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Abstract 

Recently, fault tolerance and energy consumption have attracted a lot of interest in the 

design of modern embedded real-time systems. Fault tolerance is fundamental for 

these systems to satisfy their real-time constraints even in the presence of faults and is 

needed because it is practically impossible to build a perfect system. Transient faults 

are the most common, and their number is dramatically increasing due to the high 

complexity, smaller transistors sizes, higher operational frequency, and lowering 

voltages. Dynamic voltage and frequency scaling (DVFS) is an energy saving 

technology enabled on most current processors. 

This work addresses the issue of fault-tolerant scheduling with energy minimization 

for hard real-time embedded systems. Our first proposition is an efficient fault 

tolerance approach that combines two well-known methods: active replication and 

checkpointing with rollback. Based on this approach we have proposed two 

algorithms. Static Fault-Tolerant Scheduling algorithm SFTS that explores hardware 

resources and timing constraints to tolerate multiple transient fault occurrences with 

respect to hard real-time constraints of precedence-constrained applications. Dynamic 

Voltage and Frequency Scaling Fault-tolerant Scheduling algorithm DVFS-FTS is 

proposed to satisfy real-time constraints and to achieve more energy saving even in 

the presence of faults by adapting the DVFS technique. According to the simulation 

results, the proposed algorithms have been shown to be very promising for emerging 

systems and applications where timeliness, fault tolerance, and energy reduction need 

to be simultaneously addressed. 

Keywords: Fault Tolerance, Transient Faults, Checkpointing, Active Replication, Dynamic 

Voltage Frequency Scaling (DVFS), Energy Minimization. 
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Résumé 

Récemment, la tolérance aux fautes et la consommation d’énergie ont attiré beaucoup 

d’intérêt dans la conception des systèmes temps-réel embarqués modernes. 

La tolérance aux fautes est fondamentale pour ces systèmes pour satisfaire leurs 

contraintes temps-réel même en présence de fautes et elle est nécessaire car il est 

pratiquement impossible de construire un système parfait. Les fautes transitoires sont 

les plus courants et leur nombre augmente considérablement en raison de la 

complexité élevée, des tailles de transistors plus petites, fréquence de fonctionnement 

plus élevée et des tensions abaissées. DVFS est une technologie de minimisation 

d’énergie activée sur la plupart des processeurs actuels. 

Ce travail traite le problème d’ordonnancement tolérant aux fautes avec minimisation  

d’énergie pour les systèmes temps-réel embarqués critiques. Notre première 

proposition est une approche efficace de tolérance aux fautes qui combine les deux 

techniques : réplication active et checkpointing. En se basant sur cette approche, nous 

avons proposé deux algorithmes. L’algorithme d’ordonnancement tolérant aux fautes 

SFTS qui explore l’architecture matérielle et les contraintes temporelles pour tolérer 

multiples fautes transitoires en respectant les contraintes temps-réel critiques des 

applications avec contraintes de précédences. L’algorithme d’ordonnancement 

tolérant aux fautes DVFS-FTS est proposé pour satisfaire les contraintes temporelles 

et minimiser la consommation d’énergie même en présence de fautes en adaptant la 

technique DVFS. Selon les résultats de simulation, les algorithmes proposés se sont 

révélés très prometteurs pour les applications où le respect des contraintes 

temporelles, la tolérance aux fautes et la minimisation d’énergie doivent être traitées 

simultanément. 

Mots Clés: Tolérance aux Fautes, Fautes Transitoires, Checkpointing, Réplication Active, 

Stratégie d’adaptation dynamique de la tension (DVFS), Minimisation d’énergie. 
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 صــــــلخـــم

تصميم أنظمة  في في الآونة الأخيرة اجتذب التسامح مع الخطأ واستهلاك الطاقة الكثير من الاهتمام 

يعد التسامح مع الخطأ أمرًا أساسيًا لهذه الأنظمة لتلبية قيود الوقت . الوقت الحقيقي المدمجة الحديثة

تعتبر . مستحيل عمليا بنا  نظام مثاليوهي ضرورية لأنه من ال خطا الفعلي حتى في حالة وجود الأ

، أحجام العابرة هي الأكثر شيوعًا ويزداد عددها بشكل كبير بسبب التعقيد العالي خطا الأ

 مقياس الجهد والتردد الديناميكي. تردد التشغيل العالي والجهود المنخفضة ،الترانزستورات الأصغر

(DVFS)  معظم المعالجات الحاليةهو تقنية موفرة للطاقة يتم تمكينها في. 

استهلاك الطاقة لأنظمة الوقت الحقيقي  هذا العمل مسألة الجدولة المتسامحة مع الأخطا  مع تقليليعالج 

النسخ النشط :  اقتراحنا الأول هو نهج فعال للتسامح مع الخطأ يجمع بين طريقتين معروفتين .المدمجة

خوارزمية جدولة متسامحة للخطأ  . هج  اقترحنا خوارزميتينبناً  على هذا الن. ونقاط التفتيش مع التراجع

SFTS  تستكشف هيكل المعدات والقيود الزمنية اللازمة للتسامح مع الأخطا  الانتقالية المتعددة مع

خوارزمية الجدولة المتسامحة للأخطا   و. احترام قيود الوقت الحقيقي الحرجة للتطبيقات المقيدة الأسبقية

DVFS-FTS ية قيود الوقت وتقليل استهلاك الطاقة حتى في حالة وجود أخطا  من خلال تكييف لتلب

وفقاً لنتائج المحاكاة فقد ثبت أن الخوارزميات المقترحة واعدة جدًا للتطبيقات حيث يتم . DVFSتقنية 

 .احترام ضيق الوقت ، التسامح مع الأخطا   وتقليل الطاقة في وقت واحد

 ، Checkpointing، نقاط التفتيش ، أخطا  عابرة التسامح مع الخطأ : ــــــةالكلمــــــات المفتاحي

 ، تقليل (DVFS)، مقياس تردد الجهد الديناميكي   Replication Activeالنسخ المتماثل النشط

 .استهلاك الطاقة
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CHAPTER 1  

General Introduction 

1.1. Context 

With the rapid growth in technology, the contemporary computing systems available in 

today's era are shrinking in size and weight, exhibiting high performance and are capable of 

communicating with each other over the network. This has made embedded systems common 

place in everyday life. Unlike general purpose systems, embedded systems receive input from 

different sources through sensors and provide output to different devices through actuators 

without human intervention. These systems are used in many diverse application areas 

namely, automated industry applications, automotive applications, avionics, defense 

applications, consumer electronics etc. Many of the embedded systems are specially made for 

performing real-time tasks where the timing constraints are important. Such systems are 

known as real-time embedded systems. For example, in a missile guided system, the highly 

critical hard real-time tasks like target sensing and track correction require an independent 

system mounted on the missile to sense the target and correct the path of the missile. If these 

tasks are not completed in time, the missile may home onto unwanted area and cause disaster 

[Digalwar 2016].  

Based on the cost of failure associated with not meeting timing constraints, real-time systems 

can be classified broadly as either hard or soft. A hard real-time constraint is one whose 

violation can lead to disastrous consequences such as loss of life or a significant loss to 

property as a missile guided system. In contrast, a soft real-time constraint is less critical; 

hence, soft real-time constraints can be violated. However, such violations are not desirable, 

either, as they may lead to degraded quality of service, and it is often the case that the extent 

of violation be bounded. Multimedia system is an example of system with soft real-time 

constraints.  

Fault tolerance is fundamental for real-time systems to satisfy their real-time constraints even 

in the presence of faults. As shown in [Srinivasan et al. 2003], processor faults can be broadly 
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classified into two categories: transient and permanent faults. Transient faults are the most 

common, and their number is dramatically increasing due to the high complexity, smaller 

transistors sizes, higher operational frequency, and lowering voltages [Djosic and Jevtic 2013, 

Salehi et al. 2016, Li et al. 2015, Krishna 2014]. They may cause errors in computation and 

corruption in data, but are not persistent. On the other hand, permanent faults, also called hard 

errors can cause hardware damages to processors and bring them to halt permanently.  

Fault tolerance is essentially based on redundancy. In literature [Dubrova 2013, Motaghi and 

Zarandi 2014, Zhang and Chakrabarty 2006, Izosim et al, 2008], two families of redundancy 

are used in fault tolerant scheduling of real-time systems: spatial redundancy and time-

based redundancy. Spatial redundancy is effective to tolerate multiple spatial faults 

(permanent or transient) and is more preferable for safety-critical systems. However, it is very 

costly and can be used only if the amount of resources is virtually unlimited [Pop et al. 2009]. 

In order to reduce cost, other techniques are required such as recovery with checkpointing and 

re-execution which are classified by Motaghi and Zarandi (2014) time-based redundancy. 

However these techniques introduce significant time overheads, where the non respect of 

time-constraint can lead to unschedulable solution. Therefore, the design of an efficient fault-

tolerant approach is required to meet time and cost constraints of embedded systems. 

Dynamic power/energy management is an active area of research in the design of embedded 

real-time systems. Extensive power management techniques [Tavana et al. 2014, Li et al. 

2011, Gupta 2004, Hu et al. 2016, Han et al. 2015] have been developed on energy 

minimization for real-time systems under a large diversity of system and task models 

[Mahmood et al. 2017, Wei et al. 2012]. Among these techniques, Dynamic Voltage and 

Frequency Scaling (DVFS) is one of the most popular and widely deployed schemes. Most 

modern processors, if not all, are equipped with DVFS capabilities. DVFS dynamically 

adjusts the supply voltage and working frequency of a process to reduce power consumption 

at the cost of extended circuit delay.  

The real-time scheduling on multiprocessor system with only the timing constraints has been 

identified as a NP-hard problem [Shin and Ramanathan 1994]. In addition of the two 

criteria: reliability and energy consumption makes the real-time scheduling problem even 

hard to study.  
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1.2. Contributions 

In this thesis, we will be interested in fault-tolerant scheduling with energy minimization of 

hard real-time tasks with precedence constraints in multiprocessor platform. Thus, the main 

contributions of this thesis are:   

 We design an efficient fault-tolerant scheduling approach that explores hardware 

resources and timing constraints. This approach combines two well-known policies: 

checkpointing with rollback and active replication. Replicas collaboration is 

introduced to tolerate spatially or temporally faults and satisfy critical task constraint. 

To the best of our knowledge, this is the first work introducing the idea of 

collaboration between replicas in active replication technique with checkpointing. The 

proposed approach classifies the real-time tasks into critical and noncritical ones, 

according to the utilization of the task. For the non critical task, we adopt 

checkpointing with rollback technique to tolerate multiple transient faults. Whereas 

for the critical task, we adopt active replication as it is the fault-tolerant method that 

explores hardware resources to meet timing constraints and provide high reliability 

even when deadlines are tight.  

 Based on the explained fault-tolerance approach, we have proposed a fault-tolerant 

scheduling algorithm SFTS which can tolerate K transient faults.  

 We investigate the energy minimization problem for fault-tolerant scheduling of hard 

real-time systems. We extend the proposed fault-tolerance approach to incorporate it 

with DVFS to exploit the released slack time for energy saving. DVFS is used during 

uniform checkpointing with rollback technique. However, with active replication, task 

replicas must be performed at the maximum frequency given the probability of failure 

is low.  

 An efficient fault-tolerant scheduling heuristic DVFS_FTS based on the Earliest-

Deadline-First (EDF) algorithm is presented to minimize energy consumption while 

tolerating K transient Faults. 

1.3. Thesis organization 

The rest of this dissertation is organized as follows:  
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Chapter 2 introduces the basic concepts of real-time system and embedded system. It 

presents their characteristics, architectures and the classification of real-time scheduling. 

Chapter 3 provides in the first part an overview of dependability characteristics (attributes, 

impairments and means) and the different classes of faults. The second part is dedicated to our 

principle aim: fault tolerance. We present their different techniques and the principle classes 

of redundancy in real-time systems (spatial redundancy and time-based redundancy). 

Chapter 4 provides an overview of related work on multiprocessor scheduling, fault 

tolerance, and energy consumption in embedded real-time systems.  

Chapters 5 and 6 are devoted to the main contributions of this dissertation 

Chapter 5 focuses on the choice of fault-tolerant mechanisms that ensure our system 

reliability. It starts with a general description of our system model (Application, Architecture, 

and fault model). Then, we concentrate on describing our fault tolerance approach based on 

active replication and uniform checkpointing with rollback. After, we exploit this approach in 

the first proposed fault-tolerant scheduling algorithm SFTS. Finally, simulation results are 

given to prove the performance of the proposed algorithm. 

Chapter 6 is dedicated to another challenge of real-time embedded systems: energy 

minimization. We extend the proposed fault-tolerance approach in chapter 5 to incorporate it 

with DVFS to achieve more energy saving. Then, we present the fault tolerant scheduling 

algorithm DVFS_FTS developed for reducing dynamic energy. Finally, Experiment results 

have shown that the proposed algorithm achieves a considerable amount of energy saving 

compared to others algorithms.  

Chapter 7 concludes the thesis by discussing the overall contribution of the research. In 

addition, it discusses limitations of the work and points to future research directions. 
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CHAPTER 2  

Real-Time Systems 

2.1. Introduction 

The distinguishing characteristic of a real-time system in comparison to a non-real-time 

system is the inclusion of timing requirements in its specification. That is, the correctness of a 

real-time system depends not only on logically correct segments of code that produce 

logically correct results, but also on executing the code segments and producing correct 

results within specific time frames. Thus, a real-time system is often said to possess dual 

notions of correctness, logical and temporal. 

In this chapter, we present first the basic concepts of real-time systems and their 

classification. Then, we provide classes of real-time scheduling. We focus in this thesis on 

real-time embedded systems. Finally, we describe some basic concepts pertain to embedded 

systems.   

2.2. Definition 

The Oxford dictionary defines real-time as “the actual time during which a process or event 

occurs”. In computer science, real-time systems are defined by Burns and Wellings (2001) 

“those systems in which the correctness of the system depends not only on the correctness of 

logical result of computation, but also on the time on which results are produced”. The 

validity of a real-time system depends not only on the results of the processing performed but 

also on the temporal aspect.  

Recently, the term real-time is widely used to describe many applications and computing 

systems that are somehow related to time, such as real-time trackers, gaming systems and 

information services. The following list contains certain examples of practical real-time 

applications: 

 Mobile and communication systems.  
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 Multimedia and entertainment systems: multimedia information is in the form of 

streaming audio and video.  

 Data distribution systems which notify users of important information in a short delay 

(few minutes or less). Such systems are found mainly in transport systems to inform 

passengers of accidents and schedule delays or changes.  

 General purpose computing such as in financial and banking systems.  

 Medical systems such as peacemakers and medical monitors of treatments or surgical 

procedures. 

 Industrial automation systems such as the ones found in factories to control and 

monitor production process. For example, sensors collect parameters periodically and 

send them to real-time controllers, which evaluate the parameters and modify 

processes when necessary. These systems can handle non-critical activities as in 

logging and surveillance.  

 General control management systems such as the ones found in avionic systems. Real-

time engine controllers are responsible of automatic navigation and detection of 

hardware malfunctions or damages through reading sensors and processing their 

parameters and react within an acceptable delay.  

 

 

 

 

 

Figure 2-1 Real-time system  

2.3. Classfication of real-time 

systems: 

Depending on the criticality of the timing constraints, three categories of real-time system can 

be distinguished: 
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2.3.1. Hard real-time system: 

The correctness of their outputs depends on respecting given timing constraints or 

catastrophic results occur. If such systems fail in performing their tasks within acceptable 

deadline margins, their results become useless and might lead to catastrophic consequences. 

It’s a system subject to strict timing constraints, that is to say for which the slightest temporal 

error can have catastrophic human or economic consequences. Air traffic control systems and 

nuclear station control systems are real-time strict. 

2.3.2. Soft real-time system: 

Soft real-time systems have flexible timing constraints and they perform less critical activities 

and tasks. The quality of services provided by soft real-time systems depends on providing 

results within a minimum delay. If such delay is not respected, the quality degrades but not 

the correctness of the execution or results. 

2.3.3. Mixed critical system: 

They are defined by [Saraswat et al. 2010] and [Izosimov 2008] the systems with tasks of 

different levels of time-criticality, for example running hard real-time and soft real-time tasks 

in the same system. 

2.4. Real-time task: 

A real-time task is a sequence of instructions that is the basic unit of a real-time system. The 

tasks perform inputs / outputs and calculations to control processes via a set of sensors and 

actuators, possibly all or nothing, for example set of tasks performing the speed controller of a 

car or the automatic control of a plane. 

2.4.1. Real-time task characteristics: 

A real-time application is composed of a set of n tasks denoted by  , where   

             . Generally, a real-time task is described by the following parameters (all these 

parameters are illustrated in Figure 2-2)  
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 Ri (Ready time or Release time): it is the time on which the task    can begin its 

execution; 

 STi (Start time), FTi (End time): are respectively the time on which the task    is 

executed on the processor also called the start time of execution and the time on which 

the task    finishes its execution also called the end time of execution; 

 RTi (Response time): it represents FTi -Ri; 

 WCRT (Worst Case Response time) Ci: which is an estimation of the longest possible 

execution time of any task   , i.e., the actual execution time of a task should never 

exceed its WCRT in any scenario. The evaluation of WCRT of tasks is very important 

for the reliability of real-time systems to be valid, the value of this parameter must not 

be overestimated too much, must be safe (never overestimated) and the pessimism of 

their estimations increases relatively to the criticality of the application [Qamhieh 

2015]; 

 Di (Deadline): which is the time interval in which each task executes with respect to 

its release time. In hard real-time systems, any task must always meet their deadline, 

whereas execution tardiness of task is accepted in soft real-time systems. Two types of 

deadlines exist: 

 Relative Di: the time interval between the start of the task and the completion of 

the real-time task is known as relative deadline. It is basically the time interval 

between arrival and corresponding deadline of the real-time task.  

 Absolute Di +Ri: the time within which execution of a task should be 

completed. 

 Li (Laxity): this is the largest time for which the scheduler can safely delay the task 

execution before running it without any interruption.  

 Ti (Period): which is the minimum inter-arrival time between two releases of the same 

task. 

 
 

 

 

 

 

 

 

Figure 2-2 Real-time task parameters 
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The processor utilization of task     is defined as the task’s processor usage and it is denoted 

by    
  

  
 . The utilization   of a task set   is the sum of utilization of its tasks, where 

     
 
    

2.4.2. States of real-time task  

The main objective of a real-time scheduler is to guarantee the correctness of the results while 

respecting the timing constraints of the tasks (no deadline miss).  

Based on the decisions of the scheduler, a real-time task can be in one of the following states:  

• Ready state: The task is activated and it is available for execution, but it is not 

currently selected by the scheduler to execute on a processor.  

• Running state: The task is assigned to a processor and it is actually executing.  

• Blocked state: if the task is waiting for an event to happen such as an I/O event, it 

remains blocked and cannot be scheduled until the event happens. Then the task 

moves to the ready state.  

The different states of tasks are shown in Figure 2-3. Moreover, a real-time scheduler controls 

the transitions between the ready and running states of tasks, but it has no control over the 

external events that block the execution of tasks. 

 

 

 

 

 

 

 

Figure 2-3 Different states of a real-time task [Qamhieh 2015] 
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2.4.3.1. Period task: 

A task     is called periodic if the event that conditions its activation occurs at regular intervals 

of time (period) Ti and each activation is called instance. 

2.4.3.2. Aperiodic task: 

The activation time is random and can not be anticipated, since its execution is determined by 

the occurrence of an internal event (for example the arrival of a message) or an external event 

(e.g. the requests of the operator). Anti-lock Braking System (ABS) in modern cars is a 

typical system that employs aperiodic real-time tasks. 

2.4.3.3. Sporadic task: 

It's a special case of aperiodic tasks where a minimum duration of time separates two 

successive activations. To take them into account, these tasks are often considered as periodic 

tasks [Kermia 2009] to apply the existing results of the periodic tasks. 

2.4.4. Precedence Constraints and Dependencies 

A dependency between two tasks     and     can be of two types: a precedence dependency 

and / or a data dependency. A precedence dependence between            means that the task     

cannot begin its execution until the task    has been completed. Precedence constraints are 

indirectly real-time constraints and we say that the task     is a predecessor of the task    and 

    is a successor of    [Forget 2011]. 

A data dependency between            indicates that the task     produces a data that is 

consumed by    . This dependence necessarily leads to precedence between the tasks. The 

tasks are said to be independent when they are defined only by their temporal parameters 

[Ndoye 2014]. 

The set of dependencies between the tasks can be modeled by a Directed Acyclic Graph DAG 

where the nodes represent the tasks and the arcs the dependencies between the tasks. An 

example of DAG is shown in the Figure 2-4. 
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Figure 2-4 Precedence constraints example 

In this thesis, we are interested in hard real-time systems with aperiodic dependant tasks. 

2.4.5. Makespan 

Reflects the time that elapses between the start date of the first executed task and the finish 

date of the last executed task. The goal is to develop algorithms which in addition to 

respecting other time constraints, minimize makespan [Lin and Liao 2008]. 

2.5. Real-time scheduling 

classification 

Real-time scheduling is defined as the process that defines the execution order of tasks on 

processor platforms. There are several classes of real-time scheduling algorithms, we can cite 

the following classification [Yahiyaoui 2013]: 

2.5.1. Uniprocessor/Multiprocessor: 

Real-time scheduling is said uniprocessor scheduling if the architecture has only one 

processor. If multiple processors are available, the scheduling is multiprocessors. 

2.5.2. Off-line/On-line: 

In off-line scheduling, the schedules for each task need to be determined in advance, therefore 

it requires prior knowledge of the characteristics of tasks. It only incurs little runtime 

overhead. In contrast, on-line scheduling calculates the schedules during runtime, hence it can 
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provide more flexibility to react to uncertainties of task characteristics at the cost of large 

runtime overhead. 

2.5.3. Preemptive/Non-Preemptive: 

A scheduling is preemptive if the execution of any task can be interrupted to requisition the 

processor for another more urgent or higher priority task. The scheduling is said to be non-

preemptive if, once started, the task being executed cannot be interrupted before the end of its 

execution. 

2.5.4. Static/Dynamic priorities: 

Most scheduling algorithms are priority-based: they assign priorities to the tasks in the system 

and these priorities are used to select a task for execution whenever scheduling decisions are 

made. A scheduling algorithm is called static priority algorithm if there is a unique priority 

associated with each task. e.g. of such algorithms is Rate Monotic (RM).  

A scheduling algorithm has dynamic priorities, if the priorities of the tasks are based on 

dynamic parameters (for example laxity). e.g. of such category is the Least Laxity First (LLF) 

scheduling algorithm. 

These classes of real-time systems are illustrated in Figure 2-5. 

2.5.5. Feasibility and optimality: 

A task is referred to as schedulable according to a given scheduling algorithm if its worst-

case response time under that scheduling algorithm is less than or equal to its deadline. 

Similarly, a task set is referred to as schedulable according to a given scheduling algorithm if 

all of its tasks are schedulable.  

A task set is said to be feasible, if there is at least one scheduling algorithm that can schedule 

the task set while meeting all task deadlines [Legout 2014]. 

Additionally, a scheduling algorithm is referred as optimal if it can schedule all of the task 

sets that can be scheduled by any other algorithm. In other words, all of the feasible task sets 

[Zahaf 2016].  
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Figure 2-5 Classification of real-time scheduling 

2.6. Embedded Systems 

In this thesis the applications that interest us are real-time and also embedded. This forces us 

to take into account the properties of these systems in the work that we carry out. 

2.6.1. Definition1 

An embedded system can be broadly defined as a device that contains tightly coupled 

hardware and software components to perform a single function, forms part of a larger 

system, is not intended to be independently programmable by the user, and is expected to 

work with minimal or no human interaction [Jimenez 2014]. 

2.6.2. Definition2 

An embedded system is a combination of computer hardware and software, and perhaps 

additional mechanical or other parts, designed to perform a specific function. 

Most embedded systems interact directly with processes or the environment, making 

decisions on the fly, based on their inputs. This makes necessary that the system must be 

reactive, responding in real-time to process inputs to ensure proper operation. Besides, these 
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systems operate in constrained environments where memory, computing power, and power 

supply are limited. Moreover, production requirements, 

2.6.3. Application of embedded systems 

Embedded systems are used in different applications like automobiles, telecommunications, 

smart cards, missiles, satellites, computer networking and digital consumer electronics (see 

Figure 2-6). 

 

Figure 2-6 Examples of embedded systems 

2.6.4. Embedded system architecture 

It consists of a hardware part, which interacts with environment and formed by a set of 

physical elements: processor(s), memory(s) and inputs/outputs. At the same time, a specific 

software part which consists of programs and a power source. 

Embedded systems sometimes require the use of several processors which can be of different 

types. A first classification of architectures for embedded systems depends on the number of 
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processors: single-processor or multi-processor architecture. There are different classifications 

for multiprocessor architectures: 

Homogeneous / Heterogeneous in relation to the nature of the processors available to the 

architecture: 

 Homogeneous: In this case the processors are identical .i.e. they are interchangeable 

and they have the same computing capacity; 

 Heterogeneous: The processors are either independent .i.e. processors are not 

intended to perform the same tasks or uniform .i.e. the processors perform the same 

tasks but each processor has its own computational capacity. 

Homogeneous / Heterogeneous depending on the nature of communications between 

processors: 

 Homogeneous: If the communication costs between each pair of processors in the 

architecture are always the same; 

 Heterogeneous: If the communication costs between processors vary from one pair of 

processors to another. 

Parallel / Distributed according to the type of memory available to the architecture: 

 Parallel: This architecture model corresponds to a set of processors communicating 

by shared memory (see Figure 2-7); 

  

 

 

 

Figure 2-7 Parallel architecture 

 Distributed: It corresponds to a set of distributed memory processors communicating 

by messages (see Figure 2-8). 

 

 

 

 

Figure 2-8 Distributed architecture 
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As represented in Figure 2-9, multiprocessor architectures are often represented by a graph 

where the vertices are the processors. If an arc connects two vertices, this means that these 

two vertices can communicate directly through the communication medium (bus, memory ...). 

 

 

 

 

 

Figure 2-9 Example of multiprocessor architecture 

2.6.5. Characteristics of Embedded Systems 

The design of an embedded system must respect a certain number of characteristics, we list 

below the most important: 

 Must be dependable:  

 Reliability: R(t) = Probability of system working correctly provided that is was 

working at t=0.  

 Maintainability: M(d) = Probability of system working correctly d time units 

after error occurred.  

 Availability: Probability of system working at time t  

 Safety: No harm to be caused. 

 Security: Confidential and authentic communication. 

 Must be efficient: 

 Energy efficient. 

 Code-size efficient (especially for systems on a chip). 

 Run-time efficient. 

 Weight efficient. 

 Cost efficient. 

 Many Embedded System must meet real-time constraints:   
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 A real-time system must react to stimuli from the controlled object (or the 

operator) within the time interval dictated by the environment.  

 For real-time systems, right answers arriving too late (or even too early) are 

wrong. 

2.7. Conclusion 

We have presented in this chapter real-time and embedded systems, their characteristics, 

application, and classification. In this thesis, we have considered critical real-time systems, 

i.e. those which must satisfy the time constraints to prevent the system from the various 

possible disasters. As the main characteristic of these systems is to be reliable, we will present 

in the following chapter the basic concepts of fault tolerance and dependability. 
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CHAPTER 3  

Dependability and Fault 

Tolerance 

3.1. Introduction 

Fault tolerance is the ability of a system to continue performing its intended function in spite 

of faults. In a broad sense, fault tolerance is associated with reliability, with successful 

operation, and with the absence of breakdowns. A fault-tolerant system should be able to 

handle faults in individual hardware or software components, power failures or other kinds of 

unexpected disasters and still meet its specification. The ultimate goal of fault tolerance is the 

development of a dependable system. 

The first part of this chapter begins by defining what dependability is. Then, we describe the 

basic concepts in the field of dependability (attributes, impairments and means) and identify 

the different classes of faults. 

The second part is dedicated to our principle objective: fault tolerance. We present their 

different techniques and the principle classes of redundancy in real-time systems (spatial 

redundancy and time-based redundancy). 

3.2. Dependability 

Dependability is the ability of a system to deliver its intended level of service to its users 

[Krakowiak 2004]. As computer systems become relied upon by society more and more, the 

dependability of these systems becomes a critical issue. In the next, we present three 

characteristics of dependability as shown in Figure 3-1: attributes, impairments and means.  
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Figure 3-1 Dependability characteristics 

3.2.1. Dependability attributes: 

The attributes of dependability express the properties which are expected from a system: 

 Reliability: The ability of the system to deliver its service without interruption. 

 Safety: The ability of the system to perform its functions correctly or to discontinue its 

function in a safe manner. 

 Availability: The proportion of time which system is able to deliver its intended level 

of service. 

 Confidentiality: The absence of unauthorized disclosure of information. 

 Integrity: The absence of inappropriate alterations to information leads to integrity 

 Maintainability: The ability to undergo modifications and repairs. 
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3.2.2. Dependability impairments: 

Dependability impairments are usually defined in terms of faults, errors, failures which are 

linked as illustrated in Figure 3-2. A common feature of the three terms is that they give us a 

message that something went wrong. A difference is that, in case of a fault, the problem 

occurred on the physical level; in case of an error, the problem occurred on the 

computational level; in case of a failure, the problem occurred on a system level. 

 

 

Figure 3-2 Dependability impairments 

3.2.2.1. Fault:  

A fault is a physical defect, or flaw that occurs in some hardware or software component. 

Examples are short-circuit between two adjacent interconnects, broken pin, or a software bug.  

Classes of faults 

As shown in Figure 3-3, the work done by [Avizienis et al. 2004] classifies all faults 

according to eight basic viewpoints. Each of these eight classes is called an elementary fault 

class.  

Classification According to Phase of Creation or Occurrence  

The lifecycle of a system consists of a development phase and a use phase. The development 

phase involves all activities that lead to the system being ready to deliver its service for the 

first time, from the conception of an initial idea, to a specification, to a design, to the 

manufacturing, and to the final deployment. The use phase involves everything that happens 

after the system has been deployed and consists of alternating periods of service delivery, 

service outage and service shutdown (an intentional and authorized interruption of the 

service). Faults can be introduced into a system during either phase. Faults introduced during 

the development phase are called development faults. Faults introduced during the use phase 

are called operational faults.  

Classification According to System Boundaries  

A system is separated from its environment by a common frontier called the system boundary. 

Based on this boundary, faults can be classified according to whether they originate within it 
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or outside of it. Faults originating within the system boundary are called internal faults. Faults 

originating outside of it are called external faults. What exactly is an internal or external fault 

therefore depends on where we trace the system boundary. The physical deterioration of a 

component would be an example of an internal fault. The failure of a cooling system that is 

part of the environment, and whose purpose is to prevent overheating of the system, would be 

an example of an external fault.  

Classification According to the Phenomenological Cause  

Another way to classify faults is whether they can be attributed to people or whether they are 

due to natural phenomena. Using this criterion, we distinguish between human-made faults, 

which are those for which we can blame a person, and natural faults, which are those for 

which we will have to blame natural phenomena. 

Classification According to Dimension 

The dimension of a fault refers to whether it affects hardware or software. In the first case we 

talk about hardware faults; in the second, we talk about software faults. Examples of hardware 

faults include the deterioration of physical parts, loose connectors, broken wires, and 

manufacturing defects. Examples of software faults include typos in source code and 

incorrectly implemented functions. 

Classification According to Objective  

Human-made faults, which we saw a moment ago, can be classified according to their 

objective. In that case we distinguish between malicious and non-malicious faults. Malicious 

faults are those that are introduced with the objective to cause harm to the system or its 

environment. Non-malicious faults, unsurprisingly, are those introduced without the intent to 

cause harm. Examples of malicious faults include Trojan horses, trapdoors, viruses, worms, 

zombies, and wiretapping. Examples of non-malicious faults include any honest mistake 

when designing, deploying or using a system.  

Classification According to Intent  

Another way of classifying human-made faults is according to their intent. Here we 

distinguish between deliberate faults and non-deliberate faults. To decide whether a fault is 

deliberate or non-deliberate, we basically have to ask the person that just introduced the fault 

“did you do that on purpose?”. If the answer is yes, we have a deliberate fault; otherwise, we 

have a non-deliberate fault. An example is when a designer purposely chooses not to add any 

electromagnetic shielding to reduce the weight or cost of a system. Depending on the 
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electromagnetic harshness of the environment where the system needs to operate, this may be 

a fault 

Classification According to Capability  

Avižienis et al. 2004 also classify human-made faults according to the capability (or 

competence) of the person introducing the fault. Using this criterion we distinguish between 

accidental faults and incompetence faults. Accidental faults are those introduced 

inadvertently, presumably due to a lack of attention and not due to a lack of skills; whereas 

incompetence faults are those introduced due to a lack of skills.  

Classification According to Persistence  

Finally, Avizienis et al. (2004) classify faults according to their persistence: faults can either 

be permanent faults, meaning that once present, they do not disappear again without external 

interventions such as repairs; or they can be transient faults, meaning that they disappear 

after some time. An example of a permanent fault is a deteriorated component. An example of 

a transient fault is an electromagnetic interference. 

3.2.2.2. Error:  

An error is a deviation from correctness or accuracy in computation, which occurs as a result 

of a fault. Errors are usually associated with incorrect values in the system state. For example, 

a circuit or a program computed an incorrect value, an incorrect information was received 

while transmitting data.  

3.2.2.3. Failure:  

A failure is a non-performance of some action which is due or expected. A system is said to 

have a failure if the service it delivers to the user deviates from compliance with the system 

specification for a specified period of time. A system may fail either because it does not act in 

accordance with the specification, or because the specification did not adequately describe its 

function.  
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Figure 3-3 Fault classes [Avizienis et al. 2004] 

3.2.3. Dependability means: 

Dependability means are the methods and techniques enabling the development of a 

dependable system. Fault tolerance, which is the subject of this thesis, is one of such methods. 
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It is normally used in a combination with other methods to attain dependability, such as fault 

prevention, fault removal and fault forecasting. 

3.2.3.1. Fault prevention: 

Fault prevention is attained by quality control techniques employed during the design and 

manufacturing of hardware and software. They include structured programming, information 

hiding, modularization, etc., for software, and rigorous design rules for hardware.  

3.2.3.2. Fault tolerance: 

Fault tolerance is intended to preserve the delivery of correct service in the presence of active 

faults. Fault tolerance is achieved by using some kind of redundancy. 

3.2.3.3. Fault removal: 

Fault removal is performed both during the development phase, and during the operational 

life of a system. Fault removal during the development phase of a system life-cycle consists 

of three steps: verification, diagnosis, correction. Fault removal during the operational life 

of a system is corrective or preventive maintenance. Corrective maintenance is aimed at 

removing faults that have produced one or more errors and have been reported, while 

preventive maintenance is aimed to uncover and remove faults before they might cause 

errors during normal operation. 

3.2.3.4. Fault forecasting: 

Fault forecasting is conducted by performing an evaluation of the system behavior with 

respect to fault occurrence or activation. Evaluation has two aspects:  

 Qualitative or ordinal evaluation, which aims to identify, classify, rank the failure 

modes, or the event combinations (component failures or environmental conditions) 

that would lead to system failures,  

 Quantitative or probabilistic evaluation, which aims to evaluate in terms of 

probabilities the extent to which some of the attributes of dependability are satisfied; 

those attributes are then viewed as measures of dependability. 
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The main objective of this dissertation is fault tolerance in real-time embedded systems. 

Therefore, the next section elaborates more on fault tolerance in general, and the specific 

techniques used in this thesis in particular. 

3.3. Fault tolerance: 

Whatever precautions are taken, the occurrence of faults is inevitable (human error, malicious 

intent, aging of equipment, natural disaster, etc.). This does not mean that one should not try 

to prevent or eliminate faults, but the measures taken can only reduce the likelihood of their 

occurrence. Several techniques of fault tolerance have been proposed, they are all based on 

redundancy. In the next, we first present fault tolerance techniques and then we describe the 

different types of redundancy. 

3.3.1. Fault tolerance techniques 

The goal of fault tolerance is to provide a correct system service in spite of faults. As shown 

in Figure 3-4, Fault tolerance is carried out by error processing and by fault treatment 

[Derasevic 2018]. Error processing is aimed at removing errors from the computational state, 

if possible before failure occurrence; fault treatment is aimed at preventing faults from being 

activated again. 

3.3.1.1. Error processing  

May be realized by using the following three primitives [Laprie 1995]:  

 Error detection: It is done by identifying the erroneous state before replacing it with 

an error-free one 

 Error recovery: It is done by restoring an error-free state starting from the erroneous 

state. This can be achieved using two different approaches: 

 Backward recovery is done by restoring the system to a prior error-free state using 

the pre-saved points in time, called the recovery points (checkpoints) that were 

established before the error has occurred.  
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 Forward recovery is done by transforming an erroneous state with a new state in 

which the system may resume to provide its service, but possibly in a degraded 

mode. 

 Error compensation: It is done by employing enough redundancy to allow the system 

to provide its service in spite of the erroneous internal state. 

3.3.1.2. Fault treatment  

Is accomplished by the execution of two subsequent steps. The first step is called fault 

diagnosis and it involves discovering what are the causes of errors covering their location and 

nature. The next step is called fault passivation and its aim is to realize the prime goal of fault 

treatment which is to prevent faults from causing any further errors, i.e. to passivate them. 

This step is accomplished by excluding the identified faulty components from the rest of the 

system execution. If this exclusion causes the system not to be able to preserve the delivery of 

intended service, then a reconfiguration of the system might be realized [Derasevic 2018]. 

 

Figure 3-4 Fault tolerance techniques 

3.3.2. Error detection techniques 

In order to achieve fault tolerance, a first requirement is that faults have to be detected. 

Researchers have proposed several error detection techniques, including watchdogs, 

assertions, signatures, duplication, and memory protection codes.  
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Signatures [Oh et al. 2002a, Nicolescu et al. 2004]: Are among the most powerful error 

detection techniques. In this technique, a set of logic operations can be assigned with 

precomputed “check symbols” (or “checksum”) that indicate whether a fault has happened 

during those logic operations. Signatures can be implemented either in hardware, as a parallel 

test unit, or in software. Both hardware and software signatures can be systematically applied 

without knowledge of implementation details.  

Watchdogs: In the case of watchdogs [Benso et al. 2003, Kalla 2004, Bachir 2019], program 

flow or transmitted data is periodically checked for the presence of faults. The simplest 

watchdog schema, watchdog timer, monitors the execution time of processes, whether it 

exceeds a certain limit.  

Assertions [Peti et al. 2005]: Are an application-level error detection technique, where logical 

test statements indicate erroneous program behavior (for example, with an “if” statement: if 

not then). The logical statements can be either directly inserted into the program or can be 

implemented in an external test mechanism. In contrast to watchdogs, assertions are purely 

application-specific and require extensive knowledge of the application details. However, 

assertions are able to provide much higher error coverage than watchdogs.  

Duplication: If the results produced by duplicated entities are different, then this indicates the 

presence of a fault. Examples of duplicated entities are duplicated instructions [Oh et al. 

2002b], procedure calls [Oh et al. 2002c], functions and whole processes. Duplication is 

usually applied on top of other error detection techniques to increase error coverage.  

Other error detection techniques: There are several other error detection techniques, for 

example, Memory protection codes, transistor-level current monitoring, or the widely used 

parity-bit check. Therefore, several error detection techniques introduce an error detection 

overhead, which is the time needed for detecting faults. In our work, unless other specified, 

we account the error-detection overhead in the worst-case execution time of tasks. 

3.3.3. Redundancy for fault tolerance 

As defined by [Zammali 2016], fault tolerance aims to avoid failures despite the faults 

present, and is essentially based on redundancy. Redundancy is when you create multiple 

copies of a component (hardware, software, data, etc.) or run so that the copy performs the 

same function, service, or role as the original component (or execution). 
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According to [Dubrova 2013, Motaghi and Zarandi 2014, Zhang and Chakrabarty 2006, 

Izosim et al, 2008] two families of redundancy are used in fault tolerant real-time systems 

(Figure 3-5): the family of spatial redundancy and the family of temporal redundancy 

(time-based redundancy). 

Figure 3-5 Different types of redundancy in real-time systems 

3.3.3.1. Time-based redundancy methods: 

In time-redundancy method additional time is spent to recompute a failed computation on the 

same hardware. This scheme works well for the transient faults as they are not likely to repeat 

during recomputation [Nikolov 2015]. 

RE-EXECUTION 

The simplest fault tolerance technique to recover from fault occurrences is re-execution 

[Izosim 2009]. With re-execution, a task is executed again if affected by faults. The time 

needed for the detection of faults is accounted for by error detection overhead. When a task is 

re-executed after a fault has been detected, the system restores all initial inputs of that task. 

The task re-execution operation requires some time for this, which is captured by the recovery 

overhead. In order to be restored, the initial inputs to a task have to be stored before the 

process is executed for first time. 

ROLLBACK RECOVERY WITH CHECKPOINTING 

The time needed for re-execution can be reduced with more complex fault tolerance 

techniques such as rollback recovery with checkpointing [Izosim et al. 2008]. The main 
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principle of this technique is to restore the last non-faulty state of the failing task. The last 

non-faulty state, or checkpoint, has to be saved in advance in the static memory and will be 

restored if the task fails.  

3.3.3.2. Spatial redundancy methods: 

Spatial redundancy is mainly deployed in safety domains like avionics [Runge 2012]. It 

tolerates both permanent and transient faults and has the advantage of simplified fault 

detection. However, it comes with high design and production cost [Huang et al. 2011]. 

Active redundancy: All replicas of the same task are executed simultaneously on 

different processors with the objective of providing the same result. This strategy avoids the 

use of costly checkpoints. However, it requires that result execution be deterministic to ensure 

consistency. 

Passive redundancy: Also known as primary-backup. Only one replica, called 

primary, makes all the decisions, and sends updates to the other replicas, called backups, 

which then apply the changes.  

Semi active redundancy (Hybrid redundancy): Combines the 

advantages of static and dynamic redundancy where one part is redundant in an active way 

and the other part is redundant in a passive way. Hybrid redundancy is based on error 

detection and recovery techniques that allow the system to be reconfigured in the event of a 

fault. It relies on the fault masking technique to prevent the production of incorrect results. 

For example, to tolerate a permanent fault of a processor or a communication medium, active 

redundancy is used for the software components of the algorithm and passive redundancy for 

the communications [Kalla 2004]. 

 

 

 

 

 

Figure 3-6 Active redundancy b) and Passive redundancy c) 
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In Figure 3-6 we illustrate active redundancy and passive redundancy. We consider task    

with the worst-case execution time of 60 ms Figure 3-6a. The task   will be replicated on two 

processors P1 and P2. Which is enough to tolerate a single fault. In the case of active 

replication, illustrated in Figure 3-6b, replicas   
  and   

  are executed in parallel, which, in this 

case, improves system performance. However, active redundancy occupies more resources 

compared to passive redundancy because   
  and   

  have to run even if there is no fault, as 

shown in Figure 3-6b1. In the case of primary-backup, illustrated in Figure 3-6c, the “backup” 

replica   
  is activated only if a fault occurs in   

 . However, if faults occur, primary-backup 

takes more time to complete compared to active redundancy as shown in Figure 3-6c2, 

compared to Figure 3-6b2. 

Comparison between the three approaches of 

redundancy: 

The Table 3-1 compares the three approaches of redundancy: active, passive and hybrid 

according to the criteria of response time, error handling and recovery after failure.  

Table 3-1. Comparison between three approaches of redundancy 

Comparison 
Criterion 

Active redundancy Passive redundancy Hybrid redundancy 

Response time Rapid response time Better response time 

in the absence of 

faults.  

The failure of the 

primary replica can 

significantly increase 

response time. 

Response time 

depends on the level 

of active replication 

versus passive 

replication. 

Error handling With compensation With recovery With compensation 

and recovery 

Recovery after 

failure 

Immediate Not immediate Not immediate 

3.4. Conclusion 

The aim of this chapter was been to introduce the concept of dependability in real-time 

systems. In accomplishing this goal, we have introduced the main notions about fault 

tolerance in these systems. We have presented different classes of faults, errors, and failures. 
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We have also introduced fault tolerance techniques and more specifically the different classes 

of redundancy deployed in the fault tolerant systems. 

In the next chapter, we provide an overview of related work on fault tolerance approaches and 

real-time scheduling techniques with the joint consideration of energy efficiency and fault 

tolerance.  
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CHAPTER 4  

Literature Review 

4.1. Introduction 

As explained in Chapter 2, a real-time system is responsible for delivering logically correct 

computations within the predefined deadlines. The violations of task deadlines in real-time 

systems can potentially lead to catastrophical consequences [Han 2015]. To guarantee the 

timing constraints, real-time scheduling that primarily determines the resource allocation and 

management has been widely adopted as one of the most effective techniques. In general, 

real-time scheduling determines when, where, and how to execute a set of real-time tasks such 

that all deadlines can be met and other design metrics, e.g. power consumption and reliability 

can be optimized. As presented also in chapter 2, Real-time scheduling can be classified into 

various categories from different perspectives (architecture, severity of task deadlines, and 

scheduling mechanisms). 

This chapter presents at first a state of the art on works realized on real-time scheduling. 

Then, we discuss the work done on fault tolerant scheduling with consideration of transient 

and permanent faults. Finally, we present some related researches that have study the 

interaction between energy and fault tolerance techniques in real-time systems. 

4.2. Real-time uniprocessor 

scheduling 

In this section, we present the uniprocessor scheduling algorithms and their corresponding 

schedulability tests. 
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4.2.1. Rate Monotic RM 

Rate Monotonic scheduling algorithm is a fixed task priority algorithm. It assigns a priority 

according to the task’s period: the shorter period is the higher priority. 

Liu and Layland (1973) have given the necessary and sufficient condition of schedulability: a 

real-time system composed of n tasks can be scheduled by Rate Monotic if the following 

condition is satisfied: 

   
  

  

 
        

 

                                                                                                         (4.1) 

Example 1: Let   a set of 2 periodic tasks with implicit deadlines (see Table 4-1). 

Table 4-1. Example of Rate Monotic: Task set details 

  Ci Ti 

   3 10 

   2 15 

 

Figure 4-1 Example of scheduling with Rate Monotic 

The total task set utilization is: 

  
 

  
 

 

  
      

The utilization is less than 0.82, thus the task set is schedulable under RM (Figure 4-1).  

4.2.2. Deadline Monotic DM 

Deadline Monotonic is a scheduling algorithm from a fixed task priority scheduling class. 

With Deadline Monotonic, task priorities are assigned according to their deadlines; the 

highest priority is assigned to the task with the shortest deadline. In contrary of Rate 

Monotonic, DM considers tasks with constrained deadlines. 

The sufficient condition of schedulability is inspired by the sufficient condition of Liu and 

Layland as follows: a real-time system composed of n tasks can be scheduled by DM if the 

following condition is satisfied: 
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                                                                                                         (4.2) 

Example 2: Let   a set of 3 periodic tasks with timing characteristics given in Table 4-2. 

Table 4-2. Example of Deadline Monotic: Task set details 

  Ci Ti Di 

   5 10 9 

   4 15 7 

   6 30 1 

 

Figure 4-2 Example of scheduling with DM 

We can see in Figure 4-2 that the worst case response time of    is greater than it’s deadline. 

Thus    is not schedulable. 

4.2.3. Earliest Deadline First EDF 

Earliest Deadline First (EDF) is a dynamic priority scheduling algorithm. It selects a task 

according to its deadline such that a task with earliest deadline has higher priority than others. 

It means that the priority of a task is inversely proportional to its absolute deadline. Since 

absolute deadline of a task depends on the current instant of time so every instant is a 

scheduling event in EDF as the deadline of the task changes with time. EDF is an optimal 

scheduling algorithm on preemptive uniprocessor. 

For implicit deadline tasks, EDF has a utilization bound of 100%. Thus, an exact 

schedulability test can be driven based on utilization as following if all deadlines are implicit: 

   
  

  

 
                                                                                                                          (4.3) 

For constrained deadline tasks, a lot of sufficient tests were driven. The response time based 

analysis is hard to perform since that the critical moment does not arrive at time 0 [Zahaf 

2016]. 
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Example 3: 

Figure 4-3 shows the simulation of scheduling the task set of example 2. As we can see the 

task set is not schedulable under EDF, and that at moments t = 19 and t = 22 deadlines are 

missed. 

 

Figure 4-3 Example of scheduling with EDF 

4.3. Real-time multiprocessor 

scheduling 

The problem of real-time scheduling applications on multiprocessor systems is more 

complicated and challenging than real-time scheduling on uniprocessor systems. It is because 

there are more decisions to be taken in the case of multiprocessor scheduling and more issues 

to be considered. We can summarize these issues as follows: 

i. Allocating tasks to processors; 

ii. Assigning tasks priorities to be used by the scheduler; 

iii. Tasks migration between processors. 

In the next section, we present the approaches solving these problems and the related work 

carried out with each approach. 

4.3.1. Related work on real-time multiprocessor 

scheduling 

A lot of work concerning real-time multiprocessor scheduling has been proposed. Mainly, two 

approaches had been followed: 
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4.3.1.1. Partitioned scheduling: 

Partitioning tasks among processors is transforming the problem of allocation to m processors 

to m uniprocessor problems. Most partitioning algorithms pass through three steps [Zahaf 

2016]:  

1. Sort tasks in order of some criteria (period, deadline, density, utilization, etc.); 

2. Assign tasks in the order of step 1 to a processor where it will always meet all 

deadlines when assigned to that processor, and it does not cause another previously 

assigned task to miss a deadline. If a task verifies these conditions, the task fits on this 

processor. This step is performed using schedulability tests; 

3. After each task has been assigned to a processor, we use the well-known uniprocessor 

scheduling algorithm on each processor to schedule the processor’s respective tasks.  

The problem of allocation tasks has been shown to be NP-hard [Leung and Whitehead 1982] 

and requires heuristics. Different allocation schemes such as traditional Bin-packing 

heuristics: First Fit (FF), Best Fit (BF), and Worst Fit (WF) have been evaluated in [Lieu 

2000], and how the ordering of tasks can affect the task allocation results is investigated in 

[Oh and Son 1995]. Later, the characteristics of real-time tasks were exploited to develop 

more effective task partitioning schemes in [Fan et al. 2014, Fan and Quan 2011]. For 

example, as shown in [Fan and Quan 2011], by grouping harmonic tasks into the same core, 

system schedulability can be greatly enhanced. On the other hand, partitioning of dynamic-

priority periodic tasks on multiprocessor is explored in [Baruah 2007a, Baruah 2013]. Simple 

heuristics such as BF, FF, and WF have been evaluated, and extensions to these approaches 

are proposed. As shown in [Baruah 2013], ordering tasks in decreasing utilization can 

significantly improve system schedulability. 

4.3.1.2. Global scheduling: 

In contrast to partitioned scheduling, the global scheduling allows task migration. All 

processors have the same ready-queue and the m highest priority tasks are run at the same 

time on m processors. Global scheduling has several advantages compared to partitioned 

scheduling because it allows fewer context switches/preemption. This is because the 

scheduler will only preempt a task when there are no processors idle. When a task executes 

for less than its worst-case execution time, the slack time of the task can be utilized by all 
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other tasks, not just those on the same processor. Figure 4-4 shows partitioned scheduling in 

the face of Global Scheduling 

A semi-partitioned scheduling is a combination of the two previous approaches, in which 

most tasks are fixed to specific processors to reduce number of migration, while a few tasks 

migrate across processors to improve processor utilization [Qamhieh 2015]. 

 

          

 

          
 

      

 

          

 

Figure 4-4 Partitioned Scheduling vs Global Scheduling [Zahaf 2016] 

There is a great number of works on global scheduling. PFair (Proportionate Fairness) is an 

optimal multiprocessor scheduling algorithm which was introduced by Baruah et al. (1996) 

for periodic and sporadic global scheduling of implicit deadline task sets. PFair utilizes the 

full capacity of processors by scheduling successfully any task set whose utilization is not 

greater than the number of processors. A new schedulability test for global scheduling of 

fixed-priority tasks with arbitrary deadlines on identical multi-core processors has been 

proposed in [Baruah et al. 2007b].  

Finally, the effects of semi-partitioning scheduling on improving system schedulability are 

examined in [Fan and Quan 2012]. By allowing a limited number of tasks to be split and 

assigned to different cores, the utilization bound of the system is increased, and hence the 

system schedulability can be improved. 
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4.4. Related work on fault tolerant 

real-time scheduling 

In the literature, we can identify several advanced fault tolerant techniques that are very 

effective in guaranteeing the schedulability of hard real-time systems in the presence of faults.  

Processor faults can be largely classified as transient or permanent. A transient fault happens 

for a short period time and then disappears without caused physical damage to the processor. 

On the contrary, a permanent fault disables a processor permanently. Many different 

replication methods were explored to make tradeoffs between fault tolerance and system 

resource usage, e.g. the number of processors required for a feasible schedule. 

Chen et al. (2007) introduced several replication schemes to tolerate a fixed number of faults 

for periodic real-time tasks on homogeneous multiprocessor systems. Two problems are 

studied in the paper. One is to minimize the maximum utilization in a system with a specified 

number of processors. The other is to minimize the number of processors required for 

deriving a feasible schedule. In that work, only active replication is considered. Later on, two 

heuristics referred to R-BFD (Reliable Best-Fit Decreasing) and R-BATCH (Reliable Bin-

packing Algorithm for Tasks with Cold standby and Hot standby) were introduced in [Kim et 

al. 2010]. They consider a fail-stop failure model. The Cold standby and Hot standby are in 

fact the active replication and passive replication, respectively. Zhang et al. (2014) proposed 

two fault-tolerant scheduling methods on multiprocessor systems via both active and passive 

backup copies to tolerate at most one processor permanent failure. The first method uses the 

integer linear programming method to obtain the optimal results. The second one is a heuristic 

algorithm which can achieve close to optimal results within polynomial running time.  

Significant research has been presented to deal with transient faults. These faults occur more 

frequently than permanent faults in modern computing systems. While transient faults can 

occur in both uniprocessor and multiprocessor platforms, a part of current researches are 

focused on uniprocessor platforms [Han et al. 2003, Aydin 2007, Zhang et al. 2003] and the 

other part on multiprocessor platforms. Han et al. (2003) proposed a combined primary and 

backup scheme to tolerate at least one transient fault. The backup is assumed to be fault-free 

and of lower quality yield. The timing constraint is guaranteed by scheduling the backups 

with higher priority at the cost of quality loss. In [Zhang et al. 2003], the schedulability 

analysis for fixed-priority tasks with checkpoints was investigated, and an effective 
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checkpointing scheme was proposed. Subsequently, in [Aydin 2007], a dynamic 

programming approach was proposed to evaluate the feasibility of aperiodic task sets under 

preemptive Earliest Deadline First (EDF) scheduling given a fault-tolerance constraint, i.e 

maximum K fault. For multiprocessor systems, Pop et al. (2009) proposed a more 

comprehensive approach to the synthesis of fault tolerant schedule for applications on 

heterogeneous distributed systems. They used the combination of checkpointing and active 

replication to deal with the fault-tolerance problem. A meta-heuristic (Tabu search) was 

constructed to decide the fault-tolerance policy, the placement of checkpoints, and the 

mapping of tasks to processors with the aim of minimizing the overall schedule length. 

Similar analysis was conducted in [Huang et al. 2011] where hardware replication and 

software re-execution were employed to take both permanent and transient faults. All these 

works do not consider energy consumption as a design constraint, which makes them 

insufficient for energy-constrained real-time systems. Table 4-3 provides the summary of 

related work on fault tolerant scheduling. 

Table 4-3. Summary of fault-tolerant scheduling 

Types of faults Fault tolerance 

techniques 

Platform References 

Permanent and 

transient  

Active replication and re-

execution 

 

Homogeneous 

multiprocessor 

Huang et al. 2011 

Passive replication Samal et al 2014 

 

 

Permanent 

faults 

 

 

 

Active replication 

 

Homogeneous 

multiprocessor 

Chen et al. (2007), 

Hashimoto et al. 2002 

Heterogeneous 

multiprocessor 

Girault et al. 2004, Bachir 

2019 

Passive replication 

 

Homogeneous 

multiprocessor 

 Zarinzad et al. 2008 

Heterogeneous 

multiprocessor 

Qin and Jiang 2006, Oh and 

Son 1997  

Active and passive Homogeneous Kim et al. 2010, Zhang et al. 



Chapter 4                                                                                                          Literature Review  

40 

 

replication multiprocessor 2014 

 

 

 

Transient faults 

Checkpointing uniprocessor Zhang et al. 2003, Aydin 

2007 

multiprocessor Han et al. 2015, Izosimov et 

al. 2012, Wei et al. 2012 

Active replication Heterogeneous 

multiprocessor 

Girault and Kalla 2009 

Active replication and 

checkpointing 

Heterogeneous 

multiprocessor 

Pop et al. 2009 

Homgeneous 

multiprocessor 

Motaghi and Zarandi 2014 

Active and passive 

replication 

uniprocessor Han et al. 2003 

4.5. Related work on fault-tolerant 

scheduling with energy 

minimization 

Researchers in both academia and industry have resorted to various techniques to minimize 

energy consumption in computing systems. Among these, Dynamic Voltage and Frequency 

Scaling has emerged as the most effective technique for energy reduction [Aydin et al. 2004].  

DVFS scheduling reduces the supply voltage and frequency when possible, which result on 

conserving energy consumption. However, one consequence of applying DVFS is the 

extended circuit delay which may undermine the schedulablity of real-time system [Han 

2015]. As a result, a great number of techniques studying the problem of minimizing the 

energy consumption with respect of timing constraints are proposed in the literature [Aydin et 

al. 2004, Quan and Niu 2004, Zahaf 2016, Digalwar 2016, Hu et al. 2016]. 
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Also, extensive researches have analyzed the interplay of energy trade-offs and fault-tolerance 

techniques [Ejlali et al. 2006, Melhem et al. 2004, Zhang and Chackrabarty 2006]. 

Redundancy-based fault-tolerance techniques (such as re-execution checkpointing and 

replication) and DVFS-based low-power techniques compete for the available slack. The 

interplay of power management and fault recovery has been addressed in [Melhem et al. 

2004], where checkpointing policies were evaluated with respect to energy. In [Ejlali et al. 

2006], time redundancy was used in conjunction with information redundancy, which does 

not compete with DVFS for slack, to tolerate transient faults. In [Zhang and chackrabaty 

2006], fault tolerance and dynamic power management were studied, and rollback recovery 

with checkpointing was used to tolerate multiple transient faults in distributed systems. 

Addressing energy and reliability simultaneously is especially challenging because lowering 

the voltage to reduce energy consumption has been shown to increase the number of transient 

faults exponentially [Zhu et al. 2004]. The main reason for such an increase is that, with lower 

voltages, even very low energy particles are likely to create a critical charge that leads to a 

transient fault. However, this aspect has received very limited attention. Zhu and Aydin 

(2009) have proposed a reliability-aware DVFS heuristic for uniprocessor systems, and a 

single-task checkpointing scheme was evaluated in [Zhu et al. 2004]. In [Pop et al. 2007], we 

consider the energy versus reliability trade-offs in the context of distributed time-triggered 

systems, where tasks and messages are scheduled based on a static-cyclic scheduling policy, 

and transient faults are tolerated using task re-execution. Table 4-4 provides the summary of 

related work on fault-tolerant scheduling with energy minimization. It can be observed from 

the table that energy aware fault tolerance is sufficiently addressed for independent tasks. For 

dependant tasks energy aware fault tolerance is not thoroughly addressed. Also the 

combination of software replication and time redundancy methods with DVFS technique is 

not addressed in the literature.  

Table 4-4. Summary of fault-tolerant scheduling with energy minimization 

Task model Fault-tolerance 

techniques 

techniques to 

minimize energy 

References 

Independent 

tasks 

 

Checkpointing DVFS Melhem et al. 2004, Zhang and 

Chakrabaty 2006, Wei et al. 2012, Zhu 

and Aydin 2009, Salehi et al. 2016, 

Zhu et al. 2004 
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 Re-execution DVFS Djosic and Jevtic 2013, Pop et al. 2007 

Time and 

information 

redundancy 

DVS and ARB Ejlali et al. 2006 

Dependant 

tasks 

 

Stand by sparing 

and re-execution 

DVFS and DPM Tavana et al. 2014 

Active replication DVFS Assayad et al. 2012 

Checkpointing DVFS Li et al. 2015 

4.6. Conclusion 

In this chapter, we have reviewed some closely related work in the literature. First, existing 

researches on real-time scheduling for various task and system models are discussed. Then, 

we have presented the related research in fault tolerant real-time scheduling with 

consideration of permanent and transient faults. Finally, we have presented the interplay of 

energy and fault-tolerance techniques on employing DVFS in real-time scheduling in detail. 

Based on the above discussions, we can see that fault-tolerant scheduling under various 

constraints still poses a grand challenge for researchers.  

In the next chapter, we describe the proposed fault tolerance approach which combines two 

strategies of the basic families of redundancy. 
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CHAPTER 5  

A Fault-Tolerant Scheduling 

Algorithm Based on 

Checkpointing and Redundancy 

for Distributed Real-Time 

Systems 

5.1. Introduction  

Fault tolerance techniques have been proposed for real-time systems to satisfy their 

constraints even in the presence of faults. Transient faults are the most common, and their 

number is continuously increasing due to the high complexity, smaller transistor sizes, higher 

operational frequency, and lower voltage levels [Djosic and Jevtic 2013; Han et al. 2013; Paul 

et al. 2009; Wei et al. 2012]. These faults happen for a short time and then disappear without 

causing permanent damage. Transient faults have become the main concern in the design of 

modern embedded real-time systems.  

In this chapter, we present a novel fault tolerance approach based on scheduling heuristic to 

tolerate a fixed number of transient faults. Our approach combines active replication, which 

provides space-redundancy, and checkpointing with rollback recovery, which provides time-

based redundancy. In addition, we propose a new fault-tolerant scheduling heuristic which 

generates, from a given hard real-time application and a given multiprocessor distributed 

architecture, a fault tolerant distributed static schedule which tolerates K transient faults.  

The rest of this chapter is organized as follows. A brief overview of related work is provided 

in section 2. Section 3 describes our application model, hardware model, and fault model. 

Section 4 explains our fault tolerance approach through examples. In section 5, we present our 
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proposed static fault-tolerant scheduling heuristic. Simulation results are discussed in section 

6, and finally, section 7 concludes the chapter. 

5.2. Literature review 

Extensive research has been presented to investigate the software-based fault tolerance 

techniques against transient faults. In the software replication technique [Girault et al. 2004; 

Assayad et al. 2012; Samal et al. 2014; Meroufel and Belalem 2014] multiple replicas (active 

or passive) of each task are executed on different processors.  

Bachir (2019) proposed three fault-tolerant scheduling heuristics to tolerate permanent faults 

of a single processor. The first heuristic AAA-FAULT
DT 

is used to minimize the scheduling 

length using passive replication. The second FT-TDEP is based on hybrid redundancy and the 

third AAA-Fault
IDT

 based on active replication. The primary-backup approach (passive 

replication) is used as a fault-tolerant scheduling technique in [Samal et al. 2014] to guarantee 

real time tasks constraints in the presence of permanent or transient faults. The authors 

proposed fault-tolerant scheduling for independent tasks using a hybrid genetic algorithm.  

The replication technique is effective to tolerate spatial multiple faults (permanent or 

transient) and it is more preferable for safety-critical systems [Ejlali et al. 2012]. However, 

scheduling multiple replicas of each task on different processors may not be affordable due to 

cost constraints [Ropars et al. 2015].  

Checkpointing with rollback recovery [Han et al. 2015, Izosimov et al. 2012, Wei et al. 2012, 

Zhang and Chakrabarty 2006, Kumar et al. 2015) and re-execution [Izosimov et al. 2008, Gui 

and Luo 2013] are classified by Motaghi and Zarandi (2014) as time-based redundancy 

methods. These methods try to deal with transient faults by serial executions in the same 

processor of faulty task. Izosimov et al. (2008) proposed a quasi static scheduling of fault 

tolerant embedded systems composed of hard and soft processes. In which re-execution is 

employed to recover from multiple faults. Han et al. (2015) presented a task allocation 

scheme for minimizing energy consumption while ensuring the fault tolerance requirement of 

the system. They develop an efficient method to determine the checkpointing scheme to 

tolerate at least one transient faults on a single processor. These methods do not impose any 

hardware cost overhead and are not effective to tolerate transient faults whose durations are 

very long. Moreover, serial execution may cause the non respect of time constraints. 
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The combination of software replication and time-based redundancy techniques to tolerate 

multiple transient faults with low overhead in terms of hardware cost, energy consumption 

and total execution time have been studied in few works related to our research [Pop et al. 

2009, Motaghi and Zarandi 2014]. 

Pop et al. (2009) have proposed a fault-tolerance policy assignment strategy to decide which 

fault tolerance technique, for instance checkpointing, active replication or their combination, 

is the best suited for a particular process in the application. A dynamic fault-tolerant 

scheduling DFTS has been proposed in [Motaghi and Zarandi 2014]. This algorithm uses task 

utilization to dynamically select the type of fault recovery method in order to tolerate multiple 

transient faults. 

This chapter attempts to solve the following problem which is an NP-hard problem. Given an 

homogeneous architecture, how to schedule an application of hard dependant tasks on the 

architecture under multiple transient faults which may occur spatially or temporally.    

The main contributions of this chapter are summarized as follows: 

 Tolerating multiple transient fault occurrences with respect of application time 

constraints. 

 Combine two different policies: checkpointing and active replication to propose an 

efficient fault-tolerant scheduling approach that explores hardware resources and timing 

constraint.   

 Replicas collaboration is introduced to tolerate spatially or temporally faults and satisfy 

critical task constraint. To the best of our knowledge, this is the first work introducing 

the idea of collaboration between replicas in active replication technique with 

checkpointing. 

The proposed approach classifies the real-time tasks into critical and noncritical ones, 

according to the utilization of the task. For the noncritical task, we adopt checkpointing with 

rollback technique to tolerate multiple transient faults. The main reason for this choice that 

many studies showed the efficiency of checkpointing technique to deal with these faults. 

Whereas for the critical task, we adopt active replication as it is the fault tolerant method that 

explores hardware resources to meet timing constraints and provide high reliability even when 

deadlines are tight. With a view to tolerate spatially or temporally faults and satisfy critical 

task constraint, we have also introduced replicas collaboration. This collaboration can be seen 

as communication in case of fault occurrence. If one replica is faulty, the second replica has to 

send it the correct state to complete the execution before its deadline. 
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5.3. System model 

5.3.1. Application model 

The real-time application considered in this chapter consists of n hard dependant tasks, 

denoted as:                . The dependence    →    means that    execution precedes 

   execution. So we say that     is a successor of    and symmetrically that    is a predecessor 

of    . The timing characteristics of the task    are defined as a tuple (     ), where    is the 

worst case execution time of the task in a fault-free condition and     is the deadline of the 

task. The utilization of task     is defined as: 

   
  

  
                    

The system utilization is therefore calculated as:  

     

 

   

 

We model an application A as a directed acyclic graph DAG. Each node represents one task. 

An edge     indicates data-dependency between two tasks    and   . 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5 -1 Hard real-time application example 
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An example of an application A1 composed of 5 dependant tasks is represented as a DAG G1 

shown in Figure 5-1. The two tables give the timing characteristics of a task set and data 

dependencies. 

5.3.2. Hardware model 

The architecture is considered as a set of M homogeneous processors denoted as: Ρ = {P1, 

P2,…, PM}.  

A processor is composed of a computing unit, to execute tasks, and one or more 

communication unit to send/receive data to/from communication links. A point-to-point 

communication link is composed of a sequential memory that allows it to transmit data from 

one processor to another. 

Each processor is connected with the others through communication links. So our architecture 

is homogeneous and fully connected. We can model the architecture by a graph, where each 

node is a processor and each edge is a communication link. 

 

 

 

 

Figure 5-2 Hardware example 

An example of an architecture graph with four processors P1 to P4, and six communication 

links is shown in Figure 5-2.  

5.3.3. Fault model 

In this chapter, we focus on transient faults which are the most common faults in today’s 

distributed real-time systems. In our model, we assume at most k faults to be tolerated on each 

task. Given a fault arrival rate λ and a task execution interval t, the mean number of faults that 

arrive during the interval is λt [Zhang and Chakrabarty 2006].  In order to target a system with 

reasonable real-time performance with fault tolerance, Zhang and Chakrabarty (2006) indicate 

that the value of k should be taken as multiple of λt, e.g. 2λt ≤ k ≤ 3λt. A transient fault affects 

only the task running on a specific processor as transient faults have short duration. 
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The error detection and fault-tolerance mechanisms are part of the software architecture. The 

error detection overhead is considered as part of the task execution time. The software 

architecture, including the real-time kernel, error detection and fault tolerance mechanisms are 

themselves fault-tolerant.   

5.4. The proposed fault-tolerant 

approach 

We propose a novel fault-tolerant approach which combines software replication and time 

redundancy methods for tolerating k transient faults. We use these two techniques in order to 

meet time and cost constraints of hard real-time applications even in the presence of transient 

faults. 

As time-based redundancy we use checkpointing with rollbacks for non critical tasks. Once a 

fault is detected, the task being affected rolls back to the last saved checkpoint and re-execute 

the faulty segment [Kumar and Rachit 2011]. Inserting one checkpoint to task    refers to the 

operation of saving its current state in memory. 

As software replication, we use active replication for critical tasks to meet their deadlines 

even in the presence of faults.  

Similar to the related work in [Motaghi and Zarandi 2014], we compute the task utilization    

of each task    in the ready list of the scheduler to decide if    critical or noncritical.  

 

    
                         
                     

  Where       

 

The criticality threshold   will be computed for each task in the ready list when there is an 

idle processor, therefore   vary from one task to another. We will present in section 5 the 

calculation of the criticality  . 

5.4.1. Checkpointing with rollback recovery 

The time overhead for re-execution can be reduced with more complex techniques such as 

rollback recovery with checkpointing [Zhang and Chakrabarty 2006, Eles et al. 2008]. By 
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using this technique, once a fault is detected during the execution of the task   , it needs to 

rollback to the latest checkpoint [Salehi et al. 2016]. 

We consider the following assumptions related to task execution and fault arrivals: 

 The checkpointing intervals are equal for the same task. 

 Faults are detected as soon as they occur. 

 No faults occur during checkpointing and rollback recovery. 

The fault-free execution time of task    using checkpointing is a function of the number of 

checkpoints    and is formulated in Equation (5.1a) 

                                                                                                                           (5.1a) 

Where    is the time overhead required for saving one checkpoint and is proportional to the 

worst case execution time    of each task.  

The recovery time of    with     checkpoints under a single failure includes two parts, the 

time to rollback to the latest checkpoint and the time to re-execute the faulty segment. We 

denote it        and formulate it in Equation (5.1b) 

           
  

  
                                                                                                                  (5.1b) 

Where    is the time overhead to rollback to the latest checkpoint and is proportional to the 

worst case execution time of each task. 

In general, in the presence of k faults, the worst case response time       of task    using 

checkpointing with rollback recovery can be obtained by the Equation (5.1) 

                                                                                                                 (5.1) 

As related work, Paul et al. (2009) showed that the optimal number of checkpoints to 

minimize the worst case response time       considering k faults can be calculated as: 

   

 
  
 

  
 

  
    

    

  
            

    
    

  

 

   
    

    

  
            

    
    

  

 
 

  

Where    is the time overhead for saving one checkpoint and    is the worst case execution 

time of task   . As the number of checkpoints is an integer, thus we use   
  (the floor) or 

   
 (the ceiling) as a value. If         

    
    

  

 
 , we use the floor value. Otherwise, the 

ceiling value is used. 

For the sake of easy presentation,     is simply denoted by 
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                                                                                                               (5.2) 

 An example of checkpointing with rollback recovery is presented in Figure 5-3.  

 

 

 

 

 

 

 

 

 

Figure 5-3 Checkpointing with rollback recovery 

We consider task    with worst execution time          in Figure 5-3a. In Figure 5-3b two 

checkpoints are inserted at equal intervals. Thus, task    is composed of two equal execution 

segments      
 and      

. In Figure 5-3c, a fault affects the second execution segment      . 

This faulty segment is executed again starting from the second checkpoint. The recovery 

segment is represented by a light gray rectangle. 

5.4.2. Active replication with checkpointing 

The disadvantage of checkpointing with rollback recovery technique is that cannot explore the 

spare capacity of available processors in the architecture to reduce the schedule length. 

However software replication techniques (active and passive replication) have the ability to 

execute task replicas in parallel on different computation nodes. With active replication, all 

the task replicas are executed independent of fault occurrences [Girault et al. 2009]. However, 

with passive replication, replicas are executed only if faults occur [Han 2015, Zhang et al. 

2014]. 

In our work, we are interested in active replication. If there is enough time to rollback the task 

   to the last saved checkpointing in the presence of faults we use active replication to 

guarantee the respect of deadline. The task    is replicated on two collaborative replicas;   
  

and   
 , both of which to be executed on different processors in the same time. We introduce 

collaboration between replicas to tolerate k faults and respect    deadline. We consider the 

following assumptions: 

 All checkpoints are assumed to be fault-free, i.e., no faults can occur during checkpointing 

saving. 

 Each task’s primary copy and backup copy must not be assigned to the same processor. 

b)   (1)   (2) 

 
  

c) 
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 Each task’s primary copy and backup copy cannot be faulty at the same time.    

Our goal is to tolerate k faults with respect of task    deadline. To achieve this goal, we use 

active replication technique where each critical task is replicated on several replicas. But it is 

possible that these replicas can be faulty due to multiple fault occurrences, therefore our goal 

will be missed and this technique will be infeasible. This is the case in the work presented in 

[Motaghi and Zarandi 2014].  

As solution, we introduce collaboration between replicas of the critical task to tolerate each 

coming fault in the primary or the backup replicas (  
 ,  

 ) to achieve the feasibility of our 

approach. For computation purpose, we add an extra virtual processor to the architecture, 

noted P#. 

Once the active replication approach is decided for a task   , first it has to be scheduled on 

virtual processor P# (   ) at start time STi as illustrate in Figure 5-4.  

 

 

 

 

 

 

 

 

Figure 5-4 Scheduling of     on virtual processor P# 

Then we place in this task     the appropriate    checkpoints (with equal checkpoint intervals 

  

   
) obtained after calculation of the optimal number of checkpoints with Equation (5.2).  

After that    is replicated on two replicas   
  and   

  
which must be scheduled on two different 

processors and checkpointed alternatively by projection of the checkpoints of the initial task 

as presented in Figure 5-5.  

 

 

 

 

 

 
 

Figure 5-5 Fault-free scenario 
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The alternative checkpointing idea of the two replicas   
  and   

  is to ensure the collaboration 

between replicas and to minimize the number of checkpoints of the original task   . In this 

case we can meet the task deadline even in the presence of faults. 

In Figure 5-5,   represents the difference between the start time of the two replicas   
  and   

  

(the start time of each replica depends on the availability of processors). It can be written as: 

 

       
        

                                                                                                              (5.3)  

For successful of our alternative checkpointing idea,   should be less or equal than the 

checkpointing interval, so we have: 

     
  

  
 

With this approach the start time STi of a task    can be given by:   

                  
 
                                                                                                       (5.4) 

Where      
 
  is the start time of the replica   

 
.  

Consequently, the actual finish time FTi of task     is given by: 

                                                                                                                           (5.5) 

And respectively, the best finish time             of task    can be written as: 

                          
 
                                                                                          (5.6) 

Where      
 
  is the finish time of the replica   

 
. 

In the case of fault occurrence in the execution of one of the replicas (  
  or   

 ), the results 

produced by the no faulty replica must be sent to the other replica to continue the execution as 

shown in Figure 5-6. 

 

 

 

 

 

Figure 5-6 Fault occurrence scenario 
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    h                                                                (5.7) 

Where the term  (    
  

 
    )  is the maximum execution time of    using the new active 

replication with checkpointing without any faults, and       
     

   is the cost of 

communication step between the replicas   
  and   

  for single fault, which is multiplied by k 

in the presence of k faults. 

The best worst case response time       of the task    can be written as: 

                            
 
                                                                                               (5.8)  

Where        
 
  is the worst case response time of the replica   

 
 and is calculated with 

Equation (5.7). 

5.5. Motivational example 

Figure 5-7 represents an application A2 composed of three dependant tasks (            ) 

and an architecture composed of two processors P1 and P2. 

The fault model assumes two faults, thus k =2. The checkpoint saving and recovery overhead 

are considered equal to 5 ms. According to these values, the optimal number of checkpoints is 

3, 3 and 4 for              respectively. After computation of the criticality of each task, we 

get that    and    are not critical, so checkpointing with rollback can be applied. But the task 

   is critical, consequently    is replicated on two copies   
  

and   
 . 

In the case if the replicas of    are faulty due to multiple fault occurrence, we introduce 

collaboration between replicas. As illustrated in Figure 5-8, the faulty replica receives the last 

correct state from the no faulty replica via communication step between   
  and   

  and 

continue execution to meet its deadline.  

 

 

 

 

 

 

 

 

 

Figure 5-7 An application example A2 to be scheduled on P1 and P2 under k=2 faults 
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Figure 5-8 Fault tolerant scheduling: combination of checkpointing with rollback for tasks   ,    and 

active replication with checkpointing for the task    

5.6. The proposed fault tolerant 

scheduling algorithm 

Our fault tolerant scheduling algorithm is presented in Figure 5-9. The algorithm takes as 

input the application A, the number K of transient faults that have to be tolerated, the 

architecture P and the real time constraints.  
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     Schedule the replicas of        
     

    on two different 

processors 

   } 

Schedule messages sent by     

TReady=TReady-                                          

} End SFTS 

Figure 5-9 The proposed static fault tolerant scheduling algorithm SFTS 

Our scheduling algorithm is a list scheduling based heuristic, which uses the concept of ready 

tasks and ready list. By ready task    we mean that all   ‘s predecessors have been scheduled. 

The heuristic initializes the list TReady with tasks without predecessors and is looping while 

TReady isn’t empty. At first, the ready task    with minimum deadline is selected for 

placement in the schedule. Then the scheduler calculates the criticality of task   . If the task    

is noncritical, the checkpointing with rollback policy will be applied and the maximum 

response time of the task    will be calculated with Equation (5.1).   

Otherwise, the critical task    will be replicated and the proposed new active replication will 

be applied. In this case the maximum response time of the task    will be calculated with 

Equation (5.7). Finally, the task    is removed from the ready list TReady and all its 

successors are added to the list.  

The scheduler calculates the criticality   of the best task    (having the minimum deadline   ) 

selected from TReady. The start execution time of    is defined as    .  

To satisfy the real time constraints of the application to be scheduled even in the presence of 

faults, for each task    (         ) should be less than   . So we have:  

                                                                                                                            (5.8) 

We take     the worst case response time of task    using checkpointing with rollback 

recovery and we replace it by Equation (5.1) to compute  .  

                  
  

  
                                                                                     (5.9) 

As described in [Motaghi and Zarandi 2014] we have: 

                                                                                                                                 (5.10) 

                                                                                                                                  (5.11) 

Where α and µ are constant factors. 

By replacing the values of    and    with Equations (5.10) and (5.11) we have: 

                     
 

  
                                                                         (5.12) 
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                                                                 (5.13) 

Finally, we can get the criticality    

    
  -

   
  

          k     
 

   

                                                                                                    (5.14) 

5.7. Experimental results 

To evaluate the performance of our approach, we have generated a set of 50 different 

applications with 10, 20, 30, 40, and 50 tasks implemented on architecture consisting of 4 

processors. The execution time of each task was randomly assigned in the range of [30 ms, 80 

ms] also the deadline was randomly generated. We have varied the number of maximum 

tolerated faults k considering 2 to 10 faults. Table 5-1 summarizes the configuration 

parameters used in our experiments. 

Table 5-1. Simulation parameters 

Parameters Values 

Number of processors 4 

Application size (Number of tasks) (10 , 20 , 30 , 40 , 50)  

Execution time (ms)  [30 , 80] – [10 , 100] 

Recovery overhead μ (5%, 10%) 

Checkpoint saving α (5%, 10%) 

Number of faults k (2 , 4 , 6 , 8 , 10) 

Fault arrival rate λ (0.005 , 0.01 , 0.02 , 0.04) 

 

First, we were interested to evaluate the proposed approach with regard to the overheads, in 

term of schedule length, introduced due to fault tolerance. For this, we have implemented 

each application without any fault tolerance concerns. This non-fault-tolerant implementation, 

NFT, has been obtained using EDF algorithm. Then, we have implemented each application 

on its corresponding architecture using the proposed SFTS algorithm. Let LSFTS and LNFT be 

the schedule lengths obtained using SFTS and NFT, respectively. The overhead due to 

introduced fault tolerance is defined as 100 x (LSFTS - LNFT)/ LNFT.   

Table 5-2 presents the maximum, the minimum and the average time overheads introduced by 

SFTS compared to NFT in the case of different number of faults.  The average fault tolerance 

overheads introduced by SFTS increase with the number of tolerated faults. In this case the 

application size and the number of computation nodes were fixed with 40 tasks and four 

computation nodes where the number k of faults being 2, 4, 6, 8 to 10.  
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We were also interested to evaluate the proposed algorithm SFTS versus the fault tolerance 

approach: checkpointing with rollback recovery CH. Figure 5-10 shows that the scheduling 

length of SFTS is always considerably lower than CH. This is due to the combination of 

checkpointing and replication which result in decreasing the schedule length of SFTS. We can 

assume that SFTS performs much better compared to checkpointing. 

In Table 5-3, the effect of checkpointing parameters such as checkpoint overhead α and 

recovery overhead μ on the scheduling time overhead is shown. The effect of increasing the 

checkpoint overhead α is more than the effect of recovery overhead μ on the scheduling 

timing overhead of SFTS. However increasing these parameters α and μ increases 

considerably the scheduling timing overhead of CH. Either way the minimum timing 

overhead of SFTS is significantly lower than CH timing overhead. We can resume that the 

scheduling timing overhead of SFTS does not significant change by varying the 

checkpointing parameters as shown in Figure 5-11.  

Table 5-2. Fault tolerance overheads due to SFTS for different number of faults 

K % Maximum % Minimum % Average 

2 46.90 22.81 32.45 

4 62.74 30.18 42.78 

6 69.29 42.99 54.85 

8 80.12 52.38 64.72 

10 91.74 61.44 75.20 

 

Figure 5-10 Impact on schedule length of application size considering k = 2 faults 
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Table 5-3. Timing overhead of SFTS compared with checkpoint considering various checkpoint 

parameters 

Checkpoint 

overhead α 

Recovery 

overhead µ 

Fault 

method 

Timing overhead% 

Max Min  Average 

0.05 0.05 SFTS 39.54 22.39 28.62 

CH 50.00 49.57 49.78 

0.05 0.1 SFTS 37.43 23.72 28.71 

CH 68.33 54.56 56.09 

0.1 0.05 SFTS 39.05 20.56 30.96 

CH 68.33 66.78 67.88 

0.1 0.1 SFTS 39.84 21.07 28.98 

CH 73.34 72.81 73.02 

 
Figure 5-11 The time overhead of STFS compared to checkpointing by varying checkpoint saving α 

and recovery overhead μ 

To evaluate the feasibility analysis of SFTS under the variation of fault arrival rate λ, we 

conducted another set of experiments. We have generated a set of 50 applications of 10 real-

time tasks. The execution time of each task was randomly assigned in the range of [10 ms, 

100 ms] also the deadline was randomly generated. According to results presented in Figure 

12, the feasibility rate of SFTS decreases from 100% to 32% within varying λ from 0.005 to 

0.04. The reason that by increasing λ, the number of expected faults k for each task will 

increase. This will result in the probability of missing task constraint will increase.   

 

Figure 5-12 Feasibility rate of SFTS by doubling fault arrival rate (λ)  
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5.8. Conclusion 

In this chapter, we have proposed a novel fault tolerance approach for scheduling applications 

with hard real-time constraints on real-time distributed systems. The approach combines 

checkpointing with rollback policy and a new strategy of active replication that uses replicas 

collaboration to guarantee the task deadline even in the case of faults. The task utilization is 

calculated to decide the type of fault recovery method in order to tolerate K transient faults. 

Based on this approach, we have proposed an efficient fault tolerant scheduling algorithm 

SFTS, which is a list scheduling based heuristic. Our algorithm can be feasible even if the two 

replicas of the critical task are faulty; in this case, we have introduced the collaboration 

between replicas when a fault is detected. This idea permits respect of task deadline and 

ensures the feasibility of our algorithm. Simulation results show the performance and 

effectiveness of combining checkpointing and redundancy to tolerate transient faults.  
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CHAPTER 6  

An Efficient Fault-Tolerant 

Scheduling Approach with 

Energy Minimization for Hard 

Real-Time Embedded Systems 

6.1. Introduction 

Energy consumption and fault tolerance have attracted a lot of interest in the design of 

modern embedded real-time systems. Dynamic power/energy management is an active area of 

research and many techniques have been proposed to minimize energy consumption under a 

large diversity of system and task models [Mahmood et al. 2017, Wei et al. 2012]. Dynamic 

voltage and frequency scaling (DVFS) is an energy saving technology enabled on most 

current processors. It enables a processor to operate at multiple voltages where each 

corresponds to a specific frequency. Because the energy consumption of a processor is 

proportional to voltage squared, the processor’s energy consumption can be considerably 

reduced by lowering CPU voltage and processing speed [Zhu et al. 2013]. 

Based on the fault tolerance approach presented in chapter 5 and DVFS technique, we 

propose in this chapter a fault-tolerant DVFS scheduling heuristic which generates, from a 

given hard real-time application and a given multiprocessor architecture, a task allocation 

scheme that minimizes energy consumption and tolerates K arbitrary transient faults.  

The rest of the chapter is organized as follows. An overview of related work is provided in 

Section 2. The system models considered in this work are introduced in Section 3. The 

proposed fault-tolerance approach is explained in Section 4. The strategy that utilizes this 

approach and DVFS technique to minimize energy is explained in Section 5. The proposed 
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DVFS_FTS algorithm is presented in Section 6. Simulation results are discussed in Section 7, 

and finally, the conclusion is given in Section 8. 

6.2. Related work 

Several papers have been published are closely related to our research, these researches differ 

in many aspects, such as task models (dependent or independent tasks, hard or soft deadlines, 

periodic or aperiodic tasks), multiprocessor or uniprocessor platforms, online or offline 

scheduling and the fault-tolerance technique adopted. 

Assayad et al. (2012) proposed a scheduling heuristic to minimize the schedule length, the 

global system failure rate and the power consumption of the generated schedule. Active 

replication of tasks and data dependencies is used to increase the system reliability and 

dynamic voltage scaling DVS is used for energy minimization. Gan et al. (2011) proposed a 

synthesis approach to decide the mapping of hard real-time applications on distributed 

heterogeneous systems, such that multiple transient faults are tolerated, and the energy 

consumed is minimized. For recovery from faults, they used replication technique. 

Djosic and Jevtic (2013) developed a fault-tolerant DVFS algorithm for real-time application 

of independent tasks. This algorithm combines DVFS for optimizing energy consumption and 

re-execution recovery for fault tolerance, but their scope is restricted to single processor 

systems. Han et al. (2015) introduced an efficient method to determine the checkpointing 

scheme that can tolerate k transient faults on a single processor. Also, they proposed a task 

allocation scheme to reduce energy consumption. 

The combination of replication and time-based redundancy techniques to tolerate multiple 

transient faults with low overhead in terms of energy consumption and total execution time 

has been studied in few works related to our research [Tavana et al.2014]. 

Tavana et al. (2014) have proposed a standby-sparing scheme which addressed 

simultaneously reliability and energy consumption. The proposed scheme by employing both 

hardware redundancy (standby-sparing) and time redundancy (re-execution) in some cases, 

can tolerate many transient faults. To reduce energy consumption, they applied two 

techniques DPM (Dynamic Power Management) used by the spare unit and DVS (Dynamic 

Voltage Scaling) used by the primary processor. 
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6.3. System models 

6.3.1. Application model 

The real-time application considered in this chapter consists of n hard aperiodic dependent 

tasks, denoted as                . Tasks are non-preemptive and cannot be interrupted by 

other tasks. Tasks send their output values in messages, when terminated. All required inputs 

have to arrive before activation of the task. Each task     is characterised by a tuple        , 

where    is the worst case execution time of the task at the maximum frequency/voltage in a 

fault free condition and     is the deadline of the task. 

We model an application A as a Directed Acyclic Graph DAG. Each node represents one task. 

An edge eij indicates data-dependency between two tasks    and   .  

6.3.2. Scheduling model 

List scheduling is the most commonly used scheduling approach for dependent tasks 

represented by DAGs [Zhao et al. 2013]. Based on the Earliest Deadline First (EDF) 

scheduling policy, we propose an EDF list scheduling based heuristic which uses the concept 

of ready task and ready list. By ready task    we mean that all   's predecessors have been 

scheduled. The heuristic initializes the ready list with ready tasks and is looping while there is 

at least one task in the list. The ready tasks with the earliest deadline have the higher priority 

for scheduling.  

6.3.3. Fault model 

During the execution of an application, faults may be hard to avoid due to different reasons, 

such as hardware failure, software errors, devices exposed to intense temperatures, and 

external impacts [Zhang et al. 2015]. As a result, transient and intermittent faults are more 

frequent than permanent ones. In this chapter we consider these types of faults as their 

number has been dramatically higher.  

From the fault tolerance point of view, transient faults and intermittent faults manifest 

themselves in a similar manner: they happen for a short time and then disappear without 

causing a permanent damage. Hence, fault tolerance techniques against transient faults are 
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also applicable for tolerating intermittent faults and vice versa. Therefore, from now, we will 

refer to both types of faults as transient faults and we will talk about fault tolerance against 

transient faults, meaning tolerating both transient and intermittent faults. 

6.3.4. Platform and Energy model 

We assume that there are m homogeneous processors, each of them is DVFS enabled with a 

set of   operating frequencies. We denoted with                with             

         . We assume the frequency values are normalized with respect to     , i.e. 

      . 

The energy model used in this work is the same to the one used in the literature [Djosic et al. 

2013, Mahmood et al. 2017, Assayad et al. 2012 and Zhang et al. 2015], where the power 

consumption P of a system is given by Equation (6.1): 

                                     
                                                                            (6.1) 

Where    is the static power,       is the frequency-independent power and    is the 

frequency-dependent power. The parameter     when the system is in the working state. 

Otherwise, when the system is in the standby state,    .     is the effective loading 

capacitance and V is the supply voltage and it is a function of working frequency  . The static 

power can be removed only by turning off the whole system,       is a constant independent 

of operating frequency. As the energy consumption due to frequency scaling is independent of 

  , we take into account only the frequency-dependent power    and we set     . Hence, 

the power consumption P can be written as: 

                                                                                                                                 (6.2) 

Since    , and according to Equation (6.2), the dynamic power   can be expressed as a 

polynomial of frequency of degree  , where   has been set to 3 in most of the published 

papers on energy consumption [Zhang et al. 2015, Zahaf et al. 2016]. Hence, we reformulate 

  in Equation (6.3) as: 

      
                                                                                                                              (6.3) 

The energy consumed by task    is given by Equation (6.4): 

                
                                                                                                                  (6.4) 
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Where       the execution time of task    under frequency   . The total energy 

       consumed by processors during the execution of a task set is expressed by Equation 

(6.5): 

               
 
                                                                                                                (6.5) 

In this study, we consider only processor energy consumption. 

6.4. The fault-tolerance approach 

As explained in chapter 5, we combine uniform checkpointing with rollback recovery and 

active replication for tolerating k transient faults. We use these two techniques in order to 

meet time constraints and to increase the reliability of hard real-time applications even in the 

presence of faults. 

6.4.1. Uniform Checkpointing with Rollback 

Recovery 

By using this technique, once a fault is detected during the execution of the task   , it needs to 

restore the saved state to continue task execution. We consider the following assumptions : 

 The checkpointing is uniform (checkpoint intervals are equal for the same task). 

 Faults are detected as soon as they occur. 

 The checkpoint saving and rollback recovery are themselves fault-tolerant. 

6.4.2. Collaborative active replication 

In our work, we are interested in active replication. If there is enough time to rollback to the 

last saved checkpoint in the presence of faults, we use active replication to guarantee and 

respect task    deadline. The task    is replicated on two collaborative replicas;   
  and   

 , both 

of which are be executed on different processors at the same time. We also introduce 

collaboration between replicas to tolerate multiple faults and respect task    deadline. 

For the sake of uniformity and clarity, we will consider the original task    as the primary 

replica   
  and its replica as the backup replica   

 . We consider the following assumptions: 
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 All checkpoints are assumed to be fault-free, i.e., no faults can occur during checkpoint 

saving. 

 Each task’s primary copy and backup copy must not be assigned to the same processor. 

 Each task’s primary copy and backup copy cannot be faulty at the same time.    

 Faults are detected as soon as they occur, and the recovery will be with the no faulty 

replica. 

Our goal is to tolerate k faults with respect to task    deadline. To achieve this goal, we use 

active replication technique. However, it is possible that both primary and backup replicas are 

faulty due to multiple fault occurrence. Therefore, our goal will be missed, and active 

replication alone will be infeasible. This is the case in the work presented in [Motaghi and 

Zarandi 2014].  

As a solution, we introduce collaboration between replicas to tolerate each coming fault in the 

primary or the backup replicas    
     

    to achieve the feasibility of our approach.  

Once the active replication approach is decided for a task   , we execute the following steps: 

Step1:     has to be scheduled on virtual processor P# ( i#) at start time     as illustrated 

in Figure 6-1(a); 

Step2: We insert in ( i#) the appropriate    
  checkpoints obtained  with Equation (5.2); 

Step3:    is replicated, which will result in two replicas   
  and   

  which must be 

scheduled on two different processors;  

Step4: The initial checkpoints of the task  i# are projected onto   
  and   

  alternatively, as 

illustrated in Figure 6-1(b).  

The alternative checkpointing idea of the two replicas   
  and   

  is to ensure the collaboration 

between replicas and to minimize the number of checkpoints of the original task   . In this 

case, we can meet the task deadline even in the presence of faults.  
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Figure 6-1 Illustration of different steps of collaborative active replication 

In case of fault occurrence in the execution of one of the replicas (  
  or   

 ), the results 

produced by the no faulty replica must be sent to the faulty replica at checkpoint with 

Send/Receive communication to continue the execution. As shown in Figure 6-1(c), when 

fault affects the first execution interval   
    , the no faulty replica   

  sends at checkpoint the 

correct state to the faulty task via communication step. 

6.5. DVFS based fault-tolerance 

approach 

The DVFS technique can assign different frequencies to each task, which gives us a useful 

way to minimize energy consumption of applications [Hu et al. 2016]. We extend the 
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proposed fault-tolerance approach to incorporate it with DVFS to exploit the released slack 

time to achieve more energy saving.  

According to the proposed fault-tolerance approach, we adopt active replication to meet 

timing constraints and provide high reliability even when deadlines are tight. However, task 

replicas must be performed at the maximum frequency given the probability of failure is low. 

We assume that DVFS is used during uniform checkpointing with rollback technique. 

Similar to [Han et al. 2015], we assume that checkpointing is not affected by processor 

frequency. We focus on the fault-free execution and like [Salehi et al. 2016 and Melhem 

2004], we aim to reduce the fault-free energy consumption because recovery executions have 

a small probability of being performed, and for this reason their energy consumption is a 

negligible fraction of the total energy consumption. The recovery time of a faulty task is 

always performed at the maximum frequency to preserve its original reliability. 

6.5.1.  Optimal frequency assignments 

In this section, we search the optimal frequency assignments assuming all tasks their 

deadlines. In the existence of precedence constraints, a task may have to complete well before 

its deadline to ensure that all its successor tasks can finish in time. Therefore, as in [Zhao et 

al. 2013], we can define the effective deadline of a task     as follows: 

  
  

  
                                              

         
  

                 
                               (6.6) 

Where          is the set of successor tasks of    . 

The frequency   
   

 that allows task    to successfully complete execution before its deadline 

  
  

 while minimizing energy consumption and tolerating K faults with checkpointing with 

rollback should satisfy the following: 

    
      

 
 
                

  
                                                                                         (6.7) 

Where     and 
      

 
 
    are respectively the start time and the fault-free execution time of task    

with    checkpoints performed at frequency   
   

.         is the recovery time of    under a 

single failure performed at the maximum frequency      (       and       were defined 

with Equations (6.5) and (5.1a) respectively).  

After evaluation of Equation (6.7), we obtain the following solution: 
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                                                                                                        (6.8) 

If    
        ,we choose neighboring frequencies      

         and          . 

Hence, the minimize energy consumed during the execution of task    is given by: 

     
        

      

 
 
      

                  
        

      
 

 
 
  

             
                            (6.9) 

6.6. The proposed DVFS fault-

tolerant scheduling algorithm  

Our DVFS fault-tolerant schedule is presented in algorithm DVFS_FTS. The algorithm 

takes as input the application A, the number K of transient faults that have to be tolerated, the 

architecture Ῥ, the set of frequency levels   and the real-time constraints.  

Our scheduling algorithm is a list scheduling based heuristic, which uses the concept of ready 

task and ready list. By ready task   , we mean that all   ‘s predecessors have been scheduled. 

The heuristic initializes the list TReady with tasks without predecessors in line 1 and is 

looping while TReady isn’t empty (line 4-25). At first, the ready task    with minimum 

deadline is selected for placement in the schedule (line 5). Then, the maximum response time 

of the task    will be calculated with Equation (5.1) under maximum frequency (line 6). The 

checkpointing with rollback policy will be applied if the task deadline can be satisfied on the 

processor    at the earliest start time (line 10-13). In this case, the task    will be performed 

under the frequency   
   

 calculated based on Equation (6.8) (line 12-13). Otherwise, the task 

   will be replicated and the proposed new active replication will be applied. In this case, the 

maximum response time of the task    will be calculated with Equation (5.7) under the 

maximum frequency (line 14-18). After execution of the task   , its energy consumption will 

be calculated and the total energy will be updated in lines 22-23. Finally, the task    will be 

removed from the ready list TReady and all its successors are added to the list in line 24.  
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Figure 6-2 The proposed DVFS_FTS algorithm 

 

               

                    

               

DVFS_FTS Algorithm  

Inputs: 

K transient faults for each task  

Real-time constraints 

1. TReady =                       

2. Schedulable = True 

3.          

4. While TReady    do 

5. {  Select      TReady having the minimum deadline Di 

6.    Compute       with Equation (5.1)under maximum frequency  

7.    Compute the start time      of    on all processor    in   

8.                    

9.    If               then  

10.    { Schedule    on    at the earliest start time     /*    

is the processor with min    */ 

11.      Apply checkpointing for    

12.      Compute   
   

 based on Equation(6.8) 

13.      Perform    under   
   

 frequency } 

14.    Else    

15.    { Compute       with Equation(5.7)under maximum frequency 

16.      If               then  

17.       { Schedule both    on    and its replica on another 

processor    at the earliest start time.  

18.         Apply collaborative active replication for    }                           

19.      Else                        

20.       { Schedulable = False 

21.         Break  }} 

22.Compute the energy consumption         

23.                      

24.TReady = TReady-                                          

  } 

End DVFS_FTS 



Chapter 6            An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization 

for Hard Real-Time Embedded Systems 

70 

 

6.7. Performance evaluation 

In this section, we evaluate the performance of the proposed DVFS_FTS algorithm. For 

comparison we have implemented our algorithm and the following schemes: 

EXH_FTS: Fault tolerant scheduling algorithm with energy minimization using exhaustion 

method. 

DVFS_CH: Fault tolerant scheduling algorithm that uses checkpointing with roll back 

technique for fault tolerance and DVS for reduce energy. This algorithm is extended from 

JFTT scheme [Zhang et al. 2006] for tasks with precedence constraints (application DAG). 

The performance is measured in term of normalized total energy saving. We formulate the 

parameter energy saving    in Equation (6.10). 

       
      

    
                                                    (6.10) 

Where      is the energy consumption of the proposed algorithm with all tasks are executed 

at the highest frequency and   is the energy consumption of a compared algorithm with 

DVFS scheme. 

6.7.1.  Simulation parameters 

 

Before presenting our experimental results, we present the simulation parameters as follows: 

The method of generating random graphs is the same as [Qamhieh 2015]. We have generated 

a set of DAG applications with 10, 20, 30, 40 and 50 tasks. Within a task set, the worst case 

response time on maximum operating frequency    for each task is randomly generated with 

values uniformly distributed in the range of [10ms, 100ms]. We assume       and the 

operating frequencies are set as                . The parameters and the values used in 

our simulation are summarized in Table 6-1. 

Parameter Value(fixed-varied) 

Number of processors 4 

Application size (Number of tasks) (10 , 20 , 30 , 40 , 50)  

Execution time (ms)  [10 , 100] 

Normalized frequency [0.1 – 1] with a step of 0.1 

Checkpoint overhead O (1%, 2%, 5%, 10%, 15%, 20%) 

Number of faults K (1 , 2 , 3 , 4 , 5) 

Table 6-1. Parameters for simulation 
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6.7.2.  Experiment results  

The first set of experiments compares the energy savings of algorithms with respect to 

number of transient faults (see Figure 6-3). In this experiments, we set application size 

     tasks, the checkpoint overhead O = 2% and vary K from 1 to 5. As can be seen clearly 

from the figure that the performance on energy saving of DVFS_FTS algorithm outperforms 

both DVFS_CH and EXH_FTS schemes. For instance, when the number of transient faults is 

5 faults, the ES of DVFS_FTS is greater than DVFS_CH and EXH_FTS by 7.17% and 6.34% 

respectively. Furthermore, we can observe that the energy savings of the three algorithms 

decreases with the increase of the number of transient faults. 

 

Figure 6-3 The impact of number of faults on energy saving. 

The second set of experiments is to investigate the performance of the different approaches 

with respect to application size (see Figure 6-4). In this set of experiments, we set the 

checkpoint overhead O = 2% and K =3 and vary the application size   from 10 tasks to 50 

tasks. We can see that the energy saving increases when the number of tasks increases. The 

energy saving of DVFS_FTS is greater than DVFS_CH and EXH_FTS schemes by: (6.73%, 

6.18%), (6.76%, 5.8%), (7.68%, 6.75%), (8.74%, 8.45%), (8.61%, 8.8%) for number of tasks 

of 10, 20, 30, 40 and 50, respectively. The results of our proposed algorithm always 

outperform those of the others, which show the efficiency of the DVFS_FTS algorithm. 
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Figure 6-4 The impact of application size on energy saving considering K=3 faults. 

In the third set of experiments, we show the impact of checkpointing overhead on the 

performance of algorithms (see Figure 6-5). In this set of experiments, we set application size 

   20 tasks, K =3 faults and vary O from 1% to 20%. As can be seen from the figure, the 

energy saving of the three schemes decreases when O increases. However, the ES of 

DVFS_FTS decreases about 5.87% when O increases from 1% to 20% and less than the ES of 

DVFS_CH and EXH_FTS decrease about 6.5% and 6.76% respectively. 

 

Figure 6-5 The impact of checkpoint overhead on energy saving considering K=3 faults. 

From these experiments, we can resume that the proposed algorithm DVFS_FTS outperforms 

the other two algorithms. 

6.8. Conclusion 

In this chapter, we have studied the trade-off between fault tolerance and energy minimization 

in hard real-time systems running on multiprocessor platforms. We have extended the fault 
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tolerance approach already presented in chapter 5 with DVFS technique to attain more energy 

saving. Then, we have presented our fault-tolerant scheduling algorithm DVFS_FTS that 

exploits DVFS technology to reduce energy consumption and the proposed fault-tolerance 

approach to tolerating K transient faults for applications that can be modeled with a DAG 

(precedence-constrained applications). Simulation results have shown that the proposed 

algorithm achieves a considerable amount of energy saving compared to EXH_FTS and 

DVFS_CH algorithms.  
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CHAPTER 7  

Conclusion and Future Work 

Nowadays, embedded real-time systems are prevalent in our daily lives. They are growing 

rapidly in both scale and complexity. However, these progresses have brought unprecedented 

challenges for designing of these systems that are subject to a variety of constraints, e.g. 

timing, reliability and power. The reliability of these systems can be increased by the use of 

fault tolerance techniques.  

Fault tolerance is a well established research topic and it offers a wide variety of techniques to 

achieve correct operation even in the presence of errors. Checkpointing with rollback 

Recovery is one technique that efficiently copes with transient faults. The advantage of this 

technique over other fault tolerance techniques is that it is not as costly as other techniques 

which require a significant amount of hardware redundancy, and in case of errors, the faulty 

segment of the task that is being executed instead of restarting the task from the beginning. 

The main drawback of checkpointing with rollback is that it introduces a time overhead which 

depends on the number of checkpoints that are used. Active replication technique usually 

requires extra system resources e.g. processor, and consume more energy even under the 

fault-free scenarios, but they can tolerate faults timely and promptly. 

In this dissertation, we focused our efforts on developing an efficient and effective approach 

for fault tolerant scheduling of hard real-time systems with the purpose of providing 

guarantees to timing constraints under transient faults while optimizing power consumption. 

We started by studying how we can combine fault tolerance techniques of the two basic 

classes of redundancy: time-based redundancy and spatial redundancy to tolerate spatially or 

temporally faults, satisfy critical task constraint and explore hardware resources. For this 

purpose, we have proposed a new fault-tolerance approach that combines checkpointing with 

rollback technique and active replication in an original scheme.  

We have also introduced replicas collaboration to tolerate spatially or temporally faults and 

satisfy critical task constraint. To the best of our knowledge, this is the first work introducing 

the idea of collaboration between replicas in active replication technique with checkpointing. 
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The proposed approach classifies the real-time tasks into critical and noncritical ones, 

according to the utilization of the task. For the noncritical task, we adopt checkpointing with 

rollback technique to tolerate multiple transient faults. Whereas for the critical task, we adopt 

active replication as it is the fault tolerant method that explores hardware resources to meet 

timing constraints and provide high reliability even when deadlines are tight.  

Based on this approach, we have proposed two fault tolerant scheduling algorithms: SFTS and 

DVFS-FTS algorithms. SFTS is a static fault tolerant scheduling algorithm. It uses task 

utilization to decide which fault tolerance method will be applied (checkpointing with 

rollback or active replication) to tolerate spatial and temporal faults. While DVFS-FTS is an 

EDF list scheduling based heuristic. It exploits DVFS technology and the proposed fault-

tolerance approach to reduce energy consumption and tolerating K transient and intermittent 

faults for applications that can be modeled with a DAG. 

Future work 

Our work remains opening to future contributions like: 

  Evaluate our fault-tolerant scheduling algorithms on real-life applications. 

 We are interested in extending our efficient fault-tolerant scheduling algorithms to 

address the problem of online fault-tolerant scheduling of application with mixed-

critical tasks in heterogeneous architecture. In addition of tolerating transient faults, 

we will take into consideration permanent faults.  

 We are interested in studying a new state of checkpointing scheme to minimize as 

possible the number of checkpoints as a result minimize a time overhead. 

 Another potential point for further development would be to extend the fault model 

and consider more faults e.g. permanent faults. Then, this would open possibility for 

implementing further fault tolerant mechanism to deal with newly considered faults 

and their effects. 
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