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Abstract 

Radiation therapy or Radiotherapy is one of the therapeutic uses of ionizing radiation to treat 

cancer. Depending on the type of tumor and its location, different modes of radiotherapy are 

used in the clinic, Brachytherapy, Metabolic radiotherapy and External radiotherapy which is 

the most common form of radiotherapy. This latter consists of irradiating tumor location from 

an external radiation source such medical linear accelerators LINACs. Many external 

radiotherapy techniques have been developed, the most important called intensity modulated 

radiation therapy IMRT.  

In radiotherapy, the goal has always focused on achieving a conformal radiation therapy 

plan, where a high dose of radiation conforms to the tumor, while the radiation unavoidably 

received to the surrounding healthy organs and tissues is minimized. The investigation of such 

goal is the main topic of this PhD document. In particular, the dissertation concerns the 

optimization of intensity modulated radiation therapy (IMRT) treatment planning by solving 

the fluence map optimization (FMO) problem using multiobjective genetic algorithm MGA. 

This, offers to the oncologists and physicians a set of conformal treatment plans.  

Moreover, to ensure a safe patient dose verification, a junctionless double graphene gate 

radiation sensitive FET (RADFET) is proposed as dosimeter. besides associated analytical 

analysis are both introduced. In addition, the effect of graphene work function on the device 

performance measures is also investigated. Furthermore, the elaborated model defines the 

figures of merit in the context of (MGA) technique. The improved electrical response is 

compared with existing double gate (DG) RADFETs, where the proposed device figures of 

merit reveal that the optimized proposed RADFET provides improved electrical performance 

and sensitivity, and therefore, enhancing radiation therapy quality assurance QA. 
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Résumé 

La radiothérapie est l'une des utilisations thérapeutiques des rayonnements ionisants pour 

traiter le cancer. Selon le type de tumeur et sa localisation, différents modes de radiothérapie 

sont utilisés en clinique, la curiethérapie, la radiothérapie métabolique et la radiothérapie 

externe qui est la forme la plus courante de radiothérapie. Cette dernière consiste à irradier la 

localisation tumorale à partir d'une source de rayonnement externe tels les accélérateurs 

linéaires médicaux LINACs. De nombreuses techniques de radiothérapie externe ont été 

développées, la plus importante étant appelée radiothérapie conformationnelle avec modulation 

d’intensité (RCMI). En radiothérapie, l'objectif s'est toujours concentré sur la réalisation d'un 

plan de radiothérapie conforme, où une dose élevée de rayonnement se conforme à la tumeur, 

tandis que le rayonnement inévitablement reçu vers les organes et tissus sains environnants est 

minimisé. L'investigation d'un tel objectif est le sujet principal de ce document de thèse. En 

particulier, la thèse concerne l'optimisation de la planification du traitement par radiothérapie 

conformationnelle avec modulation d’intensité en résolvant le problème d'optimisation de la 

carte de fluence (FMO) à l'aide de l'algorithme génétique multiobjectif (MGA). Celui-ci offre 

aux médecins oncologues et aux physiciens un ensemble de plans de traitement conformes. De 

plus, pour assurer une vérification sûre de la dose au patient, un FET sensible au rayonnement 

à double grille de graphène sans jonction (RADFET) est proposé comme dosimètre. En plus 

une analyse analytique associée sont tous deux introduits. En outre, l'effet de la fonction de 

travail du graphène sur les mesures de performance du dispositif est également étudié. De plus, 

le modèle élaboré définit les figures de mérite dans le cadre de la technique (MGA). La réponse 

électrique améliorée est comparée aux RADFET à double porte (DG) existants, où les chiffres 

de mérite du dispositif proposé révèlent que le RADFET proposé optimisé offre des 

performances et une sensibilité électriques améliorées, et donc, améliore l'assurance de qualité 

de la radiothérapie. 
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 ملخص

لعلاج السرطان. اعتماداً على نوع الورم  ةالمؤین عةشلأأو العلاج الإشعاعي ھو أحد الاستخدامات العلاجیة ل بالأشعةالعلاج 

الأیضي لعلاج الإشعاعي ا ،العلاج الإشعاعي الموضعي :وموقعھ، یتم استخدام طرق مختلفة من العلاج الإشعاعي في العیادة

لأشعة موقع الورم  تعریض علىھذا الأخیر  یعتمدالإشعاعي الخارجي وھو أكثر أشكال العلاج الإشعاعي شیوعًا.  والعلاج

الخارجي تم تطویر العدید من تقنیات العلاج الإشعاعي . LINACs  من مصدر إشعاع خارجي مثل المسرعات الخطیة الطبیة

 .IMRT الشدةالعلاج الإشعاعي المعدل  وأھمھا

ع مع ، حیث تتوافق جرعة عالیة من الإشعاملائمةركز الھدف دائمًا على تحقیق خطة علاج إشعاعي  الإشعاعي،في العلاج 

بینما یتم تقلیل الإشعاع الذي یتم تلقیھ بشكل لا مفر منھ للأعضاء والأنسجة السلیمة المحیطة. تحقیق ھذا الھدف ھو  الورم،

العلاج الإشعاعي المعدل  مخططالدكتوراه ھذه. على وجھ الخصوص، تتعلق الرسالة بتحسین لأطروحة الموضوع الرئیسي 

 الأغراضباستخدام الخوارزمیة الجینیة متعددة  (FMO) تحسین خرائط الطلاقةمن خلال حل مشكلة  (IMRT) الكثافة

MGA. الملائمةمن خطط العلاج  الأورام مجموعةیقدم لأطباء  ھذاو. 

بوابة الجرافین ب )FET( حقلالتأثیر ب ترانزستور استخدام ناقترحا المریض،لضمان التحقق الآمن من جرعة  ذلك،علاوة على 

تم أیضًا  ذلك،إلى جانب التحلیل التحلیلي المرتبط بھ. بالإضافة إلى  ھتم تقدیمللجرعات.  للإشعاع كمقیاسالمزدوجة الحساسة 

ذلك ، یحدد النموذج المفصل أرقام الجدارة في سیاق  إضافة إلىفحص تأثیر وظیفة عمل الجرافین على مقاییس أداء الجھاز. 

حیث  الحالیة،) DGذات البوابة المزدوجة ( RADFETs). تتم مقارنة الاستجابة الكھربائیة المحسّنة مع MGAتقنیة (

وبالتالي  ین،تیمُحسَّن ةالمُحسَّن المقترح یوفر أداء وحساسیة كھربائی RADFETتكشف أرقام الجدارة المقترحة للجھاز أن 

 .QAیعزز ضمان جودة العلاج الإشعاعي 
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General Introduction  

 Cancer ranks as a leading cause of death and an important barrier to increasing life expectancy 

in every country of the world [1]. According to estimates from the World Health Organization 

(WHO) in 2019 [2], cancer is the first or second leading cause of death before the age of 70 years 

in 112 of 183 countries. With cancer affecting more individuals on a yearly basis, Radiation 

Therapy (RT) has become a key component in the successful management of this illness, both with 

curative and palliative intent, with over fifty percent of patients receiving some form of RT. Based 

on the location of the tumor, severity of the disease, and health of the patient, RT can be used as 

the stand-alone treatment or in conjunction with other treatment modalities such as surgery and 

chemotherapy.   

 X-rays were used for cancer treatments long before the radiobiological effects of ionizing 

radiation on human cells were understood. The first therapeutic application of x-rays occurred in 

1896, less than a year after their discovery by Wilhelm Roentgen in November of 1895 [3]. The 

discovery of radioactivity and radium in 1896 [4] and 1898 [5], respectively, led to additional 

treatment options for cancer patients. However, it was not until the work of Regaud [6] and Coutard 

[7] in the early 20th century which suggested that normal tissue cells may be better able to repair 

damage due to radiation than cancer cells. Another significant conclusion from their work was the 

discovery that delivering radiation through a course of smaller fractions, as opposed to the then-

current practice of delivering the entire amount of radiation in one sitting, allows for the 

exploitation of the enhanced repair mechanism in healthy tissue. This led to a reduction in 

complications arising from RT-based treatments and the ability to escalate the dose to the tumor 

with an improved probability of eradicating the cancer while not incurring additional complications 

to surrounding healthy tissues. Even without this crucial knowledge, from the first treatments using 

RT, the goal has always focused on achieving a conformal RT plan, where a high dose of radiation 

conforms to the tumor, while the radiation unavoidably received to the surrounding healthy organs 

and tissues is minimized. Depending on the type of tumor and its location, different modes of 

radiotherapy are used in the clinic, Brachytherapy [8], Metabolic radiotherapy and External 

radiotherapy which is the most common form of radiotherapy. During the therapy, the patient sits 

or lies on a couch and an external source of radiation is pointed at a particular part of the body. 

Advances in radiation physics and computer technology with the appearance of a device known as 
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the MultiLeaf Collimator (MLC) [9] during the last quarter of the 20th century, made it possible 

to aim radiation more precisely through the development of many techniques. In the mid-1990s a 

technique known as intensity modulated radiation therapy (IMRT) emerged which further enables 

tailoring of the 3Ddose distribution inside the patient. All of this led to the emergence of what we 

call it Treatment Planning System (TPS). The latter appeared with the development of imaging and 

calculation codes in radiotherapy. This computer tool is particularly useful in the context of IMRT 

to advantageously use the many possibilities of irradiation protocols. The TPS helps throughout 

the processing chain: data acquisition, delineation of structures, definition of beams angles and 

their weighs, dose calculation and check of calculation / measurement concordance. In the context 

of this thesis, we were only interested in two elements of this chain:  the definition of beams weights 

and check of calculation / measurement concordance. 

 After selecting suitable beams orientations, the next logical phase is determining their weights. 

In the IMRT optimization process, due to discretization each beam into small beamlets, this step 

becomes determining the optimal fluence pattern for each beam that will result in the best-possible 

dose distribution in relation to some predetermined prescription dose and dose constraints to the 

relevant structures. Determining these optimal fluence patterns for a fixed set of beams forms the 

basis of the fluence map optimization (FMO) that is investigated in this dissertation. 

 From Another side, it is important to be able to measure the radiation dose accurately and make 

sure the proper amount of radiation is delivered. The advancement of modern radiation therapy 

technology, such as IMRT make dose verification a more and more complicated problem. Here 

came the important role of Dosimeters. These latter have many different ways to use, including: 

Phantom measurements, Skin surface dosimeters, in vivo dosimeters…etc. Clearly, patient dose 

verification at the point of delivery is an important part of quality assurance in radiotherapy 

treatment [9]. When included as part of a general system of radiotherapy quality assurance within 

a clinic, Dosimeters can significantly reduce the risk of mistreatment. Many existing radiation 

dosimetry technologies, including Optically stimulated luminescence dosimeters (OSLDs), Metal 

Oxide Semiconductor (MOS) capacitor, Microelectromechanical (MEMS) technology and 

Radiation-Sensing Field-Effect-Transistor (RADFET) which is our concern due to its reliability 

and accuracy. The basic RADFET dosimeter principle relies on the calculation of the threshold 

voltage change followed by the conversion of such difference to the absorbed dosage. Due to their 

advantages over conventional dosimetry systems, different MOSFET based dosimeters have been 
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produced in recent decades, and several relevant contributions have been reported to boost the 

sensitivity of RADFET through considering gate stack pMOS characterized by two layers of gate 

oxide Dual Dielectric materials. It is worthy to mention that pMOS Dosimeter, GAA MOSFET 

and JL DG FET are actually recommended for radiation sensor owing to their processing benefits 

and high immunity to short-channel effects. In addition to sensitivity enhancement challenges, 

increasing electrical performance and extracting optimal RADFET model parameters is ranked 

also as an optimization problem. Both IMRT FMO and RADFET performance optimization 

problems lead us to the Artificial Intelligence (AI) exploration and exploitation of its computational 

techniques.  

 Among AI models, such as cellular automata, artificial neural networks, fuzzy systems, 

multiagent systems, and swarm intelligence, genetic algorithms (GAs; Holland, 1975) have proved 

to be an effective and robust support tool for the prediction and modeling of complex phenomena. 

GAs belong to the broader family of evolutionary algorithms (EAs) and can be considered as both 

artificial models of natural evolution and general-purpose search algorithms. In particular, in this 

latter form, GAs have been employed for optimizing a broad variety of problems for which 

standard optimization techniques require excessive computational resources and time to return the 

result or, simply, for those problems for which specific optimization procedures do not exist. 

 In our dissertation, Multiobjective Genetic Algorithm (MGA) is the suitable tool proposed to 

solve the IMRT FMO problem, due to conflicting treatment goals - delivering a maximum dose to 

the tumor while providing a minimum dose to the healthy structures. When dealing with 

multiobjective optimization problems, the concept of optimality is generally extended according 

to the notion Pareto optimality, and refers to finding good tradeoff solutions among all the 

objectives, because the latter are commonly in conflict with each other. In fact, multiobjective 

optimization problems generally do not have one single optimal solution (global optimum) but a 

set of feasible solutions, each one better with respect to one particular objective and not as good 

with respect to others. In a multiobjective optimization problem, a set of (non-dominated Pareto 

optimal) solutions is, thus, found instead of one single solution. 

 For the enhancing radiation therapy quality QA and ensure a safe patient dose verification, a 

junctionless double graphene gate radiation sensitive FET (RADFET) besides associated analytical 

analysis are both introduced. In addition, the effect of graphene work function on the device 

performance measures is also investigated. Moreover, the elaborated model defines the figures of 
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merit in the context of (MGA) technique. The improved electrical response is compared with 

existing double gate (DG) RADFETs, where the proposed device figures of merit reveal that the 

optimized proposed RADFET provides improved electrical performance and sensitivity. 

Outline of thesis 

 This dissertation is made up of 5 chapters: 

The first chapter, presents the state of art of radiation therapy including biological reaction, delivery 

modes, External RT principal, different techniques with focus on IMRT treatment planning 

modality, dose calculation methods and the IMRT optimization problem. 

The second chapter presents the state of art of RADFET dosimeter and its crucial role in RT quality 

assurance, in addition to a short presentation for other existing radiation dosimetry technology. 

 The third chapter introduces the Artificial Intelligence techniques, and focus on MGA in order 

to apply it next for the optimization of both IMRT fluence map and junctionless double graphene 

gate radiation sensitive FET (RADFET). In this sense, all the theoretical elements necessary for 

such an optimization technique are clearly developed. 

 The fourth chapter is devoted to MGA optimization process for IMRT fluence map, a result 

dose distribution for a liver case is presented and discussed. 

 The last chapter is devoted to the junctionless double graphene gate radiation sensitive FET 

(RADFET) besides associated analytical analysis. Analytical models using the technique of 

variables separation are implemented to measure and evaluate the capabilities of both proposed 

and standard RADFET devices. In addition, the effect of graphene work function on the device 

performance measures is also investigated. Moreover, the elaborated model defines the figures of 

merit in the context of a multi-objective genetic algorithm (MGA) technique. The improved 

electrical response is compared with existing double gate (DG) RADFETs, where the proposed 

device figures of merit reveal that the optimized proposed RADFET provides improved electrical 

performance and sensitivity. 

 

 

 

 



5 
 

References 

[1] Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of 

cancer as a leading cause of premature death worldwide. Cancer. In press. 

[2] World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, 

Sex, by Country and by Region, 2000-2019. WHO; 2020. 

[3] J.M. Slater, “Ion Beam Therapy,” 320, 3–17 (2012). 

[4] A.H. Bécquerel, “Sur les radiations invisibles emises par les corps phosphorescents,” C. R. 

Acad. Sci. Paris 122, 501 (1896). 

[5] P. Curie, M. Curie, and G. Bémont, “Radium, A new body, strongly radio-active, contained in 

pitchblende,” Sci. Am (1899). 

[6] C. Regaud and R. Ferroux, “Discordance des effets des rayons X, d’une part dans la peau, 

d’autre part dans le testicule par le fractionement de la dose: diminution de l'efficacite dans,” CR 

Soc. Biol (1927). 

[7] H. Coutard, “Principles of x ray therapy of malignant diseases,” Lancet 224(5784), 1–8 (1934). 

[8] Chargari, C., Deutsch, E., Blanchard, P., Gouy, S., Martelli, H., Guérin, F., Brachytherapy: An 

overview for clinicians. CA: A Cancer Journal for Clinicians, Haie‐Meder, C. (2019). 

[9] Taskin, Z., Smith, J., Romeijn, H., & Dempsey, J. (2010). Optimal Multileaf Collimator Leaf 

Sequencing in IMRT Treatment Planning. Oper. Res., 58, 674-690. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Chapter I: 

 

 State of Art of Radiation Therapy 
 

 

 

 

 

 

 

 

 

 

 

 



Chapter I: State of art of Radiation Therapy 

 

6 
 

Chapter I: State of Art of Radiation Therapy 

I.1. Introduction  

     Radiation therapy (RT) is one of the therapeutic uses of ionizing radiation. Its origins date 

back to the beginning of the century, after the discovery of X-rays by W. Röntgen (1895), of 

radioactivity by H. Becquerel (1896) and of radium 226. by P. and M. Curie (1898). More than 

half of newly diagnosed cancer cases are treated with this technique and almost 50% of cures 

are partly or totally due to radiotherapy. Radiotherapy is mainly used in oncology, to treat, in 

combination or not with surgery and / or chemotherapy, the primary tumor, satellite 

lymphadenopathy and often certain metastases (especially bone and brain). Modern 

radiotherapy developed from 1950 with the advent of high energy devices (telecobalts, linear 

accelerators) and the replacement of radium 226 by artificial radioelements (iridium 192 and 

cesium 137). Radiation therapy for cancer often has side effects. Some of these effects are 

unavoidable and often go away on their own or with treatment. Side effects may occur due to 

the reaction of sensitive normal tissues located near the treated area or, more rarely, due to a 

particularly high individual sensitivity to ionizing radiation. 

     The state of the art detailed in this section presents only the points essential to a good 

understanding of the work carried out. Numerous works provide more exhaustive information 

on dosimetry and treatment planning techniques, it is possible, for example, to refer to the works 

of Anders Ahnesjo et al [1]. 

     The purpose of radiation therapy is to damage tumor cells in order to prevent them from 

reproducing or to destroy them. The objective is to determine what is the best treatment regimen 

to obtain the desired effects, i.e., the destruction of tumor cells while minimizing the side effects 

associated with the treatment (protection of healthy cells peripheral to the tumor).  

I.2. Radiobiology 

     Ionizations and absorbed energy damage the double strand breaks (DNA) of cells in normal 

tissues and malignancies, preventing them from dividing and growing [2]. Although the 

radiation is focused towards the tumor, it is unavoidably absorbed by the surrounding normal 

tissues, causing harm. Normal tissues and malignancies, on the other hand, are vulnerable to 

distinct biological reactions to radiation. Radiation therapy is based on the differential action of 

ionizing radiations, which destroy tumor cells while maintaining healthy tissue to some extent 

due to normal cells' ability to repair DNA double strand breaks.  
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     As mentioned before, in addition to the possibility of combining radiotherapy with other 

cancer treatment strategies such as; chemotherapy, surgery or immunotherapy, recently, there 

has been increasing interest in combining radiotherapy methods with drug compounds, in 

attempts to improve the chances of successfully targeting and killing cancer cells (Fig I.1). 

 
Fig.I.1. RT treatment mechanism and effects enhancement via drugs that prevent mechanisms of 

cancer cell repair. 

I.3. RT delivery modes 

     Depending on the type of tumor and its location, different modes of radiotherapy are used in 

the clinic, shown in Figure I.2. 

 

 

 

 

 

 

 

Fig.I.2. Three main modes of radiotherapy. 
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The application of irradiation, as a rule, can be done in several ways such as: 

- External radiotherapy or Transcutaneous radiotherapy or Teleradiotherapy which uses 

beams of radiation penetrating the tissues through the skin. It is this method that is used 

in the context of this study. 

- Brachytherapy involves introducing radioactive substances into the body by placing 

them in a natural hollow space, in the tumor itself or in its immediate vicinity. Irradiation 

is generally isotropic. It is therefore necessary to study the distribution of sources so that 

the tumor is properly destroyed while minimizing the impact on healthy tissues, which 

is the very principle of optimization in brachytherapy. 

- Metabolic radiotherapy, which uses radioelements administered in liquid form. 

Metabolic radiation therapy is mostly used in some forms of thyroid cancer. In this case, 

the radioactive substance is administered orally or intravenously and will preferentially 

bind to cancer cells. 

I.4. External radiotherapy 

External beam radiation therapy is the most common. The source of radiation is outside the 

patient. It consists of administering the rays through the skin and tissues to irradiate the entire 

region affected by the tumor as well as possibly the nearest lymph nodes. 

In external beam radiation therapy, irradiations are produced by a linear accelerator (see Figures 

I.3 and I.4). Radiation, depending on its type, can be directly (electrons) or indirectly (photons) 

ionizing. In both cases, the principle targeted is the destruction of the cancer cell. 

 
Fig.I.3. Medical Linear accelerator (Linac). 
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Fig.I.4. Medical linear accelerator principle. 

     The effect of treatment with ionizing radiation is measured as a function of the dose absorbed 

by the treated medium. The absorbed dose corresponds to the average energy deposited by the 

ionizing particles per unit mass of a material: 

D = 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
��������

𝑑𝑑𝑑𝑑
       Unit: Gray (Gy = J/kg) (I.1) 

 The absorbed dose is expressed in gray (Gy). One gray is equal to one Joule (J) of energy 

absorbed in one kilogram (kg) of matter. 2 Gy represents a daily dose of radiation which is 

generally tolerated by healthy cells. This feature is exploited for external radiotherapy by 

fractionation. For example, a total dose of 60 Gy can be delivered in fractions of 2 Gy over 30 

days of treatment. For each treatment, the prescribed dose and its fractionation therefore depend 

on the location and nature of the disease. 

 The practical benefit of using the absorbed dose as a measurement unit for evaluating a 

treatment is that it is a purely physical measurement and therefore can be verified using a 

dosimeter. 

 In the context of a photon arriving at a given point with a certain energy, part of the energy 

of the incident photon is transmitted to the electrons in the medium. This electron is set in 

motion and then diffuses its energy during its journey through the medium. The distance 

traveled by this electron depends on its initial energy and the composition of the medium. The 
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absorbed dose is directly related to this energy transmitted locally by the electron. The latter 

can also lose its energy by the braking radiation. In this case, the energy lost by the electron 

does not participate in the energy absorbed. The braking radiation is made up of photons that 

will interact elsewhere in the medium. This implies that the energy transferred to one place in 

the medium is absorbed elsewhere. 

I.5. Definition of volumes in radiotherapy 

I.5.1. Volumes to be treated or target volumes 

 Advances in imaging and computer systems have made it possible to more clearly define 

the volumes of interest in radiotherapy. We will detail here the definitions of the volumes 

coming from the International Commission on. Radiation Units & Measurements report (ICRU 

50, 1993). They are shown schematically in Figure 1.5. 

 
Fig.I.5. volumes of interest in radiotherapy. 

Gross Tumor Volume: GTV 

 It is the one that is visible on the imaging (scanner, MRI). He will receive the stronger dose. 

Clinical Target Volume (CTV) 

 It includes GTV, as well as tissues with a high tumor probability even if this is not visible 

on imaging. The definition of CTV is still subjective for many locations and is based on 

experience and knowledge of the disease (occult lymph node involvement, for example). The 

definition of GTV and CTV constitutes an essential part of the prescription. 

 



Chapter I: State of art of Radiation Therapy 

 

11 
 

Planning Target Volume: PTV 

 It includes the CTV and a safety margin that takes into account the positioning uncertainties, 

the possible movements of the organs and the patient. 

 The ICRU recommends optimizing the parameters of the treatment chain to homogenize 

the dose as much as possible inside the PTV. It is recommended that you plan so that the PTV 

dose is between 95% and 107% of the prescribed dose. 

I.5.2. Volumes related to dose 

The volume treated 

 This is the volume surrounded by an isodose surface specified by the radiotherapist, 

corresponding to a minimum dose level allowing the goal of treatment to be achieved. Ideally, 

this treated volume should correspond to the forecast volume (PTV). 

The irradiated volume 

 It is the volume of tissues receiving a dose considered to be significant with respect to the 

tolerance of healthy tissues. The volume of the isodose corresponding to 80%, 50% or 25% of 

the prescribed dose can be evaluated, for example. 

Volumes to protect 

 Organs At Risk (OAR) are tissues for which it is crucial to limit irradiation in order to limit 

side effects. Particular attention must be paid to the dose distribution to the OARs, mainly 

because of the importance of the gradients observed at the edge of the target volume. The dose 

constraints to OARs often intervene as penalties in the cost function to be optimized in order to 

define the treatment plan. 

Three classes of organs at risk have been defined according to their level of morbidity: 

- Severe morbidity: the organs, in the event of serious lesions, likely to cause total loss of 

function. For example, damage to the spinal cord making paraplegic, damage to the 

retina or optic nerves causing blindness etc.          

- Moderate morbidity: organs whose lesion leads to significant functional loss. We find 

the salivary glands, the lens, the ears, etc. 

- Transient morbidity: organs whose lesion leads to minor or no functional loss. For 

example, the skin or the mucous membranes.          
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The organization of the tissue is important in determining this morbidity: 

- A series architecture corresponds to an organ with severe morbidity because the function 

depends on all its functional subunits. It can be represented by analogy with electronic 

circuits in series. The rupture of a single component results in the total loss of organ 

function. Overdose at one point of this organ therefore impairs the function of the entire 

organ. We are then interested in the maximum dose received by this tissue. This is the 

case with organs such as the spinal cord, the severing of which causes paraplegia 

downstream.          

- A parallel architecture corresponds to an organ with moderate, even low or transient 

morbidity. The organ is made up of several functional subunits more or less independent 

of each other. Thus, the loss of organ function following irradiation requires the 

destruction of a significant number of subunits. If the volume destroyed by the 

irradiation is reduced, a repercussion on the organ and especially the quality of life of 

the patient is avoided. Thus, such an organ can receive a high dose if part of the volume 

is preserved. We are therefore interested in a constraint of the average dose or dose-

volume type, that is, part of the volume must not be irradiated beyond a certain dose. 

One can quote like organ in parallel the parotids or the retina.          

 Finally, for each of the organs in series or in parallel, dose-volume relationships must be 

respected. This relationship can be represented by dose-volume histograms (DVH), which is 

explained next in section 10 of this chapter. 

 In practice, the notion of PTV has been extended to OARs. (ICRU 62, 1999) defined a 

planning volume for organs at risk (Planning risk volume, PRV). This volume corresponds to 

the volume of the OARs extended by a margin considering the movements or deformations of 

the OARs inside the body, as well as the consequences of the patient positioning uncertainties 

during the treatment. PRVs are preferably used for serial organs [4]. 
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I.6. Radiation therapy techniques 

I.6. 1.Conventional radiotherapy  

 
Fig.1.6. Example of isodoses in conventional radiotherapy. 

 In conventional radiotherapy, as a rule, the beams are wide enough to irradiate the entire 

target from the irradiation angles. Treatment planning was done "by hand", hence the use of 

beams with flat profiles and the use of 2 to 4 beams positioned on the 4 cardinal points in order 

to facilitate the already complex calculation. Figure 1.6 shows an example of treatment for liver 

cancer with two opposing parallel beams. The intersection of the two beams creates a high dose 

area near a rectangular shape that encompasses almost the entire irradiated volume of the 

patient. Unfortunately, this area contains a critical structure - the spinal cord. For this treatment 

to be viable, the dose prescribed by the doctor should be kept below the dose tolerated by the 

spinal cord. But the dose can then be wrong in the tumor. For years, this classical technique, 

which uses two to four beams for tumor treatment, has been the gold standard of radiation 

therapy.  

 The radiation goes via a device recognized as MultiLeaf Collimator (MLC), which is 

represented in Figure I.7, before reaching the patient. The MLC is perpendicular to the beam 

and consists of multiple movable metal components known as leaves that are used to block 

portion of the beam, allowing for more accurate form control. The leaves are arranged in pairs, 

one on top of the other. Different radiation approaches are described by how they use the 

LINAC, gantry, and MLC in combination. The most typical ones are listed below.   
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Fig.I.7. (a) A Multileaf collimator system; (b) An aperture projection to the desired configuration. 

I. 6.2. Conformational radiotherapy  

Conformational radiotherapy (3D-CRT) made its appearance at the end of the 1990s due to the 

advent of the computer and the development of the MLC. CT-scan allow 3D reconstructions of 

the body and all the organs. Beam Eye View (BEV) software, viewed from the target, allows 

virtual 3D treatment plans to be created that more precisely contour the tumor while sparing 

healthy tissue. This enables delivery of a dose distribution having a very high degree of 

conformance with the shape of the tumor. 

These dose distributions are represented by what are called isodose curves. The latter illustrate 

the iso-levels of the absorbed dose. The level of isodose is defined as a percentage of the 

prescribed target dose. Figure 1.8 shows a dose distribution with different levels. The region 

with high dose is represented by the line 60 Gy (online black), which follows the shape of the 

tumor. The outer curve is 20% isodose, which means that the tissue inside this curve receives 

up to 20% of the prescribed dose. By delivering the highest dose according to the exact tumor 

shape, nearby healthy and critical tissue is spared. 

 
Fig.I.8. Example of isodoses in conformational radiotherapy. 
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 Technically, to achieve this conformation, multi-leaf collimators are used to replace square 

fields. The most illustrative example is the treatment of prostate cancer. This 40 cm 3 organ has 

the shape of a pyramid. Before the end of the 1990s, it was irradiated by 8 cm square fields 

delivering a dose of 60Gy so as not to damage the rectum. These square fields irradiate a volume 

close to 500 cm 3 (half liter), i.e. approximately ten times more healthy tissue than tumor tissue. 

With the new 3D-CRT technique, the prostate is irradiated with beams reproducing the shape 

of the pyramid and no longer in the shape of a cube. The rectum is protected as well as the 

bladder, knowing that the dose in the target volume has been increased to 70-76 Gy. 

Randomized trials have shown that this dose increase is accompanied by an improvement in 

local control and survival. without an increase in rectal, bladder or even sexual complications. 

A high dose in a small volume remains a model of preference, subject to ballistic targeting 

accuracy. In 2000, 3D-CRT became the routine technique for the vast majority of irradiations, 

particularly for curative purposes (brain tumors, ear nose throat (ENT), lung, prostate, etc.). 

 Despite this therapeutic progress brought by 3D-CRT, it should be noted that this technique 

is less precise in the case where the tumor presents concave shapes with in addition organs at 

risk in these concavities, which represents 30% of cases. Hence the development of Intensity 

Modulation Radiation Therapy (IMRT) that we will present in the next section. 

I.6.3. Intensity Modulated Radiation Therapy 

 The beam intensity can be adjusted (modulated) over the beam cross-section in IMRT, 

which is a generalization of 3D-CRT. This is done by superimposing many beams with different 

MLC configurations on top of each other. Each configuration is referred to as a beam segment, 

and the entire intensity distribution of the beam is made up of the superimposed intensities of 

all segments. Figure I.9 shows an illustration of an IMRT therapy.  

 

Fig.I.9. Illustration Through the superposition of many beams from different angles, an IMRT plan 
gives a focused dosage to the tumor volume. An SMLC plan is depicted here. The MLCs shape each 

beam individually, and the varied intensity across the beam is achieved via a series of shots with 
different MLC configurations. 
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 In general, IMRT plans yield more concentrated dose distributions to the tumor than 3D-

CRT plans [5], particularly when giving dose distributions that are concave or have steep 

gradients. However, because of the greater number of varied beam segments, IMRT plans 

normally take longer to complete. Longer delivery durations not only slow down the clinic's 

throughput (and hence lengthen waiting lists), but they also raise the chance of patient mobility 

during treatment, jeopardizing the plan's quality. Due to the MLC's failure to totally block off 

the beam during delivery, the patient is also exposed to some additional unwanted radiation. 

Finally, the restraining device utilized to restrict movement may cause discomfort to the patient 

during the fraction. However, in most circumstances, IMRT is considered to be a better option 

than 3D-CRT due to the potential to generate more conformal designs. In the United States, the 

percentage of radiation therapy treatments using IMRT increased from 0.15 percent to 95.6 

percent between 2000 and 2008 [6]. A number of IMRT approaches have been developed, 

which are listed below.  

I.6.3.1. Segmential MultiLeaf Collimation 

 The gantry and the MLC leaves are static during irradiation in Segmential MultiLeaf 

Collimation (SMLC), which is in some ways the simplest version of IMRT. During movement 

of either, the beam is turned off. Typically, a set of gantry angles is chosen first, followed by 

the creation of numerous distinct MLC shapes for each angle. Step-and-shoot IMRT is another 

name for SMLC. It's the most similar technology to 3D-CRT, but with a variety of MLC shapes 

for each angle.  

I.6.3.2. Dynamic MultiLeaf Collimation 

 Allowing the leaves to move during the irradiation results in an extension of SMLC. This is 

known as Dynamic MultiLeaf Collimation (DMLC), and it has the benefit of shorter treatment 

times and more options for dosage shaping. However, because finite leaf velocities and 

accelerations (typically in the range of 1-4 cm/s and 50-70 cm/s2 [7]) must be considered, the 

treatment becomes more complicated. DMLC treatments often have longer beam-on times than 

SMLC treatments, but spend less time turning off the beam and adjusting the leaves, resulting 

in a lower net treatment time [8]. While this is a benefit of DMLC, the added complexity can 

be an issue, especially if a treatment must be discontinued and restarted. Sliding Window IMRT 

is another name for DMLC.  
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I.6.4. Volumetric Modulated Arc Therapy 

 During irradiation, the gantry is slowly rotated over the patient, resulting in Volumetric 

Modulated Arc Therapy (VMAT). An arc is the name for a continuous revolution. During 

rotation, the MLC leaves move so as to shape the beam intensity appropriate to the tumor. 

VMAT treatments offer the advantage of being able to deliver plans faster than SMLC and 

DMLC without sacrificing plan quality [9]. The additional complexity, like with DMLC, makes 

the treatments more difficult to manage. Nonetheless, VMAT is frequently seen as a viable 

therapy option.  

1.7. Dosimetry and treatment planning 

 The use of radiotherapy as a means of treatment has arrived in clinics without the 

radiophysicists possessing powerful means of calculation. Therefore, the first treatment 

planning systems (TPS), were carried out using solutions based on empirical methods using a 

limited description of the patient's anatomy. 

 Major innovations then made it possible to refine the techniques for performing TPS. The 

anatomical description of patients has been developed with the emergence of new tools for 

medical imaging, such as CT scanners in the early 1970s, and more recently, the MRI, and the 

Single Photon and Positron Emission Tomography (SPECT and PET) scanners. 

 On the other hand, the increase in the computation capacity made it possible to develop 

numerically calculated treatment planning since 1970s, limited to simple geometries without 

considering heterogeneities. Subsequently, improvements were made such as the heterogeneous 

zones calculation in 1983, using fine discretization. At the same time, these technical 

innovations have allowed a refinement of simulation techniques. 

I.8. Treatment Planning 

 The treatment plan is the whole set of instructions supplied to the equipment to perform the 

treatment. This covers all beams, their orientations, MLC leaf positions, and each MLC 

configuration's radiated power. The treatment planner's ultimate goal is to select a plan that 

promotes long-term tumor control without creating difficulties to healthy tissue.  

 The patient's 3D image collection is provided by CT imaging. The clinician uses this image 

set to outline the contours of the tumor and important healthy organs nearby. This combined 

dataset (CT and contours) is then sent to a treatment planner, who chooses beam angles and 
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works on optimizing a treatment plan, as shown in figure 1.10. This is the step that we suggest 

our contribution in this paper.  

 
Fig.I.10. Basic Radiotherapy treatment planning workflow. 

 To produce a deliverable treatment plan, the optimized fluence levels must be converted to 

multi-leaf collimator locations and monitor units in the actual clinical process. At this stage, the 

deliverable's treatment plan is examined., and it is used to treat the patient once it passes this 

quality assurance (QA) step, whereas, the plan is delivered to a device recognized as a phantom. 

 The phantom is usually a body of water with a sensor grid for measuring the radiation 

supplied. The plan can be administered to the patient if the difference between the calculated 

and delivered doses is less than a certain threshold.  

I.8.1. Treatment planning systems 

 The heart of RT systems and the key to better patient outcomes are treatment planning 

systems (TPS). Following the loading of picture files and the identification of tumors, the 

systems create a sophisticated plan for each beam line path for how the therapy system will 

deliver radiation. Figure I.11 depicts an open source TPS in action.  

 The software also calculates the projected dose distribution in the patient's tissue, taking 

into account factors like tissue energy level penetration and the type of tissue that the beam 

lines pass through (e.g., bone or lung vs. muscle).  These devices also assist in beam placement 

by avoiding important structures that are more vulnerable to radiation in order to decrease 

therapy-related collateral harm. This could include complex automated programming for MLC 

leaf sequencing to shape the beam around important structures during dose administration. 

These treatment plans can also be tweaked to account for tumor shrinkage over the course of 

treatment.  
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Fig.I.11. A computational Environment for Radiotherapy Research (CERR) window which is a 
MATLAB based software platform for developing and sharing research results using radiation therapy 

treatment planning and imaging informatics [10]. 

I.9. Dose Calculation methods: a state of the art   

 In radiotherapy, it is essential to have a precise knowledge of the dose delivered to the target 

volume and to the neighboring critical organs. Today, the dose is calculated in three dimensions 

using algorithms implemented on TPS that take into account the anatomical characteristics of 

the patients and the physical and geometric characteristics of the beams. 

 Typically, dose calculation algorithms model the physical energy transfer processes and 

calculate the dose deposited by treatment beams into the voxels that make up the patient's digital 

phantom. The dose received by the patient is divided into two categories: first, the dose from 

primary photons which have not interacted in the head of the accelerator. These photons only 

interact with the patient's tissues, causing dose deposition by moving electrons and (indirect) 

dose deposition by scattered photons in the phantom. Second, the dose from the primary photons 

that interacted with the accelerator head produces contaminating electrons and scattered 

photons from the accelerator head [11]. Contaminated electrons deposit their energy on the 

patient's skin. Photons scattered from the head of the accelerator, in turn, deposit their energy 

in the patient. 
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 These dose calculation algorithms for complex situations (considering heterogeneities, 

surface irregularities, etc.) are sometimes very imprecise. They give an approximate 

representation of the dose distribution in the patient. The level of approximation will be 

different depending on the type of algorithm used. 

 The point is, it is inevitable to make tradeoffs between accuracy and speed of computation. 

To date, the algorithms used are more and more sophisticated and aim at improving the 

precision in the calculation of the dose. The commonly used dose calculation models are briefly 

described and commented on here. 

I.9.1. Monte Carlo method 

 Monte Carlo algorithms (MC) are stochastic methods for solving numerical problems for 

which no analytical formulation can be obtained. In the case described here, the physical models 

of the transport and diffusion process of electrons and photons are in fact statistical models of 

radiation-matter interaction at the particle scale (photons, electron, atom). The complete 

analytical formulation of such a model is impossible, so the Monte Carlo method [12,13] is 

applied to it. But by extension, in dose calculation, the statistical model and stochastic resolution 

duo are often called “Monte-Carlo method”. 

 The Monte Carlo method has very often and very completely been detailed and commented 

on in the literature. It is based on the simulation of the transport of particles from their 

production to the deposition of energy in matter. It is the most realistic current method. The 

dose distributions obtained by the Monte Carlo method are therefore used as references.  

 On the other hand, to obtain precise results with an acceptable uncertainty, it is essential to 

simulate the transport of a large number of particles (at least of the order of 107). This implies 

relatively long computation times which can reach several days [14,15].Many methods have 

been developed to speed up the dose calculation and ultimately allow the use of this approach 

in clinical routine. To date, the Corvus v.5 (NOMOS Corporation, Swickley, PA) TPS has 

adopted the Monte Carlo method for the dose calculation. Despite everything, this method is 

still not very suitable for routine digital dosimetry. They are mainly reserved for theoretical 

studies, in particular to test the validity of other models in complex situations, difficult to 

achieve on the experimental level and appear in the clinical validation process for complex and 

critical cases. 
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I.9.2. Methods based on the separation of primary and scattered radiation 

 This method was used for a long time in TPS during the 90s. This method was first 

developed by Clarkson in 1941 [16], then by Cunningham in 1972 [17,18]. This method consists 

in calculating separately the "primary dose" and the "diffused dose". The dose at a point is the 

sum of the contributions of the primary and scattered components of the radiation field. The 

detailed presentation can be found in [15]. This method is particularly suitable for 

conformational radiotherapy. Nowadays, it is still used in Cyberknife's dedicated TPS, but less 

used in IMRT. 

I.9.3. Convolution / superposition methods 

 The convolution / superposition methods, proposed in the early 1980s [19-22], separate the 

processes of transport and deposition of energy in two phases: transport of energy by primary 

photons, and its deposition by secondary particles (electrons and photons). In reality, electrons 

from photoelectric, Compton and pair creation interactions deposit their energy within a few 

millimeters or even centimeters around, but Compton interactions also release secondary 

photons which can travel long distances before interacting again and depositing all or part of 

their energy [23]. The deposition of energy by these secondary particles is also integrated into 

the expression of Kernels. The total absorbed dose at a given point results from the sum of the 

dose distributions calculated from all the points where energy is released (superposition), this 

sum is achieved by a convolution of these two phases, illustrated in Figure 1.12. 

The general dose calculation is written:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑄𝑄) = �𝑇𝑇(𝑃𝑃) × 𝐾𝐾(𝑃𝑃 − 𝑄𝑄)
𝑃𝑃

 

Where: T(P) is the Terma at point P, K (P - Q) gives the share of the energy T(P) 

deposited at point Q. 

 
Fig.1.12. (a) Primary photon fluence (b) Convolution nucleus (c) Dose distribution 
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I.9.3.1. Kernel point method 

 The kernel point method as shown in Figure 1.13 (a), consists of two successive phases. 

The first phase corresponds to calculating the total energy transferred by all the primary photons 

in a unit of mass (Terma). The second phase is to calculate a deposition model of this energy 

around a primary interaction site.  

I.9.3.2. Pencil beam method 

 A pre-integration of all the nuclei in the direction of the infinitesimal section beam depth 

makes it possible to obtain the absorbed dose due to the latter. Such a nucleus is shown in Figure 

1.13 (b). This so-called pencil beam approach is used for electron beams [24] and photon beams 

[25]. 

 
Fig.I.13. Convolutional nuclei: (a) nucleus representing the distribution of energy released by 

interactions of primary photons taking place at a single point; (b) a core of the pencil beam type, 
representing the dose deposited by a beam of infinitesimal section. 

I.9.3.3. Collapsed cone convolution method 

 The so-called “Collapsed cone convolution” method, introduced by Ahnesjo in 1989 [21] 

offers one of the best time / precision compromises. 

 For a voxel with a given Terma, the method considers that the energy transport is done 

according to cones in the different directions and starting from the central point (the point where 

the Terma was previously calculated) (see Figure 1.14). Then, it assumes that all the energy that 

is propagated in a cone is transported, attenuated and deposited according to an exponential law 

on the axis of that cone.  
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Fig.I.14. A Terma voxel (blue cube) emits a cone of energy. The dose is deposited only in the voxels 
which are on the axis of this cone (arrow). 

 This assumption makes it possible to simultaneously distribute the dose along a set of 

discrete lines that emerge from each Terma point and to accumulate the Terma as one advances 

in the direction considered (see Figure 1.15). This simultaneity is the basis of the algorithm's 

performance in computing time. 

 
Fig.I.15. The propagation of the energy of a Terma (cube) voxel along the cones 

 The resulting method is today one of the most efficient, as it offers acceptable precision 

(rarely more than 5% error [26,27]), while taking a limited time (of the order of a minute). But 

this time is still too long to consider iterative optimization of treatment plans. 

I.9.4. Calculation methods by neural networks 

 In recent years, various authors have used neural networks, taking advantage of their 

properties of universal approximators [28] to quickly and precisely calculate the dose. It has 

been shown that a neural network is able to "learn" the dose in a homogeneous medium on the 

beam axis [29] and the dose on a 2D plane in homogeneous volumes [30]. The most 

sophisticated approach to date, called NEURAD [31,32] is capable of calculating the dose 

absorbed in heterogeneous medium by a wide beam from doses in medium homogeneous 

previously learned by neural networks. This method is based on the following two assumptions: 
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1. In a homogeneous sub-part of a heterogeneous phantom, it is assumed that the dose can 

be obtained from a pre-calculated model in a homogeneous medium, and learned by a 

neural network. 

2. Electronic equilibrium is assumed to be achieved in the vicinity of interfaces (interfaces 

crossed by all or part of the primary beam). The consequence of this assumption is that 

the dose does not undergo strong variations near these interfaces. 

 This method calculates the dose for an interface orthogonal to the beam axis. It considers 

that there is equality between the dose at the last point of the first material and the dose at the 

first point of the second. They use the dose curves, obtained via their neural network, in the first 

and the second material. The dose before the interface is considered equal to the dose in a 

homogeneous medium. The dose after interface is too, but it is taken from the depth where it is 

equal to the dose at the last point before the interface. This way, the dose curve at the interface 

is very continuous. 

 The results of this method are very correct in the case of a wide beam. On the other hand, 

the case of narrow beams is not correctly treated (in fact the method exploits the theorem of 

Fano [33] which is not valid by hypothesis in the case of narrow beams). A method of 

processing interfaces parallel to the axis of the beam, and within it, is also given [31,32]. 

However, the issue of oblique interfaces, as well as that of interfaces outside the bundle, is not 

addressed. The calculation time on 3D grids is greater than a minute. 

 Despite the limitations stated above, the method contributed to the idea of using, in a 

homogeneous subpart of the phantom, a pre-calculated dose distribution in a homogeneous 

phantom made of the same material. The major issue is to manage the electronic imbalance near 

the interfaces in the case of small beams. But another important point is also to be considered 

in order to have the best performance. 

 The methods presented so far calculate complete dose distributions. In other words, if one 

wishes to calculate the dose only at a single position, it is necessary to make numerous 

intermediate calculations on other points, or even to make a complete dose calculation on a 

large part of the ghost. 

 However, obtaining a complete dose delivery on a complete phantom is not always 

necessary. For example, if the dose must be known in a complete and precise manner on the 

tumor and the organs at risk, on the other hand, it is possible to reduce the density of checkpoints 
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on the less sensitive areas. Another example is the optimization of the treatment plan, for which 

it may be sufficient, especially in the preliminary stages of placement and orientation of the 

beams, to have only the dose available at certain points. For example, a few control points may 

be enough to verify if the orientation of a beam is correct, or if it should be changed. 

 In our work, we have used a pencil beam dose calculation algorithm referred to as the 

quadrant infinite beam (QIB) model due to its availability on (CERR) [25,34] (see Chapter IV). 

I.10. Quality criteria in radiotherapy 

 The goal of radiotherapy has always been to deliver the prescribed dose value to the tumor 

and the minimum dose to related areas. There are several ways to assess the quality of the 

treatment plan depending on the type of representation used. 

I.10.1. Isodose Curves 

 The first way to represent a dose distribution is to use a plane representation of the isodose 

curves. An isodose curve, shown in the figure 1.16, represents a set of points of the irradiated 

medium where the value of the deposited dose has the same value. This means of control can 

be done quickly visually, cut by cut. But it has the disadvantage of making the comparison 

between several treatment plans difficult and imprecise.  

 
Fig.I.16. Normal (a) and oblique (b) incidence isodose curve 
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I.10.2. Dose Volume Histogram 

 To allow better visualization and study of these yields, another quantification of the 

deposited dose is implemented in the form of a dose-volume histogram (DVH) [3]. This 

representation, allows to know the detail on the doses deposited in each volume of interest, for 

example, targets, critical structures, etc. A DVH not only provides quantitative information with 

regard to how much dose is absorbed in how much volume, but also summarizes the entire dose 

distribution into a single curve for each anatomic structure of interest. It is, therefore, a great 

tool for evaluating a given plan or comparing competing plans.  

The DVH may be represented in two forms: the cumulative integral DVH and the 

differential DVH. The cumulative DVH is a plot of the volume of a given structure receiving a 

certain dose or higher as a function of dose (Figure 1.13). Any point on the cumulative DVH 

curve shows the volume that receives the indicated dose or higher. 

 
Fig.I.17. A cumulative DVH from a radiotherapy plan. 

The differential DVH is a plot of volume receiving a dose within a specified dose interval 

(or dose bin) as a function of dose.  

 

 

 

 

 

 
Fig.I.18. A Differential DVH from a radiotherapy plan. 
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 The differential form of DVH, as shown in Figure 1.18, depicts the magnitude of dosage 

variation within a given structure. A single bar of 100 percent volume at the indicated dose, for 

example, is the differential DVH of a uniformly irradiated object. The cumulative DVH has 

been proven to be more beneficial and is utilized more frequently than the differential form of 

DVH. All of these comparisons are based on the analysis of the relationships between the 

different parameters characterizing the treatment.  

I.11. Optimization in IMRT 

 Optimization has usually been divided into three sub-problems, each of which focuses on 

fixing a subset of these variables and optimizing a subset of other parameters. Number and 

beam angles optimization (BAO), fluence map optimization (FMO), and MLC segmentation 

optimization (MLCSO) are the three sub-problem categories as summarized in figure 1.19. The 

FMO is the core of this dissertation's IMRT-based optimization problem; nevertheless, a brief 

review of the BAO and MLCSO will be offered, followed by a discussion of the FMO. 

 
Fig.I.19. The main IMRT optimization challenges: BAO, FMO, MLCSO, and Hybrid BAO-FMO. 
The FMO is marked in red since it is the IMRT optimization challenge that was discussed in this 

thesis. 

I.11.1. The problem of Beam Angle Optimization (BAO)  

 Prior to IMRT, many plans were made up of a small number of manually chosen beams, 

like two parallel-opposed beams for breast treatments or four-field box for prostate treatments. 

With the introduction of IMRT, it became possible to use additional beams to better spread out 

the dose to healthy structures. When working with a limited number of beams, the location of 
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these beams is essential, especially in non-convex geometries where the tumor is wrapped 

around or near critical organs. Increasing the number of beams in a treatment plan will lengthen 

treatment duration and, as a result, increase the risk of an undesirable outcome due to patient 

movements. As a result, determining the ideal number and orientation of treatment fields for a 

given patient geometry and set of dosage limitations in IMRT entails determining the optimal 

number and orientation of treatment fields.  

 The problem is characterized as picking a certain number of beams, b, from a bigger set of 

all possible beams, k, that will result in the best objective function value, f(x), from a larger set 

of all possible beams, k [35-36]. The objective function is expressed as a function of the vector 

x. Each element of this latter is a fluence value allocated to a specific beamlet of the chosen 

beam. The dealing between dosage and fluence is then utilized to frame the objective function 

in terms of one of the RT treatment goals, such as minimizing the mean dose to a crucial 

structure. Due to the risk of collisions between the patient and the LINAC, this problem has 

traditionally been limited to only coplanar beams. To keep track of the beams included and 

avoided in the solution from the set of k potential beams, a binary beam selection variable is 

necessary. As a result, mixed-integer optimization techniques for the BAO issue have been a 

natural choice [37,38]. Single-step procedures, which include vector quantization and scoring 

methods; and set scoring models and alternative iterative techniques, which include local search 

methods, simulated annealing, and evolutionary algorithms, are two ways to classify the various 

approaches taken for the BAO problem. In addition, researchers have looked into merging the 

BAO and FMO to determine the ideal number of beams, direction, and fluence patterns all at 

once [39]. Despite the fact that there have been numerous publications on the subject of BAO 

and that it remains a hot issue of research, the majority of institutions that use IMRT still use a 

trial-and-error manual approach to picking beams for each treatment plan. Prostate cancer cases, 

in general, allow for the use of a typical coplanar beam arrangement template in terms of number 

and orientation for the majority of prostate instances. More complex instances, such as head 

and neck, necessitate the creation of a patient-specific beam arrangement. 

 The next logical step in the IMRT optimization process is to establish the ideal fluence 

pattern for each beam that will result in the best-possible dose distribution in regard to some 

preset prescription dose and dose constraints to the relevant structures. The fluence map 

optimization (FMO) challenge is based on determining these ideal fluence patterns for a specific 

set of beams. The FMO is discussed at the end of this subsection because it is the foundation 

for the IMRT-based optimization problem studied in this thesis.  
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I.11.2. The problem of MLC Segmentation Optimization (MLCSO)  

 After determining the ideal fluence patterns using the FMO, it's time to figure out how to 

recreate this intensity distribution when treating the patient. Multi-leaf collimators (MLCs), 

tomotherapy, and compensator-based techniques have all been presented as standard 

approaches for delivering intensity modulated fields of IMRT. Despite the fact that the latter 

strategy is the least ideal since it requires more treatment time to swap compensators for each 

field, investigations have proven that it is a viable method for delivering IMRT fields [40]. 

Tomotherapy is a revolutionary approach of treating patients with intensity modulated radiation 

treatment (IMRT), in which IMRT beams are administered slice by slice, similar to how CT 

imaging is done [41]. The MLC-based approach, on the other hand, is currently the most 

prevalent method for IMRT treatments. The MLC allows you to realize the complex intensity 

distributions that the FMO problem generates. However, constructing MLC sequences for an 

arbitrary fluence map is not a simple task, and there are some circumstances where the fluence 

distributions generated by the FMO are physically impossible to actualize in the MLCSO 

problem. As a result, the MLCSO's overall objective is to provide a collection of deliverable 

MLC sequences that produce (sequenced) intensity distributions that are as near as feasible to 

the optimum (reference) fluence maps produced by the FMO issue. 

 As stated in section 6, MLCs may be utilized in three different ways to materialize and 

execute IMRT treatment plans: dynamic mode, static mode, and arc therapy. Many variants on 

the MLCSO issue have been proposed, trying to include various physical phenomena that occur 

when MLCs are used, such as the tongue and groove effect, dynamic leaf gap, intra-leaf 

radiation transmission, and so on. As previously stated, there are certain difficulties in recreating 

the optimum fluence map (gained from the FMO) while solving the MLCSO, since the FMO 

does not always take into account the physical and mechanical constraints of the delivery 

mechanism - the MLCs. As a result, one novel method to resolving this challenge is to combine 

the FMO and MLCSO issues, with a predefined set of MLC sequences that are known to be 

deliverable being utilized as input in calculating the optimum fluence. As a result, determining 

the optimum weighting system in terms of fluence for each of these deliverable MLC segments 

is basically the goal. DAO (direct aperture optimization) is the name given to this kind of 

optimization issue [42,43]. 
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I.11.3. The problem of Fluence Map Optimization (FMO)  

 The BAO and the MLCSO are important and well-studied RT optimization problems, but 

the FMO problem is the focus of this thesis since it is the most natural point in the IMRT 

optimization process to analyze a specific beam parameter that has not been investigated 

directly. The beamlet energy used in IMRT beams is this exact beam parameter. An overview 

of the FMO will be presented before exploring the possible benefits of implementing beamlet 

energy optimization into the FMO.   

 There has been a lot of research focused on addressing and enhancing the FMO since the 

advent of IMRT and inverse planning in the 1980s. Webb and Bortfeld used different 

optimization methods to frame the issue, but they both had the same goal in mind: to find the 

set of optimal fluence maps given some specified geometry and a desired dose distribution. The 

objective function and constraints, as previously stated, are the essential components of an 

optimization problem, both of which are defined in terms of the decision variable for which an 

optimal set of values is sought. Whatever optimization method may be used to solve that 

specific formulation of the optimization issue depends on whether or not constraints and/or an 

objective function are included, as well as which form (e.g. linear, non-linear) these functions 

are pursued. Different optimization models and algorithms (e.g. stochastic vs deterministic) 

may be classified in a number of ways, especially when applied to the FMO. Ehrgott et al. [44], 

for example, divide the FMO into five categories: feasibility, linear programming, non-linear 

programming, mixed-integer programming, and multi-criteria optimization. 

I.11.3.1. relationship between Dose and fluence  

 Before going through each one in detail, it's important to note that the relationship between 

dose and fluence is a feature that all algorithms and models for the FMO share. This connection 

is also necessary for MLCSO, BAO, and any other IMRT parameter optimization study. The 

relationship between intensity and dose has previously been shown to be roughly linear [45]. 

We are dealing with a predefined beam arrangement for the FMO, so let's assume beams b = 1, 

2,..., B contribute to the beam arrangement in this example. Each beam can be subdivided into 

smaller beamlets, with j = 1, 2,..., N in this scenario. Finally, the volume in question will be 

divided into smaller rectangular sub-volumes known as voxels, with indices i = 1, 2,..., M 

describing these voxels as shown in figure I.20.   
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Fig.I.5. Radiation field discretization into beamlets and volume of interest into voxels on a 2D 

transverse slice. Multiple beamlets contributing fluence to the same voxel are depicted.. 

 The dose deposited to voxel i by unit intensity of beamlet j from beam b is then commonly 

represented by an element aijb which is a pre-calculated value. Alternatively, the beam and 

beamlet information can be combined into a single index k, which contains an index for all 

beamlets. For example, if we have two beams, each with ten beamlets, then k =1,2,...,10, 

11,...,20 for the total number of beamlets from all beams. In this scenario, aijb becomes aik, and 

all aik values can be sorted into a huge matrix known as the dosage deposition matrix, which is 

indicated by A or D of dimensions M×K. The voxels are represented by the M rows, and the 

beamlets are represented by the K columns in this matrix. This dose deposition matrix can be 

calculated using any of the dose calculation methods outlined in section 9 earlier. The dose 

deposition matrix, which is described by the following linear equation, completes the linear 

relationship between dose and fluence:  

d = Ax         (I.1) 

Where d is a M × 1  dose vector with each element di  representing the dose deposited to voxel 

i, A is the M × K dose deposition matrix, and x is the K × 1 fluence vector with each element xk 

representing the fluence of beamlet k that one is seeking to discover optimal values for in the 

FMO issue. Equation I.1 is the foundation of any FMO problem, and it is further examined in 

Chapter IV in terms of include energy optimization in the FMO.  
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I.11.3.2. The feasibility method  

 The feasibility approach is not an optimization strategy, according to the five FMO model 

and algorithm classes, because it does not use an objective function that is minimized or 

maximized to discover the best solution. Instead, it depends entirely on dosimetric constraints 

to define the problem's feasible zone and assure that any solution picked from this region meets 

the desired constraints, regardless of which solution is deemed "optimal." This was one of the 

first efforts to using the FMO to produce acceptable fluence maps, and the groundwork for it 

was laid by using Cimmino's simultaneous projection algorithm, which projects the current 

iteration simultaneously onto all associated sets and determines the centroid.  

I.11.3.3. Non-Linear Programming (NLP) 

 When it comes to commercial treatment planning systems, non-linear programming (NLP) 

models and algorithms have perhaps been the most popular for addressing the FMO [46,47].  

 One of the reasons is that the weighted least squares model has a simple interpretation and 

implementation when it comes to clinical restrictions, which are defined as the intended dose 

to various structures of interest (such as tumors (T) and organs at risk (OARs). This algorithm 

can be expressed in a number of ways, the most basic of which is  

min
       𝑠𝑠.𝑡𝑡  𝑥𝑥≥0

𝑤𝑤𝑇𝑇
𝑀𝑀𝑇𝑇
‖𝐴𝐴𝑇𝑇𝑥𝑥 − 𝑇𝑇𝑃𝑃𝑃𝑃‖2 + 𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂

𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂
‖𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥 − 𝑈𝑈𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂‖2      (I.2) 

 All-important variables from Equation I.2 are listed in Table I.2. Bortfeld [48] demonstrated 

that there are no local minima for simple least squares objective functions like the one in 

Equation I.2. However, when dose-volume based limitations are included, this is no longer the 

case.  

Variable Description 
AT, AOAR rows of the dose deposition matrix A that correspond to the tumor (T) and 

OAR voxels, respectively 
MT, MOAR The total number of voxels associated with tumor and OAR structures, 

respectively.  
TPD, UBOAR TPD = Prescribed dose of tumor. UBOAR = upper bound for OAR dose 
wT, wOAR Priority weighting factor for tumor and OAR 

Table.I.1. Least squares optimization model variables description (Equation I.2) 
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I.11.3.4. Mixed-Integer Programming (MIP) 

 Due to its ability to manage dose-volume restrictions, mixed-integer programming (MIP) 

provides an alternate way to solve the FMO. To summarize, MIP provides a binary variable 

that allows the algorithm to decide whether or not a voxel can exceed the prescribed dose level 

for the structure in which it is contained. The sum of the voxels that are allowed to exceed the 

dose prescription must be less than or equal to the dose-volume constraint's prescribed volume. 

The main disadvantage of adopting MIP-based techniques for FMO is that these programs are 

computationally costly due to the addition of thousands of variables for each dose-volume 

restriction simulated. This has been a major issue in commercial solvers' reluctance to use MIP-

based techniques for the FMO problem.  

I.11.3.5. Linear Programming (LP) 

 Linear programming is a method of optimization in which the objective function and 

constraints are both linear functions. George Dantzig created the Simplex method, which was 

an effective approach of tackling LP issues, in 1947, and developed the broad formulation of 

linear programming used for planning United States air force related-projects in 1946. The first 

linear optimization model for RT treatment was created in 1968 [49]. There have been various 

distinct applications of LP to RT since then. Shepard et al. [50] offered an outline of the use of 

LP to the FMO problem from the perspective of IMRT.   
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I.11.3.6. Multiobjective Programming (MOP) 

 The Multiobjective Programming (MOP) methodology has been discussed last because it 

was the method used to define the IMRT-related optimization problem that took up the majority 

of this dissertation. For the FMO problem, multi-objective or multi-criteria programming 

(MOP) approaches have lately gained popularity. The objective function in both the NLP and 

MIP techniques gives a single value as a representation of the solution quality. This is 

counterintuitive since the objective function is usually made up of many, competing sub-

objectives, such as the dose to the tumor and the dose to the OARs. Rather than providing a 

single solution linked with a single optimal objective function score, the MOP technique 

provides an entire sequence of solutions, all of which fall on the Pareto front or non-dominated 

solution set. The tradeoffs between opposing sub-objectives can then be investigated, and a 

solution that best fits the physician's needs can be chosen from this non-dominated collection 

of alternatives. The weighted sum method, which may be used to obtain a non-dominated set 

of answers by employing multiple weighting factors and a genetic algorithm approach to solve 

the weighted sum issue, is the most frequent method for MOP. In Chapter III, the specifics will 

be discussed.  

I.12. Conclusion 

 A state of the art in radiation therapy was detailed in this chapter, in terms of a brief RT 

history, radiobiology, basis notion, modes delivery techniques, quality assessment and 

optimization problems in order better understanding what is coming next in this thesis. 
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Chapter II: State of art of RADFET 

II.1. Introduction 

Radiation therapy's primary objective is to increase the dosage to the tumor while 

reducing the exposure to normal surrounding tissues. Therefore, it is significant to be capable 

to quantify the radiation dose accurately and make sure the proper amount of radiation is 

delivered. The advancement of new radiation therapy technology, like intensity modulated 

radiotherapy [1] and image-guided radiation therapy [2] make dose verification a more and 

more complicated problem. The requirements of clinical radiation dosimetry for modern 

technology are as follows: the accuracy of the dose measurement has to be predictable up to 

100 Gy, and the dose resolution should be as small as 1 cGy and position resolution within 1 

mm. In this chapter, the emphasis will be on the RADFET dosimeter due to its later uses in 

this dissertation, and the other existing radiation dosimetry technology will be briefly 

summarized and their advantages and disadvantages will be discussed. 

II.2. Radiation dosimetry technology 

II.2.1.Optically stimulated luminescence dosimeter (OSLD) 

Optically stimulated luminescence dosimeters (OSLDs) use the optically stimulated 

luminescence technique to detect radiation. The schematic representation of the energy levels 

of a crystalline material that maintains optical luminescence is shown in Figure II.1. 

Contaminations that create crystal-lattice defects are either present in pure crystalline 

dielectric materials or have been introduced in small amounts. These defects can function as 

electron or hole traps, as well as luminescence centers, emitting light when electrons and 

holes recombine around them. After radiation, free electrons and holes can be generated and 

trapped in the forbidden band (1-5 in Figure II.1). Figure II.1 encloses one-hole trap (2) as 

recombination center and three types of electron traps representing shallow traps (3), 

dosimetric traps (4) and deep traps (5). Shallow traps are unstable at room temperature and 

can only hold charge for very short periods of time. Deep traps can only release charge at very 

high temperature or stimulated with ultraviolet light. The dosimetric traps are energy-dense 

sufficient to keep the charge at ambient temperature for lengthy periods of time, but not so 

deep that the charge may be freed by visible light. Electron–hole recombination occurs after 

the trapped charges have escaped, resulting in light. The entire luminescence related to a 

specific level of traps is proportional to the trapped charge concentration and, in theory, to the 

absorbed radiation dosage [3–5]. 
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Fig.II.1. Schematic diagram of the energy levels of a crystalline material that sustains optical 

luminescence. 

As a result, the trapped charge concentration in OSLDs serves as a record of the overall 

dosage absorbed by the crystal. This record can be “read” by stimulating the trapped charges 

using a light source to cause recombination of electron and hole and measuring the 

luminescence using a photomultiplier tube [6]. The advantage of OSLD is that it provides an 

accurate measurement for low radiation dose < 20 Gy with small or independent on beam 

quality, temperature, and angle of irradiation [7]. It also has a low radiation detectable 

threshold of 0.1 mGy[8] and is re-usable. 

 However, since OSLDs requires a photomultiplier tube to read the radiation dose, it 

cannot be used for real time measurements. They are also sensitive to light and therefore 

require extra packaging. Even though some groups have demonstrated a prototype OSLD 

dosimeter system for in vivo measurements [6,9], an optical fiber was needed to deliver the 

dosimeter into the body, making the measurement inconvenient and complicated. 

II.2.2. Metal Oxide Semiconductor (MOS) capacitor 

As an alternative to building the dosimeter using active electronic components, it is also 

possible to sense radiation passively. One approach is to use MOS capacitors as a radiation 

sensitive variable capacitor (varactor). Figure II.2 shows the structure and working 

mechanism of a MOS varactor. The varactor consists of a gate metal electrode, a thick SiO2 

layer for absorption of radiation and a lightly-doped n-type Si substrate. The total capacitance, 

Ctotmeasured from the gate and substrate is equal to the series combination of oxide 

capacitance, Cox and silicon layer capacitance, Csi: 
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𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑜𝑜𝑜𝑜 ∙ 𝐶𝐶𝑠𝑠𝑠𝑠
𝐶𝐶𝑜𝑜𝑜𝑜+𝐶𝐶𝑠𝑠𝑠𝑠

     (II.1) 

where Cox, is a fixed value which depends on the oxide thickness, while Csi depends on the 

depletion layer thickness and can be modulated by gate bias or radiation. Radiation generated 

holes could be trapped at the SiO2/Siinterface and decrease the depletion layer thickness in 

silicon. As a result, Ctot will change as a function of radiation. If connected with an inductor to 

form a resonant circuit, the resonant frequency will change as a function of radiation and can 

be potentially measured wirelessly. 

 

Fig.II.2. Structure of a MOS varactor and its working mechanism for radiation sensing. 

 

 

 Even though the MOS varactor enables the possibility of passive wireless sensing [10], 

[11], no wireless sensing has been demonstrated in the literature using a MOS varactor to 

date. One disadvantage of this structure is that it requires a thick SiO2 layer to be able to 

detect low doses of radiation. Since the capacitance is anti-proportional to SiO2 layer 

thickness, the capacitance per unit area of a MOS varactor is too low and this makes the 

device less scalable. Also, since the capacitance is modulated by the depletion capacitance, 

the tuning range of the total capacitance is small. This could limit the detection range of 

radiation. 
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II.2.3. Microelectromechanical(MEMS) technology 

 Another way to realize a passive varactor is to use MEMS technology. C. Son et al. 

demonstrated a microdosimeter composed of a radiation sensitive parallel plate capacitorand 

an inductor as shown in Figure II.3 [12]. In that work, the bottom plate of a capacitor is 

designed to be deflectable and an electret layer with pre-stored charge is placed under the top 

metal electrode. Radiation induced electron-hole pairs in the air gap will be collected from the 

electrode and reduce the surface charge density. As a result, the force between two parallel 

plates will decrease and the air gap will increase. In this way, the capacitance of the parallel 

plate capacitor will decrease as a function of radiation dose and the radiation can be detected 

as a changing of resonant frequency. 

 

Fig.II.3. Structure of the MEMS microdosimeter 

 The dosimeter can be measured wirelessly and implanted with a hypodermic needle. 

Figure II.4 depicts the image of the dosimeter in a hypodermic needle (a) and a typical 

wireless measurement result with different capacitor sizes (b) [12]. The overall size of the 

dosimeter was 2.5 mm in diameter and 2.8 cm in length. Thus, is still too large to beimplanted 

easily and since the air gap between two plates is usually in micro-meters, the low capacitance 

per unit area makes further scaling difficult. 
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Fig.II.4. (a) Image of the MEMS dosimeter in a hypodermic needle. (b) typical wireless sensing 

results of the MEMS dosimeter with different capacitor size. 

II.2.4. Radiation-Sensing Field-Effect-Transistor (RADFET) 

 Radiation-Sensing Field-Effect-Transistors In compared to diode dosimetry, RADFET 

detectors are relatively new for radiation treatment dosimetry. A typical RADFET is simply a 

p-MOSFET with a thick gate oxide as shown in Figure II.5. The oxide thickness varies from a 

few hundred nanometers to a few micrometers [13]. So, the charging of the MOSFET gate 

with accumulation charge created by ionizing radiation is the principle behind the operation of 

the MOSFET detector. 

 

 

Fig.II.5. (a) The structure of a typical RADFET. (b) After irradiation, the trapped holes in SiO2 and Si 

interface will turn the device towards “off” state. 
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In fact, the use of MOSFETs for dosimetry was first suggested for tracking space radiation 

doses in order to forecast the integral dosage impact for satellite electronics [14]. 

• The RADFET detector has several benefits when used for dosimetry in radiation 

therapy: 

• Extremely small size of dosimetric volume, which is impossible to have with other 

detectors; 

• Like thermoluminescent dosimeters (TLDs), they can continuously retain the 

accumulated dosage and, unlike OSL detectors, can be readout without degradation of 

the dose information. 

• They have a dosage rate independence of up to 108Gy/s. 

• Because their sensitivity can be changed by gate bias, they are suited for a wide range 

of radiation applications. 

• It may be readout after irradiation or in real time, allowing for real-time quality 

assurance or dose profiling in a water phantom [15]. 

• They are presently fairly inexpensive and can be disposable utilizing “one dose” 

principle. 

 All of the RADFET detector's advantages make them suitable for dosimetry in the domain 

of high electronic disequilibrium, such as on the body's surface or anatomical cavities, and in 

accumulation zones of depth dose curves in the case of irradiation on MV range X-rays on 

medical LINACs, which made us try to improve the RADFET performance, and propose a 

junctionless double graphene gate radiation sensitive FET (RADFET) in the fifth chapter of 

this dissertation. 

 The conversion of the threshold voltage shift ΔVT into radiation dose D is used in ionizing 

radiation dosimetry employing radiation sensitive MOSFETs. The rise in the interface traps 

density and the positive trapped charge build-up or neutralization are caused by electron-hole 

pairs ofradiation-induced in the transistor's gate oxide layer (GOL).RADFETs' sensitivity may 

be modified, making them appropriate for a wide range of applications. Sensitivity can be 

adjusted, for example, by varying the thickness of the GOL [16,17], or, in some situations, by 

stacking transistors [14,15]. Positive bias on the gate during irradiation can also be used to 

modify the sensitivity [18,19]. 
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II.3. Creation of defects precursors by ionizing radiation 

Ionizing radiation causes a high number of defects at the interface of SiO2 - Si and in 

SiO2, which cause the threshold voltage change in MOSFETs. We'll go through the faults that 

have a big impact on the device's performance in more detail. 

II.3.1. Ionization caused by photons 

 In SiO2 molecules, photons interact with the electrons during gamma or X-ray irradiation, 

producing SEs and holes, i.e. photons break Si0 - Si0and Si0 - O covalent bonds in the oxide 

[20]. (The index o is used to indicate the presence of a silicon atom in an oxide). At the 

moment of creation, the highly energetic released electrons also known as "secondary 

electrons (SE)" may be recombined by holes, or they may evade recombination. SEs that 

manage to avoid recombination with holes go a considerable distancebefore leaving the oxide, 

wasting kinetic energy in collisions with bound electrons in the Si0 - O and Si0 - Si0 covalent 

bonds, freeing more SEs (an oxygen vacancy is represented by the latter bond.). 

 Because the energy of a SE is habitually much higher than theenergy of an influence 

ionizing procedure, each SE can disruptmanyoxide covalent bonds before it exitor is 

recombined by the hole, producing severalnew secondary highly energetic electrons(For the 

formation of one electron-hole pair [20], i.e., ionization of the molecule, an energy of 18 eV is 

required).Because of the disparityin their effective cross sections, i.e., their effective masses, 

SEs are clearly more essential than highly energy photons in bond breakage.  The electrons 

leaving the production site leave the oxide extremely quickly (a few picoseconds), but the 

holes stay. 

 Because there are no energetically deeper centers in the oxide bulk, the holes generated in 

the oxide bulk are typically only transitory, but not be stuck at the production 

sitepermanently. Depending on the direction of oxide electric field, the holes travel toone of 

the interfaces (SiO2-Si or SiO2-gate), where they are entrapped in energetically centers of 

deeper trap hole [21,22].Furthermore, even when the gate voltage is zero, the electrical 

potential created by a difference of work function amongthe gate and the substrate is 

sufficient to allow partial or total movement in the direction ofan interface. 
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II.3.2. The defects formedin impact ionization by SEs  

 By impact ionization, SEs travelling acrossthe oxide bulk disruptcovalent bonds and form 

the ≡ Sio – O•+Sio ≡ complex. The symbol ≡ represents the three Sio – O bonds (O3 ≡ Sio – O) 

and • signifies the electron that is not paired. The generated ≡ Sio – O•+Sio ≡ combination, 

which represents the temporary hole center, is energetically very shallow (it is very easy for 

the trapped holes to escape.  [23]). 

 The strained bondsilicon-oxygen ≡Sio– O – Sio≡, which is mostly found near surfaces, can 

be easily disrupted by passing SEs, which commonly form non-bridging oxygen (NBO) 

centers, Si – O•, and positively charged E' centers, ≡ Si0
+ [24], also known as E's centers [25]. 

An amphoteric defect called an NBO center can be more simplynegatively charged than 

positively charged when an electron is trapped. The NBO is the primary ancestorof traps 

(defects) withininterface regions and the oxide bulk due to its energetically deeper center. 

 A SE travelling across oxide can hit in the strained oxygen vacancy link ≡ Sio – Sio ≡with 

an electron, which is anancestor to an Eγ' center (≡Sio
•), shattering the bond and hittingout an 

electron. Vacancy bonds of oxygen are primarily seen near interfaces. 

 The trapped charge may be positive (oxide trapped holes) or negative (oxide trapped 

electrons), with the firstbeing more significantbecause centers of hole trapping, such as E'S, 

E'γand centers of NBO, are more numerous than electron trapping centers, with only one 

electron trap center (NBO). Because they have greatest impacton the channel carriers, the 

trapped electrons and holes closeto the Si – SiO2 contact have the greatest impact on 

MOSFET properties. 

II.3.3. Creation defects by hole transport in SiO2 

 The trapped holes at≡ Sio
+ centers generated from oxygen vacancies and strained silicon-

oxygen bonds are energetically profoundand stable, allowing them to remain unfilled for 

longer periods of time than superficiallytrapped holes. These centers can be found near both 

interfaces, particularly around the Si – SiO2 one. Because there are many oxygen vacancies in 

addition tostrained silicon-oxygen bonds nearbyinterfaces, the holes formedand trapped at the 

bulk defects, representing energetically superficialcenters, are compelledto travel toone of the 

interfaces belowthe electric field, andthey are caughtat deeper traps. The holes abandonthe 

energetically shallow centers in the oxide spontaneously and travelto the interface as shown in 

figure.II.6 (a), via a jumpingprocess employing either superficialcenters in the oxide as 
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depicted in figure.II.6 (b); or centers in valence band of the oxide as illustrated in figure.II.6 

(c) [21], [27]. Figure II.6 shows the in-spacehole transport for positive gate bias (a) and the 

diagram ofenergy for this space process various mechanisms (b), as well as the in-space hole 

transport for the negative gate bias(c). 

 
Fig.II.6.(a) Hole movement across the GOLwith positive gate bias. Unbroken and broken bonds 

(trapped holes at superficial traps) are represented by “x” and “o,” respectively, and hole trap ancestors 
near the interface (ancestors of a deep trap)are represented by “Δ” (space diagram). (b) Hole 

movement by tunneling among localized traps and (c) by the oxide valence band (energetic diagram). 
 

 Figure II.7 illustrates the possibility of hole or electron to tunnel among two nearby 

centers: superficial and deep. It is impossible for holes or electrons to tunnel among these 

centers when there is no gate bias (Figure II.7 (a)). The bound electron can tunnel from the 

deep center to the surface center when the transistor is positively biased (Figure II.7 (b)). It 

symbolizes a hole tunneling from shallow to deep cores and being trapped at the deep center. 

In the surface center the electron, now, can easily tunnel from this surface center to the next 

modified surface center, allowing the hole to travel to the interface [21]. 
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Fig.II.7. The electron tunneling among two nearby centers: (a) superficial and (b) deep. 

 The holes react with the hydrogen defects ≡ Sio – H and ≡ Sio – OH as they move through 

the oxide, eventually forming E'S, E'γ, NBO centers, hydrogen ions H+, and hydrogen atoms 

Ho. At the SiO2–Si contact, H+ ions and Ho atoms were significant for defect formation (see 

the following section). When the holes reach the interface, they can break both the strained 

oxygen vacancy bonds ≡ Sio – Sio ≡ [24] and the strained silicon oxygen bonds ≡ Sio – O – Sio 

≡ [21], generating E'S and NBO centers. These centers, respectively, indicate energetically 

deeper hole and electron trapping centers. It should be emphasized that the energy levels of 

the defects formed after the holes at E'S and E'γ centers were trapped, as well as the electrons 

at the NBO center, can vary. Chemically identical flaws behave differently depending on the 

entire bond structure, including the angles and distances between the surrounding atoms [28-

33]. 

II.3.4. Creation of SiO2 - Si interface defects 

 True interface traps are amphoteric defects found at the SiO2-Si interface. Si3≡ Si• (the 

index s denotes the silicon atom in the substrate): a silicon atom Si3≡ Si• back linked to three 

silicon atoms from the substrate ≡ Sis commonly denoted as ≡ Si• or Si• at the SiO2 -Si contact. 

They can be produced directly by incident photons passing through the substrate or gate [34, 
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35], although this amount can be ignored. Trapped holes (h+ model) [36-39] and hydrogen 

released in the oxide (hydrogen-released species model– H model) [40-42] are the main 

sources of interface traps. According to the h+ model, an interface trap was formed by a hole 

trapped near the SiO2-Si interface, implying that an electron-hole recombination mechanism 

was involved [37]. When holes are trapped near the interface and electrons are supplied from 

the substrate, recombination occurs. The interface state can be created using the energy freed 

by the electron-hole recombination. 

 Under a positive electric field, H+ ions generated in the oxide by trapped holes interact 

with with ≡ Sio - H and ≡ Sio - OH defects and drift toward the SiO2-Si contact, according to 

the H model. The H+ ion picks up an electron from the substrate at the contact, breaking a 

highly reactive hydrogen atom Ho [43]. The hydrogen atoms Ho produced in reaction holes 

with ≡ Sio - H and≡Sio - OH defects diffuse towards the SiO2-Si interface under the existing 

concentration gradient, according to the H model. In interaction with interface trap precursors 

≡ Sis - H and ≡ Sis - OH [44]-[46], these atoms react at the interface without an energy barrier, 

forming interface trap. Apart from the generation of interface traps in connection with 

interface trap precursors, interaction between Ho atoms with ≡ Sis - H and≡ Sis - OH 

precursors results in the formation of H2 and H2O molecules, respectively [21], [43]. H2 

molecules diffuse into the bulk of the oxide, cracking it at CC+ centers [47]. This cracking 

process guaranteed a steady supply of H+ ions, which drifted to the interface and formed 

interface traps [48]. 

II.3.5. Classification of defects based on their impact on I-V characteristics 

 Fixed traps (FT) and switching traps (ST) are two types of faults listed above (ST). FT 

denotes oxide traps that are unable to exchange charge with the channel (substrate) during the 

time period of the transfer/subthreshold characteristic measurement [49]. FTs can be 

negatively or positively charged, and the Coulomb force attracts or repels the channel carrier 

depending on the charge sign of both the FT and the channel carrier charge. ST denotes the 

traps formed near and at the SiO2-Si interface, which collect (communicate with) the carrier 

from the channel during the transfer/subthreshold characteristic measurement time frame [49]. 

Slow switching traps (SST) are formed in the oxide near the SiO2-Si interface, whereas fast 

switching traps (FST), also known as real interface traps, are formed at the interface. Slow 

states (SS) [50], anomalous positive charge (APC) [51,52], switching oxide traps (SOT) [53], 

and border traps [54] are all SSTs found in the oxide adjacent to the SiO2-Si interface. The 
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influence of FT and ST on transistor subthreshold properties is shown as parallel shift and 

slope variation, respectively. FT are usually deeper in the oxide, and they can only be fully 

recovered or temporally compensated during the extended post-irradiation annealing process 

(as in the case of switching gate bias experiments). It is underlined that FST are amphoteric, 

and that each of them contributes to two states (an acceptor and a donor) within the silicon 

band gap, which might be randomly dispersed within it. 

II.4. Characterization of transistor 

 There are numerous approaches for separating FT from ST [55]. Subthreshold midgap and 

charge pumping approaches are the most often employed techniques. Their fundamental 

concept will be presented. 

II.4.1. Technique for a subthreshold midgap 

The FT and ST densities are determined using the midgap-subthreshold (MG) approach 

[49], which is based on an investigation of MOSFET subthreshold properties. Specifically, the 

parallel shifts and slope changes of FT and ST on the transistor subthreshold characteristics in 

saturation effect the transistor subthreshold characteristics. The first phase, as depicted in 

Figure II.8, is linear regression of the linear regions of subthreshold features. 

Fig.II.8. RADFETs Subthreshold properties with a 100 nm thick gate oxide made by Tyndall National 

Institute: (0) before irradiation with gamma-ray and (1) after 500 Gy irradiation. 

 A straight-line log (ID) = M×VG + n is obtained via linear regression. The midgap current 

calculationIMG0 and IMG before and after irradiation respectively, is the next step in the 

technique. 
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The subthreshold-current equation for a transistor in saturation [56] is used to calculate the 

midgap current: 

𝐼𝐼𝐷𝐷 = √2𝛽𝛽𝜀𝜀𝑠𝑠
2𝐶𝐶𝑜𝑜𝑜𝑜𝐿𝐿𝐷𝐷

� 𝑘𝑘𝑘𝑘𝑛𝑛𝑠𝑠
𝑞𝑞𝑁𝑁𝐴𝐴.𝐷𝐷

�
2
� 𝑘𝑘𝑘𝑘
𝑞𝑞ψ𝑠𝑠

𝑒𝑒�
𝑞𝑞
𝑘𝑘𝑘𝑘ψ𝑠𝑠�             (.1)          

 Where 𝛽𝛽 = 𝑊𝑊𝑊𝑊𝐶𝐶𝑡𝑡𝑜𝑜/𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐿𝐿𝐷𝐷 = �𝜀𝜀𝑠𝑠𝑘𝑘𝑘𝑘/�𝑞𝑞2𝑁𝑁𝐴𝐴.𝐷𝐷is the Debye length. In this equation 

W ,µ and Cox denote the channel width, the carriers mobility and the oxide capacitance per 

unit area, respectively. Leff denotes the effective channel length, 𝜀𝜀s is the silicon permittivity, k 

is the Boltzmann's constant, T refers to the absolute temperature, q, NA,D and ni represent the 

electron charge, the doping concentration and the intrinsic carrier concentration. ψs denotes 

the surface potential. 

When the surface potential s matches Fermi's potential F and Fermi's level is in the center of 

the semiconductor's energy gap, interface traps are electrically neutral (total charge equals 

zero) despite of the distribution across the substrate energy gap. The charge of FT alone 

produces a change towards the VG-axis of two subthreshold characteristics, and the gate 

voltage that corresponds to these surface potentials is denoted as VMG (midgap voltage) and 

may be computed as the abscissa of the (VMG, IMG) point at subthreshold characteristics 

(Figure II.8). 

The VMG, i.e., VG that corresponds to ID = IMG might be calculated as VMG = [log (IMG) - n]/ m 

using the equation log (ID) = m×VG + n derived by the linear fit of subthreshold characteristic. 

VMG0 and VMG are discovered using this method. The straight lines acquired by the 

subthreshold characteristics linear fits are extended up to the matching midgap current IMG in 

Figure II.8, which shows a region used for the linear fit. ΔVft is the component of threshold 

voltage shift caused by FT, it is expressed as:  

ΔVft = ΔVMG = VMG - VMG0(II.2)  

where VMG0 and VMG are the pre-irradiation and post-irradiation midgap voltages, respectively. 

The component of ST-induced threshold voltage shift, ΔVst, is:   

ΔVst = (VT - VMG) - (VT0 - VMG0) = Vs - Vs0(II.3) 

where VT0 and VT are the threshold voltages of the transistors before and after irradiation, 

respectively, and threshold voltage shift is ΔVT = VT - VT0 .VT0. 
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VT0 and VT are calculated from the saturation transfer characteristics as the intersection of the 

VG -axis with the extrapolated linear region of �𝐼𝐼𝐷𝐷 = 𝑓𝑓(𝑉𝑉𝐺𝐺) curves, which are described by 

the equation [56]:  

𝐼𝐼𝐷𝐷 = 𝜇𝜇𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜
2𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒

(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑘𝑘)2 (II.4) 

 The threshold voltage shift total value, ΔVT is given by[57]: 

𝛥𝛥𝑉𝑉𝑘𝑘  = 𝛥𝛥𝑉𝑉𝑒𝑒𝑡𝑡 +  𝛥𝛥𝑉𝑉𝑠𝑠𝑡𝑡(II.5) 

𝛥𝛥𝑉𝑉𝑘𝑘 = ± 𝑞𝑞
𝐶𝐶𝑜𝑜𝑜𝑜

∆𝑁𝑁𝑒𝑒𝑡𝑡 + 𝑞𝑞
𝐶𝐶𝑜𝑜𝑜𝑜

∆𝑁𝑁𝑠𝑠𝑡𝑡(II.6) 

where ΔNftand ΔNst represents the FT areal density and theST areal density, respectively. P-

channel and n-channel MOSFETs are denoted by the signs "+" and "-", respectively.  

 Expression (II.6) shows that the FT and ST both contribute in the same direction to the 

threshold voltage shift in p-channel MOSFETs. Furthermore, the "rebound effect" [20] doesn't 

really occur in p-channel MOSFETs; this effect is explained by competitive effects between 

the positive charge in the oxide and the negative interface traps produced in n-channel 

MOSFETs, leading in positive or negative VT values based on the different values of Nft and 

Nst. This is why p-channel MOSFETs are more typically utilized as ionizing radiation sensors 

or dosimeters. Because the carriers from the channel do not have enough time to reach them 

during measurement frames, ΔNft might contain a tiny quantity of SST that are situated deeper 

in the oxide.  

II.4.2. Technique of charge pumping  

 Unlike the MG technique, the charge-pumping (CP) technique does not result in changes 

in charge densities in the positive oxide trapped charge and interface traps; instead, it is used 

solely to determine the density of interface traps, with the positive oxide trapped charge being 

determined later using the expression (II.6) if the change in threshold voltage is known [58-

60].  

 Figure II.9 explains on the basis of the scheme the charge-pumping effect [59]. 

 The transistor's source and drain are short-circuited, and the p-n junction of the source and 

drain with the substrate is polarized inversely with VR voltage. When the signal is loss at the 
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gate, the inverted saturation current of these connections will flow due to inverted polarization 

at the junction source-substrate and drain-substrate. A shift in current direction in the 

substrate happens when a train of rectangular pulses of suitable amplitude is applied to the 

gate (using a pulse generator). The current intensity is proportional to the pulse frequency, 

and the same amount of electric charge is "pumped" towards the substrate. Because current 

cannot flow through oxide, the electric charge in the substrate passes through the source-drain 

p-n junction. In the case of n-channel MOSFETs, this results in the formation of a channel 

under the gate in the positive pulse half-period, where electrons are trapped on interface traps. 

Fig.II.9. Charge pumping measurement shematic diagram. 

 When the channel area enters an accumulation state during the negative half-period, 

mobile electrons from the channel are returned to the source and drain, and the captured 

electrons are recombined with holes from the accumulated layer, resulting in the generation of 

CP current ICP, whose maximum value ICP,max is expressed by[60]:  

𝐼𝐼𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑜𝑜 = 𝑓𝑓𝑞𝑞2𝐴𝐴𝐺𝐺𝐷𝐷𝚤𝚤𝑡𝑡����∆Ψ𝑠𝑠 = 𝑓𝑓𝑞𝑞𝐴𝐴𝐺𝐺𝐷𝐷𝚤𝚤𝑡𝑡����∆𝐸𝐸            (II.7) 

where f is the pulse frequency, AG is the active charge pumping area under the gate and ΔψS = 

qΔE is the surface potential complete sweep that matches to the ΔE. To avoid recombination 

with electrons of channel, ensure their return to the source and drain before cavities overflow 

from the substrate, which is achieved by using the p-n junction reverse polarization or a train 

of trapezoid or triangular pulses with sufficient rise tr and fall tf times pulse. However, a 

portion of the electrons whose capture is shallowest are thermally discharged into the 

substrate's conductive band, limiting the interface traps energy range width measured by the 

CP approach, resulting in CP current created by interface traps in the range of 0.5 eV from the 

forbidden band's middle. [60] 
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∆𝐸𝐸 = −2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑣𝑣𝑡𝑡ℎ𝑘𝑘𝑖𝑖�𝜎𝜎𝑛𝑛𝜎𝜎𝑝𝑝
|𝑉𝑉𝑘𝑘−𝑉𝑉𝐹𝐹𝐹𝐹|

|∆𝑉𝑉𝐺𝐺| �𝑡𝑡𝑟𝑟𝑡𝑡𝑒𝑒)          (II.8) 

In the expression (II.8), 𝜎𝜎nand 𝜎𝜎pare carrier captures cross section surfaces, vth is thermal 

velocity, ni  is carrier self-concentration in the semiconductor, and ΔVG is pulse height. 

 Equation (II.7) can be used to obtain the absolute value of interface traps density Nit and 

𝑁𝑁𝑖𝑖𝑡𝑡 = 𝐷𝐷𝚤𝚤𝑡𝑡���� ∙ ∆𝐸𝐸: 

𝑁𝑁𝑖𝑖𝑡𝑡 = 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜
𝑞𝑞∙𝐴𝐴𝐺𝐺∙𝑒𝑒

        (II.9) 

The alteration in areal density of interface traps is∆𝑁𝑁𝑖𝑖𝑡𝑡(𝐶𝐶𝐶𝐶) = 𝑁𝑁𝑖𝑖𝑡𝑡(𝑡𝑡) −𝑁𝑁𝑖𝑖𝑡𝑡0, where Nit0 

and Nit(t) are the absolute value of interface trap density before irradiation and after irradiation 

time t respectively. Figure II.10 shows that ICPmax is proportional to the pulse frequency, and a 

small-size transistor with normal state density requires at least several kHz for the charge-

pump current level to reach the order of magnitude of pico-amperes.  

Fig.II.10.Tyndall National Institute RADFETs Elliot-tipe CP curves with a 100 nm thick gate oxide: 
(0) before gamma- ray irradiation and (1) after 500 Gyirradiation. 
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 As a result, most CP measurements are done at frequencies between 100 kHz and 1 MHz, 

with only FST (true interface traps) being recorded (in some frequencies, CP is also 

contributed by of SST which also captures electrons from the channel [61]).Because the CP 

approach necessitated a separate substrate exit, it may be argued that it is incompatible with 

power VDMOSFETs in which the p-bulk is technologically coupled to the source. However, 

the CP approach for these devices can be used in a slightly different way [62-64].   

II.4.3. measurements of threshold voltage shift at single point  

 One of the approaches for determining threshold voltage is based on transfer 

characteristics in saturation, which are defined as the intersection of the VG-axis and the 

extrapolated linear area of,�𝐼𝐼𝐷𝐷 = 𝑓𝑓 (𝑉𝑉𝐺𝐺) curves modeled by equation (II.4).   

The drain-source voltage must be measured while the transistor is driven by a continuous 

drain current and the gate and drain terminals are short-circuited for the measurement of 

single point threshold voltage as shown in figure (II.11) [65]. The source-drain voltage shift is 

calculated as ΔVT in this arrangement. During irradiation, the drain-source voltage can be 

continually monitored.  

 
Fig.II.11.Configuration for measuring threshold voltage based on constant current. 

 Most commercial MOSFET-based dosimetry devices detect drain-source voltage 

increases at constant drain current [66-68]. Typically, the drain current chosen to minimize 

thermal drift is the zero-temperature coefficient current, IZTC, for which the drain-source 

voltage's thermal dependency cancels out. When I - Vout is measured at various temperatures, 

they all intersect at the same place. Figure II.12 shows readout currents ranging from 1 to 150 
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A and Vout voltage (VSD) measurements for RADFETs with 400 nm thick gate oxide fabricated 

by Tyndall National Institute, at temperatures ranging from 25 to 100 °C. All of these curves 

converged in the neighborhood of 12 µA, as can be seen. It may be concluded that choosing 

this current would reduce the temperature's effect on the threshold voltage.  

Fig.II.12. RADFETs single-point characteristics at different temperatures with a 400 nm thick GOL 

made by Tyndall National Institute. 

II.5. RADFET as ionizing radiation sensor and dosimeter 

 As previously indicated, the initial results in the use of MOSFETs in dosimetry were 

reported in 1974 [2]. The basic ideas for using these devices as ionizing radiation sensors and 

dosimeters were discussed. Following that, a number of research groups dealing with 

comparable issues arose. Canadian [69], United States Navy [70,71], French [72,73], 

Netherlands [74,75], United States [76,77] and Serbia [78-80] are among them.  

 Radiation sensitive MOSFETs are manufactured by a large number of companies and 

institutes around the world. In Cork, Ireland, Tyndall National Institute, is one of them. 

RADFETs with gate oxide thicknesses of 100 nm, 400 nm, and 1 µm are manufactured at this 

facility. This presentation will show some of the results relating to these components, as well 

as numerous critical dosimetric characteristics.  
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II.5.1. RADFETs re-use possibility  

 Many studies have shown that RADFETs cannot be used to determine the dose of ionizing 

radiation afterward. Specifically, these dosimeters are solely used to estimate the maximum 

dose, which is dictated by the RADFET type and sensitivity. These RADFETs should be 

replaced once the maximum radiation dose has been attained. The initial results on the 

possibility of reusing these devices are presented in [10] for a radiation exposure of 400 Gy. 

[13], [81] present follow-up experiments for the same components. Irradiation was done with 

gamma rays up to 35 Gy, with and without gate bias (Virr= 2.5V and Virr= 5V). Figure II.13 

depicts the threshold voltage shift ∆VT as a function of radiation dose D for both the first and 

second irradiation with Virr= 5V gate bias. The RADFETs were annealed at room temperature 

for 5232 hours without gate bias after the first irradiation. The annealing process was then 

conducted for 432 hours at 120 °C without gate bias. The RADFETs were then exposed to the 

same radiation. The ∆VT levels during the first and second irradiation are extremely similar. 

These findings contradict previous findings [10], which showed that ∆VT values acquired 

during the first irradiation are higher than those obtained after the second irradiation.  

 
Fig.II.13. Threshold voltage change∆VTas a function of radiation dose D of 400 nm thick 

GOLRADFETs with Virr= 5V gate bias for both the first irradiation and second irradiation. 

 The increase in ∆Nftas depicted in figure II.14 is nearly identical after the first and second 

irradiation of RADFETs, but the increase in ∆Nst (MG) is larger during the second irradiation as 

shown in figure II.15.  During the second irradiation, ∆Nfst (CP) is higher as illustrated in figure 

II.16.  Figures II.14, II.15, and II.16 show that at a radiation dosage of 35 Gy, the predominant 

contribution to ∆VT rise during the first and second irradiation comes from FT, which has a 
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density that is an order of magnitude larger than ST (MG) density.  

 
Fig.II.14. Fixed traps ∆NftAreal density as a function of radiation dose D of 400 nm thick 

GOLRADFETs with Virr= 5V gate bias for both the first and second irradiation. 

 

 

 

 
Fig.II.15. Switching traps ∆Nst(MG)areal density as a function of radiation dose D of 400 nm thick 

GOLRADFETs with Virr=5V gate bias for both the first and second irradiation. 



Chapter II: State of art of RADFET 

 

60 
 

 
Fig.II.16. Switching traps ∆Nst(CP) areal density as a function of radiation dose Dof 400 nm thick 

GOLRADFETs with Virr=5V gate bias for both the first and second irradiation. 
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II.7. Conclusion 

 In order to examine the applicability of radiation sensitive MOSFETs (RADFETs) in 

dosimetry, much research has been conducted. Their tiny volume gives them a benefit over 

other dosimetric systems, which is especially relevant in in-vivo dosimetry and the 

management of x-ray gradient radiation fields. The most prevalent applications for RADFETs 

are photon and ionizing radiation charged particle detection. It can also be used to detect 

neutrons, however their sensitivity is far lower than that of photons or charged particles. Their 

sensitivity can be improved by applying gate bias during irradiation and thickening the GOL. 

The sensitivity increases as the photon energy of ionizing radiation decreases. These 

components must accomplish little variation in threshold voltage shift after irradiation at room 

temperature, i.e., the dosimetric information must be preserved for a long period of time. 

Because they can register dosages as low as 1 cGy, RADFETs are considered sensitive 

gamma and x-ray sensors. Unfortunately, one of their significant drawbacks is rapid fading 

following irradiation. Some commercially available p-channel MOSFETs have been 

demonstrated to be very effective as gamma and x-ray sensors, as well as electron sensors 

with energy of several MeV, in recent studies. 3N163, DMOS BS250F, ZVP3306, ZVP4525, 

and power VDMOSFETs IRF9520 are low power p-channel MOSFETs. In addition, p-

channel MOS transistors, such as the CD4007, can be employed as ionizing radiation sensors.  

 Radiation detectors, which are an important aspect of radiation therapy, are required for 

dose verification to ensure that the delivery of radiation to the target is proceeding as planned. 

Due to its tiny size, ability to read data in real time, separation of components of mixed 

radiation fields, biological dosimetry on a cellular level, and dose imaging on medical 

LINACs, RADFETs dosimeters have several advantages in this application.  
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Chapter III: Multiobjective evolutionary algorithms 

III.1. Introduction 

Multi-objective optimization is an important element of optimization activities because 

virtually all real-world optimization issues are perfectly appropriate to being represented by 

means of several competing objectives. The traditional approach to addressing such issues was 

largely centered on scalarizing many objectives into a single target, but the evolutionary 

approach has been to tackle a Multi-objective Optimization (MO) problem as is. This chapter 

discusses the underlying concepts of MO, the distinctions of multi-objective optimization and 

single-objective optimization, and some well-known standard and evolutionary MO methods. 

Two case examples demonstrate the value of MO in reality. Following that, a variety of research 

problems are mentioned. The chapter closes by identifying certain significant resources funds 

to the subject of MO and recommending some few tips and tricks. 

Most real-world search and optimization issues are naturally framed as non-linear 

programming problems with many competing goals. Caused by an absence of appropriate 

solution methodologies, such issues were intentionally transformed into and addressed as a 

single-objective problem. The problem arises since such situations provide a group of trade-off 

optimal solutions (called Pareto-optimal solutions), rather than a single optimum solution. It is 

thus critical to identify plenty of Pareto-optimal solutions as feasible, rather than just one. This 

fact due to that any two such solutions represent a trade-off between the objectives, and when 

such trade-off solutions are revealed, consumers will be in a better position to make a decision. 

Conventional techniques approach similar issues with a different mindset, owing to a lack 

of an appropriate optimization tool for effectively finding numerous optimal solutions. They 

often need several uses of an algorithm to identify numerous Pareto-optimal solutions, and such 

applications often do not ensure the discovery of every Pareto-optimal answers. In contrast, the 

population method of evolutionary algorithms (EAs), on the other hand, is a fast technique to 

identify many Pareto-optimal solutions in a single simulation run. This characteristic has 

rendered evolutionary multi-objective optimization (EMO) research and uses prominent during 

the last 15 years. The inquisitive reader can investigate current research topics and other 

significant research in a variety of books [13], conference proceedings [4, 5], and countless 

research articles (archived and maintained in [6]. 
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In this lesson, we will look at the key distinctions between single-objective and multi-

objective optimization problems. The optimality requirements in a multi-objective optimization 

problem are explained, and a variety of cutting-edge multi-objective optimization approaches, 

including one evolutionary method, is provided. We offer a handful of fascinating research 

papers to illustrate that evolutionary multi-objective techniques are capable and suited for 

tackling real-world issues. Lastly, a variety of different EMO research issues are highlighted.  

A multi-objective optimization problem (MOP) considers several objective functions. 

Numerous objectives or multiple criteria are present in the majority of actual decision-making 

issues. In the previous, a MOP was generally cast and addressed as a single-objective 

optimization problem due to a lack of acceptable solution techniques. Nevertheless, there are a 

plethora of different discrepancies in the operating mechanism of single- and multi-objective 

optimization algorithms, which necessitates the employment of a multi-objective optimization 

approach to solve a MOP. The aim in a single-objective optimization issue is to discover one 

solution that maximizes the solitary objective function (unless in some special multi-modal 

optimization situations, when several optimum solutions are sought). Extending the concept to 

multi-objective optimization, it may be mistakenly believed that the aim in multi-objective 

optimization is to identify an optimum solution matching to the set of objectives. 

Take the decision-making process involved in purchasing a car. Cars range in price from 

just few thousand to just a hundred thousand dollars. Let us consider two extreme hypothetical 

vehicles, one costing around $10,000 (solution 1) and another costing around $100,000 

(solution 2), as illustrated in FigureIII.1. If the primary goal of this decision-making process is 

to save money, answer 1 is the best option. If this was the primary goal for all purchasers, we 

would only have seen one type of automobile (solution 1) on the road, and no car manufacturer 

would have built any costly cars. Fortunately, this decision-making process does not have a 

single goal. Aside from a few instances, it is assumed that an inexpensive car is likely to be less 

comfortable. According to the statistic, the cheapest automobile has a potential comfort level of 

40%. Solution 2 is the preferred option for wealthy purchasers whose sole goal in making this 

purchase is comfort (with a hypothetical maximum comfort level of 90 percent, as shown in the 

figure). This so-called two-objective optimization issue does not have to be thought of as two 

separate optimization problems, the outputs of which are the two extreme solutions mentioned 

before.  
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Fig.III.1. Hypothetical trade-off solutions are illustrated for a car-buying decision-making problem 

Several additional options exist between these two extreme solutions, where a trade-off 

between expense and comfort exists. The image also depicts a variety of such solutions 

(solutions A, B, and C) with varying prices and satisfaction. Therefore, amongst any two such 

solutions, one is superior in quality of one aim, but this superiority comes exclusively at the 

expense of the other. All such trade-off solutions are, in this sense, optimum solutions to a MOP. 

Such trade-off solutions frequently give a distinct front on an objective space represented with 

the objective values. This is known as the Pareto-optimal front, and certain trajectories are 

termed Pareto-optimal trajectories. 

III.1.1. Difference between Single-Objective and Multiobjective Optimization 

It is obvious from the above discussion that there are several distinctions between single 

and multiobjective optimization problems. These latter have the following 

characteristics: 

• Cardinality of the optimal set is usually more than one, 

• There are two distinct goals of optimization, instead of one, and 

• They possess two different search spaces. 

We discuss each of the above properties in the following paragraphs. 

To begin with, we can see from the above car-buying scenario that a multiobjective 

optimization with competing purposes yields a variety of Pareto optimum solutions, as opposed 

to the commonly held belief that a single optimal solution is associated with a single- objective 

optimization job. However, there are some single-objective optimization problems that have 
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many optimum solutions (of equal or unequal importance). Multiobjective optimization is 

comparable in some ways to such multi-modal optimization challenges. Nevertheless, there is 

a distinction to be made, which we would like to emphasize here. The input parameters of the 

Pareto-optimal solutions in most MOPs are identical. [7] In a multi-modal optimization 

problem, from the other side, from one local or global optimum solution and another. Certain 

choice variables have the same values in all Pareto-optimal solutions. Such a feature of the 

choice variables indicates that the solution is optimal. 

Other decision variables take different values causing the solutions to have a trade-off in 

their objective values. 

Secondly, unlike the sole goal of finding the optimum in a single-objective optimization, 

here there are two distinct goals: 

• Convergence to the Pareto-optimal solutions and 

• Maintenance of a set of maximally spread Pareto-optimal solutions. 

In a sense, these goals are independent of each other. An optimization algorithm must have 

specific properties for achieving each of the goals. 

One other difference between single-objective and multi-objective optimization is that in 

multi-objective optimization the objective functions constitute a multi-dimensional space, in 

addition to the usual decision variable space common to all optimization problems. This 

additional space is called the objective space, Z. For each solution x in the, there exists a point 

in the objective space, denoted by f(x)= z = (z1, z2, ..., zM)T. The mapping takes place between 

an n dimensional solution vector and an M dimensional objective vector. Figure III.2 illustrates 

these two spaces and a mapping between them. Although the search process of an algorithm 

takes place on the decision variables space, many interesting algorithms (particularly MOEAs) 

use the objective space information in their search operators. However, the presence of two 

different spaces introduces a number of interesting flexibilities in designing a search algorithm 

for multiobjective optimization. 
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Fig.III.2. Representation of the decision variable space and the corresponding objective space. 

III.2. Two Approaches to Multi-objective Optimization 

Although the fundamental difference between single- and multiple-objective optimization 

lies in the cardinality in the optimal set, from a practical standpoint a user needs only one 

solution, no matter whether the associated optimization problem is single-objective or 

multiobjective. In the case of multiobjective optimization, the user is now in a dilemma. Which 

of these optimal solutions must one choose? Let us try to answer this question for the case of 

the car buying problem. Knowing the number of solutions that exist in the market with different 

trade-offs between cost and comfort, which car does one buy? This is not an easy question to 

answer. It involves many other considerations, such as the total finance available to buy the car, 

distance to be driven each day, number of passengers riding in the car, fuel consumption and 

cost, depreciation value, road conditions where the car is to be mostly driven, physical health 

of the passengers, social status and many other factors. Often, such higher-level information is 

nontechnical, qualitative and experience-driven. How- ever, if a set of trade-off solutions are 

already worked out or available, one can evaluate the pros and cons of each of these solutions 

based on all such non-technical and qualitative, yet still important, considerations and compare 

them to make a choice. Thus, in a multi-objective optimization, ideally the effort must be in 

finding the set of trade-off optimal solutions by considering all objectives to be important. After 

a set of such trade-off solutions are found, a user can then use higher-level qualitative 

considerations to make a choice. Therefore, we suggest the following principle for an ideal 

multiobjective optimization procedure: 
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Step 1: Find multiple trade-off optimal solutions with a wide range of values for objectives. 

Step 2: Choose one of the obtained solutions using higher-level information. 

Figure III.3 shows schematically the principles in an ideal multi-objective optimization 

procedure. In Step 1 (vertically downwards), multiple trade-off solutions are found. Thereafter, 

in Step 2 (horizontally, towards the right), higher-level in- formation is used to choose one of 

the trade-off solutions. With this procedure in mind, it is easy to realize that single-objective 

optimization is a degenerate case of multi-objective optimization. In the case of single-objective 

optimization with only one global optimal solution, Step 1 will find only one solution, thereby 

not requiring us to proceed to Step 2. In the case of single-objective optimization with multiple 

global optima, both steps are necessary to first find all or many of the global optima and then 

to choose one from them by using the higher-level information about the problem. 

 
Fig.III.3. Schematic of an ideal multi-objective optimization procedure 

If thought of carefully, each trade-off solution corresponds to a specific order of importance 

of the objectives. It is clear from Figure III.1 that solution A assigns more importance to cost 

than to comfort. On the other hand, solution C assigns more im- portance to comfort than to 

cost. Thus, if such a relative preference factor among the objectives is known for a specific 

problem, there is no need to follow the above principle for solving a MOP. A simple method 

would be to form a composite objective function as the weighted sum of the objectives, where 
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a weight for an objective is proportional to the preference factor assigned to that particular 

objective. This method of scalarizing an objective vector into a single composite objective 

function converts the MOP into a single-objective optimization problem. When such a 

composite objective function is optimized, in most cases it is possible to obtain one particular 

trade-off solution. This procedure of handling MOPs is much simpler, though still being more 

subjective than the above ideal procedure. We call this procedure a preference-based multi-

objective optimization. A schematic of this procedure is shown in Figure III.4. 

 
Fig.III.4 Schematic of a preference-based multi-objective optimization procedure 

Based on the higher-level information, a preference vector w is first chosen. Thereafter, the 

preference vector is used to construct the composite function, which is then optimized to find a 

single trade-off optimal solution by a single-objective optimization algorithm. Although not 

often practiced, the procedure can be used to find multiple trade-off solutions by using a 

different preference vector and repeating the above procedure. 

It is important to appreciate that the trade-off solution obtained by using the preference-

based strategy is largely sensitive to the relative preference vector used in forming the 

composite function. A change in this preference vector will result in a (hopefully) different 

trade-off solution. Besides this difficulty, it is intuitive to realize that finding a relative 

preference vector itself is highly subjective and not straightforward. This requires an analysis 

of the non-technical, qualitative and experience-driven information to find a quantitative 

relative preference vector. Without any knowledge of the likely trade-off solutions, this is an 
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even more difficult task. Classical multi-objective optimization methods which convert 

multiple objectives into a single objective by using a relative preference vector of objectives 

work according to this preference-based strategy. Unless a reliable and accurate preference 

vector is available, the optimal solution obtained by such methods is highly subjective to the 

particular user. 

The ideal multi-objective optimization procedure suggested earlier is less subjective. In 

Step 1, a user does not need any relative preference vector information. The task there is to find 

as many different trade-off solutions as possible. Once a well-distributed set of trade-off 

solutions is found, Step 2 then requires certain problem information in order to choose one 

solution. It is important to mention that in Step 2, the problem information is used to evaluate 

and compare each of the obtained trade-off solutions. In the ideal approach, the problem 

information is not used to search for a new solution; instead, it is used to choose one solution 

from a set of already obtained trade-off solutions. Thus, there is a fundamental difference in 

using the problem information in both approaches. In the preference-based approach, a relative 

preference vector needs to be supplied without any knowledge of the possible consequences. 

However, in the proposed ideal approach, the problem information is used to choose one 

solution from the obtained set of trade-off solutions. We argue that the ideal approach in this 

matter is more methodical, more practical, and less subjective. At the same time, we highlight 

the fact that if a reliable relative preference vector is available to a problem, there is no reason 

to find other trade-off solutions. In such a case, a preference-based approach would be adequate. 

In the next section, we make the above qualitative idea of multi-objective optimization more 

quantitative. 
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III.3. Non-dominated Solutions and Pareto-Optimal Solutions 

Most multi-objective optimization algorithms use the concept of dominance in their search. 

Here, we define the concept of dominance and related terms and present a number of techniques 

for identifying dominated solutions in a finite population of solutions. 

III.3.1. Special Solutions 

We first define some special solutions which are often used in multi-objective 

optimization algorithms. 

III.3.1.1. Ideal Objective Vector 

For each of the M conflicting objectives, there exists one different optimal solution. An 

objective vector constructed with these individual optimal objective values constitutes the ideal 

objective vector. 

Definition III.1: The mth component of the ideal objective vector z∗ is the constrained 

minimum solution of the following problem: 

Minimize 𝑓𝑓𝑚𝑚(x)
subject to x ∈ S�                      (III.1) 

Thus, if the minimum solution for the mth objective function is the decision vector x∗(m) 

with function value fm∗, the ideal vector is as follows: 

z∗ = f∗ = (f1∗, f2∗, ..., fM∗)T. 

In general, the ideal objective vector (z∗) corresponds to a non-existent solution (Figure 

III.5). This is because the minimum solution of equation (III.1) for each objective function need 

not be the same solution. The only way an ideal objective vector corresponds to a feasible 

solution is when the minimal solutions to all objective functions are identical. In this case, the 

objectives are not conflicting to each other and the minimum solution to any objective function 

would be the only optimal solution to the MOP. Although the ideal objective vector is usually 

non-existent, it is also clear from Figure III.5 that solutions closer to the ideal objective vector 

are better. Moreover, many algorithms require the knowledge of the lower bound on each 

objective function to normalize objective values in a common range. 
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Fig.III.5. The ideal, utopian and nadir objective vectors 

III.3.1.2. Utopian Objective Vector 

The ideal objective vector denotes an array of the lower bound of all objective functions. 

This means that for every objective function there exists at least one solution in the feasible 

search space sharing an identical value with the corresponding element in the ideal solution. 

Some algorithms may require a solution which has an objective value strictly better than (and 

not equal to) that of any solution in the search space. For this purpose, the utopian objective 

vector is defined as follows: 

Definition III.2: A utopian objective vector z∗∗ has each of its components marginally smaller 

than that of the ideal objective vector, or zi∗∗ = zi∗ - εi with εi > 0 for all i = 1, 2, ..., M.  

Figure III.5 shows a utopian objective vector. Like the ideal objective vector, the utopian 

objective vector also represents a non-existent solution. 

III.3.1.3. Nadir Objective Vector 

Unlike the ideal objective vector which represents the lower bound of each objective in the 

entire feasible search space, the nadir objective vector znad represents the upper bound of each 

objective in the entire Pareto-optimal set, and not in the entire search space. A nadir objective 

vector must not be confused with a vector of objectives (marked as “W” in Fig.III.5) found by 

using the worst feasible function values f max in the entire search space. The nadir objective 

vector may represent an existent or a non-existent solution, depending on the convexity and 
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continuity of the Pareto-optimal set. In order to normalize each objective in the entire range of 

the Pareto-optimal region, the knowledge of nadir and ideal objective vectors can be used as 

follows: 

                                                                                      (III.2) 

 

III.3.2. Concept of Domination 

Most multi-objective optimization algorithms use the concept of domination. In these 

algorithms, two solutions are compared on the basis of whether one dominates the other or not. 

We will describe the concept of domination in the following paragraph. 

We assume that there are M objective functions. In order to cover both minimization and 

maximization of objective functions, we use the operator ⊲ between two solutions i and j as        

i ⊲ j to denote that solution i is better than solution j on a particular objective. Similarly, i ⊳ j for 

a particular objective implies that solution i is worse than solution j on this objective. For 

example, if an objective function is to be minimized, the operator ⊲ would mean the “<” 

operator, whereas if the objective function is to be maximized, the operator ⊲ would mean the 

“>” operator. The following definition covers mixed problems with minimization of some 

objective functions and maximization of the rest of them. 

Definition III.3. A solution x
(1) is said to dominate the other solution x

(2) if both conditions 1 

and 2 are true: 

1. The solution x(1) is no worse than x(2) in all objectives, or f j(x(1)) ⋪ f j(x(2)) for all j = 1, 

2,..., M. 

2. The solution x(1) is strictly better than x(2) in at least one objective, or  f j¯(x(1)) ⊲ f j̄ (x(2)) for 

at least one  j̄  ∈ {1, 2, . . . , M}. 

If either of these conditions is violated, the solution x(1) does not dominate the solution x(2). 

If x(1) dominates the solution x(2) (or mathematically x(1) x(2)), it is also customary to write any 

of the following: 
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• x
(2) is dominated by x

(1)
 

• x
(1) is non-dominated by x

(2) or 

• x
(1) is non-inferior to x

(2)
. 

Let us consider a two-objective optimization problem with five different solutions shown in 

the objective space, as illustrated in Figure III.6a. Let us also assume  

 
Fig.III.6. A set of five solutions and the corresponding non-dominated fronts 

that the objective function 1 needs to be maximized while the objective function 2 needs to 

be minimized. Five solutions with different objective function values are shown in this figure. 

Since both objective functions are of importance to us, it is usually difficult to find one solution 

which is best with respect to both objectives. However, we can use the above definition of 

domination to decide which solution is better among any two given solutions in terms of both 

objectives. For example, if solutions 1 and 2 are to be compared, we observe that solution 1 is 

better than solution 2 in objective function 1 and solution 1 is also better than solution 2 in 

objective function 2. Thus, both of the above conditions for domination are satisfied and we may 

write that solution 1 dominates solution 2. We take another instance of comparing solutions 1 

and 5. Here, solution 5 is better than solution 1 in the first objective and solution 5 is no worse 

(in fact, they are equal) than solution 1 in the second objective. Thus, both the above conditions 

for domination are also satisfied and we may write that solution 5 dominates solution 1. 

It is intuitive that if a solution x(1) dominates another solution x(2), the solution x(1) is better 

than x(2) in the parlance of multi-objective optimization. Since the concept of domination allows 

a way to compare solutions with multiple objectives, most multi-objective optimization 
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methods use this domination concept to search for non-dominated solutions. 

III.3.3. Properties of Dominance Relation 

Definition 15.3 defines the dominance relation between any two solutions. There are three 

possibilities that can be the outcome of the dominance check between two solutions 1 and 2. 

That is (i) solution 1 dominates solution 2, (ii) solution 1 gets dominated by solution 2, or (iii) 

solutions 1 and 2 do not dominate each other. Let us now discuss the different binary relation 

properties [8] of the dominance operator. 

• Reflexive. The dominance relation is not reflexive, since any solution p does not 

dominate itself according to Definition III.3. The second condition of dominance 

relation in Definition III.3 does not allow this property to be satisfied. 

• Symmetric. The dominance relation is also not symmetric, because 𝑝𝑝 ≤  𝑞𝑞 does not 

imply 𝑞𝑞 ≤  𝑝𝑝. In fact, the opposite is true. That is, if p dominates q, then q does not 

dominate p. Thus, the dominance relation is asymmetric. 

• Antisymmetric. Since the dominance relation is not symmetric, it cannot be anti- 

symmetric as well. 

• Transitive. The dominance relation is transitive. This is because if 𝑝𝑝 ≤  𝑞𝑞 and 𝑞𝑞 ≤  𝑟𝑟, 

then 𝑝𝑝 ≤  𝑟𝑟. 

There is another interesting property that the dominance relation possesses. If solution p 

does not dominate solution q, this does not imply that q dominates p. 

In order for a binary relation to qualify as an ordering relation, it must be at least transitive 

[9].  Thus, the dominance relation qualifies as an ordering relation. Since the dominance relation 

is not reflexive, it is a strict partial order. In general, if a relation is reflexive, antisymmetric and 

transitive, it is loosely called a partial order and a set on which a partial order is defined is called 

a partially ordered set. However, it is important to note that the dominance relation is not 

reflexive and is not antisymmetric. Thus, the dominance relation is not a partial-order relation 

in its general sense. The dominance relation is only a strict partial-order relation. 
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III.3.4. Pareto Optimality 

Continuing with the comparisons in the previous section, let us compare solutions 3 and 5 

in Fig.III.6, because this comparison reveals an interesting aspect. We observe that solution 5 

is better than solution 3 in the first objective, while solution 5 is worse than solution 3 in the 

second objective. Thus, the first condition is not satisfied for both of these solutions. This 

simply suggests that we cannot conclude that solution 5 dominates solution 3, nor can we say 

that solution 3 dominates solution 5. When this happens, it is customary to say that solutions 3 

and 5 are non-dominated with respect to each other. When both objectives are important, it 

cannot be said which of the two solutions 3 and 5 is better. 

For a given finite set of solutions, we can perform all possible pair-wise comparisons and 

find which solution dominates which and which solutions are non-dominated with respect to 

each other. At the end, we expect to have a set of solutions, any two of which do not dominate 

each other. This set also has another property. For any solution outside of this set, we can always 

find a solution in this set which will dominate the former. Thus, this particular set has a property 

of dominating all other solutions which do not belong to this set. In simple terms, this means 

that the solutions of this set are better compared to the rest of the solutions. This set is given a 

special name. It is called the non-dominated set for the given set of solutions. In the example 

problem, solutions 3 and 5 constitute the non-dominated set of the given set of five solutions. 

Thus, we define a set of non-dominated solutions as follows. 
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Fig.III.7. Pareto-optimal solutions are marked with continuous curves for four combinations of two 
types of objectives. 

Definition III.4 (Non-dominated set). Among a set of solutions P, the non-dominated set of 

solutions P’ are those that are not dominated by any member of the set P. 

When the set P is the entire search space, or P = S , the resulting non-dominated set P’ is 

called the Pareto-optimal set. Figure III.7 marks the Pareto-optimal set with continuous curves 

for four different scenarios with two objectives. Each objective can be minimized or maximized. 

In the top-left panel, the task is to minimize both objectives f1 and f2. The solid curve marks the 

Pareto-optimal solution set. If f1 is to be minimized and f2 is to be maximized for a problem 

having the same search space, the resulting Pareto-optimal set is different and is shown in the 

top-right panel. Here, the Pareto-optimal set is a union of two disconnected Pareto-optimal 

regions. 

Similarly, the Pareto-optimal sets for two other cases—(maximizing f1, minimizing f2) and 

(maximizing f1, maximizing f2)—are shown in the bottom-left and bottom-right panels, 

respectively. In any case, the Pareto-optimal set always consists of solutions from a particular 

edge of the feasible search region. 
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It is important to note that an MOEA can be easily used to handle all of the above cases by 

simply using the domination definition. However, to avoid any confusion, most applications 

use the duality principle to convert a maximization problem into a minimization problem and 

treat every problem as a combination of minimizing all objectives. Like global and local optimal 

solutions in the case of single-objective optimization, there could be global and local Pareto-

optimal sets in multi-objective optimization.  

 

Fig.III.8 Locally and globally Pareto-optimal solutions 

Definition III.5: (Globally Pareto-optimal set). The non-dominated set of the entire feasible 

search space S is the globally Pareto-optimal set. 

Definition III.6: If for every member x in a set P there exists no solution y (in the neighborhood 

of x such that ‖𝑦𝑦 −  𝑥𝑥 ‖∞, where    is a small positive number) dominating any member of the 

set P, then solutions belonging to the set P constitute a locally Pareto-optimal set. 

Figure III.8 shows two locally Pareto-optimal sets (marked by continuous curves). When 

any solution (say “B”) in this set is perturbed locally in the decision variable space, no solution 

can be found dominating any member of the set. It is interesting to note that for continuous 

search space problems, the locally Pareto- optimal solutions need not be continuous in the 

decision variable space and the above definition will still hold good. Zitzler (1999) added a 

neighborhood constraint on the objective space in the above definition to make it more generic. 

By the above definition, it is also true that a globally Pareto-optimal set is also a locally Pareto 

optimal set. 
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III.3.5. Procedure for Finding Non-dominated Solutions 

Finding the non-dominated set of solutions from a given set of solutions is similar in 

principle to finding the minimum of a set of real numbers. In the latter case, when two numbers 

are compared to identify the smaller number, a ‘<’ relation operation is 

used. In the case of finding the non-dominated set, the dominance relation can be used to 

identify the better of two given solutions. Here, we discuss one simple procedure for finding the 

non-dominated set (we call here the best non-dominated front). Many MOEAs require to find 

the best non-dominated solutions of a population and some MOEAs require to sort a population 

according to different non-domination levels. We present one algorithm for each of the tasks. 

III.3.5.1. Finding the Best Non-dominated Front 

In this approach, every solution from the population is checked with a partially filled 

population for domination. To start with, the first solution from the population is kept in an 

empty set P’. Thereafter, each solution i (the second solution onwards) is compared with all 

members of the set P’, one by one. If the solution i dominates any member of P’, then that solution 

is removed from P’. In this way non-members of the non-dominated solutions get deleted from 

P’. Otherwise, if solution i is dominated by any member of P’, the solution i is ignored. If 

solution i is not dominated by any member of P’, it is entered in P’. This is how the set P’ grows 

with non-dominated solutions. When all solutions of the population are checked, the remaining 

members of P’ constitute the non-dominated set. 

Identifying the non-dominated set: 

Step 1: Initialize P’ = 1 . Set solution counter i = 2.  

Step 2: Set j = 1. 

Step 3: Compare solution i with j from P’ for domination. 

Step 4: If i dominates  j, then delete the  jth member from P’  or else update  P’ = P’ \ �𝑃𝑃′(𝑗𝑗)�.  

If j < P’ , increment j by one and then go to Step 3. Otherwise, go to Step 5. Alternatively, if 

the jth member of P’ dominates i, increment i by one and then go to Step 2. 

    Step 5   Insert i in P’ or update 𝑃𝑃′ = 𝑃𝑃′ ∪  {𝑖𝑖}  . If i < N, increment i by one and go to Step 2. 

Otherwise, stop and declare P’ as the non-dominated set. 

Here, we observe that the second element of the population is compared with only one solution 

P’, the third solution with at most two solutions of P’, and so on. This requires a maximum of 



Chapter III: Multiobjective evolutionary algorithms 

 

87 
 

1 + 2 + … +(N - 1) or N (N 1)/2 domination checks. This computation is also O(MN2). It is 

interesting to note that the size of P’ may not always increase (dominated solutions will get 

deleted from P’) and not every solution in the population may be required to be checked with 

all solutions in the current P’ set (the solution may get dominated by a solution of P’). Thus, the 

actual computational complexity may be smaller than the above estimate. 

Another study [10] suggested a binary-search-like algorithm for finding the best non-

dominated front with a complexity O (N(log N)M−2) for M ≥ 4 and O(N log N) for M = 2 and 3. 

III.3.5.2. A Non-dominated Sorting Procedure 

Using the above procedure, each front can be identified with at most O(MN2) computations. 

In certain scenarios, this procedure may demand more than O(MN2) computational effort for 

the overall non-dominated sorting of a population. Here, we suggest a completely different 

procedure which uses a better bookkeeping strategy requiring O(MN2) overall computational 

complexity. 

First, for each solution we calculate two entities: (i) domination count ni, the number of 

solutions which dominate the solution i, and (ii) Si, a set of solutions which the solution i 

dominates. This requiers O(MN2) comparisons. At the end of this procedure, all solutions in the 

first non-dominated front will have their domination count as zero. Now, for each of these 

solutions (each solution i with ni = 0), we visit each member ( j) of its set Si and reduce its 

domination count by one. In doing so, if for any member j the domination count becomes zero, 

we put it in a separate list P’. After such modifications on Si are performed for each i with ni = 

0, all solutions of P’ would belong to the second non-dominated front. The above procedure can 

be continued with each member of P’ and the third non-dominated front can be identified. This 

process continues until all solutions are classified. 
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An O(MN2) non-dominated sorting algorithm: 

Step 1: For each 𝑖𝑖 ∈ 𝑃𝑃, ni = 0 and initialize 𝑆𝑆𝑖𝑖 = ∅ . For all j ≠ i and j ∈ P, perform Step 2 
and then proceed to Step 3. 

Step 2: If 𝑖𝑖 ≤ 𝑗𝑗 , update Sp = Sp ∪ {𝑗𝑗}  . Otherwise, if j ≤ i, set ni = ni + 1.  

Step 3: If ni = 0, keep i in the first non-dominated front P1 (we called this set P’ in the above 

paragraph). Set a front counter k = 1. 

Step 4: While Pk =∅, perform the following steps. 

Step 5: Initialize Q = ∅ for storing next non-dominated solutions. For each 𝐼𝐼 ∈  𝑃𝑃𝑘𝑘  and for 
each j ∈ Si,  

         Step 5a: Update n j = n j - 1. 

           Step 5b: If n j = 0, keep j in Q, or perform Q = Q ∪  {𝑗𝑗} . 

Step 6:  Set k = k + 1 and Pk = Q. Go to Step 4. 

Steps 1–3 find the solutions in the first non-dominated front and require O(MN2) 

computational complexity. Steps 4–6 repeatedly find higher fronts and require at most O(N2) 

comparisons, as argued below. For each solution i in the second- or higher level of non-

domination, the domination count ni can be at most N 1. Thus, each solution i will be visited at 

most N - 1 times before its domination count becomes zero. At this point, the solution is 

assigned a particular non-domination level and will never be visited again. Since there are at 

most N - 1 such solutions, the complexity of identifying second and more fronts is O(N2). Thus, 

the overall complexity of the procedure is O(MN2). It is important to note that although the 

time complexity has reduced to O(MN2), the storage requirement has increased to O(N2). 

When the above procedure is applied to the five solutions of Figure  III.6a, we obtain three 

non-dominated fronts as shown in Figure III.6b. From the dominance relations, the solutions 3 

and 5 are the best, followed by solutions 1 and 4. Finally, solution 2 belongs to the worst non-

dominated front. Thus, the ordering of solutions in terms of their non-domination level is as 

follows: ((3,5), (1,4), (2)). A study (Jensen 2003b) suggested a divided-and-conquer method to 

reduce the complexity of sorting to O(N logM−1 N). 
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III.4. Some Approaches to Multi-objective Optimization 

In this section, we briefly mention two commonly used classical multi-objective 

optimization methods and thereafter present a commonly used EMO method. 

III.4.1 Classical Method: Weighted-Sum Approach 

The weighted-sum method, as the name suggests, scalarizes a set of objectives into a single 

objective by pre-multiplying each objective with a user-supplied weight. This method is the 

simplest approach and is probably the most widely used classical approach. If we are faced with 

the two objectives of minimizing the cost of a product and minimizing the amount of wasted 

material in the process of fabricating the product, one naturally thinks of minimizing a weighted 

sum of these two objectives. Although the idea is simple, it introduces a not-so-simple question. 

What values of the weights must one use? Of course, there is no unique answer to this question. 

The answer depends on the importance of each objective in the context of the problem and a 

scaling factor. The scaling effect can be avoided somewhat by normalizing the objective 

functions. After the objectives are normalized, a composite objective function F(x) can be 

formed by summing the weighted normalized objectives and the problem is then converted to 

a single-objective optimization problem as follows: 

            

                     (III.3)     

 

Here, wm (∈ [0, 1]) is the weight of the mth objective function. Since the minimum of the 

above problem does not change if all weights are multiplied by a constant, it is the usual practice 

to choose weights such that their sum is one, or ∑ 𝑤𝑤𝑚𝑚𝑀𝑀
𝑚𝑚=1 = 1. 

Mathematically oriented readers may find a number of interesting theorems regarding the 

relationship between the optimal solution of the above problem to the true Pareto-optimal 

solutions in classical texts [9,11]. 

Let us now illustrate how the weighted-sum approach can find Pareto-optimal solutions of 

the original problem. For simplicity, we consider the two-objective problem shown in Figure 

III.9. 
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Fig.III.9 Illustration of the weighted-sum approach on a convex Pareto-optimal front 

The feasible objective space and the corresponding Pareto-optimal solution set are shown. 

With two objectives, there are two weights w1 and w2, but only one is independent. Knowing 

any one, the other can be calculated by simple subtraction. It is clear from the figure that a 

choice of a weight vector corresponds to a pre-destined optimal solution on the Pareto-optimal 

front, as marked by the point A. By changing the weight vector, a different Pareto-optimal point 

can be obtained. However, there are a couple of difficulties with this approach: 

1. A uniform choice of weight vectors does not necessarily find a uniform set of Pareto-

optimal solutions on the Pareto-optimal front [1]. 

2. The procedure cannot be used to find Pareto-optimal solutions which lie on the non-

convex portion of the Pareto-optimal front. 

The former issue makes it difficult for the weighted-sum approach to be applied reliably to 

any problem in order to find a good representative set of Pareto-optimal solutions. The latter 

issue arises due to the fact that a solution lying on the non- convex Pareto-optimal front can 

never be the optimal solution of the problem given in Equation (III.3). 
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III.4.2. Classical Method: ε-Constraint Method 

In order to alleviate the difficulties faced by the weighted-sum approach in solving problems 

having non-convex objective spaces, the ε -constraint method is used. In 1971, Haimes 

suggested reformulating the MOP by just keeping one of the objectives and restricting the rest 

of the objectives within user-specified values [12]. The modified problem is as follows: 

 

           (III.4) 

 

In the above formulation, the parameter εm represents an upper bound of the value of fm 

and need not necessarily mean a small value close to zero. 

Let us say that we retain f2 as an objective and treat f1 as a constraint: f1(x) ≤ ε1.  

Figure III.10 shows four scenarios with different ε1 values. Let us consider the third scenario 

with ε1 = ε1
c first. The resulting problem with this constraint divides the original feasible 

objective space into two portions, f1 ≤ ε1
c and f1 > ε1

c. The left portion becomes the feasible 

solution of the resulting problem stated in Equation (III.4). Now, the task of the resulting 

problem is to find the solution which minimizes this feasible region. From Figure (III.10), it is 

clear that the minimum solution is C. In this way, intermediate Pareto-optimal solutions can be 

obtained in the case of non-convex objective space problems by using the ε -constraint method. 

 
Fig.III.10. The ε -constraint method 
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One of the difficulties of this method is that the solution to the problem stated in Equation 

(III.4) largely depends on the chosen ε vector. Let us refer to Figure III.10 again. 

Instead of choosing ε1
c, if ε1

a is chosen, there exists no feasible solution to the stated 

problem. Thus, no solution would be found. On the other hand, if ε1
d is used, the entire search 

space is feasible. The resulting problem has the minimum at D. Moreover, as the number of 

objectives increases, there exist more elements in the ε vector, thereby requiring more 

information from the user. 

III.4.3 Evolutionary Multi-objective Optimization (EMO) Method 

Over the years, a number of multiobjective EAs emphasizing non-dominated solutions in 

an EA population have been suggested. In this section, we shall describe one state-of-the-art 

algorithm popularly used in EMO studies. 

Genetic algorithms (GAs) are general-purpose search algorithms widely employed in 

different fields of science and engineering as both optimization algorithms and scientific models 

of evolution. Theoretical foundations and the success in first practical applications have 

stimulated the study on GAs and new classes of algorithms have been proposed in the literature. 

In particular, multiobjective GAs (MGA) are gaining the attention of the scientific community 

as powerful search algorithms for complex problems. Applications of GAs in geomorphology 

are quite recent. The first applications can be dated back to the late 1990s, whereas applications 

of multiobjective versions are still more recent. 

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) nowadays represents the most 

widely used MGA in engineering and scientific fields and is still widely considered the state-

of-the-art for practical applications. For these reasons, it is here in chosen as the reference MGA 

and illustrated in the following section. 

III.4.3.1. Elitist Non-dominated Sorting GA (NSGA-II) 

III.4.3.1.1. Introduction to Genetic algorithms 

Genetic algorithms (GAs) have proved to be an effective and robust support tool for the 

prediction and modeling of complex phenomena. GAs belongs to the broader family of 

evolutionary algorithms (EAs) and can be considered as both artificial models of natural 

evolution and general-purpose search algorithms. 



Chapter III: Multiobjective evolutionary algorithms 

 

93 
 

The initial studies on GAs go back to the 1960s, when a growing number of researchers 

began to consider natural systems as a source of inspiration for the development of optimization 

algorithms for engineering problems. Among these, John Holland, who is universally 

recognized as the father of GAs, was interested in the principles governing the evolution of 

adaptive natural systems, speculating that competition and innovation were the key mechanisms 

through which individuals acquire the ability to adapt themselves to the environment [13]. 

III.4.3.1.2. The Holland’s Model 

The GA proposed by Holland in 1975  is an iterative algorithm that operates on a population 

of N bit strings of prefixed length l (l, N ∈ N) where each string (genotype) is the binary 

encoding of a candidate solution (phenotype) of a particular research problem [14]. For 

example, the genotype can encode specific values of a set of parameters 𝜋𝜋 =  {𝑝𝑝𝑖𝑖 l𝑗𝑗 =

1, 2, … ,𝑛𝑛} of a given simulation model, where each parameter 𝑝𝑝𝑗𝑗 is allowed to vary into a 

predefined range [𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑗𝑗] ⊂ R. Note that the cardin-ality of the set of binary strings of length l 

grows exponentially with l, having 2l elements. This set represents the GA search space, that is, 

the space that the GA needs to explore to solve the research problem. 

The objective function, f, assigns a fitness value, fi = f(gi), to each genotype gi(i = 1, ..., N) 

of the GA. To determine such value, the fitness function decodes the genotype in the 

corresponding phenotype and tests it on the problem producing a value, generally a real number, 

representing its ability to solve the problem. The graph of fitness values plotted against the 

search space points is called a fitness landscape. 

The original Holland’s model is today known as a generational scheme model, because each 

iteration (also called generation) replaces all the N individuals in the population with as many 

offspring, whereas the selection method is known as proportional selection because it selects 

individuals to be reproduced with a probability which is proportional to their fitness. Holland 

used genetic operators such as (single-point) crossover, mutation, and inversion. The inversion 

operator has been, however, rarely used in practical applications and rarely considered in 

theoretical studies. Therefore, in-version is not discussed in the following sections. 
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III.4.3.1.3. Proportional selection 

Proportionally to their fitness values, fi, the probabilities pselection,i defined as: 

          

 

are associated to the genotypes gi and used to construct a sort of roulette of probability which 

is used in the selection process. Let us consider an example: if the population is com-posed by 

the n = 4 individuals A1, A2, A3 and A4, with probability of selection pselection,1 = 0.12, pselection,2 

= 0.18, pselection,3 = 0.3, and pselection,4 = 0.4, respectively, the corresponding roulette will have 

the form shown in Figure III.11. The selection operator generates a random number c ∈[0, 1] 

and selects the individual associated with the roulettes’ portion containing the value c. For 

instance, if c = 0.78, the individual A4 is selected, because c falls within the range [0.6, 1]. 

When an individual is selected, a copy is made and inserted into the so-called mating pool. 

Once the mating pool is filled with exactly N copies of individuals of the population P(t), 

members of the new population P (t + 1) are obtained as their offspring through the application 

of genetic operators. The selection operator, therefore, determines which individuals of the old 

population have the chance to generate offspring. As individuals with higher fitness are favored 

in the selection process, having on average a higher number of copies in the mating pool, the 

selection operator plays the role of Darwinian Natural Selection within the GAs context. 

 

Fig.III.11. Example of proportional selection. The four individuals A1, A2, A3, and A4 hold portions of 
the roulette proportionally to their selection probabilities, which are set to 0.12, 0.18, 0.3, and 0.4, 
respectively. In the example, the selection operator generates the random number c = 0.78 and the 

individual A4 is selected. 
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III.4.3.1.4. Crossover and mutation 

Regarding crossover, two parent individuals are randomly chosen from the mating pool and 

a cutting, or crossover, point selected. Portions of the genotype are then exchanged, generating 

two offspring. Figure III.12 (a) shows an example of cross-over between two binary genotypes. 

The crossover operator is applied according to a prefixed probability, pcrossover, for a total of N/2 

times, in order to obtain N offspring. When the crossover is not applied, offspring coincide with 

parents. Note that, as the selection operator plays in the GA framework the role of natural 

selection, crossover is a metaphor of sexual reproduction in which genetic material of offspring 

results in a recombination of those of the parents. 

Once N offspring are obtained by crossover, mutation is applied. According to a prefixed 

and usually small probability, pmutation, the bit value of each individual is simply changed from 

0 to 1, or vice versa (i.e., from 1 to 0 – see Figure III12 (b)). The mutation operator represents 

the genetic phenomenon of the rare variation of genotype’s elements in living beings during 

evolution. 

After crossover and mutation are applied to the individuals of the mating pool, the new GA 

population, P (t + 1), is obtained. 

 

Fig.III.12. (a) Example of single-point crossover for a binary genetic algorithm. A cutting point is 
chosen randomly and corresponding portions of parents recombined in order to obtain two offspring. 
(b) Example of mutation for a binary genetic algorithm. A bit is randomly selected and its allele value 

changed. 
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III.4.3.1.5. Variants of the Holland’s Model 

The model proposed by Holland has inspired first theoretical studies and applications of 

GAs. However, it is not always natural or convenient to use bit string encoding (not always is 

proportional fitness of the best selection method) and Holland’s genetic operators are not always 

the most effective and appropriate [15]. Furthermore, it is not a good idea to lose the best 

individuals that are found during the GA evolution, because it has been shown that elitism 

improves performances in both single-objective GAs and MOGAs [16]. For these reasons, new 

models have been proposed from the late 1980s, which differ from the original Holland’s model 

in the genotype-encoding scheme, in the adopted genetic operators and selection strategy. 

III.4.3.1.6. Selection methods and elitism 

Selection is one of the fundamental processes of a GA because it eliminates individuals with 

lower fitness and creates one or more copies of individuals with higher fitness from which 

individuals of the new population are generated. The selection operator has a substantial effect 

on the dynamics of GAs: too much selective pressure may result in an overly rapid con-

vergence, by entrapping the algorithm in a local optimum from which it will be unable to exit; 

on the other hand, weak selective pressure can lead to an excessive increase in the amount of 

time required to find an acceptable solution. 

Selection operators can replace the entire population (in this case, we talk of generational 

GAs) or only part of it (generation gap GAs). Furthermore, a steady-state GA is obtained if at 

most two individuals are replaced. In addition, the operator can select an individual once or 

more than once. The first case refers to a selection operator without replacement, in the sense 

that the selected individual is not reinserted back into the old population after mating and, 

therefore, cannot be selected again. To the contrary, in the second case, the chosen individual 

is reinserted in the old population and can, there-fore, be selected again, by producing more 

offspring. 

Both in steady-state, generation gap and generational GAs, it may happen that the best 

individuals are lost in the transition to the subsequent generation. The models that ensure the 

survival of best individuals are called elitist (or k-elitist, where k is the number of the best 

individuals that are pre-served and copied in the new population). 

 



Chapter III: Multiobjective evolutionary algorithms 

 

97 
 

Besides the proportional selection operator proposed by Holland, the tournament selection 

is one of the most used in practical applications. The latter, as well as other selection operators 

(e.g., the Boltzmann and the rank-based ones), was introduced in order to have less-selective 

pressure with respect to the proportional one [15]. In the most common type of tournament 

selection, two individuals are chosen at random from the current population and a number c ∈ 

[0, 1] is randomly generated. If c is less than a prefixed parameter r ∈ [0, 1], for example r = 

0.75, the most fit individual wins the tournament and is selected, otherwise the less fit is the 

winner. In addition, if the scheme with replacement is applied, the two individuals are 

reintegrated in the old population and may be selected again. 

III.4.3.2. NSGA-II 

The non-dominated sorting GA or NSGA-II procedure [17] for finding multiple Pareto-

optimal solutions in a MOP has the following three features: 

1. It uses an elitist principle, 

2. It uses an explicit diversity preserving mechanism, and 

3. It emphasizes the non-dominated solutions. 

In NSGA-II, the offspring population Qt is first created by using the parent population Pt 

and the usual genetic operators [18]. Thereafter, the two populations are combined to form Rt 

of size 2N. Then, a non-dominated sorting is used to classify the entire population Rt. Once the 

non-dominated sorting is over, the new population is filled by solutions of different non-

dominated fronts, one at a time. The filling starts with the best non-dominated front and 

continues with solutions of the second non-dominated front, followed by the third non-

dominated front, and so on. Since the overall population size of Rt is 2N, not all fronts may be 

accommodated in N slots available in the new population. All fronts which could not be 

accommodated are simply deleted. When the last allowed front is being considered, there may 

exist more solutions in the last front than the remaining slots in the new population. This 

scenario is illustrated in Figure III.13. Instead of arbitrarily discarding some members from the 

last acceptable front, the solutions which will make the diversity of the selected solutions the 

highest are chosen. The NSGA-II procedure is outlined in the following. 
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Fig.III.13. Schematic of the NSGA-II procedure. 

NSGA-II 

Step 1: Combine parent and offspring populations and create Rt = Pt ∪ Qt. Perform a non- 

            dominated sorting to Rt and identify different fronts: Fi, i = 1, 2, ..., etc. 

Step 2: Set new population Pt+1 = ∅. Set a counter i = 1. 

            Until |Pt+1| + |Fi| < N, perform Pt+1 = Pt+1 ∪ Fi and i = i + 1. 

Step 3: Perform the Crowding-sort (Fi, < c) procedure and include the most widely spread (N 

−|Pt+1|) solutions by using the crowding distance values in the sorted Fi to Pt+1. 

Step 4: Create offspring population Qt+1 from Pt+1 by using the crowded tournament selection, 

crossover and mutation operators. 

In Step 3, the crowding-sorting of the solutions of front i (the last front which could not be 

accommodated fully) is performed by using a crowding distance metric, which we describe 

later. The population is arranged in descending order of magnitude of the crowding distance 

values. In Step 4, a crowding tournament selection operator, which also uses the crowding 

distance, is used. 

The crowded comparison operator (< c) compares two solutions and returns the winner of 

the tournament. It assumes that every solution i has two attributes: 

1. A non-domination rank ri in the population, 

2. A local (di) in the population. 



Chapter III: Multiobjective evolutionary algorithms 

 

99 
 

The crowding distance di of a solution i is a measure of the normalized search space around 

i which is not occupied by any other solution in the population. Based on these two attributes, 

we can define the crowded tournament selection operator as follows. 

Definition III.7: Crowded tournament selection operator. A solution i wins a tournament with 

another solution j if any of the following conditions are true:  

1. If solution i has a better rank, that is, ri < rj. 

2. If they have the same rank but solution i has a better crowding distance than solution j, 

that is, ri = rj and di > dj. 

The first condition makes sure that the chosen solution lies on a better non-dominated front. 

The second condition resolves the tie of both solutions being on the same non-dominated front 

by deciding on their crowded distance. The one residing in a less crowded area (with a larger 

crowding distance di) wins. The crowding distance di can be computed in various ways. 

However, in NSGA-II, we use a crowding distance metric, which requires O (MN log N) 

computations. 

To get an estimate of the density of solutions surrounding a particular solution i in the 

population, we take the average distance of two solutions on either side of solution i along each 

of the objectives. This quantity di serves as an estimate of the perimeter of the cuboid formed 

by using the nearest neighbors as the vertices (we call this the crowding distance). In Figure 

III.14, the crowding distance of the ith solution in its front (marked with filled circles) is the 

average side-length of the cuboid (shown by a dashed box). The following algorithm is used to 

calculate the crowding distance of each point in the set F. 

 
Fig.III.14. The crowding distance calculation. 
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Crowding distance assignment procedure: Crowding-sort (F, < c) 

Step C1: Call the number of solutions in F as l = |F |. For each i in the set, first assign di = 0. 

Step C2: For each objective function m = 1, 2, ..., M, sort the set in worse order of fm or, find 

the sorted indices vector: Im =sort (fm, >). 

Step C3: For m = 1, 2, ..., M, assign a large distance to the boundary solutions, or 𝑑𝑑𝐼𝐼1𝑚𝑚 = 𝑑𝑑𝐼𝐼𝑙𝑙𝑚𝑚 = 

∞, and for all other solutions j = 2 to (l − 1), assign 

 

Index Ij denotes the solution index of the jth member in the sorted list. Thus, for any 

objective, I1 and Il denote the lowest and highest objective function values, respectively. The 

second term on the right-hand side of the last equation is the difference in objective function 

values between two neighboring solutions on either side of solution Ij. Thus, this metric denotes 

half of the perimeter of the enclosing cuboid with the nearest-neighboring solutions placed on 

the vertices of the cuboid (Fig.III.14). It is interesting to note that for any solution i the same 

two solutions (i+1) and (i−1) need not be neighbors in all objectives, particularly for M ≥ 3. The 

parameters 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚and 𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚can be set as the population-maximum and population-minimum 

values of the mth objective function. The above metric requires M sorting calculations in Step 

C2, each requiring O (MN log N) computations. Step C3 requires N computations. Thus, the 

complexity of the above distance metric computation is O (MN log N) and the overall 

complexity of one generation of NSGA-II is O (MN2), governed by the non-dominated sorting 

procedure. 

III.4.4. Sample Simulation Results 

In this section, we show the simulation results of NSGA-II on (SCH1) test problems which 

is simple two-objective problem with a convex Pareto-optimal front: 

          (III.5) 

 

NSGA-II is run with a population size of 100 and for 250 generations. Figure III.15 shows 

that NSGA-II converges on the Pareto-optimal front and maintains a good spread of solutions. 

In comparison to NSGA-II, another competing EMO method—the Pareto archived evolution 
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strategy (PAES) [19]—is run for an identical overall number of function evaluations and an 

inferior distribution of solutions on the Pareto-optimal front is observed. 

 
Fig.III.15. NSGA-II finds better spread of solutions than PAES on SCH. 

III.5. Conclusion 

For the past two decades, the usual practice of treating MOPs by scalarizing them into a 

single objective and optimizing it has been seriously questioned. The presence of multiple 

objectives results in a number of Pareto-optimal solutions, instead of a single optimum solution. 

In this chapter, we have discussed the use of an ideal multi-objective optimization procedure 

which attempts to find a well-distributed set of Pareto-optimal solutions first. It has been argued 

that choosing a particular solution as a post-optimal event is a more convenient and pragmatic 

approach than finding an optimal solution for a particular weighted function of the objectives. 

Be-sides introducing the multi-objective optimization concepts, this chapter has also presented 

MGA which is the most commonly used MOEAs. Besides finding the multiple Pareto-optimal 

solutions, the suggested ideal multi-objective optimization procedure has another unique 

advantage. Once a set of Pareto-optimal solutions are found, they can be analyzed. The principle 

behind the transition from the optimum of one objective to that of other objectives can be 

investigated as a post-optimality analysis. Since all such solutions are optimum with respect to 

certain trade-off between objectives, the transition should reveal interesting knowledge on an 

optimal process of sacrifice of one objective to get a gain in other objectives. 
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Chapter IV: Multiobjective optimization for IMRT 

IV.1. Introduction 

In the inverse planning of a radiation treatment plan, a collection of parameters (beams and 

fluences) is algorithmically computed for a predefined treatment plan in order to satisfy the 

prescribed doses and constraints. Inverse treatment planning enables the modeling of 

exceedingly complex treatment planning problems, and optimization is crucial to the 

procedure's success. Intensity modulated radiation therapy (IMRT) is a sort of inverse treatment 

planning in which the radiation beam is modulated by a multileaf collimator, as shown in 

Figures IV.1 and IV.2.  

In Figure IV.1(a), Multileaf collimators (MLC), allow the beam to be transformed into a 

grid of smaller beamlets with different intensities as depicted in figure IV.1(b). Beamlets do not 

exist physically, notwithstanding the depiction in Figure IV.1(b). The MLC leaves movement 

as shown in figure IV. 1(a), which block part of the beam during parts of the delivery time, 

generate their existence. Both sides of the MLC include adjustable leaves that can be positioned 

at any beamlet grid boundary. MLC has two modes of operation: dynamic collimation and 

multiple static collimations. The leaves in the first situation move continuously during 

irradiation contrary to the second situation" step and shoot mode", where the leaves are 

programmed to open a desired aperture during each segment of the delivery, and radiation is on 

for a given fluence time or intensity. This approach provides a distinct set of intensity maps (the 

set of chosen beam angles) as shown in Figure IV. 1. (b).  In this case, we'll consider multiple 

static collimations.  

 
Fig.IV.1. A multileaf collimator (with nine pairs of leaves) (a), and a beamlet intensity map (9 × 9) (b) 

illustrations. 

 

 



Chapter IV: Multiobjective optimization for IMRT 

 

105 
 

 
Fig.IV.2. A beam’s Ideal theoretic (a) and deliverable (b) fluence. 

A beamlet-based approach is a common strategy to solve inverse planning in IMRT 

optimization challenges. The volume of each structure is discretized in voxels for optimization 

purposes (volume elements).  A three-dimensional coordinate is assigned to each voxel in a 

structure (x, y, z).  Consider the case where there is m×n beamlets recognized by the index pair 

(p, q).  w (θ, p, q) is the weight (intensity) of the beamlet (p, q) delivered over an angle θ. The 

total dose, D (x, y, z), that a voxel (x, y, z) gets is calculated using the superposition principle 

as follows:  

𝐷𝐷(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = � 𝑤𝑤(𝜃𝜃,𝑝𝑝, 𝑞𝑞) ∙ 𝑑𝑑(𝜃𝜃,𝑝𝑝,𝑞𝑞)(𝑥𝑥,𝑦𝑦; 𝑧𝑧)
(𝜃𝜃,𝑝𝑝,𝑞𝑞)

 

where d(θ,p,q)(x, y, z) is the dose delivered to voxel (x, y, z) by beamlet (p, q) from angle θ. As 

shown in figure IV. 3.  

 
Fig.IV.3. IMRT dose optimization Principle. The planning target volume (PTV), one organ at risque 

(OAR) and the contours of the body are depicted. The challenge is to determine the intensities of the 

tiny subdivisions (bixels) of each beam, in order to get the best dose distribution possible. 
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This beamlet-based method generates a large-scale programming issue with thousands of 

variables (beamlets) and hundreds of thousands of constraints (dose–volume). The clinical 

treatment effect is determined by the plan's quality, which is conditional to the programming 

models and resolution methods. As a result of the overall optimization problem complexity, the 

treatment planning is generally separated into three smaller problems: The geometry problem, 

intensity problem, and realization problem which can be solved independently.  

The geometry problem entails utilizing optimization methods to identify the smallest 

number of beams and corresponding orientations that satisfy the treatment goals [1–3]. In 

practical practice, the number of beams is usually considered to be determined a priori by the 

treatment planner, and the beam orientations are still decided manually by the treatment 

planner, who mostly depends on his or her experience. After identifying which beam angles 

should be employed, the intensity (or fluence map) problem, which is the problem of 

determining the appropriate beamlet weights for the fixed beam angles, is solved. As a result, 

the relation between the geometry problem and the intensity problem is clear, because the 

geometry problem's angle values are an input to the intensity problem (despite whether the 

treatment planner computes or manually selects them).   

For the intensity problem, a variety of mathematical optimization models and techniques 

have been developed, including linear models [4,5], mixed integer linear models [6,7], 

nonlinear models [8,9], and multiobjective models [10,11].  The intensity problem yields a set 

of ‘‘continuous" fluence maps that are optimized (one for each beam angle).   

The intensity profiles, in current inverse planning systems for IMRT are determined through a 

computerized optimization process based on specified dose prescriptions for targets and organs 

at risk, whereby so-called weight factors must be allocated to each structure. The optimization 

outcome is simply the treatment plan with the best number, and the quality of a plan is judged 

by a single number calculated by adding together the deviations from the prescriptions.  

The problem is that the resulting compromise between the opposing planning goals is 

frequently not clinically acceptable, necessitating many optimization runs with varied 

parameters until an acceptable compromise is established [12]. This trial and error process can 

take a long time, and even once a plan is accepted for treatment, it's unclear whether a better 

plan for the patient would have resulted if the planner had attempted a few more parameter 

settings. All of these issues combine to mean that the full promise of IMRT is not realized for 

some patients due to constraints in the inverse planning process.  
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Multiobjective (also known as multicriteria) optimization (MO) is a potential strategy for 

overcoming the current situation. The optimization outcome is no longer a single plan, but 

rather a database of plans, each of which represents a so-called Pareto-optimal solution [13] 

that can't be improved in one criterion without worsening in at least one other. The planner can 

experience the sensitivity to changes in certain structures by interactively browsing the database 

and deciding on the clinically optimal compromise.  

In the context of radiation therapy, the Pareto concept and MO have been used to optimize 

beam angles [14], brachytherapy [15], radiosurgery [16], and external radiotherapy [17-20], 

mostly in a research setting.  

To obtain a multiobjective optimization problem's Pareto solution set, many multiobjective 

evolutionary algorithms including Multiobjective Genetic Algorithm (MGA) by using its 

multiobjective Non-dominated Sorting Genetic Algorithm (NSGA-II), have been proposed 

recently. They've been employed in a variety of fields due to their excellent efficiency, however 

they're rarely used in inverse planning for multiobjective optimization. 

In this work, multiobjective optimization of IMRT planning was studied based on inverse 

planning research by the Computaional Envierenement Radioherapy Research System (named 

CERR) [21]. The mathematical modeling was presented first, in which a multiobjective 

optimization problem with various constraints was created from the clinical needs for a 

treatment plan. The NSGA-II was then used to improve the model. Finally, a clinical example 

was put to the test. The findings of the pareto front reveal that the non-dominated solutions 

obtained were distributed equally. The associated dose distribution of one of the non-dominated 

solution set's solutions thus approached the expected dose distribution while also meeting the 

dose-volume limitations. The clinical requirements were better satisfied, and the planner was 

able to choose the best treatment plan from the non-dominated solution set. With the method 

we offer, the planner will no longer need to go through a trial and error procedure to find the 

best plan, resulting in a significant increase in efficiency.  
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IV.2. Method 

IV.2.1 Description of the IMRT optimization problem  

The goal of mathematical modeling is to determine the optimization objective function, 

which measures the efficacy of a chosen plan, and its selection is critical for radiotherapy 

treatment planning optimization. The ‘physical' objective function and the ‘biological' objective 

function are the two sorts of objective functions. Due to its widespread use in the commercial 

Treatment Planning System, the ‘physical' objective function, which provides a link between 

the output dose distribution and the input beam parameters, is employed in our situation (TPS).  

Here we describe the fluence-based IMRT optimization problem as follows: 

The dose influence matrix Dij is the main entity used for optimization. It contains the dose 

delivered to each voxel i per unit intensity of beamlet j.  

The dose to voxel i is given by: 

                                                                    𝑑𝑑𝑖𝑖 = ∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖                      (IV.1) 

where xj is the fluence value of the jth beamlet. 

We assume that the D matrix represents the whole set of beamlets from all the beams for a 

given set of beams. In other words, below D is read as a concatenation of each beam's distinct 

D matrices. This notation simplifies the problem by allowing us to loop over all beamlets rather 

than looping over the beams. Let d be the voxel doses vector and x be the beamlet fluences 

vector. The linear link between the beamlet vector and the dosage distribution given in Equation 

is the most important mapping (IV.1).  The following is a generic formulation of the IMRT 

optimization issue written in the form of a matrix vector product Dx = d:  

                                                minimize f (d) such that�
𝐷𝐷𝑥𝑥 = 𝑑𝑑
𝑑𝑑 ∈ 𝐶𝐶
𝑥𝑥 ≥ 0

            (IV.2) 

Choosing the mean dose to a crucial structure as f (d) and using the constraint set C to trigger 

upper bounds for all voxels and supplementary lower bounds for the target voxels would result 

in a linear program.  
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The linear mapping from the fluence values x to the voxel doses d, as described in Equation 

(IV.2), is used in the optimization formulation (IV.1).  As a result, the problem is a convex 

optimization problem because the function f(d) is convex and the constraint set C is convex.  

IV.2.2. NSGA-II optimization algorithm  

Because they are characterized by a population of solution candidates and can produce a set 

of approximate solutions in a simulated run, evolutionary algorithms are popular for solving 

multiobjective optimization problems. Because of its validity, the NSGA-II has been used to 

numerous domains as a representative of multi-objective evolutionary algorithms [9]. As a 

result, in this work, the NSGA-II was introduced for inverse planning. The following were the 

procedures:  

1. Initialization: the population size (N) and maximum evolutionary generation (EG) were 

determined, and then N individuals from a parent population (P0) were generated at 

random; 

2. By decoding the population P0, N groups of field parameters were obtained, and then 

the point dose values in the target and critical structure were determined to compute the 

objective functions and constraint values using Equations (IV.1) and (IV.2);  

3. The objective functions and constraint functions were used to compute the non-

dominated rank and individuals crowding distance in population P0 [9, 10];  

4. The binary tournament selection was used to choose N individuals into the next 

population Q0, taking into account the individual's non-dominated rank and the 

crowding distance;  

5. Individuals in Q0 carried out an evolutionary process (which included crossover and 

mutation) and then repeated steps 2 and 3 for Q0; after completed, the process moved 

on to step 6.  

6. The offspring population (Q0) and the parent population (P0) were united into a 

population Q of 2N individuals, and N individuals of the following generation's parent 

population were created via tournament selection from the Q individuals.  

7. The optimization process would be ended and the obtained Pareto solutions (field 

parameters) exported if the iteration times or other conditions were fulfilled; otherwise, 

the process would proceed to step 2.  
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IV.3. Results and discussion 

IV.3.1. Test case 

A patient with a clinical liver tumor with 168 CTs slices was chosen to test the method. the 

DICOM CT data was imported into CERR and the CT scan was then resampled to the voxel 

sizes shown in Table 1 [22]. 

 

 

 

 

 

 

Table IV.1. Summary of patient caracteristics 

The PTV and OAR including heart, liver and entrance were contoured as shown in figure 

IV.4.  

 
Fig.IV.4.  Axial view for PTV and OARs Contour. 

Seven non-coplanar beams with different orientations were adopted: at (gantry, couch) 

angles (58°, 0°), (106°, 0°), (212°, 0°), (328°, 0°), (216°, 32°), (226°, -13°), (296°, 17°). 

(Coplanar refers to beams where the couch angle is fixed at 0°). 
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The dose influence matrices for this case were created with CERR. Which use the quadrant 

infinite beam (QIB) model [23,24] is a pencil beam type dose calculation algorithm. This 

approach computes Dij quickly by using precalculated integration values.  

Gray per monitor unit (Gy/MU) is the dose influence matrix unit. The beamlet intensity unit 

(MU) is defined as 100 MU is a dose of 1 Gy delivered in 10 cm depth in water in the middle 

of a 10 cm × 10 cm radiation field. The dose-influence matrix is measured in Gy/MU in order 

to allow research involving treatment delivery time and/or changing dose rates.  

Regarding the specifics of the dose computation, we used the default values in the CERR 

IMRT GUI (Gaussian primary and scatter radiation, exponential scatter method, 6 

Megaelectron-volts beams).   

IV.3.2. Algorithm parameters 

To solve the liver case, we utilized the Matlab NSGA-II MGA solver (gamultiobj), which 

minimizes the weighted sum of the mean doses to the liver, heart, and normal tissue in the 

entrance region, subject to the restrictions that every PTV voxel receives a dose greater than 

one, as shown in table IV.2.  

 
Table IV.2. MGA formulation for the liver case 

The algorithm's parameters were set as follows: The population size was 150; the maximum 

generation was 1000; the crossover probability was 0.6; the mutation probability was 0.01; the 

variables were handled as binary code; the binary bits of variables differed in accuracy.  

Because the test case had two objectives that were contradicting, there is no one best 

solution, but rather a range of feasible solutions of comparable quality (Pareto solutions).  Using 

the optimization, 27 Pareto solutions were found. Figure IV.5 depicts the distributions of the 

two objective values of 36 solutions. 
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Figure IV.6 shows an isodose and colorwash dose distributions for the first solution.  

 

 

 

 

 

 

Fig.IV.6. shows an isodose (a) and colorwash (b) dose distributions for the first solution. 
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Figure IV.7 shows the equivalent Dose Volume Histograms (DVH) of the PTV, OARs: 

Liver, Heart, and Entrance.  

 

 

Fig.IV.7. Dose Volume Histograms (DVH) of the (a) PTV and  OARs: (b) Liver, (c) Heart and (d) 
Entrance. 

IV.4. Conclusion 

In this chapter, IMRT fluence map optimization was mathematically modeled as a 

multiobjective optimization problem, taking advantage of both the objective function based on 

the dose distribution and the objective function based on the dose-volume constraints, and then 

a multiobjective evolutionary algorithm MGA based on the NSGA-II was introduced to solve 

the problem. Clinical test results revealed that numerous optimal solutions might be found, 

giving planners the greatest option for balancing different objectives and dose-volume 

constraints.  

(a) (b) 

(c) (d) 
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The proposed method in this chapter provides a Pareto optimal solution set for planners to 

choose from, rather than forcing an inexperienced user to import weighting components 

iteratively. As a result, this technique is more precise and adaptable to meet practical clinical 

needs.  
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Chapter V: Double Graphene-Gate Junctionless Radiation Sensitive FET 
(DGG JL RADFET) Dosimeter 

V.1. Introduction 

Compared to existing double gate MOSFETs, the Junction-less Double Gate Field Effect 

Transistor (JL DG FET) has proved its advantages as an outstanding structure to offer good control 

over the channel and better immunity against short-channel phenomena [1]. Taking this impressive 

property of JL DG FET into account, studies explored the Radiation Sensitive Field Effect 

Transistor (RADFET) dosimeter to quantify the captivated dosage as a result of the field impact 

produced by the localized charges [2, 3]. RADFETs can be employed for radiation-prone nuclear, 

space and radiotherapy applications thanks to their low energy utilization, efficiency and 

compliance with normal CMOS technologies [4-6]. In [7], a thorough analysis of the radiation 

sensor and dosimeter was described. The basic RADFET dosimeter principle relies on the 

calculation of the threshold voltage change followed by the conversion of such difference to the 

absorbed dosage. Due to their advantages over conventional dosimetry systems, different 

MOSFET based dosimeters have been produced in recent decades [8-11]. Instantaneous and non-

destructive measurements, basic calibration, high sensitivity, low energy utilization, reliability and 

large dosage interval are the key benefits of MOS-based dosimeters over standard dosimeters. The 

pMOS dosimeter displays fading with thicker gate oxide [12, 13], amidst certain benefits than 

most dosimeters. However, as the length of the interface gate reaches the nanoscale level, the 

output of the device is drastically influenced by numerous short channel effects [14]. Several 

relevant contributions have been reported to boost the sensitivity of RADFET through considering 

gate stack pMOS characterized by two layers of gate oxide Dual Dielectric materials. It is worthy 

to mention that pMOS Dosimeter, GAA MOSFET and JL DG FET are actually recommended for 

radiation sensor owing to their processing benefits and high immunity to short-channel effects [15-

18]. Because of the promising properties of Graphene, some experiments have focused on the 

control of graphene work function by imposing an electric field or chemical doping, which yields 

values in the range 3.5 to 5.16 eV [19, 20]. The graphene work function can be also adjusted by 

modifying the number of graphene layers [21]. Herein, an analytical modeling framework 

involving the regional method for JL DG RADFET and graphene as gate material is presented to 

predict the variance of surface potential and threshold voltage reflected by localized charges 

related to irradiation-induced damage. Furthermore, we assess the influence of adjusting 

monolayer graphene work function on the response of JL DG RADFET. As a first step, the 
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proposed device is considered without optimization and later such aspect is carried out by taking 

into account the impact of localized charges induced by radiation, Si body width, and graphene 

work function. To the best of our knowledge, only a few design policies based on junctionless 

dosimeter aspect using graphene as gate material, and device global optimization including 

degradation effects are reported to enhance the structure response for dosimeter applications. 

Therefore, and in order to obtain a more accurate description of the efficiency of JL-DGG 

RADFET under damage conditions caused by radiation effects, the analytical model is 

advantageous not just for compact modeling, but also for radiation degradation modeling, which 

is a very interesting issue, particularly in the understanding of the device's sensitivity behavior. In 

addition, it would be necessary to build fitness functions for the global optimization of system 

reliability and performance on the basis of established analytical models. It should be mentioned 

that a wide range of stochastic tools have been investigated for the tuning of configuration 

parameters for semiconductor based devices [22, 23]. However, comparison between different 

metaheuristics may be an intractable task according to the famous No Free Lunch Theorem, which 

states that no optimization algorithm can outperform any other under any metric over all problems 

[24].  This why we have focused only on the investigation of MGA in order to get a more accurate 

view regarding the performance of the proposed design. The sensitivity of the optimized JL-DGG 

RADFET is compared to conventional RADFETs in order to assess the benefit of using the 

suggested strategy combining analytical modeling and multi objective optimization method. The 

findings reveal that in contrast with other RADFETs, the suggested strategy demonstrates its 

efficacy in improving both sensitivity and electrical efficiencies. 

The remain of this chapter is organized as follows. Section 2 is dedicated to the description of 

the proposed RADFET device. In Section 3, we highlight the basic steps of the elaboration of the 

associated analytical modeling framework. The theoretical background of MGA is showcased in 

Section 4 including different genetic operators and offsprings encoding. The obtained simulation 

results are presented and interpreted in Section 5. Finally, some conclusions and future work 

directions are provided in Section 6. 

V.2. Device architecture  

Figure V.1 displays a schematic design of the Junction-less Double graphene-Gate RADFET 

Dosimeter, where tox and tb represent the oxide and the channel thicknesses, respectively. Ld and 
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Ls represent the damaged area length and the safe area, respectively. A uniformly channel doping 

concentration is assumed with a value of 1 × 1018 / cm3 [25, 26].  

In our proposed structure, the gate material is based on Graphene which is justified by several 

advantages amongst we cite the Graphene transparency reducing the shadowing effect taking place 

at the level of RADFET sensitivity in case of polysilicon gate material. In addition, the Graphene 

work function tunnability offers more flexibility for the efficient design of RADFET devices. 

Moreover, the Graphene may play a vital role in enhancing the transport mechanisms if adopted 

as a channel body due to its high conductivity [27]. 

 

 

 

 

 

 

 

 

 

 

 
Fig.V.1. Schematic view of the proposed JL-DGG RADFET Dosimeter. 

Holes produced in the SiO2 layer travel and then are captured at the Si/SiO2 boundary when a 

positive bias voltage is applied to the gate, generating an observable threshold-voltage change, as 

illustrated in Figure V.1. At the interface of the gate oxide and channel, the irradiation causes trap 

charges, which are known as fixed charges [28]. Table V.1 summarizes the design parameters 

assigned to the schematic view.  
Table V.1 Reference parameters of the proposed dosimeter. 

Parameters Value 

Channel length, Lch (nm) 40 

Body thickness, tb (nm) 20 

Doping concentration, Nd (cm-3) 1018 

Gate oxide thickness, tox (nm) 2 

Gate work function, ϕGr (eV) 4.5 
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V.3. Analytical modeling methodology 

Figure V.1 depicts the configuration of the JL DGG RADFET including a fixed charge zone 

at the boundary between the channel and gate oxide areas. In more detail, the channel is partitioned 

into three regions according to the localized charges’ position [29]. The gate is made by monolayer 

graphene material. 

A parabolic form is adopted to approximate the body potential φ(x, y) in the form φ (x, y) = φs 

+a1(x)y+a2(x)y2, where φs denotes the surface potential. The Poisson equation that includes the 

localized charges effect is expressed as follows: 
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where yd denotes the width of depletion zone and Nsub represents doping concentration in the body. 

By applying the appropriate boundary conditions taking into account the electrical flux continuity 

at the border and using Gauss' theorem to the middle of the channel body (yd/2), a1 and a2 are 

defined as functions of yd and φs [30]. The width of depletion yd becomes tsi /2 when the threshold 

voltage is attained. Hence, the boundary conditions can be expressed by: 
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with VC represents the potential at the middle of the channel. 

The corresponding second-order differential equation is developed by imposing both of these 

conditions to (1): 

 

iS
S kk

x
φφ

φ 22
2

2

−=−
∂
∂  (3) 

)32,1(
2

andiV
C

tqN
V FBi

ox

Sisub
Gi =−+=φ  (4) 

)4(
82

SioxSiSi

ox

tCt
C

k
+

=
ε

 (5) 

 



Double Graphene-Gate Junctionless Radiation Sensitive FET (DGG JL RADFET) Dosimeter 
 

122 

 

It is to note that the index values i = 1, 2, and 3 refer to the three distinct zones. VFBi represents 

the flat band voltage and is expressed as follows: 

• For i=2 we have VFBi = VFB0 −qNf/Cox 

• For i=1, 3 we have VFBi = VFB0 

where VFB0 stands for the safe area’s flat-band voltage and Nf represents the density of the localized 

charges. The general solution of (3) is expressed by 

 

i
kx

i
kx

iiS ecebx φφ ++= −)(,  (6) 

Fulfilling the continuity condition of the electric flux at the edges amid the fresh area and the 

damaged area permits to calculate both parameters bi and ci. (See the Appendix). 

The threshold condition arises when yd attains its maximum value, and φs achieves its lower limit 

since the considered n-type body holds high doping values [31]. Applying ∂φs /∂x = 0; the 

minimum surface potential φs,min is formulated as 

iiiS cb φφ += 2min,  (7) 

 

As stated previously, the threshold voltage condition is achieved when yd,max equals to tsi/2. 

Consequently,φs,min in this case can be calculated by adopting yd = tsi/2 in Gauss’s law. Therfore, 

φs,min can be expressed as follows: 
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The threshold voltage expression can be acquired by incorporating (4) with (7) and (8). 
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where δ(i−2) is equal to 1 for i = 2 and equal to 0 for i = 1, 3 [32]. The parameters bi and ci are 

quadratic equations of VTi. Therefore, by solving (9), the threshold voltage VTi is provided, which 

is another quadratic equation. By taking the highest value among different threshold voltages 
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associated to distinct areas, VT is then chosen and determined appropriately. Formulas (11), (12), 

and (13) show each solved VT equation, where the related constants are stated in the Appendix. 
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V.4. Background of genetic algorithms 

Originally, genetic algorithms (GAs) have been recognized as an optimization approach, 

inspired from natural evolution thanks to the employment of several genetic operators. In this 

framework, population evolves iteratively with the aim of reaching satisfactory stable solutions 

with respect to a given figure of merit [33]. A general framework describing the execution of 

different stages is depicted in Figure V.2. 
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Fig.V.2. Main steps performed by GA. 

Multi-objective genetic algorithms can be defined as a dynamic strategy to seek the 

optimum solution of restricted and unrestricted issues, where various figures of merit must be 

analyzed jointly [22, 27, 34–36]. These approaches ensure the availability of an acceptable range 

of solutions according to the area of operation and thus offer a quick implementation and a large 

amount of knowledge. The basis of genetic algorithms derives from the natural progression of 

species. In other words, they randomly pick individuals and develop new generations named 

offspring, starting from an initial population. For various generations, this process is repeated to 

fulfill the stopping conditions that provide at least a near optimal solution. Figure V.3 provides a 

basic flowchart for MGAs. 
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Fig.V.3. A representative flowchart of MGA. 

 

The essential operations implemented on such paradigm to enable the process progression are 

selection, crossover and mutation. The selection concerns the transfer of a portion of the best 

individuals to the next generation without going through additional modifications. The crossover 

is preserved for generating new offspring individuals based on parent solutions, which is crucial 

for gaining further diversity in the population. The mutation can be seen as a kind of local 

modification within the solution structure in order to intensify search at the vicinity of the provided 

solution. The solution encoding used within the MGA terminology, refers to the geometrical and 

electrical parameters of the structure, like channel length, oxide thickness, graphene work function 

and doping density, which have a vital role in deciding the significant outcomes of the DGG JL 

RADFET [37]. By adopting a genetic based technique, it would be possible to benefit from the 

many associated advantages including: flexibility of encoding and implementation, reasonable 

computation time and feasibility of adaptation to parallel platforms. All these aspects are 

mandatory required for the design of deeply scaled electronic devices.   
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V.5. Simulation experiments and discussions 

Figure V.4 represents the surface potential distribution across the channel length for various 

values of localized charge density and different Ld lengths based on the suggested model.  

It can be seen that negative (positive) charges at Si−SiO2 boundary shift downward (upward) the 

surface potential, where higher discrepancies between potential barrier curves can be detected with 

the expansion of the damaged zone. This means that at negative charges, as seen in Figure V.5, a 

larger Vth change will be noticed.  

 
Fig.V.4. Variation of surface potential along the channel with different values of damaged zone length for 

a) LS= 5 nm, b) LS =10 nm, c) LS =15 nm and d) LS=20 nm, respectively, with positive and negative Nf. 

Because more deformation is detected in the surface potential, as the affected zone becomes 

larger, further shift in Vth is also observed. Besides, the more the undamaged zone increases the 

surface potential shifts to the source side.  

 

- 

- 

- 
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The sensitivity is expressed as follows: 

D
V

S th∆
=  (14) 

where S and ΔVth denote the RADFET sensitivity and the alteration in threshold voltage. The 

absorbed dose is symbolized by D. From equation (14), it is clear that a higher threshold voltage 

alteration yields a higher sensitivity. 

 

 
Fig.V.5. Threshold voltage variation versus damaged zone length for different localized charges densities 

(Nf = -5×1011cm-2, Nf = -1012cm-2, Nf = -5×1012cm-2 and Nf =-1013cm-2).   
 

As provided in Figure V.6, the device shows a significant Ion/ Ioff ratio. It highlights that the 

electrostatics reliability of the design is satisfactory.  
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Fig.V.6. ION/IOFF ratio variation versus the channel length for different traps densities (Nf = -2×1012 cm-2, 

Nf = -1×1012cm-2, Nf = 1×1012cm-2 and Nf =2×1012cm-2). 

 

Figure V.7 illustrates the surface potential variation across the channel with diverse values of 

damaged zone length and different body silicon thicknesses. 
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Fig.V.7. Variation of surface potential along the channel with different values of channel thickness for a) 

tSi= 5 nm, b) tSi =10 nm, c) tSi =15 nm and d) tSi=20 nm, for Nf=1014cm-2, respectively. 
 

In Figure V.7, it is confirmed that the surface potential is more susceptible to localized charges 

when tSi is 5 nm than when tSi is 20 nm. We can disclose that the positive localized charges 

aggravate the short-channel impact. In comparison, as the body is thick, these impacts are more 

extreme, since the quotient channel length to body thickness is lower, while the channel is 

shortened by similar length. From the other side, the channel inversion is avoided by negative 

localized charges and thus, Vth is raised; as the body is smaller, this effect is significant. 

 

 

- 

- - 
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It is noticed in Figure V.8 that Vth is also influenced by various body thicknesses with similar 

charges. The threshold voltage is diminished as tSi grows, and the form of the variance of Vth is 

adjusted accordingly. This fact is due to the surface potential variation with respect to the localized 

charges when the Silicon body becomes thicker. In thinner devices, the influence of localized 

charges on Vth is thus important. Nevertheless, for similar thicknesses, the tendency of Vth 

degradation is identical. This means that the SCEs mainly rely on the amount of trapped charges 

for various body thicknesses. 

 

 
Fig.V.8. Threshold voltage difference variations versus damaged zone length with positive/negative 

localized charges. 
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Figure V.9 is introduced to explain the dependence of threshold voltage on oxide thickness. 

With increasing oxide thickness, it is observed that the threshold voltage increases, which means 

a rise in the device sensitivity. We can explain such behavior by the inverse proportionality relating 

the threshold voltage and oxide capacitance, which augments with oxide thickness reduction. 

 
Fig.V.9 Threshold voltage variation as a function of oxide thickness. 

Latest experiments have demonstrated that by imposing an electric field or chemical doping, 

the work function of graphene can be regulated between bounds 3.5 and 5.16 eV [38, 39]. 

Furthermore, the graphene work function is often influenced by the number of graphene layers 

[40]. In this work, we just consider the influence on the performance of DG JL RADFET of the 

adjusting monolayer graphene work function. As seen in Figure V.10, with the increase of the 

graphene work function, the surface potential decreases, which is primarily due to the raise of the 

Schottky barrier (φB). 
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Fig.V.10 Surface potential variation along the channel for different values of graphene work function. 

Because more deformations in φs are revealed in Figure V.10, this means that larger Vth 

changes will be noted in Figure V.11. Besides, the more the damaged zone increases the more the 

threshold voltage increases. 
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Fig.V.11 Threshold voltage variations versus damaged zone length for different values of graphene work 

function.  

V.5.1. Optimized JL-DGG dosimeter using MGA’ approach  

Because of low implementation costs and high flexibility delivered by MGA-based method for 

multi-objective design, MGA can be employed to exploit and boost the DG JL G-RADFET 

sensitivity performances. A multi-objective optimization problem is in general specified by a 

solution search space, several objective functions and an ensemble of constraints. In our scenario, 

we adopt three objective functions that define the JL-DGG RADFET in terms of output sensitivity 

and reliability.  
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where F1(X)= Vth,  F2(X)= S and F3(X)= ION/IOFF, X denotes the variables vector X= (Vgs,Vds, Lch, 

tb, tox, Nd, ϕGr) including 7 components. 
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With regard to the following targets, the JL-DGG -RADFET is optimized following the 

provided rules: 

– Maximize the first objective function, F1(X). 

– Maximize the second objective function, F2(X). 

– Maximize the third objective function, F3(X). 

The ensemble of constraints makes it possible to specify the requirements on the search space 

to be fulfilled by the design parameters. 

For the considered scenario, these constraints are provided using the following rules: 

- ],[:)( maxmin1 ii xxxxg ∈ , Xxi ∈ (Inside a given set, each design variable should be limited.). 

- .:)( 212 LLLLxg s ≤++  

- .40:)( 213 nmLLLxg s =++  

Every vector is binary-coded in a more adequate formulation and is named chromosome [22]. 

With a view to imitating nature, the steps of crossover and mutation are planned to accelerate the 

convergence of the populations towards near optimal solutions. Comparing recent chromosomes 

in the next stage of selection and favoring the removal of those with low fitness values allow 

boosting the solutions quality. The configuration parameters adopted during MGA simulation are 

recapitulated in Table V.2, where the used stopping criteria are either by reaching the total number 

of generations (1000 iterations) or by satisfying a given tolerance threshold (10-6).  
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Table V.2 Configuration parameters adopted during MGA simulation [22, 27, 34–36] 

Parameters Value 

Number of design variables 7 

Population size 1000 

Maximum number of generations 100 

Selection type Tournament 

Crossover type Scattered 

Mutation type Adaptative feasible migration 

Crossover rate 0.8 

Migration rate 0.2 

Pareto front population fraction 0.5 

 

The solution of our MGA-based optimization, unlike mono-objective optimization, is not 

determined by a unique solution, but instead by a set of compromise solutions (non-dominated 

solutions), recognized as Pareto front solutions where each point is connected to a well-defined 

vector X combination. We have selected three specified points from the non-dominated solutions 

to test our optimization, and the related objective functions of DGG JL RADFET sensitivity 

efficiency are presented in Table V.3. 
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Table V.3 Optimized DGG JL RADFET design parameters. 

Design parameters Case 1 Case 2 Case 3 

VGS (V) 0.22 0.2 0.18 

VDS (V) 0.05 0.08 0.05 

Channel length, Lch (nm) 40 40 40 

Gate oxide thickness, tox (nm) 5 5 2 

Body thickness, tb (nm) 20 20 20 

Body doping concentration, Nd (cm-3) 5×1017 1017 1018 

Gate work function 5 5.1 4.8 

Objective functions    

Vth (V) 1 1.01 0.77 

S (mV/Gy) 2.11 2.11 1.65 

ION/IOFF 2.83×1013 3.45×1013 3.53×1013 

 

The maximal and minimal objective functions (F1(x) and F2(x)) are correlated with two 

extreme situations (case 1 and case 3) in the problem space respectively, and the third point 

essentially corresponds to the mono-objective optimizing. Each solution of Pareto front is 

therefore non dominated which means that at minimum one objective cannot be decreased without 

altering other objectives. In addition, the findings acquired from Pareto front allow the designer to 

provide a detailed overview of the compromises in the design with regard to various figures of 

merit. 

We consider now mono-objective-based optimization in order to achieve a balance among both 

sensitivity and reliability. In this case, the ultimate mono-objective model can be defined by 

provided weighting factors based on the weighted sum method. 

S
I
I

)( 3
OFF

ON
21 wwVwXF th ++=  (21) 

where iw  (i = 1-3) can be taken equal to 1/3. 
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Table V.4 underlines some of the calculated results. It should be noted that the efficiency of 

the optimized JL DGG RADFET is superior with regard to ION/IOFF ratio and threshold voltage 

than those of state-of-the-art RADFETs. If we assume a dose value equal to 104 Gy in order to 

evaluate various criteria of the suggested RADFET and the standard DG RADFETs, Table V.4 is 

obtained, where it shows that the performance measures of the JL DGG RADFET outperform 

those of standard RADFETs. 

 
Table V.4 Benchmarking table. 

Design parameters 
DG RADFET 

[5] 

JL DG 

RADFET 

[5] 

Proposed JL-

DGG RADFET 

Optimized 

JL-DGG 

RADFET 

VGS (V) 0.18 0.18 0.18 0.2 

VDS (V) 0.05 0.05 0.05 0.08 

Channel length, Lch (nm) 40 40 40 40 

Gate oxide thickness, tox (nm) 2 2 2 5 

Body thickness, tb (nm) 20 20 20 20 

Body doping concentration, Nd (cm-3) 1018 1018 1018 1017 

Gate work function 
4.5 

(polysilicon) 

4.5 

(polysilicon) 

4.5 

(Graphene) 

5.1 

(Graphene) 

Objective functions     

Vth (V) 0.83 0.85 0.92 1.01 

S (mV/Gy) 1.68 1.92 1.97 2.11 

ION/IOFF 1.5×109 3.5×1012 4×1012 3.45×1013 

 

From this table, it is clearly shown that, compared to the traditional JL-DGG RADFET 

structure, our optimized configuration provides better sensitivity and reliability quality, which 

renders it a possible candidate to resolve some sever challenges. 
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V.6. Conclusion 

The Junction-less Double Graphene Gate RADFET analytical modeling was investigated as an 

efficient framework to attend high performance for radiation sensing applications. Changes in 

threshold voltage, surface potential and ION/IOFF ratio were studied for various values of localized 

charges. In comparison to the standard Double Gate RADFET, threshold voltage, sensitivity and 

ION/IOFF ratio of the suggested RADFET were evaluated, where an improvement in terms of 

threshold voltage, ION/IOFF ratio and sensitivity has been recorded. In addition, the derived 

analytical models have served as fitness functions for the MGA technique. The optimized 

configuration exhibits higher responses with respect to some state of the art DG RADFETs. As 

future perspectives, additional efforts may be focused on the consideration of other geometrical 

structures, in addition to the investigation of innovative channel materials such as InGZnO and 

SiC. 

 

  



Double Graphene-Gate Junctionless Radiation Sensitive FET (DGG JL RADFET) Dosimeter 
 

139 

 

APPENDIX 

By applying the potential and the electrical flux continuity at the edges, the solution for (6) can 

be achieved. Using φs,i(x) = φs,i+1(x), φs,i(x) = φs,i+1(x), φs(0) = 0 and φs(L) = VD at all borders, six 

equations can be deduced [31]. By manipulating the given equations (A-1–A- 15), both parameters 

bi and ci can be derived using (A-1)–(A-6). We consider in the aforementioned equations, L1 = L-

Ld-Ls and L2 = L-Ls. It was already shown that φ1-φ2 is –qN f /Cox, and φ1 is obtained by adding VT 

and constants. Consequently, bi and ci can be written as αVT + β with α and β are constants as 

indicated in (A-7)–(A-15), and the asterisk (*) constants can be in turn deduced by substituting k 

with –k. By replacing (A-7) into (9), the resolution of three quadratic expressions leads to VT as 

given in (11), (12), and (13). 
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General conclusion 

The focus of this PhD work was to investigate two different problems in radiation therapy, 

treatment planning, one pertaining to IMRT fluence map optimization and the other to 

RADFET Dosimeter enhancement. The following two sub-sections will summarize the 

pertinent conclusions for each of these optimization problems. 

First, for the IMRT fluence map optimization, a mathematical modeling was presented, in 

which the clinical requirements for a treatment plan were transformed into a multiobjective 

optimization problem with multiple constraints. Then, the MGA was introduced to optimize 

the model. Lastly, a liver clinical example was tested. The results showed by pareto front 

confirm that an obtained set of non-dominated solutions were distributed uniformly. Then, the 

corresponding dose distribution of one of the solutions in the non-dominated solution set not 

only approached the expected dose distribution, but also satisfied the dose-volume constraints. 

It was indicated that the clinical requirements were better satisfied and that the planner could 

select the optimal treatment plan from the non-dominated solution set. With the method we 

proposed, the planner has no need for a trial and error process to find the optimum plan, so 

efficiency will be highly improved. As future perspectives, additional efforts may be focused 

on the consideration of other IMRT optimization problems, such beam angles selection and 

multileaf collimator MLC dose aperture optimization, in addition to the investigation of 

involving other optimization techniques. 

Second, for the enhancement of radiation therapy quality QA and ensure a safe patient 

dose verification, the proposed Junction-less Double Graphene Gate RADFET analytical 

modeling was investigated as an efficient framework to attend high performance for radiation 

sensing applications. Changes in threshold voltage, surface potential and ION/IOFF ratio were 

studied for various values of localized charges. In comparison to the standard Double Gate 

RADFET, threshold voltage, sensitivity and ION/IOFF ratio of the suggested RADFET were 

evaluated, where an improvement in terms of threshold voltage, ION/IOFF ratio and sensitivity 

has been recorded. In addition, the derived analytical models have served as fitness functions 

for the MGA technique. The optimized configuration exhibits higher responses with respect to 

some state of the art DG RADFETs. As future perspectives, additional efforts may be focused 

on the consideration of other geometrical structures, in addition to the investigation of 

innovative channel materials such as InGZnO and SiC. 
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