk)k2N sequence of D and

carry out a study to show its convergence and what we will explain in what it will follow:

2.2.4 Convergence

The algorithm is converged if the (xk)k2N sequence generated by the algorithm

converges to a limit x�.
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Convergence rate

The craterea for measuring the speed (or rate) of convergence which is the evolution

of the error committed at each iteration

(ek = kxk � x�k).

De�nition 20 Let two functions be f ; g : N �! R+:

1. We note f(n) = O(g(n)) when there are integers c and n0 such that for every n � n0:

f(n) � cg(n):

2. We note f(n) = 
(g(n)) when there are integers c and n0 such that for every n � n0:

cg(n) � f(n):

3. We note f(n) = �(g(n)); if f(n) = O(g(n)) and f(n) = 
(g(n)).

The classi�cation of the speed of convergence is based on the concepts of function

comparison in the neighbourhood of +1: In fact, if we assume that the error ek does not

zero out, the speed of convergence can be:

Linear convergence

If: kekk = 
(kek+1k) and kek+1k
kekk � 1; for k su¢ ciently big. It is also known as the

error ek linearly decreases, i.e. : 9c 2]0; 1[;9k0 2 N;8k � k0 : ek+1 � cek:
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2.2.5 Newton�s method for solving a non-linear system

Solving (MP ) is equivalent to solving the following system of non-linear equations:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

rf(x�) +
nX
i=1

�irgi(x�) +
mX
i=1

yjrhj(x�) = 0

�igi(x
�) = 0; i = 1; n

hj(x
�) = 0; j = 1;m

:

Let�s put:

F (x; �; y) =

0BBBBBBBBBBBBBBB@

rf(x) +
nX
i=1

�irgi(x) +
mX
i=1

yjrhj(x)

�igi(x); i = 1; n

hj(x); j = 1;m

1CCCCCCCCCCCCCCCA
F (x; �; y) = 0;

where:

F : R2n+m �! R2n+m

(x; �; y) 7�!
 
rf(x) +

nX
i=1

�irgi(x) +
mX
i=1

yjrhj(x) �igi(x) hj(x)

!

The most popular method applied for the resolution of a non-linear system is

Newton�s method, in the following we describe its principle. Let f : Rn �! Rn a continuous,

di¤erentiable function and J(x) be the Jacobian matrix of the function f: Then we consider
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the following non-linear system:

f(x) = 0

Starting from a vector x0 of Rn and using the following formula:

xk+1 = xk � J(xk)�1f(xk):

We construct a sequence of points de�ned by: xk+1 = xk + dk; where dk is the

direction vector, with: J(xk)dk = �f(xk):

2.2.6 Adimissible direction methods

This class of methods solves a non-linear minimization problem by moving from

one point of D to another of its lower cost points. They work according to the following

principle: given an xk element of D, a direction dk is generated such that for a �k > 0 and

su¢ ciently small, the following properties are ensured :

1. xk + �kdk always belongs to D:

2. f(xk + �kdk) is less than f(xk):

2.2.7 Linear Programming

The problem of maximization or minimization a linear form over a polyhedron

which is given in the form of an intersection of closed halvspaces in Rn; is called linear pro-

gramming abbreviated (LP): The fundamental properties of a linear programming problem

are

1. a vector of real variables, whose optimal values are found by solving the problem;
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2. a linear objective function;

3. linear constraints, both inequalities and equalities.

Mathematical writing: There are three forms for writing a linear program

which are

The canonical form: 8>>>>>><>>>>>>:

min cTx

Ax � b

x � 0

;

where c 6= 0 is a vector in Rn, b is a vector in Rm, A is an Rm�n matrix and x is the vector

of variables in Rn, also called unknowns or parameters.

The standard form: 8>>>>>><>>>>>>:

min cTx

Ax = b

x � 0

:

The general form: 8>>>>>><>>>>>>:

min cTx

Ax � b

Bx � b0

;

where B is an Rp�n matrix and b0 is a vector in Rp:
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One particular formulation of the linear programming problem the standard form

is frequently used to describe and analyze algorithms. This form is8>>>>>><>>>>>>:

min cTx

Ax = b

x � 0

; (PL)

where c and x are vectors in Rn, b is a vector in Rm, and A is an Rm�n matrix. If x satis�es

the constraints Ax = b, x � 0, we call it a feasible point; the set of all feasible points is the

feasible set.

We can convert any linear program into standard form by introducing additional

variables called slack variables and arti�cial variables into its formulation. Associated with

any linear program is another linear program called the dual, which consists of the same

data objects arranged in a di¤erent way. The dual for (PL) is

8>>>>>><>>>>>>:

max bT y

AT y + s = c

s � 0

; (DL)

where y is a vector in Rm and s is a vector in Rn. Such as

F(P) = fx 2 Rn : Ax = b; x � 0g ;

�F(P) = fx 2 Rn : Ax = b; x > 0g ;

et

F(D) =
�
(y; z) 2 Rm+n : AT y + s = c; z � 0

	
;
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�F(D) =
�
(y; z) 2 Rm+n : AT y + s = c; z > 0

	
;

the sets of feasible and strictly feasible solutions of the two primal (PL) and dual problems

(DL).

We call components of y the dual variables, while s is the vector of a dual slacks. The

dual problem could be stated more compactly by eliminating s from (DL) and rewriting

the constraints as AT y � c . However, it turns out to be expedient for the analysis and

implementation of interior-point methods to include s explicitly. The linear problem (PL)

often is called the primal, to distinguish it from (DL), and the two problems together are

referred to as the primal-dual pair.

Theorem 21 (Weak duality) A duality theory that explains the relationship between the

two problems (PL) and (DL) has been developed. The feasible set and the solution set for

the primal tell us a lot about the dual, and vice versa. For instance, given any feasible

vectors x for (PL) and (y; s) for (DL), we have that

bT y � cTx:

Theorem 22 (Strong duality) In other words, the dual objective gives a lower bound on

the primal objective, and the primal gives an upper bound on the dual. The two objective

functions coincide at solutions, so that bT y� = cTx� whenever x� solves (PL) and (y�; s�)

solves (DL).

We now put a very important theorem that allows us to determine if a pair of

vectors, respectively primal and dual feasible, are primal and dual optimal



24

Theorem 23 (Complementary slackness) let x be primal feasible and y be dual feasible.

let s is a duality gap vector, where

s = c�AT y:

Then x be primal optimal and (y; s) be dual optimal if and only if xisi = 0;8i = 1; n:

2.2.8 Methods of solving a mathematical program

The methods of solving a mathematical program can be classi�ed into three cate-

gories:

Gradient methods

Conjugate gradient This method was proposed by Hestenes (1952) to solve

a linear system with a positive de�nite matrix, then generalised by Fletcher and Reeves

(1964) to solve a non-linear optimisation problems, it is known for its e¢ ciency in minimis-

ing a quadratic function without constraints. In the constrained case, a change of simple

variable allows us to return to the case without constraints, in fact: x0 a point satisfying

the constraints (Ax0 = 0) and let x = x0 + PA y such thatPA = I � AT (AAT )�1A is the

operator of the projection on the cone of the matrix A. The principle of this method is

to progressively construct mutually conjugated directions d0; d1; :::; dk with respect to the

Hessian matrix r2f(x) of the objective function of the optimization problem. di r2f(x)

dj = 0;8i 6= j; i; j 2 f0; 1; :::; kg :

Project gradient (Rosen 1960) The principle of this method is to project at

each iteration the gradient on the boundary of the feasible set. It should be noted that this
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method is designed for a more general program of the form :

min ff(x) : Ax = b; x � 0g

where f is di¤erentiable not necessarily convex.

Simple method

Among the simplicial methods, the reduced gradient method due to Wolfe. It is

a direct extension of the simplex method, applied to quadratic programming. Therefore it

has the same drawbacks, i.e. cycling and exponential complexity.

Interior-point algorithm (IPMs)

In conjunction with the methods described above, there are currently interior-

point methods available for solving a convex optimization problem. They are extensions of

the methods developed for linear programming (a¢ nes, projective and central trajectory).

Initialization problems, the cost of iteration and the choice of descent direction become

more expensive. There are three basic classes of interior-points methods, namely :

A¢ ne Methods This is practically the Karmarkar algorithm without a poten-

tial function and no projective transformation, an a¢ ne transformation is used and the

non-negative constraint is replaced by an ellipsoid containing the new iteration.The algo-

rithm is of a simple structure, unfortunately, it is not easy to demonstrate polynomiality.

Methods of potential reduction The potential function plays a big role in

the development of interior-points methods. Karmarkar�s algorithm applied to the linear

programme in standard form uses a potential function of the form: (n + 1) log(ctx �
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z)�
nX
i=1

log(xi) where z is a lower bound of the value optimal lens. Karmarkar proves the

convergence and polynomiality of its algorithm by mounting that this function is reduced at

each iteration by at least a constant. Since 1987, researchers have been introducing functions

of the potential of the primal-dual type, among which, that of Todd et al [40] de�ned by :

�(x; s) = � log(xts)�
nX
i=1

log(xisi) pour � > n; this function played a very important role in

the development of potential reduction algorithms after 1988. The algorithms corresponding

to these methods have a complexity polynomial, they require O(
p
n jlog "j) iterations to

reduce the duality step.

Central path methods (CPM) They were introduced at the same time as po-

tential reduction methods and fully developed in the early 1990s. They have good theoretical

properties: polynomial complexity and superlinear convergence. The central trajectory al-

gorithms restrict the iterates to a neighbourhood of the central path, the latter is an arc

of strictly achievable points. The central trajectory algorithms restrict the iterates to a

neighbourhood of the central path, the latter is an arc of strictly achievable points.

Several researchers are trying to generalise the principle of these methods for the

non-linear programming. In 1989, Megiddo [27] proposed a primal- dual algorithm with

a central path for linear programming with generalization for the linear complementarity

problem (LCP ). Kojima et al [24] have developed a primal-dual algorithm for linear pro-

gramming, is an extension for the (LCP ) is proposed by the same researchers in 1989 with

the complexity O(
p
n log 1" ) iterations.
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Chapter 3

Some methods of interior-points

In this chapter we will introduce two families of interior points methods. The

primal-dual trajectory methods were introduced in the late 1980s as a variant of the Kar-

markar approach and were fully developed in the early Karmarkar approach, and were fully

developed in the early 1990s.We use the linear complementarity methods (LCP ) for solving

the (QP ):We will discuss the study of the families of interior-point programming, the most

well known in optimization, are the following:

1. The reduction of the projective potential (Karmarkar�s algorithm).

2. The central path method (CPM).

Therefore, in this chapter our objective is to study them, in order to be able to

continue our work.

First of all, we will make a short synthesis on an extension of the Karmarkar�s

algorithm [17].
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3.1 Karmarkar�s method

3.1.1 Description of method

In 1984, Karmarkar�s proposed a promising algorithm for linear programming, it

has attractive theoretical properties and good numerical behaviour.

The simpli�ed Karmarkar program is designed to solve a linear program of the

form : 8>>>>>><>>>>>>:

min ctx = 0

Ax = 0

x 2 Sn =
�
x 2 Rn+ : etnx = 1

	
: (SKP )

Where: x 2 Rn; A 2 Rm�n a full row (rg(A) = m < n) and en = (1; 1; :::; 1)t 2 Rn:

Suppose that:

1. The optimal value z� = 0 is known .

2. a = en
n is a feasible solution.

3. cta 6= 0:

We have for any general linear program can easily be converted into the following

standard form: 8>>>>>><>>>>>>:

min ctx = z�

Ax = b

x � 0

: (PL)

in the simpli�ed form of Karmarkar (SKP ).
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Karmarkar [17] uses the following projective transformation:

T : Rn+ �! Sn+1

x 7�! T (x) = y;

such that:

T (x) =

8>>>>>><>>>>>>:
(y[n])i = yi =

xi
ai

1+

nX
i=1

xi
ai

; 8i = 1; :::; n

yn+1 = 1�
nX
i=1

yi

:

We use the (T ) transformation in the problem (PL), afterwards we will have a new linear

problem as follows: 8>>>>>><>>>>>>:

min c0ty = 0

A0y = 0

y 2 Sn+1

; (NPL)

where: c0 =

2664 Dc

�z�

3775 2 Rn+1; A0 = �
AD �b

�
2 Rm�(n+1) and D = diag(a) where

a = ( 1n ; :::;
1
n)
T :

� a is a feasible strictly solution of the problem (PL):

� T is an inversible application and:

T �1(y) = x =
Dy[n]

yn+1
:

At each iteration by this transformation is de�ned:

Tk : Rn+ �! Sn+1

x 7�! Tk(x) = y;
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where:

Tk(x) = y =
D�1
k x

etnD
�1
k x

and T �1k (y) = x =
Dky

etnDky
:

with Dk = diag(xk):

At each iteration, we return to the initial variable x by applying the inverse trans-

formation T �1k and so on until the optimality test ctx < " is achieved where the precision

given is " > 0.

The problem transformed from (SKP ) by the Tk transformation is the following

linear problem : 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

min(Dkc)
ty = 0

ADky = 0

y 2 Sn =
�
y 2 Rn+ : etny = 1

	
:

Then: 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

min(Dkc)
ty = 0

2664 ADk

etn

3775 y =
2664 0
1

3775

y 2 Rn+1+

: (TSKP )

In the same way, this transformation permits to place at each iteration, the iteration xk in

the center of the simplex Sn; i.e.; Tk(xk) = en
n :
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Remark 24 it is suggested to work to return the general problem (PL) to the reduced form

(TSKP ) and then return at each iteration to the initial problem (PL) to test the optimality

of the iterations.

Lemma 25 If we known a feasible solution y0 to linear problem, such that 8i = 1; :::; n+1 :

y0i > 0; so the ellipsoid:

E =

(
y 2 Rn+1 :

n+1X
i=1

(
yi � y0i
y0i

)2 � �2; 0 < � < 1

)
� Rn+1+ :

Proof. We suppose that, 9 j 2 f1; :::; n+ 1g : y0j � 0 and
n+1X
i=1

(
yi � y0i
y0i

)2 � �2;

0 < � < 1 then:
n+1X
i=1

(
yi � y0i
y0i

)2 =

n+1X
j 6=i=1

(
yi � y0i
y0i

)2 + (
yj � y0j
y0j

)2 � (yj � y0j
y0j

)2 � 1 > �2:

Before applying the conditions of optimality, Karmarkar [17] relaxes the problem

(TSKP ) to (TSKPr); so we have to use the last lemma on the the problem (TSKP ) and

we obatin a new problem (TSKPr) :

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

min(Dkc)
ty = 0

2664 ADk

etn

3775 y =
2664 0
1

3775




y � en+1
n+1




 � �r

: (TSKPr)

With the optimality conditions, we can have the analytic form to the optimal

solution of the last problem, as follow:

y =
en+1
n+ 1

� �rdk;
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where:

1. r = 1p
n(n�1)

and 0 < � < 1;

2. Bk =

2664 ADk

etn

3775 ;
3. pk = pBk(Dkc);

4. dk =
pk
kpkk :

Proof. see [18]

The Karmarkar�s algorithm of (PL)
Begin algorithm
Initialization:
x0 = a0 = 1

nen;
k = 0
While (ctxk > ") do
Step0
Dk = diag(xk) 2 Rn�n
Ak = ADk 2 Rm�n

Bk =

0@ Ak
����
etn

1A 2 R(m+1)�n
Step1 pk = (In �Btk(BkBtk)�1Bk)Dkc 2 Rn
Step2 dk =

pk
kpkk

Step3 yk = a0 � �rdk; r = 1p
n(n�1)

; 0 < � < 1

Step4 xk+1 = Dky
k

etnDky
k ; k = k + 1

End While
End algorithm

Remark 26 The most expensive operation in the algorithm is to calculate the inverse of

BkB
t
k:

Remark 27 In general, we �nd a problem in calculating (BkBtk)
�1 so one of the following

methods can be used:
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1. pk = (In �Btk(BkBtk)�1Bk)Dkc = (In �Atk(AkAtk)�1Ak � 1
nene

t
n)Dkc:

2. Change of variable .-ie-. we put (BkBtk)
�1BkDkc =M:

3.1.2 Convergence study (potential function)

For obtaining the convergence of the algorithm, it has to show that: c
txk+1

ctxk
< q0;

where 0 < q0 < 1 is independent of k: However, it�s di¢ cult to �nd the value of q0; that is

why, Karmarkar to be associated with the objective function ctx the potential function:

f(x) =

nX
i=1

log
ctx

xi
defined into

�
x 2 Rn : Ax = b; etnx = 1 and x > 0

	
:

The relation between the reduction of the objective function and potential function

is:

Lemma 28 The iteration k in the algorithm, to verify:

ctxk

ctx0
� (exp(f(xk)� f(x0)))

1
n where x0 = a0 =

en
n
:

Proof. see [18, 17]

Theorem 29 If 0 < � � 1
4 , we begin by x

0 = en
n after O(nq+n log n) iterations to �nd the

feasible point x such that:

1. ctx = 0

2. ctx
ctx0
� 2�q where q is a precision set.

On the other hand, Padberg [32] proposed a new potential function:

h(x) =
ctx

(
nY
i=1

xi)
1
n

;

with the number of iterations is O(nq) for 0 < � < 0:7968:::
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3.2 Primal-dual methods

We recall that, the linear programming problem in standard form; that is8>>>>>><>>>>>>:

min cTx

Ax = b

x � 0

; (PL)

where c and x are vectors in Rn, b is a vector in Rm, and A is an Rm�n matrix. The dual

problem for (DL) is

8>>>>>><>>>>>>:

max bT y

AT y + s = c

s � 0

; (DL)

where y is a vector in Rm and s is a vector in Rn.

3.2.1 The optimality conditions (KKT )

The primal�dual solutions of (PL), (DL) are characterized by the Karush�Kuhn�

Tucker conditions, which we restate here as follows:8>>>>>>>>>><>>>>>>>>>>:

AT y + s = c

Ax = b

xisi = 0; i = 1; n

(x; s) � 0

: (2:1)

Primal�dual methods �nd solutions (x�; y�; s�) of this system by applying variants of New-

ton�s method to the three equalities in (2:1) and modifying the search directions and step

lengths so that the inequalities (x; s) � 0 are satis�ed strictly at every iteration. The
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third �rst equations of the system (2:1) are only mildly nonlinear and so are not di¢ cult

to solve by themselves. However, the problem becomes much more di¢ cult when we add

the nonnegativity requirement the third equation of (2:1). The nonnegativity condition is

the source of all the complications in the design and analysis of interior-point methods. To

derive primal�dual interior-point methods, we restate the optimality conditions (2:1) in a

slightly di¤erent form by means of a mapping F from R2n+m to R2n+m:

F (x; y; s) =

0BBBBBBBBBBBBBB@

AT y + s� c

Ax� b

XSe

1CCCCCCCCCCCCCCA
= 0; (2:2a)

where:

(x; s) � 0; (2:2b)

X = diag(x1; x2; :::; xn); S = diag(s1; s2; :::; sn); (2:2c)

and e = (1; 1; :::; 1)T . Primal�dual methods generate iterates (xk; yk; sk) that satisfy the

bounds (2:2b) strictly, that is, xk > 0 and sk > 0. This property is the origin of the term

interior-point. By respecting these bounds, the methods avoid spurious solutions, that is,

points that satisfy F (x; y; s) = 0 but not (x; s) � 0. Spurious solutions abound, and do not

provide useful information about solutions of (PL) or (DL), so it makes sense to exclude

them altogether from the region of search.

Many interior-point methods actually require the iterates to be strictly feasible; that is, each

(xk; yk; sk) must satisfy the linear equality constraints for the primal and dual problems. If
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we de�ne the primal�dual feasible set F and strictly feasible set �F by

F = f(x; y; s)=Ax = b; AT y + s = b; (x; s) � 0g; (2:3a)

�F = f(x; y; s)=Ax = b; AT y + s = b; (x; s) > 0g; (2:3b)

the strict feasibility condition can be written concisely as

(xk; yk; sk) 2 �F :

Like most iterative algorithms in optimization, primal�dual interior-point methods

have two basic ingredients: a procedure for determining the step and a measure of the

desirability of each point in the search space. As mentioned above, the search direction

procedure has its origins in Newton�s method for the nonlinear equations (2:2a). Newton�s

method forms a linear model for F around the current point and obtains the search direction

(�x;�y;�s) by solving the following system of linear equations:

J(x; y; s)

26666664
�x

�y

�s

37777775 = �F (x; y; s);

where J is the Jacobian of F . If the current point is strictly feasible (that is, (x; y; s) 2 �F),

the Newton step equations become26666664
0 AT I

A 0 0

S 0 X

37777775

26666664
�x

�y

�s

37777775 =
26666664

0

0

�XSe

37777775 : (2:4)
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A full step along this direction usually is not permissible, since it would violate the bound

(x; s) � 0. To avoid this di¢ culty, we perform a line search along the Newton direction so

that the new iterate is

(x; y; s) + �(�x;�y;�s);

for some line search parameter a � 2 (0; 1]. Unfortunately, we often can take only a small

step along the direction (� << 1) before violating the condition (x; s) > 0; hence, the pure

Newton direction (2:4) often does not allow us to make much progress toward a solution.

Primal-dual methods modify the basic Newton procedure in two important ways:

1. They bias the search direction toward the interior of the nonnegative orthant (x; s) � 0

so that we can move further along the direction before one of the components of (x; s)

becomes negative.

2. They keep the components of (x; s) from moving "too close" to the boundary of the

nonnegative orthant. Search directions computed from points that are close to the

boundary tend to be distorted, and little progress can be made along them.

3.2.2 The Central Path method (CP)

The central path method (CP) is an arc of strictly feasible points that plays a vital

role in the theory of primal-dual algorithms. It is parametrized by a scalar � > 0, and each
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point (x� ; y� ; s� ) 2 TC solves the following system:8>>>>>>>>>><>>>>>>>>>>:

AT y + s = c

Ax = b

xisi = � ; i = 1; n

(x; s) > 0

; (2:5)

These conditions di¤er from the KKT conditions only in the term � on the right-hand side

of the third equation of the system (2:5). Instead of the complementarity condition the

third equation of the system (2:5), we require that the pairwise products xisi have the same

value for all indices i. From (2:5), we can de�ne the central path as

TC = f(x� ; y� ; s� )=� > 0g :

Another way of de�ning TC is to use the notation introduced in (2:1) and write

F (x� ; y� ; s� ) =

26666664
0

0

�e

37777775 ; (x� ; s� ) > 0: (2:6)

We show in next chapter that (x� ; y� ; s� ) is de�ned uniquely for each � > 0 if and

only if �F is nonempty. Hence, the entire path TC is well de�ned.

The equations (2:5) approximate (2:1) more and more closely as � goes to zero. If

TC converges to anything as � # 0, it must converge to a primal-dual solution of the linear

program. The central path thus guides us to a solution along a route that steers clear of

spurious solutions by keeping all the pairwise products xisi strictly positive and decreasing

them to zero at the same rate.
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Most primal-dual algorithms take Newton steps toward points on TC for which

� > 0, rather than pure Newton steps for F . Since these steps arebiased toward the interior

of the nonnegative orthant de�ned by (x; s) � 0, it usually is possible to take longer steps

along them than along the pure Newton steps for F before violating the positivity condition.

To describe the biased search direction, we introduce a centering parameter � 2 [0; 1] and

a duality measure �, de�ned by

� =

nX
i=1

xisi

n
=
xT s

n
: (2:7)

which measures the average value of the pairwise products xisi. The generic step equations

are then 26666664
0 AT I

A 0 0

S 0 X

37777775

26666664
�x

�y

�s

37777775 =
26666664

0

0

�XSe+ ��e

37777775 : (2:8)

The step (�x;�y;�s) is a Newton step toward the point (x��; y��; s��) 2 TC , at which the

pairwise products xisi are all equal to ��. In contrast, the step (2:4) aims directly for the

point at which the KKT conditions (2:1) are satis�ed. If � = 1, the equations (2:8) de�ne

a centering direction, a Newton step toward the point (x�; y�; s�) 2 TC , at which all the

pairwise products xisi are identical to �. Centering directions are usually biased strongly

toward the interior of the nonnegative orthant and make little, if any, progress in reducing

�. However, by moving closer to TC , they set the scene for substantial progress on the next

iteration. (Since the next iteration starts near TC , it will be able to take a relatively long

step without leaving the nonnegative orthant.) At the other extreme, the value � = 0 gives

the standard Newton step (2:4), sometimes known as the a¢ ne-scaling direction for reasons
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to be discussed later. Many algorithms use intermediate values of a from the open interval

(0; 1) to trade o¤ between the twin goals of reducing � and improving centrality.

3.3 Transformation of (CQP ) to (LCP )

Since its appearance, complementarity has attracted the interest of several re-

searchers, its importance can be measured by the crucial role it plays in the solution of

several problems in di¤erent �elds: linear programming, convex quadratic program, varia-

tional inequalities, mechanics, ...

The main idea of this method is based on replacing a linear complementarity

problem by a convex quadratic program. The linear complementarity writes inder the

form: 8>>>>>>>>>><>>>>>>>>>>:

to �nd x; y 2 Rn :

y =Mx+ q

xty = 0

(x; y) � 0

; (LCP )

with: M 2 Rn�n and q 2 Rn:

We have the (CQP ) :8>><>>:
Minimize ctx+ 1

2x
tQx

Subject to Ax � b; x � 0
; (CQP)

where: Q 2 Sn+, c 2 Rn; A 2 Rm�n (rgA = m � n) and b 2 Rm:

We have (CQP ) is a convex problem with a linear constraints, then the conditions

of KKT are necessary and su¢ cient so:
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x 2 Rn+ is an optimal solution if only if 9y 2 Rm+ ; � 2 Rn+ such that:8>>>>>>>>>><>>>>>>>>>>:

c+Qx+AT y � � = 0

yt(b�Ax) = 0

��tx = 0

y � 0; � � 0

()

8>>>>>>>>>><>>>>>>>>>>:

� = c+Qx+AT y

v = b�Ax

ytv = 0; �tx = 0

y � 0; � � 0

()

8>>>>>>>>>><>>>>>>>>>>:

find z 2 Rn+m :

w =Mz + q

ztw = 0

w � 0; z � 0

;

where: w =

2664 �

v

3775 2 Rn+m; M =

0BB@ Q AT

�A 0

1CCA 2 R(m+n)�(m+n);

z =

2664 x

y

3775 2 Rn+mand q =
0BB@c
b

1CCA 2 Rn+m:
In general case, we can�t transform a (LCP ) to (CQP ) exeption if we have

(MLCP ) .ie. the matrix M is a positive semide�nite. Kojima et al [24] proposed an

extension of the center path methods for linear programming.

Theorem 30 Let us consider the monotone linear complementarity problem:

To find x 2 Rn; y =Mx+ q � 0 and xty = 0; (MLCP)
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� the feasible set is denote of the problem (MLCP ) :

S =
�
(x; y) 2 R2n : y =Mx+ q � 0; x � 0; y � 0

	
;

� the strictly feasible set is denote of the problem (MLCP ):

�S = f(x; y) 2 S : x > 0; y > 0g ;

� the solution set of the problem (MLCP ):


 =
�
(x; y) 2 S : x > 0; y > 0 and xty = 0

	
:

We assume that the following assumptions hold:

1. The strictly feasible �S set is not empty.

2. The matrix M is a positive semide�nite matrix.

These assumptions imply that �S is the relative interior of S and 
 is nonempty

polyhedral convex and bounded set. In addition, (MLCP ) is aquivalent to the following

convex problem, see, e.g. [44].

min
�
xty : y =Mx+ q; x � 0; y � 0

	
(CQP )

The notion of central path can be introduced by means of a logarithmic barrier

function, it is su¢ cient to associate to (CQP ) the following barrier problem:8>>>>>>><>>>>>>>:

min f�(x; y) =

"
xty � �

nX
i=1

ln(xiyi)

#
; � > 0

y =Mx+ q

(x; y) > 0

; (CQP�)
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If � > 0; the solution of (CQP�) converges to the solution of (CQP ), so we solve

a sequence of (CQP�) problems by decreasing the values of � until we obtain a solution of

(CQP ).

The general idea of central path methods is to follow a particular path (called the

center path or central path), taking the Newtonian direction of travel as the direction of

travel. In other words: the algorithm generates a strictly feasible sequence (xk; yk) and a

sequence (�k) which expresses the complementarity condition, is checked when (�k) tending

to zero.

Proposition 31 f� is a strictly convex function.

Theorem 32 M is a positive semide�nite matrix and �S 6= ; , the problem (CQP�) has

only one optimal solution forall � > 0.

Proof. see [24].

Theorem 33 Let � > 0 and M be a positive semide�nite matrix.

(x; y) > 0 is an optimal solution of the problem (CQP�) if only if (x; y) satisfy the

system: 8>>>>>><>>>>>>:

XY e� �e = 0

y =Mx+ q

(x; y) > 0

; (S�)

then, to solve the problem (CQP�) is equivalent to solve the system (S�):

Proof. We know that, (CQP�) is a convex and di¤erentiable program with a¢ ne

constraints, so the constraints quali�cations, then the KKT conditions are necessary and
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su¢ cient and write as follow: 8>>>>>>>>>><>>>>>>>>>>:

Xy � �e+XMTw = 0

Y x� �e� Y w = 0

y =Mx+ q

(x; y) > 0

()

8>>>>>><>>>>>>:

(XMT + Y )w = 0

y =Mx+ q

(x; y) > 0

We have, X;M and Y are positive de�nite so XMT + Y is positive de�nite then

w = 0; we have the new system: 8>>>>>><>>>>>>:

XY e� �e = 0

y =Mx+ q

(x; y) > 0

:

De�nition 34 The solution of the problem (S�) for � > 0 is (x�; y�). TC = f(x�; y�); � > 0g

is the set of all solutions of the system (S�) is called the central path.

The solution of the problem (S�) Since the �rst equation of the system (S�)

is non-linear, then we use the Newton method for solving the equation non-linear

F�(x; y) =

0BB@ XY e� �e

y �Mx� q

1CCA = 0 (S0�)

we obtain:
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F�(x; y) + OF�(x; y):(�x;�y) = 0

()

0BB@ XY e� �e

y �Mx� q

1CCA+
0BB@ Y�x+X�y

�y �M�x

1CCA =

0BB@ 0

0

1CCA

()

8>><>>:
Y�x+X�y = �e�XY e

�y �M�x = 0
;

the solution of the equation (S0�) is the solution of the linear system:8>><>>:
�x = (X�1Y +M)�1(�x�1 � y)

�y =M�x

:

For calculating the new iteration we use the solution of the equation (S0�):

(xk+1; yk+1) = (xk; yk) + (�xk;�yk):

Centralisation factor

The quality of each solution found is measured by a factor called centrality, is

de�ned by a scalar as follow:

�(x; y; �) = min
�2R+

kXY e� �ek =




XY e� (xtyn )e





 :
If (x; y) is a point in the central path we have: �(x; y; �) = 0:

We would like to control our approximation of the path, This results is the de�ni-

tion of the neighborhood of the center path T (�); when we call any point is a neighborhood

of the set:

T (�) =

�
(x�; y�) 2 Sint;





XY e� (xtyn )e





 � (xtyn )�; � > 0

�
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The Central path algorithm
Begin algorithm
Initialization:
" > 0 is a precision�s parameter; 0 < � � 0:1 is a constant,
� = �

1��
k = 0
(x0; y0) 2 T (�)
While ((xk)tyk > ") do
Step1 calculate the parameters
�k = (1� �p

n
) (x

k)tyk

n

Step2
the newton�s direction (�xk;�yk) is a solution

of the system
�
Y k�xk +Xk�yk = �ke�XkY ke
�yk �M�xk = 0

Step3
the iteration (xk+1; yk+1) = (xk; yk) + (�xk;�yk):

k = k + 1
End While

End algorithm

3.3.1 Convergence

the new point (xk+1; yk+1) remains close to the central path, more precisely if a

reasonable value of the parameter � > 0:

Theorem 35 (Z. Kebbiche [21] )Let 0 < � � 0:1 and � = �
1�� ; suppose that: (x

k; yk) 2 T (�)

and

�k = (1� �p
n
) (x

k)tyk

n , then the point (xk+1; yk+1) de�ned by:

(xk+1; yk+1) = (xk; yk) + (�xk;�yk) satis�ed:

1. (xk+1; yk+1) 2 T (�):

2. (xk+1)tyk+1 � (1� �
6
p
n
)(xk)tyk:
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Chapter 4

A primal-dual interior-point

method based on a new kernel

function for linear

complementarity problem

In this chapter, we present an interior-point algorithm for solving an optimization

problem using the central path method. By an equivalent reformulation of the central

path, we obtain a new search direction which targets at a small neighborhood of the central

path. For a full-Newton step interior-point algorithm based on this search direction, the

complexity bound of the algorithm is the best known for linear complementarity problem

[10].
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4.1 Presentation of the problem

Let us consider the linear complementarity problem (LCP ): �nd vectors x and y

in real space Rn that satisfy the following conditions:

x � 0; y =Mx+ q � 0 and xty = 0; (LCP )

where q is a given vector in Rn and M is a given Rn�n real matrix, where:

� the feasible set is denote of the problem (LCP ) :

S =
�
(x; y) 2 R2n : y =Mx+ q � 0; x � 0; y � 0

	
;

� its strictly feasible set is denote of the problem:

Sstr = f(x; y) 2 S : x > 0; y > 0g ;

� and the solution set of the problem (LCP ):


 =
�
(x; y) 2 S : x > 0; y > 0 and xty = 0

	
:

We assume that the following assumptions hold:

1. The strictly feasible Sstr set is not empty.

2. The matrix M is a positive semide�nite matrix.

These assumptions imply that Sstr is the relative interior of S and 
 is nonempty

polyhedral convex and bounded set. In addition, (LCP ) is aquivalent to the following

convex problem, see, e.g. [44].

min
�
xty : y =Mx+ q; x � 0; y � 0

	
(QP )
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Hence, �nding the solution of (LCP ) is equivalent to �nd the minimizer of (QP )

with its objective value is zero. In order to introduce an interior-point method to solve

(QP ), we associate with it the following barrier minimization problem:

min

(
f�(x; y) = xty � �

nX
i=1

ln(xiyi) : y =Mx+ q; x > 0; y > 0

)
; (3.1)

where � > 0 is a positive real number and it is called the barrier parameter. The

problem (3:1) is a convex optimization problem and then its �rst-order optimality conditions

are: 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Mx+ q = y

xy = �e;

x > 0; y > 0

(3.2)

If the assumptions (1) and (2) hold then for a �xed � > 0, the problem (3:1) and

the system (3:2) have a unique solution (see [25]) denoted as (x(�); y(�)); with x(�) > 0 and

y(�) > 0. We call (x(�); y(�)), with � > 0, the ��center of (3:1) or (3:2). The set of the

��centers (with � running through all positive real numbers) gives a homotopy path, which

is called central path of (LCP ). In the next section, we introduce a method for tracing the

central path based a new class of search directions.
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4.2 New Class of Search Directions

Now, following [5]. the basic idea behind this approach is to replace the nonlinear

equation:

xy

�
= e;

in (3:1) by an equivalent equation:

 (
xy

�
) =  (e);

where  is a real-valued function on [0;1) and di¤erentiable on [0;1) such that

	(t) and 	0(t) > 0; for all t > 0: Then the system (4:2) can be written as the following

equivalent form: 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Mx+ q = y;

 (xy� ) =  (e);

x > 0; y > 0:

(3.3)

Suppose that we have (x; y) 2 Sstr. Applying Newton�s method for the system

(3:3); we obtain a new class of search directions:8>>>>>><>>>>>>:

M�x = 4y;

y
� 

0(xy� )�x+
x
� 

0(xy� )�y =  (e)�  (xy� ):

(3.4)

Now, the following notations are useful for stadying the complexity of the algo-

rithm. The vectors:

v =

r
xy

�
and d =

s
xy�1

�
;
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and observe that these notations lead to

d�1x

�
= dy = v: (3.5)

Denote by

dx =
d�1

�
�x; dy = d�y;

and hence, we have

v(dx + dy) = y�x+ x�y (3.6)

and

dxdy = �x�y:

So using (3:5) and (3:6), the system (3:4) becomes8>>>>>><>>>>>>:

Mdx = dy;

dx + dy = Pv;

where M = DMD with D = diag(d) and

Pv =
 (e)�  (v2)
2v 0(v2)

=
� (v2)
2v 0(v2)

:

The equation dx + dy = Pv is called the scaled centring equation. It states that the sum

of scaled search directions dx and dy is equal to �r	(v); the steepest descent direction of

	(v):

As in [3], we shall consider the following function:

	(t) = (m+ 1)t2 � (m+ 2) +m
1

tm
; for all t > 0;m � 4:
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Hence, the Newton directions in (3:4) are8>>>>>><>>>>>>:

M�x = �y;

y
��x+

x
��y =

�(m+1)v4+(m+2)v2� 1
v2m

4(m+1)v3�2(m+2)v�2m 1
v2m+1

:

(3.7)

4.3 The generic interior-point algorithm for LCP

We can now describe the algorithm in a more formal way. The generic form of the

algorithm is shown in the next. The description that closeness of (x; y) to (x(�); y(�)) is

measured by the value of 	(t); with � as a threshold value: if 	(t) � � , then we start a

new outer iteration by performing a � � update; otherwise we enter an inner iteration by

computing the search directions at the current iterates with respect to the current value

of � and apply x+ = x + ��x; y+ = y + ��y to get new iterates. a new kernel function

which is de�ned in the previous section and assume that � � 1: The new interior-point

algorithm works as follows. Assume that we are given a strictly feasible point (x; y) which

is in a ��neighborhood of the given � � center: Then we decrease � to �+ = (1 � �)�;

for some �xed � 2 (0; 1) and then we solve the Newton system (3:4) to obtain the unique

search direction. The positivity condition of a new iterate is ensured with the right choice

of the step size � which is de�ned by some line search rule. This procedure is repeated

until we �nd a new iterate (x+; y+) that is a ��neighborhood and the �+� center: Then �

is again reduced by the factor 1� � and we solve the Nweton system targeting at the new

�+ � center; and so on. this process is repeated until � is small enough, i.e. n� � ": The
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parameters parameters � ; � and the step size � should be chosen in such a way that the

algorithm is optimizedin the sense that the number of iterations required by the algorithm

is as small as possible. The choice of the so-called barrier update parameter � plays an

important role in both theory and practice of (IPMs). The algorithm for our (IPMs) for

the (LCP ) is given as follows:

The generic interior-point algorithm for LCP
Begin algorithm
Input:
an accuracy parameter " > 0; an update parameter �; 0 < � < 1;
a threshold parameter � ; 0 < � < 1;a strictly feasible point (x0; y0)

and �0 = (x0)ty0

n such that �(x0; y0; �0) � � : begin x := x0; y := y0; � := �0;
begin
� = (1� �)�
While (�(x0; y0; �0) > �) do
begin
Solve system (3:4) to obtain (�x;�y);
Determine a step size �
x := x+�x y := y +�y

End While
End algorithm

4.4 Kernel functions

To simplify matters we will restrict ourselves in this paper to the case where 	(v)

is separable with identical coordinate functions. Thus, letting  denote the function on the

coordinats, we have

	(v) =
nX
i=1

 (vi); (3.8)

where  (t) : D ! R+; with D � R++; is strictly convex and minimal at t = 1; with

 (1) = 0. We call the univariante function  (t) the kernel function of the barrier function

	(v): Obviously,the resulting iteration bound will depend on the kernel function underlying
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the algorithm, and our main tasks becomes to �nd a kernel function that minimizes the

iteration bound.

All kernel functions considered so far are twice di¤erentiable and go to in�nity if either

t& 0 or t!1: Thus they satisfy

1.  (1) =  0(1) = 0;

2.  "(t) > 0;

3. limt!0  (t) = limt!1  (t) =1:

The �rst and the second properties say tha  (t) is a nonnegative strictly convex

function such that  (1) = 0: Note that this implies that if  (t) is twice di¤erentiable,

then it is completely determined by its second derivative:

 (t) =

tZ
1

�Z
1

 "(�)d�d�: (3.9)

Moreover, the last property of the last de�nition expresses that  (t) is coercive and has

the barrier property. Having such a kernel function  (t); its de�nition is extended to

positive n�dimensional vectors v by (3:8); thus yielding the induced (scaled) barrier

function  (v): In what follows we assume in this chapter that a kernel function satis�es

the de�nition of kernel function.

As we indicated, 	(v) not only serves to de�ne a search direction, but also acts as a

measuriong of closeness of the current iterates to the �� center:In the analyses of the

algorithm we also use the norm-based proximity measure �(v) de�ned by

�(v) :=
1

2
kr	(v)k = 1

2
kdx + dyk : (3.10)
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Note that since 	(v) is strictly convex and minimal at v = e we have

	(v) = 0() �(v) = 0() v = e:

Thus the algorithm considred in this chapter uses the barrier function 	(v) to measure

closeness of the iterates to the ��center; as will become clear below, in the analysis of

the algorithm �(v) serves as a second proximity measure. Both measures are naturally

determined by the kernel function.

4.5 Further conditions on the kernel function

In this sextion, we give the properties of the kernel function which are essential to

our complexity analysis.

Lemma 36 For  (t); we have the following:

1.  (t) is exponentially convex for all t > 0:

2.  00(t) is monotonically decreasing for all t > 0:

3. t 00(t)�  0(t) > 0; for all t > 0:

Proof. Using [[31], [33]]

Lemma 37 For  (t); we have the following:

(m+ 1)(t� 1)2 �  (t) � 1

4(m+ 1)
 0(t)2; for all t > 0; (3.11)

 (t) � (m+ 1)(m+ 2)

2
(t� 1)2; for all t > 0: (3.12)



56

Now, let 
 : (0;1) �! (1;1) be the inverse function of  (t) for all t � 1; and

� : (0;1) �! (0; 1); be the inverse function of �12 
0(t) for all t 2 (0; 1): Then we have the

following lemma.

Lemma 38 For  (t), we have the following:

r
s

m+ 1
+ 1 � 
(s) � 1 +

r
s

m+ 1
; s � 0; (3.13)

and

�(s) � ( m

2s+m
)

1
m+1 ; s � 0: (3.14)

Lemma 39 Let 
 : (0;1) �! (1;1) be the inverse function of  (t) for all t � 1: Then

we have

�(�) � n (�
(�(v)
n
)); � � 1 (3.15)

Proof. Using [3]; we get the result. This completes the proof.

Lemma 40 Let 0 � � � 1; v+ = 1p
1��v: If �(v) � � ; then we have

�(v+) � n(m+ 1)(m+ 2)

2(1� �) (
p
n� +

r
�

m+ 1
)2:

Proof. Since 1p
1�� � 1 and 
(

�(v)
n ) � 1; we have


(
�(v)
n
)p

1�� � 1: Using Lemma 35;
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with � = 1p
1�� ; (3:6); (3:7) and �(v) � � , we have

�(v+) � n (
1p
1� �


(
�(v)

n
));

� n
(m+ 1)(m+ 2)

2
(

1p
1� �


(
�(v)

n
)� 1)2;

= n
(m+ 1)(m+ 2)

2(1� �) (
(
�(v)

n
)�
p
1� �)2;

� n
(m+ 1)(m+ 2)

2(1� �) (1 +

s
�(v)

(m+ 1)n
�
p
1� �)2;

� n
(m+ 1)(m+ 2)

2(1� �) (� +

r
�

(m+ 1)n
)2;

� n
(m+ 1)(m+ 2)

2(1� �) (
p
n� +

r
�

(m+ 1)n
)2:

This completes the proof.

Denote

	0 = L(n; �; �) = n
(m+ 1)(m+ 2)

2(1� �) (
p
n� +

r
�

(m+ 1)n
)2; (3.17)

then 	0 is an upper bound for 	(V ) during the process of the algorithm.
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4.6 Analysis of Algorithm

The aim of this chapter is to de�ne a new kernel function and to obtain new

complexity results for an (LCP ) problem using the proximity function de�ned by the kernel

function and following approach of Bai et al. [3]. In the following, we compute a proper

step size � and the decrease of the proximity function during an inner iteration and give

the complexity results of the algorithm. For �xed � > 0:

4.6.1 Determining a default step size

Taking a step size �; we have new iterates

x+ = x+ ��x; y+ = y +�y:

Let

x+ = x(e+ �
�x

x
) = x(e+ �

dx
v
) =

x

v
(v + �dx);

y+ = y(e+ �
�y

y
) = y(e+ �

dy
v
) =

y

v
(v + �dy):

So, we have

v+ = ((v + �dx)
1
2 (v + �dy))

1
2 :

Since the proximity after one step is de�ned by

�(v+) = �(((v + �dx)(v + �dy))
1
2 ):

By (i) in Lemma 36, we have

�(v+) � 1
2
(�(v + �dx) + �(v + �dy)):
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De�ne, for � > 0

f(�) = �(V +)� �(V ):

Therefore, we have f(�) � f1(�); where

f1(�) =
1

2
(�(v + �dx) + �(v + �dy))� �(v): (3.18)

Obviously,

f(0) = f1(0) = 0:

Throughout this section, we assume that � � 1: Using Lemma 37 and the assump-

tion that �(v) � � , we have �(v) �
p
m+ 1: By the de�nition of �; the largest step size of

the worst case is given as follows:

�� =
�(�)� �(2�)

2�
: (3.19)

Lemma 41 Let the de�nition of � and �� be as de�ned in (3:19), then we have

�� � 1

(m+ 1)(m+ 2)
m+2
m+1

:

Proof. Using [3], we get the result.

For using � as the default step in the algorithm, de�ne the � as follows:

� =
1

3(m+ 1)(m+ 2)�
m+2
m+1

(3.20)

4.6.2 Decrease of the proximity function during an inner iteration

Now, we show that our proximity function � with our default step size � is de-

creasing. It can be easily established by using the following result.
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Lemma 42 [36] Let h(t) be a twice di¤erentiable convex function with h(0) = 0; h0(0) < 0

and let h(t) attains its(global) minimum at t > 0: If h00(t) is creasing for t 2 [0; t�]; then

h(t) =
th0(0)

2
:

Let the invariante function h be such that

h(0) = f1(0) = 0; h
0(0) = f 01(0) = �2�2; h00(�) = f2(�) = 2�

2	00(v � 2��):

Since f2(�) holds the condition of the above lemma

f(�) � f1(�) � f2(�) �
f 02(0)

2
�; for all 0 � � � ��:

We can obtain the upper bound for the decreasing value of the proximity in the

inner iteration by the above lemma.

Theorem 43 Let � be a step size as de�ned in (3:20) and � = �(v) � � = 1. Then we have

f(�) � �(m+ 1)
�m�2
2(m+1)

3(m+ 2)
	(V )

m
2(m+1) :

4.6.3 Iteration bound

We need to count how many inner iterations are required to return to the situation

where �(v) � � after a �� update: We denote the value of �(v) after �� update as �0 the

subsequent values in the same other iterations are denoted as �k; k = 1; :::: If K denotes

the total number of inner iterations in the outer iteration, then we have

�0 � L = O(n; �; �); �K�1 > �; 0 � �K � � :

And according to (3:15),

�k+1 � �k �
(m+ 1)

�m�2
2(m+1)

3(m+ 2)
�

m
2(m+1)

k :
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At this stage, we invoke the following lemma from [36]:

Lemma 44 Let t0; t1; :::; tk be sequence of positive numbers such that

tk+1 � tk � �t1��k ; k = 0; 1; :::;K � 1;

where � > 0; 0 < � � 1; then

K � t�0
��
:

Letting

tk = �k; � =
(m+ 1)

�m�2
2(m+1)

3(m+ 2)
and � =

m+ 2

2(m+ 1)
;

we can get the following lemma.

Lemma 45 Let K be the total number of inner iterations in the outer iteration.

Then we have

K � 6(m+ 1)
3m+4
2(m+1) �

m+2
2(m+1)

0 :

Proof. Using Lemma 40; we get the result.

Now, we estimate the total number of iterations of our algorithm.

Theorem 46 If � � 1; the total number of iterations is not more than

6(m+ 1)
3m+4
2(m+1) �

m+2
2(m+1)

0

1

�
log

n�0

"
:

Proof. In the algorithm, n� � "; �k = (1 � �)k�0 and �0 = (x0)ty0

n : By a simple

computation, we have

K � 1
�
log

n�0

"
:
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Therefore, the number of outer iterations is bounded above by 1
� log

n�0

" : Multiplying the

number of outer iterations by the number of inner iterations, we get an upper bound for

the total number of iterations, namely,

6(m+ 1)
3m+4
2(m+1) �

m+2
2(m+1)

0

1

�
log

n�0

"
:
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Chapter 5

Numerical tests

In this section, we present two primal-dual small-step and large-step central path

algorithms for solving a monoton linear complementarity program based on kernel function

 (t) = (m+ 1)t2 � (m+ 2)t+
1

tm
; t > 0;m > 4

The implementation is manipulated in DEV C++. Here we used Iter which means the

iterations number produced by the algorithm. . Our tolerance is " = 10�6: For the update

parameter, we have vary 0 < � < 1:

5.0.4 Some examples

Let the following monoton linear complementarity problems, as follow:
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Example 47 The data for our �rst problem with n = 5

M =

0BBBBBBBBBBBBBB@

0 0 2 1 0

0 0 1 2 1

�2 �1 0 0 0

�1 �2 0 0 0

0 �1 0 0 0

1CCCCCCCCCCCCCCA
; q =

�
�4 �5 8 7 3

�

The following table summarises the results

Functions Large update Short update � Iter
t2�1
2 � log t O(n log n" ) O(

p
n log n" ) 0.15 84

0.30 75
0.60 35
0.95 24

t2�1
2 + t1�q

q(q�1) �
q�1
q (t� 1); q > 1 O(qn

q+1
2q log n" ) O(q

p
n log n" ) 0.15 83

0.30 77
0.60 64
0.95 28

t2�1
2 + (e�1)2

e(et�1) �
e�1
e (t� 1) O(n

3
4 log n" ) O(

p
n log n" ) 0.15 79

0.30 67
0.60 56
0.95 34

1
2(t�

1
t )
2 O(n

2
3 log n" ) O(

p
n log n" ) 0.15 82

0.30 76
0.60 45
0.95 19

tp+1�1
p+1 + t1�q�1

q�1 ; p 2 [0; 1]; q > 1 O(qn
p+q

q(1+p) log n" ) O(q2
p
n log n" ) 0.15 78

0.30 75
0.60 58
0.95 27

(m+ 1)t2 � (m+ 2)t+ 1
tm ; t > 0;m > 4 O(m

3m+1
2m n

m+1
2m log n" ) O(m

3m+1
2m
p
n log n" ) 0.15 83

0.30 63
0.60 24
0.95 12
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Example 48 Consider the following problem (MCQP) with n = 10

M =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 3 0:8 0:32 1:128 0:0512

0 0 0 0 0 0 1 0:8 0:32 0:128

0 0 0 0 0 0 0 1 0:8 0:32

0 0 0 0 0 0 0 0 1 0:8

0 0 0 0 0 0 0 0 0 1

�1 0 0 0 0 0 0 0 0 0

�0:8 �1 0 0 0 0 0 0 0 0

�0:32 �0:8 �1 0 0 0 0 0 0 0

�1:128 �0:32 �0:8 �1 0 0 0 0 0 0

�0:0512 �1:128 �0:32 �0:8 �1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

q =

�
�0:0256 �0:064 �0:16 5:59 �1 1 1 1 1 1

�
The numerical results are presented in the following table.
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Function Large update Short update � Iter
t2�1
2 � log t O(n log n" ) O(

p
n log n" ) 0.15 83

0.30 77
0.60 45
0.95 14

t2�1
2 + t1�q

q(q�1) �
q�1
q (t� 1); q > 1 O(qn

q+1
2q log n" ) O(q

p
n log n" ) 0.15 85

0.30 78
0.60 61
0.95 23

t2�1
2 + (e�1)2

e(et�1) �
e�1
e (t� 1) O(n

3
4 log n" ) O(

p
n log n" ) 0.15 79

0.30 61
0.60 33
0.95 23

1
2(t�

1
t )
2 O(n

2
3 log n" ) O(

p
n log n" ) 0.15 80

0.30 78
0.60 41
0.95 17

tp+1�1
p+1 + t1�q�1

q�1 ; p 2 [0; 1]; O(qn
p+q

q(1+p) log n" ) O(q2
p
n log n" ) 0.15 76

q > 1 0.30 75
0.60 57
0.95 17

(m+ 1)t2 � (m+ 2)t+ 1
tm ; O(m

3m+1
2m n

m+1
2m log n" ) O(m

3m+1
2m
p
n log n" ) 0.15 81

t > 0;m > 4 0.30 43
0.60 14
0.95 5

Example 49 Let M 2 R10�10 et q 2 R10 de�ned by

M =

0BBBBBBBBBBBBBBBBBBBBBBB@

1 2 2 : : : 2

0 1 2 : : : 2

0 0 : : : : :

: : : : : : :

: : : : : : :

: : : : : : 2

0 0 0 : : 0 1

1CCCCCCCCCCCCCCCCCCCCCCCA

; q =

�
�1 : : : �1

�
;

The numerical results are presented in the following table with n = 10
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Function Large update Short update � Iter
t2�1
2 � log t O(n log n" ) O(

p
n log n" ) 0.15 81

0.30 72
0.60 44
0.95 11

t2�1
2 + t1�q

q(q�1) �
q�1
q (t� 1); q > 1 O(qn

q+1
2q log n" ) O(q

p
n log n" ) 0.15 80

0.30 71
0.60 61
0.95 21

t2�1
2 + (e�1)2

e(et�1) �
e�1
e (t� 1) O(n

3
4 log n" ) O(

p
n log n" ) 0.15 70

0.30 51
0.60 32
0.95 12

1
2(t�

1
t )
2 O(n

2
3 log n" ) O(

p
n log n" ) 0.15 81

0.30 79
0.60 40
0.95 13

tp+1�1
p+1 + t1�q�1

q�1 ; p 2 [0; 1]; O(qn
p+q

q(1+p) log n" ) O(q2
p
n log n" ) 0.15 73

q > 1 0.30 74
0.60 45
0.95 27

(m+ 1)t2 � (m+ 2)t+ 1
tm O(m

3m+1
2m n

m+1
2m log n" ) O(m

3m+1
2m
p
n log n" ) 0.15 63

; t > 0;m > 4 0.30 23
0.60 11
0.95 4

Example 50 Take n = 15; then the numerical results are presented in the following table.



68

Function Large update Short update � Iter
t2�1
2 � log t O(n log n" ) O(

p
n log n" ) 0.15 60

0.30 52
0.60 24
0.95 13

t2�1
2 + t1�q

q(q�1) �
q�1
q (t� 1) O(qn

q+1
2q log n" ) O(q

p
n log n" ) 0.15 74

; q > 1 0.30 51
0.60 44
0.95 16

t2�1
2 + (e�1)2

e(et�1) �
e�1
e (t� 1) O(n

3
4 log n" ) O(

p
n log n" ) 0.15 63

0.30 51
0.60 32
0.95 13

1
2(t�

1
t )
2 O(n

2
3 log n" ) O(

p
n log n" ) 0.15 81

0.30 79
0.60 40
0.95 13

tp+1�1
p+1 + t1�q�1

q�1 ; p 2 [0; 1] O(qn
p+q

q(1+p) log n" ) O(q2
p
n log n" ) 0.15 73

; q > 1 0.30 74
0.60 45
0.95 27

(m+ 1)t2 � (m+ 2)t+ 1
tm ; O(m

3m+1
2m n

m+1
2m log n" ) O(m

3m+1
2m
p
n log n" ) 0.15 45

t > 0;m > 4 0.30 34
0.60 9
0.95 6

From the results obtained, the following remarks can be made:

Remark 51 Our new kernel function produces a better execution time than the given kernel

funcions.

Remark 52 In some cases, our new kernel function reduces the number of iterations com-

pared to other kernel functions.

Remark 53 The number of iterations of the algorithm depends on the value of the para-

meter �; in most cases, the larger � gives a better number of iterations.
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Remark 54 The results show very slow growth as n increases which is precisely what is

expected for the (IPMs):
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5.0.5 Conclusion

We propose a new kernel function and primal-dual interior-point algorithms for

to solve a monotone linear complementarity problems and analyze the complexity theoric

and numeric based on central path method. We get for a large-update methods the number

of iterations are O(m
3m+1
2m n

m+1
2m log (x

0)T y0

" ) and O(m
3m+1
2m
p
n log (x

0)T y0

" ) for small-update

methods which are the best-known iteration bounds for such methods. Future research

might focus on the extension to convex non-linear problem, convex quadratic semi de�nit

problem. Finally, for the numerical tests, some strategies are used and indicate that our

kernel function used in the algorithm is e¢ cient.
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 ملخص:

مسائل من المعروف جيدًا أن أساليب النقاط الداخلية هي الأكثر فاعلية في حل      

 جيدال العددي هاوسلوكبتقاربها الحدودي تمتاز . هذه الطرق رمجة المثاليةبال

 النظرية،الدراسة كان اهتمامنا حول  البحث،. في هذا لايجاد مجموعة الحلول

 .الخطيوالخوارزمية لطرق النقطة الداخلية لمشكلة التكامل  والعددية،

 دالة باقترح قمناوقد  النواة، دالةطريقة المسار المركزي عبر ب في الواقع نهتم

 .تكلفة الخوارزميمن حيث أفضل نتائج  أعطت لنانواة جديدة التي 

      

 النواة،وظيفة الداخلية،مشكلة تربيعية محدبة، طريقة النقطة  الكلمات المفتاحية:

 .تكلفة الخوارزمية

 

 

Abstract : 

         It is well that interior point methods are the most efficient to solve an optimization problems. 

These methods are characterized by their polynomial convergence to find a set of solutions. In this 

research, we are interested a theoretical, numerical and an algorithmic study of interior-point methods 

for linear complementarity problem.  

          Indeed, we are interested in a central trajectory method via a kernel function, we proposed new 

kernel function that give the best-known complexity results. 

Keywords: Convexe quadratic problem, Interior point method, Kernel function, Algorithmic 

complexity. 

 

Résumé : 

         Il est bien connu que les méthodes de points intérieurs sont les plus efficaces pour résoudre les 

problèmes d'optimisation. Ces méthodes se caractérisent par leur convergence polynomiale à la 

frontière et leur bon comportement numérique pour trouver la solution. Dans cette recherche, nous 

nous intéressons à une étude théorique, numérique et algorithmique des méthodes de points intérieurs 

pour le problème de complémentarité linéaire.  

         En effet, nous nous intéressons à une méthode de trajectoire centrale via une fonction noyau, 

nous avons proposé de nouvelles fonctions noyau qui donnent les résultats de complexité les plus 

connus. 

         Mots clés : Problème quadratique convexe, Méthode des points intérieur, Fonction noyau, 

Complexité algorithmique. 


