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 FACULTÉ DES MATHÉMATIQUES ET  D´INFORMATIQUE                        
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NOTATION

Throughout this thesis;

H , K, L and F are four in�nite dimensional complex Hilbert spaces�

B(H�K): the set of all linear bounded operators from H to K:

B(H) :the set of all linear bounded operators from H to H .

N(A) : the null space of an operator A 2 B(H�K):

R(A) : the range space of an operator A 2 B(H�K):

A� : the adjoint of an operator A 2 B(H�K):

P 2 = P : a projector.

P 2 = P = P �: an orthogonal projector.

PM : the orthogonal projector onto the closed subspace M of H .

I : the identity operator.

� : a direct sum.

�?: a direct orthogonal sum.

H1 : the closure of H1 in H:

Cm;n : the set of all m� n complex matrices.

hvi: the subspace spanned by a vector v:

r(A) : the rank of a matrix A 2 Cm;n:

det(A) : the the determinant of a matrix A 2 Cn;n.

In the identity matrix of Cn;n.
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Introduction

E. H. Moore was the �rst who gave an explicit de�nition of a kind of inverse related

to an arbitrary matrix, this was in 1920.

In 1955 R. Penrose de�ned the generalized inverses of matrix, a year later, Rado

proved that these two de�nitions are equivalent, and since then this generalized inverse

is called the Moore-Penrose inverse, in 1949 Tseng de�ned the Moore-Penrose inverse

for linear operators in Hilbert spaces, (for more details see [4])

The Moore-Penrose inverse is applied in various area: Bouldin [5] gave a geometric

characterization of the condition in terms of the angle between two linear subspaces,

Nikaido [37] showed a topological characterization for it. The M-P inverse is also used

to solve linear systems, in optimization, in electrical networks see [4]. Also it is used in

electrical engineering, see [6], Electronics in [20]: That is why many authors have seen

the duty to treat its characterizations such as the sum, the product of matrices, the

block operator, the closed product range of the operators closed ranges....etc.

In 1956, Penrose [38] �rst studied the representation for the generalized inverse of a

partitioned complex matrix. In 1960, Greville [22] established a representation for the

Moore-Penrose inverse of a partitioned matrix of the form N = [A1 : A2], where A1 is

a single column. Later in 1964, Cline [10] generalized Greville�s result and obtained the
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Moore-Penrose inverse of a partitioned matrix of the form N = [A1 : A2], where A1 has

more than one column.

In 1970, Meyer (see [31] and [32]) explored representations for inner inverses and

generalized inverses of 2� 2 block triangular matrices, in 1979 [6] Campbell and Meyer

derived simple representations of the Moore-Penrose inverses of 2� 2 triangular block

matrices under some conditions. Many of authors established several formulas for various

generalized inverses of a 2� 2 block matrix ( also, a 2� 2 block operator) under certain

conditions involving Schur complements; (for more details see [4]; [6]; [8]; [11]; [39]; [41])

The thesis is organized as follows:

In chapter 1: We gave the de�nition of the Moore-Penrose inverse of a linear

operator , the de�nition of proprety of disjoint ranges and some equvalent statements,

also the de�nition of a full-rank decomposition and some related results.

In chapter 2: Under rank additivity conditions of the columns (resp, of the rows),

we gave new representations of di¤erent kinds of a 2 � 2 block matrices, we use this

representations to obtain the Moore-Penrose inverse of a block triangular matrix, and

we give a generalization of the Banachiewicz-Schur form ofM with the Schur complement

of A1 in M . Next, we describe an algorithm to calculate the Moore-Penrose inverse of a

matrix A with a numerical example:

In chapter 3: We obtain necessary and su¢ cient conditions for the existence of

the Moore-Penrose inverse of block row operator, where at least one of the two operators

A+1 and A
+
2 exists and its expressions under the condition R (A1) \ R(A2) = f0g. If

A1 or A2 has a closed range, we will introduce the concept of full-rank decomposition on

2



row block operator. Beyond, we give a new representation of the Moore-Penrose inverse

of row operator block, based on full-rank decomposition.

We obtained again the necessary and su¢ cient conditions for the existence of the

Moore-Penrose inverse of triangular block operator and its Moore-Penrose inverse with

disjoint ranges operators, and on the other hand we derive a new representation of

the Moore-Penrose inverse of triangular block operator. Beyond, we consider a 2 � 2

block operator M =

264 A1 A2

A3 A4

375 as sum of two operators M1 =

264 A1 A2

0 0

375 and
M2 =

264 0 0

A3 A4

375, and then, we gave some representaions of the Moore-Penrose inverse
of M under the condition R (M�

1 ) \R(M�
2 ) = f0g.

We show that each representation of the Moore-Penrose inverse under assumptions

in [11;Theorem 9; Theorem 10] and in [12;Corollary 13;Corollary 14] does not always

represent the Moore-Penrose inverse, our criticism is as follows: �rstly we will illustrate

with examples that the results of the items of corollaries 13, 14 and theorems 9, 10 are

not true, secondly we determine the illogical steps in their proofs and we correct these

corollaries and propose some representations of the Moore-Penrose inverse of M with

preserving the hypotheses of the corollary 13 and 14 in [12].

In the chapter 4:

We give some applications of our results, exactly, we obtain necessary and su¢ cient

conditions for the product of two operators with closed ranges to have a closed range,

3



alos we get some necessary and su¢ cient conditions for the sum of orthogonal projectors

to be Moore-Penrose invertible.

In the chapter 5:

From the idea that [17] the closed range operator A admits matrix form with re-

spect to the orthogonal sum of subspaces of H and K; we obtain a representation of the

Moore-Penrose inverse of the sum of two operators A and B satisfying: R (A)?R(B)

and R (A�)+R(B�) is closed, hence under suitable conditions, we obtian a general rep-

resentation of the Moore-Penrose inverse of the sum A +B; in the closedness conditions

for ranges.

We use the notion of the full- rank decomposition of an operator to prove that if

A and B have closed ranges and R (A) \ R(B) = f0g and R (A�) \ R(B�) = f0g

hold, then we have R(A + B) = R(A) + R(B); R(A� + B�) = R(A�) + R(B�) and

the subspaces R(A + B), R(A) + R(B) and R(A�) + R(B�) are closed, also that the

extension of the Fill-Fishkind formula for A and B with closed ranges is valid keeping the

conditions of Fill-Fishkind formula for matrices: On the other hand we get an analogous

formula under R (A)\R(B) = f0g and R (A�)\R(B�) = f0g to Fill-Fishkind formula

for A and B having closed ranges and derive certain cases where operator ranges are

orthogonal.

4



CHAPTER 1

Auxiliairy results

1.1. On M-P inverse, range of operator, projectors.

De�nition 1. The Moore-Penrose inverse ( for short M-P inverse) of a closed

range operator A 2 B(H�K), is the unique operator A+ 2 B(K�H) satisfying the

following four Penrose equations

(i) AA+A = A; (ii) A+AA+= A+; (iii) (AA+)�= AA+; (iv) (A+A)�= A+A:

It is well known that A+ exists for given A 2 B(H�K) if and only if ( for short i¤ )

R(A) is closed. The following lemmas is frequently used

Lemma 2. Let A 2 B(H�K), then the closedness of any one of the following sets

implies the closedness of the ramaining there sets

R(A), R(A�); R(AA�) and R(A�A)

If A has a closed range, then

R(A) = R(AA�) and R(A�) = R(A�A)

And

A+ = A�(AA�)+ = (A�A)+A�:

5



Lemma 3. [20;Theorem 2:2]: Let A 2 B(H;K) and B 2 B(L�K), then

R(A) +R(B) = R((AA�+BB�)
1
2 ):

Lemma 4. Let A 2 B(H;K), P 2 B(K) and Q 2 B(H) such that P and Q are

projectors then

1)PA = A , R(A) � R(P );

2) AQ = A , N(Q) � N(A)

3) If P is orthogonal projector and PA has a closed range, then

(PA)+ = (PA)+P

4) When K = H; then

P = Q , R(P ) � R(Q) and N(P ) � N(Q)

Proof. 1): On the one hand, it is clear that, PA = A gives us that R(A) � R(P );

on the other hand, we have Py = y; 8y 2 R(P ); the hypothesis R(A) � R(P ) leads

to Py = y; 8y 2 R(A); which implies that PAx = Ax; 8x 2 H; Consequently,

the item 1) is holds. 2): (=); We have N(Q) � N(A) =) R(A�) � R(Q�),

by item 1) we get Q�A� = A� which implies that AQ = A; =)); AQ = A =)

A(I�Q) = 0 =) R(I�Q) � N(A) =) N(Q) � N(A): 3): Direct veri�cation. 4) :

=)); It is clear, (=); from the item 1) and 2) we obtain: QP = P and QP = Q ;

which implies that P = Q �

6



Lemma 5. Let A and B 2 B(H;K). If there exists an invertible operator C 2

B(H) such that A = BC, then R(A) is closed i¤ R(B) is closed.

Proof. We have R(A) = R(BC) � R(B) and R(B) = R(AC�1) � R(A), so we

deduce that R(A) = R(B). �

Lemma 6. Let A 2 B(H;K) with closed range, B 2 B(H) and C 2 B(K),

where B and C are invertible, then:

1) The operator B�1A+ satis�es the equations (i), (ii) and (iii) of M-P inverse for

AB:

2) The operator A+C�1 satis�es the equations (i), (ii) and (iv) of M-P inverse for

CA:

Proof. It is clear. �

Lemma 7. Assume that A 2 B(H�K) has a closed range, if there are two operators X

, Y 2 B(K�H); such that Y satis�es the equations (i) and (iv) of the M-P inverse of

A, and X veri�es the equations (i) and (iii) of MP inverse of A, then A+ = Y AX:

Proof. Direct veri�cation. �

1.2. On disjoint ranges

De�nition 8. Let A 2 B(H�K); B 2 B(L;K);we say that A ;B are disjoint

ranges if R (A)\R(B) = f0g; we denote by DR the set of all these pairs (A;B); i.e.,

DR := f(A;B) : A 2 B(H�K); B 2 B(L;K) and R (A) \R(B) = f0gg

7



These two following lemmas give us some necessary and su¢ cient conditions for two

bounded operators to be disjoint ranges.

Lemma 9. Let A 2 B(H;K) with closed range and B 2 B(L�K); then the next

statements are equivalent:

1) (A;B) 2 DR; 3) N(B) = N(P(N(A�)B);

2) R(B�) = R(B�P(N(A�)), 4) N(P(N(A�))B) � N(A�B):

Proof. We know that R(B�) = N(B)? and R(B�P (N(A�)) = N(P(N(A�) B)
?, then

2) , 3). Using absurd reasoning to proof both implications of the equivalence; 1) ,

3): �rst, )); Let x 2 L satis�es P(N(A�)Bx = 0 and Bx 6= 0, which implies that

AA+Bx = Bx and Bx 6= 0, it follows that Ax
0
= Bx 6= 0; where x

0
= A+Bx,

therefore contradiction with the assertion 1). Secondly; ((: Let y 2 R (A) \R (B) 6=

f0g, there exist x1 6= 0 and x2 6= 0 such that Ax1 = Bx2 6= 0, form the equation (i) of

Penrose, we obtain AA+Bx2 = Bx2 and Bx2 6= 0, then P(N(A�)Bx = 0 and Bx2 6= 0;

hence contradiction. Now, we will see that 1) , 4): )); If x 2 N
�
PN(A�)B

�
;

we get Ax
0
= Bx where A+Bx = x

0
, as R (A) \ R (B) = f0g; we deduce that

Bx = 0 then x 2 N(A+B) = N(A�B): (): Let y 2 R (A) \ R (B), then there exist

x1 2 H; x2 2 L such that AA+Ax1 = Bx2 = y which implies that AA+Bx2 =

Bx2; or PN(A�)Bx2 = 0; since N
�
PN(A�)B

�
� N(A�B); then A�Bx2 = A�y = 0,

Consequently y 2 R (A) \N(A�) = f0g; so y = 0: �

We apply the results of the proceding lemma for A� and B�, we get:

8



Lemma 10. Let A 2 B(H;K) with closed range and B 2 B(L�K); then the next

statements are equivalent:

1) (A�; B�) 2 DR; 3) N(B�) = N(P(N(A)B�);

2) R(B) = R(BP (N(A)), 4) N(P(N(A))B
�) � N((AB�):

Remark 11. Through the de�nition (8), if C 2 B(F;H); then we have

1) (A;B) 2 DR , (B;A) 2 DR:

2) (A;B) 2 DR ) (B;AC) 2 DR:

1.3. Full-rank decomposition

The full-rank decomposition plays an important role in the theory of the generalized

inverses, in particular for determining the expressions of the M-P inverse of an operator;

for more information see [[4] ; [7]] : We recall that in [7], Caradus has proved that an

operator A 2 B(H�K) admits a full-rank decompositon i¤ there exists an operator

X 2 B(K�H) that satis�es the equation (i) or i¤ A+ exists.

De�nition 12. Let A 2 B(H�K) If there exists a Hilbert space HA and operators

GA 2 B(H�HA ); FA 2 B(HA�K), such that GA is right invertible, FA is left

invertible and

(1� 1) A = FAGA

Then we say that (1� 1) is a full-rank decomposition of A:

9



Theorem 13. : For any A 2 B(H�K); A has a full-rank decomposition i¤ A+

exists.

Proof. : E¤ectively, if FAGA is a full-rank decomposition of A, from the de�nition

previous, it is obvious to verify that G+AF
+
A is the M-P of inverse of A, in this case A+ =

G+AF
+
A : �

Conversely, From the existence of A+; we have that R(A) is closed and we con-

clude R(A) is a Hilbert space included in K, we de�ne the operators GA and FA as

follows:

GA 2 B(H�R(A)); such that GAx = Ax; 8x 2 H:

And

FA 2 B(R(A)�K); such that FAx = x; 8x 2 R(A); :

It is easy to see that GA is surjective, and FA is injective, furthermore A = FAGA:

We need of the following lemmas:

Lemma 14. If FAGA is a full-rank decompositions of A 2 B(H�K), then:

1) F �AFA and GAG
�
A are invertible.

2) F+A is a left inverse of FA, also G
+
A is a right inverse of GA:

3) R (A) = R (FA), N (A) = N (GA), R (A�) = R (G�A) and N (A
�) = N(F �A):

4) A+A = G+AGA and AA
+ = FF+

10



Proof. 1): FA is injective means that F �A is surjective; ( i.e: R(F
�
A) = H), it follows

that F+A exists and R(F �AFA) = R(F �A), therefore R(F
�
AFA) = H , while F �AFA is

self-adjoint, so F �AFA is invertible, by the same way we have GAG
�
A is invertible. 2):

Employing item 1) and lemma (2) we get

F+A FA = (F
�
AFA)

+F �AFA = (F
�
AFA)

�1F �AFA = IHA

GAG
+
A = GAG

�
A(GAG

�
A)
+ = GAG

�
A(GAG

�
A)
�1 = IHA

Hence, the 2) is holds. The items 3) and 4) are clear. �

We use this below lemma in the proof of theorem (77) to prove the identity (5� 10)

Lemma 15. Let FAGA, FBGB be a full-rank decompositions of A and B, resepec-

tively, then we have

a)

R(PN(B�)A) = R(PN(B�)FA);

R(PN(A�)B) = R(PN(A�)FB)

And

R(PN(A)B
�) = R(PN(A)G

�
B);

R(PN(B)A
�) = R(PN(B)G

�
A)

11



b) We suppose that (A;B) 2 DR and PN(B�)A has a closed range, then we have

(PN(B�)FA)
+ = GA(PN(B�)A)

+;

(PN(A�)FB)
+ = GB(PN(A�)B)

+

c) We suppose that (A�; B�) 2 DR and BPN(A) has a closed range, then we have

(GBPN(A))
+ = (BPN(A))

+FB ;

(GAPN(B))
+ = (APN(B))

+FA

Proof. a) The equality R(PN(B�)A) = R(PN(B�)FA) is proved as follows

R(PN(B�)FA) = PN(B�)R(FA) = PN(B�)R(FAF
+
A ) = PN(B�)R(AA

+) =

PN(B�)R(A) = R(PN(B�)A): Similarly, we can have the other equals.

b) Let U = PN(B�)A and V = G
+
A; we have

R((PN(B�)A)
�(PN(B�)A)G

+
A) � R(A�PN(B�)) � R(A�) = R(G�A) = R(G+A)

So, we deduce that

(�1) R(U�UV ) � R(V )

Now, note that R( G+AG
+�

A (PN(B�)A)
�) � R(G+A) = R(G�A) and by the item 3 of lemma

(14) we get R( G+AG
+�

A (PN(B�)A)
�) � R(A�), on the other hande since (A;B) 2 DR;

it follows from the item 2 lemma (9) that R( G+AG
+�

A (PN(B�)A)
�) � R((PN(B�)A)

�)

12



that is

(�2) R(V V �U�) � R(U�)

According (�1) and (�2) and [17; item (4) of Theorem 2:2; ] ; then U and V satisfy the

reverse order law (UV )+ = V +U+, that is (PN(B�)AG
+
A)
+ = GA(PN(B�)A)

+, while

PN(B�)FA = PN(B�)AG
+
A; so the equality (PN(B�)FA)

+ = GA(PN(B�)A)
+ holds. In

the same way we get that (PN(A�)FB)+ = GB(PN(A�)B)+: Taking the adjoint on both

sides of the equalites of item c) and we use the item b) we obtain

(PN(A)G
�
B)
+ = F �B(PN(A)B

�)+

and

(PN(B)G
�
A)
+ = F �A(PN(B)A

�)+

We take again the adjoints on both sides of two last equalities, obtaining the item c) �

13



CHAPTER 2

On M-P inverse of a 2� 2 block matrix

Let M be a 2� 2 block matrix:

(2� 1) M =

0B@ A1 A2

A3 A4

1CA2 Cn�Cp! Cm�Cq

In the case, A1 is invertible square matrix , the matrix SA1 := A4 � A3A�11 A2 is

called the Schur complement of A1 in M , where A�11 is the usual inverse of A1; if we

further assume, M is square matrix, then the Schur complement SA1 is invertible, i¤

M is invertible, in addition, M�1 has the form:

(2� 2) M�1=

0B@ A�11 + A�11 A2S
�1
A1
A3A

�1
1 � A�11 A2S�1A1

�S�1A1A3A
�1
1 S�1A1

1CA
The expression (2�2) is called the Banachiewicz-Schur form of the matrixM: It should

be noted that SA1 is not always invertible, But his M-P inverse exists always, that is why,

Several authors describe generalized inverses of block matrices with Banachiewicz-Schur

forms, in [3;Corollary 2] the M-P inverse of M has the following Banachiewicz�Schur

14



form

(2� 3) M+=

0B@ A�11 + A�11 A2S
+
A1
A3A

�1
1 � A�11 A2S+A1

�S+A1A3A
�1
1 S+A1

1CA
If and only if

(2� 4) R(A3) � R (SA1) and R(A
�
2) � R

�
S�A1

�
The Banachiewicz-Schur form of the matrixM has been used in dealing with inverses

of block matrices; see [[3],[8],[43] ; [46]], for example, in [43] by the matrix rank method,

Y. Tian and Y. Takane gave necessary and su¢ cient conditions for a block matrix to

have generalized inverses with Banachiewicz-Schur forms, now, our goal in what follows

is to obtain a representation of the M-P inverse of M with the Schur complement of A1

in M .

2.1. On rank additivity condition.

In this subchapter, we give some assertions equivalent to the rank additivity condi-

tions of the columns, (of rows). We start by this de�nition:

De�nition 16. Let M be given in (2� 1); we say that M has the rank additivity

condition of the columns if

(2� 5) r(M) = r

0B@ A1

A3

1CA+r
0B@ A2

A4

1CA
15



Also, M has the rank additivity condition of the rows if:

(2� 6) r(M) = r

�
A1; A2

�
+r

�
A3; A4

�
:

The following lemma contains some other assertions equivalent to the (2� 5):

Lemma 17. LetM be given in (2�1), then the following statements are equivalent:

1) M has the rank additivity condition of the columns

2) R (B1) \R (B2) = f0g: 8) R(B�1B2) � R
�
B�1PN(B�2)

�
:

3) N(M) = N (B1)�N (B2) : 9) R(B�2) = R
�
B�2PN(B�1)

�
:

4) R (M�) = R(B�1)�R(B�2): 10) N(B2) = N
�
PN(B�1)

B2

�
:

5) N
�
PN(B�1)

B2

�
� N(B�1B2): 11) R(B�1) = R

�
B�1PN(B�2)

�
:

6) R(B�2B1) � R
�
B�2PN(B�1)

�
: 12) N(B1) = N

�
PN(B�2)

B1

�
:

7) N
�
PN(B�2)

B1

�
� N(B�2B1): 13) r(M) = r (B1) + r (B2)

where: B1 =

0B@ A1

A3

1CA, B2 =
0B@ A2

A4

1CA :
16



Proof. ((1), (2)) Follows from the fact that r([A;B]) = r(A)+ r(B)() R (A)\

R (B) = f0g:((2), (3)); We suppose that N(M) = N(B1; B2) 6= N(B1)�N(B2),

this is equivalent to the existence of x =2 N(B1) and x
0
=2 N(B2), B1x = B2x

00 6= 0

such that x
00
= �x0 , it is equivalent to, R (B1) \ R (B2) 6= f0g. ((3) , (4)): let the

block matrix T =

0B@ B1 0

0 B2

1CA, it is easy to show that R(T �) = R(B�1)�R(B�2); and
N(T ) = N(B1)� N(B2), as R(M�)? = N(M), R(T �)? = N(T ) and by operation

of orthogonality; R(M�) = R(T �) is equivalent to N(M) = N(T ). As the orthogonal

range of a matrix is equal to the kernel of its adjoint, this gives the equivalence between

5) and 6) ,7) and 8) , 9) and 10) , 11) and 12). Now between ((2) , (12)), ))

: we suppose that N((I � B2B+2 )B1)  N(B1), then there exists x such that (I �

B2B
+
2 )B1x = 0 and B1x 6= 0 implie that B2B+2 B1x = B1x 6= 0, then contradiction,

(): if R (B1)\R (B2) 6= f0g, then there exists 0 6= x 2 R(B�1); 0 6= x
0 2 R( B�2) such

that B1x = B2x
0
; so that B1x = B2B

+
2 B2x

0
which implies that (I � B2B+2 )B1x = 0

and B1x 6= 0, at the end we have contradiction. In the same procedure we �nd that

2), 10). 3)) 7); it is clear that N(B+2 B1) = N(B
�
2B1);we suppose that there exists

0 6= x where (I�B2B+2 )B1x = 0 and B+2 B1x 6= 0; it also implies that B1x+B2y = 0

such that y = �B+2 B1x, then we get a contradiction. In the same procedure we �nd that

3)) 5). 7)) 2), we suppose there exists x 2 R(B�1), x
0 2 R(B�2), x 6= 0 and x

0 6= 0,

such as B1x = B2x
0 6= 0, whith implies that B1x = B2B

+
2 B2x

0 6= 0 and B+2 B1x

6= 0, so B1x = B2B+2 B1x; and B+2 B1x 6= 0; which equivalent to N((I �B2B+2 )B2) �

N(B�2B1), then we get a contradiction. In the same procedure we �nd that 5)) 2). �

17



The following lemma contains some other assertions equivalent to the (2� 6) :

Lemma 18. LetM be given in (2�1), then the following statements are equivalent:

1) M has the rank additivity condition of the rows.

2) R(L�1) \R(L�2) = f0g: 8) R(L1L�2) � R(L1PN(L2)):

3) N(M�) = N(L�1)�N(L�2): 9) R(L2) = R(L2PN(L1)):

4) R (M) = R(L1)�R(L2): 10) N(L�2) = N(PN(L1)L�2):

5) N(PN(L1)L
�
2) � N(L1L�2): 11) R(L1) = R(L1PN(L2)):

6) R(L2L�1) � R(L2PN(L1)): 12) N(L�1) = N(PN(L2)L�1):

7) N(PN(L2)L
�
1) � N(L2L�1): 13) r(M) = r (L1) + r (L2)

Where: L1 =

�
A1; A2

�
, L2 =

�
A3; A4

�
:

2.2. Representations of the M-P inverse of a 2� 2 triangular block

matrix under the rank additivity condition.

We obtain in this subchapter, Some representations of the M-P inverse of a 2 � 2

block triangular matrix, for the four types of block triangular matrices; under the rank

additivity condition.

18



Theorem 19. Let M be given in (2� 1), with A3 = 0; and Y1 be de�ned by:

(2� 7) Y1 =

0B@ A�1G
+
1 � A�1G+1 A2A+4

D�
1G

+
1 A+4 �D�

1G
+
1 A2A

+
4

1CA
Then: M+ = Y1 i¤ one of the statements of lemma (18) holds for R1 and R2. Where:

R1 =

�
A1; A2

�
and R2 =

�
0; A4

�
:

D1 = A2PN(A4) , G1 = A1A
�
1 +D1D

�
1

Proof. For abridge the proof, we can easily check that the matrice Y1 satis�es the

equations (i), (ii) and (iv) of the M-P inverse of M , only remains to determine some

necessary and su¢ cient conditions for which the projector MY1 is self-adjoint, that is

why, we calculate MY1

MY1 =

0B@ G1G
+
1 �G1G+1 A2A+4 + A2A+4

0 A4A
+
4

1CA
Clearly, MY1 is self-adjoint i¤G1G

+
1 A2 A

+
4 = A2A

+
4 , by item 1 of the lemma (4); the

last equation equivalents to R(A2A
+
4 ) � R(G1); on the other hand, note that

R(A2A
+
4 ) = R(A2A

�
4) = R(R1R

�
2)

And

R(G1) = R

��
A1; D1

��
A�1
D�
1

��
= R

�
A1; D1

�
= R

�
R1PN(R2)

�
19



We deduce that, R(A2A
+
4 ) � R(G1) i¤ R(R1R�2) � R(R1PN(R2)); this coincides with

the assertion 8) of lemma (18). �

Theorem 20. Let M be given in (2� 1), with A3 = 0; and X1 be de�ned by:

(2� 8) X1 =

0B@ A+1 � A+1 A2G+2D�
2 � A+1 A2G+2 A�4

G+2D
�
2 G+2 A

�
4

1CA
Then: M+ = X1 i¤ one of the statements of the lemma (17) holds for C1 and C2.

Where:

C1 =

0B@ A1

0

1CA and C2 =

0B@ A2

A4

1CA :
D2 = PN(A�1)A2, G2 = D

�
2D2 + A

�
4A4

Proof. After calculation, it will be clear that X1 satis�es the equations (i), (ii) and

( iii) of M-P inverse of M , as D�
2A1 = 0, then

X1M =

0B@ A+1 A1 A+1 A2 � A+1 A2G+2 G2

0 G+2 G2

1CA
Hence, X1 satis�es the equation (iii) of M-P inverse of M , i¤ A+1 A2 = A

+
1 A2G

+
2 G2;

by item 2 of the lemma (4); i¤

N(G2) � N(A+1 A2);

20



That is

N(PN(C�1 )C2) � N(C
�
1C2)

Because:

N(G2) = N

0B@� D�
2 A�4

�0B@ D2

A4

1CA
1CA= N

0B@
0B@ D2

A4

1CA
1CA= N(PN(C�1 )C2)

And

N(A+1 A2) = R(A
�
2A

+�

1 )
?
= (A�2R(A1))

? = R(A�2A1)
? = N(A�1A2)

Note that N(PN(C�1 )C2) � N(C
�
1C2) coincides with the assertion 5) of the lemma (17);

which is the desired result. �

In the following, using proofs similar to those of theorems 19 and 20 , we get the

following results:

Corollary 21. Let M be given in (2� 1), with A2 = 0; and Y2 be de�ned by:

(2� 9) Y2 =

0B@ A+1 �D�
3G

+
3 A3A

+
1 D�

3G
+
3

�A�4G+3 A3A+1 A�4G
+
3

1CA
Then: M+ = Y2 i¤ one of the statements of the lemma (18) holds for R3 and R4.

Where:

D3 = A3PN(A1) , G3=D3D
�
3 + A4A

�
4
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R3 =

�
A1; 0

�
and R4 =

�
A3; A4

�
:

Corollary 22. Let M be given in (2� 1), with A2 = 0; and X2 be de�ned by:

(2� 10) X2 =

0B@ G+4 A
�
1 G+4D

�
4

�A+4 A3G+4 A�1 A+4 � A+4 A3G+4D�
4

1CA
Then: M+ = X2 i¤ one of the statements of the lemma (17) holds for C3 and C4.

Where:

D4 = PN(A�4)A3 , G4 = A
�
1A1 +D

�
4D4

C3 =

0B@ A1

A3

1CA, C4 =
0B@ 0

A4

1CA :

Corollary 23. Let M be give in (2� 1); with A4 = 0; and Y3 be de�ned by:

(2� 11) Y3 =

0B@ D�
5G

+
5 �D�

5G
+
5 A1A

+
3 + A

+
3

A�2G
+
5 �A�2G+5 A1A+3

1CA
Then: M+ = Y3 i¤ one of the statements of the lemma (18) holds for R5 et R5. Where:

D5 = A1PN(A3) , G5 = D5D
�
5 + A2A

�
2

R5 =

�
A1; A2

�
and R6 =

�
A3; 0

�
:

Corollary 24. Let M be give in (2� 1), with A4 = 0; and X3 be de�ned by:

(2� 12) X3 =

0B@ G+6D
�
6 G+6 A

�
3

�A+2 A1G+6D�
6 + A

+
2 �A+2 A1G+6 A�3

1CA
22



Then: M+ = X3 i¤ one of the statements of the lemma (17) holds for C5 and C6.

Where:

D6 = PN(A�2)A1 , G6 = A
�
3A3 +D

�
6D6

C5 =

0B@ A1

A3

1CA and C6 =

0B@ A2

0

1CA :
Corollary 25. Let M be give in (2� 1), with A1 = 0; and Y4 be de�ned by:

(2� 13) Y4 =

0B@ �A�3G+7 A4A+2 A�3G
+
7

�D�
7G

+
7 A4A

+
2 + A

+
2 D�

7G
+
7

1CA
Then: M+ = Y4 i¤ one of the statements of the lemma (18) holds for R7 et R8. Where

D7 = A4PN(A2) , G7 = A3A
�
3 +D7D

�
7

R7 =

�
0; A2

�
and R8 =

�
A3 A4

�
:

Corollary 26. Let M be give in (2� 1), with A1 = 0; and X4 be de�ned by:

(2� 14) X4=

0B@ �A+3 A4G+8 A�2 A+3 � A+3 A4G+8D�
8

G+8 A
�
2 G+8D

�
8

1CA
Then: M+ = X4 i¤ one of the statements of the lemma (17) holds for C7 and C8.

Where:

D8 = PN(A�3)A4 , G8 = A
�
2A2 +D

�
8D8

C7 =

0B@ 0

A3

1CA and C8 =

0B@ A2

A4

1CA :
23



2.3. Representations of the M-P inverse of a 2� 2 triangular block

matrix

We obtain in this subchapter, Some representations of the M-P inverse of a 2 � 2

block triangular matrix, for the four kinds of triangular block matrices.

Corollary 27. : Let M be given in (2� 1), with A3 = 0; then:

(2� 15) M+=

0B@ N11 N12

N13 N14

1CA
Where:

N11 = A
�
1G

+
1 PR(A1) + A

�
1G

+
1 F1G

+
2D

�
2,

N12= A
�
1G

+
1 F1G

+
2 A

�
4;

N13= D
�
1G

+
1 PR(A1)+D

�
1G

+
1 F1G

+
2D

�
2+PR(A�4)G

+
1D

�
2;

N14= D
�
1G

+
1 F1G

+
2 A

�
4+PR(A�4)G

+
2 A

�
4:

F1= D1�PR(A1)A2:

Proof. : By (2� 7) , (2� 8) and the lemma (7), M+ = Y1MX1, by direct computa-

tion we get (2� 15). �

By the same way, we have:

Corollary 28. : Let M be given in (2� 1), with A2 = 0; then:

(2� 16) M+=

0B@ N21 N22

N23 N24

1CA
24



Where

N21= PR(A�1)G
+
4 A

�
1+D

�
3G

+
3 F2G

+
4 A

�
1

N22= D
�
3G

+
3 F2G

+
4D

�
4+PR(A�1)G

+
4D

�
4+D

�
3G

+
3 PR(A4)

N23= A
�
4G

+
3 F2G

+
4 A

�
1

N24= A
�
4G

+
3 F2G

+
4D

�
4+A

�
4G

+
3 PR(A4)

F2= D3�PR(A�4)A3:

Corollary 29. : Let M be given in (2� 1), with A4 = 0; then:

(2� 17) M+=

0B@ N31 N32

N33 N34

1CA
Where

N31= D
�
5G

+
5 PR(A2)+D

�
5G

+
5 F3G

+
6D

�
6+PR(A�3)G

+
6D

�
6

N32= D�
5G

+
5 F3G

+
6 A

�
3+PR(A�3)G

+
6 A

�
3

N33= A
�
2G

+
5 F3G

+
6D

�
6+A

�
2G

+
5 PR(A2)

N34= A
�
2G

+
5 F3G

+
6 A

�
3

F3= D5�PR(A2)A1:

Corollary 30. : Let M be given in (2� 1), with A1 = 0; then:

(2� 18) M+=

0B@ N41 N42

N43 N44

1CA
Where
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N41= A
�
3G

+
7 F4G

+
8 A

�
2

N42= A
�
3G

+
7 F4G

+
8D

�
8+A

�
3G

+
7 PR(A3)

N43= D
�
7G

+
7 F4G

+
8 A

�
2+PR(A�2)G

+
8 A

�
2

N44= D
�
7G

+
7 PR(A3)+D

�
7G

+
7 F4G

+
8D

�
8+PR(A�2)G

+
8D

�
8

F4= D7�PR(A3)A4:

2.4. A generalization of the Banachiewicz -Schur form

In this subchapter, Let M given in (2� 1), with A1 2 Cn;n is invertible, we give a

representation of the M-P inverse ofM; based on the Schur complement of A1;which we

call a generalization of the Banachiewicz-Schur form of M .

Theorem 31. : Let M be given in (2 � 1), such that A1 2 Cn;n is invertible ,

then:

(2� 19) M+=

0B@ J1 J2

J3 J4

1CA
Where

J1= A
�
1G

+
�KG

+
�A

�
1:

J2= A
�
1G

+
�KG

+
�D

�
��A�1G+�A2S+A1 :

J3= D
�
�G

+
�KG

+
�A

�
1�S+A1A3G

+
�A

�
1:

J4= D
�
�G

+
�KG

+
�D

�
� �S+A1A3G

+
�D

�
��D�

�G
+
�A2S

+
A1
+S+A1

D� = A2PN(SA1 ), G� = A1A
�
1+ D�D

�
�, D� = PN(S�A1 )

A3;
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G� = A
�
1A1 +D

�
�D�; K = A1 + A2S

+
A1
A3

Proof. : As A is invertible, then M admits the following decompositions:

(2� 20) M =

0B@ I 0

A3A
�1
1 I

1CA
0B@ A1 A2

0 SA1

1CA := EF

And

(2� 21) M =

0B@ A1 0

A3 SA1

1CA
0B@ I A�11 A2

0 I

1CA := GD:

It is easy to see that, D�1G+ satis�es the equations (i) and (iii) of the M-P inverse

for M and F+E�1 satis�es the equations (i) and (iv) of the M-P inverse for M; by

corollaries (27) and (28), respectively, we obtain:

(2� 22) F+ =

0B@ A�1G
+
� �A�1G+�A2S+A1

D�
�G

+
� �D�

�G
+
�A2S

+
A1
+ S+A1

1CA
And

(2� 23) G+ =

0B@ G+�A
�
1 G+�D

�
�

�S+A1A3G
+
�A

�
1 � S+A1A3G

+
�D

�
� + S

+
A1

1CA
After the calculation, we also �nd that

F+E�1=

0B@ A�1G
+
�A1 A�1G

+
�D�

A1G
+
�D

�
� D�

�G
+
�D� + S

+
A1
SA1

1CA
27



And

D�1G+=0B@ (I + A�11 A2S
+
A1
A3A1)G

+
�A

�
1 G+�D

�
� + A

�1
1 A2S

+
A1
(A3G

+
�D

�
� � I)

�S+A1A3G
+
�A

�
1 �S+A1A3G

+
�D

�
� + S

+
A1

1CA
Then from the lemma (7), we have

M+= F+E�1MD�1G+

Which is (2� 19). �

Remark 32. : By the item 1 of lemma (4) , R(A3) � R (SA1) is equivalent

to PR(SA1 )A3 = A3; or i¤ D� = 0; of the same, R(A�2) � R
�
S�A1

�
is equivalent to

D� = 0, in this case we can derive from the representation (2� 19), the M-P inverse of

M with the Banachiewicz-Schur form, which is exactly (2� 3), as a special case, if SA1

is invertible, then (2 � 19) becomes the Banachiewicz-Schur form (2 � 2), e¤ectively,

(2� 19) is the generalization of the Banachiewicz-Schur form of M .

2.5. Algorithm for computing the M-P inverse of a matrix.

The aim of this subchapter is to introduce an algorithm for calculating the M-P

inverse of a matrix A, under the condition rank(A) < min fm;ng.
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In [1] ; if A1 is invertible, Aitken is the �rst to give this factorisation:

M =

0B@ I 0

A3A
�1
1 I

1CA
0B@ A1 0

0 SA1

1CA
0B@ I A�11 A2

0 I

1CA
From here we can �nd

rank(M) = rank(A1) + rank(SA1)

We conclude that

rank(M) = rank(A1) i¤ rank(SA1) = 0; or i¤ SA1= 0

Which allows us to present this proposition:

Proposition 33. Let M be given in (2� 1) and A1 2 Cn;n is invertible, such that

rank(M) = rank(A1), then:

(2-24) M+ =

0B@ A�1T
�1
1 A1T

�1
2 A�1 A�1T

�1
1 A1T

�1
2 A�3

A�2T
�1
1 A1T

�1
2 A�1 A�2T

�1
1 A1T

�1
2 A�3

1CA
Where: T1 = A1A�1+ A2A

�
2 and T2 = A

�
1A1 + A

�
3 A3

As an application of (2�24) we propose an algorithm for computing the M-P inverse

of a matrix.

For all 1 � k � m : P
(m)
ki is the permutation matrix of row k with row i of order

m; for all k � i � m; right here P (m)kk is the identity matrix Im
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For all 1 � k � n : Q(n)kj is the permutation matrix of column k with column j of

order n; for all k � j � n, right here Q(n)kk is the identity matrix In

Proposition 34. : The following three points are satis�ed:

1) P (m)ki and Q(n)kj are unitary matrices.

2) P (m)
+

ki = P
(m)
ki and Q(n)

+

kj = Q
(n)
kj :

3)

(2� 25) (P
(m)
ki AQ

(n)
kj )

+= Q
(n)
kj A

+P
(m)
ki :

Proof. : Clearly that the identity matrix Im is the permutation between columns k

and i of the matrix P (m)ki , other way,

P
(m)
ki P

(m)
ki = Im

Analogously

Q
(n)
kj Q

(n)
kj = In

Now, If hx; yi is an inner product on Cm, it is easy to see that
D
P
(m)
ki x;x

E
andD

x;P
(m)
ki x

E
are equal for every x 2 Cm , then P (m)ki is self-adjoint, consequently 1)

and 2) are satis�ed. Applying the two previous points to obtain that (2 � 25) of item

3). �
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Theorem 35. : Let A 2 Cm;n, such that rank(A) < min fm;ng, then there is

P
(m)
1i ; P

(m)
2i ; :::; P

(m)
ki and Q(n)1j ; Q

(n)
2j ; :::; Q

(n)
kj ; that satisfy

(2� 26) P
(m)
ki :::P

(m)
2i P

(m)
1i AQ

(n)
1j Q

(n)
2j :::Q

(n)
kj =

0B@ A
(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA
Where, A(k)1 2 Ck;k is invertible and rank(A) = k. In this case the M�P inverse of

A is:

(2� 27) A+= P
(m)
ki :::P

(m)
2i P

(m)
1i

0B@ A
(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA
+

Q
(n)
1j Q

(n)
2j :::Q

(n)
kj

Proof. Let A be an m� n matrix

A =

0BBBBBBBB@

a1;1 a1;2 � � � a1;n

a2;1 a2;2 � � � a2;n

...
...

. . .
...

am;1 am;2 : : : am;n

1CCCCCCCCA
According to the following algorithm, we can �nd (2� 26); �

At the �rst step (1):

We search a non-zero coe¢ cient aij 6= 0; by default, afterward by permuting the row

1 with the row i and permuting the column 1 with the column j, in an other way we

premultiply the matrix A by the matrix of permutation P (m)1i and postmultiply by the
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matrix of permutation Q(n)1j , we get:

P
(m)
1i AQ

(n)
1j :=

0B@ A
(1)
1 A

(1)
2

A
(1)
3 A

(1)
4

1CA
Where:

0B@ A
(1)
1 A

(1)
2

A
(1)
3 A

(1)
4

1CA =

0BBBBBBBB@

�
a
(1)
1;1

� �
a
(1)
1;2 � � � a

(1)
1;n

�
0BBBB@
a
(1)
2;1

...

a
(1)
m;1

1CCCCA
0BBBB@
a
(1)
2;2 � � � a

(1)
2;n

...
. . .

...

a
(1)
m;2 � � � a

(1)
m;n

1CCCCA

1CCCCCCCCA
At the step (k): we begin again by a similar procedure, we search a coe¢ cient a(k�1)ij for

all k � i � m and k � j � n by default, where

det

0BBBB@
a
(1)
1;1 � � � a

(k�1)
1;j

...
. . .

...

a
(k�1)
i;1 � � � a

(k�1)
i;j

1CCCCA 6= 0

We put

P
(m)
ki

0B@ A
(k�1)
1 A

(k�1)
2

A
(k�1)
3 A

(k�1)
4

1CAQ(n)kj :=
0B@ A

(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA
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Where

0B@ A
(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA=

0BBBBBBBBBBBBBBB@

0BBBB@
a
(1)
1;1 � � � a

(k)
1;k

...
. . .

...

a
(k)
k;1 � � � a

(k)
k;k

1CCCCA
0BBBB@
a
(k)
1;k+1 � � � a

(k)
1;n

...
. . .

...

a
(k)
k;k+1 � � � a

(k)
k;n

1CCCCA
0BBBB@
a
(k)
k+1;1 � � � a

(k)
k+1;k

...
. . .

...

a
(k)
m;1 � � � a

(k)
m;k

1CCCCA
0BBBB@
a
(k)
k+1;k+1 � � � a

(k)
k+1;n

...
. . .

...

a
(k)
m;k+1 � � � a

(k)
m;n

1CCCCA

1CCCCCCCCCCCCCCCA
We stop the procedure when, for all a(k)ij

det

0BBBB@
a
(1)
1;1 � � � a

(k)
1;j

...
. . .

...

a
(k)
i;1 � � � a

(k)
i;j

1CCCCA = 0

Such that k + 1 � i � m and k + 1 � j � n

Since, the matrices of permutations are invertible, and A(k)1 is the largest matrix

extracted with det(A(k)1 ) 6= 0; so

rank(A) = rank

0B@ A
(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA= rank(A(k)1 ) = k
Finally, we apply the third points of proposition (34) on (2� 26) to �nd (2� 27):

Algorithm 36. : Given a matrix A 2 Cm;n; such that rank(A) < min fm;ng ;

to calculate the M-P inverse of A, we follow the following steps:
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Step (1): Applying the algorithm that is in the proof of theorem 35 to determine

(2� 26);

Step (2): Using (2� 24) to calculate the M-P inverse of

0B@ A
(k)
1 A

(k)
2

A
(k)
3 A

(k)
4

1CA ;
Step (3): By the items of the proposition 34 we get (2�27) which is the M-P inverse

of A:

2.6. A numerical example

We will give numerical example to illustrate our results, we propose this example:

Let:

A =

0BBBBBBBB@

0 1 2 1 2

2 1 1 3 1

0 1 2 1 2

2 �1 1 1 0

1CCCCCCCCA
The �rst step (1):

Note that a11 = 0, by permuting the column 1 with the column 2, we obtain

P
(m)
11 AQ

(n)
12 =

0BBBBBBBB@

(1)

�
0 2 1 2

�
0BBBB@

1

1

�1

1CCCCA
0BBBB@
2 1 3 1

0 2 1 2

2 1 1 0

1CCCCA

1CCCCCCCCA
The second step (2):
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As det

0B@ 1 0

1 2

1CA 6= 0; then

P
(m)
11 P

(m)
11 AQ

(n)
12 Q

(n)
22 =

0BBBBBBBB@

0B@ 1 0

1 2

1CA
0B@ 2 1 2

1 3 1

1CA0B@ 1 0

�1 2

1CA
0B@ 2 1 2

1 1 0

1CA

1CCCCCCCCA
The third step (3): We have

det

0BBBB@
1 0 2

1 2 1

1 0 2

1CCCCA = 0;

By permuting the row 3 with the row 4 , we obtain

P
(m)
34 P

(m)
22 P

(m)
11 AQ

(n)
12 Q

(n)
22 AQ

(n)
33 =

0BBBBBBBB@

0BBBB@
1 0 2

1 2 1

�1 2 1

1CCCCA
0BBBB@
1 2

3 1

1 0

1CCCCA
�
1 0 2

� �
1 2

�

1CCCCCCCCA

: =

0B@ A
(3)
1 A

(3)
2

A
(3)
3 A

(3)
4

1CA
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Where

det

0BBBB@
1 0 2

1 2 1

�1 2 1

1CCCCA 6= 0

Now, we apply the proposition (33) for M =

0B@ A
(3)
1 A

(3)
2

A
(3)
3 A

(3)
4

1CA ; �rst we calculate:
T1, T

�1
1 , T2, T

�1
2 , T�11 A1T

�1
2

T1=

0BBBB@
10 8 2

8 16 7

2 7 7

1CCCCA and T�11 =

0BBBB@
7
38

�7
57

4
57

�7
57

11
57

�3
19

4
57

�3
19

16
57

1CCCCA

T2=

0BBBB@
4 0 4

0 8 4

4 4 10

1CCCCA and T�12 =

0BBBB@
1
2

1
8

�1
4

1
8

3
16

�1
8

�1
4

�1
8

1
4

1CCCCA
and

T�11 A1T
�1
2 =

0BBBB@
�11
114

�55
912

43
456

10
57

31
456

�9
76

�7
114

14
152

29
228

1CCCCA
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Secondly, we use (2� 24):

0B@ A
(3)
1 A

(3)
2

A
(3)
3 A

(3)
4

1CA
+

=

0BBBBBBBBBBB@

0BBBB@
�1
228

13
57

�7
19

�1
19

4
57

14
57

3
19

�4
19

5
19

1CCCCA
0BBBB@

�1
228

�1
19

3
19

1CCCCA
0B@ �13

228
17
57

�7
57

7
57

�1
19

�1
57

1CA
0B@ �13

228

7
57

1CA

1CCCCCCCCCCCA
Finally by (2� 27):

A+=

0BBBBBBBBBBB@

13
57

�1
228

�7
19

�1
228

4
57

�1
19

14
57

�1
19

�4
19

3
19

5
19

3
19

�1
19

7
57

�1
57

7
57

17
57

�13
228

�7
57

�13
228

1CCCCCCCCCCCA
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CHAPTER 3

On M-P inverse of a 2� 2 block operator.

Recently, the representation and charaterizations of the M-P inverse of block operator

on Hilbert space have been considered by many authors, for example, in [11;Lemma 5]

under the conditions; A4 2 B(L) is invertible andM 2 B(H�L�H�L), Deng and Du

showed that the upper triangular block operator M =

264 A1 A2

0 A4

375 is M-P invertible
i¤A1 has a closed range and in this case they gived a representation of the M-P inverse

of M . The idea of multiplicative perturbation of an operator of the form M = XNY ,

where X and Y are invertible, allowed the authors Deng, Lui and Wang to give some

necessary and su¢ cient conditions for the existence of M+ and an expression for the

multiplicative perturbation of the M-P inverse of a block operatorM 2 B(H�L�H�L),

see[13] :(for more details see ([25]; [29]; [31]; [35]; [36]; [41])

We use the notation H � K to denote the direct sum of H and K, which is

also a Hilbert space, endowed with the inner product given by:
D�

h1
k1

�
;
�
h2
k2

�E
H�K

=

hh1; h2iH + hk1; k2iK ; for any hi 2 H and ki 2 K, i = 1; 2, where h:; :iH is an inner

product in H;

Consider a 2�2 block operator
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(3� 1) M =

264 A1 A2

A3 A4

3752 B(H � L�K � F ):

Lemma 37. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator, we
assume that A+1 , A

+
2 and A

+
4 exist, then M admits the following decompositions:

(3� 2) M =

264 A1 PN(A�1)A2

0 A4

375
264 I A+1 A2

0 I

375 := S1R1

(3� 3) M =

264 I A2A
+
4

0 I

375
264 A1 A2PN(A4)

0 A4

375 := R2S2

(3� 4) M =

264 PN(A�2)A1 A2

0 A4

375
264 I 0

A+2 A1 I

375 := S3R3

(3� 5)

M =

264 I PN(A�1)A2A
+
4

0 I

375
264 A1 PN(A�1)A2PN(A4)

0 A4

375
264 I A+1 A2

0 I

375 := R4S4H4
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Proposition 38. We assume that A1 and A2 are injective, thenM =

264 A1 A2

0 0

375
is injective i¤ (A1; A2) 2 DR:

Proof. We suppose that R (A1)\R (A2) 6= f0g; this means that, there is x =2 N(A1)

and x
0
=2 N(A2) suth that A1x = A2(x

0
) 6= 0 or A1x + A2(�x

0
) 6= 0; ; which is

equivalent to the existence
�
x;�x0

�
6= (0; 0) with M

�
x
x
0
�
= (0; 0), that is to say, M is

not injective. �

3.1. Representations for the M-P inverse of a 2� 2 Row block operator

with disjoint ranges operators

First of all, the range of the block operator M =

264 A1 A2

0 0

375 is equal to R(A1) +
R(A2)� f0g, because

Let y 2 R(A1) +R(A2)� f0g , 9 x1; x2 suth that

264 A1x1 + A2x2
0

375 = y ,
9 x1; x2 suth that

264 A1 A2

0 0

375
0B@ x1

x2

1CA = y , y 2 R(M); then in this case M+

exists i¤R(A1) +R(A2) is closed,

Now, we will present another necessary and su¢ cient conditions for the existence of

the M-P inverse of the row block operator M where at least one of the two operators

A+1 and A
+
2 exists and some representations of the M-P inverse of block row operator

with disjoint ranges operators.
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Theorem 39. LetM =

264 A1 A2

0 0

375 be a 2�2 row block operator, we assume that
A+1 and A

+
2 exist, then

M+ =

264 A+1 0

A+2 0

375 , A+1 A2 = 0 , A�1A2 = 0

Proof. We have A+1 A2 = 0, R (A1) ? R(A2); because

A+1 A2 = 0,
D
Ay1A2x; y

E
H
= 0; 8x 2 L; 8y 2 H

,


A2x; A

+�

1 y
�
K
= 0; 8x 2 L; 8y 2 K

, R
�
A+

�

1

�
? R(A2), R (A1) ? R(A2):

By the same procedure we get that A�1A2 = 0, R (A1) ? R(A2); we deduce that

A+1 A2 = 0, A�1A2 = 0: Now, on the one hand clearly that A
+
1 A2 = 0, A+2 A1 = 0;

and hence we obtain that M+ =

264 A+1 0

A+2 0

375. On the other hand, if the following
equation holds 264 A1 A2

0 0

375
264 A+1 0

A+2 0

375
264 A1 A2

0 0

375 =
264 A1 A2

0 0

375
Then A1A

+
1 A2 = 0; Multiply the left-hand side of the last equation by A+1 we get

A+1 A2 = 0: Finally we have proved that

M+ =

264 A+1 0

A+2 0

375 , A+1 A2 = 0: �
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The proof of the following theorem, is based on the fact that the space H1 �K1 is

closed i¤H1 andK1 are closed, whereH1 andK1 are subspaces ofH andK, respectively.

Theorem 40. Let M =

264 A1 A2

0 0

375 be a 2�2 row block operator, then

a) If A+1 exists, then the following statements are equivalent:

1) M has a closed range.

2) R((PN(A�1)A2)) is closed.

3) R(A1) + R((PN(A�1)A2)) is closed.

In this case, there exists a linear bounded operator X of the form:

(3� 6) X =

264 A+1 � A+1 A2(PN(A�1)A2)+ 0

(PN(A�1)
A2)

+ 0

375
Which satis�es the equations (i), (ii) and (iii) of the M-P inverse of M ; moreover

M+= X , N(PN(A�1)
A2) � N(A�1A2) , (A1; A2) 2 DR:

b) If A+2 exists, then the following statements are equivalent:

1) M has a closed range.

2) R(PN(A�2)A1) is closed.

3) R(A2) +R(PN(A�2)A1) is closed.
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In this case, there exists a linear bounded operator Y of the form:

(3� 7) Y =

264 (PN(A�2)A1)
+ 0

A+2 � A+2 A1(PN(A�2)A1)
+ 0

375
Which satis�es the equations (i), (ii), (iii) of the M-P inverse of M ; moroever

M+ = Y , N(PN(A�2)A1) � N(A
�
2A1) , (A1; A2) 2 DR

Proof. a) By (3 � 2) of lemma (37) and lemma (5), respectively; where A4 = 0 , we

deduce that M+ exists i¤ S+1 exists, which also is equivalent by lemma (2) to R(S
�
1S1)

is closed. Now we begin to prove that the item 1) is equivalent to the item 2), as S�1S1

has the form:

S�1S1 =

264 A�1A1 0

0 (PN(A�1)A2)
�(PN(A�1)A2)

375
We have R(S�1S1) = R(A

�
1A1)�R((PN(A�1)A2)

�(PN(A�1)A2)); since R(A
�
1A1) is closed,

it results from the lemma (2) that S�1S1 has a closed range, i¤ R(PN(A�1)A2) is closed.

Clearly that R(S1) = R(A1)+(PN(A�1)A2)� f0g, so the items 1) and 3) are equivalent.

From (3� 2) of lemma (37) and the item 1) of lemma (6), the operator X = R�11 S
+
1

veri�es the equations (i), (ii) and (iii) of the M-P inverse forM . We need to determine

the representation of the M-P inverse of S, which through it we calculate X , applying

the item 3) of the lemma (4), we obtain (PN(A�1)A2)
+ A1 = 0, so from the theorem (39)
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that S+1 has the form:

S+1 =

264 A+1 0

(PN(A�1)A2)
+ 0

375
After calculation of R�11 S

+
1 , we get the previous form (3� 6) of X , consequently of the

above that X = M+ i¤ X satis�es the equation (iv) of the M-P inverse of M , (i.e;

(XA)� = XA), that is why we need to the formula of XA:

XA =

264 (PN(A�2)A1)
+ 0

A+2 � A+2 A1(PN(A�2)A1)
+ 0

375
264 A1 A2

0 0

375

=

264 (PN(A�2)A1)
+A1 (PN(A�2)A1)

+A2

A+2 A1 � A+2 A1(PN(A�2)A1)
+A1 A+2 A2 � A+2 A1(PN(A�2)A1)

+A2

375
We know that: (PN(A�2)A1)

+ = (PN(A�2)A1)
+PN(A�2); then XA becomes:

XA =

264 (PN(A�2)A1)
+PN(A�2)A1 0

A+2 A1 � A+2 A1(PN(A�2)A1)
+PN(A�2)A1 A+2 A2

375
So, (XA)� = XA i¤ A+2 A1 = A+2 A1((PN(A�2)A1)

+PN(A�2)A1); or is equivalent by

item 2) of lemma (4) to N(PN(A�1)A2) � N(A+1 A2) = N(A�1A2). We have already

illustrated that (A1; A2) 2 DR is equivalent to N(PN(A�1)A2) � N(A�1A2) into the

lemma (9). �
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To prove that the assertions 1), 2) and 3) of b) are equivalent, it is su¢ cient to

follow the steps of the party a), whereas instead of (3�2) of lemma (37); we apply item

(3� 4) of lemma (37).

Remark 41. Suppose that A1 and A2 have a closed ranges, then:

264 A1 A2

0 0

375 has a closed range , R(A1) + R(A2) is closed , R(PN(A�2)A1) is

closed , R(PN(A�1)A2) is closed , R(A1) + R(PN(A�1)A2) is closed , R(A2) +

R(PN(A�2)A1) is closed.

Theorem 42. LetM =

264 A1 A2

0 0

375 be a 2�2 row block operator suth that R(A2),
R(A1) and R(M) are closed, then the following statements are equivalent:

a) (A1; A2) 2 DR,

b) M+ has the form

(3� 8) M+ =

264 (PN(A�2)A1)+ 0

(PN(A�1)A2)
+ 0

375 := Z

Proof. a))b): Let Z =

264 (PN(A�2)A1)+ 0

(PN(A�1)A2)
+ 0

375 ; Now we will see that Z satis�es

the equations of the M-P inverse of M; �rstly, applying the item 3 of lemma (4) we get
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that Z satis�es the equation (iv):

(�) ZM =

264 (PN(A�2)A1)+PN(A�2)A1 0

0 (PN(A�1)A2)
+PN(A�2)A2

375
Remark that (A1; A2) 2 DR is equivalent, by lemma (9) to at each one of these equalities

N((PN(A�2)A1)
+PN(A�2)A1) = N(A1); N((PN(A�1)A2)

+PN(A�1)A2) = N(A2)

Hence, the multiplication of the equality (�) on the left by M and using the item 2

of lemma (4), we �nd that Z satis�es the equation (i), and the multiplication of the

equality (�) on the right by Z we �nd that Z satis�es the equation (ii): It remains see

that Z satis�es the equation (iii); it results from the equations (i) and (ii) that MZ

which has the matrix form below is a projection

MZ =

264 A1(PN(A�2)A1)+ + A2(PN(A�1)A2)+ 0

0 0

375
and we have

R(MZ) = R(M); N(MZ) = N(Z) = N(A1(PN(A�2)
A1)

++A2(PN(A�1)
A2)

+)� F

We consider the orthogonal projection

Q =

264 PR(A1)+R(A2);N(A�1)\N(A�2) 0

0 0

375 2 B(K � F�K � F )
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From where

R(Q) = R(M) and N(Q) = N(A�1) \N(A�2)� F;

We will see that MZ = Q: These inclusions are easy to check

N(A�1) \N(A�2) � N(A�1PN(A�2)) � N(A1(PN(A�2)A1)
+)

And

N(A�1) \N(A�2) � N(A�2PN(A�1)) � N(A2(PN(A�1)A2)
+);

Hence

N(A�1) \N(A�2) � N(A1(PN(A�2)A1)
y + A2(PN(A�1)A2)

+)

Which implies that

N(A�1) \N(A
�
2)� F � N(MZ)

Consequently N(Q) � N(MZ) and R(Q) = R(M), it follows from the item 4 of

lemma (4) that MZ = Q:

b))a): M+ has the form (3� 8) then the equality MM+M = M is satis�ed and

it is equivalent to264 A1(PN(A�2)A1)+A1 A2(PN(A�1)A2)
+A2

0 0

375 =
264 A1 A2

0 0

375
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Which implies that A1(PN(A�2)A1)
+A1 = A1; next using the items 3 and 2 of lemma

(4), we obtain N(PN(A�2)A1) = N(A1) that is the item 3 of lemma (9), or equivalently

(A1; A2) 2 DR: �

3.2. Representations for the M-P inverse of a 2� 2 triangular block

operator with disjoint ranges operators

We obtain the necessary and su¢ cient conditions for the existence of the M-P inverse

of triangular block operator and its M-P inverse with disjoint ranges operators.

In reality, there are four positions of the triangular block operator, we will only study

the case where M =

264 A1 A2

0 A4

375, because the remaining cases can be converted into
upper block triangular operator, for example:

Consider the operator M =

264 A1 0

A3 A4

375, we get N = VMU =

264 A4 A3

0 A1

375 :
where: U =

264 0 IH

IL 0

375 and V =

264 0 IK

IF 0

375

Theorem 43. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper block triangular operator,if
A+1 exists, then M has a closed range exists i¤ R(A�4) +R(A

�
2PN(A�1)) is closed, in this

case there exists an operator X of the form:

48



(3� 9) X =

264 A+1 � A+1 A2G+D� � A+1 A2G+A�4

G+D� G+A�4

375
Which satis�es the three equations (i), (ii) and (iii) of the M-P inverse of M ; where

D = PN(A�1)A2 and G = D�D + A�4A4, moroever, then the following statements are

equivalent:

1) M+ = X;

2) N(G) � N(A+1 A2);

3) (

0B@ A1

0

1CA ;
0B@ A2

A4

1CA) 2 DR:

Proof. The (3� 2) of lemma (37) and lemma (5); implies that M+exists if and only

if S+1 exists, i¤ S�1S1 has a closed range, while S
�
1S1 =

264 A�1A1 0

0 G

375, it indicates
that M+ exists is equivalent to R(G) is closed, notice that the operator G is positive

semi-de�nite, then R(G) is closed i¤R(G
1
2 ) is closed, and the lemma (3) gives us that

R(G
1
2 ) = R(A�4)+R(A

�
2PN(A�1)); as a consequenceM

+ exists i¤R(A�4)+R(A
�
2PN(A�1))

is closed. Returning to the decomposition M = S1R1, we assume that S1 has a closed

range, we know that S+1 = (S
�
1S1)

+S�1 then by the item 1) of lemma (3) the operator

X = R�11 (S
�
1S1)

+S�1 veri�es the three equations (i), (ii) and (iii) of the M-P inverse

of M , at the end, from calculation, we obtain (3� 9). Now we will prove that the three
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items are equivalent, 1), 2): Clearly that

(XM)� = XM , M+ = X;

We have

XM =

264 A+1 A1 A+1 A2 � A+1 A2G+G

0 G+G

375
Then, (XM)� = XM , A+1 A2 = A+1 A2G

+G, by item 2) of lemma (4), it follows

that (XM)� = XM , N(G) � N(A+1 A2). Consider the block operator W =264 B1 B2

0 0

375 ; where B1 =
264 A1
0

375 B2 =
264 A2
A4

375, then by the lemma (9), we get
2),3). �

Theorem 44. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator,if
A+4 exists, then M has a closed range i¤ R(A1) + R(A2PN(A4)) is closed, in this case

there exists an operator Y of the form

(3� 10) Y =

264 A�1E
+ � A�1E+A2A+4

R�E+ A+4 � R�E+A2A
+
4

375
which satis�es the three conditions (i), (ii) and (iv) of the M-P inverse of M , where

R = A2PN(A4) and E = A1 A
�
1 + RR

�; moroever, then the following statements are

equivalent:

1) M+ = Y;
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2) R(A2A
+
4 ) � R(E)

3) (

�
0 A4

��
;

�
A1 A2

��
) 2 DR:

Proof. From (3� 3) of the lemma (37), lemma (5) and lemma (2), respectively, M+

exists i¤ S2S�2 has a closed range, note that S2S
�
2 =

264 E 0

0 A�4A4

375, afterwards, way
similarly to the proof of the theorem (43) we have M+ exists i¤R(A1) +R(A2PN(A4))

is closed, again in the decomposition M = R2S2, we assume S2 to have closed range,

then S+2 = S
�
2(S2S

�
2)
+, and by the item 2) of lemma (6), we have Y = S�2(S2S

�
2)
+R�12

satis�es the three equations (i), (ii) and (iv) of M-P inverse of M , wich is (3 � 10).

Similarly to the proof of the 1) ,2) in the theorem (43), we can prove that 1),2) of

this theorem. If we replace A and B by

�
0 A4

�
and

�
A1 A2

�
; respectively, in

lemma 10 , the item 3) is equivalent to N(E) � N(A+�4 A�2); next since E is self-adjoint

with closed range and R(A2A
+
4 ) � R(A2A+4 ), so

N(E) � N(A+
�

4 A
�
2) , R(A2A

+
4 ) � R(E)

Consequently, 2),3). �

Proposition 45. a) In the theorem (43), If (A1; A2) 2 DR, then M+ = X:

b) In the theorem (44), If (A�2; A
�
4) 2 DR, then M+ = Y .

Proof. a) We put C1 =

0B@ A1

0

1CA and C2 =

0B@ A2

A4

1CA : Let y =
0B@ y1

y2

1CA 2 R(C1) \

R (C2) ; then there exist x, x
0
such that y1 = A1x = A2x

0
and y2 = 0 = A2x

0
; now
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under the assumption of the item a), we get that y1 = 0 and y = 0, so (C1; C2) 2 DR;

it follows by theorem (40) that M+ = X: Similar to the proof of a), we can prove the

item b). �

Remark 46.

1) In the theorem (43):

a) We assume A1 is surjective; (i.e., A1A
+
1 = I), then the M-P inverse of M exists

if and only if A+4 exists; in addition

M+= X , N(A4) � N(A
+
1 A2):

b) if A4 is injective; (i.e, A
+
4 A4 = I), then the M-P inverse of M exists, because

R(A�4) = L, in this case the positive operator G is invertible, and we have M+ = X

3) In the lemma (44):

a) if A4 is injective, then M+ exists i¤ A+1 exists, in addition

M+ = Y , R(A2A
+
4 ) � R(A1):

b) if A1 is surjective, then the M-P inverse ofM exists, in additionM+ = Y , because

E is invertible.

Theorem 47. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator,

we assume that A+1 and A
+
4 exist, then M

+has a close range i¤ R(PN(A�1)A2PN(A4)) is

closed, in this case, the following statements are equivalent:
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1) The M-P inverse of M has the form:

(3� 11) M+ =

264 A+1 � A+1 A2T+
T y

A+1 A2T
+A2A

+
4 � A+1 A2A+4

A+4 � T+A2A+4

375
2) R(PN(A�1)A2A

+
4 ) � R(T ) and N(T ) � N(A+1 A2PN(A4)):

3) (A1; A2PN(A4)) 2 DR and (A�4; A
�
2PN(A�1)) 2 DR:

Where T = PN(A�1)A2PN(A4):

Proof. Applying theorem (43), M+ exists i¤ R(A�2PN(A�1)) + R(A�4) is closed, or

equivalently to

264 A�2PN(A�1) A�4

0 0

375
+

exists, and by the party b) of theorem (40), if

and only if (PN(A4)A
�
2PN(A�1))

+ exists, using the adjoint of operator, M+ exists i¤

(PN(A�1)A2PN(A4))
+ exists. �

1) ,2):

From the item (3� 5) of lemma (37); M is equal to R4S4H4; clearly that R4 and

H4 are invertible and

R�14 =

264 I �PN(A�1)A2A
+
4

0 I

375 ; H�1
4 =

264 I �A+1 A2

0 I

375
It is simple to see that H�1

4 S
+
4 R

�1
4 satis�es the conditions (i), (ii) of the M-P inverse

of M , thus

R(A1) ? R(T ) and R(A�4) ? R(T �)
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Or equivalently

A+1 T = 0 and TA+4 = 0

Then we can check that S+4 has the form

S+4 =

264 A+1 0

T+ A+4

375
And then we have:

(3� 12) H�1
4 S

+
4 R

�1
4 =

264 A+1 � A+1 A2T+
T+

A+1 A2T
+A2A

+
4 � A+1 A2A+4

A+4 � T+A2A+4

375
Note that both sides to the right of the (3� 11) and (3� 12) are equal, beyond, we wil

show that R(PN(A�1)A2A
+
4 ) � R(T ) and N(T ) � N(A+1 A2PN(A4)) are necessary and

su¢ cient conditions for which M+ = H�1
4 S

+
4 R

�1
4 .

We have

MH�1
4 S

+
4 R

�1
4 =

264 A1A+1
0

TT+PN(A�1)A2A
+
4 � PN(A�1)A2A

+
4

A4A
+
4

375
So,MH�1

4 S
+
4 R

�1
4 is self-adjoint is equivalent to TT+PN(A�1)A2A

+
4 = PN(A�1)A2A

+
4 , and

by item 1) of lemma (4);

MH�1
4 S

+
4 R, R(PN(A�1)A2A

+
4 ) � R(T )
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Also, we have

H�1
4 S

+
4 R

�1
4 M =

264 A+1 A1
0

A+1 A2PN(A4) � A+1 A2PN(A4)T+T

A+4 A4

375
Remark that H�1

4 S
+
4 R

�1
4 M is self-adjoint i¤ A+1 A2PN(A4) = A+1 A2PN(A4)T

+T , then

by the item 2) of lemma (4),

H�1
4 S

+
4 R

�1
4 M,N(T ) � N(A+1 A2PN(A4)):

2) ,3): We have

R(PN(A�1)A2A
+
4 ) � R(T ) , N(T �) � N(A+�4 A�2PN(A�1));

It follows from lemma (10) that

N(T �) � N(A+�4 A�2PN(A�1)), (A�4; A
�
2PN(A�1)) 2 DR:

Also by lemma (9)

N(T ) � N(A+1 A2PN(A4)) , (A1; A2PN(A4)) 2 DR:

Corollary 48. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator,
such that A+1 , A

+
4 and M

+ exist. If (A1; A2) 2 DR and (A�2; A
�
4) 2 DR, then M+ has

the representation (3� 11):
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Corollary 49. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator,
such that A+1 , A

+
2 and A

+
4 are exist, then:

M+ =

264 A+1 0

A+2 A+4

375 , A�1A2 = 0 and A2A
�
4 = 0:

3.3. Representations for the M-P inverse of a 2� 2 block operator

with disjoint ranges operators

We obtain representations of the M-P inverse of a 2� 2 block operator under con-

dition

(

0B@ A�1

A�2

1CA ;
0B@ A�3

A�4

1CA ) 2 DR
We get the proofs of this result in the end of chapter 5.

Theorem 50. Let M be de�ned as in (3� 1) with closed range such that R(A1)+

R(A2) and R(A3) +R(A4) are closed, if (

0B@ A�1

A�2

1CA ;
0B@ A�3

A�4

1CA) 2 DR; then

(3� 13) M+ =

264 A�1S+1 �W+
1 �

+
1 ZS

+
1 W+

1 �
+
1

A�2S
+
1 �W2�

+
1 ZS

+
1 W2�

+
1

375
Where S1 = A1A�1+A2A

�
2, Z = A3A

�
1+A4A

�
2,W1 = A3�ZS+1 A1; W2 = A4�ZS+1 A2

�1 = W1W
�
1 +W2W

�
2 :
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Corollary 51. Let M be de�ned as in (3�1) with closed range such that R(A1)+

R(A2) and R(A3) +R(A4) are closed, if R

0B@ A�1

A�2

1CA?R
0B@ A�3

A�4

1CA ; then

(3� 14) M+ =

264 A�1S+1 A�3S
+
2

A�2S
+
1 A�4S

+
2

375
Where S1 = A1A�1 + A2A

�
2, S2 = A3A

�
3 + A4A

�
4

Theorem 52. Let M be de�ned as in (3� 1) with closed range such that R(A1)+

R(A2) and R(A3) +R(A4) are closed, if (

0B@ A�1

A�2

1CA ;
0B@ A�3

A�4

1CA) 2 DR; then

(2� 15) M+ =

264 W3�
+
2 S1S

+
1 W1�

+
1 S2S

+
2

W4�
+
2 S1S

+
1 W2�

+
1 S2S

+
2

375
Where S1 = A1A

�
1 + A2A

�
2; S2 = A3A

�
3 + A4A

�
4, Z = A3A

�
1 + A4A

�
2, W3 = A1 �

Z�S+2 A3; W4 = A2 � Z�S+2 A4, �1 = W1W
�
1 +W2W

�
2 and �2 = W3W

�
3 +W4W

�
4 :

3.4. Representation of the M-P inverse of a 2� 2 row block operator

We give a representation of M-P inverse of row operator block, based on full-rank

decomposition.

Theorem 53. Let M =

264 A1 A2

0 0

375 be a 2�2 block operator, if FA1GA1 and

FD1GD1 are a full-rank decompositions of A1 and D1 = PN(A�1)A2; respectively, then M
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has a full-rank decomposition as follows:

(3� 16) M =

264 FA1 FD1

0 0

375
264 GA1 F+A1A2

0 GD1

375 := FMGM

In addition, the M-P inverse of M has the form:

(3� 17) M+=

264 G�A1T
�1
1 F+A1(I � A2D

+
1 ) 0

L�1T
�1
1 F+A1(I � A2D

+
1 )� D+

1 0

375
Where:

D1= PN(A�1)A2

L1= F
+
A1
A2(I �D+

1D1)

T1 = GD1G
�
D1
+ L1L

�
1

Proof. The decomposition (3� 16) is obtained by this way:

M =

264 A1 D1

0 0

375
264 I A+1 A2

0 I

375
M =

264 FA1 FD1

0 0

375
264 GA1 0

0 GD1

375
264 I A+1 A2

0 I

375
=

264 FA1 FD1

0 0

375
264 GA1 A+1 A2

0 GD1

375 := FMGM �

Now, we will illustrate through the following three points that FMGM is a full-rank

decomposition of M
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Point 1: From the assumptions and the de�nition (12), there are two complex

Hilbert spaces HA1 and HD1 , Consequently, KM := HA1 �HD1 is also complex Hilbert

space, thus, observe that:

FM2 B(HM�K � F );

And

GM2 B(H � L�HM):

Point 2:

Since R (D1) � R
�
PN(A�1)

�
= N(A�1); then R (A1) ? R (D1) ; it automatically

implies that R (A1) \R (D1) = f0g ; in this case, the proposition (38) proves that the

block operator FM is injective.

Point 3:

Applying of the lemma (5) we get

R (GM) = R

0B@
264 GA1 0

0 GD1

375
264 I A+1 A2

0 I

375
1CA = R

0B@
264 GA1 0

0 GD1

375
1CA

That is

R (GM) = R (GA1)�R (GD1) = K � F

Then GM is surjective.
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Now, as R (A1) ? R (D1), then by the Lemma (14); R (FA1) ? R (FD1), it follows

from theorem (39) that:

F+M =

264 F+A1 0

F+D1 0

375
Since GD1 is surjective then by the item (3� 10) of theorem (44) :

G+M =

264 GA1 F+A1A2

0 GD1

375
+

=

264 G�A1T�11 �G�A1T
�1
1 F+A1A2G

+
D1

L�1T
�1
1 G+D1 � R�T�11 F+A1A2G

+
D1

375
Finally, M+ = G+MF

+
M is the formula (3� 17):

Theorem 54. Let M =

264 A1 A2

0 0

375 be a 2�2 block operator, if FA2GA2and

FD2GD2 are full-rank decompositions of A2 and D2 = PN(A�2)A1, respectively, then the

decomposition :

(3� 18) M =

264 FD2 FA2

0 0

375
264 GD2 0

F yA2A1 GA2

375 := FMGM

Is a full-rank decomposition of M: Therefore, the block operator M y has the form:

(3� 19) M+=

264 L�2T
�1
2 F+A2(I � A1D

+
2 )� D+

2 0

G�A2T
�1
2 F+A2(I � A1D

+
2 ) 0

375
Where

L2= F
+
A2
A1(I �D+

2D2)
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T2= GD2G
�
D2
+L2L

�
2:

3.5. Representation for the M-P inverse of a 2� 2 block triangular

operator

We derive from our results ( theorems (43), (44) ) a representation of the M-P

inverse of triangular block operator.

Theorem 55. Let M =

264 A1 A2

0 A4

375 be a 2�2 upper triangular block operator, if
A+1 , A

+
4 exist, then the following statements are equivalent:

1) M has a close range.

2) R(A�4) +R(A
�
2PN(A�1)) is closed.

3) R(A1) +R(A2PN(A4)) is closed.

And the M-P inverse of M has the follows representation :

(3� 20) M+ =

264 N1
N3

N2

N4

375
Where:

N1= A
�
1E

+PR(A1)+A
�
1E

+(D � A2PR(A�4))G
+D�:

N2= �A�1E+(D � A2PR(A�4))G
+A�4

N3= R
�E+PR(A1)+(R

�E+(R� A1A+1 A2) + PR(A�4))G
+D�:

N4= (R
�E+(R� A1A+1 A2) + PR(A�4))G

+D�
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Proof. From theorems (43) and (44), we obtain that, the items 1), 2), 3) are equivalent,

now the representation M-P the inverse ofM which is in (3�20); it follows from (3�9),

(3� 10), and lemma (7). �

3.6. Correction to: Representation of the Moore-Penrose for a class of

2-by-2 block operator valued partial matrices, see ([11],[12]).

In this subchapter will prove that the results [11; Theorem 9, Theorem 10] and

[12;Corollary 13, Corollary14] are not true. Our objective is to discover and see that

the representations of the M-P inverse in each item of the [12;Corollary13; Corollary14],

[11; Theorem 9, Theorem 10] are not true. That is why, we give two examples, the �rst

is a counter-example and the second illustrates the illogical step in the proofs of these

result. Next, we will propose their corrections.

The result below are copies of the reference [11] and [12] without changing the

notations:

Now we consider [11;Theorem 9, Theorem 10] :

Theorem 56. [11;Theorem 9] LetM be de�ned as Eqn .(6), R(A); R(D) be closed

such that AC� = 0 and D�C = 0.

(1) If R(A)\R(B) = f0g, thenM is MP invertible if and only if R(C) and R(B0)

are closed and
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M+=

266664
A+ C+

B+0 +(D
+D +B

+
0 B0�B

+
0 B

)4(B �B0)
�(I �B0B+0 )

(D+D +B+0 B0�

B+0 B)4D
�

377775

Where4 = (D�D+(B�B0)�(I�B0B+0 )(B�B0))+ and B0 = (I�AA+)B(I�

D+D)

(2) If R(D�) \ R(B�) = f0g, then M is MP invertible if and only if R(C) and

R(B0) are closed and

M+=

266664
A�4(AA+ +B0B+0 �BB+0 ) C+

B+0 +(I �B+0 B0)(B �B0)�4(AA++

B0B
+
0 �BB+0 )

D+

377775
Where4 = (AA�+(B�B0)(I�B+0 B0)(B�B0)�)+ and B0 = (I�AA+)B(I�

D+D)

(3) If R(A) \ R(B) = f0g and R(D�) \ R(B�) = f0g, then M is MP invertible

if and only if R(C) and R(B) are closed and

264 A B

C D

375
+

=

264 A+ C+

B+ D+

375
Proof. (1) since R(A) \R(B) = f0g; R(A) and R(D) are closed, S 0

has the form
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(7) S
0
=

264 A B

0 D

375=
2666666664

0 0 B1 B2

0 A1 0 0

0 0 D1 0

0 0 0 0

3777777775
:

2666666664

N(A)

R(A�)

R(D�)

N(D)

3777777775
!

2666666664

N(A�)

R(A)

R(D)

N(D�)

3777777775
.

.

. �

Theorem 57. [11;Theorem 10] Let M be de�ned as Eqn.(6), R(B); R(C) be

closed such that BD� = 0 and C�D = 0.

(1) If R(A)\R(B) = f0g, thenM is MP invertible if and only if R(A0) and R(D)

are closed and

M+ =

266664
A+0 +(C

+C + A
+
0 A0�A

+
0 A )40

(A� A0)
�(I � A0A+0 )

(C+C + A+0 A0�

A+0 A)40C
�

B+ D+

377775

Where40 = (C
�C+(A�A0)�(I�A0A+0 )(A�A0))+ and A0 = (I�BB+)A(I�

C+C)
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(2) If R(A�) \ R(C�) = f0g, then M is MP invertible if and only if R(A0) and

R(D) are closed and

M+=

266664
A+0 +(I � A+0 A0)(A� A0)�40(BB

++

A0A
+
0 � AA+0 )

C+

B�40(BB
+ + A0A

+
0 � AA+0 ) D+

377775
Where40 = (BB

�+(A�A0)(I�A+0 A0)(A�A0)�)+ and A0 = (I�BB+)A(I�

C+C)

3) If R(A) \ R(B) = f0g and R(A�) \ R(C�) = f0g, then M is MP invertible if

and only if R(A) and R(D) are closed and

264 A B

C D

375
+

=

264 A+ C+

B+ D+

375
Proof. (1) since R(A) \R(B) = f0g; R(B) and R(C) are closed, S0 has the form

(8) S0=

264 A B

C 0

375=
2666666664

A1 A2 0 0

0 0 B1 0

0 C1 0 0

0 0 0 0

3777777775
:

2666666664

N(C)

R(C�)

R(B�)

N(B)

3777777775
!

2666666664

N(B�)

R(B)

R(C)

N(C�)

3777777775
.

.

. �
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And similarly we consider [12;Corollary13, Corollary14] :

Corollary 58. [12; Corollary 13] Suppose that the 2-by-2 upper triangular matrix

�is given as in Theorem 11

1) If R(A) \R(C) = f0g, then

264 A C

0 B

375
+

=

266664
A+ 0

C+0 +(B
+B + C

+
0 C0�C

+
0 C

)4(C � C0)
�(I � C0C+0 )

(B+B + C+0 C0�C+0 C

)4B�

377775

Where 4 = (B�B+(C�C0)�(I�C0C+0 )(C�C0))+ and C0 = (I�AA+)C(I�

B+B)

2) If R(C�) \R(B�) = f0g, then

264 A C

0 B

375
+

=

266664
A�4(AA+ + C0C+0 � CC+0 ) 0

C+0 +(I � C
+
0 C0)(C � C0)

�4(AA++C0C+0

�CC+0 )
B+

377775

C+0 +(I � C
+
0 C0)(C � C0)

�4(AA++

C0C
+
0 �CC+0 )
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Where4 = (A�A+(C�C0)(I�C+0 C0)(C�C0)�)+ and C0 = (I�AA+)C(I�

B+B)

3) If R(A) \R(C) = f0g and R(B�) \R(C�) = f0g, then

264 A C

0 B

375
+

=

264 A+ 0

C+ B+

375
Proof. (1) since R(A) \R(C) = f0g; R(A) and R(B) are closed, � has the form

(12)

264 A C

0 B

375=
2666666664

0 0 C1 C2

0 A1 0 0

0 0 D1 0

0 0 0 0

3777777775
:

2666666664

N(A)

R(A�)

R(B�)

N(B)

3777777775
!

2666666664

N(A�)

R(A)

R(B)

N(B�)

3777777775
.

.

. �

Corollary 59. [12; Corollary 14] Let A 2 B(H); B 2 B(K); C 2 B(K;H) and

R(A) be closed. Then the 2-by-2 block operator valued � is MP invertible if and only if

67



R(C�(I � AA+) +R(B�) is closed , moreover, and

264 A C

0 B

375
f1g

=

2666666664

A+ � A+C(B�B + C�(I�

AA+)C)+C�(I � AA+)

�A+C(B�B + C�(I�

AA+)C)+B�

(B�B + C�(I � AA+)C)+C�(

I � AA+)

(B�B + C�(I�

AA+)C)+B�

3777777775
Moreover, if R(A) \R(C) = f0g, then

264 A C

0 B

375
+

=

264 A+ 0

(B�B + C�C)+C� (B�B + C�C)+B�

375
Proof. .............

"If R(A) \R(C) = f0g; then C1= 0 in equation (13)"

.

.

. �

We give an example concerning corollaries 13 and 14 of reference [12]

Example 60. Let A =

264 1 0

0 0

375 ; C =
264 1 1

1 1

375 ; and B =
264 1 0

0 0

375 ;
it is clear that R(A) \R(C) = f0g and R(C�) \R(B�) = f0g hold, then:
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a) According to item (1) of corollary 13 in [12], the representation of the M-P inverse

of � has the form

(3� 21)

2666666664

264 1 0

0 0

375
264 0 0

0 0

375264 0 0

0 1

375
264 1 0

�1 0

375

3777777775
:= 
1

b) According to item (3) of corollary 13 in [12], the representation of the M-P inverse

of � has the form

(3� 22)

2666666664

264 1 0

0 0

375
264 0 0

0 0

375264 1
4

1
4

1
4

1
4

375
264 1 0

0 0

375

3777777775
:= 
2

c) According to corollary 14 in [12], the representation of the M-P inverse of � has the

form

(3� 23)

2666666664

264 1 0

0 0

375
264 0 0

0 0

375264 0 0

1
2

1
2

375
264 1 0

�1 0

375

3777777775
:= 
3
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When, we multiply the representations 
1 and 
2 on the left by �, we �nd:

(3� 24) �
1 =

2666666664

264 1 1

0 1

375
264 0 0

0 0

375264 0 0

0 0

375
264 1 0

0 0

375

3777777775

(3� 25) �
2 =

2666666664

264 3
2

1
2

1
2

1
2

375
264 1 0

1 0

375264 1
4

1
4

0 0

375
264 1 0

0 0

375

3777777775
When we multiply the representation 
3 on the right by �, we �nd:

(3� 26) 
3� =

2666666664

264 1 0

0 0

375
264 1 1

0 0

375264 0 0

1
2

0

375
264 1 0

0 1

375

3777777775
We note that the representations 
1 and 
2 dont satisfy the equation (iii) of the

M-P inverse of � (ie, �
1 and �
2 are not self-adjoint), while 
3 does not satisfy the

equations (iv) of the inverse of M-P of M , (ie, 
3� is not self-adjoint), it results that


1 6= �+, 
2 6= �+ and 
3 6= �+, so the items of corollary 13 in [12] are not true, also

70



the representation of the inverse of M-P of � under the condition R(A) \ R(C) = f0g

in corollary 14 in [12] is not true, this allows us to ask the following question " where

are the illogical steps in the proofs of corollaries 13 and 14 in [12]? " in the following

we answer it:

Suppose that A, B 2 B(L; F ) have closed ranges, always C has the following

matrix decomposition with respect to orthogonal sums L = R(B�)�? N(B) and F =

N(A�)�? R(A):

(3� 27) C=

264 C1 C2

C3 C4

375 :
264 R(B�)
N(B)

375!
264 N(A�)
R(A)

375
In [12] ; Deng and Du. considered, under the condition R(A) \ R(C) = f0g; that C

from R(B�) �? N(B) into N(A�) �? R(A) has the form C =

264 C1 C2

0 0

375 Where
C3 = 0 and C4 = 0 , also

� =

264 A C

0 B

375 has the form

� =

2666666664

0 0 C1 C2

0 A1 0 0

0 0 B1 0

0 0 0 0

3777777775
:

2666666664

N(A)

R(A�)

R(B�)

N(B)

3777777775
!

2666666664

N(A�)

R(A)

R(B)

N(B�)

3777777775
which is denoted by (12) in [12, proof of corollary 13]
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The following counter-example illustrates that even if R(A)\R(C) = f0g then C3

and C4 are not always nulle,

Example 61. Let A =

264 1 1

0 0

375 ; C =
264 2 2

1 1

375 ; and B =
264 �1 0

1 0

375,
We have R(A) \ R(C) = f0g, R(B�) =


�
1
0

��
, N(B) =


�
0
1

��
, N(A�) =


�
0
1

��
and

R(A) =

�
1
0

��
: Now note that C

�
1
0

�
=
�
2
1

�
= 1

�
0
1

�
+2
�
1
0

�
and C

�
0
1

�
=
�
2
1

�
= 1

�
0
1

�
+2
�
1
0

�
;

then C has the form

(3� 28) A2 =

264 1 1

2 2

375 :
264 
�10��
�

0
1

��
375!

264 
�01��
�
1
0

��
375

By identi�cation between (3�27) and (3�28), we get C1 = C2 = 1 and C3 = C4 = 2:

We derive from the previous example these remarks:

Remark 62. 1) The illogical step in the proof of corollary 13 in [12] is that the

matrix representation which is noted by (12); also in the proof of corollary 14 of [12] ;

the phrase:

"If R(A) \R(C) = f0g; then C1 = 0 in equation (13)"

Remark 63. The illogical steps in the proofs of theorem 9 and 10 in [11] are due

to the matrix representations which are noted by (7) and (8).
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Noted that the condition R(A) \ R(C) = f0g does not necessarily imply this

inclusion R(C) � N(A�); But it follows from lemma (4) that R(C) � N(A�) ,

PN(A�)C = C While PN(A�)C = C , A+AC = 0 Similarly to proof of theorem 13

A+AC = 0, R(A) ? R(C); So

R(C) � N(A�), R(A) ? R(C)

Remark 64. from the last equivalence, if one replaces the interssection between the

ranges in the hypotheses of the items of [11;Theorem 9, Theorem 10] and [12;Corollary

13, Corollary14] by the orthogonality the results and their proofs remain true, to illus-

trate this remark, we propose for example:

The corollaries 13 in [12] may be refomulated as follows:

Corollary 65. [12; Corollary 13] Suppose that the 2-by-2 upper triangular matrix

� =

264 A C

0 B

375 is given as in Theorem 11
1) If R(A) ? R(C), then

264 A C

0 B

375
+

=

266664
A+ 0

C+0 +(B
+B + C

+
0 C0�C

+
0 C

)4(C � C0)
�(I � C0C+0 )

(B+B + C+0 C0�C+0 C)4B
�

377775
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Where 4 = (B�B+(C�C0)�(I�C0C+0 )(C�C0))+ and C0 = (I�AA+)C(I�

B+B)

2) If R(C�) ? R(B�), then

264 A C

0 B

375
+

=

266664
A�4(AA++C0C+0 �CC+0 ) 0

C+0 +(I � C
+
0 C0)(C � C0)

�4(AA++

C0C
+
0 �CC+0 )

B+

377775
Where4 = (A�A+(C�C0)(I�C+0 C0)(C�C0)�)+ and C0 = (I�AA+)C(I�B+B)

3) If R(A) ? R(C) and R(C�) ? R(B�), then264 A C

0 B

375
+

=

264 A+ 0

C+ B+

375
Remark 66. We propose instead of [11;Theorem 9, Theorem 10] and [12;Corollary

13, Corollary14]; we can use our results in proposition (45) and the corollaries (48)

and (49) in this thesis .
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CHAPTER 4

On the product of operators with closed range.

Let A 2 B(H�K) and B 2 B(L�H);with closed ranges, the following problem:

"when the product of two operators with closed ranges has closed range", has been

studied for the �rst time in 1973 by Bouldin [5], in his work based on the notion of

the angle between two closed subspaces M and N; to demonstrate that: AB has closed

range i¤ the angle of Dixmier between R(B) and N(A)\ [N(A)\R(B)]? is positive.

From the angles of Friedrichs and Dixmier in [14;Theorem 22], Deutsch proved that the

product AB has closed range i¤ c(N(A) ; R(B) ) < 1; i¤ N(A) + R(B) is closed

or equivalently N(B�) + R(A�) is closed. Another author, Izumino used the lower

bound 
(A) of A (
(A); de�ned by 
(A) = inffkAxk : x 2 (kerA)?; kxk = 1g) in

[28;Corollary 2:5] ; to prove the equivalence between: (i) AB has closed range and; (ii)

PN(A) + PR(B) has closed range, (iii) N(A) +R(B) is closed.

We apply our main results, to give some necessary and su¢ cient conditions equivalent

for the product of two operators with closed ranges to have closed range.

Proposition 67. Let A 2 B(K�L) and B 2 B(H�K), assume that A+ and

B+exist, Then the following statements are equivalent:

1) (AB)+exists,
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2)
�
PR(A�)PR(B)

�+
exists,

3)

264 PN(A) PR(B)

0 0

375
+

exists,

4) N(A) +R(B) is closed,

5)

264 PN(B�) PR(A�)

0 0

375
+

exists,

6) N(B�) +R(A�) is closed,

7) (PN(B�) PN(A))+ exists,

8)
�
PN(A) + PR(B)

�+
exists,

9)
�
PN(B�) + PR(A�)

�+
exsits,

10)

264 B I

0 A

375
+

exists,

11) B�(I � (A�A+ I)�1)B has a closed range,

12) A(I � (BB� + I)�1)A� has a closed range

Proof. It is clear that 3) , 4), 5) , 6). Note that

R(AB) = AR(B) = AR(PR(B)) = R(APR(B))

Hence, �

R(AB) is closed i¤R(APR(B)) is closed, and by the lemma (2), R(APR(B)) is closed

means that R(PR(B)A�) is closed, as R(PR(B)A�) = R(PR(B) PR(A�)), we deduce that

1) , 2) are equivalent.

Using the party a) of the theorem (40), we get that 2) , 3), 5).

76



By the party b) of the theorem (40), we obtain the equivalence 3) ,7).

Applying of the lemma (2); we have the equivalences 3) , 8) and 5) , 9).

Using the theorem (44) we have that 4) , 10).

We put M =

264 B I

0 A

375, It follows from the lemma (2) that the statement 10

holds i¤MM� has a closed range, since we have:

MM�=

264 BB� + I A�

A AA�

375=
264 I 0

A(BB� + I)�1 I

375
264 BB� + I 0

0 A(I � (BB� + I)�1)A�

375
264 I (BB� + I)�1A�

0 I

375
Remark that the left and right matrices in the previous equation are invertible, and

BB� + I is invertible, so M+ exists i¤ the statement 12 holds; i.e., 10) ,12).

Similarly, we can obtain that 10) ,11).

Corollary 68. Let P and Q be orthogonal projections in B(H), then the following

statements are equivalent:

1) (PQ)+ exists,

2) R(I � P ) +R(Q) is closed,

3) R(P ) +R(I �Q) is closed,

4) ((I � P )(I �Q))+ exists,

5) (I � P +Q)+ exists,

6) (I + P �Q)+exists.
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7)

264 P I �Q

0 0

375
+

exists,

8)

264 I � P Q

0 0

375
+

exists,

9) P � P (Q+ I)�1P has a closed range,

10) Q� (P + I)�1Q has a closed range.

Proposition 69. Let M =

264 A1 A2

0 0

375 a be 2 � 2 block operator , we assume

that A+1 and A
+
2 exist, then the following statements are equivalent:

1) M has a closed range.

2) R(A1) +R(A2) is closed.

3)

264 PR(A1) PR(A2)

0 0

375
+

exists.

4)
�
PN(A�1)PR(A2)

�+
exists.

5)

264 PN(A�1) PN(A�2)

0 0

375
+

exists.

6)
�
PR(A1)PN(A�2)

�+
exists.

7) N(A�1) +N(A
�
2) is closed.

8)
�
PR(A1) + PR(A2)

�+
exists.

9)
�
PN(A�1) + PN(A�2)

�+
exists.

Proof. In the beginning, clearly that 1), 2) , 3), also 5) , 7).
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From the party a) of the theorem (40) we get 5) , 6):

Using the party b) of theorem (40) and lemma (3) we obtain 3), 6), 4) , 5).

By the lemma (2) we have 3) , 8) and 5) , 7) . �

Corollary 70. Let P and Q be orthogonal projectors in B(H), then the following

statements are equivalent:

1) (P +Q)+ exists.

2) R(P ) +R(Q) is closed.

3)

264 P Q

0 0

375
+

exists.

4)((I � P )Q)+ exists.

5) (P (I �Q))+ exists.

6)

264 I � P Q

0 0

375
+

exists.

7) (I � P �Q+ PQ)+ exists.

8) N(I � P ) +N(I �Q) is closed.

9) (2I � P �Q)+ exists.
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CHAPTER 5

On M-P inverse of the sum two operators

For the special case where, A and B are matrices with both AB� = 0 and A�B = 0,

M. R. Hestenes [26] has shown that (A+B)+ = A++B+; four years later, Cline [9] has

developed some representations for the M-P inverse of the sum A+B, where A and B

satisfying only the single condition AB� = 0: This result is derived as a particular case

of a representation for the M-P inverse of the sum of two matrices, without the previous

conditions, by C. G Hung and T. L. Markham in [27].

In [19]; Fill and Fishkind exhibit a neat relationship between the M-P inverse of a

sum of two square matrices A and B and the M-P inverse of the individual terms, this

is the Fill�Fishkind formula: (A+B)+= (I � S)A+(I � T ) + SB+T; Provided that

R (A) \ R(B) = f0g and R (A�) \ R(B�) = f0g; Where: S = (PN(B)?PN(A))+ and

T = (PN(A�)PN(B�)?)
+, Recently, in the setting of Hilbert spaces, forA , B 2 B(H;K);

Arias, Corach and Maestripieri in [2; Theorem 5:2] extend the Fill- �shkind formula toA

andB with closed ranges, satisfying the assumptions: R (A)\R(B) = f0g and R (A�)\

R(B�) = f0g; R(A + B) = R(A) + R(B) and R(A� + B�) = R(A�) + R(B�), a

year after, Djikíc in [16,Theorem 2:4] obtained the Fill-Fishkind formula for A and B

with closed ranges satisfying these weak assumptions: A and B coincide on R (A�) \
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R(B�); R (A) \ R(B) = f0g and R(A + B) is closed, or these A and B coin-

cide on R (A�) \ R(B�), R (A) \ R(B) = f0g; R(A + B) = R(A) + R(B) and

R(A� +B�) = R(A�) +R(B�).

5.1. Representation of the M-P inverse of the sum two operators

In this subchapter, we use the orthogonal sums of subspaces, for obtain a represen-

tation of the M-P inverse of sum two operators, in the closedness conditions for ranges.

We assume that the operator A has a closed range, the operator A has the following

matrix form with respect to the orthogonal sums K = R(A) �? N(A�) and H =

R(A�)�? N(A) :

(5� 1) A =

264 A11 0

0 0

375 :
0B@ R(A�)

N(A)

1CA!

0B@ R(A)

N(A�)

1CA
Where A11 is invertible. Moreover,

(5� 2) A+ =

264 A�111 0

0 0

375 :
0B@ R(A)

N(A�)

1CA!

0B@ R(A�)

N(A)

1CA
To obtain the identity (5 � 3); using the matrix forms of A and B with respect to the

orthogonal sums above of K and H , to transform the sum A + B into a 2� 2 block

operator block, which is the (5� 4); hence by the theorem (44) we get (5� 5) which is

equivalent by identi�cation to (5� 3):
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Theorem 71. If R(A) ? R(B); then (A+B)+ exists i¤ 
+A exists, and (A+B)+

can be expressed as:

(5� 3) (A+B)+= 
+A + (I � 

y
AB)J

+

A(�
�
A+A

�)

Where:


A= BPN(A);

�A= (I � 
+A
A)B;

JA= A
�A+��

A�A

Proof. Under the assumption R(A) ? R(B), then B has the matrix form:

B =

264 0 0

B13 B14

375 :
0B@ R(A�)

N(A)

1CA!

0B@ R(A)

N(A�)

1CA
By the addition between A and B we have the matrix form of A+B

(5� 4) A+B =

264 A11 0

B13 B14

375 :
0B@ R(A�)

N(A)

1CA!

0B@ R(A)

N(A�)

1CA
Hence,


A= BPN(A)=

264 0 0

0 B14

375 :
0B@ R(A�)

N(A)

1CA!
0B@ R(A)

N(A�)

1CA

�A= (I � 
A
+A)B =

264 0 0

PN(B�14)B13 0

375
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And

JA = A
�A+��

A�A =264 A�11A11+(PN(B�14)B13)�(PN(B�14)B13) 0

0 0

375 :=
264 � 0

0 0

375
It is clear that 
+A exists i¤B

+
14 exists, on the other hand as A11 is invertible, we have

(�3) A+B =

264 I 0

B13A
�1
11 I

375
264 A11 0

0 B14

375
it follows from the lemma (�3) that (A+B)+ exists i¤B+14 exists, then it is automatically

(A+B)+ exists i¤
+A exists. We will �nd the expression (5� 3), applying the theorem

(44), we get

(5� 5) (A+B)+=

264 �+A�11 �+(PN(B�14)B13)
�

�B+14B13�+A�11 B+14 �B+14B13�+(PN(B�14)B13)
�

375

=

264 0 0

0 B+14

375+
264 �+A�11 0

�B+14B13�+A�11 0

375+
264 0 �+(PN(B�14)

B13)
�

0 �B+14B13�+(PN(B�14)B13)
�

375
By identi�cation

(A+B)+= 
+A+(I � 

+
AB)J

+
AA

�+(I � 
+AB)J
+
A�

�
A

= 
+A+(I � 

+
AB)J

+
A(�

�
A+A

�) �

In the general case, R(A) ? R(B) is not alwyas veri�ed, that is why, we use the

notion of orthogonal projection to determine two bounded linears operators �A; �B 2
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B(H�K); satisfy

A+B = �A+ �B with R( �A) ? R( �B)

For example, note that:

A+B = PN(A�)B+A(I�A+B), we consider �A = PN(A�)B and �B = A(I�A+B),

it is easy to see that �A� �B = 0, which is equivalent to R( �A) ? R( �B), now if R( �A) is

closed, thus as consequence of the theorem (71), we get a representation of M-P inverse

of the sum A+B, see the following theorem.

Theorem 72. We assume that �A and 
 �A have closed ranges, then:

(5� 6) (A+B)+= 
+�A + (I � 

+
�A
�B) J+�A(�

�
�A+
�A�)

Where:


 �A= �BPN( �A);

� �A= (I � 
 �A

+
�A
) �B;

J �A= �A
� �A+�

�
�A� �A:

5.2. Representations of the M-P inverse of the sum two operators

with disjoint ranges.

In this subchapter, we assume that A and B have a closed ranges, by the full-rank

decomposition of operators we give some representations of the M-P inverse of sum two

operators with disjoint ranges. In what follows we need the following de�nition,
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De�nition 73. We say that A;B have the range additivity property if R(A+B) =

R(A) +R(B). We denote by R the set of all these pairs (A;B), i.e.,

R := f(A;B) : A;B 2 L(H;K) and R(A+B) = R(A) +R(B)g

Theorem 74. We have

1) If (A;B) 2 DR; then (A�; B�) 2 R, and R(A+B) is closed i¤R(A�)+R(B�)

is closed.

2) If (A�; B�) 2 DR; then (A;B) 2 R, and R(A + B) is closed i¤ R(A) + R(B)

is closed.

3) If (A;B) 2 DR and (A�; B�) 2 DR; then

(A;B) 2 R; (A�; B�) 2 R;

In addition, R(A+B), R(A) +R(B) and R(A�) +R(B�) are closed.

Proof. Let FAGA and FBGB are full-rank decomposition of A and B withHA = R(A)

and HB = R(B); we consider the operator

M0 =

264 A+B 0

0 0

375 2 B(H � L�K � F )
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We have

(5� 7) M0 =

264 FA FB

0 0

375
264 GA 0

GB 0

375 := A0B0
Where

B0 : H � L! R(A)�R(B); A0 : R(A)�R(B)! K � F

1): Since (A;B) 2 DR; it follows from the proposition (38) that A0 is injective, which

equivalent to A�0 is surjective; i.e. R(A
�
0) = R(A) � R(B), so A0 has a closed range,

now remark that

R(M�
0 ) = R(B�0A

�
0) = B

�
0R(A

�
0) = B

�
0R(A

�
0A

�+
0 ) = B

�
0R((A

+

0A0)

= B�0R(I) = R(B
�
0)

And by the item 3 of lemma (14) that

R(B�0) = R(G
�
A) +R(G

�
B)� f0g = R(A�) +R(B�)� f0g

Hence,

R(M�
0 ) = R(A

�) +R(B�)� f0g

As R(M�
0 ) = R(A

� +B�)� f0g ; So

R(A� +B�)� f0g = R(A�) +R(B�)� f0g
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Which implies that

R(A� +B�) = R(A�) +R(B�)

From the last equality we deduce that R(A+B) is closed i¤R(A�) +R(B�) is closed.

2): To prove the item 2 taking the adjoint on both side of (5� 7) and applying the item

1. 3): we already showed in items 1 and 2 that the equalities below are satis�ed

R(A+B) = R(A) +R(B); R(A� +B�) = R(A�) +R(B�)

Note that B0 is surjective because by the Proposition (38), B�0 is injective, on the other

hand we showed that A0 is injective, it follows from the of lemma (14) that A0B0 is

full-rank decomposition of A + B; which means that A + B has a closed range, of

course it results from the two last equalities that R(A) + R(B) and R(A�) + R(B�)

are closed. �

Corollary 75. If (A�; B�) 2 DR and R(A) ? R(B), we have:

(5� 8) (A+B)+ = (BPN(A))
+ + (I � (BPN(A))+B)A+

Proof. From the item 3 of theorem (74), (A+B)+ exists and R(A)+R(B) is closed,

which implies that (BPN(A))+ exists by proposition (67), it follows from the items 2) and

3) of lemma (10) that R(
A

+
A ) = R(BB

+) and N(
A

+
A ) = N(BB

+), so the item

4 of lemma (4) we get that 
A

+
A = BB+ consequently, �A = (I � 
A
+A )B = 0;

so the substitution of �A by the nul operator in (5� 3), we obtain (5� 8): �
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Similarly, we can prove this corollary:

Corollary 76. If (A;B) 2 DR and R(A�) ? R(B�), we have:

(5� 9) (A+B)+= (PN(A�)B)
++(I � (PN(A�)B)

+B)A+

Theorem 77. If (A;B) 2 DR and (A�; B�) 2 DR, then

(5� 10) (A+B)+= (BPN(A))
+B(PN(A�)B)

++(APN(B))
+A(PN(B�)A)

+

Proof. The subspaces R(A + B); R(A) + R(B) and R(A�) + R(B�) are closed by

the theorem (74), it follows that the M-P inverses that appear in the identity (5� 10)

exist. �

Let M0 be as in (5 � 7); it results from the proposition (38) that

264 FA FB

0 0

375
and

264 G�A G�B

0 0

375 are injective, so
264 GA 0

GB 0

375 is surjective, then A0B0 is a full-rank
decomposition of M0,

in this case we have

M+
0 =

264 GA 0

GB 0

375
+ 264 FA FB

0 0

375
+

:= B+0 A
+
0

Now from the item a) of lemma (15) and theorem (73), (PN(B�)FA)+, (PN(A�)FB)+,

(GBPN(A))
+ and (GAPN(B))+ exist,
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hence from B+0 =
�
B�+0

��
and using the theorem (42) we get M

M+
0 =

264 (GAPN(GB))
+ (GBPN(GA))

+

0

375
264 (PN(F �B)

FA)
+ 0

(PN(F �A)
FB)

+ 0

375

=

264 (GAPN(B))
+(PN(B�)FA)

+ + (GBPN(A))
+(PN(A�)FB)

+ 0

0 0

375
Using the equality of item b) and c) of lemma (15), we get

M+
0 =

264 (APN(B))
+A(PN(B�)A)

+ + (BPN(A))
+B(PN(A�)B)

+ 0

0 0

375
And as

M+
0 =

264 (A+B)+ 0

0 0

375
The by identi�cation

(A+B)+ = (APN(B))
+A(PN(B�)A)

+ + (BPN(A))
+B(PN(A�)B)

+ :

Corollary 78. In the previous theorem, if R(A�) ? R(B�) we obtain the identity

(5� 11); also if R(A) ? R(B) we obtain the identity (5� 12);

(5� 11) (A+B)+= B+B(PN(A�)B)
++A+A(PN(B�)A)

+
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And

(5� 12) (A+B)+= (BPN(A))
+BB++(APN(B))

+AA+

Proof. We have �

R(A�) ? R(B�) () BA� = 0 () B+BA� = 0 () A� �B+BA� = A� ()

APN(B) = A; so (APN(B))+ = A+, also (BPN(A))+ = B+ and we replace (APN(B))+

and (BPN(A))+ by A+ and B+ in (5 � 10) we obtain (5 � 11): By the same way we

can prove (5� 12):

5.3. Extension of the Fill-Fishkind formula.

In section 5 of the article [2], Arias, Corach and Maestripieri. extended the formula

of Fill-Fishkind to the in�nite Hilbert space case, by adding two other conditions to the

property of the additivity of ranges.

From the theorem below, we see that the Fill-Fishkind formula remains valid in

in�nite dimensional Hilbert spaces under the same conditions of the case of matrices.

Theorem 79. If (A;B) 2 DR and (A�; B�) 2 DR, then

(5� 13) (A+B)+= (I � S)A+(I � T ) + SB+T

Where: S = (PN(B)?PN(A))
+ and T = (PN(A�)PN(B�)?)

+:

Proof. From the item 3) of the theorem (74), (A + B)+ exists and R(A�) + R(B�)

is closed (resp., R(A) + R(B) is closed) which implies by the proposition (67) that
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S exists (resp., T exists). As B has a closed range, it results that PN(B)? = B+B

and PN(B�)? = BB
+; it follows from the lemma (4) that BS = B(PN(B)?PN(A))

+ =

B(PN(B)?PN(A))(PN(B)?PN(A))
+ = BS+S; on the other hand, since R(A) \ R(B) =

f0g; then by the item 3 of lemma (10) that N(S+S) = N(S) = N(PN(B)?) =

N(B+B) = N(B); using the item 2 of lemma (4) we obtain BS+S = B; we de-

duce that BS = B; by the same we get TB = B; also by the lemma (4) we obtain

AS = 0 and TA = 0: Now we will check that (I � S)A+(I � T ) + SB+T ) satis�es

the equations of M-P inverse of A+B

The equations (iii):

(A+B)((I � S)A+(I � T ) + SB+T ) =

(A+B)(A+ � SA+ � A+T + SA+T + SB+T ) = (or AS = 0 and BS = B)

AA+�AA+T +BA+�BA+�BA+T +BA+T +BB+T =

AA+ � AA+T +BB+T = :::by the item 3 of lemma (4)

AA+ � AA+T + T = AA+ + (I � AA+)T = :::by the item 3 of lemma (4)

AA++(I � AA+)PN(B�)?T = AA
++T+ T

The equations (iv):

((I � S)A+(I � T ) + SB+T )(A+B) =

(A+ � SA+ � A+T + SA+T + SB+T )(A+B) = (or TA = 0 and TB = B)

= A+A� SA+A + A+B � SA+B � A+B + SA+B + SB+B =

A+A� SA+A+ SB+B = :::by the item 3 of lemma (4)

A+A� SA+A+ S = A+A+ (I � A+A)S = :::by the item 3 of lemma (4)

A+A+ (I � A+A)PN(A)S = A
+A+ SS+
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The equations (i):

(A+B)((I � S)A+(I � T ) + SB+T )(A+B) = :::by (iii)

(AA+ + T+T )(A+B) = :::by TA = 0; TB = B and PN(B�)? = BB
+

A+ (AA+B + T+B) = A+ (AA+B + (PN(A�)BB
+)B) = A+B

The equations (ii):

((I � S)A+(I � T ) + SB+T )(A+B)((I � S)A+(I � T ) + SB+T ) = :::by (iv)

(A+A+S+S)(A+�SA+�A+T +SA+T +SB+T ) = (or AS = 0 and BS = B)

A+ � A+T + SS+A+ � SA+ � SS+A+T + SA+T + SB+T = ::: by S+A+ = 0

A+�A+T � SA++SA+T + SB+T = ((I � S)A+(I � T ) + SB+T ): �

5.4. Proofs of the results of subchapter 3.3

It su¢ ces to demonstrate the theorem (50) below:

Theorem 80. Theorem (50): LetM be de�ned as in (3�1) with closed range such

that R(A1) + R(A2) and R(A3) + R(A4) are closed, if (

0B@ A�1

A�2

1CA ;
0B@ A�3

A�4

1CA) 2 DR;
then

M+ =

264 A�1S+1 �W+
1 �

+
1 ZS

+
1 W+

1 �
+
1

A�2S
+
1 �W2�

+
1 ZS

+
1 W2�

+
1

375
Where S1 = A1A�1+A2A

�
2, Z = A3A

�
1+A4A

�
2,W1 = A3�ZS+1 A1; W2 = A4�ZS+1 A2

�1 = W1W
�
1 +W2W

�
2
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Proof. We have

M =

264 A1 A2

A3 A4

375=
264 A1 A2

0 0

375+
264 0 0

A3 A4

375=:M1+M2

Clearly that the assumptions of corollary (75) are satis�ed for M1 and M2;we deduce

from (5� 8) that

M+= (M2PN(M1))
+ + (I � (M2PN(M1))

+M2)M
+
1

Next we know that; M+
1 =M

�
1 (M1M

�
1 )
+, then we get

M+
1 =

264 A�1S+1 0

A�2S
+
1 0

375 and PN(M1) =

264 I � A�1S+1 A1 �A�1S+1 A2

�A�2S+1 A1 I � A�2S+1 A2

375

M2PN(M1) =

264 0 0

A3 � ZS+1 A1 A4 � ZS+1 A2

375 :=
264 0 0

W1 W2

375
Applying (M2PN(M1))

+ = (M2PN(M1))
�((M2PN(M1))(M2PN(M1))

�)+ we obtain

(M2PN(M1))
+ =

264 0 W1�
+
1

0 W2�
+
1

375
On the other hand

(I � (M2PN(M1))
+M2)M

+
1 =

264 A�1S+1 �W1�
+
1 ZS

+
1 0

A�2S
+
1 �W2�

+
1 ZS

+
1 0

375
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Finally

M+ = (M2PN(M1))
+ + (I � (M2PN(M1))

+M2)M
+
1 =264 0 W1�

+
1

0 W2�
+
1

375+
264 A�1S+1 �W1�

+
1 ZS

+
1 0

A�2S
+
1 �W2�

+
1 ZS

+
1 0

375 =
264 A�1S+1 �W1�

+
1 ZS

+
1 W1�

+
1

A�2S
+
1 �W2�

+
1 ZS

+
1 W2�

+
1

375
�
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