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لملخصا

 وبأسس خطية غير زائديه معادلات من المزدوجة الجمل من نوعين نعتبر الاطروحة، هذه في

 نتائج عدة ننبره المتغيرة، والأسس الابتدائية المعطيات على مناسبة فرضيات تحتف .متغيرة

 تم دلق. الحل سلوك وكذلك منته وقت في الانفجار الشامل، الوجود المحلي، بالوجود متعلقة

 المستقرة المجموعة طريقة جالاركين، فايدو تقريبات بواسطة النتائج هذه على الحصول

 تقديم بواسطة النظرية نتائجنا نوضح ذلك، إلى بالإضافة المضروبات وطريقة الطاقة ومقاربة

  .العددية الاختبارات بعض



Résumé

Dans cette thèse, on considère deux types de systèmes couplés d’équations hyper-

boliques non linéaires avec des exposants variables. Sous des hypothèses appropriées

sur les données initiales et les exposants variables, on établit plusieurs résultats con-

cernant l’existence locale, l’existence globale, l’explosion en un temps fini ainsi que le

comportement de la solution. Ces résultats sont obtenus par les approximations de

Faedo-Galerkin, la méthode de l’ensemble stable, l’approche de l’energie et la méth-

ode du multiplicateur. De plus, on illustre nos résultats théoriques en présentant

quelques tests numériques.



Abstract

In this thesis, we consider two kind of coupled systems of nonlinear hyperbolic equa-

tions with variable-exponents. Under suitable assumptions on the initial data and

the variable exponents, we establish several results concerning the local existence, the

global existence, the finite-time blow up as well as the decay of the solution. These re-

sults are obtained by the Faedo-Galerkin approximations, the stable-set method, the

energy approach and the mulitiplier method. In addition, we illustrate our theoretical

findings by presenting some numericals tests.
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General Introduction

Literature Review
A considerable effort has been devoted to the study of single wave equation in the case
of constant exponents. The following equation, with initial and Dirichlet-boundary
conditions,

utt −∆u+ a |ut|m−2 ut = b |u|p−2 u in Ω× (0, T )

has been studied by many researchers. Here Ω is a bounded domain of Rn(n ∈ N∗)
with a smooth boundary, T > 0 and m, p ≥ 2. Ball in [5] showed that if a = 0, then
the source term b |u|p−2 u, with b > 0, forces the negative-initial-energy solutions to
explode in finite time. In [20], Haraux and Zuazua proved that in the absence of the
source term, that is b = 0, the damping term a |ut|m−2 ut assures global existence for
arbitrary initial data. In the presence of both terms, the problem was first considered
by Levine [25]. He established the blow up for solutions with negative initial energy,
when m = 2. Georgiev and Todorava [15] considered the case m > 2, by introduc-
ing a different method and established a blow up result for solution with sufficiently
negative initial energy. Messaoudi [30] proved that any solution with negative initial
energy only blows up in finite time when p > m ≥ 2 and then he established a global
existence when m ≥ p.

Concerning the case of equations and systems with constant exponents and weak
dissipation, we can cite the works of Mustafa and Messaoudi [40], Benaissa and Mi-
mouni [6], Benaissa and Mokaddem [7], Zennir [52] and Agre and Rammaha [2].

For the class of one wave equation with variable exponent nonlinearity, we mention
some recent works. In [3], Antontsev studied the equation:

utt − div (a|∇u|p−2∇u)− α∆ut − bu|u|σ−2 = f in Ω× (0, T ),
u(x, t) = 0 on ∂Ω× (0, T ),
u (x, 0) = u0(x) and ut (x, 0) = u1(x) in Ω,

where α > 0 is a constant and a, b, p, σ are given functions. Under specific conditions,
he proved the local and global existence of a weak solutions and a blow-up result for
certain solutions with non positive initial energy. Guo and Gao [16] took σ (x, t) =
r > 2 and established a finite time blow up result. In [48], Sun et al. looked into the
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General Introduction

following equation:

utt − div (a (x, t)∇u) + c (x, t)ut |ut|q(x,t)−1 = b (x, t)u |u|p(x,t)−2 in Ω× (0, T )

in a bounded domain, with Dirichlet boundary conditions, and established a blow-up
result for certain solutions with positive initial energy. They also gave lower and upper
bounds for the blow-up time and provided a numerical example to illustrate their
result. After that, Messaoudi and Talahmeh [34] considered the following equation:

utt − div
(
|∇u|r(x)−2∇u

)
+ aut |ut|m(x)−2 = bu |u|p(x)−2 in Ω× (0, T ) ,

where a, b > 0 are two constants and m, r, p are given functions. They established a
finite-time blow up result for negative initial energy solutions and for certain solutions
with positive initial energy. In [36], the same authors studied a decay result for
solutions of a nonlinear damped wave equation with variable exponent and presented
two numerical applications for their theoretical results. Recently, they gave in [37]
an overview of results concerning decay and blow up for nonlinear wave equations
involving constant and variable exponents. In [35], Messaoudi et al. studied the
equation:

utt −∆u+ aut |ut|m(x)−2 = bu |u|p(x)−2 in Ω× (0, T ) .

They established the existence and uniqueness of weak local solution, using the
Faedo-Galerkin method and proved the finite-time blow up for solutions with negative
initial-energy. Very recently, Xiaolei et al. [51] established an asymptotic stability of
solutions to quasilinear hyperbolic equations with variable source and damping terms.

Coupled systems of two nonlinear wave equations with constant exponents have
been extensively studied. In [18], Hao and Cai obtained several results concerning
the local existence, the global existence and the blow up property for positive-initial-
energy solutions for the following viscoelastic system

utt −∆u− div
(
g(|Ou|2)Ou

)
+
∫ t

0
h1(t− s)4u(s)ds

+ |ut|m−1 ut = f1 (u, v) in Ω× (0, T ) ,

vtt −∆v − div
(
g(|Ov|2)Ov

)
+
∫ t

0
h1(t− s)4v(s)ds

+ |vt|r−1 vt = f2 (u, v) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T ) ,
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

where g, h1, h2 ∈ C1(R+) and f1, f2 are two given functions. Messaoudi and Said-
Houari [33] studied the above system with g ≡ 0 and proved a global nonexistence
theorem for solutions with positive initial energy. The same system, but in the
absense of viscoelastic terms (h1 = h2 = 0) has been studied by Liang and Gao
[26]. They obtained the global nonexistence result for certain solutions with positive
initial energy. The last system with g ≡ 1 has been investigated in [2], by Agre
and Rammaha. They proved local and global existence results of weak solution and
established that any weak solution with negative-Initial energy blows up in finite
time. This later blow-up result has been improved by Said-Houari [45] for a certain
class of initial data with positive initial energy. In [50], Wu considered a system of

page 2



General Introduction

two viscoelastic wave equations of Kirchhoff type with nonlinear damping and source
terms and Drichlet boundary conditions, given by{

utt −M(‖Ou‖2
2 + ‖Ov‖2

2)∆u+
∫ t

0
h1(t− s)4u(s)ds+ |ut|m−1 ut = f1 (u, v) ,

vtt −M(‖Ou‖2
2 + ‖Ov‖2

2)∆v +
∫ t

0
h2(t− s)4v(s)ds+ |vt|r−1 vt = f2 (u, v) .

For certain initial data, Wu proved that the decay estimates of the energy depend on
the exponents of the damping terms, and also he established the finite time blow up
of solutions with non-negative initial energy. After that, Mu and Ma [38] considered
the following nonlinear wave equations with Balakrishnan-talor damping,{
utt − (a+ b ‖Ou‖2

2 + σ
∫

Ω
OuOutdx)∆u+

∫ t
0
h1(t− s)4u(s)ds+ |ut|m−1 ut = f1 (u, v) ,

vtt − (a+ b ‖Ov‖2
2 + σ

∫
Ω
OvOvtdx)∆v +

∫ t
0
h2(t− s)4v(s)ds+ |vt|r−1 vt = f2 (u, v) ,

and showed that the decay rate of the solution energy is similar to that of the re-
laxation fuctions and proved that the nonlinear source of polynomial type forces
solutions to blow up in finite time. Very recently, Messaoudi and Hassan [32] estab-
lished a general decay result, for a certain system of viscoelastic wave equations.

Objectives
Our goal, in the first part of this thesis, is to investigate the existence and uniqueness
of local weak solution for a coupled system of two hyperbolic equations, using the
standard Faedo-Galerkin method and paying more attention to the difficulties caused
by the variable exponents. After that, we determine an appropriate relation between
the nonlinearities in the damping and source trems, for which there is either finite-
time blow up of solutions or global existence. Precisely, we prove that the solution of
system (P ), treated in Chapter 2, blows up in finite-time if p− > max {m+−1, r+−1}
and exists globally in time if p− ≤ max {m+ − 1, r+ − 1}. In the first case, we give
some numerical tests illustrating our theoretical findings and in the second one, we
obtain a stability result for the solution by using Komornik’s inequality.
Our purpose, in the second part of the thesis, is to establish an explicit decay rate
of the solution energy to system (P̃ ), considered in Chapter 3, depending on the
variable exponents m, r and the time dependent coefficients α, β, and then give some
examples and few numerical tests.
To the best of our knowledge, these problems have not been considred earlier in the
literature.

Organization of the thesis
This thesis is divided into three chapters, in addition to the introduction.

• In Chapter 1, we give some preliminaries. We recall, in Section 1.2, the history
and definitions of the variable-exponent Lebesgue and Sobolev spaces, the func-
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General Introduction

tion spaces used throughout this thesis, and then we present a brief overview
of some facts and properties of these spaces. Section 1.3 is devoted to some
results, which will be used in many places later on.

• In Chapter 2, we study the following coupled system of two hyperbolic equations
with initial and boundary conditions and for the unknowns u(t, x) and v(t, x):

utt − div (A∇u) + |ut|m(x)−2 ut = f1 (x, u, v) in Ω× (0, T ) ,

vtt − div (B∇v) + |vt|r(x)−2 vt = f2 (x, u, v) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T ) ,
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

(P )

where T > 0, Ω is a bounded domain of Rn(n = 1, 2, 3) with a smooth boundary
∂Ω and for all x ∈ Ω and (u, v) ∈ R2,

f1 (x, u, v) =
∂

∂u
F (x, u, v) and f2 (x, u, v) =

∂

∂v
F (x, u, v) ,

with
F (x, u, v) = a |u+ v|p(x)+1 + 2b |uv|

p(x)+1
2 ,

where a, b > 0 are two positive constants. p,m and r are given continuous
functions on Ω.

Our results concerning this problem are summarized as follows:

- In Section 2.2, we push the local existence result of Agre and Rammaha [2],
which was established for the case of constant-exponent nonlinearities, to our
problem (P ). For this purpose, we use the Faedo-Galerkin method and the Ba-
nach fixed point theorem, under suitable assumptions on the variable exponents
m (.) , r (.) and p (.). To the best of our knowledge, this is the first result of this
kind and the generalization was not trivial at all.

- Section 2.3 is devoted to the study of the blow-up result of negative-initial-
energy solution. Using the energy method, we prove that no solution with
negative initial energy of problem (P ) can be extended on [0,∞) , if the source
terms dominate the damping terms; that is if p− > max {m+ − 1, r+ − 1}.

- In Section 2.4, we establish the finite time blow up for certain solutions with
positive-initial energy. Under appropriate assumptions on the variable expo-
nents, we prove that the solutions blow up in finite time T ∗ > 0. We also give
some numerical applications to illustrate our theoretical results. This work and
the local existence result studied in Section 2.2 are the subject of paper by
Bouhoufani et al [9].

- Section 2.5 concerns our contribution on global existence and stability of sys-
tem (P ). To the best of our knowledge, there is no result concerning global
existence and stability of the hyperbolic coupled system with nonlinearties of

page 4



General Introduction

variable-exponent type. With specific hypotheses on the parameters of the
problem, we prove a global existence theorem, using a Stable-set method. Af-
ter that, we use the Komornik integral approach to establish that the solution
energy has either an exponential decay or a polynomial one depending on the
variable exponents. These results have been published in [8], by Bouhoufani
and Hamchi.

• Chapter 3 is devoted to the study of a coupled system of nonlinear hyperbolic
equations with initial and boundary conditions and variable exponents in the
weak dampings:

utt −∆u+ α(t)|ut|m(x)−2ut + |u|p(x)−2u|v|p(x) = 0 in Ω× (0, T ) ,
vtt −∆v + β(t)|vt|r(x)−2vt + |v|p(x)−2v|u|p(x) = 0 in Ω× (0, T ) ,

u = v = 0 on ∂Ω× (0, T ) , (P̃ )
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

where T > 0 and Ω is a bounded domain of Rn (n ∈ N∗) with a smooth bound-
ary ∂Ω. α, β : [0,∞) −→ (0,∞) are two non-increasing C1-functions and m, r
and p are given continuous functions on Ω satisfying some conditions, to be
specified later.

In Section 3.2, we present, without proof, an existence result of global weak
solution of problem (P̃ ). In Section 3.3, under suitable assumptions on the
functions α, β and the variable exponents m and r, we establish the decay rate
of the solution energy, using the multiplier method. At the end, some numerical
examples are given in Subsection 3.3.1 to ulistrate our theoritical results. This
study is the subject of a submitted paper by Bouhoufani et al. [10].
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Chapter 1

Preliminaries

1.1 Introduction
This chapter deals with Lebesgue and Sobolev spaces with variable exponents, which
differ from the classical spaces Lp(Ω) and W p(Ω) in the fact that exponent p is not
constant but a function from Ω to [1,∞) . In Section 1.2, we present the history and
the definitions of this important class of spaces. After that, we cite some facts and
results related to the variable-exponent Lebesgue and Sobolev spaces, needed in the
study of our two systems, in Chapters 2 and 3. No proofs are inclouded for these
standard results, but references are provided. Other important tools and Lemmas,
which are necessary to obtain various estimates, are given in Section 1.3.

1.2 History of Variable Exponents Spaces
Variable Lebesgue spaces appeared for the first time in a paper by W. Orlicz, in 1931.
In his paper [43], Orlicz considered the following question: What are the neccessary
and sufficient conditions on a real sequence (yi) under which Σixiyi converges, for a
real sequences (pi) and (xi) such that Σix

pi
i converges, with (pi > 1) ? After this one

article, Orlicz concentrated to the theory of the function spaces that now bear his
name. In this theory, the space Lϕ(Ω) is constituted by measurable functions u on Ω
such that

%(λu) =

∫
Ω

ϕ(λ |u(x)|)dx < +∞,

for some λ > 0, where ϕ is a real-valued function satisfying certain conditions.
Abstracting certain properties of %, a more general class of function spaces called
modular spaces were first studied by Nakano [41, 42]. An explicit version of these
modular function spacaces was investigated by Polish Mathematicians, like Hudzik
and Kamiñska. For more details about the modular function spaces, the interested

6



1.2 History of Variable Exponents Spaces

reader can see the monograph [39] of Musielak and Orlicz.
The variabele-exponents Lebesgue spaces Lp(.)(Ω) are defined as the Orlicz space
Lϕp(.)(Ω) where

ϕp(.)(t) = tp(.) or ϕp(.)(t) =
tp(.)

p(.)
,

i.e.,

Lp(.)(Ω) =

{
u : Ω −→ R measurable in Ω : %p(.)(λu) =

∫
Ω

ϕp(.)(λ |u(x)|)dx < +∞
}
,

for some λ > 0, equipped with the following Luxembourg-type norm

‖u‖p(.) := inf
{
λ > 0 : %p(.)(

u

λ
) ≤ 1

}
.

Variabele-exponent Lebesgue spaces on the real line have been independently devel-
oped by Russian researchers. Their results originated in a 1961 article by Tsenov
[49]. In [46, 47], Sharapudinov introduced the Luxembourg norm and showed that
Lp(.)(Ω) is reflexive if the exponent satisfies 1 < essinf p ≤ esssup p < +∞. In the
mid-80’s, Zhikov [53] started a new line of investigation of variable-exponent spaces,
by considering variational integrals with non-standard growth conditions. After that,
in the early 90’s Kovacik and Rakosnk [23] established some basic properties of the
Lebesgue and Sobolev spaces in Rn. In the beginning of the new millennium, a great
development has been made for the study of variable-exponent spaces. In particulier,
a connection was made between the variable-exponent spaces and the variational
integrals with non-standard growth and coercivity conditions. It was also observed
the relation between these variational problems and the modeling of several phisical
phenomena such as electrorheological fluids, image processing,..., etc.

In the following section, we present some results from [24] on the basic properties
on Lp(.)(Ω), which we need in the proof of our results. We mention that many results
on these properties were proved first by Kovacik and Rakosnik [23] and were later
reproved by Fan and Zhao in [13].

1.2.1 Lebesgue Spaces with Variable Exponents

Definition 1.2.1. Let Ω ⊂ Rn be a domain and P(Ω,Σ, µ) a σ-finite, complete
measurable space. Let P(Ω, µ) be the set of all µ-measurable functions p : Ω −→
[1,∞). The function p ∈ P(Ω, µ) is called a variable exponent on Ω. We define

p− := essinfx∈Ω p(x) and p+ := esssupx∈Ω p(x).

If p+ < +∞, then p is said to be a bounded variable exponent. If p ∈ P(Ω, µ), then
we define p′ ∈ P(Ω, µ) by

1

p(x)
+

1

p′(x)
= 1, where

1

∞
:= 0.

The function p′ is called the dual variable exponent of p.
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1.2 History of Variable Exponents Spaces

Definition 1.2.2. We define the Lebesgue space with a variable-exponent p by

Lp(.)(Ω) =
{
u : Ω −→ R measurable in Ω : lim

λ−→0
%p(.)(λu) = 0

}
or equivalently

Lp(.)(Ω) =
{
u : Ω −→ R measurable in Ω : %p(.)(λu) < +∞, for some λ > 0

}
,

where %p(.)(u) =
∫

Ω
|u(x)|p(x) dx.

Lp(.)(Ω) is endowed with the following Luxembourg-type norm

‖u‖p(.) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Lemma 1.2.3. [4] If p(.) ≡ p, where p is constant. Then

‖u‖p(.) = (

∫
Ω

|u(x)|p dx)
1
p .

Now, we introduce the most important condition on the variable exponent, called
the log-Hölder continuity condition, which is necessary to obtain the Poincaré in-
equality in the variable case.

Definition 1.2.4. We say that a function q : Ω −→ R is log-Hölder continuous on
Ω, if there exists constant θ > 0 such that for all 0 < δ < 1, we have

|q(x)− q(y)| ≤ − θ

log |x− y|
, for a.e. x, y ∈ Ω, with |x− y| < δ.

We have

Lemma 1.2.5. [24] Let Ω be a domain of Rn. If p :−→ R is a Lipschitz function on
Ω, then it is log-Hölder continuous on the same set Ω.

Remark 1.2.6. The log-Hölder continuity condition on p can be replaced by p ∈
C(Ω), if Ω is bounded.

The following results are very important and useful in the sequal.

Theorem 1.2.7. [24] If p ∈ P(Ω, µ) then Lp(.)(Ω, µ) is a Banach space.

Lemma 1.2.8. If p : Ω −→ [1,∞) is a measurable function with, p+ < +∞ then,
C∞0 (Ω) is dense in Lp(.)(Ω).

In the following lemma, we present the relation between the function %p(.)(u),
called the modular function, and the norm ‖u‖p(.) .

Lemma 1.2.9. If 1 < p− ≤ p(x) ≤ p+ < +∞ hold then

min
{
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

}
≤ %p(.)(u) ≤ max

{
‖u‖p

−

p(.) , ‖u‖
p+

p(.)

}
, (1.2.1)

for any u ∈ Lp(.)(Ω).
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1.2 History of Variable Exponents Spaces

Remark 1.2.10. If the exponent p is constant, then p− = p+ and hence %p(.)(u) =
‖u‖pp .

As in the constant exponent case, we have the following Young’s and Hölder’s
inequalities.

Lemma 1.2.11. (Young’s Inequality)
Let p, q, s ≥ 1 be measurable functions defined on Ω such that

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e y ∈ Ω.

Then, for all a, b ≥ 0, we have

(ab)s(.)

s(.)
≤ (a)p(.)

p(.)
+

(b)q(.)

q(.)
.

By taking s = 1 and 1 < p, q < +∞, it follows that, for any ε > 0, we have

ab ≤ εap + Cεb
q, where Cε = 1/q(εp)

q
p . (1.2.2)

For p = q = 2, it comes

ab ≤ εa2 +
b2

4ε
.

Lemma 1.2.12. (Hölder’s Inequality)
Let p, q, s ≥ 1 be measurable functions defined on Ω satisfying

1

s(y)
=

1

p(y)
+

1

q(y)
, for a.e y ∈ Ω.

If f ∈ Lp(.)(Ω) and g ∈ Lq(.)(Ω) then fg ∈ Ls(.)(Ω) and

‖fg‖s(.) ≤ 2 ‖f‖P (.) ‖g‖q(.) . (1.2.3)

Case p = q = 2 yields the Cauchy-Schwarz inequality.

1.2.2 Sobolev Spaces with Variable Exponents

The Sobolev space is a vector space of functions with weak derivatives. One motiva-
tion of studying these spaces is that solutions of partial differential equations belong
naturaly to Sobolev spaces. In this section, we define the variable exponent Sobolev
spaces and cite some important properties and results related to this class of spaces.
First, we start by recalling the definition of weak derivatives.

Definition 1.2.13. Let Ω ⊂ Rn be an open set. Assume that u ∈ L1
loc(Ω). Let

α := (α1, ..., αn) ∈ Nn be a multi-index. If there exists g ∈ L1
loc(Ω) such that∫

Ω

u
∂α1+...+αnψ

∂α1x1...∂αnxn
dx = (−1)α1+...+αn

∫
Ω

ψgdx, for all ψ ∈ C∞0 (Ω),

then g is called a weak partial derivative of u of order α.
The function g is denoted by ∂αu or by ∂α1+...+αnu

∂α1x1...∂αnxn
.
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1.2 History of Variable Exponents Spaces

Definition 1.2.14. Let k ∈ N.We define the variable exponent Sobolev spaceW k,p(.)(Ω)
as follows:

W k,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) such that ∂|α|u ∈ Lp(.)(Ω) with |α| ≤ k

}
,

where |α| = α1 + ...+ αn, equipped with the following norm

‖u‖Wk,p(.)(Ω) := inf
{
λ > 0 : %Wk,p(.)(Ω)

(u
λ

)
≤ 1
}

=
∑

0≤|α|≤k

‖∂αu‖p(.) ,

with
%Wk,p(.)(Ω)(u) =

∑
0≤|α|≤k

%Lp(.)(Ω)(∂αu).

Clearly
W 0,p(.)(Ω) = Lp(.)(Ω)

and

W 1,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) such that Ou exists and |Ou| ∈ Lp(.)(Ω)

}
,

equipped with the norm

‖u‖W 1,p(.)(Ω) = ‖u‖p(.) + ‖Ou‖p(.) .

Theorem 1.2.15. [4] Let p ∈ P(Ω, µ). The space W k,p(.)(Ω) is a Banach space, which
is seperable if p is bounded and reflexive if 1 < p− ≤ p+ < +∞.

Definition 1.2.16. The closure of the set of W k,p(.)(Ω)-functions with compact sup-
port in W k,p(.)(Ω) is the Sobolev space W k,p(.)

0 (Ω) "with zero boundary trace",
i.e.,

W
k,p(.)
0 (Ω) = {u ∈ W k,p(.)(Ω) : u = uχK for a compact K ⊂ Ω}

Furtheremore, we denote by H
k,p(.)
0 (Ω) the closure of C∞0 (Ω) in W k,p(.)(Ω) and by

W−1,p′(.)(Ω) the dual space of W 1,p(.)
0 (Ω), in the same way as the usual Sobolev spaces,

where 1
p(.)

+ 1
p′(.)

= 1.

Remark 1.2.17. 1. Hk,p(.)
0 (Ω) ⊂ W

k,p(.)
0 (Ω).

2. If p is log-Hölder continuous on Ω, then Hk,p(.)
0 (Ω) = W

k,p(.)
0 (Ω).

3. If p(.) = 2 and k = 1, then we set H1
0 (Ω) = W 1,2

0 (Ω).

The following theorem plays a fundamental role to establish theorems of existence.

Theorem 1.2.18. [4] Let p ∈ P(Ω, µ). The space W k,p(.)
0 (Ω) is a Banach space, which

is seperable if p is bounded and reflexive if 1 < p− ≤ p+ < +∞.

The version of the Poincaré inequality, in the variable exponent case, is presented
in the following theorem.

Theorem 1.2.19. [24] (Poincaré’s Inequality)
Let Ω ⊂ Rn be a bounded domain. If p satisfies the log-Hölder inequality on Ω, then

‖u‖p(.) ≤ C ‖Ou‖p(.) , for all u ∈ W
1,p(.)
0 (Ω),
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1.3 Important Lemmas

where C is a positive constant deponding on Ω and p(.). In particular, the space
W

1,p(.)
0 (Ω) has an equivalent norm given by

‖u‖
W

1,p(.)
0 (Ω)

= ‖Ou‖p(.) .

We end this section with some essential embedding results.

Lemma 1.2.20. [4, 24](Embedding Property)
Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. Assume that p, q ∈ C(Ω)
such that

1 < p− ≤ p(x) ≤ p+ < +∞ and 1 < q− ≤ q(x) ≤ q+ < +∞, for all x ∈ Ω

and p(x) < q∗(x) in Ω with q∗(x) =

{
nq(x)
n−q(x)

, if q+ < n

+∞, if q+ ≥ n.

Then, the embedding W 1,q(.)(Ω) ↪→ Lp(.)(Ω) is continuous and compact.

Corollary 1.2.21. Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω.
Assume that p : Ω −→ (1,∞) is a continuous function such that

2 ≤ p− ≤ p(x) ≤ p+ <
2n

n− 2
, n ≥ 3.

Then, the embedding H1
0 (Ω) ↪→ Lp(.)(Ω) is continuous and compact.

1.3 Important Lemmas
To establisch the stability result for systems (P ) and (P̃ ), we need the following two
Lemmas.

Lemma 1.3.1. [22](Komornik’s Lemma )
Consider E : R+ −→ R+ be a nonincreasing function (and differentiable in the case
of Lyaponov hypothesis), C > 0 and α ≥ 0 such that∫ ∞

S

E(t)1+αdt ≤ CE(S), 0 ≤ S <∞.

Then, there exists positive constants c and w and t0 ≥ 0 such that, for all t ≥ t0, we
have

E (t) ≤
{
E(0)e−ωt, if α = 0,
Ct−1/α, if α > 0.

Lemma 1.3.2. [29] Let E : R+ −→ R+ be a non-increasing function and σ : R+ −→
R+ be an increasing C1−functions, with σ(0) = 0 and σ(t) −→ +∞ as t −→ ∞.
Assume that there exists q ≥ 0 and C > 0 such that∫ ∞

S

σ′(t)E(t)q+1dt ≤ CE(S), 0 ≤ S <∞.
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Then, there exists positive constants c and w such that, for all t ≥ 0,

E (t) ≤

{
ce−ωσ(t), if q = 0,

c

[1+σ(t)]1/q
, if q > 0.

The following Lemmas will play an essential role in the proof of several results,
in this dissertation.

Lemma 1.3.3. [4] (Gronwall’s Inequality )
Let f, g : [0, a] −→ R be continuous and nonnegative. Suppose that there exists a
positive constant C such that

f(t) ≤ C +

∫ t

0

f(s)g(s)ds, for all t ∈ [0, a] .

Then,
f(t) ≤ C expG(t),

where

G(t) =

∫ t

0

g(s)ds.

Lemma 1.3.4. [26] Let Θ be a positive solution of the ordinary differential inequality

dΘ(t)

dt
≥ CΘ1+ε(t), t > 0,

where ε > 0. If Θ(0) > 0, then the solution ceases to exist for t ≥ Θ−ε(0)C−1ε−1.

Lemma 1.3.5. [33] 1- There exist C1, C2 > 0 such that, for all x ∈ Ω and (u, v) ∈ R2

we have

C1

(
|u|

p(x)+1

+ |v|
p(x)+1

)
≤ F (x, u, v) ≤ C2

(
|u|

p(x)+1

+ |v|
p(x)+1

)
. (1.3.1)

2- For all x ∈ Ω and (u, v) ∈ R2, we have

u f1 (x, u, v) + vf2 (x, u, v) = (p (x) + 1)F (x, u, v) , (1.3.2)

where F is given by (2.1.4), f1 = ∂F
∂u

and f2 = ∂F
∂v
.
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Chapter 2

Coupled System of Nonlinear
Hyperbolic Equations with
Variable-exponents in the Damping
and Source terms

2.1 Introduction
In this chapter, we are concerned with the following initial-boundary-value problem:

utt − div (A∇u) + |ut|m(x)−2 ut = f1 (x, u, v) in Ω× (0, T ) ,

vtt − div (B∇v) + |vt|r(x)−2 vt = f2 (x, u, v) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T ) ,
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

(P )

where T > 0 and Ω is a bounded domain of Rn(n = 1, 2, 3) with a smooth boundary
∂Ω.

The study of system (P ) is motivated by the description of several models in
physical phenomena, such as viscoelastic fluids, filtration processes through a porous
media, fluids with temperature dependent viscosity, image processing, or robotics,
etc. For more detail, one can see [1, 12].
Before studying the finite-time blow up of solutions with negative initial energy and
for certain solutions with positive initial data, in Section 2.2 and 2.3, respectively,
and investigating a global existence and stability results of the solutions, in Section
2.4, we state and prove an existence and uniqueness theorem of local weak solutions
to problem (P ), in the following Section. The proof of this result is based on the
Faedo-Galerkin procedure as in [2, 17, 35] for systems with constant exponents.
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2.2 Existence and Uniqueness of Local Weak Solution

ASSUMPTIONS:

The Damping terms.
In the system (P ), the variable exponents m and r in the two damping terms are
given continuous functions on Ω satisfying

2 ≤ m (x) , if n = 1, 2,
2 ≤ m− ≤ m (x) ≤ m+ ≤ 6, if n = 3,

(2.1.1)

and
2 ≤ r (x) , if n = 1, 2,
2 ≤ r− ≤ r (x) ≤ r+ ≤ 6, if n = 3,

(2.1.2)

for all x ∈ Ω, where

m− = inf
x∈Ω

m (x) , m+ = sup
x∈Ω

m (x) ,

and
r− = inf

x∈Ω
r (x) , r+ = sup

x∈Ω
r (x) .

The Source terms.
In the right-hand side of the two differential equations of (P ), the source terms f1

and f2 are given as follows, for all x ∈ Ω and (u, v) ∈ R2:

f1 (x, u, v) =
∂

∂u
F (x, u, v) and f2 (x, u, v) =

∂

∂v
F (x, u, v) , (2.1.3)

with
F (x, u, v) = a |u+ v|p(x)+1 + 2b |uv|

p(x)+1
2 , (2.1.4)

where a, b > 0 are two positive constants, p is a continuous function on Ω such that

3 ≤ p− ≤ p(x) ≤ p+, if n = 1, 2,
p (x) = 3, if n = 3,

for all x ∈ Ω, where

p− = inf
x∈Ω

p (x) and p+ = sup
x∈Ω

p (x) .

The Matrices A and B.
In the left-hand side of the differential equations of (P ), A and B are two symmetric
matrices of class C1

(
Ω× [0,∞)

)
such that there exist constants a0, b0 > 0 for which

we have, for all ξ ∈ Rn,

Aξ.ξ ≥ a0 |ξ|2 , Bξ.ξ ≥ b0 |ξ|2 (2.1.5)

and
A′ξ.ξ ≤ 0, B′ξ.ξ ≤ 0, (2.1.6)

where A′ = ∂A
∂t

(., t) and B′ = ∂B
∂t

(., t).
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2.2 Existence and Uniqueness of Local Weak Solution

2.2 Existence and Uniqueness of Local Weak Solu-
tion and Decreasingness of the Energy

In the beginning, let us introduce the definition of a weak solution for our system.

Definition 2.2.1. Let u0, v0 ∈ H1
0 (Ω) and u1, v1 ∈ L2(Ω). A pair of functions (u, v)

is said to be a weak solution of (P ) on [0, T ) if u, v ∈ Cω ((0, T ), H1
0 (Ω)) , ut, vt ∈

Cω ((0, T ), L2(Ω)) , ut ∈ Lm(.) (Ω× (0, T )) , vt ∈ Lr(.) (Ω× (0, T )) and for all test
functions Φ,Ψ ∈ H1

0 (Ω) and all t ∈ (0, T ), we have∫
Ω

utΦ dx−
∫

Ω

u1Φ dx+

∫ t

0

∫
Ω

|ut|m(x)−2utΦ dxdτ

+

∫ t

0

∫
Ω

A∇u.∇Φ dxdτ −
∫ t

0

∫
Ω

f1(x, u, v)Φ dxdτ = 0

and ∫
Ω

vtΨdx−
∫

Ω

v1Ψ dx+

∫ t

0

∫
Ω

|vt|r(x)−2vtΨ dxdτ

+

∫ t

0

∫
Ω

B∇v.∇Ψ dxdτ −
∫ t

0

∫
Ω

f2(x, u, v)Ψ dxdτ = 0.

2.2.1 Existence and Uniqueness of Local Weak Solution

In order to prove an existence theorem of a local weak solution of problem (P ), we
first consider, as in [27], the following initial-boundary-value problem:

utt − div (A∇u) + |ut|m(x)−2 ut = f (x, t) in Ω× (0, T ) ,

vtt − div (B∇v) + |vt|r(x)−2 vt = g (x, t) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T ) ,
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

(Q)

where f, g ∈ L2 (Ω× (0, T )) .

Theorem 2.2.2. Under the above conditions, onm, r,A and B, and for (u0, u1), (v0, v1) ∈
H1

0 (Ω)×L2(Ω), the problem (Q) has a unique local weak solution (u, v) on [0, T ), in
the sense of Definition 2.2.1.

Proof. UNIQUENESS:
Assume that (Q) has two weak solutions (u1, v1) and (u2, v2) on [0, T ), in the sense
of Definition 2.2.1. Taking Φ = u1t−u2t and Ψ = v1t− v2t, in this definition, we infer
that (u, v) = (u1 − u2, v1 − v2) satisfies the following identities

d

dt

[∫
Ω

(u2
t + AOu.Ou)dx

]
−
∫

Ω

A′Ou.Oudx

+ 2

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
utdx = 0 (2.2.1)
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2.2 Existence and Uniqueness of Local Weak Solution

and

d

dt

[∫
Ω

(v2
t +BOv.Ov)dx

]
−
∫

Ω

B′Ov.Ovdx

+ 2

∫
Ω

(
|v1t|r(x)−2 v1t − |v2t|r(x)−2 v2t

)
vtdx = 0, (2.2.2)

for all t ∈ (0, T ) , since H1
0 (Ω) is dense in L2(Ω),

d

dt

(∫
Ω

AOu.Oudx

)
=

∫
Ω

A′Ou.Oudx+ 2

∫
Ω

AOu.Outdx

and
d

dt

(∫
Ω

BOv.Ovdx

)
=

∫
Ω

B′Ov.Ovdx+ 2

∫
Ω

BOv.Ovtdx.

By (2.1.6), the equations (2.2.1) and (2.2.2) lead to

d

dt

[∫
Ω

(u2
t + AOu.Ou)dx

]
+ 2

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
(u1t − u2t)dx ≤ 0

(2.2.3)

and

d

dt

[∫
Ω

(v2
t +BOv.Ov)dx

]
+ 2

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
(u1t − u2t)dx ≤ 0.

(2.2.4)
Integrating (2.2.3) and (2.2.4) over (0, t), where t ≤ T, we find∫

Ω

(u2
t + AOu.Ou)dx+ 2

∫ t

0

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
(u1t − u2t)dxdt ≤ 0,

(2.2.5)

and∫
Ω

(v2
t +BOv.Ov)dx+ 2

∫ t

0

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
(u1t − u2t)dxdt ≤ 0.

(2.2.6)
Since we have, for all x ∈ Ω and Y, Z ∈ R,(

|Y |q(x)−2 Y − |Z|q(x)−2 Z
)

(Y − Z) ≥ 0, q(x) ≥ 2 (2.2.7)

and from (2.1.5)∫
Ω

AOu.Oudx ≥ a0 ‖Ou‖2
2 and

∫
Ω

BOv.Ovdx ≥ b0 ‖Ov‖2
2 ,

then, inequalities (2.2.5) and (2.2.6) give

‖ut‖2
2 + a0 ‖Ou‖2

2 = 0 and ‖vt‖2
2 + b0 ‖Ov‖2

2 = 0, respectively.

Therefore, ut(x, .) = vt(x, .) = 0 on Ω and Ou(., t) = Ov(., t) = 0, for all t ∈ (0, T ).
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2.2 Existence and Uniqueness of Local Weak Solution

Which implies u = v = 0 on Ω× (0, T ), since u = v = 0 on ∂Ω× (0, T ). This proves
the uniqueness.
EXISTENCE:
To prove the existence of a local solution to problem(Q), we procced in several steps:
Step 1. Approximate problem.
Let {ωj}∞j=1 be an orthonormal basis ofH1

0 (Ω). For all k ≥ 1, let (uk, vk) be a sequence
in the finite-dimensional subspace Vk = span {ω1, ω2, ..., ωk} , defined by

uk(x, t) = Σk
j=1aj(t)ωj(x) and vk(t) = Σk

j=1bj(t)ωj(x), for all x ∈ Ω and t ∈ (0, T )

and satisfying the following approximate problems, denoted by (Pk):∫
Ω

uktt(x, t)ωjdx+

∫
Ω

AOuk(x, t).Oωjdx+

∫
Ω

∣∣ukt (x, t)∣∣m(x)−2
ukt (x, t)ωjdx

=

∫
Ω

f(x, t)ωj, (2.2.8)

∫
Ω

vktt(x, t)ωjdx+

∫
Ω

BOvk(x, t).Oωjdx+

∫
Ω

∣∣vkt (x, t)
∣∣r(x)−2

vkt (x, t)ωjdx

=

∫
Ω

g(x, t)ωj, (2.2.9)

for all j = 1, 2, ..., k, with the following initial data

uk(0) = uk0 = Σk
i=1 〈u0, ωi〉ωi, ukt (0) = uk1 = Σk

i=1 〈u1, ωi〉ωi
vk(0) = vk0 = Σk

i=1 〈v0, ωi〉ωi, vkt (0) = vk1 = Σk
i=1 〈v1, ωi〉ωi, (2.2.10)

such that
uk0 −→ u0 and vk0 −→ v0 in H1

0 (Ω),

uk1 −→ u1 and vk1 −→ v1 in L2(Ω).

This generates a system of k nonlinear ordinary differential equations, which admits
a unique local solution (uk, vk) in [0, Tk), Tk < T, by standard ODE theory.
In the following step, we will show, by a priory estimates, that Tk = T,∀k ≥ 1.
Step 2. A priori Estimates.
We multiply (2.2.8) and (2.2.9) by a′j(t) and b′j(t), respectively. We sum each result
over j, from 1 to k, to obtain

1

2

d

dt

[
‖ukt ‖2

2 +

∫
Ω

AOuk.Oukdx

]
− 1

2

∫
Ω

A′Ouk.Oukdx+

∫
Ω

∣∣ukt (x, t)∣∣m(x)
dx

=

∫
Ω

f(x, t)ukt (x, t)dx, (2.2.11)

1

2

d

dt

[
‖vkt ‖2

2 +

∫
Ω

BOvk.Ovkdx

]
− 1

2

∫
Ω

B′Ovk.Ovkdx+

∫
Ω

∣∣vkt (x, t)
∣∣r(x)

dx

=

∫
Ω

g(x, t)vkt (x, t)dx. (2.2.12)
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2.2 Existence and Uniqueness of Local Weak Solution

The integration of (2.2.11) and (2.2.12) over (0, t), with t ≤ Tk, leads to

‖ukt ‖2
2 − ‖uk1‖2

2 +

∫
Ω

AOuk.Oukdx−
∫

Ω

A(x, 0)Ouk0.Ou
k
0dx+ 2

∫ t

0

∫
Ω

∣∣ukt (x, t)∣∣m(x)
dxds

(2.2.13)

≤ 2

∫ t

0

∫
Ω

f(x, t)ukt (x, t)dxds.

and

‖vkt ‖2
2 − ‖vk1‖2

2 +

∫
Ω

BOvk.Ovkdx−
∫

Ω

B(x, 0)Ovk0 .Ov
k
0dx+ 2

∫ t

0

∫
Ω

∣∣vkt (x, t)
∣∣r(x)

dxds

(2.2.14)

≤ 2

∫ t

0

∫
Ω

g(x, t)vkt (x, t)dxds,

by virtue of (2.1.6). Now, by adding (2.2.13) and (2.2.14), using the assumptions on
A,B and Young’s inequality (1.2.2), we arrive at

‖ukt ‖2
2 + ‖vkt ‖2

2 + a0‖Ouk‖2
2 + b0‖Ovk‖2

2 + 2

∫ Tk

0

∫
Ω

(∣∣ukt (x, t)∣∣m(x)
+
∣∣vkt (x, t)

∣∣r(x)
)
dxds

≤ ‖uk1‖2
2 + ‖vk1‖2

2 + α
∥∥Ouk0∥∥2

2
+ β

∥∥Ovk0∥∥2

2
+ 2

∫ T

0

∫
Ω

(
f(x, t)ukt (x, t) + g(x, t)vkt (x, t)

)
dxds

≤ ‖uk1‖2
2 + ‖vk1‖2

2 + α
∥∥Ouk0∥∥2

2
+ β

∥∥Ovk0∥∥2

2
+ 2Cε

∫ T

0

∫
Ω

(
| f(x, t) |2 + | g(x, t) |2

)
dxds

+ 2ε

∫ Tk

0

(∥∥ukt ∥∥2

2
+
∥∥vkt ∥∥2

2

)
ds, (2.2.15)

where
α = sup

Ω×(0,T )

A(x, t) and β = sup
Ω×(0,T )

B(x, t).

But
uk0 −→ u0 and vk0 −→ v0 in H1

0 (Ω),

uk1 −→ u1 and vk1 −→ v1 in L2(Ω)

so, inequality (2.2.15) is rewritten as follows

‖ukt ‖2
2 + ‖vkt ‖2

2 + a0‖Ouk‖2
2 + b0‖Ovk‖2

2 + 2

∫ Tk

0

∫
Ω

(∣∣ukt (x, t)∣∣m(x)
+
∣∣vkt (x, t)

∣∣r(x)
)
dxds

≤M + 2ε

∫ Tk

0

(∥∥ukt ∥∥2

2
+
∥∥vkt ∥∥2

2

)
ds+ 2Cε

∫ T

0

∫
Ω

(
|f(x, t)|2 + |g(x, t)|2

)
dxds, M > 0.
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2.2 Existence and Uniqueness of Local Weak Solution

Since f, g ∈ L2(Ω× (0, T )), then

‖ukt ‖2
2 + ‖vkt ‖2

2 + a0‖Ouk‖2
2 + b0‖Ovk‖2

2 + 2

∫ Tk

0

∫
Ω

(∣∣ukt (x, t)∣∣m(x)
+
∣∣vkt (x, t)

∣∣r(x)
)
dxds

(2.2.16)

≤ Cε + 2ε

∫ Tk

0

(‖ukt ‖2
2 + ‖vkt ‖2

2)ds.

This gives, for all ε > 0,

‖ukt ‖2
2 + ‖vkt ‖2

2 ≤ Cε + 2ε

∫ Tk

0

(
‖ukt ‖2

2 + ‖vkt ‖2
2

)
ds,∀t ∈ [0, Tk] .

Therefore,
‖ukt ‖2

2 + ‖vkt ‖2
2 = ‖(ukt , vkt )‖2

2 ≤ Cε,∀t ∈ [0, Tk] ,∀k ≥ 1,

by virtue of Gronwall’s Lemma 1.3.3. Consequently, estimate (2.2.16) leads to

sup
(0,Tk)

[‖ukt ‖2
2 + ‖vkt ‖2

2 + ‖∇uk‖2
2 + ‖∇vk‖2

2]

+

∫ Tk

0

∫
Ω

(∣∣ukt (x, t)∣∣m(x)
+
∣∣vkt (x, t)

∣∣r(x)
)
dxds ≤ Cε.

Taking ε = 1
2
to find

sup
(0,Tk)

[‖ukt ‖2
2 + ‖vkt ‖2

2 + ‖∇uk‖2
2 + ‖∇vk‖2

2]

+

∫ Tk

0

∫
Ω

(∣∣ukt (x, t)∣∣m(x)
+
∣∣vkt (x, t)

∣∣r(x)
)
dxds ≤ C,

where C > 0, for all Tk < T and k ≥ 1. Therefore, the local solution (uk, vk) of
system (Pk) can be extended to (0, T ) for all k ≥ 1. Furthermore, we have

(uk)k, (v
k)k are bounded in L∞((0, T ), H1

0 (Ω)),

(ukt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lm(.)(Ω× (0, T )),

(vkt )k is bounded in L∞((0, T ), L2(Ω)) ∩ Lr(.)(Ω× (0, T )).

Consequently, we can extract two subsequences of (uk)k and (vk)k, which we denote
by (ul)l and (vl)l, respectively, such that, when l→∞, we have

ul → u and vl → v weakly * in L∞((0, T ), H1
0 (Ω)),

ult → ut weakly * in L∞((0, T ), L2(Ω)) and weakly in Lm(.)(Ω× (0, T )),

vlt → vt weakly * in L∞((0, T ), L2(Ω)) and weakly in Lr(.)(Ω× (0, T )).
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2.2 Existence and Uniqueness of Local Weak Solution

Step 3. The Nonlinear terms.
In this step, we show that

| ult |m(.)−2 ult → | ut |m(.)−2 ut weakly in L
m(.)
m(.)−1 (Ω× (0, T ))

and
| vlt |r(.)−2 vlt → | vt |r(.)−2 vt weakly in L

r(.)
r(.)−1 (Ω× (0, T )).

By exploiting Hölder’s inquality (1.2.3), it results

(| ult |m(.)−2 ult)l is bounded in L
m(.)
m(.)−1 (Ω× (0, T )),

since (ult)l is bounded in Lm(.)(Ω× (0, T )). It follows that, there exists a subsequence
of (| ult |m(.)−2 ult)l, still denoted by (| ult |m(.)−2 ult)l, for simplicity, such that

| ult |m(.)−2 ult → Φ weakly in L
m(.)
m(.)−1 (Ω× (0, T )).

In what follows, we prove that Φ =| ut |m(.)−2 ut.
For this purpose, we set h(z) =| z |m(.)−2 z and define the following sequence, for all
l ≥ 1, see [27],

Sl =

∫ T

0

∫
Ω

(h(ult)− h(z))(ult − z), ∀z ∈ Lm(.)((0, T ), H1
0 (Ω)).

By the inequality (2.2.7), Sl ≥ 0, for all l ≥ 1. Replacing uk by ul in (2.2.11) and
integrating the result over (0, T ), we find

Sl =
1

2

[
‖ul1‖2

2 − ‖ult(T )‖2
2 +

∫
Ω

A(x, 0)Oul0.Ou
l
0 −

∫
Ω

A(x, T )Oul(T ).Oul(T )

]
−
∫ T

0

∫
Ω

h(ult)z −
∫ T

0

∫
Ω

h(z)(ult − z) +

∫ T

0

∫
Ω

fult, ∀ l ≥ 1. (2.2.17)

By the definition of (ul0), (ul1) and since A ∈ C1
(
Ω× [0,∞[

)
and

ul → u weakly * in L∞((0, T ), H1
0 (Ω))

we obtain
lim
l−→∞

‖ul1‖2
2 = ‖u1‖2

2,

lim inf
l−→∞

∫
Ω

A(x, T )Oul(T ).Oul(T ) ≥
∫

Ω

A(x, T )Ou(T ).Ou(T )

and
lim
l−→∞

∫
Ω

A(x, 0)Oul0.Ou
l
0dx =

∫
Ω

A(x, 0)Ou0.Ou0dx.

Also, we have

ult → ut weakly * in L∞((0, T ), L2(Ω)) and weakly in Lm(.)(Ω× (0, T ))

and
h(ult) =| ult |m(.)−2 ult → Φ weakly in L

m(.)
m(.)−1 (Ω× (0, T )).
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2.2 Existence and Uniqueness of Local Weak Solution

Therefore,
lim inf
l−→∞

‖ult(T )‖2
2 ≥ ‖ut(T )‖2

2,

lim
l−→∞

∫ T

0

∫
Ω

fult =

∫ T

0

∫
Ω

fut,

lim
l−→∞

∫ T

0

∫
Ω

h(ult)z =

∫ T

0

∫
Ω

Φz

and

lim
l−→∞

∫ T

0

∫
Ω

h(z)(ult − z) =

∫ T

0

∫
Ω

h(z)(ut − z),

since f ∈ L2(Ω×(0, T )), z ∈ Lm(.) ((0, T ), H1
0 (Ω)) andH1

0 (Ω) ⊂ Lm(.)(Ω), by invoking
Lemma 1.2.8. Taking l→∞ in (2.2.17) and substituting the above limits, it yields

0 ≤ lim sup
l

Sl ≤
1

2

[
‖u1‖2

2 − ‖ut(T )‖2
2 +

∫
Ω

A(x, 0)Ou0.Ou0 −
∫

Ω

A(x, T )Ou(T ).Ou(T )

]
−
∫ T

0

∫
Ω

Φz −
∫ T

0

∫
Ω

h(z)(ut − z) +

∫ T

0

∫
Ω

fut, (2.2.18)

since

lim sup
l

(
−
∫

Ω

A(x, T )Oul(T ).Oul(T )dx

)
= − lim inf

l

∫
Ω

A(x, T )Oul(T ).Oul(T )dx

≤ −
∫

Ω

A(x, T )Ou(T ).Ou(T )dx.

On the other hand, if we use ul instead of uk in (2.2.8) and integrate the result over
(0, t), we find∫

Ω

ultωj−
∫

Ω

ul1ωj+

∫ t

0

∫
Ω

AOul.Oωj+
∫ t

0

∫
Ω

| ult |m(x)−2 ultωj =

∫ t

0

∫
Ω

fωj, ∀1 < j < l.

This leads to∫
Ω

utω −
∫

Ω

u1ω +

∫ t

0

∫
Ω

AOu.Oω +

∫ t

0

∫
Ω

Φω =

∫ t

0

∫
Ω

fω, ∀ω ∈ H1
0 (Ω),

since ∪m≥1Vm is dense in H1
0 (Ω). Taking the derivative with respect to t, it comes for

a.e t ∈ [0, T ] , that∫
Ω

uttω +

∫
Ω

(AOu.Oω + Φω) =

∫
Ω

fω, ∀ω ∈ H1
0 (Ω). (2.2.19)

Since H1
0 (Ω) is dense in L2(Ω), we can set ut instead of ω in (2.2.19) to get∫

Ω

uttut +

∫
Ω

(AOu.Out + Φut) =

∫
Ω

fut, (2.2.20)
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2.2 Existence and Uniqueness of Local Weak Solution

By integrating (2.2.20) over (0, T ), we arrive at∫ T

0

∫
Ω

fut =
1

2

[
‖ut(T )‖2

2 − ‖u1‖2
2 +

∫
Ω

A(x, T )Ou(T ).Ou(T )−
∫

Ω

A(x, 0)Ou0.Ou0

]
+

∫ T

0

∫
Ω

Φut, (2.2.21)

Combining (2.2.18) and (2.2.21), we find

0 ≤ lim sup
l

Sl ≤
∫ T

0

∫
Ω

Φut −
∫ T

0

∫
Ω

Φz −
∫ T

0

∫
Ω

h(z)(ut − z).

So, ∫ T

0

∫
Ω

[Φ− h(z)] (ut − z) ≥ 0, ∀z ∈ Lm(.)((0, T ), H1
0 (Ω)).

Under the assumption (2.1.1) and by virtue of Lemma 1.2.8, H1
0 (Ω) is dense in

Lm(.)(Ω). Consequently,∫ T

0

∫
Ω

[Φ− h(z)] (ut − z) ≥ 0, ∀z ∈ Lm(.)(Ω× (0, T )). (2.2.22)

Now, let z = λω + ut, ω ∈ Lm(.)(Ω× (0, T )). Hence, inequality (2.2.22) yields

−λ
∫ T

0

∫
Ω

[Φ− h(λω + ut)]ω ≥ 0, ∀λ 6= 0.

We have two cases:
- If λ > 0, then∫ T

0

∫
Ω

[Φ− h(λω + ut)]ω ≤ 0, ∀ω ∈ Lm(.)(Ω× (0, T )).

Taking λ→ 0 and by the continuity of h with respect to λ, it results that∫ T

0

∫
Ω

(Φ− h(ut))ω ≤ 0, ∀ω ∈ Lm(.)(Ω× (0, T )). (2.2.23)

- If λ < 0, similarly, we get∫ T

0

∫
Ω

(Φ− h(ut))ω ≥ 0, ∀ω ∈ Lm(.)(Ω× (0, T )). (2.2.24)

From (2.2.23) and (2.2.24), we deduce that∫ T

0

∫
Ω

(Φ− h(ut))ω = 0, ∀ω ∈ Lm(.)(Ω× (0, T )).
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2.2 Existence and Uniqueness of Local Weak Solution

This gives Φ =| ut |m(x)−2 ut. Therefore, inequality (2.2.19) leads to∫
Ω

uttω +

∫
Ω

AOu.Oω +

∫
Ω

| ut |m(x)−2 utω =

∫
Ω

fω, ∀ω ∈ H1
0 (Ω).

Consequently,

utt − div(AOu)+ | ut |m(x)−2 ut = f in D′(Ω× (0, T )). (2.2.25)

Likewise and since H1
0 (Ω) is dense in Lr(.)(Ω) (Lemma 1.2.8), we obtain

| vlt |r(.)−2 vlt → | vt |r(.)−2 vt weakly in L
r(.)
r(.)−1 (Ω× (0, T ))

and
vtt − div(BOv)+ | vt |r(x)−2 vt = g in D′(Ω× (0, T )). (2.2.26)

From (2.2.25) and (2.2.26), we conclude that u and v satisfy the two differential
equations of system (Q) on Ω× [0, T ] .
Step 4. The Initial Conditions.
- First, we prove that

u(x, 0) = u0(x) and v(x, 0) = v0(x).

Invoking Lions’ Lemma [27] (Lemma 1.2, page 7) and since

ul ⇀ u weakly * in L∞((0, T ), H1
0 (Ω))

and
ult ⇀ ut weakly * in L∞((0, T ), L2(Ω)),

we deduce that
ul −→ u in C([0, T ] , L2(Ω)).

So, for all x ∈ Ω, ul(x, 0) makes sense and

ul(x, 0) −→ u(x, 0) in L2(Ω).

By the definition of ul0, we have

ul(x, 0) = ul0(x) −→ u0(x), in H1
0 (Ω).

Therefore, u(x, 0) = u0(x). Similary, we obtain v(x, 0) = v0(x).
- Second, we handle the second intial condition, that is

ut(x, 0) = u1(x) and vt(x, 0) = v1(x).

For any φ ∈ C∞0 (0, T ) and j ≤ l, we obtain from (2.2.8) that∫ T

0

∫
Ω

ultt(x, t)ωj(x)φ(t) +

∫ T

0

∫
Ω

AOul(x, t).Oωj(x)φ(t)

= −
∫ T

0

∫
Ω

∣∣ult(x, t)∣∣m(x)−2
ult(x, t)ωj(x)φ(t) +

∫ T

0

∫
Ω

f(x, t)ωj(x)φ(t). (2.2.27)
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2.2 Existence and Uniqueness of Local Weak Solution

But
d

dt

(
ultφ(t)ωj(x)

)
=
(
ulttφ(t) + ultφ

′(t)
)
ωj(x),

then ∫
Ω

ulttφ(t)ωj(x)dx =

∫
Ω

d

dt

(
ultφ(t)ωj(x)

)
dx−

∫
Ω

ultφ
′(t)ωj(x)dx.

Therefore, ∫ T

0

∫
Ω

ulttφ(t)ωj(x)dxds

=

∫ T

0

∫
Ω

d

dt

(
ultφ(t)ωj(x)

)
dxds−

∫ T

0

∫
Ω

ultφ
′(t)ωj(x)dxds,

i.e, ∫ T

0

∫
Ω

ulttφ(t)ωj(x)dxds

=

∫
Ω

(
ult(x, T )φ(T )− ult(x, 0)φ(0)

)
ωj(x)dx−

∫ T

0

∫
Ω

ultφ
′(t)ωj(x)dxds. (2.2.28)

Since φ ∈ C∞0 (0, T ), then φ(T ) = φ(0) = 0.
Consequently, (2.2.28) leads to∫ T

0

∫
Ω

ulttφ(t)ωj(x)dxds = −
∫ T

0

∫
Ω

ultφ
′(t)ωj(x)dxds. (2.2.29)

By substituting (2.2.29) in (2.2.27), we obtain

−
∫ T

0

∫
Ω

ult(x, t)ωj(x)φ′(t) +

∫ T

0

∫
Ω

AOul(x, t).Oωj(x)φ(t)

= −
∫ T

0

∫
Ω

∣∣ult(x, t)∣∣m(x)−2
ult(x, t)ωj(x)φ(t) +

∫ T

0

∫
Ω

f(x, t)ωj(x)φ(t), ∀l ≥ 1.

Taking l 7−→ +∞ to get

−
∫ T

0

∫
Ω

ut(x, t)ωj(x)φ′(t)−
∫ T

0

∫
Ω

div(AOu(x, t))ωj(x)φ(t)

= −
∫ T

0

∫
Ω

|ut(x, t)|m(x)−2 ut(x, t)ωj(x)φ(t) +

∫ T

0

∫
Ω

f(x, t)ωj(x)φ(t), ∀j ≥ 1,

since, ωj ∈ H1
0 (Ω) ⊂ Lm(.)(Ω), for all j ≥ 1.

Thanks to (2.2.29), this gives∫ T

0

∫
Ω

utt(x, t)ω(x)φ(t)−
∫ T

0

∫
Ω

div(AOu(x, t))ω(x)φ(t)

= −
∫ T

0

∫
Ω

|ut(x, t)|m(x)−2 ut(x, t)ω(x)φ(t) +

∫ T

0

∫
Ω

f(x, t)ω(x)φ(t),

page 24



2.2 Existence and Uniqueness of Local Weak Solution

for all ω ∈ H1
0 (Ω). Consequently,∫ T

0

∫
Ω

utt(x, t)ω(x)φ(t)

=

∫ T

0

∫
Ω

[
div(AOu(x, t))− |ut(x, t)|m(x)−2 ut(x, t) + f(x, t)

]
ω(x)φ(t).

This means utt ∈ L
m(.)
m(.)−1 ([0, T ) , H−1(Ω)) and u solves the following equation

utt − div(AOu) + |ut|m(x)−2 ut = f, in D′(Ω× (0, T )).

So, we have

ut ∈ L∞((0, T ), L2(Ω)) and utt ∈ L
m(.)
m(.)−1 ([0, T ) , H−1(Ω)).

By Lions’s Lemma [27] (see Lemma 1.2, page 7), we deduce that ut ∈ C([0, T ) , H−1(Ω)).
Hence, ut(x, 0) has a meaning, for all x ∈ Ω, with

ult(x, 0) −→ ut(x, 0) in H−1(Ω).

In the other hand, by the definition of ul1, we have

ult(x, 0) = ul1(x) −→ u1(x) in L2(Ω).

Consequently, ut(x, 0) = u1(x). Similary, we can prove that vt(x, 0) = v1(x).
Finaly, we deduce that (u, v) is a unique local solution of (Q).

To prove the existence result for problem (P ), we recall the following elementary
inequalities: ∣∣∣|X|k − |Y |k∣∣∣ ≤ C |X − Y |

(
|X|k−1 + |Y |k−1

)
, (2.2.30)

for some constant C > 0, all k ≥ 1 and all X, Y ∈ R. Also∣∣∣|X|k′ X − |Y |k′ Y ∣∣∣ ≤ C |X − Y |
(
|X|k

′
+ |Y |k

′
)
, (2.2.31)

for some constant C > 0, all k′ ≥ 0 and all X, Y ∈ R.

Theorem 2.2.3. Suppose that the assumptions of Theorem 2.2.2 are fulfilled and
that p, in the coupled terms, satisfies the following conditions on Ω

3 ≤ p− ≤ p (x) ≤ p+ <∞, if n = 1, 2,
p (x) = 3, if n = 3.

(2.2.32)

Then, problem (P ) has a unique weak maximal solution (u, v) (in the sense of Defin-
tion 2.2.1) on [0, T ) , for some T > 0. Moreover, the following alternatives hold:

1. T = +∞,
or

2. T < +∞ and limt→T
(
‖∇u (t)‖2

2 + ‖∇v (t)‖2
2 + ‖ut (t)‖2

2 + ‖vt (t)‖2
2

)
= +∞.
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Proof. EXISTENCE:
Recall that the source terms are defined for all x ∈ Ω and (y, z) ∈ R2 by

f1 (x, y, z) =
∂

∂y
F (x, y, z) and f2 (x, y, z) =

∂

∂z
F (x, y, z) ,

where
F (x, y, z) = a |y + z|p(x)+1 + 2b |yz|

p(x)+1
2 , a, b > 0.

So,
f1(x, y, z) = (p(x) + 1)

[
a |y + z|p(x)−1 (y + z) + by |y|

p(x)−3
2 |z|

p(x)+1
2

]
and

f2(x, y, z) = (p(x) + 1)
[
a |y + z|p(x)−1 (y + z) + bz |z|

p(x)−3
2 |y|

p(x)+1
2

]
.

Let y, z ∈ L∞((0, T ), H1
0 (Ω)). Using Young’s inequality (1.2.2) and the Sobolev

embeddings (Lemma 1.2.20), then f1(y, z) and f2(y, z) are in L2(Ω× (0, T )).
Indeed, for all t ∈ (0, T ), we have∫

Ω

|f1(x, y, z)|2 dx ≤ 2

∫
Ω

(p(x) + 1)2
[
a2 |y + z|2p(x) + b2 |y|p(x)−1 |z|p(x)+1

]
dx

≤ 2(p+ + 1)2

[
a2

∫
Ω

|y + z|2p(x) dx+ b2

∫
Ω

|y|p(x)−1 |z|p(x)+1 dx

]
≤ C0

[∫
Ω

|y + z|2p
+

dx+

∫
Ω

|y + z|2p
−
dx+

∫
Ω

|y|3(p(x)−1) dx+

∫
Ω

|z|
3
2

(p(x)+1) dx

]
,

(2.2.33)

where C0 = 2(p+ + 1)2max {a2, 3b2} > 0. By the embeddings (Lemma 1.2.20) and
the fact that y, z ∈ L∞ ((0, T ), H1

0 (Ω)) , one can obtain the following results:

• If n = 1, 2, then

1 ≤ 3

2
(p− + 1) ≤ 3

2
(p+ + 1) ≤ 2p+ ≤ 3(p+ − 1) <∞,

since 3 ≤ p− ≤ p(x) ≤ p+ <∞. Therefore, estimate (2.2.33) leads to∫
Ω

|f1(x, y, z)|2 dx

≤ C1

[
‖∇(y + z)‖2p+

2 + ‖∇(y + z)‖2p−

2 + ‖∇y‖3(p+−1)
2 + ‖∇y‖3(p−−1)

2

]
+ C1

[
‖∇z‖

3
2

(p++1)

2 + ‖∇z‖
3
2

(p−+1)

2

]
< +∞, C1 = C0Ce. (2.2.34)

• If n = 3, then the Sobolev embeddings used in (2.2.34) take place since

1 ≤ 6 = 2p− = 2p+ ≤ 2n

n− 2
= 6,

1 ≤ 6 =
3

2
(p− + 1) =

3

2
(p+ + 1) ≤ 2n

n− 2
= 6,
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2.2 Existence and Uniqueness of Local Weak Solution

and
1 ≤ 6 = 3(p− − 1) = 3(p+ − 1) ≤ 2n

n− 2
= 6.

Therefore, estimate (2.2.34) is also saitisfied, when n = 3. Consequently, under the
assumption (2.2.32), we have, for all t ∈ (0, T ),∫

Ω

|f1(x, y, z)|2 dx <∞

and, similarly, ∫
Ω

|f2(x, y, z)|2 dx <∞.

Therefore,
f1(y, z), f2(y, z) ∈ L2(Ω× (0, T )).

By virtue of Theorem 2.2.2, there exists a unique (u, v), in the sense of Definition
2.2.1 which solves the following problem

utt − div (A∇u) + |ut|m(x)−2 ut = f1(y, z) in Ω× (0, T ) ,

vtt − div (B∇v) + |vt|r(x)−2 vt = f2(y, z) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T )
u (0) = u0 and ut (0) = u1 in Ω,
v (0) = v0 and vt (0) = v1 in Ω,

(R)

since (u0, u1), (v0, v1) ∈ H1
0 (Ω)× L2(Ω).

Now, let G : WT ×WT :−→ WT ×WT be a map defined by G(y, z) = (u, v), where

WT =
{
w ∈ L∞((0, T ), H1

0 (Ω))/wt ∈ L∞((0, T ), L2(Ω))
}
.

WT is a Banach space with respect to the norm

||w||2WT
= sup

(0,T )

∫
Ω

|∇w|2dx+ sup
(0,T )

∫
Ω

|wt|2dx.

In what follows, our task is to prove that G is a contraction mapping from a bounded
ball B(0, d) into itself, where

B(0, d) =
{

(y, z) ∈ WT ×WT/ ‖(y, z)‖WT0
×WT0

≤ d
}
,

for d > 1 and T0 > 0 to be fixed later.

G : B(0, d) −→ B(0, d) is a map for certain d > 0
Taking (Φ,Ψ) = (ut, vt) in Definition 2.2.1 and integrating each result over (0, t) we
get, for all t ≤ T,

1

2
‖ut‖2

2 −
1

2
‖u1‖2

2 +
1

2

∫
Ω

A∇u.∇udx− 1

2

∫
Ω

A(x, 0)∇u0.∇u0dx

+

∫ t

0

∫
Ω

|ut(x, t)|m(x) ≤
∫ t

0

∫
Ω

utf1(y, z)dxds (2.2.35)
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2.2 Existence and Uniqueness of Local Weak Solution

and

1

2
‖vt‖2

2 −
1

2
‖v1‖2

2 +
1

2

∫
Ω

B∇v.∇vdx− 1

2

∫
Ω

B(x, 0)∇vk0 .∇v0dx

+

∫ t

0

∫
Ω

|vt(x, t)|r(x) ≤
∫ t

0

∫
Ω

vtf2(y, z)dxds, (2.2.36)

by virtue of (2.1.6). Under the assumptions on A and B, inequalities (2.2.35) and
(2.2.36) lead to

1

2

(
‖ut‖2

2 + a0 ‖Ou‖2
2

)
≤ 1

2

(
‖u1‖2

2 + α ‖Ou0‖2
2

)
+

∫ t

0

∫
Ω

utf1(y, z)dxds

and

1

2

(
‖vt‖2

2 + b0 ‖Ov‖2
2

)
≤ 1

2

(
‖v1‖2

2 + β ‖Ov0‖2
2

)
+

∫ t

0

∫
Ω

vtf2(y, z)dxds,

where α = supΩ×(0,T ) A(x, t) and β = supΩ×(0,T ) B(x, t). Consequently,

1

2
(‖ut‖2

2 + ‖Ou‖2
2) ≤ ‖u1‖2

2 + α ‖Ou0‖2
2

2C2

+
1

C2

∫ t

0

∫
Ω

utf1(y, z)dxds

and

1

2
(‖vt‖2

2 + ‖Ov‖2
2) ≤ ‖v1‖2

2 + α ‖Ov0‖2
2

2C3

+
1

C3

∫ t

0

∫
Ω

vtf2(y, z)dxds,

where C2 = min{1, a0} and C3 = min{1, b0}. Therefore,

1

2
‖u‖2

WT
=

1

2
sup
(0,T )

(
‖ut‖2

2 + ‖Ou‖2
2

)
≤ λ0 +

1

C2

sup
(0,T )

∫ t

0

∫
Ω

utf1(y, z)dxds

and

1

2
‖v‖2

WT
=

1

2
sup
(0,T )

(
‖vt‖2

2 + ‖Ov‖2
2

)
≤ β0 +

1

C3

sup
(0,T )

∫ t

0

∫
Ω

vtf2(y, z)dxds,

where, λ0 =
‖u1‖22+α‖Ou0‖22

2C2
and β0 =

‖v1‖22+β‖Ov0‖22
2C3

. The addition of the last two in-
equalities gives

1

2
‖(u, v)‖2

WT×WT
≤ γ0 + C4 sup

(0,T )

∫ t

0

(∫
Ω

utf1(y, z)dx+

∫
Ω

vtf2(y, z)dx

)
ds

≤ γ0 + C4 sup
(0,T )

∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) ds,
(2.2.37)

where γ0 = λ0+β0 (depending on the initial data) and C4 = 1
C2

+ 1
C3

(depending on the
two mtrices A,B). Under the assumption (2.2.32) and applying Young’s inequality
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2.2 Existence and Uniqueness of Local Weak Solution

and the Sobolev embeddings, we obtain, for all t ∈ (0, T ),∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣ ≤ (p+ + 1)

[
a

∫
Ω

|ut| |y + z|p(x) dx+ b

∫
Ω

|ut| . |y|
p(x)−1

2 |z|
p(x)+1

2 dx

]
≤ (p+ + 1)

[
ε(a+ b)

2

∫
Ω

|ut|2 dx+
2a

ε

∫
Ω

|y + z|2p(x) dx+
2b

ε

∫
Ω

|y|p(x)−1 |z|p(x)+1 dx

]
≤ c1

[
ε

2
‖ut‖2

2 + Cε

(∫
Ω

|y + z|2p
+

+

∫
Ω

|y + z|2p
−

+

∫
Ω

|y|3(p(x)−1) +

∫
Ω

|z|
3
2

(p(x)+1)

)]
≤ c2

[
ε ‖ut‖2

2 + ‖Oy‖2p−

2 + ‖Oz‖2p−

2 + ‖Oy‖2p+

2 + ‖Oz‖2p+

2

]
+ c2

[
‖Oy‖3(p−−1)

2 + ‖Oy‖3(p+−1)
2 + ‖Oz‖

3
2

(p−+1)

2 + ‖Oz‖
3
2

(p++1)

2

]
, (2.2.38)

where ε, c1, c2 are positive constants. Likewise, we get∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣ ≤ (p+ + 1)

[
a

∫
Ω

|vt| |y + z|p(x) dx+ b

∫
Ω

|vt| . |z|
p(x)−1

2 |y|
p(x)+1

2 dx

]
≤ c2

[
ε ‖vt‖2

2 + ‖Oy‖2p−

2 + ‖Oz‖2p−

2 + ‖Oy‖2p+

2 + ‖Oz‖2p+

2

]
+ c2

[
‖Oz‖3(p−−1)

2 + ‖Oz‖3(p+−1)
2 + ‖Oy‖

3
2

(p−+1)

2 + ‖Oy‖
3
2

(p++1)

2

]
.

(2.2.39)

Combining (2.2.38) and (2.2.39), it comes that, for all t ∈ (0, T ),∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) ds ≤ εc2

∫ t

0

(
‖ut‖2

2 + ‖vt‖2
2

)
ds

+ c2

∫ t

0

(
2 ‖(y, z)‖2p−

H1
0×H1

0
+ 2 ‖(y, z)‖2p+

H1
0×H1

0
+ ‖(y, z)‖3(p−−1)

H1
0×H1

0
+ ‖(y, z)‖3(p+−1)

H1
0×H1

0

)
ds

+ c2

∫ t

0

(
‖(y, z)‖

3
2

(p−+1)

H1
0×H1

0
+ ‖(y, z)‖

3
2

(p++1)

H1
0×H1

0

)
ds.

Therefore,

sup
(0,T )

∫ t

0

(∣∣∣∣∫
Ω

utf1(y, z)dx

∣∣∣∣+

∣∣∣∣∫
Ω

vtf2(y, z)dx

∣∣∣∣) ds ≤ εTc2 ‖(u, v)‖2
WT×WT

+ 2Tc2

(
‖(y, z)‖2p−

WT×WT
+ ‖(y, z)‖2p+

WT×WT

)
(2.2.40)

+ Tc2

(
‖(y, z)‖3(p−−1)

WT×WT
+ ‖(y, z)‖3(p+−1)

WT×WT
+ ‖(y, z)‖

3
2

(p−+1)

WT×WT
+ ‖(y, z)‖

3
2

(p++1)

WT×WT

)
.

By substituting (2.2.40) into (2.2.37), we obtain, for some c3 > 0,

1

2
‖(u, v)‖2

WT×WT
≤ γ0 + εTc3 ‖(u, v)‖2

WT×WT

+ 2Tc3

(
‖(y, z)‖2p−

WT×WT
+ ‖(y, z)‖2p+

WT×WT

)
(2.2.41)

+ Tc3

(
‖(y, z)‖3(p−−1)

WT×WT
+ ‖(y, z)‖3(p+−1)

WT×WT
+ ‖(y, z)‖

3
2

(p−+1)

WT×WT
+ ‖(y, z)‖

3
2

(p++1)

WT×WT

)
.
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2.2 Existence and Uniqueness of Local Weak Solution

Choosing ε such that εTc3 = 1
4
and recalling that ‖(y, z)‖WT×WT

≤ d for some
d > 1 (large enough), inequality (2.2.41) implies

‖(u, v)‖2
WT×WT

≤ 4γ0 + 8Tc3

(
‖(y, z)‖2p−

WT×WT
+ ‖(y, z)‖2p+

WT×WT

)
+ 4Tc3

(
‖(y, z)‖

3
2

(p−+1)

WT×WT
+ ‖(y, z)‖

3
2

(p++1)

WT×WT

)
+ 4Tc3

(
‖(y, z)‖3(p−−1)

WT×WT
+ ‖(y, z)‖3(p+−1)

WT×WT

)
≤ 4γ0 + Tc4d

3(p+−1), c4 > 0.

Here d3(p+−1) = max
{
d2p+ , d

3
2

(p−+1)
}
, since d > 1 and p+ ≥ 3.

So, if we take d such that d2 >> 4γ0 and T ≤ T0 = d2−4γ0
c4d3(p

+−1)
, we arrive at

4γ0 + Tc4d
3(p+−1) ≤ d2.

It follows that

‖(u, v)‖2
WT×WT

≤ d2.

Therefore, G : B(0, d)→ B(0, d).

G : B(0, d) −→ B(0, d) is a contraction
In what follows, we prove that for T0 (even smaller), G is a contraction mapping.
Let (y1, z1) and (y2, z2) be in B(0, d) and set (u1, v1) = G(y1, z1) and (u2, v2) =
G(y2, z2). Then (u, v) = (u1 − u2, v1 − v2) is a solution of the following problem, in
the sense of Definition 2.2.1,

utt − div (A∇u) + (|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t)
= f1(y1, z1)− f1(y2, z2) in Ω× (0, T ) ,

vtt − div (B∇v) + (|v1t|r(x)−2 v1t − |v2t|r(x)−2 v2t)
= f2(y1, z1)− f2(y2, z2) in Ω× (0, T ) ,
u = v = 0 on ∂Ω× (0, T ) ,
(u (0) , v (0)) = (ut (0) , vt (0)) = (0, 0) in Ω.

(S)

Taking Φ = ut in the first equation of Definition 2.2.1, we obtain, for all t ∈ (0, T ),

d

dt

[
‖ut‖2

2 +

∫
Ω

AOu.Ou

]
−
∫

Ω

A′Ou.Ou+ 2

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
ut

= 2

∫
Ω

ut (f1(y1, z1)− f1(y2, z2)) dx, (2.2.42)

since d
dt

(∫
Ω
AOu.Oudx

)
=
∫

Ω
A′Ou.Oudx+ 2

∫
Ω
AOu.Outdx.

Now, by integrating (2.2.42) over (0, t) and using the initial conditions, we get

‖ut‖2
2 +

∫
Ω

AOu.Oudx−
∫ t

0

∫
Ω

A′Ou.Oudxds

≤ 2

∫ t

0

∫
Ω

ut (f1(y1, z1)− f1(y2, z2)) dxds,
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2.2 Existence and Uniqueness of Local Weak Solution

by virtue of (2.2.7). Under the assumption (2.1.5) and (2.1.6), this gives

‖ut‖2
2 + a0 ‖Ou‖2

2 ≤ 2

∫ t

0

∫
Ω

ut (f1(y1, z1)− f1(y2, z2)) dxds,

for all t ∈ (0, T ). Consequently,

‖u‖2
WT
≤ C sup

(0,T )

∫ t

0

∫
Ω

ut (f1(y1, z1)− f1(y2, z2)) dxds

≤ C sup
(0,T )

∫ t

0

∫
Ω

|ut| |f1(y1, z1)− f1(y2, z2)| dxds, (2.2.43)

where C = 2
min{1,a0} . By repeating the same computations with Ψ = vt, in the second

equation of Definition 2.2.1, we arrive at

‖v‖2
WT
≤ C sup

(0,T )

∫ t

0

∫
Ω

vt (f2(y1, z1)− f2(y2, z2)) dxds

≤ C sup
(0,T )

∫ t

0

∫
Ω

|vt| |f2(y1, z1)− f2(y2, z2)| dxds, (2.2.44)

for all t ∈ (0, T ), where C = 2
min{1,b0} . By exploiting Young’s inequality, estimates

(2.2.43) and (2.2.44) lead to

‖u‖2
WT
≤ εCT ‖u‖2

WT
+ Cε sup

(0,T )

∫ t

0

∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dxds

and

‖v‖2
WT
≤ εCT ‖v‖2

WT
+ Cε sup

(0,T )

∫ t

0

∫
Ω

|f2(y1, z1)− f2(y2, z2)|2 dxds.

By the addition of the last two inequalities and choosing ε small enough, we infer
that

‖(u, v)‖2
WT×WT

≤ Cε sup
(0,T )

∫ t

0

∫
Ω

[
|f1(y1, z1)− f1(y2, z2)|2 + |f2(y1, z1)− f2(y2, z2)|2

]
dxds. (2.2.45)

Now, for all t ∈ (0, T ), we set Y = y1 − y2, Z = z1 − z2 and we estimate∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dx

and ∫
Ω

|f2(y1, z1)− f2(y2, z2)|2 dx.

For this purpose, we recall inequalites (2.2.30) and (2.2.31) to obtain the following
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estimates enjoyed by f1 and f2, respectively, as in [2].

|f1(y1, z1)− f1(y2, z2)|

≤ C4 (|y1 − y2|+ |z1 − z2|)
(
|y1|p(x)−1 + |z1|p(x)−1 + |y2|p(x)−1 + |z2|p(x)−1

)
+ C5 |z1 − z2| . |y1|

p(x)−1
2

(
|z1|

p(x)−1
2 + |z2|

p(x)−1
2

)
+ C5 |y1 − y2| . |z2|

p(x)+1
2

(
|y1|

p(x)−3
2 + |y2|

p(x)−3
2

)
, (2.2.46)

and

|f2(y1, z1)− f2(y2, z2)|

≤ C4 (|y1 − y2|+ |z1 − z2|)
(
|y1|p(x)−1 + |z1|p(x)−1 + |y2|p(x)−1 + |z2|p(x)−1

)
+ C5 |y1 − y2| . |z1|

p(x)−1
2

(
|y1|

p(x)−1
2 + |y2|

p(x)−1
2

)
+ C5 |z1 − z2| . |y2|

p(x)+1
2

(
|z1|

p(x)−3
2 + |z2|

p(x)−3
2

)
, (2.2.47)

for some constants C4, C5 > 0 and for almost all x ∈ Ω and all t ∈ (0, T ). So,∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dx ≤ I1 + I2 + I3 + I4, (2.2.48)

where

I1 = C4

∫
Ω

|y1 − y2|2
(
|y1|2(p(x)−1) + |z1|2(p(x)−1) + |y2|2(p(x)−1) + |z2|2(p(x)−1)

)
dx,

I2 = C4

∫
Ω

|z1 − z2|2
(
|y1|2(p(x)−1) + |z1|2(p(x)−1) + |y2|2(p(x)−1) + |z2|2(p(x)−1)

)
dx,

I3 = C5

∫
Ω

|z1 − z2|2 |y1|p(x)−1
(
|z1|p(x)−1 + |z2|p(x)−1

)
dx

and

I4 = C5

∫
Ω

|y1 − y2|2 |z2|p(x)+1
(
|y1|p(x)−3 + |y2|p(x)−3

)
dx.

By using Hölder’s and Young’s inequalities and the Sobolev embeddings, we get the
following estimate for a typical term in I1 and I2,∫

Ω

|y1 − y2|2 |y1|2(p(x)−1) dx ≤ 2

(∫
Ω

|y1 − y2|6dx
) 1

3
(∫

Ω

|y1|3(p(x)−1)

) 2
3

≤ C||y1 − y2||26

[(∫
Ω

|y1|3(p+−1)dx

) 2
3

+

(∫
Ω

|y1|3(p−−1)dx

) 2
3

]
≤ C||∇(y1 − y2)||22

(
||y1||2(p+−1)

3(p+−1) + ||y1||2(p−−1)

3(p−−1)

)
≤ C||∇Y ||22

(
||∇y1||2(p+−1)

2 + ||∇y1||2(p−−1)
2

)
≤ C||∇Y ||22

(
||(y1, z1)||2(p+−1)

WT×WT
+ ||(y1, z1)||2(p−−1)

WT×WT

)
, (2.2.49)
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since

• 1 ≤ 3(p− − 1) ≤ 3(p+ − 1) <∞, when n = 1, 2.

• 1 ≤ 3(p− − 1) = 3(p+ − 1) = 6 = 2n
n−2

, when n = 3.

Likewise, we obtain∫
Ω

|y1 − y2|2 |z2|2(p(x)−1) dx ≤ C||∇Y ||22
(
||(y2, z2)||2(p+−1)

WT×WT
+ ||(y2, z2)||2(p−−1)

WT×WT

)
.

Therefore,

I1 ≤ 2C||∇Y ||22
(
||(y1, z1)||2(p+−1)

WT×WT
+ ||(y1, z1)||2(p−−1)

WT×WT

)
+ 2C||∇Y ||22

(
||(y2, z2)||2(p+−1)

WT×WT
+ ||(y2, z2)||2(p−−1)

WT×WT

)
and

I2 ≤ 2C||∇Z||22
(
||(y1, z1)||2(p+−1)

WT×WT
+ ||(y1, z1)||2(p−−1)

WT×WT

)
+ 2C||∇Z||22

(
||(y2, z2)||2(p+−1)

WT×WT
+ ||(y2, z2)||2(p−−1)

WT×WT

)
.

But (y1, z1), (y2, z2) ∈ B(0, d), then for all t ∈ (0, T ), we infer

I1 + I2 ≤ Cd2(p+−1)
(
||∇Y ||22 + ||∇Z||22

)
. (2.2.50)

Similarly, a typical terms in I3 can be handled as follows∫
Ω

|z1 − z2|2 |y1|p(x)−1 |z1|p(x)−1 dx ≤ 2

(∫
Ω

|z1 − z2|6dx
) 1

3
(∫

Ω

|y1|
3
2

(p(x)−1)|z1|
3
2

(p(x)−1)

) 2
3

≤ C||z1 − z2||26

[(∫
Ω

|y1|
3
2

(p(x)−1)dx

) 2
3

+

(∫
Ω

|z1|
3
2

(p(x)−1)dx

) 2
3

]
≤ C||∇(z1 − z2)||22

(
||y1||(p

+−1)
3
2

(p+−1)
+ ||y1||(p

−−1)
3
2

(p−−1)
+ ||z1||(p

+−1)
3
2

(p+−1)
+ ||z1||(p

−−1)
3
2

(p−−1)

)
≤ C||∇(z1 − z2)||22

(
||∇y1||(p

+−1)
2 + ||∇y1||(p

−−1)
2 + ||∇z1||(p

+−1)
2 + ||∇z1||(p

−−1)
2

)
≤ 2C||∇Z||22

(
||(y1, z1)||(p

+−1)
WT×WT

+ ||(y1, z1)||(p
−−1)

WT×WT

)
and∫

Ω

|z1 − z2|2 |y1|p(x)−1 |z2|p(x)−1 dx ≤ 2C||∇Z||22
(
||(y1, z1)||(p

+−1)
WT×WT

+ ||(y1, z1)||2(p−−1)
WT×WT

)
+ 2C||∇Z||22

(
||(y2, z2)||(p

+−1)
WT×WT

+ ||(y2, z2)||(p
−−1)

WT×WT

)
,

since

• 1 ≤ 3
2
(p− − 1) ≤ 3

2
(p+ − 1) <∞, when n = 1, 2.

• 1 ≤ 3
2
(p− − 1) = 3

2
(p+ − 1) = 3 = 2n

n−2
, when n = 3.
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2.2 Existence and Uniqueness of Local Weak Solution

Consequently,

I3 ≤ Cdp
+−1||∇Z||22, ∀t ∈ (0, T ), (2.2.51)

since (y1, z1), (y2, z2) ∈ B(0, d) and d > 1.
By using the same arguments, we estimate the terms in I4, as follows:
Case 1: If n = 1, 2, we have 3 ≤ p− ≤ p+ <∞. So,∫

Ω

|y1 − y2|2 |z2|p(x)+1 |y1|p(x)−3 dx

≤ 2

(∫
Ω

|y1 − y2|3dx
) 2

3
(∫

Ω

|z2|3(p(x)+1)|y1|3(p(x)−3)

) 1
3

≤ C||y1 − y2||23

[(∫
Ω

|z2|6(p(x)+1)dx

) 1
3

+

(∫
Ω

|y1|6(p(x)−3)dx

) 1
3

]
≤ C||∇Y ||22

(
||∇z2||2(p++1)

2 + ||∇z2||2(p−+1)
2 + ||∇y1||2(p+−3)

2 + ||∇y1||2(p−−3)
2

)
≤ 2C||∇Y ||22

(
||(y2, z2)||2(p++1)

WT×WT
+ ||(y2, z2)||2(p−+1)

WT×WT

)
+ 2C||∇Y ||22

(
||(y1, z1)||2(p+−3)

WT×WT
+ ||(y1, z1)||2(p−−3)

WT×WT

)
.

Case 2: If n = 3, then p ≡ 3 on Ω. Hence,∫
Ω

|y1 − y2|2 |z2|p(x)+1 |y1|p(x)−3 dx =

∫
Ω

|y1 − y2|2 |z2|4 dx

≤ C

(∫
Ω

|y1 − y2|6 dx
) 1

3
(∫

Ω

|z2|6 dx
) 2

3

≤ C||y1 − y2||26.||z2||46
≤ C||∇Y ||22.||∇z2)||42
≤ C||∇Y ||22.||(y2, z2)||4WT×WT

.

So, for all t ∈ (0, T ), we deduce that

I4 ≤ C||∇Y ||22d2(p++1), (2.2.52)

since (y1, z1), (y2, z2) ∈ B(0, d) and d > 1.

Finally, by substituting (2.2.52), (2.2.51) and (2.2.50) in (2.2.48), we arrive at∫
Ω

|f1(y1, z1)− f1(y2, z2)|2 dx ≤ Cd2(p++1)
(
||∇Y ||22 + ||∇Z||22

)
, (2.2.53)

for all t ∈ (0, T ). Similarly, we get∫
Ω

|f2(y1, z1)− f2(y2, z2)|2 dx ≤ Cd2(p++1)
(
||∇Y ||22 + ||∇Z||22

)
. (2.2.54)
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2.2 Existence and Uniqueness of Local Weak Solution

Now, we replace (2.2.53) and (2.2.54) into (2.2.45) to get

‖(u, v)‖2
WT×WT

≤ Cεd
2(p++1) sup

(0,T )

∫ t

0

(
‖∇Y (s)‖2

2 + ‖∇Z(s)‖2
2

)
ds

≤ Cεd
2(p++1)T ‖(Y, Z)‖2

WT×WT

≤ γT0 ‖(Y, Z)‖2
WT×WT

,

where γ = Cεd
2(p++1).

Therefore, if we take T0 small enough, we get for 0 < k < 1

‖(u, v)‖2
WT×WT

≤ k ‖(Y, Z)‖2
WT×WT

.

Thus,

‖G(y1, z1)−G(y2, z2)‖2
WT×WT

≤ k ‖(y1, z1)− (y2, z2)‖2
WT×WT

.

This proves that G : B(0, d) −→ B(0, d) is a contraction. Then, the Banach-
fixed-point theorem guarantees the existence of a unique (u, v) ∈ B(0, d), such that
G(u, v) = (u, v), which is a local weak solution of (P ).
UNIQUENESS:
Suppose that (P ) has two weak solutions (u1, v1) and (u2, v2) on [0, T ) , in the sense
of Definition 2.2.1. Then, (u, v) = (u1 − u2, v1 − v2) satisfies, for all t ∈ (0, T ),

d

dt

[
‖ut‖2

2 +

∫
Ω

AOu.Ou

]
−
∫

Ω

A′Ou.Ou+ 2

∫
Ω

(
|u1t|m(x)−2 u1t − |u2t|m(x)−2 u2t

)
ut

= 2

∫
Ω

ut (f1(u1, v1)− f1(u2, v2)) dx

and

d

dt

[
‖vt‖2

2 +

∫
Ω

BOv.Ov

]
−
∫

Ω

B′Ov.Ov + 2

∫
Ω

(
|v1t|r(x)−2 v1t − |v2t|r(x)−2 v2t

)
vt

= 2

∫
Ω

vt (f2(u1, v1)− f2(u2, v2)) dx,

by the density of H1
0 (Ω) in L2(Ω) and in fact that

d

dt

(∫
Ω

AOu.Oudx

)
=

∫
Ω

A′Ou.Oudx+ 2

∫
Ω

AOu.Outdx.

We integrate each result over (0, t), with t ≤ T. The addition of the two results yields
(as in (2.2.43) and (2.2.44)),

‖(ut, vt)‖2
2 + ‖(Ou,Ov)‖2

2 ≤ C

∫ t

0

∫
Ω

|ut| |f1(u1, v1)− f1(u2, v2)| dxdt

+ C

∫ t

0

∫
Ω

|vt| |f2(u1, v1)− f2(u2, v2)| dxdt.
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2.3 Blow up of Negative Initial Energy Solution

Under the assumption (2.2.32) and applying similar arguments as in above, we
arrive at

y(t) = ‖(ut, vt)‖2
2 + ‖(Ou,Ov)‖2

2 ≤ Cε

∫ t

0

(
‖(ut(s), vt(s))‖2

2 + ‖(Ou(s),Ov(s))‖2
2

)
ds,

for all t ∈ (0, T ). Gronwall’s lemma leads to

‖(ut, vt)‖2
2 + ‖(Ou,Ov)‖2

2 = 0, for all t ∈ (0, T ).

Thanks to the boundary conditions, we get u = v = 0 on Ω× (0, T ). This prove the
uniqueness of the solution of (P ).
- For the proof of the alternative statement, we use the idea in [14].

Remark 2.2.4. Theorem 2.2.3 is a generalization of the local existence of Agre and
Rammaha [2], which dealt with constant exponents only, to the situation of variable
exponents.

2.2.2 Decreasingness of the Energy

We define the energy functional associated to system (P ) for all t ∈ [0, T ) by

E(t) =
1

2

(
‖ut‖2

2 + ‖vt‖2
2

)
+

1

2

∫
Ω

(A∇u.∇u+B∇v.∇v) dx−
∫

Ω

F (x, u, v) dx,

(2.2.55)

Lemma 2.2.5. The energy functional E is a decreasing function.

Proof. By multiplying the first differential equation in (P) by ut, the second one by vt,
integrating the two equations over Ω, adding the two results and using the boundary
condition in (P ), we get

E
′
(t) = −

∫
Ω

|ut|m(x) dx−
∫

Ω

|vt|r(x) dx+
1

2

∫
Ω

(
A
′∇u.∇u+B

′∇v.∇v
)
dx

≤ 0, (2.2.56)

by virtue of (2.1.6).

2.3 Blow up of Negative Initial Energy Solution
The purpose of this Section is to show that any solution (u, v) of problem (P ) blows
up in finite time, i.e, there exists T ∗ > 0, such that

limt→T ∗
(
‖∇u (t)‖2

2 + ‖∇v (t)‖2
2 + ‖ut (t)‖2

2 + ‖vt (t)‖2
2

)
= +∞.

under the following conditions

E(0) < 0 and max {m+ − 1, r+ − 1} < p−,
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2.3 Blow up of Negative Initial Energy Solution

in addition to the assumptions of Theorem 2.2.3. First, we state and prove some
preliminary results.

2.3.1 Preliminary Results

As in Komornik [22], we introduce

Ω+ = {x ∈ Ω / |u (x, t)| ≥ 1} and Ω− = {x ∈ Ω / |u (x, t)| < 1} ,

and we define H by
H (t) = −E (t) , for all t ∈ [0, T ) . (2.3.1)

From the definition of E and its decreasingness (2.2.56), it follows that

H (0) ≤ H (t) ≤
∫

Ω

F (x, u, v) dx, for all t ∈ [0, T ) .

By (1.3.1) and since E(0) < 0, then there exists C2 > 0 such that

0 < H (0) ≤ H (t) ≤ C2 (ρ (u) + ρ (v)) , for all t ∈ [0, T ) , (2.3.2)

where
ρ (u) =

∫
Ω

|u |
p(x)+1

dx and ρ (v) =

∫
Ω

|v |
p(x)+1

dx.

Lemma 2.3.1. There exists C3 > 0 such that

‖u‖
p−+1

p−+1
+ ‖v‖

p−+1

p−+1
≤ C3 (ρ (u) + ρ (v)) . (2.3.3)

Proof. Since p− ≤ p (.) ≤ p+, one has

ρ (u) =

∫
Ω+

|u|
p(x)+1

dx +

∫
Ω−

|u|
p(x)+1

dx

≥
∫

Ω+

|u|p
−+1 dx +

∫
Ω−

|u|p
++1 dx

≥
∫

Ω+

|u|p
−+1 dx + c1

(∫
Ω−

|u|p
−+1 dx

) p++1

p−+1

, c1 > 0,

which implies

ρ (u) ≥
∫

Ω+

|u|p
−+1 dx and

(
ρ (u)

c1

) p−+1

p++1

≥
∫

Ω−

|u|p
−+1 dx.
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2.3 Blow up of Negative Initial Energy Solution

By addition, it results

‖u‖
p−+1

p−+1
≤ ρ (u) + c2 (ρ (u))

p−+1

p++1 , c2 > 0

≤ ρ (u) + ρ (v) + c2 (ρ (u) + ρ (v))
p−+1

p++1

= (ρ (u) + ρ (v))

[
1 + c2 (ρ (u) + ρ (v))

p−− p+

p++1

]
.

But, from (2.3.2), we have

ρ (u) + ρ (v) ≥ H (0) /C2.

Therefore,

‖u‖
p−+1

p−+1
≤ (ρ (u) + ρ (v))

[
1 + c2 (H (0) /C2)

p−− p+

p++1

]
.

So,
‖u‖

p−+1

p−+1
≤ c3 (ρ (u) + ρ (v)) , c3 > 0.

Similarly, we find
‖v‖

p−+1

p−+1
≤ c3 (ρ (u) + ρ (v)) .

Thus, (2.3.3) is verified.

Corollary 2.3.2. There exist two constants C4, C5 > 0 such that∫
Ω

|u|m(x) dx ≤ C4

[
(ρ (u) + ρ (v))

m+

p−+1 + (ρ (u) + ρ (v))
m−

p−+1

]
, (2.3.4)

and ∫
Ω

|v|r(x) dx ≤ C5

[
(ρ (u) + ρ (v))

r+

p−+1 + (ρ (u) + ρ (v))
r−

p−+1

]
. (2.3.5)

Proof. Since p− ≥ max {m+, r+}, it follows that∫
Ω

|u|m(x) dx ≤
∫

Ω+

|u|m
+

dx +

∫
Ω−

|u|m
−
dx

≤ c1

(∫
Ω+

|u|p
−+1 dx

) m+

p−+1

+ c1

(∫
Ω−

|u|p
−+1 dx

) m−

p−+1

≤ c1

(
‖u‖

m+

p−+1
+ ‖u‖

m−

p−+1

)
, c1 > 0.

By recalling Lemma 2.3.1, we arrive at∫
Ω

|u|m(x) dx ≤ C4

[
(ρ (u) + ρ (v))

m+

p−+1 + (ρ (u) + ρ (v))
m−

p−+1

]
, C4 > 0.
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2.3 Blow up of Negative Initial Energy Solution

Likewise, we obtain∫
Ω

|v|r(x) dx ≤ C5

[
(ρ (u) + ρ (v))

r+

p−+1 + (ρ (u) + ρ (v))
r−

p−+1

]
, C5 > 0.

2.3.2 Blow up Result

In this subsection, we state and prove our main result.

Theorem 2.3.3. Suppose that the above assumptions hold. Then, any solution of
the system (P ) blows up in finite time.

Proof. For small ε > 0 to be fixed later, we define the following auxiliary functional

G (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt) dx, for all t ∈ [0, T ) ,

where

0 < σ ≤ min

{
p− −m+ + 1

(p− + 1) (m+ − 1)
,

p− − r+ + 1

(p− + 1) (r+ − 1)
,

p− − 1

2 (p− + 1)

}
. (2.3.6)

Our purpose is to show that G satisfies a differential inequality which leads to a
blow up in finite time. It will be carried out in the following four steps.
Step 1: By using the two differential equations in (P ) and Green’s formula, we
obtain for all t ∈ (0, T ),

G′ (t) = (1− σ)H−σ (t)H ′ (t) + ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ ε

∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx− ε
∫

Ω

(A∇u.∇u+B∇v.∇v) dx

− ε
∫

Ω

(
|ut|m(x)−2 utu+ |vt|r(x)−2 vtv

)
dx. (2.3.7)

Invoking Lemma 1.3.5, we get∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx =

∫
Ω

(p (x) + 1)F (x, u, v) dx

≥
(
p− + 1

) ∫
Ω

F (x, u, v) dx. (2.3.8)

The definitions of E and H lead to∫
Ω

(A∇u.∇u+B∇v.∇v) dx = 2

∫
Ω

F (x, u, v) dx− (‖ut‖2
2 +‖vt‖2

2)−2H (t) . (2.3.9)
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2.3 Blow up of Negative Initial Energy Solution

By inserting (2.3.9) and (2.3.8) in (2.3.7), it results

G′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ 2εH (t)

+ ε
(
p− − 1

) ∫
Ω

F (x, u, v) dx

− ε
∫

Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx, (2.3.10)

which gives

G′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ εc1

∫
Ω

F (x, u, v) dx

+ 2εH (t)− ε
∫

Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx, (2.3.11)

where c1 = p− − 1 > 0, since p− > 1.
Step 2: In this step, we estimate the last two terms in the right hand-side of (2.3.11),
which we note by

I1 :=

∫
Ω

|u| |ut|m(x)−1 dx and I2 :=

∫
Ω

|v| |vt|r(x)−1 dx.

Applying the following Young inequality

XY ≤ δλ

λ
Xλ +

δ−β

β
Y β, for all X, Y ≥ 0, δ > 0 and

1

λ
+

1

β
= 1,

with
X = |u| , Y = |ut|m(x)−1 , λ = m (x) , β =

m (x)

m (x)− 1
and δ > 0,

we obtain

I1 ≤
∫

Ω

δm(x)

m (x)
|u|m(x) dx +

∫
Ω

m (x)− 1

m (x)
δ−m(x)/(m(x)−1) |ut|m(x) dx. (2.3.12)

By taking
δ =

[
KH−σ (t)

] 1−m(x)
m(x) ,

where K is a large constant to be chosen later, we arrive at

I1 ≤
K1−m−

m−

∫
Ω

[H (t)]σ(m(x)−1) |u|m(x) dx +
m+ − 1

m−
KH−σ (t)

∫
Ω

|ut|m(x) dx. (2.3.13)

Using (2.2.56), we have

H ′ (t) =

∫
Ω

|ut|m(x) dx+

∫
Ω

|vt|r(x) dx− 1

2

∫
Ω

(
A
′∇u.∇u+B

′∇v.∇v
)
dx

≥
∫

Ω

|ut|m(x) dx, (2.3.14)

by virtue of (2.1.6). On the other hand, we have H (t) ≥ H (0) > 0.
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2.3 Blow up of Negative Initial Energy Solution

Therefore,∫
Ω

[H (t)]σ(m(x)−1) |u|m(x) dx =

∫
Ω

[
H (t)

H (0)

]σ(m(x)−1)

[H (0)]σ(m(x)−1) |u|m(x) dx

≤ c2 [H (t)]σ(m
+−1)

∫
Ω

[H (0)]σ(m(x)−1) |u|m(x) dx, c2 > 0,

since m (x) ≤ m+. But for all x ∈ Ω, we have

[H (0)]σ(m(x)−1) ≤ c3, c3 > 0.

So, ∫
Ω

[H (t)]
σ(m(x)−1)

|u|m(x) dx ≤ c4 [H (t)]σ(m
+−1)

∫
Ω

|u|m(x) dx, c4 > 0. (2.3.15)

Replace (2.3.15) and (2.3.14) in (2.3.13) to find

I1 ≤ c4
K1−m−

m−
[H (t)]σ(m

+−1)
∫

Ω

|u|m(x) dx +
m+ − 1

m−
KH−σ (t)H ′ (t) . (2.3.16)

Likewise, we can prove that

I2 ≤ c5
K1−r−

r−
[H (t)]σ(r

+−1)
∫

Ω

|v|r(x) dx +
r+ − 1

r−
KH−σ (t)H ′ (t) , c5 > 0. (2.3.17)

Also, from (2.3.2), we obtain

[H (t)]σ(m
+−1) ≤ c6 (ρ (u) + ρ (v))

σ(m+−1)
, c6 > 0.

Combining with (2.3.4), we get

[H (t)]σ(m
+−1)

∫
Ω

|u|m(x) dx ≤ c7 (ρ (u) + ρ (v))
σ(m+−1)+ m+

p−+1

+ c7 (ρ (u) + ρ (v))
σ(m+−1)+ m−

p−+1

, c7 > 0. (2.3.18)

Now, under the condition (2.3.6) and using the following algebraic inequality

zτ ≤ z + 1 ≤
(

1 +
1

a

)
(z + a) , for all z ≥ 0, 0 < τ ≤ 1 and a > 0, (2.3.19)

with
z = ρ (u) + ρ (v) , a = H (0) , τ = σ

(
m+ − 1

)
+

m+

p− + 1
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2.3 Blow up of Negative Initial Energy Solution

and then with τ = σ (m+ − 1) + m−

p−+1
, respectively, we obtain

(ρ (u) + ρ (v))
σ(m+−1)+ m+

p−+1 ≤
[
1 +

1

H (0)

]
(ρ (u) + ρ (v) +H (0))

≤ γ (ρ (u) + ρ (v) +H (t)) (2.3.20)

and
(ρ (u) + ρ (v))

σ(m+−1)+ m−
p−+1 ≤ γ (ρ (u) + ρ (v) +H (t)) , (2.3.21)

where γ = 1 + 1
H(0)

. By replacing (2.3.21) and (2.3.20) into (2.3.18), it follows

[H (t)]
σ(m+−1)

∫
Ω

|u|m(x) dx ≤ c8 (ρ (u) + ρ (v) +H (t)) , c8 > 0. (2.3.22)

Similar computations lead to

[H (t)]
σ(r+−1)

∫
Ω

|v|r(x) dx ≤ c9 (ρ (u) + ρ (v) +H (t)) , c9 > 0. (2.3.23)

Incerting (2.3.22) into (2.3.16), we get

I1 ≤ c10
K1−m−

m−
(ρ (u) + ρ (v) +H (t)) +

m+ − 1

m−
KH−σ (t)H ′ (t) , c10 > 0. (2.3.24)

and (2.3.23) into (2.3.17) to obtain

I2 ≤ c11
K1−r−

r−
(ρ (u) + ρ (v) +H (t)) +

r+ − 1

r−
KH−σ (t)H ′ (t) , c11 > 0. (2.3.25)

Step 3: Now, we estimate G′.
By substituting (2.3.25) and (2.3.24) into (2.3.11), it yields

G′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ 2εH (t)

+ εc12 (ρ (u) + ρ (v))− εc10
K1−m−

m−
[ρ (u) + ρ (v) +H (t)]

− εc11
K1−r−

r−
[ρ (u) + ρ (v) +H (t)] , c12 > 0. (2.3.26)

where M = K
(
m+−1
m−

+ r+−1
r−

)
. Thus,

G′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ ε

(
2− K1−m−

m−
c10 −

K1−r−

r−
c11

)
H (t)

+ ε

(
c12 −

K1−m−

m−
c10 −

K1−r−

r−
c11

)
(ρ (u) + ρ (v)) . (2.3.27)
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For large value of K, we can find c13 > 0 such that

G′ (t) ≥ (1− σ − εM)H−σ (t)H ′ (t) + εc13

(
‖ut‖2

2 + ‖vt‖2
2 +H(t) + ρ(u) + ρ(v)

)
.

(2.3.28)
Once K is fixed (hence M), we pick ε small enough so that

1− σ − εM ≥ 0 and G (0) = H1−σ (0) + ε

∫
Ω

(u0u1 + v0v1) dx > 0.

On the other hand, from Lemma 2.2.5, we have H ′ (t) ≥ 0. Hence, there exists Υ > 0
such that

G′ (t) ≥ εΥ
(
H (t) + ‖ut‖2

2 + ‖vt‖2
2 + ρ (u) + ρ (v)

)
. (2.3.29)

Therefore,
G (t) ≥ G (0) > 0, for all t ∈ [0, T ) .

Step 4: The completion of the proof.
By the definition of G, we have

G
1/(1−σ)

(t) ≤
(
H

1−σ
(t) + ε

∫
Ω

|uut + vvt| dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(
H (t) +

(
ε

∫
Ω

(|uut|+ |vvt|) dx
)1/(1−σ)

)

≤ c14

(
H (t) +

(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

)
, c14 > 0, (2.3.30)

since,

(X + Y )δ ≤ 2δ−1
(
Xδ + Y δ

)
, for all X, Y ≥ 0 and δ > 1. (2.3.31)

Also, we have(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ 2
σ/(1−σ)

(∫
Ω

|u| |ut| dx
)1/(1−σ)

+ 2
σ/(1−σ)

(∫
Ω

|v| |vt| dx
)1/(1−σ)

. (2.3.32)

Since p− > 1, Hölder’s and Young’s inequalities give(∫
Ω

|u| |ut| dx
)1/(1−σ)

≤ ‖u‖1/(1−σ)
2 ‖ut‖1/(1−σ)

2

≤ c15 ‖u‖1/(1−σ)

p−+1 ‖ut‖1/(1−σ)
2 , c15 > 0

≤ c16

(
‖u‖µ/(1−σ)

p−+1 + ‖ut‖β/(1−σ)
2

)
, c16 > 0, (2.3.33)

where 1
µ

+ 1
β

= 1. If we take β = 2 (1− σ), we get µ/ (1− σ) = 2/ (1− 2σ).
Then, (∫

Ω

|u| |ut| dx
)1/(1−σ)

≤ c16

(
‖u‖

2/(1−2σ)

p−+1 + ‖ut‖
2

2

)
. (2.3.34)
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From Lemma 2.3.1, estimate (2.3.34) leads to(∫
Ω

|u| |ut| dx
)1/(1−σ)

≤ c17

(
(ρ (u) + ρ (v))τ + ‖ut‖2

2

)
,

where c17 > 0 and τ = 2/ (p− + 1) (1− 2σ) . Again, by using (2.3.6) and (2.3.19), we
obtain(∫

Ω

|u| |ut| dx
)1/(1−σ)

≤ c18

(
ρ (u) + ρ (v) +H (t) + ‖ut‖

2

2

)
, c18 > 0, (2.3.35)

since τ ≤ 1.
Similarly,(∫

Ω

|v| |vt| dx
)1/(1−σ)

≤ c18

(
ρ (v) + ρ (v) +H (t) + ‖vt‖

2

2

)
. (2.3.36)

By substituting (2.3.36) and (2.3.35) into (2.3.32), it results(∫
Ω

(|u| |ut|+ |v| |vt|) dx
)1/(1−σ)

≤ c19

(
ρ (u) + ρ (v) + ‖ut‖

2

2 + ‖vt‖
2

2 +H (t)
)
, c19 > 0.

Hence, inequality (2.3.30) becomes

G
1/(1−σ)

(t) ≤ c20

(
ρ (u) + ρ (v) +H (t) + ‖ut‖

2

2 + ‖vt‖
2

2

)
, c20 > 0. (2.3.37)

By combining (2.3.37) and (2.3.29), we obtain

G′ (t) ≥ CG
1/(1−σ)

(t) , for all t ∈ [0, T ) , C > 0.

Therefore, by virtue of Lemma 1.3.4, the solution (u, v) of system (P ) blows up in a
finite time.

2.4 Blow up of Solution with Positive Initial Data
In this section, we discuss the blow up of certain solutions of problem (P ) , with pos-
itive initial energy, paying more attention to the difficulties caused by the variable
exponents m (.) , r (.) and p (.). This section consists of three subsections. In the first
one, we give some preliminary results. Subsection 2 is devoted to the statement and
the proof of the blow-up theorem. In the last subsection, we present two numerical
examples to illustrate our theoretical findings.

ASSUMPTIONS:

As in Section 2.3, we suppose that the conditions of Theorem 2.2.3 are fulfilled and
that the source term, in each differential equation of system (P ), dominates the
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2.4 Blow up of Solution with Positive Initial Data

damping; namely, we require that

max
{
m+ − 1, r+ − 1

}
< p−. (2.4.1)

To obtain the finite time blow up result for system (P ) , we set

α1 =
(
k
(
p− + 1

)) 1
1−p− , E1 =

(
1

2
− 1

p− + 1

)
α2

1, (2.4.2)

where

k =

(
a2

p−+1
2 + 2b

)(
B2
∗
c0

) p−+1
2

, c0 = min{a0, b0} > 0

and B∗ is the best constant of the Sobolev embedding H1
0 (Ω) ↪→ L

p(.)+1
(Ω), and we

derive the following results.

2.4.1 Preliminary Results

Lemma 2.4.1. Assume that
0 ≤ E (0) < E1 (2.4.3)

and

α1 <

(∫
Ω

(A∇u0.∇u0 +B∇v0.∇v0) dx

)1/2

≤
(
c0

2B2
∗

)1/2

.

Then, there exists α2 > α1 such that

α2 ≤
(∫

Ω

(A∇u.∇u+B∇v.∇v) dx

)1/2

, for all t ∈ [0, T ) . (2.4.4)

Proof. From the definition of the energy, it results that

E (t) ≥ 1

2

∫
Ω

(A∇u.∇u+B∇v.∇v) dx−
∫

Ω

F (x, u, v) dx.

If we set

α =

(∫
Ω

(A∇u.∇u+B∇v.∇v) dx

)1/2

(2.4.5)

then
E (t) ≥ 1

2
α2 −

∫
Ω

F (x, u, v) dx. (2.4.6)

From (2.1.5), we have

‖∇u‖2
2 + ‖∇v‖2

2 ≤
∫

Ω
(A∇u.∇u+B∇v.∇v) dx

c0

.

So
‖∇u‖2

2 + ‖∇v‖2
2 ≤

α2

c0

. (2.4.7)
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2.4 Blow up of Solution with Positive Initial Data

On the other hand, from the definition of F, we have∫
Ω

F (x, u, v) = a

∫
Ω

|u+ v|p(x)+1 dx+ 2b

∫
Ω

|uv|
p(x)+1

2 dx.

Invoking Lemma 1.2.9, we obtain∫
Ω

F (x, u, v) ≤ amax

{
‖u+ v‖

p−+1

p(.)+1
, ‖u+ v‖

p++1

p(.)+1

}
+ 2bmax

{
‖uv‖

p−+1
2

p(.)+1
2

, ‖uv‖
p++1

2

p(.)+1
2

}
. (2.4.8)

The embedding Theorem 1.2.20 and (2.3.31) lead to

‖u+ v‖
p(.)+1

≤ B∗ ‖∇ (u+ v)‖
2

≤ B∗
[
(‖∇u‖2 + ‖∇v‖2)2]1/2

≤ B∗

[
2
(
‖∇u‖

2

2
+ ‖∇v‖2

2

)]1/2

.

Using (2.4.7), this gives

‖u+ v‖
p(.)+1

≤
(

2B2
∗α

2

c0

)1/2

.

Consequently,

‖u+ v‖
p−+1

p(.)+1
≤
(

2B2
∗α

2

c0

) p−+1
2

and ‖u+ v‖
p++1

p(.)+1
≤
(

2B2
∗α

2

c0

) p++1
2

.

Thus

max

{
‖u+ v‖

p−+1

p(.)+1
, ‖u+ v‖

p++1

p(.)+1

}
≤ max


(

2B2
∗α

2

c0

) p−+1
2

,

(
2B2
∗α

2

c0

) p++1
2

 .

(2.4.9)
Similarly, Hölder’s (1.2.3) and Young’s inequalities and the embedding theorem give

‖uv‖
p(.)+1

2

≤ 2 ‖u‖p(.)+1 ‖v‖p(.)+1

≤ ‖u‖2
p(.)+1 + ‖v‖2

p(.)+1

≤ B2
∗
(
‖∇u‖2

2 + ‖∇v‖2
2

)
.

Again, by (2.4.7) we arrive at

‖uv‖
p(.)+1

2

≤ B2
∗α

2

c0

.
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Then,

‖uv‖
p−+1

2

p(.)+1
2

≤
(
B2
∗α

2

c0

) p−+1

2

and ‖uv‖
p++1

2

p(.)+1
2

≤
(
B2
∗α

2

c0

) p++1

2

.

So,

max

{
‖uv‖

p−+1
2

p(.)+1
2

, ‖uv‖
p++1

2

p(.)+1
2

}
≤ max


(
B2
∗α

2

c0

) p−+1

2

,

(
B2
∗α

2

c0

) p++1

2

 . (2.4.10)

Replacing (2.4.9) and (2.4.10) in (2.4.8), it comes

∫
Ω

F (x, u, v) ≤ amax


(

2B2
∗α

2

c0

) p−+1
2

,

(
2B2
∗α

2

c0

) p++1
2


+ 2bmax


(
B2
∗α

2

c0

) p−+1
2

,

(
B2
∗α

2

c0

) p++1
2

 . (2.4.11)

Now, by inserting (2.4.11) into (2.4.6), we obtain

E (t) ≥ h (α) , for all α ≥ 0, (2.4.12)

where

h (α) :=
1

2
α2 − amax


(

2B2
∗α

2

c0

) p−+1
2

,

(
2B2
∗α

2

c0

) p++1
2


− 2bmax


(
B2
∗α

2

c0

) p−+1
2

,

(
B2
∗α

2

c0

) p++1
2

 .

For α in
[
0,
(

c0
2B2
∗

)1/2
]
, one can easily check that

B2
∗α

2

c0

≤ 2B2
∗α

2

c0

≤ 1.

Consequently, we have

(
2B2
∗α

2

c0

) p−+1
2

≥
(

2B2
∗α

2

c0

) p++1
2

and
(
B2
∗α

2

c0

) p−+1
2

≥
(
B2
∗α

2

c0

) p++1
2

.

Thus, inequality (2.4.12) leads to

E (t) ≥ 1

2
α2 −

(
a2

p−+1
2 + 2b

)(
B2
∗
c0

) p−+1
2

α
p−+1

.
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That is

E (t) ≥ g (α) , for all α ∈

[
0,

(
c0

2B2
∗

)1/2
]
, (2.4.13)

where
g(α) =

1

2
α2 − kαp

−+1

.

It is easy to verify that g is strictly increasing on [0, α1) and strictly decreasing on
[α1,+∞). Therefore, since

E (0) < E1 and E1 = g (α1) ,

we can find α2 > α1 such that g (α2) = E (0). But,

α0 =

(∫
Ω

(A∇u0.∇u0 +B∇v0.∇v0) dx

)1/2

∈

[
α1,

(
c0

2B2
∗

)1/2
]
,

then by (2.4.13), we get
g(α2) = E(0) ≥ g(α0).

This implies that α0 ≥ α2. Consequently α2 ∈ (α1,
(

c0
2B2
∗

)1/2

].

To establish (2.4.4), we suppose on the contrary that(∫
Ω

(A∇u (., t∗) .∇u (., t∗) +B∇v (., t∗) .∇v (., t∗)) dx

)1/2

< α2,

for some t∗ ∈ [0, T ) . By the continuity of
(∫

Ω
A∇u.∇u+B∇v.∇vdx

)1/2 and since
α2 > α1, we can choose t∗ such that

[∫
Ω

(A∇u (., t∗) .∇u (., t∗) +B∇v (., t∗) .∇v (., t∗)) dx

]1/2

> α1.

The decreasingness of g on
[
α1,
(

c0
2B2
∗

)1/2
]
and the inequality (2.4.13) imply that

E (t∗) ≥ g

([∫
Ω

(A∇u (., t∗) .∇u (., t∗) +B∇v (., t∗) .∇v (., t∗)) dx

]1/2
)

> g (α2) = E (0) .

This is impossible since E (t) ≤ E (0) for all t ∈ [0.T ). Thus, inequality (2.4.4) is
established.

Now, we set
H (t) = E1 − E (t) , for all t ∈ [0, T ) (2.4.14)

and present the following lemma.
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Lemma 2.4.2. We have

0 < H (0) ≤ H (t) ≤
∫

Ω

F (x, u, v) dx, for all t ∈ [0, T ) . (2.4.15)

and ∫
Ω

F (x, u, v) dx ≥ kα
p−+1

2 . (2.4.16)

Proof. From Lemma 2.2.5 and inequality (2.4.3), we have

0 < E1 − E (0) = H (0) ≤ H (t) (2.4.17)

and by (2.4.6), we infer

H (t) ≤ E1 −
1

2
α2 +

∫
Ω

F (x, u, v) dx.

Since E1 = g(α1) and α ≥ α2 > α1, then

H (t) ≤
(
g (α1)− 1

2
α2

1

)
+

∫
Ω

F (x, u, v) dx

≤ −kαp
−+1

1 +

∫
Ω

F (x, u, v) dx ≤
∫

Ω

F (x, u, v) dx.

This prove the first inequality.
To prove the second estimate, we use (2.4.6) and the decreasingness of g to get

E (0) ≥ E (t) ≥ 1

2
α2 −

∫
Ω

F (x, u, v) dx.

Consequently, ∫
Ω

F (x, u, v) dx ≥ 1

2
α2 − E (0) .

But E (0) = g(α2) and α ≥ α2, so∫
Ω

F (x, u, v) dx >
1

2
α2

2 − g (α2) = kαp
−+1

2 .

Remark 2.4.3. We note that Lemma 2.3.1 and Corollary 2.3.2 remain valid in this
case.

Now, we state and prove our main result.

2.4.2 Blow up Result

Theorem 2.4.4. Assume that the assumptions of Lemma 2.4.1 hold. Then, any
solution of system (P ) blows up in finite time.
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Proof. We recall that the auxiliary functional is given by

G (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt) dx, for all t ∈ [0, T ) ,

where ε > 0 is a constant to be fixed later and

0 < σ ≤ min

{
p− −m+ + 1

(p− + 1) (m+ − 1)
,

p− − r+ + 1

(p− + 1) (r+ − 1)
,

p− − 1

2 (p− + 1)

}
. (2.4.18)

Our goal is to show that G satisfies the conditions in Lemma 1.3.4.
For all t ∈ [0, T ), we have

G′ (t) = (1− σ)H−σ (t)H ′ (t) + ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ ε

∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx− ε
∫

Ω

(A∇u.∇u+B∇v.∇v) dx

− ε
∫

Ω

(
|ut|m(x)−2 utu+ |vt|r(x)−2 vtv

)
dx. (2.4.19)

By using inequality (1.3.2), it comes∫
Ω

(uf1 (x, u, v) + vf2 (x, u, v)) dx =

∫
Ω

(p (x) + 1)F (x, u, v) dx

≥
(
p− + 1

) ∫
Ω

F (x, u, v) dx. (2.4.20)

By the definitions of H and E, we obtain∫
Ω

(A∇u.∇u+B∇v.∇v) dx = 2

∫
Ω

F (x, u, v) dx− ‖ut‖2
2 − ‖vt‖

2
2 + 2E1 − 2H (t) .

(2.4.21)
If we insert (2.4.21) and (2.4.20) in (2.4.19), it results

G′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ 2εH (t)

− 2εE1 + ε
(
p− − 1

) ∫
Ω

F (x, u, v) dx

− ε
∫

Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx. (2.4.22)

Using (2.4.16), we get

E1 ≤
(
kαp

−+1
2

)−1

E1

∫
Ω

F (x, u, v) dx.

Hence, (2.4.22) becomes

G′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + 2ε
(
‖ut‖2

2 + ‖vt‖2
2

)
+ εc1

∫
Ω

F (x, u, v) dx

+ 2εH (t)− ε
∫

Ω

(
|u| |ut|m(x)−1 + |v| |vt|r(x)−1

)
dx,
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where c1 = p− − 1− 2
(
kαp

−+1
2

)−1

E1 > 0, since α2 > α1.

By repeating the Steps (2,3 and 4), of the proof of Theorem 2.3.3, we arrive at

G′ (t) ≥ CG
1/(1−σ)

(t) , for all t ∈ [0, T ) ,

where C > 0. By invoking Lemma 1.3.4, we deduce that the solution (u, v) of system
(P ) blows up in a finite time T ∗ > 0.

2.4.3 Numerical Tests

In this subsection, some numerical experiments have been performed to illustrate the
theoretical results in Theorem 2.4.4, where we have used the Free Fem++ software
and Matlab. We solve the system (P) under specific initial data and Dirichlet bound-
ary conditions. We exploit a numerical scheme based on the finite element method
in space and the Newmark method in time [54, 55].
We consider problem (P) in two space-dimensions and take the functions m, r and p
fulfilling the assumptions (2.1.1), (2.1.2) and (2.2.32).
Precisely, we have

m(x, y) = 2 +
1

1 + x2
,

r(x, y) = 2 +
1

1 + y2

and
p(x, y) = 3 +

2

1 + x2 + y2

and the source terms are given by (2.1.3) and (2.1.4) with a = b = 1. Whereas, the
matrices A and B are given as follows

A =
(
1 + e−t

)( 2 1
0 1

)
and

B =

(
1 +

1

1 + t

)(
3 0
1 2

)
.
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Test 1: For the first test, we consider a circular domain

Ω1 =
{

(x, y)/x2 + y2 < 1
}

with a triangulation discretization (see the mesh-grid in Figure 2.1) which consists of
281 triangles and 162 degrees of freedoms [44] and use the following initial conditions:

u0(x, y) = 2(1− x2 − y2),

v0(x, y) = 3(1− x2 − y2)

and
u1 = v1 = 0.

We run our code with a time step ∆t = 10−3, which is small enough to catch the
blow-up behavior.

Figure 2.1: Uniform mesh grid of Ω1.
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2.4 Blow up of Solution with Positive Initial Data

(a) t = 0

(b) t = 0.02

(c) t = 0.023

(d) t = 0.024

Figure 2.2: The numerical results of Test 1 at different times.

Figure 2.2 shows the approximate numerical results of the solution (u, v) at dif-
ferent time iterations t = 0, t = 0.02, t = 0.023 and t = 0.024, where the left column
shows the approximate values of u and the right column shows the approximate values
of v. Notice that the blow-up is occurring at instant t = 0.024.

Figure 2.3 presents the numerical values of the functional H defined by (2.4.14)
during the time iterations. It shows the blow-up of the energy of the system (P).
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Figure 2.3: Test 1: The blow-up of H in finite time.

Test 2: For the second test, we consider an elliptical domain

Ω2 =

{
(x, y)/

x2

4
+ y2 < 1

}
with a triangulation discretization (see the mesh-grid in Figure 2.4) which consists of
311 triangles and 180 degrees of freedoms [44] and take the following initial conditions:

u0(x, y) = 2(1− x2

4
− y2), v0(x, y) = 3(1− x2

4
− y2) and u1 = v1 = 0.

We run our code with a time step ∆t = 5 · 10−4, which is small enough to catch the
blow-up behavior.

In Figure 2.5, we show the approximate numerical results of the solution (u, v) at
different time iterations t = 0, t = 0.02, t = 0.0205 and t = 0.021, where the left col-
umn shows the approximate values of u and the right column shows the approximate
values of v. Notice that the blow-up takes place at instant t = 0.021.

Figure 2.4: Uniform mesh grid of Ω2.
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(a) t = 0

(b) t = 0.02

(c) t = 0.023

(d) t = 0.024

Figure 2.5: The numerical results of Test 2 at different times.

Figure 2.6: Test 2: The blow-up of H in finite time.
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2.5 Global Existence and Decay Rates of Solution

For Test 2, the numerical values of the functional H are presented in Figure 2.6.
Observe the blow-up of the function H from t = 0.02.

2.5 Global Existence and Decay Rates of Solution
Our goal in this section is to establish the global existence and the decay rate of
solution of system (P ) , under appropriate conditions on the initial data. In subsection
1, we state and prove a global existence theorem, for initial data in certain stable set.
Second, we prove that the decay estimates of the energy solution are exponential or
polynomial deponding on the exponents m (.) and r (.).
For this purpose, we introduce the two functionals defined for all t ∈ (0, T ) by

I (t) =

∫
Ω

(A∇u.∇u+B∇v.∇v) dx−
(
p+ + 1

) ∫
Ω

F (x, u, v) dx (2.5.1)

and
J (t) =

1

2

∫
Ω

(A∇u.∇u+B∇v.∇v) dx−
∫

Ω

F (x, u, v) dx.

Clearly, we have

E (t) = J (t) +
1

2

(
‖ut‖2

2 + ‖vt‖2
2

)
,

where E is the energy functional associated to system (P ) (see in (2.2.55)).

2.5.1 Global Existence result

Lemma 2.5.1. Suppose that I (0) > 0 and

β =
C2 (p+ + 1)

c0

max

Bp−+1
∗

(
2 (p+ + 1)

p+ − 1
E (0)

) p−−1
2

, Bp++1
∗

(
2 (p+ + 1)

p+ − 1
E (0)

) p+−1
2

 < 1.

Then
I (t) > 0, for all t ∈ (0, T ) . (2.5.2)

Proof. By continuity of I, there exists Tm in ]0, T ) such that

I (t) ≥ 0, ∀t ∈ (0, Tm] . (2.5.3)

In what follows, we will prove that this inequality is strict.
For all t ∈ (0, T ), we have

J (t) =
1

2

∫
Ω

(A∇u.∇u+B∇v.∇v) dx− 1

p+ + 1

[∫
Ω

(A∇u.∇u+B∇v.∇v) dx− I (t)

]
=

p+ − 1

2 (p+ + 1)

∫
Ω

(A∇u.∇u+B∇v.∇v) dx+
1

p+ + 1
I (t) .
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2.5 Global Existence and Decay Rates of Solution

So, using (2.1.5)

J (t) ≥ c0 (p+ − 1)

2 (p+ + 1)

(
‖∇u‖2

2 + ‖∇v‖2
2

)
+

1

p+ + 1
I (t) . (2.5.4)

By (2.5.3), we obtain

J (t) ≥ c0 (p+ − 1)

2 (p+ + 1)

(
‖∇u‖2

2 + ‖∇v‖2
2

)
, ∀t ∈ (0, Tm] .

Thus
‖∇u‖2

2 + ‖∇v‖2
2 ≤

2 (p+ + 1)

c0 (p+ − 1)
J (t) .

The definition of E leads to

‖∇u‖2
2 + ‖∇v‖2

2 ≤
2 (p+ + 1)

c0 (p+ − 1)
E (t)

By the decreasingness of E, we find

‖∇u‖2
2 ≤

2 (p+ + 1)

c0 (p+ − 1)
E (0) . (2.5.5)

From Lemma 1.2.9, we have∫
Ω

|u|p(x)+1 dx ≤ max {‖u‖p
−+1
p(.)+1 , ‖u‖

p++1
p(.)+1}.

By (1.2.1) and the embedding, we get∫
Ω

|u|p(x)+1 dx ≤ max{Bp−+1
∗ ‖∇u‖p

−+1
2 , Bp++1

∗ ‖∇u‖p
++1

2 }

≤ max {Bp−+1
∗ ‖∇u‖p

−−1
2 , Bp++1

∗ ‖∇u‖p
+−1

2 } ‖∇u‖2
2 ,

Recalling (2.5.5), we obtain∫
Ω

|u|p(x)+1 dx

≤ max

Bp−+1
∗

(
2 (p+ + 1)

c0 (p+ − 1)
E (0)

) p−−1
2

, Bp++1
∗

(
2 (p+ + 1)

c0 (p+ − 1)
E (0)

) p+−1
2

 ‖∇u‖2
2 ,

for all t ∈ (0, Tm]. Then,∫
Ω

|u|p(x)+1 dx ≤ c0β

C2 (p+ + 1)
‖∇u‖2

2 ,

and similarly, ∫
Ω

|v|p(x)+1 dx ≤ c0β

C2 (p+ + 1)
‖∇v‖2

2 .
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2.5 Global Existence and Decay Rates of Solution

By addition, it comes∫
Ω

(
|u|

p(x)+1

+ |v|
p(x)+1

)
dx ≤ c0β

C2 (p+ + 1)

(
‖∇u‖2

2 + ‖∇v‖2
2

)
. (2.5.6)

On the other hand, by (1.3.1), we have∫
Ω

F (x, u, v) dx ≤ C2

∫
Ω

(
|u|

p(x)+1

+ |v|
p(x)+1

)
dx.

By (1.3.1), it results∫
Ω

F (x, u, v) dx ≤ c0β

p+ + 1

(
‖∇u‖2

2 + ‖∇v‖2
2

)
. (2.5.7)

Since β < 1, then∫
Ω

F (x, u, v) dx <
c0

p+ + 1

(
‖∇u‖2

2 + ‖∇v‖2
2

)
,∀t ∈ (0, Tm] .

By inserting this inequality in (2.5.1) and using the assumption (2.1.5), it yields

I (t) >

∫
Ω

(A∇u.∇u+B∇v.∇v) dx− c0

(
‖∇u‖2

2 + ‖∇v‖2
2

)
≥ 0,

for all t ∈ [0, Tm] . Consequently,

I (Tm) > 0.

From the decreasingness of E and the condition on β, we find

C2 (p+ + 1)

c0

βm ≤ β < 1,

where

βm = max

Bp−+1
∗

(
2 (p+ + 1)

c0 (p+ − 1)
E (Tm)

) p−−1
2

, Bp++1
∗

(
2 (p+ + 1)

c0 (p+ − 1)
E (Tm)

) p+−1
2

 .

By repeating this procedure, we can extend Tm to T . This proves (2.5.2).

Theorem 2.5.2. Under the assumptions of Lemma 2.5.1, the local solution (u, v) of
system (P ) exists globally.

Proof. By the definition of E and using (2.5.2) and (2.5.4), it results

E (t) = J (t) +
1

2

(
‖ut‖2

2 + ‖vt‖2
2

)
≥ c0 (p+ − 1)

2 (p+ + 1)

(
‖∇u‖2

2 + ‖∇v‖2
2

)
+

1

2

(
‖ut‖2

2 + ‖vt‖2
2

)
,∀t ∈ (0, T ) .
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2.5 Global Existence and Decay Rates of Solution

Therefore, there exists a constant C > 0 such that

‖∇u‖2
2 + ‖∇v‖2

2 + ‖ut‖2
2 + ‖vt‖2

2 ≤ CE (t) . (2.5.8)

Using the decreasingness of E, we obtain

‖∇u‖2
2 + ‖∇v‖2

2 + ‖ut‖2
2 + ‖vt‖2

2 ≤ CE (0) ,∀t ∈ (0, T ) .

Consequently, by the alternative statement, (u, v) exists globally.

2.5.2 Decay Rates of Solution

To study the decay of the solution energy of (P ), we give the following Lemma.

Lemma 2.5.3. Suppose that the assumptions of Lemma 2.5.1 are fulfilled. Then,
there exists a positive constant C3, such that the global solution (u, v) of (P ) satisfies∫

Ω

|u (t)|m(x) dx+

∫
Ω

|v(t)|r(x) dx ≤ C3E(t) for all t ≥ 0. (2.5.9)

Proof. Let B̃ be the best constant of the Sobolev embedding H1
0 (Ω) ↪→ Lm(.) (Ω),

then we have∫
Ω

|u(t)|m(x) dx ≤ max {B̃m− ‖∇u‖m
−

2 , B̃m+ ‖∇u‖m
+

2 }

≤ max {B̃m− ‖∇u‖m
−−2

2 , B̃m+ ‖∇u‖m
+−2

2 } ‖∇u‖2
2 .

By (2.5.8), this gives ∫
Ω

|u(t)|m(x) dx ≤ c1E(t),

for all t ≥ 0, where c1 is a positive constant. Similarly, we get∫
Ω

|v (t)|r(x) dx ≤ c2E(t), c2 > 0.

By addition of the last two inequalities, we obtain the desired result.

Theorem 2.5.4. Under the assumptions of Lemma 2.5.1, there exists two constants
c, w > 0 satisfying the following decay estimates:

E (t) ≤

{
c

(1+t)2/(λ
+−2) , ∀t ≥ 0, if λ+ > 2,

ce−ωt, ∀t ≥ 0, if λ+ = 2,
(2.5.10)

where λ+ = max {m+, r+}.

Proof. Let T > S > 0 and q ≥ 0 to be specified later. Multiplying the first equation
of (P ) by uEq and the second one by vEq and integrating each result over Ω× (S, T ),
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2.5 Global Existence and Decay Rates of Solution

we obtain∫ T

S

∫
Ω

Eq (t)
[
u (t)utt (t)− u (t) div (A∇u (t)) + u (t) |ut (t)|m(x)−2 ut (t)

]
dxdt

=

∫ T

S

∫
Ω

Eq (t)u (t) f1 (x, u, v) dxdt

and ∫ T

S

∫
Ω

Eq (t)
[
v (t) vtt (t)− v (t) div (A∇v (t)) + v (t) |vt (t)|r(x)−2 vt (t)

]
dxdt

=

∫ T

S

∫
Ω

Eq (t) v (t) f2 (x, u, v) dxdt.

So, we get∫ T

S

∫
Ω

Eq (t)
[
(u (t)ut (t))t − |ut (t)|2 + A∇u (t) .∇u (t) + u (t)ut (t) |ut (t)|m(x)−2

]
dxdt

=

∫ T

S

∫
Ω

Eq (t)u (t) f1 (x, u, v) dxdt, (2.5.11)

and∫ T

S

∫
Ω

Eq (t)
[
(v (t) vt (t))t − |vt (t)|2 +B∇v (t) .∇v (t) + v (t) vt (t) |vt (t)|r(x)−2

]
dxdt

=

∫ T

S

∫
Ω

Eq (t) v (t) f2 (x, u, v) dxdt. (2.5.12)

Now, we add and subtract the following two terms∫ T

S

∫
Ω

Eq (t)
[
βA∇u (t) .∇u (t) + (1 + β) |ut (t)|2

]
dxdt

and ∫ T

S

∫
Ω

Eq (t)
[
βB∇v (t) .∇v (t) + (1 + β) |vt (t)|2

]
dxdt,

to (2.5.11) and (2.5.12), repectively, exploit (2.1.5) and (2.5.7) and results to obtain

(1− β)

∫ T

S

Eq (t)

∫
Ω

(
A∇u (t) .∇u (t) +B∇v (t) .∇v (t) + |ut (t)|2 + |vt (t)|2

)
dxdt

+

∫ T

S

Eq (t)

∫
Ω

[
(u (t)ut (t) + v (t) vt (t))t − (2− β)

(
|ut (t)|2 + |vt (t)|2

)]
dxdt

+

∫ T

S

Eq (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt (2.5.13)

= −
∫ T

S

Eq (t)

∫
Ω

[β (A∇u (t) .∇u (t) +B∇v (t) .∇v (t))− (p (x) + 1)F (x, u, v)] dxdt ≤ 0.
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2.5 Global Existence and Decay Rates of Solution

Since

d

dt

(
Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
= qEq−1 (t)E

′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

+ Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t))t dx,

then

Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t))t dx =
d

dt

(
Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
− qEq−1 (t)E

′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx.

Replacing this term in (2.5.13), we find

2 (1− β)

∫ T

S

Eq+1 (t) dt ≤ q

∫ T

S

Eq−1 (t)E
′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dxdt

−
∫ T

S

d

dt

(
Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
dt

−
∫ T

S

Eq (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt

+ (2− β)

∫ T

S

Eq (t)

∫
Ω

(
|ut (t)|2 + |vt (t)|2

)
dxdt. (2.5.14)

In what follows, we estimate the terms in the right-hand side of (2.5.14).
First, by exploiting Young’s and Poincaré’s inequality, we obtain

q

∫ T

S

Eq−1 (t)E
′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dxdt

≤ q

2

∫ T

S

Eq−1 (t)
(
−E ′ (t)

)
(‖u (t)‖2

2 + ‖ut (t)‖2
2 + ‖v (t)‖2

2 + ‖vt (t)‖2
2)dt

≤ C

∫ T

S

Eq−1 (t)
(
−E ′ (t)

)
(‖∇u (t)‖2

2 + ‖∇v (t)‖2
2 + ‖ut (t)‖2

2 + ‖vt (t)‖2
2)dt,

where C is a positive generic constant. By (2.5.8), this yields

q

∫ T

S

Eq−1 (t)E
′
(t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dxdt ≤ C

∫ T

S

Eq (t)
(
−E ′ (t)

)
dt

≤ CEq+1 (S)− CEq+1 (T )

≤ CEq (0)E (S) ≤ CE (S) .
(2.5.15)
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2.5 Global Existence and Decay Rates of Solution

For the second term, we have

−
∫ T

S

d

dt

(
Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
dt

= Eq (S)

(∫
Ω

(u (x, S)ut (x, S) + v (x, S) vt (x, S)) dx

)
− Eq (T )

(∫
Ω

(u (x, T )ut (x, T ) + v (x, T ) vt (x, T )) dx

)
(2.5.16)

Again, by (2.5.8), we get∣∣∣∣∫
Ω

u (x, S)ut (x, S) dx

∣∣∣∣ ≤ C

2

∫
Ω

|∇u (S)|2 dx+
1

2

∫
Ω

|ut (S)|2 dx ≤ CE (S) ,

∣∣∣∣∫
Ω

v (x, S) vt (x, S) dx

∣∣∣∣ ≤ C

2

∫
Ω

|∇v (S)|2 dx+
1

2

∫
Ω

|vt (S)|2 dx ≤ CE (S)

and similarly∣∣∣∣∫
Ω

u (x, T )ut (x, T ) dx

∣∣∣∣ ≤ C

2

∫
Ω

|∇u (T )|2 dx+
1

2

∫
Ω

|ut (T )|2 dx ≤ CE (S) ,

∣∣∣∣∫
Ω

v (x, T ) vt (x, T ) dx

∣∣∣∣ ≤ C

2

∫
Ω

|∇v (T )|2 dx+
1

2

∫
Ω

|vt (T )|2 dx ≤ CE (S) .

Therefore, (2.5.16) leads to

−
∫ T

S

d

dt

(
Eq (t)

∫
Ω

(u (t)ut (t) + v (t) vt (t)) dx

)
dt ≤ CEq+1 (S)

≤ CEq (0)E (S) ≤ CE (S) .
(2.5.17)

Concerning the third term, we have

−
∫ T

S

Eq (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt

≤
∫ T

S

Eq (t)

∫
Ω

|u (t)| |ut (t)|m(x)−1 dx+

∫ T

S

Eq (t)

∫
Ω

|v (t)| |vt (t)|r(x)−1 dx

= J1 + J2.

Using the following Young’s inequality:

XY ≤ ε

δ
Xδ +

1

δ′εδ′/δ
Y δ′ , for all X, Y ≥ 0, ε > 0 and

1

δ
+

1

δ′
= 1,

with

X = |u (t)| , Y = |ut (t)|m(x)−1 , δ = m (x) , δ′ =
m (x)

m (x)− 1
and ε ∈ ]0, 1[ ,
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2.5 Global Existence and Decay Rates of Solution

we find

J1 ≤
∫ T

S

Eq (t)

[
ε

∫
Ω

1

m(x)
|u (t)|m(x) dx+

∫
Ω

m(x)− 1

m (x) ε1/(m(x)−1)
|ut (t)|m(x) dx

]
dt.

Since for all x ∈ Ω, we have m(x) ≥ 2 then ε1/(m(x)−1) ≥ ε. Hence,

J1 ≤
∫ T

S

Eq (t)

[
ε

2

∫
Ω

|u (t)|m(x) dx+
1

ε

∫
Ω

|ut (t)|m(x) dx

]
dt.

Likewise,

J2 ≤
∫ T

S

Eq (t)

[
ε

2

∫
Ω

|v (t)|r(x) dx+
1

ε

∫
Ω

|vt (t)|r(x) dx

]
dt.

By addition and use of Lemma 2.2.5 and (2.5.9), we arrive at

J1 + J2 ≤
ε

2

∫ T

S

Eq (t)

∫
Ω

(
|u (t)|m(x) + |v (t)|r(x)

)
dxdt+

1

ε

∫ T

S

Eq (t)
(
−E ′ (t)

)
dt

≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

So,

−
∫ T

S

Eq (t)

∫
Ω

(
u (t)ut (t) |ut (t)|m(x)−2 + v (t) vt (t) |vt (t)|r(x)−2

)
dxdt

≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) . (2.5.18)

Finally, we estimate the last term in (2.5.14) as follows:
We have ∫ T

S

Eq (t)

∫
Ω

(
|ut (t)|2 + |vt (t)|2

)
dxdt = J3 + J4,

where

J3 =

∫ T

S

Eq (t)

∫
Ω

|ut (t)|2 dxdt, J4 =

∫ T

S

Eq (t)

∫
Ω

|vt (t)|2 dxdt.

We set, similarly to [22]

Ω+ = {x ∈ Ω / |ut (x, t)| ≥ 1} , Ω− = {x ∈ Ω / |ut (x, t)| < 1} .
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Therefore,

J3 =

∫ T

S

Eq (t)

[∫
Ω−

|ut (t)|2 dx+

∫
Ω+

|ut (t)|2 dx
]
dt

≤ C

∫ T

S

Eq (t)

[(∫
Ω−

|ut (t)|λ
+

dx

)2/λ+

+

(∫
Ω+

|ut (t)|λ
−
dx

)2/λ−
]
dt

≤ C

∫ T

S

Eq (t)

[(∫
Ω−

|ut (t)|m(x) dx

)2/λ+

+

(∫
Ω+

|ut (t)|m(x) dx

)2/λ−
]
dt,

where
λ− = min

{
m−, r−

}
, λ+ = max

{
m+, r+

}
.

This leads to

J3 ≤ C

∫ T

S

Eq (t)

[(∫
Ω

|ut (t)|m(x) dx

)2/λ+

+

(∫
Ω

|ut (t)|m(x) dx

)2/λ−
]
dt

≤ C

∫ T

S

Eq (t) (−E ′ (t))2/λ+
dt+ C

∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt.

Similarly, we obtain

J4 ≤ C

∫ T

S

Eq (t) (−E ′ (t))2/λ+
dt+ C

∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt.

By addition, this yields

J3 + J4 ≤ C

∫ T

S

Eq (t) (−E ′ (t))2/λ+
dt+ C

∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt. (2.5.19)

We claim that

J3 + J4 ≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

Indeed, we distinguish two cases:
Case 1: if λ+ = 2, then λ− = 2. Hence,

J3 + J4 ≤ C

∫ T

S

Eq (t)
(
−E ′ (t)

)
dt ≤ CE (S) ≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

Case 2: if λ+ > 2, we use Young’s inequality with

δ = (q + 1) /q and δ′ = q + 1

to obtain∫ T

S

Eq (t) (−E ′ (t))2/λ+
dt ≤ εC

∫ T

S

Eq+1 (t) dt+ Cε

∫ T

S

(−E ′ (t))2(q+1)/λ+
dt.
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By taking q = λ+/2− 1, it comes∫ T

S

Eq (t) (−E ′ (t))2/λ+
dt ≤ εC

∫ T

S

Eq+1 (t) dt+ Cε

∫ T

S

(−E ′ (t)) dt.

≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) . (2.5.20)

For the second term in the right-hand side of (2.5.19), we have the following two
cases:

• if λ− = 2, then∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt =

∫ T

S

Eq (t) (−E ′ (t)) dt ≤ CE (S) .

Adding this inquality to (2.5.20), we find

J3 + J4 ≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

• if λ− > 2, we use Young’s inequality with

δ = λ−/
(
λ− − 2

)
and δ′ = λ−/2

to obtain∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt ≤ εC

∫ T

S

E (t)qλ
−/(λ−−2) dt+ CεE (S) .

Since, qλ−/ (λ− − 2) = q + 1 + (λ+ − λ−) / (λ− − 2), then∫ T

S

Eq (t) (−E ′ (t))2/λ−
dt ≤ εC (E (S))(λ

+−λ−)/(λ−−2)
∫ T

S

Eq+1 (t) dt+ CεE (S)

≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

Therefore, for λ− ≥ 2, we have

J3 + J4 ≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) . (2.5.21)

Consequently,∫ T

S

Eq (t)

∫
Ω

(
|ut (t)|2 + |vt (t)|2

)
dxdt = J3 + J4

≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

(2.5.22)
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2.5 Global Existence and Decay Rates of Solution

Finally, by inserting (2.5.22), (2.5.18), (2.5.17) and (2.5.15) in (2.5.14), we obtain

2 (1− β)

∫ T

S

Eq+1 (t) dt ≤ εC

∫ T

S

Eq+1 (t) dt+ CεE (S) .

Since, q = λ+/2− 1, it follows

2 (1− β)

∫ T

S

Eλ+/2 (t) dt ≤ εC

∫ T

S

Eλ+/2 (t) dt+ CεE (S) .

Chosing ε small enough, we get∫ T

S

Eλ+/2 (t) dt ≤ CE (S) .

When T −→∞, it yields ∫ ∞
S

Eλ+/2 (t) dt ≤ CE (S) .

By applying Komornik’s integral inequality given in Lemma 1.3.1, we obtain the
decay estimates (2.5.10).
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Chapter 3

Coupled System of Nonlinear
Hyperbolic Equations with
Variable-exponents in the Damping
and Attractive terms

3.1 Introduction
This chapter deals with the following initial-boundary-value problem:

utt −∆u+ α(t)|ut|m(x)−2ut + |u|p(x)−2u|v|p(x) = 0 in Ω× (0, T ) ,
vtt −∆v + β(t)|vt|r(x)−2vt + |v|p(x)−2v|u|p(x) = 0 in Ω× (0, T ) ,

u = v = 0 on ∂Ω× (0, T ) , (P̃ )
u (0) = u0, ut (0) = u1 in Ω,
v (0) = v0, vt (0) = v1 in Ω,

where T > 0 and Ω is a bounded domain of Rn (n ∈ N∗) with a smooth bound-
ary ∂Ω. α, β : [0,∞) −→ (0,∞) are two non-increasing C1-functions and m, r and
p are given continuous functions on Ω satisfying some conditions to be specified later.

This class of coupled systems of nonlinear wave equations with variable exponents
occur in the mathematical modeling of various physical phenomnas such as flows of
electro-rheological fluids or fluids with temperature dependent viscosity, nonlinear
viscoelasticity, filtration processes through a porous media and image processing,
thermorheological fluids, or robotics, etc. Our system (P̃ ) can be regarded as a model
for interaction between two fields describing the motion of two nonlinear "smart"
materials. For more details, the interested reader can see [1, 12].
Under suitable assumptions on the functions α, β and the variable exponents m, r
and p, we establish the decay of the solution energy, by using the multiplier method.
Then, we give some numerical examples.
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3.2 Existence of Global Weak Solution

ASSUMPTIONS:

For all x ∈ Ω, we assume that

2 ≤ m(x), if n = 1, 2,

2 ≤ m− ≤ m(x) ≤ m+ ≤ 2n

n− 2
, if n ≥ 3,

(H.1)

2 ≤ r(x), if n = 1, 2,

2 ≤ r− ≤ r(x) ≤ r+ ≤ 2n

n− 2
, if n ≥ 3,

and
2 ≤ p(x), if n = 1, 2,

2 ≤ p− ≤ p(x) ≤ p+ ≤ n

n− 2
, if n ≥ 3.

(H.2)

3.2 Existence of Global Weak Solution
Definition 3.2.1. Let (u0, u1), (v0, v1) ∈ H1

0 (Ω) × L2(Ω). A pair of functions (u, v)
is said to be a weak solution of (P̃ ) on [0, T ) if u, v ∈ Cω ((0, T ), H1

0 (Ω)) , ut, vt ∈
Cω ((0, T ), L2(Ω)) , ut ∈ Lm(.) (Ω× (0, T )) , vt ∈ Lr(.) (Ω× (0, T )) and for all test
functions Φ,Ψ ∈ H1

0 (Ω) and all t ∈ (0, T ), we have∫
Ω

utΦ dx−
∫

Ω

u1Φ dx+

∫ t

0

∫
Ω

α(τ)|ut|m(x)−2utΦ dxdτ

+

∫ t

0

∫
Ω

∇u∇Φ dxdτ +

∫ t

0

∫
Ω

|ut|p(x)−2u|v|p(x)Φ dxdτ = 0

and ∫
Ω

vtΨdx−
∫

Ω

v1Ψ dx+

∫ t

0

∫
Ω

β(τ)|vt|r(x)−2vtΨ dxdτ

+

∫ t

0

∫
Ω

∇v∇Ψ dxdτ +

∫ t

0

∫
Ω

|vt|p(x)−2v|u|p(x)Ψ dxdτ = 0.

Proposition 3.2.2. Assume that the above assumptions hold. Then, for any initial
data u0, v0 ∈ H1

0 (Ω) and u1, v1 ∈ L2 (Ω) , there exists a unique global weak solution
(u, v) of (P̃ ) (in the sense of Definition 3.2.1) defined in [0, T ) for all T > 0.Moreover,
we have the energy inequality

E (t) +

∫ t

s

α(τ)

∫
Ω

|ut|m(x) dxdτ +

∫ t

s

β(τ)

∫
Ω

|vt|r(x) dxdτ ≤ E(s), (3.2.1)

for 0 ≤ s ≤ t ≤ T, where

E (t) =:
1

2

[
‖ut‖2

2 + ‖vt‖2
2 + ‖∇u‖2

2 + ‖∇v‖2
2

]
+

∫
Ω

|uv|p(x)

p(x)
dx.
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3.3 Decay Rates of Solutions

Remark 3.2.3. The proof of this proposition can be established by the Faedo-Galerkin
approximation and combining arguments from [2, 17, 35] for coupled systems with
constant exponents.

3.3 Decay Rates of Solutions
In this subsection, we state and prove our main result.

Theorem 3.3.1. Suppose that the assumptions (H.1) and (H.2) hold. Assume, fur-
ther, that

∫∞
0
α(s)ds = ∞ and

∫∞
0
β(s)ds = ∞. Then, there exists two constants

c, ω > 0 such that the solution of (P̃ ) satisfies, for all t ≥ 0,

E (t) ≤

{
ce−ω

∫ t
0 γ(s)ds, if λ+ = 2,

c

(1+
∫ t
0 γ(s)ds)

2/(λ+−2) , if λ+ > 2,

where
λ+ = max {m+, r+} and γ = min{α, β}.

Proof. Let T > S > 0 and q ≥ 0 to be specified later. Multiplying the first differential
equation of (P̃ ) by γEqu, the second one by γEqv and integrating each result over
Ω× (S, T ), we obtain∫ T

S

γ(t)Eq(t)

∫
Ω

[
uutt − u∆u+ α(t)|ut|m(x)−2utu

]
dxdt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x)dxdt

and ∫ T

S

γ(t)Eq(t)

∫
Ω

[
vvtt − v∆v + β(t)|vt|r(x)−2vtv

]
dxdt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x)dxdt.

These can be rewritten as:∫ T

S

γ(t)Eq(t)

∫
Ω

[
(uut)t − u2

t + |∇u|2 + α(t)|ut|m(x)−2utu
]
dxdt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x)dxdt (3.3.1)

and ∫ T

S

γ(t)Eq(t)

∫
Ω

[
(vvt)t − v2

t + |∇v|2 + β(t)|vt|r(x)−2vtv
]
dxdt

= −
∫ T

S

γ(t)Eq(t)

∫
Ω

|uv|p(x)dxdt. (3.3.2)
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3.3 Decay Rates of Solutions

We add and subtract the following two terms(
−
∫ T

S

γ(t)Eq(t)

∫
Ω

u2
tdxdt

)
and

(
−
∫ T

S

γ(t)Eq(t)

∫
Ω

v2
t dxdt

)
to (3.3.1) and (3.3.2), respectively. The addition of the two results yields∫ T

S

γEq

∫
Ω

(u2
t + v2

t + |∇u|2 + |∇v|2)dxdt

= −
∫ T

S

γEq

∫
Ω

(uut + vvt)tdxdt+ 2

∫ T

S

γEq

∫
Ω

(u2
t + v2

t )dxdt

−
∫ T

S

γEq

∫
Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dxdt

− 2

∫ T

S

γEq

∫
Ω

|uv|p(x)dxdt. (3.3.3)

Recalling the expression of E, equality (3.3.3) becomes

2

∫ T

S

γEq+1dt =−
∫ T

S

γEq

∫
Ω

(uut + vvt)tdxdt+ 2

∫ T

S

γEq

∫
Ω

(u2
t + v2

t )dxdt

−
∫ T

S

γEq

∫
Ω

α
(
|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dxdt

+

∫ T

S

γEq

∫
Ω

(
2

p(x)
− 2

)
|uv|p(x)dxdt.

Then,

2

∫ T

S

γEq+1dt ≤−
∫ T

S

γEq

∫
Ω

(uut + vvt)tdxdt+ 2

∫ T

S

γEq

∫
Ω

(u2
t + v2

t )dxdt

−
∫ T

S

γEq

∫
Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dxdt, (3.3.4)

since p(x) > 1, for all x ∈ Ω.
On the other hand, we have for a.e. t ∈ [S, T ]

d

dt

(
γEq

∫
Ω

(uut + vvt) dx

)
= (γEq)′

∫
Ω

(uut + vvt) dx+ γEq

∫
Ω

(uut + vvt)t dx,

which gives,

γEq

∫
Ω

(uut + vvt)t dx =
d

dt

(
γEq

∫
Ω

(uut + vvt) dx

)
− (γEq)′

∫
Ω

(uut + vvt) dx.

(3.3.5)

Substituting (3.3.5) in (3.3.4), we arrive at

2

∫ T

S

γEq+1dt ≤ I1 + I2 + I3 + I4. (3.3.6)
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3.3 Decay Rates of Solutions

In what follows, we estimate Ii, for i = 1, ..., 4.

• I1 = −
[
γEq

∫
Ω

(uut + vvt) dx
]T
S
.

Using Young’s and Poincaré inequalities and the definition of E, we obtain∣∣∣∣∫
Ω

(uut + vvt) dx

∣∣∣∣ ≤ ce
2

[
‖∇u‖2

2 + ‖∇v‖2
2 + ‖ut|22 + ‖vt‖2

2

]
≤ CE(t), (3.3.7)

where ce is the Poincaré constant. Therefore,

I1 =γ(S)Eq(S)

∫
Ω

(u (x, S)ut (x, S) + v (x, S) vt (x, S)) dx

− γ(T )Eq(T )

∫
Ω

(u(x, T )ut(x, T ) + v(x, T )vt (x, T )) dx

≤ C
[
γ(S)Eq+1(S) + γ(T )Eq+1(T )

]
≤ Cγ(S)Eq+1(S) ≤ CE(S), (3.3.8)

by the non-increasingness property of the two functions γ and E.

• I2 =
∫ T
S

(γ′Eq + qγEq−1E ′)
∫

Ω
(uut + vvt) dxdt.

Again by (3.3.7), we get

I2 ≤ C

∫ T

S

(
γ′Eq + qγEq−1E ′

)
E(t)dt

≤ C|
∫ T

S

γ′Eq+1dt|+ C|
∫ T

S

qγEqE ′dt|

≤ CEq+1(S)|
∫ T

S

γ′dt|+ Cqγ(S)|
∫ T

S

EqE ′dt|

≤ CEq+1(S) [γ(S)− γ(T )] + CE(S) ≤ CE(S). (3.3.9)

• I3 = 2
∫ T
S
γEq

∫
Ω

(u2
t + v2

t )dxdt.
We have

I3 = 2

∫ T

S

γEq

∫
Ω

|ut|2dxdt+ 2

∫ T

S

γEq

∫
Ω

|vt|2dxdt

= J1 + J2.

Therefore, by Hölder’s inequality and the definition of λ+, we obtain

J1 = 2

∫ T

S

γEq

[∫
Ω−

|ut|2dx+

∫
Ω+

|ut|2dx
]
dt

≤ C

∫ T

S

γEq

(∫
Ω−

|ut|λ
+

dx

)2/λ+

dt+ C

∫ T

S

γEq

∫
Ω+

|ut|m(x)dxdt

≤ C

∫ T

S

γEq

(∫
Ω−

|ut|m(x)dx

)2/λ+

dt+ C

∫ T

S

Eq

(
γ

∫
Ω+

|ut|m(x)dx

)
dt,
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3.3 Decay Rates of Solutions

such that Ω+ and Ω− are introduced in Subsection 2.3.1. This yields

J1 ≤ C

∫ T

S

γ(1− 2
λ+

)Eq

(
γ

∫
Ω

|ut|m(x)dx

)2/λ+

+ C

∫ T

S

Eq

(
γ

∫
Ω

|ut|m(x)dx

)
dt

≤ C

∫ T

S

γ(1− 2
λ+

)Eq

(
α

∫
Ω

|ut|m(x)dx

)2/λ+

+ C

∫ T

S

Eq

(
α

∫
Ω

|ut|m(x)dx

)
dt

≤ C

∫ T

S

γ(1− 2
λ+

)Eq (−E ′)2/λ+
dt+ C

∫ T

S

Eq(−E ′)dt

≤ C

∫ T

S

γ(1− 2
λ+

)Eq (−E ′)2/λ+
dt+ CE(S),

using (3.2.1) and the definition of γ. Similarly, we find

J2 ≤ C

∫ T

S

γ(1− 2
λ+

)Eq (−E ′)2/λ+
dt+ CE(S).

By addtion of J1 and J2, it results

I3 ≤ C

∫ T

S

γ(1− 2
λ+

)Eq (−E ′)2/λ+
dt+ CE(S).

Two cases are possible:
Case 1: if λ+ = 2 then,

I3 ≤ C

∫ T

S

Eq
(
−E ′

)
dt+ CE(S)

≤ C
[
Eq+1(S)− Eq+1(T )

]
+ CE(S) ≤ CE(S).

Case 2: if λ+ > 2, we exploit Young’s inequality, with

δ = q + 1 and δ′ = (q + 1) /q,

to get, for any ε > 0,

I3 ≤ εC

∫ T

S

γ(1− 2
λ+

)( q+1
q

)Eq+1dt+ Cε

∫ T

S

(−E ′)
2(q+1)

λ+ dt+ CE(S).

If we take ε = 1
2C

and q = λ+

2
− 1, then

I3 ≤
1

2

∫ T

S

γEq+1dt+ Cε

∫ T

S

(−E ′) dt+ CE(S)

≤ 1

2

∫ T

S

γEq+1dt+ CE(S).

Therefore, for λ+ ≥ 2

I3 ≤
1

2

∫ T

S

γEq+1dt+ CE(S). (3.3.10)
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3.3 Decay Rates of Solutions

• I4 = −
∫ T
S
γEq

∫
Ω

(
α|ut|m(x)−2utu+ β|vt|r(x)−2vtv

)
dxdt.

Since α and β are bounded functions on R+, then

I4 ≤ C

∫ T

S

γEq

∫
Ω

|u||ut|m(x)−1dxdt+ C

∫ T

S

γEq

∫
Ω

|v||vt|r(x)−1dxdt

= J3 + J4.

Now, applying Young’s inequality with

δ(x) =
m(x)

m (x)− 1
and δ′(x) = m(x),

we obtain, for all ε > 0

J3 ≤
∫ T

S

γEq

[
ε

∫
Ω

|u|m(x)dx+

∫
Ω

Cε(x)|ut|m(x)dx

]
dt,

where

Cε(x) =
[m(x)− 1]m(x)−1

[m(x)]m(x) εm(x)−1
.

Likewise,

J4 ≤
∫ T

S

γEq

[
ε

∫
Ω

|v|r(x)dx+

∫
Ω

C ′ε(x)|vt|r(x)dx

]
dt,

where

C ′ε(x) =
[r(x)− 1]r(x)−1

[r(x)]r(x) εr(x)−1
.

By addition, we get

I4 ≤
∫ T

S

γEq

∫
Ω

(
ε|u|m(x) + ε|v|r(x) + Cε(x)|ut|m(x) + C ′ε(x)|vt|r(x)

)
dxdt.

(3.3.11)

Now, we have the following estimate, using (H.1),

J5 = ε

∫ T

S

γEq

∫
Ω

(|u|m(x)) + |v|r(x))dxdt

≤ εC

∫ T

S

γEq

∫
Ω

(|u|m− + |u|m+ + |v|r− + |v|r+) dxdt

≤ εC

∫ T

S

γEq (‖∇u‖m−2 + ‖∇u‖m+

2 + ‖∇v‖r−2 + ‖∇v‖r+2 ) dt

≤ εC

∫ T

S

γEq+1
(
E

m−
2
−1 + E

m+
2
−1 + E

r−
2
−1 + E

r+
2
−1
)
dt

≤ εC
(
E(0)

m−
2
−1 + E(0)

m+
2
−1 + E(0)

r−
2
−1 + E(0)

r+
2
−1
)∫ T

S

γEq+1dt,
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3.3 Decay Rates of Solutions

since, m−, r− ≥ 2. By taking

ε =

(
E(0)

m−
2
−1 + E(0)

m+
2
−1 + E(0)

r−
2
−1 + E(0)

r+
2
−1
)−1

2C
,

it results

J5 ≤
1

2

∫ T

S

γEq+1dt.

Moreover, Cε(x), C ′ε(x) will be bounded since m(x) and r(x) are bounded.
Consequently, inequality (3.3.11) becomes

I4 ≤
1

2

∫ T

S

γEq+1dt+ C

∫ T

S

γEq
(
|ut|m(x) + |vt|r(x)

)
dxdt

≤ 1

2

∫ T

S

γEq+1dt+ C

∫ T

S

Eq
(
α|ut|m(x) + β|vt|r(x)

)
dxdt

≤ 1

2

∫ T

S

γEq+1dt+ C

∫ T

S

Eq(−E ′(t))dt

≤ 1

2

∫ T

S

γEq+1dt+ CE(S). (3.3.12)

Finally, by inserting (3.3.12), (3.3.10), (3.3.9) and (3.3.8) in (3.3.6), it results∫ T

S

γEq+1dt ≤ CE(S).

Taking T −→∞, we get ∫ ∞
S

γEq+1(t)dt ≤ CE(S).

Invoking Lemma 1.3.2 with σ(t) =
∫ t

0
γ(s)ds, we obtain the desired result.

In the special case, α and β are constants, we have the following corollary

Corollary 3.3.2. Assume that assumptions (H.1) and (H.2) hold. Then, there exist
two constants c, ω > 0 such that the solution of (P̃ ) satisfies, for all t ≥ 0,

E (t) ≤

{
ce−ωt, if λ+ = 2,

c

(1+t)2/(λ
+−2) , if λ+ > 2.

SOME EXAMPLES

We end this section with some examples illustrating our stability result.

• If α(t) = β(t) = 1
1+t
, then the estimate in Theorem 3.3.1 gives

E (t) ≤

{
c

(1+t)ω
, if λ+ = 2,
c

(1+ln(1+t))2/(λ
+−2) , if λ+ > 2.
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Numericals Tests

• If α(t) = 1
(1+t)a

, β(t) = 1
(1+t)b

, for 0 ≤ b < a < 1, then the estimate in Theorem
3.3.1 gives

E (t) ≤

{
ce
−ω
1−a [(1+t)(1−a)−1], if λ+ = 2,

c/
(
1 + 1

1−a

[
(1 + t)(1−a) − 1

])2/(λ+−2)
, if λ+ > 2.

• If α(t) = 1/(2 + t) ln(2 + t), β(t) = 1/(2 + t)2(ln(2 + t))2, the estimate in Theorem
3.3.1 gives

E (t) ≤


c
(

ln 2
ln(2+t)

)ω
, if λ+ = 2,

c/
[
1 + ln

(
ln(2+t)

ln 2

)]2/(λ+−2)
, if λ+ > 2.

3.3.1 Numericals Tests

In this subsection, we illustrate numerically the theoretical results of the present
work. We solve the system (P̃ ) under the corresponding initial and boundary condi-
tions. The nonlinear system (P̃ ) is discritized using the classical second order finite
difference method in time and space. In addition, we implement the stable and con-
servative scheme of Lax-Wendroff. For more details and similar techniques, we refer
to [21]. Here we give five performed tests, for Ω =]0, 1[ and [0, T ] = [0, 20]:

• TEST 1: Based on the result of Theorem 3.3.1 and the result explained in the
example 1, we obtain the polynomial decay of the energy (E):

E1(t) ≤ E1
f (t) =

c

(1 + t)w
,

for two positive constants c and w. For this test, we use the functions:

m(x) = r(x) = 2; p(x) = 2− 1

1 + x
; ∀x ∈ Ω,

α(t) = β(t) =
1

1 + t
; ∀t > 0.

• TEST 2: In Test 2, we examine the second result explained in the example 1,
we obtain a logarithmic-polynomial decay of the energy (E):

E2(t) ≤ E2
f (t) =

c

(1 + ln(1 + t))2 ,

for a positive constants c. For this test, we use the functions:

m(x) = 2 and r(x) = 2 +
1

1 + x
; p(x) = 2− 1

1 + x
; ∀x ∈ Ω,

α(t) = β(t) =
1

1 + t
; ∀t > 0.
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• TEST 3: In Test 3, we examine the result explained in the example 2, we
obtain a sub-exponential-type decay of the energy (E):

E3(t) ≤ E3
f (t) = c1e

−c2
√
t,

for two positive constants c1 and c2. For this test, we use the functions:

m(x) = r(x) = 2; p(x) = 1 +
1

1 + x
; ∀x ∈ Ω,

α(t) = β(t) =
1√

1 + t
; ∀t > 0.

• TEST 4: In Test 4, we examine the second result explained in our example 2,
we obtain a polynomial-type decay of the energy (E):

E4(t) ≤ E4
f (t) =

c

(1 + t)w
,

for two positive constants c and w. For this test, we use the functions:

m(x) = r(x) = 2 +
1

1 + x
; p(x) = 1 +

1

1 + x
; ∀x ∈ Ω,

α(t) = β(t) =
1√

1 + t
; ∀t > 0.

• TEST 5: In Test 5, we examine a result explained in the example 3, we obtain
a logarithmic-polynomial decay of the energy (E):

E5(t) ≤ E5
f (t) =

c

(ln(2 + t))w
,

for two positive constants c and w. For this test, we use the functions:

m(x) = r(x) = p(x) = 2; ∀x ∈ Ω,

α(t) =
1

(2 + t) ln(1 + t)
and β(t) =

1

((2 + t) ln(1 + t))2 ; ∀t > 0.

It should be stressed that the numerical stability of the implemented method is
ensured by taking in consideration the Courant-Friedrichs-Lewy (CFL) inequality
∆t << 0.5∆x, where ∆t represents the numerical time step and ∆x the numerical
spatial step. The spatial interval Ω =]0, 1[ is subdivided into 200 subintervals and
the temporal interval [0, T ] = [0, 20] is deduced from the stability condition above.

Using the Free Fem++ software in addition to Matlab, we run our code for 10000
time steps ∆t = 2 · 10−3 under the following initial conditions:

u(x, 0) = sin(πx) and v(x, 0) = − sin(πx) in ]0, 1[ ,

ut(x, 0) = 1 and vt(x, 0) = 1 in ]0, 1[ .

Our computational simulations show in Figures 3.1–3.5(left) all decay types. We
restrict ourselves to plot three cross-section cuts for the numerical solution (u, v) at
x = 0.25, x = 0.5 and at x = 0.75. For all components of the solutions, the decay
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behavior is clearly demonstrated for all tests. Moreover, the dotted curves in Figures
3.1–3.5(right) represent the corresponding upper bound of the energy function Ei

f (t)
for i = . . . , 5.
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Figure 3.1: TEST 1: Damping cross section waves, energy decay and the upper bound

function E2
f (t) =
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(1 + t)2
.
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Figure 3.2: TEST 2: Damping cross section waves, energy decay and the upper bound

function E2
f (t) =

1

(1 + ln(1 + t))2
.
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Figure 3.3: TEST 3: Damping cross section waves, energy decay and the upper bound
function E3

f (t) = e−0.85
√
t.
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Figure 3.4: TEST 4: Damping cross section waves, energy decay and the upper bound

function E4
f (t) =

1

(−1 + 2
√

1 + t)2
.
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Figure 3.5: TEST 5: Damping cross section waves, energy decay and the upper bound
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Conclusion and Open Problems

CONCLUSION:

In this work, we studied two coupled systems of nonlinear hyperbolic equations
where the coupling and damping terms are of non-standard forms. Under appropriate
assumptions, on the initial data and the exponents of nonlinearity, we obtained several
results concerning existence, decay and blow up of solutions. For the first system, we
proved an existence and uniqueness theorem of local weak solution, a finite time of
blow up result, global existence and decay rates. We also gave some numerical tests
to illustrate our theoretical results. Whereas, concerning the second system, which is
a coupled system of two weakly damped hyperbolic equations, we established decay
results in terms of the damping exponents and the coefficients. For the latter problem,
we gave some examples and presented few numerical tests to illustrate our theoretical
findings. All numerical tests came in agreement with the theoretical results and the
particular examples.
Our results generalize and improve many previous results in the literature.

OPEN PROBLEMS:

The following open questions can be made regarding the material presented in this
thesis.

1. Study of the existence of coupled systems with exponent variables for the case
n > 3.

2. Study of certain problems with Biarmonic operateur (Existence, blow up and
stability).

3. Study of some equations and systems in more general spaces (Besov, Orlicz,
...,etc).
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