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NOTATION

Throughout this thesis;

H, K, L and F are four infinite dimensional complex Hilbert spaces,
B(H,K): the set of all linear bounded operators from H to K.
B(H) :the set of all linear bounded operators from H to H.
N(A) : the null space of an operator A € B(H ,K).

R(A) : the range space of an operator A € B(H,K).
A* : the adjoint of an operator A € B(H ,K).

P2?2 = P : a projector.

P? = P = P*: an orthogonal projector.

Py : the orthogonal projector onto the closed subspace M of H.
I : the identity operator.

@ : a direct sum.

@+: a direct orthogonal sum.

H, : the closure of H; in H.

C™™ . the set of all m x n complex matrices.

(v): the subspace spanned by a vector v.

r(A) : the rank of a matrix A € C™".

det(A) : the the determinant of a matrix A € C™".

I,, the identity matrix of C™".
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Introduction

E. H. Moore was the first who gave an explicit definition of a kind of inverse related
to an arbitrary matrix, this was in 1920.

In 1955 R. Penrose defined the generalized inverses of matrix, a year later, Rado
proved that these two definitions are equivalent, and since then this generalized inverse
is called the Moore-Penrose inverse, in 1949 Tseng defined the Moore-Penrose inverse
for linear operators in Hilbert spaces, (for more details see [4])

The Moore-Penrose inverse is applied in various area: Bouldin [5] gave a geometric
characterization of the condition in terms of the angle between two linear subspaces,
Nikaido [37] showed a topological characterization for it. The M-P inverse is also used
to solve linear systems, in optimization, in electrical networks see [4]. Also it is used in
electrical engineering, see [6], Electronics in [20]. That is why many authors have seen
the duty to treat its characterizations such as the sum, the product of matrices, the
block operator, the closed product range of the operators closed ranges....etc.

In 1956, Penrose [38] first studied the representation for the generalized inverse of a
partitioned complex matrix. In 1960, Greville [22] established a representation for the
Moore-Penrose inverse of a partitioned matrix of the form N = [A; : Ay], where A; is

a single column. Later in 1964, Cline [10] generalized Greville’s result and obtained the



Moore-Penrose inverse of a partitioned matrix of the form N = [A; : Ay], where A; has
more than one column.

In 1970, Meyer (see [31] and [32]) explored representations for inner inverses and
generalized inverses of 2 X 2 block triangular matrices, in 1979 [6] Campbell and Meyer
derived simple representations of the Moore-Penrose inverses of 2 X 2 triangular block
matrices under some conditions. Many of authors established several formulas for various
generalized inverses of a 2 X 2 block matrix ( also, a 2 X 2 block operator) under certain
conditions involving Schur complements; (for more details see [4], [6], [8], [11], [39], [41])

The thesis is organized as follows:

In chapter 1: We gave the definition of the Moore-Penrose inverse of a linear
operator , the definition of proprety of disjoint ranges and some equvalent statements,
also the definition of a full-rank decomposition and some related results.

In chapter 2: Under rank additivity conditions of the columns (resp, of the rows),
we gave new representations of different kinds of a 2 X 2 block matrices, we use this
representations to obtain the Moore-Penrose inverse of a block triangular matrix, and
we give a generalization of the Banachiewicz-Schur form of M with the Schur complement
of Ay in M. Next, we describe an algorithm to calculate the Moore-Penrose inverse of a
matrix A with a numerical example.

In chapter 3: We obtain necessary and sufficient conditions for the existence of
the Moore-Penrose inverse of block row operator, where at least one of the two operators
A} and Aj exists and its expressions under the condition R (A;) N R(Ap) = {0}. If

Aj or Aj has a closed range, we will introduce the concept of full-rank decomposition on



row block operator. Beyond, we give a new representation of the Moore-Penrose inverse
of row operator block, based on full-rank decomposition.

We obtained again the necessary and sufficient conditions for the existence of the
Moore-Penrose inverse of triangular block operator and its Moore-Penrose inverse with
disjoint ranges operators, and on the other hand we derive a new representation of

the Moore-Penrose inverse of triangular block operator. Beyond, we consider a 2 X 2

Ar A A1 Ar
block operator M = as sum of two operators M; = and
Az Ay 0 0
0 O
My = , and then, we gave some representaions of the Moore-Penrose inverse
Az Ay

of M under the condition R (M) N R(M3) = {0}.

We show that each representation of the Moore-Penrose inverse under assumptions
in [11,Theorem 9; Theorem 10] and in [12,Corollary 13,Corollary 14] does not always
represent the Moore-Penrose inverse, our criticism is as follows: firstly we will illustrate
with examples that the results of the items of corollaries 13, 14 and theorems 9, 10 are
not true, secondly we determine the illogical steps in their proofs and we correct these
corollaries and propose some representations of the Moore-Penrose inverse of M with
preserving the hypotheses of the corollary 13 and 14 in [12].

In the chapter 4:
We give some applications of our results, exactly, we obtain necessary and sufficient

conditions for the product of two operators with closed ranges to have a closed range,



alos we get some necessary and sufficient conditions for the sum of orthogonal projectors
to be Moore-Penrose invertible.

In the chapter 5:

From the idea that [17] the closed range operator A admits matrix form with re-
spect to the orthogonal sum of subspaces of H and K, we obtain a representation of the
Moore-Penrose inverse of the sum of two operators A and B satisfying: R (A) LR(B)
and R (A*) 4 R(B*) is closed, hence under suitable conditions, we obtian a general rep-
resentation of the Moore-Penrose inverse of the sum A + B, in the closedness conditions
for ranges.

We use the notion of the full- rank decomposition of an operator to prove that if
A and B have closed ranges and R (A) N R(B) = {0} and R(A*) N R(B*) = {0}
hold, then we have R(A + B) = R(A) + R(B), R(A* + B*) = R(A*) + R(B*) and
the subspaces R(A + B), R(A) + R(B) and R(A*) + R(B*) are closed, also that the
extension of the Fill-Fishkind formula for A and B with closed ranges is valid keeping the
conditions of Fill-Fishkind formula for matrices. On the other hand we get an analogous
formula under R (A)NR(B) = {0} and R (A*)NR(B*) = {0} to Fill-Fishkind formula
for A and B having closed ranges and derive certain cases where operator ranges are

orthogonal.



CHAPTER 1

Auxiliairy results

1.1. On M-P inverse, range of operator, projectors.

Definition 1. The Moore-Penrose inverse ( for short M-P inverse) of a closed
range operator A € B(H,K), is the unique operator AT € B(K,H) satisfying the

following four Penrose equations

(i) AATA = A, (ii) ATAAT= AT (iii) (AAT) = AAT (iv) (ATA)'= AT A,
It is well known that A™ exists for given A € B(H ,K) if and only if ( for short iff )

R(A) is closed. The following lemmas is frequently used

Lemma 2. Let A € B(H,K), then the closedness of any one of the following sets

implies the closedness of the ramaining there sets
R(A), R(A"), R(AA") and R(A*A)
If A has a closed range, then
R(A) = R(AA*) and R(A*) = R(A*A)

And
AT = A*(AA*)+ = (A*A)+A*.



Lemma 3. [20, Theorem 2.2]: Let A € B(H,K) and B € B(L,K), then
R(A) + R(B) = R((AA*+BB")?).

Lemma 4. Let A€ B(H,K), P € B(K) and Q € B(H) such that P and @ are

projectors then

1)PA=A & R(A) C R(P),
2 AQ=A < N(Q)C N(A)

3) If P is orthogonal projector and PA has a closed range, then
(PA)T = (PA)TP
4) When K = H, then
P=@Q <& R(P)CR(Q)and N(P) C N(Q)

Proof. 1): On the one hand, it is clear that, PA = A gives us that R(A) C R(P),
on the other hand, we have Py = y; Yy € R(P), the hypothesis R(A) C R(P) leads
to Py = y; Yy € R(A), which implies that PAr = Ax; Vx € H, Consequently,
the item 1) is holds. 2): <=); We have N(Q) C N(A) = R(A*) C R(Q*),
by item 1) we get @Q*A* = A* which implies that AQ = A, —=); AQ = A —
A(I-Q)=0= R(I-Q) C N(A) = N(Q) C N(A). 3): Direct verification. 4) :

—); It is clear, <=); from the item 1) and 2) we obtain: QP = P and QP = @ ,

which implies that P = @) O



Lemma 5. Let A and B € B(H, K). If there exists an invertible operator C' €

B(H) such that A = BC, then R(A) s closed iff R(B) is closed.

Proof. We have R(A) = R(BC) C R(B) and R(B) = R(AC™') C R(A), so we
deduce that R(A) = R(B). O

Lemma 6. Let A € B(H, K) with closed range, B € B(H) and C € B(K),

where B and C' are invertible, then:

1) The operator B~' A" satisfies the equations (7), (74) and (i77) of M-P inverse for
AB.
2) The operator ATC™! satisfies the equations (i), (i7) and (iv) of M-P inverse for

CA.

Proof. 1t is clear. O

Lemma 7. Assume that A € B(H ,K) has a closed range, if there are two operators X
.Y € B(K,H); such that Y satisfies the equations (i) and (iv) of the M-P inverse of

A, and X verifies the equations (i) and (ii1) of MP inverse of A, then AT = Y AX.
Proof. Direct verification. 0

1.2. On disjoint ranges

Definition 8. Let A € B(H,K),B € B(L, K),we say that A , B are disjoint

ranges if R(A) N R(B) = {0}, we denote by DR the set of all these pairs (A, B); i.e.,

DR:={(A,B): A € B(H,K), B € B(L,K) and R(A)N R(B) = {0}}



These two following lemmas give us some necessary and sufficient conditions for two

bounded operators to be disjoint ranges.

Lemma 9. Let A € B(H, K) with closed range and B € B(L,K), then the next

statements are equivalent:

1) (A, B) € DR, 3) N(B) = N(Pu~B),

2) R(B*) = R(B*Pixan),  4) N(Piy(anB) C N(A*B).

Proof. We know that R(B*) = N(B)* and R(IT(N(A*)) = N(Pn(a+) B)™*, then
2) < 3). Using absurd reasoning to proof both implications of the equivalence; 1) <
3): first, =); Let © € L satisfies Pya«)Bxr = 0 and Bx # 0, which implies that
AA*Bx = Bz and Bx # 0, it follows that Az = Bz # 0; where 2 = AT Bu,
therefore contradiction with the assertion 1). Secondly; (<: Let y € R (A) N R (B) #
{0}, there exist 1 # 0 and x5 # 0 such that Ar; = Bzy # 0, form the equation (i) of
Penrose, we obtain AAYBxy = Bxy and By # 0, then PnasyBr = 0 and Bxy # 0;
hence contradiction. Now, we will see that 1) < 4): =); If z € N (PN(A*)B),
we get Az' = Bx where ATBx = 1, as R(A) N R(B) = {0}, we deduce that
Bz =0then x € N(ATB) = N(A*B). <): Let y € R(A) N R(B), then there exist
x1 € H, x5 € L such that AAYAx;, = Bxy = y which implies that AAT Bxy =
B, or Py(aBxy = 0, since N (Py(a)B) C N(A*B), then A*Bzy = A*y = 0,

Consequently y € R(A)NN(A*) ={0},soy =0. O

We apply the results of the proceding lemma for A* and B*, we get:



Lemma 10. Let A € B(H, K) with closed range and B € B(L,K), then the next

statements are equivalent:

1) (A%, B*) € DR, 3) N(B*) = N(Piy(1) B,

2) R(B) = RIBP yg): ) N(Poseay BY) € N((AB)
Remark 11. Through the definition (8), if C' € B(F, H), then we have

1) (A,B) e DR < (B,A) € DR.

2) (A,B) e DR= (B,AC) € DR.
1.3. Full-rank decomposition

The full-rank decomposition plays an important role in the theory of the generalized
inverses, in particular for determining the expressions of the M-P inverse of an operator;
for more information see [[4],[7]]. We recall that in [7], Caradus has proved that an
operator A € B(H,K) admits a full-rank decompositon iff there exists an operator

X € B(K,H) that satisfies the equation (i) or iff A" exists.

Definition 12. Let A € B(H ,K) If there exists a Hilbert space H 4 and operators
Ga € B(H, Hy); Fo € B(Ha, K), such that G4 is right invertible, Fy is left

mvertible and
(1-1) A=F,Gy4

Then we say that (1 — 1) is a full-rank decomposition of A.



Theorem 13. : For any A € B(H,K), A has a full-rank decomposition iff A"

exists.

Proof. : Effectively, if F)4G 4 is a full-rank decomposition of A, from the definition
previous, it is obvious to verify that G F'{ is the M-P of inverse of A, in this case AT =

GHLFT. O

Conversely, From the existence of AT, we have that R(A) is closed and we con-
clude R(A) is a Hilbert space included in K, we define the operators G4 and F)4 as

follows:

G4 € B(H, R(A)), such that Gqz = Ax; Vo € H.

And

Fy € B(R(A), K), such that Faz = x; Vo € R(A); .

It is easy to see that (G4 is surjective, and F4 is injective, furthermore A = F4G 4.

We need of the following lemmas:

Lemma 14. If F4G 4 is a full-rank decompositions of A € B(H,K), then:

1) F3Fy and G AGY are invertible.
2) FX is a left inverse of Fl4, also ng is a right inverse of GG 4.
3) R (A) = R(E2), N (A) = N(Ca), R(A") = R(G) and N (A7) = N(F}).

4) A*A = GGy and AAY = FF+

10



Proof. 1): F} is injective means that F is surjective; (i.e: R(F%) = H), it follows
that [} exists and R(F5F4) = R(F}), therefore R(F3F4) = H, while F5Fy is
self-adjoint, so F'{ F4 is invertible, by the same way we have GG is invertible. 2):

Employing item 1) and lemma (2) we get
FiFy= (FiFN) FiFy = (F5F) ' FiFy = Iy,

GaGh = GaGH(GaGH) T = GaGH(GAGy) ™ = Iy,

Hence, the 2) is holds. The items 3) and 4) are clear. O

We use this below lemma in the proof of theorem (77) to prove the identity (5 — 10)

Lemma 15. Let F4G 4, FgGp be a full-rank decompositions of A and B, resepec-

tively, then we have

R(PypnA) = R(Pns+Fa),

R(PN(A*)B) = R(PN(A*)FB)
And

R(PyyB*) = R(Pnw)G3),

11



b) We suppose that (A, B) € DR and Py(p+)A has a closed range, then we have

(PN(B*)FA)+ — GA(PN(B*)A>+;

(PN(A*)FB)+ — GB(PN(A*)B>+
c¢) We suppose that (A*, B*) € DR and BPpy(a) has a closed range, then we have

(GpPyna)" = (BPn) Fg,

(GaPn)™ = (APn)) " Fa

Proof. a) The equality R(Py(+)A) = R(Pn+)Fa) is proved as follows
R(Py(p+Fa) = PnsR(Fa) = Py R(FAF)) = Py R(AAT) =
Py+yR(A) = R(Pn(p+)A). Similarly, we can have the other equals.

b) Let U = Py(p-)A and V = G, we have
R((Py(sA) (PysA)GE) C R(A*Pyp) © R(A") = R(GY) = R(GY)
So, we deduce that
(1) R(U*UV) C R(V)

Now, note that R( GG} (Pn(p+)A)*) C R(GY) = R(G?) and by the item 3 of lemma
(14) we get R( GLGY (Pns+)A)*) C R(A*), on the other hande since (A, B) € DR,

it follows from the item 2 lemma (9) that R( G{GY (PnoA)*) C R((PypA)¥)

12



that is

(+2) R(VV*U*) C R(U*)

According (*1) and (*2) and [17,item (4) of Theorem 2.2;], then U and V satisfy the
reverse order law (UV)T = VU™, that is (PypAGH)T = Ga(Pnp-A)T, while
Py Fa = PN(B*)AGX, so the equality (Pn(p+)Fa)t = Ga(PyA)T holds. In
the same way we get that (Pya)Fg)" = Gp(Pn(a+)B)". Taking the adjoint on both

sides of the equalites of item c) and we use the item b) we obtain

(PnyGp)t = Fp(PyvwyB*)*
and

(Pnvs)Ga)™ = Fi(PymA®)T

We take again the adjoints on both sides of two last equalities, obtaining the item ¢) [J

13



CHAPTER 2

On M-P inverse of a 2 x 2 block matrix
Let M be a 2 X 2 block matrix:

Ar A
(2-1) M = e C"eCP— C"pC1
As Ay
In the case, A; is invertible square matrix , the matrix Sy, 1= Ay — A3A[ Ay is
called the Schur complement of A; in M , where A;! is the usual inverse of Ay, if we
further assume, M is square matrix, then the Schur complement Sy, is invertible, iff
M is invertible, in addition, M ~! has the form:
AT+ AT ARS AR AT — AT A5
(2-2) M= ' '
-1 -1 -1
=Sy AsA; Sh,
The expression (2 — 2) is called the Banachiewicz-Schur form of the matrix M. It should
be noted that S 4, is not always invertible, But his M-P inverse exists always, that is why,

Several authors describe generalized inverses of block matrices with Banachiewicz-Schur

forms, in [3, Corollary 2] the M-P inverse of M has the following Banachiewicz—Schur

14



form

(23 e AT+ AT ARST A3 AT — AT AR5,
—SLA;;A{I Sj(l

If and only if

(2 —4) R(A,) C R(Sa4,) and R(A}) C R(S%,))

The Banachiewicz-Schur form of the matrix M has been used in dealing with inverses
of block matrices; see [[3],[8],[43] , [46]], for example, in [43] by the matrix rank method,
Y. Tian and Y. Takane gave necessary and sufficient conditions for a block matrix to
have generalized inverses with Banachiewicz-Schur forms, now, our goal in what follows

is to obtain a representation of the M-P inverse of M with the Schur complement of A

in M.

2.1. On rank additivity condition.

In this subchapter, we give some assertions equivalent to the rank additivity condi-

tions of the columns, (of rows). We start by this definition:

Definition 16. Let M be given in (2 — 1), we say that M has the rank additivity

condition of the columns if

(2-5) r(M)=r +r



Also, M has the rank additivity condition of the rows if:

2-6) o =r (. a ) 4 ),
The following lemma contains some other assertions equivalent to the (2 — 5).

Lemma 17. Let M be given in (2—1), then the following statements are equivalent:

1) M has the rank additivity condition of the columns

2) R(B\) N R(By) = {0}. 8) R(B!B,) C R (B{PN(B;)) .
3) N(M) = N (B))® N (By). 9)R(B;) =R <B§PN(B;)> .
4) R(M*) = R(B}) ® R(B). 10) N(By) = N (PN<B;)BQ> .
5) N (PN(BI>BZ) C N(B:B,). 11) R(B) =R (B;‘PN(B;)) .

6) R(B;B1) C R (B;PN(BT» . 12) N(B)) = N (PN(B;)&) .

7N (PN<B;>Bl> C N(B;By). 13) r(M) = 1 (B)) + 1 (Bs)

where: B = , By =

16



Proof. ((1) < (2)) Follows from the fact that r([A, B]) = r(A)+7(B) <= R(A)N
R(B) ={0}.((2) & (3)), We suppose that N(M) = N(By, Bs) # N(By) & N(B,),

this is equivalent to the existence of x ¢ N(B;) and 2" ¢ N(By), Bix = Byx" # 0

such that 2" = —z', it is equivalent to, R (B1) N R (By) # {0}. ((3) < (4)): let the
B, 0

block matrix 7" = , it is easy to show that R(T*) = R(Bj)® R(Bj), and
0 B

N(T) = N(By)® N(Bs), as R(M*)* = N(M), R(T*)* = N(T) and by operation
of orthogonality; R(M*) = R(T™) is equivalent to N(M) = N(T'). As the orthogonal
range of a matrix is equal to the kernel of its adjoint, this gives the equivalence between
5) and 6) ,7) and 8) , 9) and 10) , 11) and 12). Now between ((2) < (12)), =)
. we suppose that N((I — ByBy)B;) & N(Bj), then there exists x such that (I —
BgBj)le = 0 and Byxr # 0 implie that BgB;le = Bjx # 0, then contradiction,
<) if R(By)NR(By) # {0}, then there exists 0 # x € R(B}), 0 # 2" € R( B}) such
that Byx = Byt so that Bix = By By Box' which implies that (I — ByBy ) Bz = 0
and Bix # 0, at the end we have contradiction. In the same procedure we find that
2) & 10). 3) = 7); it is clear that N(By By) = N(BjBj),we suppose that there exists
0 # x where (I — BBy )Byx = 0 and By Byx # 0, it also implies that Byz + By = 0
such that y = — B3 By, then we get a contradiction. In the same procedure we find that
3) = 5). 7) = 2), we suppose there exists ¥ € R(B}), ¥ € R(B3), r # 0 and 2’ # 0,
such as Byx = Box' # 0, whith implies that Byx = BzB;nga:/ # 0 and By Bix
# 0, so Byx = By By Byz; and By By # 0, which equivalent to N ((I — BBy )Bs) C

N(BjBy), then we get a contradiction. In the same procedure we find that 5) = 2). O

17



The following lemma contains some other assertions equivalent to the (2 — 6) :
Lemma 18. Let M be given in (2—1), then the following statements are equivalent:

1) M has the rank additivity condition of the rows,

2) R(L}) N R(L3) = {0}. 8) R(LyL3) C R(LyPy(Ly)-
3) N(M*) = N(L}) ® N(L3). 9) R(Ly) = R(LyPx(1y))-
1) R(M) = R(Ly) @ R(Ly). 10) N(L3) = N(Py 1, L})-
5) N(PyL3) © N(LyL3). 11) R(Ly) = R(LyPy(1y)).
6) R(LyL}) C R(LyPy(ry). 12) N(L}) = N(PyyL}).

7) N(Pr(iyyLi) € N(LaL3). 13) r(M) = 7 (Ly) + 1 (L2)

Where: L; = ( Ay, Ay >,L2— ( Az, A4>‘

2.2. Representations of the M-P inverse of a 2 x 2 triangular block

matrix under the rank additivity condition.

We obtain in this subchapter, Some representations of the M-P inverse of a 2 X 2
block triangular matrix, for the four types of block triangular matrices; under the rank

additivity condition.
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Theorem 19. Let M be given in (2 — 1), with A3 = 0, and Y] be defined by:

- . AGY — A1GT A A}
— 1 pu—
DG A — DrGY Ay A}

Then: M™ =Y iff one of the statements of lemma (18) holds for Ry and Ry. Where:

Rlz(Al, Ag)andR2:<0, A4>

D1 - AQPN(A4) , Gl == AlAik + DIDT

Proof. For abridge the proof, we can easily check that the matrice Y7 satisfies the
equations (), (i7) and (iv) of the M-P inverse of M, only remains to determine some
necessary and sufficient conditions for which the projector MY is self-adjoint, that is

why, we calculate MY;

leNes — G1G{ Ay A + A AT
MY, =
0 A4AL

Clearly, MY} is self-adjoint iff G1GT Ay Af = Ay Af, by item 1 of the lemma (4); the

last equation equivalents to R(AsA}) C R(G1), on the other hand, note that
R(A2AI) = R(A,A}) = R(RR;)
And

wor-a(( 4 5) (D) #( 4 0 )-ninncn
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We deduce that, R(A3A7) C R(G1) iff R(R1R3) C R(R1Pp(r,)), this coincides with

the assertion 8) of lemma (18). U

Theorem 20. Let M be given in (2 — 1), with A3 = 0, and X3 be defined by:

a8 . Af — A A,GS Ds — A} A,GE A
_ =
G3 D3 Gy A]

Then: M™ = Xy iff one of the statements of the lemma (17) holds for Cy and Cs.

Where:

Ay A
Cl == and Cg =

0 Ay
D2 == PN(A’{)A2, G2 == D;DQ + AZA4

Proof. After calculation, it will be clear that X satisfies the equations (7), (i7) and

( 4i1) of M-P inverse of M, as D5A; = 0, then

Y AT A, Af Ay — AT AGE Gy
1 pu—
0 G;G2

Hence, X satisfies the equation (7ii) of M-P inverse of M, iff AT Ay = Af AsG3 Gy,

by item 2 of the lemma (4), iff

N(G2) C N(AT Ay),
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That is

N(PN(CT)Cb) C N(CTCQ)

Because:

And
N(A Ay) = R(AZAT ) = (AJR(A))F = R(A3A;)*" = N(ATAy)

Note that N(Py(cx)Ca) C N(C7Cs) coincides with the assertion 5) of the lemma (17),

which is the desired result. [l

In the following, using proofs similar to those of theorems 19 and 20 , we get the

following results:

Corollary 21. Let M be given in (2 — 1), with As = 0, and Ys be defined by:

29 . Af — DiGf A3 Af DiGY
—_— 2 p—
—A;G A3 AT AjGy

Then: M™* = Y3 iff one of the statements of the lemma (18) holds for Rs and Ry.

Where:

D3 = A3Py(a,) , G3=D3Dj; + AsA}
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R3:(A1, O)andR4:<A3, A4)

Corollary 22. Let M be given in (2 — 1), with A3 = 0, and Xy be defined by:

G A GiD:
(2 - 10) X, = 44 4y
—AfA3GL A Af — AfA3GLD;
Then: M = Xy iff one of the statements of the lemma (17) holds for C3 and Cj.

Where:

Dy = PN(AZ)AZ’) , Gy = ATA1 + DDy
Ay 0
03 = ; CY4 =
Az Ay
Corollary 23. Let M be give in (2 — 1), with Ay = 0, and Y3 be defined by:
DiGE —DiGEAAL + AF

(2-11) Y; =
ALGE G A AL

Then: M = Y3 iff one of the statements of the lemma (18) holds for Rs et Rs. Where:

Ds = A1 Pnay) , G5 = DsDj + Ay A3

R5:(A1, AQ)andR6:<A3, O)

Corollary 24. Let M be give in (2 — 1), with Ay = 0, and X3 be defined by:

G¢ Dy G A
(2—12) X, = 66 6413
—AFAGEDE + A —AFALGE A
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Then: Mt = X3 iff one of the statements of the lemma (17) holds for Cs and Cs.

Where:

Dg = PN(A;)Al , G = A§A3 + DEDG
Ay Ao

Cs = and Cg =
As 0

Corollary 25. Let M be give in (2 — 1), with Ay = 0, and Yy be defined by:
—A3GTALAY A3GF

(2 — 13) Yy =
_DiGEAAS + Af DiGH

Then: M+ =Yy iff one of the statements of the lemma (18) holds for Ry et Rg. Where

D; = A4PN(A2) ,Gr = AgA;; + D7D;

R'?:(O, AQ)andRSZ(Ag A4>

Corollary 26. Let M be give in (2 — 1), with Ay = 0, and X4 be defined by:

AT AWGEAS Af — AT AGE D
(2 . 14) X4: 3 {148 A2 3 3 {148 g
G A Gy D;

Then: M+ = X, iff one of the statements of the lemma (17) holds for C7 and Cs.
Where:
Dg = PN(A;)ALL , Gg = A;AQ + D§D8
0 Ay

C; = and Cg =
As Ay
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2.3. Representations of the M-P inverse of a 2 x 2 triangular block

matrix

We obtain in this subchapter, Some representations of the M-P inverse of a 2 X 2

block triangular matrix, for the four kinds of triangular block matrices.

Corollary 27. : Let M be given in (2 — 1), with A3 = 0, then:

(2 15) Mt Niui N

Niz Ny
Where:
N1y = ATGY Preay) + A1GY FIGy Ds,
Nip= AJG{ LGy Aj,
Nys= DG} Pagayy+ DG FiG Dyt Prasy G D3,
Nu= DiGiFGE A+ ProasGE A;.

Fi= D1—Ppa,)As.

Proof. : By (2—7), (2 — 8) and the lemma (7), M = Y] M X3, by direct computa-

tion we get (2 — 15). O
By the same way, we have:

Corollary 28. : Let M be given in (2 — 1), with Ay = 0, then:

(2 16) A Noi Noo

N23 N24
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Where

Nor= PrianGE At +DiGE FRGTA;

Nog= DiG F>GE D+ Prean Gy Di+D3G Pray
Nos= ALGY F,GF A

Noy= A;G FyGif D+ A5Gy Pray

F2: Dg—PR(Az)Ag.
Corollary 29. : Let M be given in (2 — 1), with Ay = 0, then:

(2-17) A N3 N

N33 N34
Where
N31= D;G;_PR(AQ)+D;G;F3GQD§+PR(A§)G§_D;
N3o= D;G;FgGérA;-i-PR(A;)GgA;
N33: A;G;FgGg_Dg—i—A;G;_PR(Aﬂ
N3y= A;G;‘FgGg'Ag

ng D5—PR(A2)A1.
Corollary 30. : Let M be given in (2 — 1), with Ay = 0, then:

— U T

N43 N44

Where
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Na= ALGE F,GE A

Nip= ALGH PG D+ ALGH Proay)

Nig= DG FyGE At Pagy G As

Nug= DG Ppiagy+ DG FyGE Dyt Pras) G D
Fy= D7—Ppras)As.

2.4. A generalization of the Banachiewicz -Schur form

In this subchapter, Let M given in (2 — 1), with A; € C™" is invertible, we give a
representation of the M-P inverse of M, based on the Schur complement of A;,which we

call a generalization of the Banachiewicz-Schur form of M.

Theorem 31. : Let M be given in (2 — 1), such that A; € C™" is invertible ,

then:
J J.
(2 - 19) me=| 7t
J3 Jy
Where

Ji= A{GLKGT AT

Jo= AjGEKGE Dy~ ATGEAsST .

Jy= DLGEKGE Aj—S57% AsGH AL

Ji= DiGEKGEDy —S% AsGH Dy—DGE AT +57,

Do = A3Pn(s,,), Go = A1AT+ DoD}, Dg = PN(S;:,I)A?,,
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Gﬁ - A){Al + DgDﬁ, K = Al + AZSXlA?’

Proof. : As A is invertible, then M admits the following decompositions:

1 0 Ay As

(2 — 20) M = = FbF
AgAl_l 1 0 Sa,

And
A0 [ A7'A,

(2 — 21) M = =GD.
As Sa, 0 1

It is easy to see that, D~'G™ satisfies the equations (i) and (7ii) of the M-P inverse
for M and FTE~! satisfies the equations (i) and (iv) of the M-P inverse for M, by

corollaries (27) and (28), respectively, we obtain:

(2 — 22) peo | G Al A5,
DG — DIGEASY + 8%
And
(2 — 23) G+ = G @Dy
— Sk AG A — §§, AsGEDS + 5,

After the calculation, we also find that

e [ AIGEA AXGED,

AGEDy D:GiDy + S% Sa,
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And

D1Gt=
(I 4 AP ASH AsANGEAT  GADy+ AT AyS) (AsGE Dy —T)
—S1 AsGEA; —S1 AsGy D5 + S},

Then from the lemma (7), we have
M*=F*E'MD™'G*

Which is (2 — 19). O

Remark 32. : By the item 1 of lemma (4) , R(A3) C R(Sa,) is equivalent
to PR(SAl)AS = As, or iff Dg = 0, of the same, R(A5) C R (SZI) is equivalent to
D, =0, in this case we can derive from the representation (2 —19), the M-P inverse of
M with the Banachiewicz-Schur form, which is exactly (2 — 3), as a special case, if Sa,
is invertible, then (2 — 19) becomes the Banachiewicz-Schur form (2 — 2), effectively,

(2 — 19) is the generalization of the Banachiewicz-Schur form of M.

2.5. Algorithm for computing the M-P inverse of a matrix.

The aim of this subchapter is to introduce an algorithm for calculating the M-P

inverse of a matrix A, under the condition rank(A) < min{m,n}.
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In [1], if A; is invertible, Aitken is the first to give this factorisation:

I 0 A 0 I A7'A,

AsATY T 0 Sa, 0 I

From here we can find
rank(M) = rank(A;) + rank(S4,)
We conclude that
rank(M) = rank(A,) iff rank(S , ) = 0, or iff S4,=0
Which allows us to present this proposition:

Proposition 33. Let M be given in (2—1) and A; € C™" is invertible, such that
rank(M) = rank(A;), then:

(2:24) = AT AT, A AT AT, A

AT AT, A AT AT, A

Where: Th = A1 A7+ AsAs and Ty = ATA; + Af As

As an application of (2—24) we propose an algorithm for computing the M-P inverse
of a matrix.
Foralll <k <m: P,gn) is the permutation matrix of row k with row ¢ of order

m; for all k <17 < m, right here P,izl) is the identity matrix I,,
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Foralll <k <n: Qg;) is the permutation matrix of column k& with column j of

order n, for all k < j < n, right here Q,(g,? is the identity matrix I,
Proposition 34. : The following three points are satisfied:

1) P,gn) and Q,(JJL) are unitary matrices.

m + m n + n
2) P = P and QU = QY.
3)
(2 - 25) (P AQL) ) = Q) AT B,

Proof. : Clearly that the identity matrix [, is the permutation between columns k

and ¢ of the matrix P}g;n) , other way,

PR = 1,

Analogously

QR =1

Now, If (z;y) is an inner product on C™, it is easy to see that <P,§T)x;x> and
<x;P,§lm)a:> are equal for every x € C™ | then Pk(zn) is self-adjoint, consequently 1)
and 2) are satisfied. Applying the two previous points to obtain that (2 — 25) of item

3). 0
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Theorem 35. : Let A € C™", such that rank(A) < min{m,n}, then there is

Pl(;n); Pz(;n); e Plgn) and Qg?); Qg;-); o Q,(J;), that satisfy

(2 — 26) P PSPV AQY QL) =

Where, Agk) € CH* is invertible and rank(A) = k. In this case the M-P inverse of
Ais:
+

(2 —27) Ar= PP P QUQY..Q

Proof. Let A be an m X n matrix

a1 Q2 v Qin
Q21 Q2.2 -+ Q2
A=
m;1 Am;2 .- Gmyn
According to the following algorithm, we can find (2 — 26), O

At the first step (1):
We search a non-zero coefficient a;; # 0, by default, afterward by permuting the row
1 with the row ¢ and permuting the column 1 with the column j, in an other way we

premultiply the matrix A by the matrix of permutation Pl(zn ) and postmultiply by the
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matrix of permutation Qg?), we get:
(m) (n) . _
P AQY) =

Where:

00 e
At the step (k): we begin again by a similar procedure, we search a coefficient a;;

all k <i <mand k < j <n by default, where

aﬁ . ag’jj—l)
det : : #0
N ()
We put
P]gn) Agkq) Agkq) Ql(g) _ Agk) Agk)

A:())k_l) Aik_l)
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Where

1 k k k
ag;% ag;lz a:([,/37+1 T ag;r)l,
(k) (k) (k) (k) (k) (k)
A7 Ay B App -0 Qpg Ot "0 Qg
(k) (k) (k) (k) (k) (k)
A7 Ay Opy11 " Opgrk Api1k+1 " Qpgim
k k k k
a£n?1 e a£n3k: agn;)k-&-l o agn%)n
We stop the procedure when, for all az(?)
1 k
4 e o
det : : =0
k k
az(;l) T al(;j)

Such that k+1<i<mandk+1<j7<n
Since, the matrices of permutations are invertible, and Agk) is the largest matrix

extracted with det(Agk)) # 0, so

rank(A) = rank = mnk‘(Agk)) =k

Finally, we apply the third points of proposition (34) on (2 — 26) to find (2 — 27).

Algorithm 36. : Given a matrit A € C™", such that rank(A) < min{m,n},

to calculate the M-P inverse of A, we follow the following steps:
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Step (1): Applying the algorithm that is in the proof of theorem 35 to determine

(2 - 26)7
Step (2): Using (2 — 24) to calculate the M-P inverse of
Step (3): By the items of the proposition 34 we get (2—27) which is the M-P inverse

of A.

2.6. A numerical example

We will give numerical example to illustrate our results, we propose this example:

Let:
0O 1 21 2
2 1 1 31
A=
0O 1 21 2
2 -1 110

The first step (1):

Note that aq; = 0, by permuting the column 1 with the column 2, we obtain

1) (0212)

m n 1 21 31
P1(1 )AQ§2):

1 0 2 1 2

-1 21 10

The second step (2):
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As det # 0, then

10 2 1 2
1 2 1 31
P1(1 )Pl(l )AQ§2)Q52):
1 0 21 2
-1 2 110
The third step (3): We have
10 2

By permuting the row 3 with the row 4 , we obtain

1 0 2 1
(m) p(m) p(m) (n) H(n) (n) b2 3
P34 P22 P11 AQ12 szAQs?, - 1 9 1 1
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Where

det| 1 2 1 [#0

-1 2 1
AgS) AgS)
Now, we apply the proposition (33) for M = , first we calculate:
A(3) A(3)
3 4
T17 T1_17 T27 T2_17 T1_1A1T2_1

7 -7 4
-1_ -7 11 -3
Tl_ 8 16 7 and Tl - 7 57 To
4 -3 16
11 -1
4 0 4 5 s 1
— -1_ 1 3 -1
Th=1 0 8 4 and T, = 13 4
-1 -1 1
4 4 10 T 5 1

and

—11 =55 43
114 912 456

T'AT;'=| 1o 31 -9
1 2 57 456 76

=7 14 29
114 152 228
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Secondly, we use (2 — 24):

+
Ag?)) A;3)
Aé?)) AEE)
Finally by (2 — 27):
AT=

228

57

=1
228

228
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13
57
57

—4
19

17
57

-1
19

=1
228

228

=1

-1
19

19
—13

228
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CHAPTER 3

On M-P inverse of a 2 x 2 block operator.

Recently, the representation and charaterizations of the M-P inverse of block operator
on Hilbert space have been considered by many authors, for example, in [11; Lemma 5]

under the conditions; Ay € B(L) is invertible and M € B(H @ L,H @ L), Deng and Du

Ar Ap
showed that the upper triangular block operator M = is M-P invertible

0 Ay

iff A has a closed range and in this case they gived a representation of the M-P inverse
of M. The idea of multiplicative perturbation of an operator of the form M = XNY,
where X and Y are invertible, allowed the authors Deng, Lui and Wang to give some
necessary and sufficient conditions for the existence of M ™ and an expression for the
multiplicative perturbation of the M-P inverse of a block operator M € B(H®L,H®L),
see[13] .(for more details see ([25], [29], [31], [35], [36], [41])

We use the notation H & K to denote the direct sum of H and K, which is
also a Hilbert space, endowed with the inner product given by: <(£’11), (;;2>>H$K =
(h1, he)y + (k1,ks)y , for any h; € H and k; € K, 1 = 1;2, where (., .), is an inner
product in H,

Consider a 2x2 block operator
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(3—-1) M = €EBH®LKDF).
As Ay
A A;
Lemma 37. Let M = be a 2X2 upper triangular block operator, we
0 Ay

assume that Af, AS and AJ eaist, then M admits the following decompositions:

Al PygaAs I AfA,
(3 - 2) M = = SlRl
0 A 0 I
I AA; A, AP
(3-3) M= 2 PN RS,
0 I 0 A,
PN(AS)Al AQ I 0
(3 — 4) M = = SgRg

0 Ay || AfA I

(3-5)

I PyanA AL A1 PnanyA2Pna I ATA
M — N(AD) 42240 1 DN(AD) A28 N(Ag) 1442 — RuSuH,

0 1 0 Ay 0 I
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Proposition 38. We assume that A1 and As are injective, then M =

is injective iff (A1, Ay) € DR.

Proof. We suppose that R (A1) N R (Ay) # {0}, this means that, there is x ¢ N(A;)
and 1 ¢ N(A,) suth that Az = Ay(x') # 0 or Ajx + Ay(—2') # 0;, which is
equivalent to the existence (:1:; —:c/) # (0;0) with M(;/) = (0;0), that is to say, M is

not injective. O

3.1. Representations for the M-P inverse of a 2 x 2 Row block operator

with disjoint ranges operators

A A
First of all, the range of the block operator M = is equal to R(A;) +
0 0
R(As) @ {0}, because
All’l + AQIQ
Let y € R(Ay) + R(A2) ® {0} & 3 x1, x5 suth that =y &
0
Al A2 I
3 21, x5 suth that =y <y € R(M), then in this case M
0 0 i)

exists iff R(A;) + R(A3) is closed,

Now, we will present another necessary and sufficient conditions for the existence of
the M-P inverse of the row block operator M where at least one of the two operators
Af and Aj exists and some representations of the M-P inverse of block row operator

with disjoint ranges operators.
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Al A2
Theorem 39. Let M = be a 2x2 row block operator, we assume that

0 O

AT and A eaist, then

A 0
M*T = C}ATAQZO@ATAQZO
A5 0
Proof. We have Af Ay =0 < R(A;) L R(A); because
Af Ay =0 & <A§A2x, y>H —0,VeelLVyeH
& (Agw, AT y), =0,VzeLVye K
By the same procedure we get that AjAs =0 < R (A;) L R(Az), we deduce that

AT Ay =04 AiAy = 0. Now, on the one hand clearly that A7 Ay, =0 < A5 A; =0,

AF 0
and hence we obtain that M™* = ' . On the other hand, if the following
AF 0
equation holds
A A, Af 0 Ay As Ap A,
0 O AQ+ 0 0 O 0 O

Then A; A7 A = 0, Multiply the left-hand side of the last equation by Aj we get

Af Ay = 0. Finally we have proved that
AF 0
M+ - 4 ATAQ - O |:|
AF 0
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The proof of the following theorem, is based on the fact that the space H; & K is

closed iff Hy and K are closed, where Hy and K are subspaces of H and K, respectively.

Ap Ay
Theorem 40. Let M = be a 2x2 row block operator, then

0 O

a) If Af exists, then the following statements are equivalent:
1) M has a closed range.

2) R((Pn(ax)Asz)) is closed.

3) R(Ay) + R((PN(A’{)AQ)) is closed.

In this case, there exists a linear bounded operator X of the form:

(3-6) ¥ Af = AT Ao (P a0y A2)™ 0
(PN(A;)A2)+ 0

Which satisfies the equations (7), (i4) and (i) of the M-P inverse of M; moreover

M=X & N(Pyas)A2) C N(AjAz) & (A}, 4y) € DR.

b) If A2+ exists, then the following statements are equivalent:
1) M has a closed range.
2) R(PN(A;)A1) is closed.

3) R(Az) + R(Pn(az) A1) is closed.
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In this case, there exists a linear bounded operator Y of the form:

Priaan AT 0
G- v (Pn(ag) A1)
A;_ — A;Al(PN(A;)Al)JF 0

Which satisfies the equations (7), (i), (#ii) of the M-P inverse of M; moroever
Mt=Y & N(PN(Ag)A1> C N(A;Al) = (Al,Ag) € DR

Proof. a) By (3 — 2) of lemma (37) and lemma (5), respectively; where Ay = 0, we
deduce that M exists iff S;" exists, which also is equivalent by lemma (2) to R(S}S))
is closed. Now we begin to prove that the item 1) is equivalent to the item 2), as ST .51

has the form:
AT A, 0
SiS1 =
0 (Pn(an)A2)* (PnanAsz)

We have R(S751) = R(ATA;) @ R((PN(A’{)AQ)*(PN(A’{)AQ)), since R(AjA;) is closed,
it results from the lemma (2) that S7S; has a closed range, iff R(Py A*{)Ag) is closed.
Clearly that R(S1) = R(A1)+ (Pn(ar)A2)® {0}, so the items 1) and 3) are equivalent.
From (3 — 2) of lemma (37) and the item 1) of lemma (6), the operator X = R; 'S}
verifies the equations (7), (¢7) and (4i7) of the M-P inverse for M. We need to determine

the representation of the M-P inverse of S, which through it we calculate X, applying

the item 3) of the lemma (4), we obtain (Py(ax)A2)" A1 = 0, so from the theorem (39)
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that S;" has the form:
A0
Sf =
(Pn(apA2)™ 0
After calculation of R;lsf , we get the previous form (3 — 6) of X, consequently of the
above that X = M™ iff X satisfies the equation (iv) of the M-P inverse of M, (i.e;

(XA)* = X A), that is why we need to the formula of X A:

XA — (PN(A;)Al)Jr 0 Al A2
Af — A A (PygpA)t 0|0 0
(Pr(ag) A1) A (Prag)A1)" Az

AT A — A;Al(PN(AE)Al)J“Al AT Ay — A;Al(PN(AZ)A1)+A2
We know that: (]DN(A;)Al)Jr = (PN(A;)A1)+PN(A;), then X A becomes:

YA (Pr(ag) A1) " PyiayAa 0

A3 Ay — A3 A1 (Pr(ag) A1) T Pyiag A AT A,
SO, (XA)* = XA iff A;Al = A;_Al((PN(AE)A1)+PN(A§)A1)a or is equivalent by
item 2) of lemma (4) to N(PyxA2) C N(ATAy) = N(A;A,). We have already
illustrated that (A;, Ay) € DR is equivalent to N(Py(ar)Az) C N(AjA) into the

lemma (9). O
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To prove that the assertions 1), 2) and 3) of b) are equivalent, it is sufficient to

follow the steps of the party a), whereas instead of (3 —2) of lemma (37), we apply item

(3 —4) of lemma (37).

Remark 41. Suppose that Ay and As have a closed ranges, then:

A A
b has a closed range < R(A;) + R(As) is closed < R(PN(A;)A1) is

0 O
closed & R(PN(A’{)AQ) is closed < R(A1) + R(Pn(anAz) is closed & R(Az) +

R(Pn(az)A1) is closed.

Ay Ay
Theorem 42. Let M = be a 2X2 row block operator suth that R(As),

0 0
R(A;) and R(M) are closed, then the following statements are equivalent:

a) (Al,AQ) € DR,
b) M* has the form

PyianA)t 0
(3—8) ar = | Prend) — 7

(Pyeapd2)™ 0

(PyviapA)™ 0 . .
Proof. a)=b): Let 7 = , Now we will see that Z satisfies

(PN(AI)A2)+ 0
the equations of the M-P inverse of M, firstly, applying the item 3 of lemma (4) we get
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that Z satisfies the equation (iv):

) 00— (Prn(ag) A1) Pyoagy A 0

0 (PragA2)t Py(ag) As

Remark that (A, A2) € DR is equivalent, by lemma (9) to at each one of these equalities
N((Pn(ag) A1) " PriagAr) = N(A1), N((PrcapA2)" Priag)Az) = N(Az)

Hence, the multiplication of the equality (%) on the left by M and using the item 2
of lemma (4), we find that Z satisfies the equation (i), and the multiplication of the
equality () on the right by Z we find that Z satisfies the equation (7). It remains see
that Z satisfies the equation (7i7), it results from the equations (i) and (ii) that M Z

which has the matrix form below is a projection

MZ = A1(Pyag) A" + Ao(PyapA2)™ 0

0 0

and we have
R(MZ)=R(M), N(MZ) = N(Z) = N(A1(PN(A;)A1)++A2(PN(A;)A2>+) O F
We consider the orthogonal projection

Pra)+Rr(49) NA5 NN 0
o | PrantrunNapN ) € B(K & F.K & F)

0 0
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From where

R(Q) = R(M) and N(Q) = N(A}) N N(A3) & F,
We will see that M Z = (). These inclusions are easy to check
N(A7) N N(A3) C N(AjPyag) C N(A1(PyagAi)?)
And
N(AT) N N(A3) C N(A5Pyas)) C N(Ay(PyanAz)®),

Hence
N(A7) N N(A3) C N(Ay(PyagAr)' + Ao(PyanA2)™)
Which implies that
N(A)NN(AD) @ F € N(MZ)

Consequently N(Q)) C N(MZ) and R(Q) = R(M), it follows from the item 4 of
lemma (4) that MZ = Q.
b)=-a): M has the form (3 — 8) then the equality MMM = M is satisfied and

it is equivalent to

Ay (PyeagpAr) T A Ao (PyanAz)t Ay A Ay
0 0 0 0
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Which implies that A (PN(A;)Al)JFAl = A1, next using the items 3 and 2 of lemma
(4), we obtain N(Py(az)A1) = N(A;) that is the item 3 of lemma (9), or equivalently

(A17A2) € DR. ]

3.2. Representations for the M-P inverse of a 2 x 2 triangular block

operator with disjoint ranges operators

We obtain the necessary and sufficient conditions for the existence of the M-P inverse
of triangular block operator and its M-P inverse with disjoint ranges operators.

In reality, there are four positions of the triangular block operator, we will only study

A Ay
the case where M = , because the remaining cases can be converted into
0 Ay
upper block triangular operator, for example:
A 0 Ay As
Consider the operator M = ,weget N =VMU =
Az Ay 0 A
where: U = and V =
I; 0 Irp 0O
A Ag
Theorem 43. Let M = be a 2X2 upper block triangular operator,if
0 Ay

A exists, then M has a closed range exists iff R(A}) + R(A3Pn(az)) is closed, in this

case there exists an operator X of the form:
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Al — AT A,GTD* — AT AGT A
(3-9) X =
GtD* G A;
Which satisfies the three equations (i), (i7) and (#77) of the M-P inverse of M; where
D = Py A{)Ag and G = D*D + A} A4, moroever, then the following statements are
equivalent:
1) Mt = X,

2) N(G) C N(A{ As),

Proof. The (3 —2) of lemma (37) and lemma (5), implies that M texists if and only

ATA; 0
if 5] exists, iff S7.5) has a closed range, while S}S; = , it indicates
0 G

that M ™ exists is equivalent to R(G) is closed, notice that the operator G is positive
semi-definite, then R(Q) is closed iff R(G 2) is closed, and the lemma (3) gives us that
R(G %) = R(A})+R(A5Py(ar)), as a consequence M+ exists iff R(A})+R(A5Py(ar))
is closed. Returning to the decomposition M = S1R;, we assume that S7 has a closed
range, we know that S;” = (S7S51)"S; then by the item 1) of lemma (3) the operator
X = RyY(S:S))* St verifies the three equations (i), (#4) and (iii) of the M-P inverse

of M, at the end, from calculation, we obtain (3 —9). Now we will prove that the three
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items are equivalent, 1)< 2): Clearly that

(XM)* = XM < M+ =X,

We have
Y — ATA, ATA, — AT A,GTGE
0 GTG
Then, (XM)* = XM & AT Ay = AT A;GTG, by item 2) of lemma (4), it follows

that (XM)* = XM < N(G) C N(A]A). Consider the block operator W =

By By Ay Ay
, where By = By = , then by the lemma (9), we get
0 0 0 Ay
2)&3).
Ap A,
Theorem 44. Let M = be a 2X2 upper triangular block operator,if
0 Ay

Ay ezists, then M has a closed range iff R(A1) + R(A2Pn(ay)) is closed, in this case

there exists an operator Y of the form

ATET — ATET Ay AY
(3 - 10) y=| " ' !
R*E* Af — R*ETAAf
which satisfies the three conditions (1), (i1) and (iv) of the M-P inverse of M, where

R = AsPy(ay) and E = Ay A7 + RR*, moroever, then the following statements are

equivalent:
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9) R(A;A}) C R(E)

3)((0 A4)*,(A1 Ag)*)GDR.

Proof. From (3 — 3) of the lemma (37), lemma (5) and lemma (2), respectively, M+
E 0

exists iff S355 has a closed range, note that 5255 = , afterwards, way
0 AjA,
similarly to the proof of the theorem (43) we have M™ exists iff R(A1) + R(A2Pn(ay))

is closed, again in the decomposition M = RyS5, we assume S5 to have closed range,
then Sy = S5(S255)", and by the item 2) of lemma (6), we have Y = S5 (S2595)" R;*
satisfies the three equations (i), (i7) and (iv) of M-P inverse of M, wich is (3 — 10).
Similarly to the proof of the 1) <2) in the theorem (43), we can prove that 1)<2) of
this theorem. If we replace A and B by < 0 A, ) and ( A A, ) , respectively, in
lemma 10 , the item 3) is equivalent to N(E) C N(AJ Aj), next since E is self-adjoint

with closed range and R(A,AF) € R(A,A]), so
N(E) ¢ N(Al"A3) & R(A,Af) C R(E)
Consequently, 2)<3). O
Proposition 45. a) In the theorem (43), If (A1, As) € DR, then M™ = X

b) In the theorem (44), If (A%, A}) € DR, then Mt =Y.

A Ay 1
Proof. a) We put '} = and Cy = .Lety = € R(Cy)N

0 Ay Y2
R (C5), then there exist , z’ such that = Ax = Asx’ and Yo = 0 = Ao, now
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under the assumption of the item a), we get that y; = 0 and y = 0, so (C1,C3) € DR,
it follows by theorem (40) that M = X. Similar to the proof of a), we can prove the

item b). U
Remark 46.

1) In the theorem (43):
a) We assume A; is surjective; (i.e., Ay A7 = I), then the M-P inverse of M exists

if and only if A exists; in addition

M*=X < N(A,) C N(ATA,).

b) if Ay is injective; (i.e, Af Ay = I), then the M-P inverse of M exists, because
R(A}) = L, in this case the positive operator G is invertible, and we have M T = X
3) In the lemma (44):

a) if Ay is injective, then M™ exists iff A] exists, in addition
M* =Y & R(AA]) C R(Ay).

b) if A is surjective, then the M-P inverse of M exists, in addition M+ =Y, because

F is invertible.

Ap Ay
Theorem 47. Let M = be a 2X2 upper triangular block operator,

0 Ay
we assume that AT and AJ exist, then M has a close range iff R(PN(AT)AQPN(A4)) is

closed, in this case, the following statements are equivalent:
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1) The M-P inverse of M has the form:

A — AT AT AF AT A Af — AF A A
(3 . 11) M+ _ 1 1412 1412 2434 1 412434
Tt A — T+ A A}
2) R(Py(apAsAT) C R(T) and N(T) C N(A{ AyPy(ay))-
3) (A1, A3Py(a,)) € DR and (A}, A3Py(as)) € DR.

Where T' = PN(A’{)AQPN(AQ-

Proof. Applying theorem (43), M™" exists iff R(A5Pyax)) + R(Aj}) is closed, or

+
. APy Ai . .
equivalently to exists, and by the party b) of theorem (40), if
0 0
and only if (Pya,)AsPn(ar))" exists, using the adjoint of operator, M™ exists iff
(PN(AT)AQPN(A4))+ exists. [
1) ©2):

From the item (3 — 5) of lemma (37), M is equal to R4S4Hy, clearly that R4 and

H, are invertible and

_ . + _AF
Rt = I Pran A2 A} CoH - I AT Ay
0 I 0 I
It is simple to see that H, 'SJ R, ' satisfies the conditions (i), (ii) of the M-P inverse

of M, thus

R(A;) L R(T) and R(A}) L R(T*)
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Or equivalently

AfT =0 and TA} =0

Then we can check that S has the form

Sy =

And then we have:

A} — AT AT AT ATT A A — AT AR AS
(3 —12) Hi'S{Rr=| " ' o

Tt A —TTA AT
Note that both sides to the right of the (3 —11) and (3 — 12) are equal, beyond, we wil
show that R(Pyas)A2A47) C R(T) and N(T) C N(Af A3 Py a,)) are necessary and
sufficient conditions for which M+ = H; 'S} R;*.

‘We have

A1AT TTHPyanyAs Al — PyanAsAf
MHlelelz 1431 N(A7)4244 N(A7)4124y
0 A AS

So, MH;lSZRZI is self-adjoint is equivalent to TTJ'_PN(AT)AQAI = PN(AT)A2AI7 and

by item 1) of lemma (4),
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Also, we have

ATA AT AyProayy — AT Ao Pyany T+ T

0 Af Ay

Remark that H, 'S Ry "M is self-adjoint iff A] AyPya,) = AT AgPrniayTHT, then

by the item 2) of lemma (4),
H'STR;'"M&N(T) C N(AT AsPyay)).
2) <3): We have
R(Py(apA2AY) C R(T) < N(T*) C N(A}" A5Py(ar)),
It follows from lemma (10) that
N(T*) C N(A{ A3Pyay) < (A5, A3Pn(ay) € DR,
Also by lemma (9)
N(T) C N(A] A2Pray) < (A}, AyPrnay) € DR.

Al Ag
Corollary 48. Let M = be a 2X2 upper triangular block operator,

0 A
such that AT, A} and M exist. If (A1, As) € DR and (A%, A}) € DR, then M has

the representation (3 — 11).
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Al A2
Corollary 49. Let M = be a 2X2 upper triangular block operator,
0 Ay

such that AT, A and AJ are exist, then:

AT 0
+ 1 * *
M™ = & ATAs =0 and A Ay = 0.
Ay AL

3.3. Representations for the M-P inverse of a 2 x 2 block operator

with disjoint ranges operators

We obtain representations of the M-P inverse of a 2 X 2 block operator under con-

dition

A Az
(" |.| ?|)epr
A3 Ay

We get the proofs of this result in the end of chapter 5.

Theorem 50. Let M be defined as in (3 — 1) with closed range such that R(A;) +
A A
R(As) and R(As) + R(A4) are closed, if ( , ) € DR, then
A A

ArST —wirryzs) wiirf
(3—13) A = 1°1 1 1140 11

ALSH —WoXFZSH WXy

Where Sl - AlAI—i—AQA;, Z = A3A>{—|—A4A;, W1 == Ag—Z;ST_Al, W2 = A4—ZSTA2
Y, = WiW; + WolWs,

26



Corollary 51. Let M be defined as in (3 —1) with closed range such that R(A1)+

A} A
R(Ay) and R(A3) + R(Ay) are closed, if R " LR ’ , then
A} A

[\

(3 —14) M* = AST Ay
A3S© ALSY

Where Sl = AIAT + AQA;, Sg = A3A§ + A4AZ

Theorem 52. Let M be defined as in (3 — 1) with closed range such that R(A;) +

As Al
R(A3) and R(As) + R(Ay) are closed, if ( ! , ’ ) € DR, then
A A

o) e | WHTESIST ]SS

W4T3515fr W2Tf5255r
Where Sl = AlAT + AQA;, 52 = A3A§ + A4AZ, Z = A3A>{ + A4A;, W3 = Al -
Z*S;A:;, W4 - A2 - Z*S;Azl, Tl - W1W1* + WQWQ* and TQ = VV:J,I/V:;< + W4WZ
3.4. Representation of the M-P inverse of a 2 x 2 row block operator

We give a representation of M-P inverse of row operator block, based on full-rank

decomposition.

Ay Ay
Theorem 53. Let M = be a 2Xx2 block operator, if Fa, G4, and

0 O
Fp,Gp, are a full-rank decompositions of Ay and D = PN(A’{)AQ, respectively, then M
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has a full-rank decomposition as follows:

Fu, F Ga FrA
(3 16) M= " AT PLG

0 0 0 Gp,

In addition, the M-P inverse of M has the form:

G Ty (I — AyDY 0
(3—17) M*= W FLU = AP
LiT7VFL (I — AyDY) — DY 0
Where:
Dy1= Pnan Az
Li=F} As(I — D} Dy)

Ty = Gp,Gp, + L1 L

Proof. The decomposition (3 — 16) is obtained by this way:

A Dy || T AfA,
M =

0 0 0 I

Fa, Fp, || Ga 0 I Af A,
M =

0 0 0 Gp, 0 I

= = FMGM 0
0 0 0 Gp,

Now, we will illustrate through the following three points that Fj;G ) is a full-rank

decomposition of M
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Point 1: From the assumptions and the definition (12), there are two complex
Hilbert spaces H 4, and Hp,, Consequently, K s := H 4, ® Hp, is also complex Hilbert

space, thus, observe that:

Fye B(HM, Ko F),
And

Gue B(H® L, Hy).

Point 2:

Since R(Dy) C R (PN(A»{)) = N(A}), then R(Ay) L R(D,), it automatically
implies that R (A1) N R (D;) = {0}, in this case, the proposition (38) proves that the
block operator Fy; is injective.

Point 3:

Applying of the lemma (5) we get

R(Gy) =R - R

That is

R(Gy)=R(Ga)® R(Gp,)=Ka&F

Then (G); is surjective.
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Now, as R(A;) L R(D;), then by the Lemma (14), R(F4,) L R(Fp,), it follows

from theorem (39) that:
+
Fi - Fi 0
F 51 0
Since G'p, is surjective then by the item (3 — 10) of theorem (44) :
+

ot Ga, Fi A G T — Gy T Fi AGH,
M: =

0 Gp, LTyt Gf, — RTVFL AGH,

Finally, M+ = G}, F}; is the formula (3 — 17).

A Ay
Theorem 54. Let M = be a 2x2 block operator, if Fa,Ga,and

0 0
Fp,Gp, are full-rank decompositions of As and Dy = PN(A;)Ab respectively, then the
decomposition :

Fp, Fa Gp 0
(3 —18) M = ’ ’ ’ = FyuGuy
0 0 Fi A Ga,

Is a full-rank decomposition of M. Therefore, the block operator M has the form:

5 19) L LyT, ' Fi (I — A.DJ)— Dy 0
G, Ty ' Fi (I — A DY) 0

Where

Ly= F} Ai(I — Dy Ds)
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TQZ GDQG*D2+L2L§.

3.5. Representation for the M-P inverse of a 2 x 2 block triangular

operator

We derive from our results ( theorems (43), (44) ) a representation of the M-P

inverse of triangular block operator.

Ay A;
Theorem 55. Let M = be a 2Xx2 upper triangular block operator, if

0 A

Af, AI exist, then the following statements are equivalent:

1) M has a close range.
2) R(A}) + R(A5Pn(ay) is closed.
3) R(A1) + R(A2Pn(a,)) is closed.

And the M-P inverse of M has the follows representation :

N, N
(3 — 20) Mt=|

Ns Ny

Where:
Ni= A{E* Pray)+ATEY (D — Ay Praz))G D",
Ny= —A{ET(D — A,Pras))G" A;
N3= R*E* Priay+(RET(R — AJAf A) + Py )G D"
Ny= (R"E*(R — A, Af A3) + Py s )G D*
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Proof. From theorems (43) and (44), we obtain that, the items 1), 2), 3) are equivalent,
now the representation M-P the inverse of M which is in (3 —20), it follows from (3—9),

(3 —10), and lemma (7). 0J

3.6. Correction to: Representation of the Moore-Penrose for a class of

2-by-2 block operator valued partial matrices, see ([11],[12]).

In this subchapter will prove that the results [11; Theorem 9, Theorem 10| and
[12,Corollary 13, Corollary14] are not true. Our objective is to discover and see that
the representations of the M-P inverse in each item of the [12;Corollary13, Corollary14],
[11; Theorem 9, Theorem 10] are not true. That is why, we give two examples, the first
is a counter-example and the second illustrates the illogical step in the proofs of these
result. Next, we will propose their corrections.

The result below are copies of the reference [11] and [12] without changing the
notations:

Now we consider [11,Theorem 9, Theorem 10] :

Theorem 56. [11, Theorem 9] Let M be defined as Eqn .(6), R(A), R(D) be closed

such that AC* =0 and D*C = 0.

(1) If R(A)N R(B) = {0}, then M is MP invertible if and only if R(C') and R(By)

are closed and
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At ct
M=\ Bf+(D*D+ BfBy—B{B  (D"D+ BfBy—

)A(B — By)*(I — ByB) B B)AD*

Where A = (D*D+ (B — By)*(I — BoBf )(B—By))" and By = (I — AAT)B(I —
DT D)
(2) If R(D*) N R(B*) = {0}, then M is MP invertible if and only if R(C') and

R(By) are closed and

A*A(AAY + ByBf — BBY) ct
M*= | Bf+(I — Bf By)(B — By)*A(AAT +
ByBf — BBY)
Where A = (AA*+ (B — By)(I — Bf By)(B — By)*)* and By = (I— AAY)B(I —
D*D)
(3) If R(A) N R(B) = {0} and R(D*) N R(B*) = {0}, then M is MP invertible

if and only if R(C') and R(B) are closed and

+
A B AT ct

¢ D Bt D+

Proof. (1) since R(A) N R(B) = {0}, R(A) and R(D) are closed, S has the form
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_ 0 0 B, By I N(A) 1 N(A4%) -

o s AB| |04 0 0 R(AY) - R(A)
0 0 0 D 0 R(D*) R(D)

00 0 0 N(D) N(D*)

Theorem 57. [11, Theorem 10] Let M be defined as Eqn.(6), R(B), R(C) be

closed such that BD* =0 and C*D =0

(1) If R(A)N R(B) = {0}, then M is MP invertible if and only if R(Ap) and R(D)

are closed and

ATH(CHC + AT Ag—AJ A (CTC + Af Ap—
M* = (A- Ag)" (I = AyAq) Ag A) A C*
BT D+

Where AO = (C*C+(A—AU>*([—AOA8_)(A—A0))+ and AO = (I—BB+)A([—
c+0)
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(2) If R(A*) N R(C*) = {0}, then M is MP invertible if and only if R(Ag) and
R(D) are closed and
AF+(I — Af Ag)(A — Ag)*No(BBT+ o
M= AgAt — AAT)
B*No(BB" + AgAf — AAY) Dt
Where Ag = (BB*+(A— Ag)(I— AF Ag)(A— Ag)*)* and Ay = (I— BBT)A(I -
cto)
3) If R(LA)N R(B) = {0} and R(A*) N R(C*) = {0}, then M is MP invertible if

and only if R(A) and R(D) are closed and

+
A B AT Cct

C D Bt D+

Proof. (1) since R(A) N R(B) = {0}, R(B) and R(C) are closed, Sy has the form

(a4 o0 ol [ Nvoey | [ v

5 s ABl 0 0 B0 | ROY || R
C 0 0 Ci 0 0 R(B¥) R(C)

0 0 0 0 N(B) N(C*)
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And similarly we consider [12,Corollary13, Corollary14] :

Corollary 58. [12, Corollary 13] Suppose that the 2-by-2 upper triangular matriz

I'is given as in Theorem 11

1) If R(A)N R(C) = {0}, then

+ AT 0
= | Cf+(B*B+CjCy—CiC (B"B+C{Cy—CfC
JA(C = Co)" (I = C,Cy) JAB

Where A = (B*B+ (C' — Cy)*(I — CoC)(C —Cy)) T and Cy = (I — AAT)C(I —
B*B)

2) It R(C*) N R(B*) = {0}, then

- A*N(AAT + CoCq — CCy) 0
=1 Cf+(I—CFC)(C —C) N(AAT+CCf
elors

Ci+(I — Oy Co)(C — Cy) A(AA™+
CoCy —CCY)
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Where A = (A*A+ (C—Co)<[— CJCO)(C—C())*)_F and CO == ([—AA+)O([—
B*B)

3) It R(A) N R(C) = {0} and R(B*) N R(C*) = {0}, then

+
A C AT 0

0 B ct Bt

Proof. (1) since R(A) N R(C) = {0}, R(A) and R(B) are closed, I" has the form

_ 00 O C 11 N(A) 1] N(4Y) ]
1) AC| |04 0 o0 R(AY) B R(A)
0 0 0 D, 0 R(B*) R(B)

_0 0O 0 0 | _N(B) | _N(B*)_

Corollary 59. [12, Corollary 14] Let A € B(H), B € B(K),C € B(K,H) and

R(A) be closed. Then the 2-by-2 block operator valued I' is MP invertible if and only if
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R(C*(I — AA™) + R(B*) is closed , moreover, and

At — AtC(B*B + C*(I— —A*CO(B*B + C*(I—
{1}
A C AATC)TCH (I — AAT) AAT)O)* B
0 B (B*B 4+ C*(I — AATO)*C*( (B*B+ C*(I-
I— AA™) AANC)T B
Moreover, if R(A) N R(C) = {0}, then
+
A C AT 0
0 B (B*B+C*C)*C* (B*B+ C*C)*B*

"If R(A) N R(C) = {0}, then C1=0 in equation (13)"

We give an example concerning corollaries 13 and 14 of reference [12]

1 0 1
Example 60. Let A = , C =

0 0 1

1
, and B =

0

it is clear that R(A) N R(C) = {0} and R(C*) N R(B*) = {0} hold, then:
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a) According to item (1) of corollary 13 in [12], the representation of the M-P inverse

of I" has the form

(3 —21) .

b) According to item (3) of corollary 13 in [12], the representation of the M-P inverse

of " has the form

)

(3 —22) s

=

=

=

=

¢) According to corollary 14 in [12], the representation of the M-P inverse of I" has the

form
1
0
(3 — 23)
0
1
i 2

N =
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When, we multiply the representations €2;

(3 —24)

(3 —25)

ey

',

nojwe

[

=

0

N | N | =

=

and €5 on the left by I', we find:

When we multiply the representation {23 on the right by I', we find:

1 0 1 1
0 0 0 0
(3 —26) Q=1 F 4t .
0 0 1 0
__% 0_ _0 1__

We note that the representations €y and s dont satisfy the equation (7ii) of the
M-P inverse of I' (ie, ['2; and ['Q)y are not self-adjoint), while {23 does not satisfy the
equations (7v) of the inverse of M-P of M, (ie, 231" is not self-adjoint), it results that

Q #TT,Qy # " and Q3 # 't so the items of corollary 13 in [12] are not true, also
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the representation of the inverse of M-P of I under the condition R(A) N R(C) = {0}

" where

in corollary 14 in [12] is not true, this allows us to ask the following question
are the illogical steps in the proofs of corollaries 13 and 14 in [12]? " in the following
we answer it:

Suppose that A, B € B(L, F) have closed ranges, always C' has the following
matrix decomposition with respect to orthogonal sums L = R(B*) &t N (B) and F' =
N(A*) &t R(A):

Cy Oy R(B*) N(A¥)

(3 —27) C= ; —
Cy Cy N(B) R(A)

In [12], Deng and Du. considered, under the condition R(A) N R(C) = {0}, that C

c, C.
from R(B*) &' N(B) into N(A*) &+ R(A) has the form C = ' | Where
0 0
C3=0and C4y =0, also
A C
I'= has the form
0 B
0 0 C7 Oy N(A) N(A*)
r 0 A, 0 O R(AY) R(A)
0 0 By O R(B*) R(B)
0 0 0 O N(B) N(B*)

which is denoted by (12) in [12, proof of corollary 13]
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The following counter-example illustrates that even if R(A) N R(C') = {0} then C3

and Cy are not always nulle,

1 1 2 2 -1 0
Example 61. Let A = , O = , and B = ;

0 0 1 1 1 0
We have R(A) N R(C) = {0}, R(B*) = ((y)), N(B) = ((})), N(A*) = ((})) and

R(A) = ((5)) - Now note that C(p) = () = 1(1)+2(;) and C(7) = () = 1())+2(;)-

then C' has the form

N I RO ()
22 [{O) (G)

By identification between (3—27) and (3—28), we get C1 = Cy =1 and C3 = Cy = 2.

(3 — 28) Ay =

We derive from the previous example these remarks:

Remark 62. 1) The illogical step in the proof of corollary 13 in [12] is that the
matriz representation which is noted by (12), also in the proof of corollary 14 of [12],

the phrase:

"If R(A) N R(C) = {0}, then C1 =0 in equation (13)"

Remark 63. The illogical steps in the proofs of theorem 9 and 10 in [11] are due

to the matriz representations which are noted by (7) and (8).
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Noted that the condition R(A) N R(C') = {0} does not necessarily imply this
inclusion R(C') C N(A*), But it follows from lemma (4) that R(C') C N(A*) <
Prna-C' = C While Pya+C = C & ATAC = 0 Similarly to proof of theorem 13

ATAC =0 R(A) L R(C), So

R(C) € N(A*) < R(A) L R(C)

Remark 64. from the last equivalence, if one replaces the interssection between the
ranges in the hypotheses of the items of [11;Theorem 9, Theorem 10| and [12,Corollary
13, Corollaryl4] by the orthogonality the results and their proofs remain true, to illus-

trate this remark, we propose for example:
The corollaries 13 in [12] may be refomulated as follows:
Corollary 65. [12, Corollary 13| Suppose that the 2-by-2 upper triangular matriz

A C

I'= 1s given as in Theorem 11

1) If R(A) L R(C), then

+ At 0
= | Cf+(B*B+CyC—CfC
0 B o YT (BYB 4 CECy—CEO)AB
JA(C = C)* (I = CyCf)
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Where A = (B*B+ (C — Cp)*(I — CoCy ) (C —Cp)) T and Cy = (I — AAT)C(I —
B*B)
2) If R(C*) L R(B*), then

+ A*N(AAT+CCf —CCY) 0
= | Cf+(I—CiCo)(C —Cy)*A(AAT+
CoCi—CCY)

Where A = (A*A+(C—Co)(I—CCo)(C—Cy)*)* and Cy = (I— AAT)C(I—B*B)
3) If R(A) L R(C) and R(C*) L R(B*), then

_l’_

A C AT 0
0 B Cct BT

Remark 66. We propose instead of [11; Theorem 9, Theorem 10] and [12,Corollary
13,  Corollaryl4], we can use our results in proposition (45) and the corollaries (48)

and (49) in this thesis .
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CHAPTER 4

On the product of operators with closed range.

Let A € B(H,K) and B € B(L,H),with closed ranges, the following problem:
"when the product of two operators with closed ranges has closed range", has been
studied for the first time in 1973 by Bouldin [5], in his work based on the notion of
the angle between two closed subspaces M and N, to demonstrate that: AB has closed
range iff the angle of Dixmier between R(B) and N(A) N[N (A)N R(B)]* is positive.
From the angles of Friedrichs and Dixmier in [14, Theorem 22|, Deutsch proved that the
product AB has closed range iff ¢((N(A) , R(B) ) < 1, iff N(A) + R(B) is closed
or equivalently N(B*) + R(A*) is closed. Another author, Izumino used the lower
bound y(A) of A (7(A), defined by v(A) = inf{||Az| : z € (ker A)*, ||z| = 1}) in
28, Corollary 2.5], to prove the equivalence between: (i) AB has closed range and; (ii)
Pn(ay + Pr(p) has closed range, (iii) N(A) + R(B) is closed.

We apply our main results, to give some necessary and sufficient conditions equivalent

for the product of two operators with closed ranges to have closed range.

Proposition 67. Let A € B(K,L) and B € B(H,K), assume that A™ and

BT exist, Then the following statements are equivalent:

1) (AB)Texists,
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2) (PR(A*)PR(B)) * exists,

- -
Pnay P
3) N TR exists,
0 0
4) N(A) + R(B) is closed,
- +
P * P A*
5) MED A exists,
0 0

6) N(B*) + R(A*) is closed,

7) (Pn(B+) Pn(ay)" exists,

8) (Pay + PR(B))+ exists,

9) (Pn(p+) + PR(A*))+ exsits,
B I :

10) exists,
0 A

11) B*(I — (A*A+ I)"1)B has a closed range,

12) A(I — (BB* + I)7!)A* has a closed range

Proof. It is clear that 3) < 4), 5) < 6). Note that
R(AB) = AR(B) = AR(Pgr(p)) = R(APgp))

Hence, ]

R(AB) is closed iff R(APg(p)) is closed, and by the lemma (2), R(APg(p)) is closed
means that R(Pr(p)A*) is closed, as R(Prp)A*) = R(Pr(p) Pr(a+)), we deduce that
1) < 2) are equivalent.

Using the party a) of the theorem (40), we get that 2) < 3)< 5).
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By the party b) of the theorem (40), we obtain the equivalence 3) <7).
Applying of the lemma (2), we have the equivalences 3) < 8) and 5) < 9).

Using the theorem (44) we have that 4) < 10).

B I
We put M = , It follows from the lemma (2) that the statement 10
0 A
holds iff M M* has a closed range, since we have:
BB*+ 1 A*
MM*: =
A AA*
1 0 BB*+1 0 I (BB*+1)7tA*
ABB*+ 1)t I 0 A(I — (BB*+ 1) hHA* 0 I

Remark that the left and right matrices in the previous equation are invertible, and
BB* + I is invertible, so M7 exists iff the statement 12 holds; i.e., 10) <12).

Similarly, we can obtain that 10) <11).

Corollary 68. Let P and Q) be orthogonal projections in B(H), then the following

statements are equivalent:

1) (PQ)" exists,

9) R(I — P) + R(Q) is closed,
3) R(P) + R(I — Q) is closed,
4) (I = P)(I = Q))" exists,
5) (I — P+ Q)" exists,

6) (I + P — Q) Texists.
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- -
P I-Q
7) exists,
0 0
- +
I-P Q
8) exists,
0 0

9) P— P(Q + I)™'P has a closed range,

10) @ — (P + I)7'Q has a closed range.

Ap Ay
Proposition 69. Let M = a be 2 X 2 block operator , we assume

0 0

that AT and A3 exist, then the following statements are equivalent:

1) M has a closed range.
2) R(Ay) + R(Ay) is closed.
+

Pray) Pra
3) ) () exists.

0 0

+
Pneay) Pnag) .
exists.
0
6) (Pry Al)PN(Ag)

7) N(A7) + N(A3) is closed.

4) (PN(A{)PR(AQ))+ exists.
(
)

+ .
exists.

(PR A1) + Pr Az)) exists.

(PN(A*) + PN(A*))+ exists.

Proof. In the beginning, clearly that 1) < 2) < 3), also 5) < 7).
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From the party a) of the theorem (40) we get 5) < 6).
Using the party b) of theorem (40) and lemma (3) we obtain 3) < 6), 4) < 5).

By the lemma (2) we have 3) < 8) and 5) < 7) . O

Corollary 70. Let P and Q be orthogonal projectors in B(H), then the following

statements are equivalent:

1) (P4 Q)" exists.

2) R(P) + R(Q) is closed.
P Q

3) exists.

0 0
1) ((I — P)Q)™ exists.
5 (P(I—-Q)7" exists.
I-P Q

6) exists.

0 0
7) (I — P—Q+ PQ)" exists.

8) N(I — P)+ N(I — Q) is closed.

9) (21 — P — Q)" exists.
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CHAPTER 5

On M-P inverse of the sum two operators

For the special case where, A and B are matrices with both AB* = 0 and A*B = 0,
M. R. Hestenes [26] has shown that (A+ B)"™ = AT+ B™ four years later, Cline [9] has
developed some representations for the M-P inverse of the sum A + B, where A and B
satisfying only the single condition AB* = 0. This result is derived as a particular case
of a representation for the M-P inverse of the sum of two matrices, without the previous
conditions, by C. G Hung and T. L. Markham in [27].

In [19]; Fill and Fishkind exhibit a neat relationship between the M-P inverse of a
sum of two square matrices A and B and the M-P inverse of the individual terms, this
is the Fill-Fishkind formula: (A + B) = (I — S)A"(I —T) + SB™T, Provided that
R(A)NR(B) = {0} and R(A*)N R(B*) = {0}, Where: S = (Py(p)~Pna))" and
T = (PN(A*)PN(B*)L)+, Recently, in the setting of Hilbert spaces, for A, B € B(H, K),
Arias, Corach and Maestripieri in [2, Theorem 5.2] extend the Fill- fishkind formula to A
and B with closed ranges, satisfying the assumptions: R (A)NR(B) = {0} and R (A*)N
R(B*) = {0}, R(A+ B) = R(A) + R(B) and R(A* + B*) = R(A*) + R(B*), a
year after, Djiki¢ in [16,Theorem 2.4] obtained the Fill-Fishkind formula for A and B

with closed ranges satisfying these weak assumptions: A and B coincide on R (A*) N
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R(B*), R(A) N R(B) = {0} and R(A + B) is closed, or these A and B coin-
cide on R(A*) N R(B*), R(A)N R(B) = {0}, R(A+ B) = R(A) + R(B) and
R(A* + B*) = R(A*) + R(B*).

5.1. Representation of the M-P inverse of the sum two operators

In this subchapter, we use the orthogonal sums of subspaces, for obtain a represen-
tation of the M-P inverse of sum two operators, in the closedness conditions for ranges.
We assume that the operator A has a closed range, the operator A has the following
matrix form with respect to the orthogonal sums K = R(A) &+ N(A*) and H =

R(A*) &+ N(A):

(5—-1) A= : —

Where Aj; is invertible. Moreover,

(5-2) P T I B Y

0 0 N(AY) N(A)

To obtain the identity (5 — 3), using the matrix forms of A and B with respect to the
orthogonal sums above of K and H, to transform the sum A + B into a 2 X 2 block
operator block, which is the (5 — 4), hence by the theorem (44) we get (5 — 5) which is

equivalent by identification to (5 — 3).
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Theorem 71. If R(A) L R(B); then (A+B)" exists iff 1} exists, and (A+B)™

can be expressed as:

(5 - 3) (A+ B)t= Q% + (I — QlB)J (A" +A4%)

Where:

Q= BPna,
Aa= (I - Q5 04)B,

Ja= A"A+ AW A,
Proof. Under the assumption R(A) L R(B), then B has the matrix form:

R B Y Y R(A)

Bis Bu N(A) N(AY)

A 0 R(A* R(A
(5—4) A+B=| " N RS N IS
Bi; Bu N(A) N(AY)
Hence,
0 0 R(AY) R(A)
QA: BPN(A): : —
0 Bu N(A) N(AY)
0 0
Aa= (I — Q00 B =
PrnyBis 0
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And

Ji=A*A+ A A, =

0 0 0 0

It is clear that QJAf exists iff Bfil exists, on the other hand as Aj; is invertible, we have

I 0 A 0
(x3) A+ B=

BisAy! 1 0 Big
it follows from the lemma (*3) that (A+B)" exists iff B}, exists, then it is automatically
(A+ B)" exists iff Q7 exists. We will find the expression (5 — 3), applying the theorem
(44), we get

YT A* YT (Pyn(p+Bi3)*
(5-5) (A+B)'= . (Pvisio Bro)

—BfZBlSZ—i_Ah Bﬁ - BﬂBlgz—i_(PN(Bﬂ)Blg)*

0 0 StAr 0 0 SH(P g 1 Bis)”
= + 1 + N(B14)
0 B, —Bf,Bi3YtAL, 0 0 —BiBiX (P Bis)
By identification
(A+ B)"= Qi+ - Q\B)JLA+(I — Qi B)J A,
= Qi+ — QL B)JL(AY+A) O

In the general case, R(A) L R(B) is not alwyas verified, that is why, we use the

notion of orthogonal projection to determine two bounded linears operators A, B €
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B(H, K), satisfy
A+B=A+B  with R(A) L R(B)

For example, note that:

A+ B = Py(ayB+A(I — A*B), we consider A = Py(4+)B and B = A(I — A" B),
it is easy to see that A*B = 0, which is equivalent to R(A) L R(B), now if R(A) is
closed, thus as consequence of the theorem (71), we get a representation of M-P inverse

of the sum A + B, see the following theorem.

Theorem 72. We assume that A and Q1 have closed ranges, then:

(5—6) (A+ B)'=Qt + (I — QLB) J{(A5+A%)
Where
QA_ BPN(A)?

5.2. Representations of the M-P inverse of the sum two operators

with disjoint ranges.

In this subchapter, we assume that A and B have a closed ranges, by the full-rank
decomposition of operators we give some representations of the M-P inverse of sum two

operators with disjoint ranges. In what follows we need the following definition,
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Definition 73. We say that A, B have the range additivity property if R(A+ B) =

R(A) + R(B). We denote by R the set of all these pairs (A, B), i.e.,

R:={(A,B): A,B € L(H,K) and R(A+ B) = R(A) + R(B)}

Theorem 74. We have

1) If (A, B) € DR, then (A*, B*) € R, and R(A + B) is closed iff R(A*) + R(B*)
is closed.

2) If (A*, B*) € DR, then (A, B) € R, and R(A + B) is closed iff R(A) + R(B)
is closed.

3) If (A, B) € DR and (A*, B*) € DR, then

(A,B) € R, (A*,B*) € R,

In addition, R(A + B), R(A) + R(B) and R(A*) + R(B*) are closed.

Proof. Let F4G 4 and FpGp are full-rank decomposition of A and B with H4 = R(A)

and Hg = R(B), we consider the operator

A+B 0
My = € BH® LK ®F)

0 0
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We have

Fy Fp Ga 0O
(5 — 7) MO = = A()BO

0 O Gp O

Where

By:H®L— R(A)® R(B), Ay: R(A)® R(B) - K@ F

1): Since (A, B) € DR, it follows from the proposition (38) that Ay is injective, which
equivalent to Aj is surjective; i.e. R(Aj) = R(A) & R(B), so Ap has a closed range,

now remark that

R(M;) = R(ByAy) = BiR(45) = BiR(AGAL ) = By R((Ag Ao)

— ByR() = R(B})
And by the item 3 of lemma (14) that
R(Bj) = R(G}y) + R(Gp) € {0} = R(A") + R(B") & {0}

Hence,

R(Mg) = R(A%) + R(B") © {0}

As R(M§) = R(A* + B*) @ {0}, So

R(A* 4+ B*) @ {0} = R(A*) + R(B*) & {0}
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Which implies that

R(A* + B*) = R(A") + R(B")

From the last equality we deduce that R(A + B) is closed iff R(A*) + R(B*) is closed.
2): To prove the item 2 taking the adjoint on both side of (5 — 7) and applying the item

1. 3): we already showed in items 1 and 2 that the equalities below are satisfied
R(A+ B) = R(A)+ R(B), R(A*+ B*) = R(A") + R(B")

Note that By is surjective because by the Proposition (38), Bf is injective, on the other
hand we showed that Ay is injective, it follows from the of lemma (14) that AgBy is
full-rank decomposition of A + B, which means that A + B has a closed range, of
course it results from the two last equalities that R(A) + R(B) and R(A*) + R(B*)

are closed. O

Corollary 75. If (A*, B*) € DR and R(A) L R(B), we have:
(5-28) (A+ B)" = (BPy(a))" + (I = (BPn(a)) " B)A"

Proof. From the item 3 of theorem (74), (A+ B)" exists and R(A)+ R(B) is closed,
which implies that (B Py4))" exists by proposition (67), it follows from the items 2) and
3) of lemma (10) that R(Q24Q} ) = R(BB™) and N(Q4Q} ) = N(BB™"), so the item
4 of lemma (4) we get that Q4Qf = BBT consequently, Ay = (I — QaQ} )B =0,

so the substitution of A4 by the nul operator in (5 — 3), we obtain (5 — 8). O
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Similarly, we can prove this corollary:

Corollary 76. If (A, B) € DR and R(A*) L R(B*), we have:
(5—9) (A4 B)"= (Py4yB) +(I = (Py4yB) "B)A"
Theorem 77. If (A, B) € DR and (A*, B*) € DR, then
(5—10) (A+B)"= (BPN(A))+B(PN(A*)B)++(APN(B))+A(PN(B*)A)+

Proof. The subspaces R(A + B), R(A) + R(B) and R(A*) + R(B*) are closed by

the theorem (74), it follows that the M-P inverses that appear in the identity (5 — 10)

exist. ]
Far Fp
Let My be as in (5 — 7), it results from the proposition (38) that
0 O
Gy Gp Ga 0
and are injective, so is surjective, then AgBjy is a full-rank
0 0 G O

decomposition of M,

in this case we have

+ +

Gyg O Fy F
My = | o= BiAd

Gp O 0 0

Now from the item a) of lemma (15) and theorem (73), (Py(g+)Fa)*, (Pna+)Fi)",

(GBPN(A)>+ and (G’APN(B))Jr exist,
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hence from By = (BSJr)* and using the theorem (42) we get M

(GuPrniy)" (GpPrniy)” (PygryyFa)™ 0

My =

(GAPN(B))+(PN(B*)FA)+ + (GBPN(A)>+(PN(A*)FB)+ 0
0 0

Using the equality of item b) and ¢) of lemma (15), we get

My = (APy(5) APy A) " + (BPy(4)) " B(PyanB)T 0

And as

The by identification
(A+B)" = (APN(B))+A(PN(B*)A)+ + (BPN(A))+B(PN(A*)B)+ :

Corollary 78. In the previous theorem, if R(A*) L R(B*) we obtain the identity

(5 —11), also if R(A) L R(B) we obtain the identity (5 — 12),

(5—11) (A4 B)"= B*B(Py4)B) +ATA(P 5, A)"
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And

(5 —12) (A4 B)"= (BPy ) BB +(APy ) AAT

(

Proof. We have U

R(A*) L R(B*) +=> BA* =0 <= BtBA* =0 <= A* — BFBA* = A* >
APN(B) = A, s0 <APN(B)>Jr = A%, also (BPN(A))Jr = B™ and we replace (APN(B))+
and (BPN(A))Jr by A" and BT in (5 — 10) we obtain (5 — 11). By the same way we

can prove (5 —12).
5.3. Extension of the Fill-Fishkind formula.

In section 5 of the article [2], Arias, Corach and Maestripieri. extended the formula
of Fill-Fishkind to the infinite Hilbert space case, by adding two other conditions to the
property of the additivity of ranges.

From the theorem below, we see that the Fill-Fishkind formula remains valid in

infinite dimensional Hilbert spaces under the same conditions of the case of matrices.

Theorem 79. If (A,B) € DR and (A*,B*) € DR, then
(5 —13) (A+B)'=(I-8S)AY(I-T)+SB™T

Where: S = (Pnp)t Pnay)t and T = (Pn(a)Pnp-)2) "

Proof. From the item 3) of the theorem (74), (A + B)* exists and R(A*) + R(B*)

is closed (resp., R(A) + R(B) is closed) which implies by the proposition (67) that
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S exists (resp., T exists). As B has a closed range, it results that Py = B*DB
and Py(g+y. = BB™, it follows from the lemma (4) that BS = B(Py gL Py(a))" =
B(Py(p)- Prneay)(Py(py- Prneay)t = BS™S, on the other hand, since R(A) N R(B) =
{0}, then by the item 3 of lemma (10) that N(STS) = N(S) = N(Pyp)yL) =
N(B*B) = N(B), using the item 2 of lemma (4) we obtain BSTS = B, we de-
duce that BS = B, by the same we get TB = B, also by the lemma (4) we obtain
AS = 0and TA = 0. Now we will check that (I — S)AT(I —T) + SB™T) satisfies
the equations of M-P inverse of A + B

The equations (i44):

(A+B)((I—-S)AT(I-T)+SB'T) =

(A4 B)(AT — SAT — AT + SAT™T + SBYT) = (or AS =0 and BS = B)

AAT—AATT + BAT—BAT—BA™T + BATT + BB'T =

AAT — AATT + BBTT = ...by the item 3 of lemma (4)

AAT — AATT + T = AAT + (I — AAT)T = ...by the item 3 of lemma (4)

AATH(I = AAT) Py gy T = AATHTH T

The equations (iv):

(I =S)AT(I-T)+SB'T)(A+B) =

(AT — SAT — ATT + SA™T + SBTT)(A+ B) = (or TA=0and TB = B)

=ATA—-SAYA + ATB-SA*B—-ATB+ SATB+SB"B =

ATA— SATA+ SBTB = ...by the item 3 of lemma (4)

ATA—SATA+S =ATA+ (I — ATA)S = ...by the item 3 of lemma (4)

ATA+ (I = ATA)Py S = AT A+ SST
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The equations (7):

(A+ B)((I = S)AT(I = T)+ SB*T)(A+ B) = ...by (iii)

(AA* + T*T)(A+ B) = ..by TA=0,TB = B and Pyp.). = BB

A+ (AA"B+T*B) = A+ (AA"B+ (Py,.BB")B) = A+ B

The equations (47):

(I = SYAT(I =T)+ SBTT)(A+ B)((I — S)AT(I = T) + SB*T) = ...by (iv)
(A* A4 S*TS)(A* — SAT — ATT + SA*T + SB*T) = (or AS = 0 and BS = B)
At — ATT 4 SSTAT — SAt — SSTAYT + SA*T + SB™T = ... by STA* =0

AT —ATT — SAYHSATT 4SBT = (I — S)AT(I —=T)+ SB™T). O

5.4. Proofs of the results of subchapter 3.3

It suffices to demonstrate the theorem (50) below:

Theorem 80. Theorem (50): Let M be defined as in (3—1) with closed range such
Aj A3
that R(A1) + R(Az) and R(A3) + R(A4) are closed, if ( , ) € DR,
A3 Aj
then
e | At -wirizsy wir
A3ST —WoXTZS)E WLt
Where Sl = AlAT—I—AQA;, Z = AgAT+A4A;, W1 = Ag—ZSf—Al, W2 = A4—ZS?—A2

Ty = WAy + WoWs
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Proof. We have

A Ay A Ay 0 O
M = = + = M1—|—M2

Ag A4 0 0 AS A4

Clearly that the assumptions of corollary (75) are satisfied for M7 and Msy,we deduce

from (5 — 8) that
MtT= <M2PN(M1))+ —+ ([ — (MQPN(Ml))+M2)Mf_

Next we know that, M;" = M; (M, M;)", then we get

ArSE 0 I —A*STA, —ArSTA
Mfr: 191 and PN(Ml): 1921 41 191 412
AsSH 0 —A5SHA, T — ALSTA,
MoP 0 0 0 0
2N (M) = =
Az — ZSTA Ay —ZS| Ay Wy Wy

Applying (MaPniyy) ™ = (MaPnan))* (Mo Pyany) (Mo Py (ary) )t we obtain

0 WiYF
(Ma2Pyyy) ™ = s
0 WYt

On the other hand

ArSF — WATTZSE 0
(I = (MaPn(agyy) ™M) M =
ASE — WoXHZSE 0
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Finally

M+t = (]\42PN(]\41))+ —+ (] — (MQPN(Ml))JrMQ)Mf'_ =

0 Wit ALSE — Wit ZSH 0 ALSE — Wit ZSE Wity
_|_

0 WoX{ ASST —WoXTZS) 0 ALST —WoXTZS) WuXi
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