

Thesis
For the Degree of Doctor of Science

In

COMPUTER SCIENCE

By

Barkahoum KADA

Fault-Tolerance and Scheduling in

Embedded Real-Time Systems

Under the Supervision of: Prof. Hamoudi KALLA

Committee members:

Dr. Hocine Riadh President University of Batna2

Dr. Houassi Hichem Examiner University of Khenchela

Dr. Maarouk Toufik

Messaoud

Examiner University of Khenchela

Prof. Kalla Hamoudi Supervisor University of Batna2

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Batna 2

Faculty of Mathematics and Computer

Science

 Department of Computer Science

ii

Acknowledgement

First and foremost, I would like to thank Allah almighty for giving me the strength,

knowledge, ability, and opportunity to accomplish this thesis. Praise be to Allah.

I am deeply grateful to Prof. Hamoudi Kalla, my supervisor, for his constant support,

guidance and kindness during this research. This work would not have been possible

without his guidance and involvement, his support, and encouragement on daily basis

from the beginning till this moment. I am thankful to him for having long discussions

with me and giving me invaluable suggestions which helped me to grow my

understanding. I deeply express my gratitude and thank him for his support and

concern.

I am happy to acknowledge my deepest sincere gratitude to Dr. Riadh Hocine for the

honor that he makes to preside this jury. I also thank the members of the thesis

committee: Dr. Hichem Houassi and Dr. Toufik Messaoud Maarouk for having

accepted to assess my thesis.

A special thanks to my family. I deeply owe it to my parents, who motivated and

helped me at every stage of my life.

I owe thanks to a special person, my husband, for his continued and unfailing love,

support, and understanding during my pursuit of a Ph.D. degree that made the

completion of this thesis possible. He was always there with me in the moments when

there was no one to solve my difficulties. I greatly value his contribution and deeply

appreciate his belief in me. Last but not the least, I appreciate my daughter and my

son, for the long lasting patience and understanding they’re shown during the entire

Ph.D. work and thesis writing.

iii

Abstract

Recently, fault tolerance and energy consumption have attracted a lot of interest in the

design of modern embedded real-time systems. Fault tolerance is fundamental for

these systems to satisfy their real-time constraints even in the presence of faults and is

needed because it is practically impossible to build a perfect system. Transient faults

are the most common, and their number is dramatically increasing due to the high

complexity, smaller transistors sizes, higher operational frequency, and lowering

voltages. Dynamic voltage and frequency scaling (DVFS) is an energy saving

technology enabled on most current processors.

This work addresses the issue of fault-tolerant scheduling with energy minimization

for hard real-time embedded systems. Our first proposition is an efficient fault

tolerance approach that combines two well-known methods: active replication and

checkpointing with rollback. Based on this approach we have proposed two

algorithms. Static Fault-Tolerant Scheduling algorithm SFTS that explores hardware

resources and timing constraints to tolerate multiple transient fault occurrences with

respect to hard real-time constraints of precedence-constrained applications. Dynamic

Voltage and Frequency Scaling Fault-tolerant Scheduling algorithm DVFS-FTS is

proposed to satisfy real-time constraints and to achieve more energy saving even in

the presence of faults by adapting the DVFS technique. According to the simulation

results, the proposed algorithms have been shown to be very promising for emerging

systems and applications where timeliness, fault tolerance, and energy reduction need

to be simultaneously addressed.

Keywords: Fault Tolerance, Transient Faults, Checkpointing, Active Replication, Dynamic

Voltage Frequency Scaling (DVFS), Energy Minimization.

iv

Résumé

Récemment, la tolérance aux fautes et la consommation d’énergie ont attiré beaucoup

d’intérêt dans la conception des systèmes temps-réel embarqués modernes.

La tolérance aux fautes est fondamentale pour ces systèmes pour satisfaire leurs

contraintes temps-réel même en présence de fautes et elle est nécessaire car il est

pratiquement impossible de construire un système parfait. Les fautes transitoires sont

les plus courants et leur nombre augmente considérablement en raison de la

complexité élevée, des tailles de transistors plus petites, fréquence de fonctionnement

plus élevée et des tensions abaissées. DVFS est une technologie de minimisation

d’énergie activée sur la plupart des processeurs actuels.

Ce travail traite le problème d’ordonnancement tolérant aux fautes avec minimisation

d’énergie pour les systèmes temps-réel embarqués critiques. Notre première

proposition est une approche efficace de tolérance aux fautes qui combine les deux

techniques : réplication active et checkpointing. En se basant sur cette approche, nous

avons proposé deux algorithmes. L’algorithme d’ordonnancement tolérant aux fautes

SFTS qui explore l’architecture matérielle et les contraintes temporelles pour tolérer

multiples fautes transitoires en respectant les contraintes temps-réel critiques des

applications avec contraintes de précédences. L’algorithme d’ordonnancement

tolérant aux fautes DVFS-FTS est proposé pour satisfaire les contraintes temporelles

et minimiser la consommation d’énergie même en présence de fautes en adaptant la

technique DVFS. Selon les résultats de simulation, les algorithmes proposés se sont

révélés très prometteurs pour les applications où le respect des contraintes

temporelles, la tolérance aux fautes et la minimisation d’énergie doivent être traitées

simultanément.

Mots Clés: Tolérance aux Fautes, Fautes Transitoires, Checkpointing, Réplication Active,

Stratégie d’adaptation dynamique de la tension (DVFS), Minimisation d’énergie.

v

 صــــــلخـــم

تصميم أنظمة في في الآونة الأخيرة اجتذب التسامح مع الخطأ واستهلاك الطاقة الكثير من الاهتمام

يعد التسامح مع الخطأ أمرًا أساسيًا لهذه الأنظمة لتلبية قيود الوقت . الوقت الحقيقي المدمجة الحديثة

تعتبر . مستحيل عمليا بنا نظام مثاليوهي ضرورية لأنه من ال خطا الفعلي حتى في حالة وجود الأ

، أحجام العابرة هي الأكثر شيوعًا ويزداد عددها بشكل كبير بسبب التعقيد العالي خطا الأ

 مقياس الجهد والتردد الديناميكي. تردد التشغيل العالي والجهود المنخفضة ،الترانزستورات الأصغر

(DVFS) معظم المعالجات الحاليةهو تقنية موفرة للطاقة يتم تمكينها في.

استهلاك الطاقة لأنظمة الوقت الحقيقي هذا العمل مسألة الجدولة المتسامحة مع الأخطا مع تقليليعالج

النسخ النشط : اقتراحنا الأول هو نهج فعال للتسامح مع الخطأ يجمع بين طريقتين معروفتين .المدمجة

خوارزمية جدولة متسامحة للخطأ . هج اقترحنا خوارزميتينبناً على هذا الن. ونقاط التفتيش مع التراجع

SFTS تستكشف هيكل المعدات والقيود الزمنية اللازمة للتسامح مع الأخطا الانتقالية المتعددة مع

خوارزمية الجدولة المتسامحة للأخطا و. احترام قيود الوقت الحقيقي الحرجة للتطبيقات المقيدة الأسبقية

DVFS-FTS ية قيود الوقت وتقليل استهلاك الطاقة حتى في حالة وجود أخطا من خلال تكييف لتلب

وفقاً لنتائج المحاكاة فقد ثبت أن الخوارزميات المقترحة واعدة جدًا للتطبيقات حيث يتم . DVFSتقنية

 .احترام ضيق الوقت ، التسامح مع الأخطا وتقليل الطاقة في وقت واحد

 ، Checkpointing، نقاط التفتيش ، أخطا عابرة التسامح مع الخطأ : ــــــةالكلمــــــات المفتاحي

 ، تقليل (DVFS)، مقياس تردد الجهد الديناميكي Replication Activeالنسخ المتماثل النشط

 .استهلاك الطاقة

vi

Contents

Acknowledgement .. ii

Abstract ... iii

List of Figures ... ix

List of Tables .. xi

Abbreviations ... xii

List of symbols ... xiii

CHAPTER 1 General Introduction ... 1

1.1. Context ... 1

1.2. Contributions .. 3

1.3. Thesis organization ... 3

CHAPTER 2 Real-Time Systems .. 5

2.1. Introduction .. 5

2.2. Definition .. 5

2.3. Classfication of real-time systems: ... 6

2.3.1. Hard real-time system: .. 7

2.3.2. Soft real-time system: ... 7

2.3.3. Mixed critical system: .. 7

2.4. Real-time task: .. 7

2.4.1. Real-time task characteristics:... 7

2.4.2. States of real-time task.. 9

2.4.3. Types of real-time tasks ... 9

2.4.4. Precedence Constraints and Dependencies .. 10

2.4.5. Makespan .. 11

2.5. Real-time scheduling classification... 11

2.5.1. Uniprocessor/Multiprocessor: .. 11

2.5.2. Off-line/On-line: .. 11

2.5.3. Preemptive/Non-Preemptive: ... 12

2.5.4. Static/Dynamic priorities: .. 12

2.5.5. Feasibility and optimality: ... 12

2.6. Embedded Systems .. 13

2.6.1. Definition1 ... 13

2.6.2. Definition2 ... 13

vii

2.6.3. Application of embedded systems .. 14

2.6.4. Embedded system architecture .. 14

2.6.5. Characteristics of Embedded Systems .. 16

2.7. Conclusion .. 17

CHAPTER 3 Dependability and Fault Tolerance ... 18

3.1. Introduction .. 18

3.2. Dependability ... 18

3.2.1. Dependability attributes: .. 19

3.2.2. Dependability impairments: .. 20

3.2.3. Dependability means: .. 23

3.3. Fault tolerance:... 25

3.3.1. Fault tolerance techniques .. 25

3.3.2. Error detection techniques .. 26

3.3.3. Redundancy for fault tolerance ... 27

3.4. Conclusion .. 30

CHAPTER 4 Literature review ... 32

4.1. Introduction .. 32

4.2. Real-time uniprocessor scheduling .. 32

4.2.1. Rate Monotic RM ... 33

4.2.2. Deadline Monotic DM ... 33

4.2.3. Earliest Deadline First EDF ... 34

4.3. Real-time multiprocessor scheduling ... 35

4.3.1. Related work on real-time multiprocessor scheduling ... 35

4.4. Related work on fault tolerant real-time scheduling ... 38

4.5. Related work on fault-tolerant scheduling with energy minimization 40

4.6. Conclusion .. 42

CHAPTER 5 A Fault-Tolerant Scheduling Algorithm Based on Checkpointing and

Redundancy for Distributed Real Time Systems ... 43

5.1. Introduction .. 43

5.2. Literature review .. 44

5.3. System model ... 46

5.3.1. Application model ... 46

5.3.2. Hardware model .. 47

5.3.3. Fault model .. 47

viii

 5.4. The proposed fault-tolerant approach .. 48

5.4.1. Checkpointing with rollback recovery ... 48

5.4.2. Active replication with checkpointing ... 50

5.5. Motivational example... 53

5.6. The proposed fault tolerant scheduling algorithm .. 54

5.7. Experimental results ... 56

5.8. Conclusion .. 59

CHAPTER 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization for

Hard Real-Time Embedded Systems... 60

6.1. Introduction .. 60

6.2. Related work... 61

6.3. System models.. 62

6.3.1. Application model ... 62

6.3.2. Scheduling model .. 62

6.3.3 Fault model ... 62

6.3.4. Platform and Energy model ... 63

6.4. The fault-tolerance approach ... 64

6.4.1. Uniform Checkpointing with Rollback Recovery ... 64

6.4.2. Collaborative active replication ... 64

6.5. DVFS based fault-tolerance approach .. 66

6.5.1. Optimal frequency assignments .. 67

6.6. The proposed DVFS fault-tolerant scheduling algorithm ... 68

6.7. Performance evaluation ... 70

6.7.1. Simulation parameters .. 70

6.7.2. Experiment results ... 71

6.8. Conclusion .. 72

CHAPTER 7 Conclusion and Future Work .. 74

Future work ... 75

References .. 76

ix

List of Figures

Figure 2-1 Real-time system ...6

Figure 2-2 Real-time task parameters ...8

Figure 2-3 Different states of a real-time task [Qamhieh 2015] ...9

Figure ‎2-4 Precedence constraints example ..11

Figure ‎2-5 Classification of real-time scheduling ...13

Figure ‎2-5 Examples of embedded systems ..14

Figure ‎2-5 Parallel architecture ...15

Figure ‎2-5 Distributed architecture ...15

Figure 2-6 Example of multiprocessor architecture..16

Figure 3-1 Dependability characteristics ..19

Figure 3-2 Dependability impairments ...20

Figure 3-3 Fault classes [Avizienis et al. 2004] ..23

Figure 3-4 Fault tolerance techniques ...26

Figure 3-5 Different types of redundancy in real-time systems ...28

Figure 3-6 Active redundancy b) and Passive redundancy c) ...29

Figure 4-1 Example of scheduling with Rate Monotic ...33

Figure 4-2 Example of scheduling with DM ..34

Figure 4-3 Example of scheduling with EDF ...35

Figure 4-4 Partitioned Scheduling vs Global Scheduling [Zahaf 2016]37

Figure ‎5 -1 Hard real time application example ...46

Figure ‎5-2 Hardware example ..47

Figure 5-3 Checkpointing with rollback recovery ..50

Figure ‎5-4 Scheduling of on virtual processor P# ..51

Figure 5-5 Fault-free scenario ...51

Figure 5-6 Fault occurrence scenario ..52

Figure ‎5-7 An application example A2 to be scheduled on P1 and P2 under k=2 faults53

Figure 5-8 Fault tolerant scheduling: combination of checkpointing with rollback for

tasks , and active replication with checkpointing for the task 54

Figure 5-9 The proposed static fault tolerant scheduling algorithm SFTS55

Figure ‎5-10 Impact on schedule length of application size considering k = 2 faults57

x

Figure ‎5-11 The time overhead of STFS compared to checkpointing by varying

checkpoint saving α and recovery overhead μ ..58

Figure 5-12 Feasibility rate of SFTS by doubling fault arrival rate (λ)58

Figure 6-1 Illustration of different steps of collaborative active replication66

Figure 6-2 The proposed DVFS_FTS algorithm ..69

Figure 6-3 The impact of number of faults on energy saving ...71

Figure 6-4 The impact of application size on energy saving considering k=3 faults72

Figure 6-5 The impact of checkpoint overhead on energy saving considering k 3faults72

xi

List of tables

Table 3-1. Comparison between three approaches of redundancy ...30

Table 4-1. Example of Rate Monotic: task set details ..33

Table 4-2. Example of Deadline Monotic: task set details ...34

Table 4-3. Summary of fault-tolerant scheduling ..39

Table 4-4. Summary of fault-tolerant scheduling with energy minimization41

Table 5-1. Simulation parameters ...56

Table 5-2. Fault tolerance overheads due to SFTS for different number of faults57

Table 5-3. Timing overhead of SFTS compared with checkpoint considering various

checkpoint parameters ..58

Table 6-2. Parameters for simulation ..70

xii

Abbreviations

EDF Earliest Deadline First

NFT Non Fault Tolerant

SFTS Static Fault-Tolerant Scheduling Algorithm

DVFS Dynamic Voltage and Frequency Scaling

DVFS-FTS DVFS Fault-Tolerant Scheduling Algorithm

CH Checkpointing

DAG Directed Acyclic Graph

EXH_FTS Exhaustion Fault-Tolerant Scheduling Algorithm

DVFS_CH DVFS Fault-Tolerant Scheduling Algorithm with Checkpointing

ES Energy Saving

DPM Dynamic Power Management

ABS Anti-lock Braking System

RM Rate Monotic

DMDeadline Monotic

RT Real-Time

LLF least laxity First

WCRT Worst Case Execution Time

WCCT Worst Case Communication Time

TReady Ready List

JFTT Job-Oriented Fault Tolerance with Task-level Speed Scaling

xiii

List of symbols

Notation Definition

 The ith task in the task set = { / i = 1...n}

Ci The worst execution time of in a fault free condition

Di The deadline of the task

Ui The utilization of the task

eij Data dependency between and

Pj The jth processor in the set of processors Ρ = {Pj / j=1…M}.

K Number of transient faults

λ Failure rate

 The criticality threshold

mi Number of checkpoints for the task

Ci(mi) The fault free execution time of the task using checkpointing

Oi The time overhead for the task for saving one checkpoint

Ri(mi)
The recovery time of the task with mi checkpoints under one

fault

ri
The time overhead for the task to rollback to the latest

checkpoint

WCRTi
The worst case response time of the task in the presence of

K faults

 The jth segment of the task

 The jth replica of the task

P# Virtual processor.

STi The start time of the task

FTi The finish time of the task

 Checkpoint saving

µ Recovery cost

Effective deadline of the task

 Optimal Frequency

xiv

 Maximum Frequency

 Effective Loading Capacitance

 Supply Voltage

 Power Consumption

 Static Power

 Constant independent of operating frequency

 Dynamic Power

 Energy Consumption

 Total Energy

1

CHAPTER 1

General Introduction

1.1. Context

With the rapid growth in technology, the contemporary computing systems available in

today's era are shrinking in size and weight, exhibiting high performance and are capable of

communicating with each other over the network. This has made embedded systems common

place in everyday life. Unlike general purpose systems, embedded systems receive input from

different sources through sensors and provide output to different devices through actuators

without human intervention. These systems are used in many diverse application areas

namely, automated industry applications, automotive applications, avionics, defense

applications, consumer electronics etc. Many of the embedded systems are specially made for

performing real-time tasks where the timing constraints are important. Such systems are

known as real-time embedded systems. For example, in a missile guided system, the highly

critical hard real-time tasks like target sensing and track correction require an independent

system mounted on the missile to sense the target and correct the path of the missile. If these

tasks are not completed in time, the missile may home onto unwanted area and cause disaster

[Digalwar 2016].

Based on the cost of failure associated with not meeting timing constraints, real-time systems

can be classified broadly as either hard or soft. A hard real-time constraint is one whose

violation can lead to disastrous consequences such as loss of life or a significant loss to

property as a missile guided system. In contrast, a soft real-time constraint is less critical;

hence, soft real-time constraints can be violated. However, such violations are not desirable,

either, as they may lead to degraded quality of service, and it is often the case that the extent

of violation be bounded. Multimedia system is an example of system with soft real-time

constraints.

Fault tolerance is fundamental for real-time systems to satisfy their real-time constraints even

in the presence of faults. As shown in [Srinivasan et al. 2003], processor faults can be broadly

Chapter 1 General Introduction

2

classified into two categories: transient and permanent faults. Transient faults are the most

common, and their number is dramatically increasing due to the high complexity, smaller

transistors sizes, higher operational frequency, and lowering voltages [Djosic and Jevtic 2013,

Salehi et al. 2016, Li et al. 2015, Krishna 2014]. They may cause errors in computation and

corruption in data, but are not persistent. On the other hand, permanent faults, also called hard

errors can cause hardware damages to processors and bring them to halt permanently.

Fault tolerance is essentially based on redundancy. In literature [Dubrova 2013, Motaghi and

Zarandi 2014, Zhang and Chakrabarty 2006, Izosim et al, 2008], two families of redundancy

are used in fault tolerant scheduling of real-time systems: spatial redundancy and time-

based redundancy. Spatial redundancy is effective to tolerate multiple spatial faults

(permanent or transient) and is more preferable for safety-critical systems. However, it is very

costly and can be used only if the amount of resources is virtually unlimited [Pop et al. 2009].

In order to reduce cost, other techniques are required such as recovery with checkpointing and

re-execution which are classified by Motaghi and Zarandi (2014) time-based redundancy.

However these techniques introduce significant time overheads, where the non respect of

time-constraint can lead to unschedulable solution. Therefore, the design of an efficient fault-

tolerant approach is required to meet time and cost constraints of embedded systems.

Dynamic power/energy management is an active area of research in the design of embedded

real-time systems. Extensive power management techniques [Tavana et al. 2014, Li et al.

2011, Gupta 2004, Hu et al. 2016, Han et al. 2015] have been developed on energy

minimization for real-time systems under a large diversity of system and task models

[Mahmood et al. 2017, Wei et al. 2012]. Among these techniques, Dynamic Voltage and

Frequency Scaling (DVFS) is one of the most popular and widely deployed schemes. Most

modern processors, if not all, are equipped with DVFS capabilities. DVFS dynamically

adjusts the supply voltage and working frequency of a process to reduce power consumption

at the cost of extended circuit delay.

The real-time scheduling on multiprocessor system with only the timing constraints has been

identified as a NP-hard problem [Shin and Ramanathan 1994]. In addition of the two

criteria: reliability and energy consumption makes the real-time scheduling problem even

hard to study.

Chapter 1 General Introduction

3

1.2. Contributions

In this thesis, we will be interested in fault-tolerant scheduling with energy minimization of

hard real-time tasks with precedence constraints in multiprocessor platform. Thus, the main

contributions of this thesis are:

 We design an efficient fault-tolerant scheduling approach that explores hardware

resources and timing constraints. This approach combines two well-known policies:

checkpointing with rollback and active replication. Replicas collaboration is

introduced to tolerate spatially or temporally faults and satisfy critical task constraint.

To the best of our knowledge, this is the first work introducing the idea of

collaboration between replicas in active replication technique with checkpointing. The

proposed approach classifies the real-time tasks into critical and noncritical ones,

according to the utilization of the task. For the non critical task, we adopt

checkpointing with rollback technique to tolerate multiple transient faults. Whereas

for the critical task, we adopt active replication as it is the fault-tolerant method that

explores hardware resources to meet timing constraints and provide high reliability

even when deadlines are tight.

 Based on the explained fault-tolerance approach, we have proposed a fault-tolerant

scheduling algorithm SFTS which can tolerate K transient faults.

 We investigate the energy minimization problem for fault-tolerant scheduling of hard

real-time systems. We extend the proposed fault-tolerance approach to incorporate it

with DVFS to exploit the released slack time for energy saving. DVFS is used during

uniform checkpointing with rollback technique. However, with active replication, task

replicas must be performed at the maximum frequency given the probability of failure

is low.

 An efficient fault-tolerant scheduling heuristic DVFS_FTS based on the Earliest-

Deadline-First (EDF) algorithm is presented to minimize energy consumption while

tolerating K transient Faults.

1.3. Thesis organization

The rest of this dissertation is organized as follows:

Chapter 1 General Introduction

4

Chapter 2 introduces the basic concepts of real-time system and embedded system. It

presents their characteristics, architectures and the classification of real-time scheduling.

Chapter 3 provides in the first part an overview of dependability characteristics (attributes,

impairments and means) and the different classes of faults. The second part is dedicated to our

principle aim: fault tolerance. We present their different techniques and the principle classes

of redundancy in real-time systems (spatial redundancy and time-based redundancy).

Chapter 4 provides an overview of related work on multiprocessor scheduling, fault

tolerance, and energy consumption in embedded real-time systems.

Chapters 5 and 6 are devoted to the main contributions of this dissertation

Chapter 5 focuses on the choice of fault-tolerant mechanisms that ensure our system

reliability. It starts with a general description of our system model (Application, Architecture,

and fault model). Then, we concentrate on describing our fault tolerance approach based on

active replication and uniform checkpointing with rollback. After, we exploit this approach in

the first proposed fault-tolerant scheduling algorithm SFTS. Finally, simulation results are

given to prove the performance of the proposed algorithm.

Chapter 6 is dedicated to another challenge of real-time embedded systems: energy

minimization. We extend the proposed fault-tolerance approach in chapter 5 to incorporate it

with DVFS to achieve more energy saving. Then, we present the fault tolerant scheduling

algorithm DVFS_FTS developed for reducing dynamic energy. Finally, Experiment results

have shown that the proposed algorithm achieves a considerable amount of energy saving

compared to others algorithms.

Chapter 7 concludes the thesis by discussing the overall contribution of the research. In

addition, it discusses limitations of the work and points to future research directions.

5

CHAPTER 2

Real-Time Systems

2.1. Introduction

The distinguishing characteristic of a real-time system in comparison to a non-real-time

system is the inclusion of timing requirements in its specification. That is, the correctness of a

real-time system depends not only on logically correct segments of code that produce

logically correct results, but also on executing the code segments and producing correct

results within specific time frames. Thus, a real-time system is often said to possess dual

notions of correctness, logical and temporal.

In this chapter, we present first the basic concepts of real-time systems and their

classification. Then, we provide classes of real-time scheduling. We focus in this thesis on

real-time embedded systems. Finally, we describe some basic concepts pertain to embedded

systems.

2.2. Definition

The Oxford dictionary defines real-time as “the actual time during which a process or event

occurs”. In computer science, real-time systems are defined by Burns and Wellings (2001)

“those systems in which the correctness of the system depends not only on the correctness of

logical result of computation, but also on the time on which results are produced”. The

validity of a real-time system depends not only on the results of the processing performed but

also on the temporal aspect.

Recently, the term real-time is widely used to describe many applications and computing

systems that are somehow related to time, such as real-time trackers, gaming systems and

information services. The following list contains certain examples of practical real-time

applications:

 Mobile and communication systems.

Chapter 2 Real-Time Systems

6

 Multimedia and entertainment systems: multimedia information is in the form of

streaming audio and video.

 Data distribution systems which notify users of important information in a short delay

(few minutes or less). Such systems are found mainly in transport systems to inform

passengers of accidents and schedule delays or changes.

 General purpose computing such as in financial and banking systems.

 Medical systems such as peacemakers and medical monitors of treatments or surgical

procedures.

 Industrial automation systems such as the ones found in factories to control and

monitor production process. For example, sensors collect parameters periodically and

send them to real-time controllers, which evaluate the parameters and modify

processes when necessary. These systems can handle non-critical activities as in

logging and surveillance.

 General control management systems such as the ones found in avionic systems. Real-

time engine controllers are responsible of automatic navigation and detection of

hardware malfunctions or damages through reading sensors and processing their

parameters and react within an acceptable delay.

Figure 2-1 Real-time system

2.3. Classfication of real-time

systems:

Depending on the criticality of the timing constraints, three categories of real-time system can

be distinguished:

Real-time

system
Environment

(e.g. production

process)

Data, measures, events

Orders

Chapter 2 Real-Time Systems

7

2.3.1. Hard real-time system:

The correctness of their outputs depends on respecting given timing constraints or

catastrophic results occur. If such systems fail in performing their tasks within acceptable

deadline margins, their results become useless and might lead to catastrophic consequences.

It’s a system subject to strict timing constraints, that is to say for which the slightest temporal

error can have catastrophic human or economic consequences. Air traffic control systems and

nuclear station control systems are real-time strict.

2.3.2. Soft real-time system:

Soft real-time systems have flexible timing constraints and they perform less critical activities

and tasks. The quality of services provided by soft real-time systems depends on providing

results within a minimum delay. If such delay is not respected, the quality degrades but not

the correctness of the execution or results.

2.3.3. Mixed critical system:

They are defined by [Saraswat et al. 2010] and [Izosimov 2008] the systems with tasks of

different levels of time-criticality, for example running hard real-time and soft real-time tasks

in the same system.

2.4. Real-time task:

A real-time task is a sequence of instructions that is the basic unit of a real-time system. The

tasks perform inputs / outputs and calculations to control processes via a set of sensors and

actuators, possibly all or nothing, for example set of tasks performing the speed controller of a

car or the automatic control of a plane.

2.4.1. Real-time task characteristics:

A real-time application is composed of a set of n tasks denoted by , where

 . Generally, a real-time task is described by the following parameters (all these

parameters are illustrated in Figure 2-2)

Chapter 2 Real-Time Systems

8

 Ri (Ready time or Release time): it is the time on which the task can begin its

execution;

 STi (Start time), FTi (End time): are respectively the time on which the task is

executed on the processor also called the start time of execution and the time on which

the task finishes its execution also called the end time of execution;

 RTi (Response time): it represents FTi -Ri;

 WCRT (Worst Case Response time) Ci: which is an estimation of the longest possible

execution time of any task , i.e., the actual execution time of a task should never

exceed its WCRT in any scenario. The evaluation of WCRT of tasks is very important

for the reliability of real-time systems to be valid, the value of this parameter must not

be overestimated too much, must be safe (never overestimated) and the pessimism of

their estimations increases relatively to the criticality of the application [Qamhieh

2015];

 Di (Deadline): which is the time interval in which each task executes with respect to

its release time. In hard real-time systems, any task must always meet their deadline,

whereas execution tardiness of task is accepted in soft real-time systems. Two types of

deadlines exist:

 Relative Di: the time interval between the start of the task and the completion of

the real-time task is known as relative deadline. It is basically the time interval

between arrival and corresponding deadline of the real-time task.

 Absolute Di +Ri: the time within which execution of a task should be

completed.

 Li (Laxity): this is the largest time for which the scheduler can safely delay the task

execution before running it without any interruption.

 Ti (Period): which is the minimum inter-arrival time between two releases of the same

task.

Figure 2-2 Real-time task parameters

Ci

Di

STi FTi
Ri time

RTi

Di +Ri

Chapter 2 Real-Time Systems

9

The processor utilization of task is defined as the task’s processor usage and it is denoted

by

 . The utilization of a task set is the sum of utilization of its tasks, where

2.4.2. States of real-time task

The main objective of a real-time scheduler is to guarantee the correctness of the results while

respecting the timing constraints of the tasks (no deadline miss).

Based on the decisions of the scheduler, a real-time task can be in one of the following states:

• Ready state: The task is activated and it is available for execution, but it is not

currently selected by the scheduler to execute on a processor.

• Running state: The task is assigned to a processor and it is actually executing.

• Blocked state: if the task is waiting for an event to happen such as an I/O event, it

remains blocked and cannot be scheduled until the event happens. Then the task

moves to the ready state.

The different states of tasks are shown in Figure 2-3. Moreover, a real-time scheduler controls

the transitions between the ready and running states of tasks, but it has no control over the

external events that block the execution of tasks.

Figure 2-3 Different states of a real-time task [Qamhieh 2015]

2.4.3. Types of real-time tasks

There exist three types of real-time tasks:

RT

Scheduler

 Blocked

Ready

Runing

resumed

event

ent

Waiting for

event

 preempted

activate

d

Chapter 2 Real-Time Systems

10

2.4.3.1. Period task:

A task is called periodic if the event that conditions its activation occurs at regular intervals

of time (period) Ti and each activation is called instance.

2.4.3.2. Aperiodic task:

The activation time is random and can not be anticipated, since its execution is determined by

the occurrence of an internal event (for example the arrival of a message) or an external event

(e.g. the requests of the operator). Anti-lock Braking System (ABS) in modern cars is a

typical system that employs aperiodic real-time tasks.

2.4.3.3. Sporadic task:

It's a special case of aperiodic tasks where a minimum duration of time separates two

successive activations. To take them into account, these tasks are often considered as periodic

tasks [Kermia 2009] to apply the existing results of the periodic tasks.

2.4.4. Precedence Constraints and Dependencies

A dependency between two tasks and can be of two types: a precedence dependency

and / or a data dependency. A precedence dependence between means that the task

cannot begin its execution until the task has been completed. Precedence constraints are

indirectly real-time constraints and we say that the task is a predecessor of the task and

 is a successor of [Forget 2011].

A data dependency between indicates that the task produces a data that is

consumed by . This dependence necessarily leads to precedence between the tasks. The

tasks are said to be independent when they are defined only by their temporal parameters

[Ndoye 2014].

The set of dependencies between the tasks can be modeled by a Directed Acyclic Graph DAG

where the nodes represent the tasks and the arcs the dependencies between the tasks. An

example of DAG is shown in the Figure 2-4.

Chapter 2 Real-Time Systems

11

Figure 2-4 Precedence constraints example

In this thesis, we are interested in hard real-time systems with aperiodic dependant tasks.

2.4.5. Makespan

Reflects the time that elapses between the start date of the first executed task and the finish

date of the last executed task. The goal is to develop algorithms which in addition to

respecting other time constraints, minimize makespan [Lin and Liao 2008].

2.5. Real-time scheduling

classification

Real-time scheduling is defined as the process that defines the execution order of tasks on

processor platforms. There are several classes of real-time scheduling algorithms, we can cite

the following classification [Yahiyaoui 2013]:

2.5.1. Uniprocessor/Multiprocessor:

Real-time scheduling is said uniprocessor scheduling if the architecture has only one

processor. If multiple processors are available, the scheduling is multiprocessors.

2.5.2. Off-line/On-line:

In off-line scheduling, the schedules for each task need to be determined in advance, therefore

it requires prior knowledge of the characteristics of tasks. It only incurs little runtime

overhead. In contrast, on-line scheduling calculates the schedules during runtime, hence it can

 4

 3

5

Chapter 2 Real-Time Systems

12

provide more flexibility to react to uncertainties of task characteristics at the cost of large

runtime overhead.

2.5.3. Preemptive/Non-Preemptive:

A scheduling is preemptive if the execution of any task can be interrupted to requisition the

processor for another more urgent or higher priority task. The scheduling is said to be non-

preemptive if, once started, the task being executed cannot be interrupted before the end of its

execution.

2.5.4. Static/Dynamic priorities:

Most scheduling algorithms are priority-based: they assign priorities to the tasks in the system

and these priorities are used to select a task for execution whenever scheduling decisions are

made. A scheduling algorithm is called static priority algorithm if there is a unique priority

associated with each task. e.g. of such algorithms is Rate Monotic (RM).

A scheduling algorithm has dynamic priorities, if the priorities of the tasks are based on

dynamic parameters (for example laxity). e.g. of such category is the Least Laxity First (LLF)

scheduling algorithm.

These classes of real-time systems are illustrated in Figure 2-5.

2.5.5. Feasibility and optimality:

A task is referred to as schedulable according to a given scheduling algorithm if its worst-

case response time under that scheduling algorithm is less than or equal to its deadline.

Similarly, a task set is referred to as schedulable according to a given scheduling algorithm if

all of its tasks are schedulable.

A task set is said to be feasible, if there is at least one scheduling algorithm that can schedule

the task set while meeting all task deadlines [Legout 2014].

Additionally, a scheduling algorithm is referred as optimal if it can schedule all of the task

sets that can be scheduled by any other algorithm. In other words, all of the feasible task sets

[Zahaf 2016].

Chapter 2 Real-Time Systems

13

Figure 2-5 Classification of real-time scheduling

2.6. Embedded Systems

In this thesis the applications that interest us are real-time and also embedded. This forces us

to take into account the properties of these systems in the work that we carry out.

2.6.1. Definition1

An embedded system can be broadly defined as a device that contains tightly coupled

hardware and software components to perform a single function, forms part of a larger

system, is not intended to be independently programmable by the user, and is expected to

work with minimal or no human interaction [Jimenez 2014].

2.6.2. Definition2

An embedded system is a combination of computer hardware and software, and perhaps

additional mechanical or other parts, designed to perform a specific function.

Most embedded systems interact directly with processes or the environment, making

decisions on the fly, based on their inputs. This makes necessary that the system must be

reactive, responding in real-time to process inputs to ensure proper operation. Besides, these

Real Time
Scheduling

Off-line On-line

Static Priority

e.g. Rate Monotic
(RM)

Preemptive
Non

Preemptive

Dynamic Priority

e.g. Least Laxity First
(LLF)

Chapter 2 Real-Time Systems

14

systems operate in constrained environments where memory, computing power, and power

supply are limited. Moreover, production requirements,

2.6.3. Application of embedded systems

Embedded systems are used in different applications like automobiles, telecommunications,

smart cards, missiles, satellites, computer networking and digital consumer electronics (see

Figure 2-6).

Figure 2-6 Examples of embedded systems

2.6.4. Embedded system architecture

It consists of a hardware part, which interacts with environment and formed by a set of

physical elements: processor(s), memory(s) and inputs/outputs. At the same time, a specific

software part which consists of programs and a power source.

Embedded systems sometimes require the use of several processors which can be of different

types. A first classification of architectures for embedded systems depends on the number of

Chapter 2 Real-Time Systems

15

processors: single-processor or multi-processor architecture. There are different classifications

for multiprocessor architectures:

Homogeneous / Heterogeneous in relation to the nature of the processors available to the

architecture:

 Homogeneous: In this case the processors are identical .i.e. they are interchangeable

and they have the same computing capacity;

 Heterogeneous: The processors are either independent .i.e. processors are not

intended to perform the same tasks or uniform .i.e. the processors perform the same

tasks but each processor has its own computational capacity.

Homogeneous / Heterogeneous depending on the nature of communications between

processors:

 Homogeneous: If the communication costs between each pair of processors in the

architecture are always the same;

 Heterogeneous: If the communication costs between processors vary from one pair of

processors to another.

Parallel / Distributed according to the type of memory available to the architecture:

 Parallel: This architecture model corresponds to a set of processors communicating

by shared memory (see Figure 2-7);



Figure 2-7 Parallel architecture

 Distributed: It corresponds to a set of distributed memory processors communicating

by messages (see Figure 2-8).

Figure 2-8 Distributed architecture

Shared Memory CPU

CPU

CPU

CPU

CPU Memory

CPU Memory CPU Memory

CPU Memory

Network

Chapter 2 Real-Time Systems

16

As represented in Figure 2-9, multiprocessor architectures are often represented by a graph

where the vertices are the processors. If an arc connects two vertices, this means that these

two vertices can communicate directly through the communication medium (bus, memory ...).

Figure 2-9 Example of multiprocessor architecture

2.6.5. Characteristics of Embedded Systems

The design of an embedded system must respect a certain number of characteristics, we list

below the most important:

 Must be dependable:

 Reliability: R(t) = Probability of system working correctly provided that is was

working at t=0.

 Maintainability: M(d) = Probability of system working correctly d time units

after error occurred.

 Availability: Probability of system working at time t

 Safety: No harm to be caused.

 Security: Confidential and authentic communication.

 Must be efficient:

 Energy efficient.

 Code-size efficient (especially for systems on a chip).

 Run-time efficient.

 Weight efficient.

 Cost efficient.

 Many Embedded System must meet real-time constraints:

Processor1

Processor3

Processor2

Processor4

M

M M

M

Chapter 2 Real-Time Systems

17

 A real-time system must react to stimuli from the controlled object (or the

operator) within the time interval dictated by the environment.

 For real-time systems, right answers arriving too late (or even too early) are

wrong.

2.7. Conclusion

We have presented in this chapter real-time and embedded systems, their characteristics,

application, and classification. In this thesis, we have considered critical real-time systems,

i.e. those which must satisfy the time constraints to prevent the system from the various

possible disasters. As the main characteristic of these systems is to be reliable, we will present

in the following chapter the basic concepts of fault tolerance and dependability.

18

CHAPTER 3

Dependability and Fault

Tolerance

3.1. Introduction

Fault tolerance is the ability of a system to continue performing its intended function in spite

of faults. In a broad sense, fault tolerance is associated with reliability, with successful

operation, and with the absence of breakdowns. A fault-tolerant system should be able to

handle faults in individual hardware or software components, power failures or other kinds of

unexpected disasters and still meet its specification. The ultimate goal of fault tolerance is the

development of a dependable system.

The first part of this chapter begins by defining what dependability is. Then, we describe the

basic concepts in the field of dependability (attributes, impairments and means) and identify

the different classes of faults.

The second part is dedicated to our principle objective: fault tolerance. We present their

different techniques and the principle classes of redundancy in real-time systems (spatial

redundancy and time-based redundancy).

3.2. Dependability

Dependability is the ability of a system to deliver its intended level of service to its users

[Krakowiak 2004]. As computer systems become relied upon by society more and more, the

dependability of these systems becomes a critical issue. In the next, we present three

characteristics of dependability as shown in Figure 3-1: attributes, impairments and means.

Chapter 3 Dependability and Fault Tolerance

19

Figure 3-1 Dependability characteristics

3.2.1. Dependability attributes:

The attributes of dependability express the properties which are expected from a system:

 Reliability: The ability of the system to deliver its service without interruption.

 Safety: The ability of the system to perform its functions correctly or to discontinue its

function in a safe manner.

 Availability: The proportion of time which system is able to deliver its intended level

of service.

 Confidentiality: The absence of unauthorized disclosure of information.

 Integrity: The absence of inappropriate alterations to information leads to integrity

 Maintainability: The ability to undergo modifications and repairs.

Dependability

Attributes

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Impairments

Faults

Errors

Failures

Means

Fault
prevention

Fault
tolerance

Fault removal

Fault
forecasting

Chapter 3 Dependability and Fault Tolerance

20

3.2.2. Dependability impairments:

Dependability impairments are usually defined in terms of faults, errors, failures which are

linked as illustrated in Figure 3-2. A common feature of the three terms is that they give us a

message that something went wrong. A difference is that, in case of a fault, the problem

occurred on the physical level; in case of an error, the problem occurred on the

computational level; in case of a failure, the problem occurred on a system level.

Figure 3-2 Dependability impairments

3.2.2.1. Fault:

A fault is a physical defect, or flaw that occurs in some hardware or software component.

Examples are short-circuit between two adjacent interconnects, broken pin, or a software bug.

Classes of faults

As shown in Figure 3-3, the work done by [Avizienis et al. 2004] classifies all faults

according to eight basic viewpoints. Each of these eight classes is called an elementary fault

class.

Classification According to Phase of Creation or Occurrence

The lifecycle of a system consists of a development phase and a use phase. The development

phase involves all activities that lead to the system being ready to deliver its service for the

first time, from the conception of an initial idea, to a specification, to a design, to the

manufacturing, and to the final deployment. The use phase involves everything that happens

after the system has been deployed and consists of alternating periods of service delivery,

service outage and service shutdown (an intentional and authorized interruption of the

service). Faults can be introduced into a system during either phase. Faults introduced during

the development phase are called development faults. Faults introduced during the use phase

are called operational faults.

Classification According to System Boundaries

A system is separated from its environment by a common frontier called the system boundary.

Based on this boundary, faults can be classified according to whether they originate within it

Fault Failure Error Fault …

…

…

…

…

…

…

…

…

Activation Propagation Consequence

Chapter 3 Dependability and Fault Tolerance

21

or outside of it. Faults originating within the system boundary are called internal faults. Faults

originating outside of it are called external faults. What exactly is an internal or external fault

therefore depends on where we trace the system boundary. The physical deterioration of a

component would be an example of an internal fault. The failure of a cooling system that is

part of the environment, and whose purpose is to prevent overheating of the system, would be

an example of an external fault.

Classification According to the Phenomenological Cause

Another way to classify faults is whether they can be attributed to people or whether they are

due to natural phenomena. Using this criterion, we distinguish between human-made faults,

which are those for which we can blame a person, and natural faults, which are those for

which we will have to blame natural phenomena.

Classification According to Dimension

The dimension of a fault refers to whether it affects hardware or software. In the first case we

talk about hardware faults; in the second, we talk about software faults. Examples of hardware

faults include the deterioration of physical parts, loose connectors, broken wires, and

manufacturing defects. Examples of software faults include typos in source code and

incorrectly implemented functions.

Classification According to Objective

Human-made faults, which we saw a moment ago, can be classified according to their

objective. In that case we distinguish between malicious and non-malicious faults. Malicious

faults are those that are introduced with the objective to cause harm to the system or its

environment. Non-malicious faults, unsurprisingly, are those introduced without the intent to

cause harm. Examples of malicious faults include Trojan horses, trapdoors, viruses, worms,

zombies, and wiretapping. Examples of non-malicious faults include any honest mistake

when designing, deploying or using a system.

Classification According to Intent

Another way of classifying human-made faults is according to their intent. Here we

distinguish between deliberate faults and non-deliberate faults. To decide whether a fault is

deliberate or non-deliberate, we basically have to ask the person that just introduced the fault

“did you do that on purpose?”. If the answer is yes, we have a deliberate fault; otherwise, we

have a non-deliberate fault. An example is when a designer purposely chooses not to add any

electromagnetic shielding to reduce the weight or cost of a system. Depending on the

Chapter 3 Dependability and Fault Tolerance

22

electromagnetic harshness of the environment where the system needs to operate, this may be

a fault

Classification According to Capability

Avižienis et al. 2004 also classify human-made faults according to the capability (or

competence) of the person introducing the fault. Using this criterion we distinguish between

accidental faults and incompetence faults. Accidental faults are those introduced

inadvertently, presumably due to a lack of attention and not due to a lack of skills; whereas

incompetence faults are those introduced due to a lack of skills.

Classification According to Persistence

Finally, Avizienis et al. (2004) classify faults according to their persistence: faults can either

be permanent faults, meaning that once present, they do not disappear again without external

interventions such as repairs; or they can be transient faults, meaning that they disappear

after some time. An example of a permanent fault is a deteriorated component. An example of

a transient fault is an electromagnetic interference.

3.2.2.2. Error:

An error is a deviation from correctness or accuracy in computation, which occurs as a result

of a fault. Errors are usually associated with incorrect values in the system state. For example,

a circuit or a program computed an incorrect value, an incorrect information was received

while transmitting data.

3.2.2.3. Failure:

A failure is a non-performance of some action which is due or expected. A system is said to

have a failure if the service it delivers to the user deviates from compliance with the system

specification for a specified period of time. A system may fail either because it does not act in

accordance with the specification, or because the specification did not adequately describe its

function.

Chapter 3 Dependability and Fault Tolerance

23

Figure 3-3 Fault classes [Avizienis et al. 2004]

3.2.3. Dependability means:

Dependability means are the methods and techniques enabling the development of a

dependable system. Fault tolerance, which is the subject of this thesis, is one of such methods.

Faults
ss

Phase of creation

Or occurrence

System boundaries

 Phenomenological

 cause

Dimension

Hardware faults
[Originate in, or affect, hardware]

Software faults
[Affect software, i.e., programs or data]

Intent

Deliberate faults
[Result of a harmful decision]

Non-deliberate faults
[Introduced without awareness]

Natural faults
[Caused by natural phenomena without human participation]

Human-Made faults
[Result from human actions]

Internal faults
[Originate inside the system boundary]

External faults
[Originate outside the system boundary and propagate errors into

the system by interaction of interference]

Development faults
[Occur during (a) system development, (b) maintenance during the use

phase and (c) generation of procedures to operate or to maintain the system]

Operational faults
[Occur during service delivery of the use phase]

Objective

Malicious faults
[Introduced by a human with the malicious

objective of causing harm to the system]

Non-Malicious faults
[Introduced without a malicious objective]

Capability

Accidental faults
[Introduced inadvertently]

Incompetence faults
[Result from lack of professional competence by the authorized

human(s), or from inadequacy of the development organization]

Persistence

Permanent faults
[Presence is assumed to be continuous in time]

Transient faults
[Presence is bounded in time]

Chapter 3 Dependability and Fault Tolerance

24

It is normally used in a combination with other methods to attain dependability, such as fault

prevention, fault removal and fault forecasting.

3.2.3.1. Fault prevention:

Fault prevention is attained by quality control techniques employed during the design and

manufacturing of hardware and software. They include structured programming, information

hiding, modularization, etc., for software, and rigorous design rules for hardware.

3.2.3.2. Fault tolerance:

Fault tolerance is intended to preserve the delivery of correct service in the presence of active

faults. Fault tolerance is achieved by using some kind of redundancy.

3.2.3.3. Fault removal:

Fault removal is performed both during the development phase, and during the operational

life of a system. Fault removal during the development phase of a system life-cycle consists

of three steps: verification, diagnosis, correction. Fault removal during the operational life

of a system is corrective or preventive maintenance. Corrective maintenance is aimed at

removing faults that have produced one or more errors and have been reported, while

preventive maintenance is aimed to uncover and remove faults before they might cause

errors during normal operation.

3.2.3.4. Fault forecasting:

Fault forecasting is conducted by performing an evaluation of the system behavior with

respect to fault occurrence or activation. Evaluation has two aspects:

 Qualitative or ordinal evaluation, which aims to identify, classify, rank the failure

modes, or the event combinations (component failures or environmental conditions)

that would lead to system failures,

 Quantitative or probabilistic evaluation, which aims to evaluate in terms of

probabilities the extent to which some of the attributes of dependability are satisfied;

those attributes are then viewed as measures of dependability.

Chapter 3 Dependability and Fault Tolerance

25

The main objective of this dissertation is fault tolerance in real-time embedded systems.

Therefore, the next section elaborates more on fault tolerance in general, and the specific

techniques used in this thesis in particular.

3.3. Fault tolerance:

Whatever precautions are taken, the occurrence of faults is inevitable (human error, malicious

intent, aging of equipment, natural disaster, etc.). This does not mean that one should not try

to prevent or eliminate faults, but the measures taken can only reduce the likelihood of their

occurrence. Several techniques of fault tolerance have been proposed, they are all based on

redundancy. In the next, we first present fault tolerance techniques and then we describe the

different types of redundancy.

3.3.1. Fault tolerance techniques

The goal of fault tolerance is to provide a correct system service in spite of faults. As shown

in Figure 3-4, Fault tolerance is carried out by error processing and by fault treatment

[Derasevic 2018]. Error processing is aimed at removing errors from the computational state,

if possible before failure occurrence; fault treatment is aimed at preventing faults from being

activated again.

3.3.1.1. Error processing

May be realized by using the following three primitives [Laprie 1995]:

 Error detection: It is done by identifying the erroneous state before replacing it with

an error-free one

 Error recovery: It is done by restoring an error-free state starting from the erroneous

state. This can be achieved using two different approaches:

 Backward recovery is done by restoring the system to a prior error-free state using

the pre-saved points in time, called the recovery points (checkpoints) that were

established before the error has occurred.

Chapter 3 Dependability and Fault Tolerance

26

 Forward recovery is done by transforming an erroneous state with a new state in

which the system may resume to provide its service, but possibly in a degraded

mode.

 Error compensation: It is done by employing enough redundancy to allow the system

to provide its service in spite of the erroneous internal state.

3.3.1.2. Fault treatment

Is accomplished by the execution of two subsequent steps. The first step is called fault

diagnosis and it involves discovering what are the causes of errors covering their location and

nature. The next step is called fault passivation and its aim is to realize the prime goal of fault

treatment which is to prevent faults from causing any further errors, i.e. to passivate them.

This step is accomplished by excluding the identified faulty components from the rest of the

system execution. If this exclusion causes the system not to be able to preserve the delivery of

intended service, then a reconfiguration of the system might be realized [Derasevic 2018].

Figure 3-4 Fault tolerance techniques

3.3.2. Error detection techniques

In order to achieve fault tolerance, a first requirement is that faults have to be detected.

Researchers have proposed several error detection techniques, including watchdogs,

assertions, signatures, duplication, and memory protection codes.

Fault
Tolerance

Error
Processing

Error detection

Error recovery

Error
compensation

Fault
Treatment

Fault diagnosis

Fault
passivation

Reconfiguration

Backward
recovery

Forward
recovery

Chapter 3 Dependability and Fault Tolerance

27

Signatures [Oh et al. 2002a, Nicolescu et al. 2004]: Are among the most powerful error

detection techniques. In this technique, a set of logic operations can be assigned with

precomputed “check symbols” (or “checksum”) that indicate whether a fault has happened

during those logic operations. Signatures can be implemented either in hardware, as a parallel

test unit, or in software. Both hardware and software signatures can be systematically applied

without knowledge of implementation details.

Watchdogs: In the case of watchdogs [Benso et al. 2003, Kalla 2004, Bachir 2019], program

flow or transmitted data is periodically checked for the presence of faults. The simplest

watchdog schema, watchdog timer, monitors the execution time of processes, whether it

exceeds a certain limit.

Assertions [Peti et al. 2005]: Are an application-level error detection technique, where logical

test statements indicate erroneous program behavior (for example, with an “if” statement: if

not then). The logical statements can be either directly inserted into the program or can be

implemented in an external test mechanism. In contrast to watchdogs, assertions are purely

application-specific and require extensive knowledge of the application details. However,

assertions are able to provide much higher error coverage than watchdogs.

Duplication: If the results produced by duplicated entities are different, then this indicates the

presence of a fault. Examples of duplicated entities are duplicated instructions [Oh et al.

2002b], procedure calls [Oh et al. 2002c], functions and whole processes. Duplication is

usually applied on top of other error detection techniques to increase error coverage.

Other error detection techniques: There are several other error detection techniques, for

example, Memory protection codes, transistor-level current monitoring, or the widely used

parity-bit check. Therefore, several error detection techniques introduce an error detection

overhead, which is the time needed for detecting faults. In our work, unless other specified,

we account the error-detection overhead in the worst-case execution time of tasks.

3.3.3. Redundancy for fault tolerance

As defined by [Zammali 2016], fault tolerance aims to avoid failures despite the faults

present, and is essentially based on redundancy. Redundancy is when you create multiple

copies of a component (hardware, software, data, etc.) or run so that the copy performs the

same function, service, or role as the original component (or execution).

Chapter 3 Dependability and Fault Tolerance

28

According to [Dubrova 2013, Motaghi and Zarandi 2014, Zhang and Chakrabarty 2006,

Izosim et al, 2008] two families of redundancy are used in fault tolerant real-time systems

(Figure 3-5): the family of spatial redundancy and the family of temporal redundancy

(time-based redundancy).

Figure 3-5 Different types of redundancy in real-time systems

3.3.3.1. Time-based redundancy methods:

In time-redundancy method additional time is spent to recompute a failed computation on the

same hardware. This scheme works well for the transient faults as they are not likely to repeat

during recomputation [Nikolov 2015].

RE-EXECUTION

The simplest fault tolerance technique to recover from fault occurrences is re-execution

[Izosim 2009]. With re-execution, a task is executed again if affected by faults. The time

needed for the detection of faults is accounted for by error detection overhead. When a task is

re-executed after a fault has been detected, the system restores all initial inputs of that task.

The task re-execution operation requires some time for this, which is captured by the recovery

overhead. In order to be restored, the initial inputs to a task have to be stored before the

process is executed for first time.

ROLLBACK RECOVERY WITH CHECKPOINTING

The time needed for re-execution can be reduced with more complex fault tolerance

techniques such as rollback recovery with checkpointing [Izosim et al. 2008]. The main

Redundancy

Spatial

Active Passive Semi active

Temporal

Re-execution Checkpointing

Chapter 3 Dependability and Fault Tolerance

29

principle of this technique is to restore the last non-faulty state of the failing task. The last

non-faulty state, or checkpoint, has to be saved in advance in the static memory and will be

restored if the task fails.

3.3.3.2. Spatial redundancy methods:

Spatial redundancy is mainly deployed in safety domains like avionics [Runge 2012]. It

tolerates both permanent and transient faults and has the advantage of simplified fault

detection. However, it comes with high design and production cost [Huang et al. 2011].

Active redundancy: All replicas of the same task are executed simultaneously on

different processors with the objective of providing the same result. This strategy avoids the

use of costly checkpoints. However, it requires that result execution be deterministic to ensure

consistency.

Passive redundancy: Also known as primary-backup. Only one replica, called

primary, makes all the decisions, and sends updates to the other replicas, called backups,

which then apply the changes.

Semi active redundancy (Hybrid redundancy): Combines the

advantages of static and dynamic redundancy where one part is redundant in an active way

and the other part is redundant in a passive way. Hybrid redundancy is based on error

detection and recovery techniques that allow the system to be reconfigured in the event of a

fault. It relies on the fault masking technique to prevent the production of incorrect results.

For example, to tolerate a permanent fault of a processor or a communication medium, active

redundancy is used for the software components of the algorithm and passive redundancy for

the communications [Kalla 2004].

Figure 3-6 Active redundancy b) and Passive redundancy c)

C1=60ms

 a)

b2)

P1

P2

P1

P2

b1)

c2)

c1)

P1

P2

P1

P2

Chapter 3 Dependability and Fault Tolerance

30

In Figure 3-6 we illustrate active redundancy and passive redundancy. We consider task

with the worst-case execution time of 60 ms Figure 3-6a. The task will be replicated on two

processors P1 and P2. Which is enough to tolerate a single fault. In the case of active

replication, illustrated in Figure 3-6b, replicas
 and

 are executed in parallel, which, in this

case, improves system performance. However, active redundancy occupies more resources

compared to passive redundancy because
 and

 have to run even if there is no fault, as

shown in Figure 3-6b1. In the case of primary-backup, illustrated in Figure 3-6c, the “backup”

replica
 is activated only if a fault occurs in

 . However, if faults occur, primary-backup

takes more time to complete compared to active redundancy as shown in Figure 3-6c2,

compared to Figure 3-6b2.

Comparison between the three approaches of

redundancy:

The Table 3-1 compares the three approaches of redundancy: active, passive and hybrid

according to the criteria of response time, error handling and recovery after failure.

Table 3-1. Comparison between three approaches of redundancy

Comparison
Criterion

Active redundancy Passive redundancy Hybrid redundancy

Response time Rapid response time Better response time

in the absence of

faults.

The failure of the

primary replica can

significantly increase

response time.

Response time

depends on the level

of active replication

versus passive

replication.

Error handling With compensation With recovery With compensation

and recovery

Recovery after

failure

Immediate Not immediate Not immediate

3.4. Conclusion

The aim of this chapter was been to introduce the concept of dependability in real-time

systems. In accomplishing this goal, we have introduced the main notions about fault

tolerance in these systems. We have presented different classes of faults, errors, and failures.

Chapter 3 Dependability and Fault Tolerance

31

We have also introduced fault tolerance techniques and more specifically the different classes

of redundancy deployed in the fault tolerant systems.

In the next chapter, we provide an overview of related work on fault tolerance approaches and

real-time scheduling techniques with the joint consideration of energy efficiency and fault

tolerance.

32

CHAPTER 4

Literature Review

4.1. Introduction

As explained in Chapter 2, a real-time system is responsible for delivering logically correct

computations within the predefined deadlines. The violations of task deadlines in real-time

systems can potentially lead to catastrophical consequences [Han 2015]. To guarantee the

timing constraints, real-time scheduling that primarily determines the resource allocation and

management has been widely adopted as one of the most effective techniques. In general,

real-time scheduling determines when, where, and how to execute a set of real-time tasks such

that all deadlines can be met and other design metrics, e.g. power consumption and reliability

can be optimized. As presented also in chapter 2, Real-time scheduling can be classified into

various categories from different perspectives (architecture, severity of task deadlines, and

scheduling mechanisms).

This chapter presents at first a state of the art on works realized on real-time scheduling.

Then, we discuss the work done on fault tolerant scheduling with consideration of transient

and permanent faults. Finally, we present some related researches that have study the

interaction between energy and fault tolerance techniques in real-time systems.

4.2. Real-time uniprocessor

scheduling

In this section, we present the uniprocessor scheduling algorithms and their corresponding

schedulability tests.

Chapter 4 Literature Review

33

4.2.1. Rate Monotic RM

Rate Monotonic scheduling algorithm is a fixed task priority algorithm. It assigns a priority

according to the task’s period: the shorter period is the higher priority.

Liu and Layland (1973) have given the necessary and sufficient condition of schedulability: a

real-time system composed of n tasks can be scheduled by Rate Monotic if the following

condition is satisfied:

 (4.1)

Example 1: Let a set of 2 periodic tasks with implicit deadlines (see Table 4-1).

Table 4-1. Example of Rate Monotic: Task set details

 Ci Ti

 3 10

 2 15

Figure 4-1 Example of scheduling with Rate Monotic

The total task set utilization is:

The utilization is less than 0.82, thus the task set is schedulable under RM (Figure 4-1).

4.2.2. Deadline Monotic DM

Deadline Monotonic is a scheduling algorithm from a fixed task priority scheduling class.

With Deadline Monotonic, task priorities are assigned according to their deadlines; the

highest priority is assigned to the task with the shortest deadline. In contrary of Rate

Monotonic, DM considers tasks with constrained deadlines.

The sufficient condition of schedulability is inspired by the sufficient condition of Liu and

Layland as follows: a real-time system composed of n tasks can be scheduled by DM if the

following condition is satisfied:

Chapter 4 Literature Review

34

 (4.2)

Example 2: Let a set of 3 periodic tasks with timing characteristics given in Table 4-2.

Table 4-2. Example of Deadline Monotic: Task set details

 Ci Ti Di

 5 10 9

 4 15 7

 6 30 1

Figure 4-2 Example of scheduling with DM

We can see in Figure 4-2 that the worst case response time of is greater than it’s deadline.

Thus is not schedulable.

4.2.3. Earliest Deadline First EDF

Earliest Deadline First (EDF) is a dynamic priority scheduling algorithm. It selects a task

according to its deadline such that a task with earliest deadline has higher priority than others.

It means that the priority of a task is inversely proportional to its absolute deadline. Since

absolute deadline of a task depends on the current instant of time so every instant is a

scheduling event in EDF as the deadline of the task changes with time. EDF is an optimal

scheduling algorithm on preemptive uniprocessor.

For implicit deadline tasks, EDF has a utilization bound of 100%. Thus, an exact

schedulability test can be driven based on utilization as following if all deadlines are implicit:

 (4.3)

For constrained deadline tasks, a lot of sufficient tests were driven. The response time based

analysis is hard to perform since that the critical moment does not arrive at time 0 [Zahaf

2016].

Chapter 4 Literature Review

35

Example 3:

Figure 4-3 shows the simulation of scheduling the task set of example 2. As we can see the

task set is not schedulable under EDF, and that at moments t = 19 and t = 22 deadlines are

missed.

Figure 4-3 Example of scheduling with EDF

4.3. Real-time multiprocessor

scheduling

The problem of real-time scheduling applications on multiprocessor systems is more

complicated and challenging than real-time scheduling on uniprocessor systems. It is because

there are more decisions to be taken in the case of multiprocessor scheduling and more issues

to be considered. We can summarize these issues as follows:

i. Allocating tasks to processors;

ii. Assigning tasks priorities to be used by the scheduler;

iii. Tasks migration between processors.

In the next section, we present the approaches solving these problems and the related work

carried out with each approach.

4.3.1. Related work on real-time multiprocessor

scheduling

A lot of work concerning real-time multiprocessor scheduling has been proposed. Mainly, two

approaches had been followed:

Chapter 4 Literature Review

36

4.3.1.1. Partitioned scheduling:

Partitioning tasks among processors is transforming the problem of allocation to m processors

to m uniprocessor problems. Most partitioning algorithms pass through three steps [Zahaf

2016]:

1. Sort tasks in order of some criteria (period, deadline, density, utilization, etc.);

2. Assign tasks in the order of step 1 to a processor where it will always meet all

deadlines when assigned to that processor, and it does not cause another previously

assigned task to miss a deadline. If a task verifies these conditions, the task fits on this

processor. This step is performed using schedulability tests;

3. After each task has been assigned to a processor, we use the well-known uniprocessor

scheduling algorithm on each processor to schedule the processor’s respective tasks.

The problem of allocation tasks has been shown to be NP-hard [Leung and Whitehead 1982]

and requires heuristics. Different allocation schemes such as traditional Bin-packing

heuristics: First Fit (FF), Best Fit (BF), and Worst Fit (WF) have been evaluated in [Lieu

2000], and how the ordering of tasks can affect the task allocation results is investigated in

[Oh and Son 1995]. Later, the characteristics of real-time tasks were exploited to develop

more effective task partitioning schemes in [Fan et al. 2014, Fan and Quan 2011]. For

example, as shown in [Fan and Quan 2011], by grouping harmonic tasks into the same core,

system schedulability can be greatly enhanced. On the other hand, partitioning of dynamic-

priority periodic tasks on multiprocessor is explored in [Baruah 2007a, Baruah 2013]. Simple

heuristics such as BF, FF, and WF have been evaluated, and extensions to these approaches

are proposed. As shown in [Baruah 2013], ordering tasks in decreasing utilization can

significantly improve system schedulability.

4.3.1.2. Global scheduling:

In contrast to partitioned scheduling, the global scheduling allows task migration. All

processors have the same ready-queue and the m highest priority tasks are run at the same

time on m processors. Global scheduling has several advantages compared to partitioned

scheduling because it allows fewer context switches/preemption. This is because the

scheduler will only preempt a task when there are no processors idle. When a task executes

for less than its worst-case execution time, the slack time of the task can be utilized by all

Chapter 4 Literature Review

37

other tasks, not just those on the same processor. Figure 4-4 shows partitioned scheduling in

the face of Global Scheduling

A semi-partitioned scheduling is a combination of the two previous approaches, in which

most tasks are fixed to specific processors to reduce number of migration, while a few tasks

migrate across processors to improve processor utilization [Qamhieh 2015].

Figure 4-4 Partitioned Scheduling vs Global Scheduling [Zahaf 2016]

There is a great number of works on global scheduling. PFair (Proportionate Fairness) is an

optimal multiprocessor scheduling algorithm which was introduced by Baruah et al. (1996)

for periodic and sporadic global scheduling of implicit deadline task sets. PFair utilizes the

full capacity of processors by scheduling successfully any task set whose utilization is not

greater than the number of processors. A new schedulability test for global scheduling of

fixed-priority tasks with arbitrary deadlines on identical multi-core processors has been

proposed in [Baruah et al. 2007b].

Finally, the effects of semi-partitioning scheduling on improving system schedulability are

examined in [Fan and Quan 2012]. By allowing a limited number of tasks to be split and

assigned to different cores, the utilization bound of the system is increased, and hence the

system schedulability can be improved.

CPU2

CPU1

CPU4

CPU3

CPU2

CPU1

CPU4

CPU3

Partitioned Scheduling Global Scheduling

Chapter 4 Literature Review

38

4.4. Related work on fault tolerant

real-time scheduling

In the literature, we can identify several advanced fault tolerant techniques that are very

effective in guaranteeing the schedulability of hard real-time systems in the presence of faults.

Processor faults can be largely classified as transient or permanent. A transient fault happens

for a short period time and then disappears without caused physical damage to the processor.

On the contrary, a permanent fault disables a processor permanently. Many different

replication methods were explored to make tradeoffs between fault tolerance and system

resource usage, e.g. the number of processors required for a feasible schedule.

Chen et al. (2007) introduced several replication schemes to tolerate a fixed number of faults

for periodic real-time tasks on homogeneous multiprocessor systems. Two problems are

studied in the paper. One is to minimize the maximum utilization in a system with a specified

number of processors. The other is to minimize the number of processors required for

deriving a feasible schedule. In that work, only active replication is considered. Later on, two

heuristics referred to R-BFD (Reliable Best-Fit Decreasing) and R-BATCH (Reliable Bin-

packing Algorithm for Tasks with Cold standby and Hot standby) were introduced in [Kim et

al. 2010]. They consider a fail-stop failure model. The Cold standby and Hot standby are in

fact the active replication and passive replication, respectively. Zhang et al. (2014) proposed

two fault-tolerant scheduling methods on multiprocessor systems via both active and passive

backup copies to tolerate at most one processor permanent failure. The first method uses the

integer linear programming method to obtain the optimal results. The second one is a heuristic

algorithm which can achieve close to optimal results within polynomial running time.

Significant research has been presented to deal with transient faults. These faults occur more

frequently than permanent faults in modern computing systems. While transient faults can

occur in both uniprocessor and multiprocessor platforms, a part of current researches are

focused on uniprocessor platforms [Han et al. 2003, Aydin 2007, Zhang et al. 2003] and the

other part on multiprocessor platforms. Han et al. (2003) proposed a combined primary and

backup scheme to tolerate at least one transient fault. The backup is assumed to be fault-free

and of lower quality yield. The timing constraint is guaranteed by scheduling the backups

with higher priority at the cost of quality loss. In [Zhang et al. 2003], the schedulability

analysis for fixed-priority tasks with checkpoints was investigated, and an effective

Chapter 4 Literature Review

39

checkpointing scheme was proposed. Subsequently, in [Aydin 2007], a dynamic

programming approach was proposed to evaluate the feasibility of aperiodic task sets under

preemptive Earliest Deadline First (EDF) scheduling given a fault-tolerance constraint, i.e

maximum K fault. For multiprocessor systems, Pop et al. (2009) proposed a more

comprehensive approach to the synthesis of fault tolerant schedule for applications on

heterogeneous distributed systems. They used the combination of checkpointing and active

replication to deal with the fault-tolerance problem. A meta-heuristic (Tabu search) was

constructed to decide the fault-tolerance policy, the placement of checkpoints, and the

mapping of tasks to processors with the aim of minimizing the overall schedule length.

Similar analysis was conducted in [Huang et al. 2011] where hardware replication and

software re-execution were employed to take both permanent and transient faults. All these

works do not consider energy consumption as a design constraint, which makes them

insufficient for energy-constrained real-time systems. Table 4-3 provides the summary of

related work on fault tolerant scheduling.

Table 4-3. Summary of fault-tolerant scheduling

Types of faults Fault tolerance

techniques

Platform References

Permanent and

transient

Active replication and re-

execution

Homogeneous

multiprocessor

Huang et al. 2011

Passive replication Samal et al 2014

Permanent

faults

Active replication

Homogeneous

multiprocessor

Chen et al. (2007),

Hashimoto et al. 2002

Heterogeneous

multiprocessor

Girault et al. 2004, Bachir

2019

Passive replication

Homogeneous

multiprocessor

 Zarinzad et al. 2008

Heterogeneous

multiprocessor

Qin and Jiang 2006, Oh and

Son 1997

Active and passive Homogeneous Kim et al. 2010, Zhang et al.

Chapter 4 Literature Review

40

replication multiprocessor 2014

Transient faults

Checkpointing uniprocessor Zhang et al. 2003, Aydin

2007

multiprocessor Han et al. 2015, Izosimov et

al. 2012, Wei et al. 2012

Active replication Heterogeneous

multiprocessor

Girault and Kalla 2009

Active replication and

checkpointing

Heterogeneous

multiprocessor

Pop et al. 2009

Homgeneous

multiprocessor

Motaghi and Zarandi 2014

Active and passive

replication

uniprocessor Han et al. 2003

4.5. Related work on fault-tolerant

scheduling with energy

minimization

Researchers in both academia and industry have resorted to various techniques to minimize

energy consumption in computing systems. Among these, Dynamic Voltage and Frequency

Scaling has emerged as the most effective technique for energy reduction [Aydin et al. 2004].

DVFS scheduling reduces the supply voltage and frequency when possible, which result on

conserving energy consumption. However, one consequence of applying DVFS is the

extended circuit delay which may undermine the schedulablity of real-time system [Han

2015]. As a result, a great number of techniques studying the problem of minimizing the

energy consumption with respect of timing constraints are proposed in the literature [Aydin et

al. 2004, Quan and Niu 2004, Zahaf 2016, Digalwar 2016, Hu et al. 2016].

Chapter 4 Literature Review

41

Also, extensive researches have analyzed the interplay of energy trade-offs and fault-tolerance

techniques [Ejlali et al. 2006, Melhem et al. 2004, Zhang and Chackrabarty 2006].

Redundancy-based fault-tolerance techniques (such as re-execution checkpointing and

replication) and DVFS-based low-power techniques compete for the available slack. The

interplay of power management and fault recovery has been addressed in [Melhem et al.

2004], where checkpointing policies were evaluated with respect to energy. In [Ejlali et al.

2006], time redundancy was used in conjunction with information redundancy, which does

not compete with DVFS for slack, to tolerate transient faults. In [Zhang and chackrabaty

2006], fault tolerance and dynamic power management were studied, and rollback recovery

with checkpointing was used to tolerate multiple transient faults in distributed systems.

Addressing energy and reliability simultaneously is especially challenging because lowering

the voltage to reduce energy consumption has been shown to increase the number of transient

faults exponentially [Zhu et al. 2004]. The main reason for such an increase is that, with lower

voltages, even very low energy particles are likely to create a critical charge that leads to a

transient fault. However, this aspect has received very limited attention. Zhu and Aydin

(2009) have proposed a reliability-aware DVFS heuristic for uniprocessor systems, and a

single-task checkpointing scheme was evaluated in [Zhu et al. 2004]. In [Pop et al. 2007], we

consider the energy versus reliability trade-offs in the context of distributed time-triggered

systems, where tasks and messages are scheduled based on a static-cyclic scheduling policy,

and transient faults are tolerated using task re-execution. Table 4-4 provides the summary of

related work on fault-tolerant scheduling with energy minimization. It can be observed from

the table that energy aware fault tolerance is sufficiently addressed for independent tasks. For

dependant tasks energy aware fault tolerance is not thoroughly addressed. Also the

combination of software replication and time redundancy methods with DVFS technique is

not addressed in the literature.

Table 4-4. Summary of fault-tolerant scheduling with energy minimization

Task model Fault-tolerance

techniques

techniques to

minimize energy

References

Independent

tasks

Checkpointing DVFS Melhem et al. 2004, Zhang and

Chakrabaty 2006, Wei et al. 2012, Zhu

and Aydin 2009, Salehi et al. 2016,

Zhu et al. 2004

Chapter 4 Literature Review

42

 Re-execution DVFS Djosic and Jevtic 2013, Pop et al. 2007

Time and

information

redundancy

DVS and ARB Ejlali et al. 2006

Dependant

tasks

Stand by sparing

and re-execution

DVFS and DPM Tavana et al. 2014

Active replication DVFS Assayad et al. 2012

Checkpointing DVFS Li et al. 2015

4.6. Conclusion

In this chapter, we have reviewed some closely related work in the literature. First, existing

researches on real-time scheduling for various task and system models are discussed. Then,

we have presented the related research in fault tolerant real-time scheduling with

consideration of permanent and transient faults. Finally, we have presented the interplay of

energy and fault-tolerance techniques on employing DVFS in real-time scheduling in detail.

Based on the above discussions, we can see that fault-tolerant scheduling under various

constraints still poses a grand challenge for researchers.

In the next chapter, we describe the proposed fault tolerance approach which combines two

strategies of the basic families of redundancy.

43

CHAPTER 5

A Fault-Tolerant Scheduling

Algorithm Based on

Checkpointing and Redundancy

for Distributed Real-Time

Systems

5.1. Introduction

Fault tolerance techniques have been proposed for real-time systems to satisfy their

constraints even in the presence of faults. Transient faults are the most common, and their

number is continuously increasing due to the high complexity, smaller transistor sizes, higher

operational frequency, and lower voltage levels [Djosic and Jevtic 2013; Han et al. 2013; Paul

et al. 2009; Wei et al. 2012]. These faults happen for a short time and then disappear without

causing permanent damage. Transient faults have become the main concern in the design of

modern embedded real-time systems.

In this chapter, we present a novel fault tolerance approach based on scheduling heuristic to

tolerate a fixed number of transient faults. Our approach combines active replication, which

provides space-redundancy, and checkpointing with rollback recovery, which provides time-

based redundancy. In addition, we propose a new fault-tolerant scheduling heuristic which

generates, from a given hard real-time application and a given multiprocessor distributed

architecture, a fault tolerant distributed static schedule which tolerates K transient faults.

The rest of this chapter is organized as follows. A brief overview of related work is provided

in section 2. Section 3 describes our application model, hardware model, and fault model.

Section 4 explains our fault tolerance approach through examples. In section 5, we present our

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

44

proposed static fault-tolerant scheduling heuristic. Simulation results are discussed in section

6, and finally, section 7 concludes the chapter.

5.2. Literature review

Extensive research has been presented to investigate the software-based fault tolerance

techniques against transient faults. In the software replication technique [Girault et al. 2004;

Assayad et al. 2012; Samal et al. 2014; Meroufel and Belalem 2014] multiple replicas (active

or passive) of each task are executed on different processors.

Bachir (2019) proposed three fault-tolerant scheduling heuristics to tolerate permanent faults

of a single processor. The first heuristic AAA-FAULT
DT

is used to minimize the scheduling

length using passive replication. The second FT-TDEP is based on hybrid redundancy and the

third AAA-Fault
IDT

 based on active replication. The primary-backup approach (passive

replication) is used as a fault-tolerant scheduling technique in [Samal et al. 2014] to guarantee

real time tasks constraints in the presence of permanent or transient faults. The authors

proposed fault-tolerant scheduling for independent tasks using a hybrid genetic algorithm.

The replication technique is effective to tolerate spatial multiple faults (permanent or

transient) and it is more preferable for safety-critical systems [Ejlali et al. 2012]. However,

scheduling multiple replicas of each task on different processors may not be affordable due to

cost constraints [Ropars et al. 2015].

Checkpointing with rollback recovery [Han et al. 2015, Izosimov et al. 2012, Wei et al. 2012,

Zhang and Chakrabarty 2006, Kumar et al. 2015) and re-execution [Izosimov et al. 2008, Gui

and Luo 2013] are classified by Motaghi and Zarandi (2014) as time-based redundancy

methods. These methods try to deal with transient faults by serial executions in the same

processor of faulty task. Izosimov et al. (2008) proposed a quasi static scheduling of fault

tolerant embedded systems composed of hard and soft processes. In which re-execution is

employed to recover from multiple faults. Han et al. (2015) presented a task allocation

scheme for minimizing energy consumption while ensuring the fault tolerance requirement of

the system. They develop an efficient method to determine the checkpointing scheme to

tolerate at least one transient faults on a single processor. These methods do not impose any

hardware cost overhead and are not effective to tolerate transient faults whose durations are

very long. Moreover, serial execution may cause the non respect of time constraints.

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

45

The combination of software replication and time-based redundancy techniques to tolerate

multiple transient faults with low overhead in terms of hardware cost, energy consumption

and total execution time have been studied in few works related to our research [Pop et al.

2009, Motaghi and Zarandi 2014].

Pop et al. (2009) have proposed a fault-tolerance policy assignment strategy to decide which

fault tolerance technique, for instance checkpointing, active replication or their combination,

is the best suited for a particular process in the application. A dynamic fault-tolerant

scheduling DFTS has been proposed in [Motaghi and Zarandi 2014]. This algorithm uses task

utilization to dynamically select the type of fault recovery method in order to tolerate multiple

transient faults.

This chapter attempts to solve the following problem which is an NP-hard problem. Given an

homogeneous architecture, how to schedule an application of hard dependant tasks on the

architecture under multiple transient faults which may occur spatially or temporally.

The main contributions of this chapter are summarized as follows:

 Tolerating multiple transient fault occurrences with respect of application time

constraints.

 Combine two different policies: checkpointing and active replication to propose an

efficient fault-tolerant scheduling approach that explores hardware resources and timing

constraint.

 Replicas collaboration is introduced to tolerate spatially or temporally faults and satisfy

critical task constraint. To the best of our knowledge, this is the first work introducing

the idea of collaboration between replicas in active replication technique with

checkpointing.

The proposed approach classifies the real-time tasks into critical and noncritical ones,

according to the utilization of the task. For the noncritical task, we adopt checkpointing with

rollback technique to tolerate multiple transient faults. The main reason for this choice that

many studies showed the efficiency of checkpointing technique to deal with these faults.

Whereas for the critical task, we adopt active replication as it is the fault tolerant method that

explores hardware resources to meet timing constraints and provide high reliability even when

deadlines are tight. With a view to tolerate spatially or temporally faults and satisfy critical

task constraint, we have also introduced replicas collaboration. This collaboration can be seen

as communication in case of fault occurrence. If one replica is faulty, the second replica has to

send it the correct state to complete the execution before its deadline.

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

46

5.3. System model

5.3.1. Application model

The real-time application considered in this chapter consists of n hard dependant tasks,

denoted as: . The dependence → means that execution precedes

 execution. So we say that is a successor of and symmetrically that is a predecessor

of . The timing characteristics of the task are defined as a tuple (), where is the

worst case execution time of the task in a fault-free condition and is the deadline of the

task. The utilization of task is defined as:

The system utilization is therefore calculated as:

We model an application A as a directed acyclic graph DAG. Each node represents one task.

An edge indicates data-dependency between two tasks and .

Figure 5 -1 Hard real-time application example

Task Ci Di

 30 160

 40 200

 60 200

 40 240

 40 240

WCCT

e12 10

e13 5

e24 10

e25 10

e35 5

e12 e13

e24

e25

e35

A1: G1

 d2=200ms

 d4=240ms

 d1=160ms

 d3=200ms

 d5=240ms

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

47

An example of an application A1 composed of 5 dependant tasks is represented as a DAG G1

shown in Figure 5-1. The two tables give the timing characteristics of a task set and data

dependencies.

5.3.2. Hardware model

The architecture is considered as a set of M homogeneous processors denoted as: Ρ = {P1,

P2,…, PM}.

A processor is composed of a computing unit, to execute tasks, and one or more

communication unit to send/receive data to/from communication links. A point-to-point

communication link is composed of a sequential memory that allows it to transmit data from

one processor to another.

Each processor is connected with the others through communication links. So our architecture

is homogeneous and fully connected. We can model the architecture by a graph, where each

node is a processor and each edge is a communication link.

Figure 5-2 Hardware example

An example of an architecture graph with four processors P1 to P4, and six communication

links is shown in Figure 5-2.

5.3.3. Fault model

In this chapter, we focus on transient faults which are the most common faults in today’s

distributed real-time systems. In our model, we assume at most k faults to be tolerated on each

task. Given a fault arrival rate λ and a task execution interval t, the mean number of faults that

arrive during the interval is λt [Zhang and Chakrabarty 2006]. In order to target a system with

reasonable real-time performance with fault tolerance, Zhang and Chakrabarty (2006) indicate

that the value of k should be taken as multiple of λt, e.g. 2λt ≤ k ≤ 3λt. A transient fault affects

only the task running on a specific processor as transient faults have short duration.

P1 P2

P4 P3

L12

L23 L14

L34

L13

L24

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

48

The error detection and fault-tolerance mechanisms are part of the software architecture. The

error detection overhead is considered as part of the task execution time. The software

architecture, including the real-time kernel, error detection and fault tolerance mechanisms are

themselves fault-tolerant.

5.4. The proposed fault-tolerant

approach

We propose a novel fault-tolerant approach which combines software replication and time

redundancy methods for tolerating k transient faults. We use these two techniques in order to

meet time and cost constraints of hard real-time applications even in the presence of transient

faults.

As time-based redundancy we use checkpointing with rollbacks for non critical tasks. Once a

fault is detected, the task being affected rolls back to the last saved checkpoint and re-execute

the faulty segment [Kumar and Rachit 2011]. Inserting one checkpoint to task refers to the

operation of saving its current state in memory.

As software replication, we use active replication for critical tasks to meet their deadlines

even in the presence of faults.

Similar to the related work in [Motaghi and Zarandi 2014], we compute the task utilization

of each task in the ready list of the scheduler to decide if critical or noncritical.

 Where

The criticality threshold will be computed for each task in the ready list when there is an

idle processor, therefore vary from one task to another. We will present in section 5 the

calculation of the criticality .

5.4.1. Checkpointing with rollback recovery

The time overhead for re-execution can be reduced with more complex techniques such as

rollback recovery with checkpointing [Zhang and Chakrabarty 2006, Eles et al. 2008]. By

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

49

using this technique, once a fault is detected during the execution of the task , it needs to

rollback to the latest checkpoint [Salehi et al. 2016].

We consider the following assumptions related to task execution and fault arrivals:

 The checkpointing intervals are equal for the same task.

 Faults are detected as soon as they occur.

 No faults occur during checkpointing and rollback recovery.

The fault-free execution time of task using checkpointing is a function of the number of

checkpoints and is formulated in Equation (5.1a)

 (5.1a)

Where is the time overhead required for saving one checkpoint and is proportional to the

worst case execution time of each task.

The recovery time of with checkpoints under a single failure includes two parts, the

time to rollback to the latest checkpoint and the time to re-execute the faulty segment. We

denote it and formulate it in Equation (5.1b)

 (5.1b)

Where is the time overhead to rollback to the latest checkpoint and is proportional to the

worst case execution time of each task.

In general, in the presence of k faults, the worst case response time of task using

checkpointing with rollback recovery can be obtained by the Equation (5.1)

 (5.1)

As related work, Paul et al. (2009) showed that the optimal number of checkpoints to

minimize the worst case response time considering k faults can be calculated as:

Where is the time overhead for saving one checkpoint and is the worst case execution

time of task . As the number of checkpoints is an integer, thus we use
 (the floor) or

 (the ceiling) as a value. If

 , we use the floor value. Otherwise, the

ceiling value is used.

For the sake of easy presentation, is simply denoted by

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

50

 (5.2)

 An example of checkpointing with rollback recovery is presented in Figure 5-3.

Figure 5-3 Checkpointing with rollback recovery

We consider task with worst execution time in Figure 5-3a. In Figure 5-3b two

checkpoints are inserted at equal intervals. Thus, task is composed of two equal execution

segments
 and

. In Figure 5-3c, a fault affects the second execution segment .

This faulty segment is executed again starting from the second checkpoint. The recovery

segment is represented by a light gray rectangle.

5.4.2. Active replication with checkpointing

The disadvantage of checkpointing with rollback recovery technique is that cannot explore the

spare capacity of available processors in the architecture to reduce the schedule length.

However software replication techniques (active and passive replication) have the ability to

execute task replicas in parallel on different computation nodes. With active replication, all

the task replicas are executed independent of fault occurrences [Girault et al. 2009]. However,

with passive replication, replicas are executed only if faults occur [Han 2015, Zhang et al.

2014].

In our work, we are interested in active replication. If there is enough time to rollback the task

 to the last saved checkpointing in the presence of faults we use active replication to

guarantee the respect of deadline. The task is replicated on two collaborative replicas;

and
 , both of which to be executed on different processors in the same time. We introduce

collaboration between replicas to tolerate k faults and respect deadline. We consider the

following assumptions:

 All checkpoints are assumed to be fault-free, i.e., no faults can occur during checkpointing

saving.

 Each task’s primary copy and backup copy must not be assigned to the same processor.

b) (1) (2)

c)

 a)

 (1) (2)

 (2)

C1=60ms

 Checkpoint overhead

 Recovery overhead

 Recovery segment

 Transient fault k =1

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

51

 Each task’s primary copy and backup copy cannot be faulty at the same time.

Our goal is to tolerate k faults with respect of task deadline. To achieve this goal, we use

active replication technique where each critical task is replicated on several replicas. But it is

possible that these replicas can be faulty due to multiple fault occurrences, therefore our goal

will be missed and this technique will be infeasible. This is the case in the work presented in

[Motaghi and Zarandi 2014].

As solution, we introduce collaboration between replicas of the critical task to tolerate each

coming fault in the primary or the backup replicas (
 ,

) to achieve the feasibility of our

approach. For computation purpose, we add an extra virtual processor to the architecture,

noted P#.

Once the active replication approach is decided for a task , first it has to be scheduled on

virtual processor P# () at start time STi as illustrate in Figure 5-4.

Figure 5-4 Scheduling of on virtual processor P#

Then we place in this task the appropriate checkpoints (with equal checkpoint intervals

) obtained after calculation of the optimal number of checkpoints with Equation (5.2).

After that is replicated on two replicas
 and

which must be scheduled on two different

processors and checkpointed alternatively by projection of the checkpoints of the initial task

as presented in Figure 5-5.

Figure 5-5 Fault-free scenario

Di

 P#

P1

STi

P2

P1

 (1)

 (2)

(1)

(2)

(3)

 (1) (2) (3) (4)
Di

P#

P2

P1

(1)

(2)

(1)

(2)

(3)

Di

P2

P1

Checkpoint

projection

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

52

The alternative checkpointing idea of the two replicas
 and

 is to ensure the collaboration

between replicas and to minimize the number of checkpoints of the original task . In this

case we can meet the task deadline even in the presence of faults.

In Figure 5-5, represents the difference between the start time of the two replicas
 and

(the start time of each replica depends on the availability of processors). It can be written as:

 (5.3)

For successful of our alternative checkpointing idea, should be less or equal than the

checkpointing interval, so we have:

With this approach the start time STi of a task can be given by:

 (5.4)

Where

 is the start time of the replica

.

Consequently, the actual finish time FTi of task is given by:

 (5.5)

And respectively, the best finish time of task can be written as:

 (5.6)

Where

 is the finish time of the replica

.

In the case of fault occurrence in the execution of one of the replicas (
 or

), the results

produced by the no faulty replica must be sent to the other replica to continue the execution as

shown in Figure 5-6.

Figure 5-6 Fault occurrence scenario

By using this technique, the worst case response time of the task in the presence of

k faults is formulated in Equation (5.7):

 Transient fault

Communication overhead

 Checkpoint overhead

 (1)
 (2)

 (1)

 (2)

Di

P2

P1

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

53

 h (5.7)

Where the term (

) is the maximum execution time of using the new active

replication with checkpointing without any faults, and

 is the cost of

communication step between the replicas
 and

 for single fault, which is multiplied by k

in the presence of k faults.

The best worst case response time of the task can be written as:

 (5.8)

Where

 is the worst case response time of the replica

 and is calculated with

Equation (5.7).

5.5. Motivational example

Figure 5-7 represents an application A2 composed of three dependant tasks ()

and an architecture composed of two processors P1 and P2.

The fault model assumes two faults, thus k =2. The checkpoint saving and recovery overhead

are considered equal to 5 ms. According to these values, the optimal number of checkpoints is

3, 3 and 4 for respectively. After computation of the criticality of each task, we

get that and are not critical, so checkpointing with rollback can be applied. But the task

 is critical, consequently is replicated on two copies

and
 .

In the case if the replicas of are faulty due to multiple fault occurrence, we introduce

collaboration between replicas. As illustrated in Figure 5-8, the faulty replica receives the last

correct state from the no faulty replica via communication step between
 and

 and

continue execution to meet its deadline.

Figure 5-7 An application example A2 to be scheduled on P1 and P2 under k=2 faults

Task Ci Di

 35 100

 35 180

 60 260

 k=2 faults

e12: e23:10ms

 e12 e23

A2 :

P1 P2

L12

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

54

Figure 5-8 Fault tolerant scheduling: combination of checkpointing with rollback for tasks , and

active replication with checkpointing for the task

5.6. The proposed fault tolerant

scheduling algorithm

Our fault tolerant scheduling algorithm is presented in Figure 5-9. The algorithm takes as

input the application A, the number K of transient faults that have to be tolerated, the

architecture P and the real time constraints.

SFTS Algorithm :

Inputs:

 .
Ρ = {P1, P2, …, PM}

K transient faults for each task

Real time constraints

TReady =

While TReady do

{ Select TReady having the minimum Di
 Calculate

 If then
 { Apply checkpointing with rollback

 Calculate with Equation (5.1)

 Schedule on an idle processor
 }

 Else

 { Apply the proposed active replication with replicas

collaboration

 Calculate with Equation (5.7)

e 2
3

1

 (1) (2) (3) (4)

 (1)

 (2)

 (1)

 (2)

 (1) (2) (3)

 (1) (2) t122) (3)

 (3)

 (2) (2)

Resource

P2

P1

P#

L12

Time

D1
D2 D3

100 180 260

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

55

 Schedule the replicas of

 on two different

processors

 }

Schedule messages sent by

TReady=TReady-

} End SFTS

Figure 5-9 The proposed static fault tolerant scheduling algorithm SFTS

Our scheduling algorithm is a list scheduling based heuristic, which uses the concept of ready

tasks and ready list. By ready task we mean that all ‘s predecessors have been scheduled.

The heuristic initializes the list TReady with tasks without predecessors and is looping while

TReady isn’t empty. At first, the ready task with minimum deadline is selected for

placement in the schedule. Then the scheduler calculates the criticality of task . If the task

is noncritical, the checkpointing with rollback policy will be applied and the maximum

response time of the task will be calculated with Equation (5.1).

Otherwise, the critical task will be replicated and the proposed new active replication will

be applied. In this case the maximum response time of the task will be calculated with

Equation (5.7). Finally, the task is removed from the ready list TReady and all its

successors are added to the list.

The scheduler calculates the criticality of the best task (having the minimum deadline)

selected from TReady. The start execution time of is defined as .

To satisfy the real time constraints of the application to be scheduled even in the presence of

faults, for each task () should be less than . So we have:

 (5.8)

We take the worst case response time of task using checkpointing with rollback

recovery and we replace it by Equation (5.1) to compute .

 (5.9)

As described in [Motaghi and Zarandi 2014] we have:

 (5.10)

 (5.11)

Where α and µ are constant factors.

By replacing the values of and with Equations (5.10) and (5.11) we have:

 (5.12)

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

56

 (5.13)

Finally, we can get the criticality

 -

 k

 (5.14)

5.7. Experimental results

To evaluate the performance of our approach, we have generated a set of 50 different

applications with 10, 20, 30, 40, and 50 tasks implemented on architecture consisting of 4

processors. The execution time of each task was randomly assigned in the range of [30 ms, 80

ms] also the deadline was randomly generated. We have varied the number of maximum

tolerated faults k considering 2 to 10 faults. Table 5-1 summarizes the configuration

parameters used in our experiments.

Table 5-1. Simulation parameters

Parameters Values

Number of processors 4

Application size (Number of tasks) (10 , 20 , 30 , 40 , 50)

Execution time (ms) [30 , 80] – [10 , 100]

Recovery overhead μ (5%, 10%)

Checkpoint saving α (5%, 10%)

Number of faults k (2 , 4 , 6 , 8 , 10)

Fault arrival rate λ (0.005 , 0.01 , 0.02 , 0.04)

First, we were interested to evaluate the proposed approach with regard to the overheads, in

term of schedule length, introduced due to fault tolerance. For this, we have implemented

each application without any fault tolerance concerns. This non-fault-tolerant implementation,

NFT, has been obtained using EDF algorithm. Then, we have implemented each application

on its corresponding architecture using the proposed SFTS algorithm. Let LSFTS and LNFT be

the schedule lengths obtained using SFTS and NFT, respectively. The overhead due to

introduced fault tolerance is defined as 100 x (LSFTS - LNFT)/ LNFT.

Table 5-2 presents the maximum, the minimum and the average time overheads introduced by

SFTS compared to NFT in the case of different number of faults. The average fault tolerance

overheads introduced by SFTS increase with the number of tolerated faults. In this case the

application size and the number of computation nodes were fixed with 40 tasks and four

computation nodes where the number k of faults being 2, 4, 6, 8 to 10.

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

57

We were also interested to evaluate the proposed algorithm SFTS versus the fault tolerance

approach: checkpointing with rollback recovery CH. Figure 5-10 shows that the scheduling

length of SFTS is always considerably lower than CH. This is due to the combination of

checkpointing and replication which result in decreasing the schedule length of SFTS. We can

assume that SFTS performs much better compared to checkpointing.

In Table 5-3, the effect of checkpointing parameters such as checkpoint overhead α and

recovery overhead μ on the scheduling time overhead is shown. The effect of increasing the

checkpoint overhead α is more than the effect of recovery overhead μ on the scheduling

timing overhead of SFTS. However increasing these parameters α and μ increases

considerably the scheduling timing overhead of CH. Either way the minimum timing

overhead of SFTS is significantly lower than CH timing overhead. We can resume that the

scheduling timing overhead of SFTS does not significant change by varying the

checkpointing parameters as shown in Figure 5-11.

Table 5-2. Fault tolerance overheads due to SFTS for different number of faults

K % Maximum % Minimum % Average

2 46.90 22.81 32.45

4 62.74 30.18 42.78

6 69.29 42.99 54.85

8 80.12 52.38 64.72

10 91.74 61.44 75.20

Figure 5-10 Impact on schedule length of application size considering k = 2 faults

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50

S
ch

ed
u

li
n

g

le
n

g
th

Application Size (processes)

SFTS (no faults)

SFTS(2 faults)

CH (2 faults)

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

58

Table 5-3. Timing overhead of SFTS compared with checkpoint considering various checkpoint

parameters

Checkpoint

overhead α

Recovery

overhead µ

Fault

method

Timing overhead%

Max Min Average

0.05 0.05 SFTS 39.54 22.39 28.62

CH 50.00 49.57 49.78

0.05 0.1 SFTS 37.43 23.72 28.71

CH 68.33 54.56 56.09

0.1 0.05 SFTS 39.05 20.56 30.96

CH 68.33 66.78 67.88

0.1 0.1 SFTS 39.84 21.07 28.98

CH 73.34 72.81 73.02

Figure 5-11 The time overhead of STFS compared to checkpointing by varying checkpoint saving α

and recovery overhead μ

To evaluate the feasibility analysis of SFTS under the variation of fault arrival rate λ, we

conducted another set of experiments. We have generated a set of 50 applications of 10 real-

time tasks. The execution time of each task was randomly assigned in the range of [10 ms,

100 ms] also the deadline was randomly generated. According to results presented in Figure

12, the feasibility rate of SFTS decreases from 100% to 32% within varying λ from 0.005 to

0.04. The reason that by increasing λ, the number of expected faults k for each task will

increase. This will result in the probability of missing task constraint will increase.

Figure 5-12 Feasibility rate of SFTS by doubling fault arrival rate (λ)

0

20

40

60

80

100

0,005 0,01 0,02 0,04

F
ea

si
b

il
it

y
 r

a
te

 (
%

)

Fault arrival rate (λ)

Chapter 5 Fault-Tolerant Scheduling Algorithm Based on Checkpointing and Redundancy

for Distributed Real-Time Systems

59

5.8. Conclusion

In this chapter, we have proposed a novel fault tolerance approach for scheduling applications

with hard real-time constraints on real-time distributed systems. The approach combines

checkpointing with rollback policy and a new strategy of active replication that uses replicas

collaboration to guarantee the task deadline even in the case of faults. The task utilization is

calculated to decide the type of fault recovery method in order to tolerate K transient faults.

Based on this approach, we have proposed an efficient fault tolerant scheduling algorithm

SFTS, which is a list scheduling based heuristic. Our algorithm can be feasible even if the two

replicas of the critical task are faulty; in this case, we have introduced the collaboration

between replicas when a fault is detected. This idea permits respect of task deadline and

ensures the feasibility of our algorithm. Simulation results show the performance and

effectiveness of combining checkpointing and redundancy to tolerate transient faults.

60

CHAPTER 6

An Efficient Fault-Tolerant

Scheduling Approach with

Energy Minimization for Hard

Real-Time Embedded Systems

6.1. Introduction

Energy consumption and fault tolerance have attracted a lot of interest in the design of

modern embedded real-time systems. Dynamic power/energy management is an active area of

research and many techniques have been proposed to minimize energy consumption under a

large diversity of system and task models [Mahmood et al. 2017, Wei et al. 2012]. Dynamic

voltage and frequency scaling (DVFS) is an energy saving technology enabled on most

current processors. It enables a processor to operate at multiple voltages where each

corresponds to a specific frequency. Because the energy consumption of a processor is

proportional to voltage squared, the processor’s energy consumption can be considerably

reduced by lowering CPU voltage and processing speed [Zhu et al. 2013].

Based on the fault tolerance approach presented in chapter 5 and DVFS technique, we

propose in this chapter a fault-tolerant DVFS scheduling heuristic which generates, from a

given hard real-time application and a given multiprocessor architecture, a task allocation

scheme that minimizes energy consumption and tolerates K arbitrary transient faults.

The rest of the chapter is organized as follows. An overview of related work is provided in

Section 2. The system models considered in this work are introduced in Section 3. The

proposed fault-tolerance approach is explained in Section 4. The strategy that utilizes this

approach and DVFS technique to minimize energy is explained in Section 5. The proposed

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

61

DVFS_FTS algorithm is presented in Section 6. Simulation results are discussed in Section 7,

and finally, the conclusion is given in Section 8.

6.2. Related work

Several papers have been published are closely related to our research, these researches differ

in many aspects, such as task models (dependent or independent tasks, hard or soft deadlines,

periodic or aperiodic tasks), multiprocessor or uniprocessor platforms, online or offline

scheduling and the fault-tolerance technique adopted.

Assayad et al. (2012) proposed a scheduling heuristic to minimize the schedule length, the

global system failure rate and the power consumption of the generated schedule. Active

replication of tasks and data dependencies is used to increase the system reliability and

dynamic voltage scaling DVS is used for energy minimization. Gan et al. (2011) proposed a

synthesis approach to decide the mapping of hard real-time applications on distributed

heterogeneous systems, such that multiple transient faults are tolerated, and the energy

consumed is minimized. For recovery from faults, they used replication technique.

Djosic and Jevtic (2013) developed a fault-tolerant DVFS algorithm for real-time application

of independent tasks. This algorithm combines DVFS for optimizing energy consumption and

re-execution recovery for fault tolerance, but their scope is restricted to single processor

systems. Han et al. (2015) introduced an efficient method to determine the checkpointing

scheme that can tolerate k transient faults on a single processor. Also, they proposed a task

allocation scheme to reduce energy consumption.

The combination of replication and time-based redundancy techniques to tolerate multiple

transient faults with low overhead in terms of energy consumption and total execution time

has been studied in few works related to our research [Tavana et al.2014].

Tavana et al. (2014) have proposed a standby-sparing scheme which addressed

simultaneously reliability and energy consumption. The proposed scheme by employing both

hardware redundancy (standby-sparing) and time redundancy (re-execution) in some cases,

can tolerate many transient faults. To reduce energy consumption, they applied two

techniques DPM (Dynamic Power Management) used by the spare unit and DVS (Dynamic

Voltage Scaling) used by the primary processor.

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

62

6.3. System models

6.3.1. Application model

The real-time application considered in this chapter consists of n hard aperiodic dependent

tasks, denoted as . Tasks are non-preemptive and cannot be interrupted by

other tasks. Tasks send their output values in messages, when terminated. All required inputs

have to arrive before activation of the task. Each task is characterised by a tuple ,

where is the worst case execution time of the task at the maximum frequency/voltage in a

fault free condition and is the deadline of the task.

We model an application A as a Directed Acyclic Graph DAG. Each node represents one task.

An edge eij indicates data-dependency between two tasks and .

6.3.2. Scheduling model

List scheduling is the most commonly used scheduling approach for dependent tasks

represented by DAGs [Zhao et al. 2013]. Based on the Earliest Deadline First (EDF)

scheduling policy, we propose an EDF list scheduling based heuristic which uses the concept

of ready task and ready list. By ready task we mean that all 's predecessors have been

scheduled. The heuristic initializes the ready list with ready tasks and is looping while there is

at least one task in the list. The ready tasks with the earliest deadline have the higher priority

for scheduling.

6.3.3. Fault model

During the execution of an application, faults may be hard to avoid due to different reasons,

such as hardware failure, software errors, devices exposed to intense temperatures, and

external impacts [Zhang et al. 2015]. As a result, transient and intermittent faults are more

frequent than permanent ones. In this chapter we consider these types of faults as their

number has been dramatically higher.

From the fault tolerance point of view, transient faults and intermittent faults manifest

themselves in a similar manner: they happen for a short time and then disappear without

causing a permanent damage. Hence, fault tolerance techniques against transient faults are

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

63

also applicable for tolerating intermittent faults and vice versa. Therefore, from now, we will

refer to both types of faults as transient faults and we will talk about fault tolerance against

transient faults, meaning tolerating both transient and intermittent faults.

6.3.4. Platform and Energy model

We assume that there are m homogeneous processors, each of them is DVFS enabled with a

set of operating frequencies. We denoted with with

 . We assume the frequency values are normalized with respect to , i.e.

 .

The energy model used in this work is the same to the one used in the literature [Djosic et al.

2013, Mahmood et al. 2017, Assayad et al. 2012 and Zhang et al. 2015], where the power

consumption P of a system is given by Equation (6.1):

 (6.1)

Where is the static power, is the frequency-independent power and is the

frequency-dependent power. The parameter when the system is in the working state.

Otherwise, when the system is in the standby state, . is the effective loading

capacitance and V is the supply voltage and it is a function of working frequency . The static

power can be removed only by turning off the whole system, is a constant independent

of operating frequency. As the energy consumption due to frequency scaling is independent of

 , we take into account only the frequency-dependent power and we set . Hence,

the power consumption P can be written as:

 (6.2)

Since , and according to Equation (6.2), the dynamic power can be expressed as a

polynomial of frequency of degree , where has been set to 3 in most of the published

papers on energy consumption [Zhang et al. 2015, Zahaf et al. 2016]. Hence, we reformulate

 in Equation (6.3) as:

 (6.3)

The energy consumed by task is given by Equation (6.4):

 (6.4)

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

64

Where the execution time of task under frequency . The total energy

 consumed by processors during the execution of a task set is expressed by Equation

(6.5):

 (6.5)

In this study, we consider only processor energy consumption.

6.4. The fault-tolerance approach

As explained in chapter 5, we combine uniform checkpointing with rollback recovery and

active replication for tolerating k transient faults. We use these two techniques in order to

meet time constraints and to increase the reliability of hard real-time applications even in the

presence of faults.

6.4.1. Uniform Checkpointing with Rollback

Recovery

By using this technique, once a fault is detected during the execution of the task , it needs to

restore the saved state to continue task execution. We consider the following assumptions :

 The checkpointing is uniform (checkpoint intervals are equal for the same task).

 Faults are detected as soon as they occur.

 The checkpoint saving and rollback recovery are themselves fault-tolerant.

6.4.2. Collaborative active replication

In our work, we are interested in active replication. If there is enough time to rollback to the

last saved checkpoint in the presence of faults, we use active replication to guarantee and

respect task deadline. The task is replicated on two collaborative replicas;
 and

 , both

of which are be executed on different processors at the same time. We also introduce

collaboration between replicas to tolerate multiple faults and respect task deadline.

For the sake of uniformity and clarity, we will consider the original task as the primary

replica
 and its replica as the backup replica

 . We consider the following assumptions:

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

65

 All checkpoints are assumed to be fault-free, i.e., no faults can occur during checkpoint

saving.

 Each task’s primary copy and backup copy must not be assigned to the same processor.

 Each task’s primary copy and backup copy cannot be faulty at the same time.

 Faults are detected as soon as they occur, and the recovery will be with the no faulty

replica.

Our goal is to tolerate k faults with respect to task deadline. To achieve this goal, we use

active replication technique. However, it is possible that both primary and backup replicas are

faulty due to multiple fault occurrence. Therefore, our goal will be missed, and active

replication alone will be infeasible. This is the case in the work presented in [Motaghi and

Zarandi 2014].

As a solution, we introduce collaboration between replicas to tolerate each coming fault in the

primary or the backup replicas

 to achieve the feasibility of our approach.

Once the active replication approach is decided for a task , we execute the following steps:

Step1: has to be scheduled on virtual processor P# (i#) at start time as illustrated

in Figure 6-1(a);

Step2: We insert in (i#) the appropriate
 checkpoints obtained with Equation (5.2);

Step3: is replicated, which will result in two replicas
 and

 which must be

scheduled on two different processors;

Step4: The initial checkpoints of the task i# are projected onto
 and

 alternatively, as

illustrated in Figure 6-1(b).

The alternative checkpointing idea of the two replicas
 and

 is to ensure the collaboration

between replicas and to minimize the number of checkpoints of the original task . In this

case, we can meet the task deadline even in the presence of faults.

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

66

Figure 6-1 Illustration of different steps of collaborative active replication

In case of fault occurrence in the execution of one of the replicas (
 or

), the results

produced by the no faulty replica must be sent to the faulty replica at checkpoint with

Send/Receive communication to continue the execution. As shown in Figure 6-1(c), when

fault affects the first execution interval
 , the no faulty replica

 sends at checkpoint the

correct state to the faulty task via communication step.

6.5. DVFS based fault-tolerance

approach

The DVFS technique can assign different frequencies to each task, which gives us a useful

way to minimize energy consumption of applications [Hu et al. 2016]. We extend the

(a) Scheduling of i# on virtual processor P#

 i#

P#

P2

P1

Ci

(b) Replicate on two replicas
 and

 which are checkpointed alternatively

P# Virtual processor

 Transient fault

Communication

overhead

 Checkpoint projection

 Checkpoint overhead

(c) Fault occurrence scenario

 (1)

 (2)

 (1)

 (2)
 (3)

P2

P1

 Finished

 (1)

 (2)

 (1)

 (2)
 (3)

P2

P1

 (1)

 (2)

 (1)

 (2)
 (3)

 i#(1) i#(2) i#(3) i#(4)

 P#

P2

P1

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

67

proposed fault-tolerance approach to incorporate it with DVFS to exploit the released slack

time to achieve more energy saving.

According to the proposed fault-tolerance approach, we adopt active replication to meet

timing constraints and provide high reliability even when deadlines are tight. However, task

replicas must be performed at the maximum frequency given the probability of failure is low.

We assume that DVFS is used during uniform checkpointing with rollback technique.

Similar to [Han et al. 2015], we assume that checkpointing is not affected by processor

frequency. We focus on the fault-free execution and like [Salehi et al. 2016 and Melhem

2004], we aim to reduce the fault-free energy consumption because recovery executions have

a small probability of being performed, and for this reason their energy consumption is a

negligible fraction of the total energy consumption. The recovery time of a faulty task is

always performed at the maximum frequency to preserve its original reliability.

6.5.1. Optimal frequency assignments

In this section, we search the optimal frequency assignments assuming all tasks their

deadlines. In the existence of precedence constraints, a task may have to complete well before

its deadline to ensure that all its successor tasks can finish in time. Therefore, as in [Zhao et

al. 2013], we can define the effective deadline of a task as follows:

 (6.6)

Where is the set of successor tasks of .

The frequency

 that allows task to successfully complete execution before its deadline

 while minimizing energy consumption and tolerating K faults with checkpointing with

rollback should satisfy the following:

 (6.7)

Where and

 are respectively the start time and the fault-free execution time of task

with checkpoints performed at frequency

. is the recovery time of under a

single failure performed at the maximum frequency (and were defined

with Equations (6.5) and (5.1a) respectively).

After evaluation of Equation (6.7), we obtain the following solution:

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

68

 (6.8)

If
 ,we choose neighboring frequencies

 and .

Hence, the minimize energy consumed during the execution of task is given by:

 (6.9)

6.6. The proposed DVFS fault-

tolerant scheduling algorithm

Our DVFS fault-tolerant schedule is presented in algorithm DVFS_FTS. The algorithm

takes as input the application A, the number K of transient faults that have to be tolerated, the

architecture Ῥ, the set of frequency levels and the real-time constraints.

Our scheduling algorithm is a list scheduling based heuristic, which uses the concept of ready

task and ready list. By ready task , we mean that all ‘s predecessors have been scheduled.

The heuristic initializes the list TReady with tasks without predecessors in line 1 and is

looping while TReady isn’t empty (line 4-25). At first, the ready task with minimum

deadline is selected for placement in the schedule (line 5). Then, the maximum response time

of the task will be calculated with Equation (5.1) under maximum frequency (line 6). The

checkpointing with rollback policy will be applied if the task deadline can be satisfied on the

processor at the earliest start time (line 10-13). In this case, the task will be performed

under the frequency

 calculated based on Equation (6.8) (line 12-13). Otherwise, the task

 will be replicated and the proposed new active replication will be applied. In this case, the

maximum response time of the task will be calculated with Equation (5.7) under the

maximum frequency (line 14-18). After execution of the task , its energy consumption will

be calculated and the total energy will be updated in lines 22-23. Finally, the task will be

removed from the ready list TReady and all its successors are added to the list in line 24.

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

69

Figure 6-2 The proposed DVFS_FTS algorithm

DVFS_FTS Algorithm

Inputs:

K transient faults for each task

Real-time constraints

1. TReady =

2. Schedulable = True

3.

4. While TReady do

5. { Select TReady having the minimum deadline Di

6. Compute with Equation (5.1)under maximum frequency

7. Compute the start time of on all processor in

8.

9. If then

10. { Schedule on at the earliest start time /*

is the processor with min */

11. Apply checkpointing for

12. Compute

 based on Equation(6.8)

13. Perform under

 frequency }

14. Else

15. { Compute with Equation(5.7)under maximum frequency

16. If then

17. { Schedule both on and its replica on another

processor at the earliest start time.

18. Apply collaborative active replication for }

19. Else

20. { Schedulable = False

21. Break }}

22.Compute the energy consumption

23.

24.TReady = TReady-

 }

End DVFS_FTS

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

70

6.7. Performance evaluation

In this section, we evaluate the performance of the proposed DVFS_FTS algorithm. For

comparison we have implemented our algorithm and the following schemes:

EXH_FTS: Fault tolerant scheduling algorithm with energy minimization using exhaustion

method.

DVFS_CH: Fault tolerant scheduling algorithm that uses checkpointing with roll back

technique for fault tolerance and DVS for reduce energy. This algorithm is extended from

JFTT scheme [Zhang et al. 2006] for tasks with precedence constraints (application DAG).

The performance is measured in term of normalized total energy saving. We formulate the

parameter energy saving in Equation (6.10).

 (6.10)

Where is the energy consumption of the proposed algorithm with all tasks are executed

at the highest frequency and is the energy consumption of a compared algorithm with

DVFS scheme.

6.7.1. Simulation parameters

Before presenting our experimental results, we present the simulation parameters as follows:

The method of generating random graphs is the same as [Qamhieh 2015]. We have generated

a set of DAG applications with 10, 20, 30, 40 and 50 tasks. Within a task set, the worst case

response time on maximum operating frequency for each task is randomly generated with

values uniformly distributed in the range of [10ms, 100ms]. We assume and the

operating frequencies are set as . The parameters and the values used in

our simulation are summarized in Table 6-1.

Parameter Value(fixed-varied)

Number of processors 4

Application size (Number of tasks) (10 , 20 , 30 , 40 , 50)

Execution time (ms) [10 , 100]

Normalized frequency [0.1 – 1] with a step of 0.1

Checkpoint overhead O (1%, 2%, 5%, 10%, 15%, 20%)

Number of faults K (1 , 2 , 3 , 4 , 5)

Table 6-1. Parameters for simulation

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

71

6.7.2. Experiment results

The first set of experiments compares the energy savings of algorithms with respect to

number of transient faults (see Figure 6-3). In this experiments, we set application size

 tasks, the checkpoint overhead O = 2% and vary K from 1 to 5. As can be seen clearly

from the figure that the performance on energy saving of DVFS_FTS algorithm outperforms

both DVFS_CH and EXH_FTS schemes. For instance, when the number of transient faults is

5 faults, the ES of DVFS_FTS is greater than DVFS_CH and EXH_FTS by 7.17% and 6.34%

respectively. Furthermore, we can observe that the energy savings of the three algorithms

decreases with the increase of the number of transient faults.

Figure 6-3 The impact of number of faults on energy saving.

The second set of experiments is to investigate the performance of the different approaches

with respect to application size (see Figure 6-4). In this set of experiments, we set the

checkpoint overhead O = 2% and K =3 and vary the application size from 10 tasks to 50

tasks. We can see that the energy saving increases when the number of tasks increases. The

energy saving of DVFS_FTS is greater than DVFS_CH and EXH_FTS schemes by: (6.73%,

6.18%), (6.76%, 5.8%), (7.68%, 6.75%), (8.74%, 8.45%), (8.61%, 8.8%) for number of tasks

of 10, 20, 30, 40 and 50, respectively. The results of our proposed algorithm always

outperform those of the others, which show the efficiency of the DVFS_FTS algorithm.

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

72

Figure 6-4 The impact of application size on energy saving considering K=3 faults.

In the third set of experiments, we show the impact of checkpointing overhead on the

performance of algorithms (see Figure 6-5). In this set of experiments, we set application size

 20 tasks, K =3 faults and vary O from 1% to 20%. As can be seen from the figure, the

energy saving of the three schemes decreases when O increases. However, the ES of

DVFS_FTS decreases about 5.87% when O increases from 1% to 20% and less than the ES of

DVFS_CH and EXH_FTS decrease about 6.5% and 6.76% respectively.

Figure 6-5 The impact of checkpoint overhead on energy saving considering K=3 faults.

From these experiments, we can resume that the proposed algorithm DVFS_FTS outperforms

the other two algorithms.

6.8. Conclusion

In this chapter, we have studied the trade-off between fault tolerance and energy minimization

in hard real-time systems running on multiprocessor platforms. We have extended the fault

Chapter 6 An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems

73

tolerance approach already presented in chapter 5 with DVFS technique to attain more energy

saving. Then, we have presented our fault-tolerant scheduling algorithm DVFS_FTS that

exploits DVFS technology to reduce energy consumption and the proposed fault-tolerance

approach to tolerating K transient faults for applications that can be modeled with a DAG

(precedence-constrained applications). Simulation results have shown that the proposed

algorithm achieves a considerable amount of energy saving compared to EXH_FTS and

DVFS_CH algorithms.

74

CHAPTER 7

Conclusion and Future Work

Nowadays, embedded real-time systems are prevalent in our daily lives. They are growing

rapidly in both scale and complexity. However, these progresses have brought unprecedented

challenges for designing of these systems that are subject to a variety of constraints, e.g.

timing, reliability and power. The reliability of these systems can be increased by the use of

fault tolerance techniques.

Fault tolerance is a well established research topic and it offers a wide variety of techniques to

achieve correct operation even in the presence of errors. Checkpointing with rollback

Recovery is one technique that efficiently copes with transient faults. The advantage of this

technique over other fault tolerance techniques is that it is not as costly as other techniques

which require a significant amount of hardware redundancy, and in case of errors, the faulty

segment of the task that is being executed instead of restarting the task from the beginning.

The main drawback of checkpointing with rollback is that it introduces a time overhead which

depends on the number of checkpoints that are used. Active replication technique usually

requires extra system resources e.g. processor, and consume more energy even under the

fault-free scenarios, but they can tolerate faults timely and promptly.

In this dissertation, we focused our efforts on developing an efficient and effective approach

for fault tolerant scheduling of hard real-time systems with the purpose of providing

guarantees to timing constraints under transient faults while optimizing power consumption.

We started by studying how we can combine fault tolerance techniques of the two basic

classes of redundancy: time-based redundancy and spatial redundancy to tolerate spatially or

temporally faults, satisfy critical task constraint and explore hardware resources. For this

purpose, we have proposed a new fault-tolerance approach that combines checkpointing with

rollback technique and active replication in an original scheme.

We have also introduced replicas collaboration to tolerate spatially or temporally faults and

satisfy critical task constraint. To the best of our knowledge, this is the first work introducing

the idea of collaboration between replicas in active replication technique with checkpointing.

Chapter 7 Conclusion and Future Work

75

The proposed approach classifies the real-time tasks into critical and noncritical ones,

according to the utilization of the task. For the noncritical task, we adopt checkpointing with

rollback technique to tolerate multiple transient faults. Whereas for the critical task, we adopt

active replication as it is the fault tolerant method that explores hardware resources to meet

timing constraints and provide high reliability even when deadlines are tight.

Based on this approach, we have proposed two fault tolerant scheduling algorithms: SFTS and

DVFS-FTS algorithms. SFTS is a static fault tolerant scheduling algorithm. It uses task

utilization to decide which fault tolerance method will be applied (checkpointing with

rollback or active replication) to tolerate spatial and temporal faults. While DVFS-FTS is an

EDF list scheduling based heuristic. It exploits DVFS technology and the proposed fault-

tolerance approach to reduce energy consumption and tolerating K transient and intermittent

faults for applications that can be modeled with a DAG.

Future work

Our work remains opening to future contributions like:

 Evaluate our fault-tolerant scheduling algorithms on real-life applications.

 We are interested in extending our efficient fault-tolerant scheduling algorithms to

address the problem of online fault-tolerant scheduling of application with mixed-

critical tasks in heterogeneous architecture. In addition of tolerating transient faults,

we will take into consideration permanent faults.

 We are interested in studying a new state of checkpointing scheme to minimize as

possible the number of checkpoints as a result minimize a time overhead.

 Another potential point for further development would be to extend the fault model

and consider more faults e.g. permanent faults. Then, this would open possibility for

implementing further fault tolerant mechanism to deal with newly considered faults

and their effects.

76

References

Arlat, J., Crouzet, Y., Deswarte, Y., Fabre, J.C., Laprie, J and Powell, D. (2006). Encyclopédie de

l’informatique et des systemes d’information. Chapitre Tolérance aux fautes, pages 241–270.

Vuibert, 2006.

Assayad, I., Girault, A. and Kalla, H. (2012). Scheduling of real-time embedded systems under

reliability and power constraints. International Conference on Complex Systems (ICCS),

Agadir, Morocco, November 2012, IEEE.

Avizienis, A., Laprie, JC., Randell, B. (2004). Basic concepts and taxonomy of dependable and

secure computing. IEEE Transactions on Dependable And Secure Computing, Vol. 1, No. 1,

January-March 2004

Aydin, H. (2007). Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans.

Comput., 56(10):1372–1386, Oct. 2007.

Aydin, H., Melhem, R., Mosse, D. and Mejia-Alvarez, P. (2004). Power-aware scheduling for

periodic real-time tasks. Computers, IEEE Transactions on, 53(5):584 – 600, may 2004.

Bachir, M. (2019). Ordonnancement tolérant aux fautes pour les systèmes distribues temps réel

embarques. PhD thesis 2019.

Baruah, S. (2013). Partitioned EDF scheduling: a closer look. Real-Time Systems, 49(6):715–729,

2013.

Baruah, S. K., Cohen, N. K., Plaxton,C. G. and Varvel, D. A. (1996). Proportionate progress: a

notion of fairness in resource allocation. Algorithmica, 15(6):600–625, June 1996

Baruah, S. and Fisher, N. (2007a). The partitioned dynamic-priority scheduling of sporadic task

systems. Real-Time Systems, 36(3):199–226, 2007.

Baruah, S. and Fisher, N. (2007b). Global deadline-monotonic scheduling of arbitrary deadline

sporadic task systems. In E. Tovar, P. Tsigas, and H. Fouchal, editors, 148 Principles of

Distributed Systems, volume 4878 of Lecture Notes in Computer Science, pages 204–216.

Springer Berlin Heidelberg, 2007

Benoit, A., Hakem. M. and Robert, Y. (2008). Contention awareness and fault tolerant scheduling

for precedence constrained tasks in heterogeneous system. Parallel Computing, Elseiver 2008.

Benso, A., Di Carlo, S., Di Natale, G. and Prinetto, P. (2003). A watchdog processor to detect

data and control flow errors. Proc. 9th IEEE On-Line Testing Symp., 144-148, 2003.

Besseron , X. (2010). Tolérance aux fautes et reconfiguration dynamique pour les applications

distribuées a grande échelle. PhD thesis, National Institut Polytechnique -Grenoble - inpg,

2010.

Bizot, G. (2012). Gestion de l’activite et de la consommation dans les architectures multi-coeurs

massivement paralleles. PhD thesis, Université de Grenoble, 2012.

https://scholar.google.com/citations?user=ujXEG6oAAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=5sqk-sYAAAAJ&hl=ar&oi=sra

References

77

Burns, A. and Wellings, A. J. (2001). Real-time systems and programming languages: ADA 95.

Real-Time Java, And Real-Time Posix. Pearson Education, 2001.

Chen, J.-J., Yang, C.-Y., Kuo,T.-W. and Tseng, S.-Y. (2007). Real-time task replication for fault

tolerance in identical multiprocessor systems. Real-Time and Embedded Technology and

Applications Symposium, IEEE, 0:249–258, 2007.

Derasevic, S. (2018). Node fault tolerance for distributed embedded systems based on Ftt-

Ethernet. PhD thesis, 2018.

Digalwar, M. A. (2016). Energy efficient multicore scheduling algorithms for real time systems.

PhD thesis, 2016.

Dima, C., Girault, A. and Sorel,.Y. (2004). Static fault-tolerant real-time scheduling with pseudo-

topological orders. Proceeding of Joint Conference, Grenoble, France, 2004. Volume 3253 of

LNCS, Springer-verlag.

Dima, C., Girault, A. Lvarenne, C. and Sorel, Y. (2001). Off-line real-time fault-tolerant

scheduling. Euromicro Workshop on parallel and distributed processing, Italy, 2001.

Djosic, S. and Jevtic, M. (2013). Dynamic voltage and frequency scaling algorithm for fault

tolerant real-time systems. Microelectronics Reliability journal of Elsevier, Vol. 53, July 2013,

pp. 1036-1042.

Dubrova, E. (2013). Fault-tolerant design. Springer, no ISBN 978-1-4614-2113- 9, 15 Mars

2013,185 p.

Ejlali, A., Al-Hashimi, B. and Eles, P. (2012). A standby-sparing technique with low energy-

overhead for fault-tolerant hard real-time systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 31, March 2012, No. 3, pp. 329-342.

Ejlali, A. B., Al-Hashimi, M., Schmitz, M., Rosinger, P. and Miremadi, S. G. (2006). Combined

time and information redundancy for SEUtolerance in energy-efficient real-time Systems.

Very Large Scale Integration (VLSI) Systems, 14(4), pp. 323-335, 2006.

Eles, P., Izosimov,V., Pop, P.and Peng, Z. (2008). Synthesis of fault-tolerant embedded systems.

In Proceedings of 2008 Design Automation and Test in Europe Conference (DATE),

Munich, Germany, March 2008, pp. 1117-1122.

Fan, M. and Quan, G. (2011). Harmonic-Fit partitioned scheduling for fixed-priority real-time

tasks on the multiprocessor platform. In Embedded and Ubiquitous Computing (EUC), 2011

IFIP 9th International Conference on, pages 27–32, Oct 2011.

Fan, M. and Quan, G. (2012). Harmonic semi-partitioned scheduling for fixed-priority real-time

tasks on multi-core platform. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’12, pages 503–508, San Jose, CA, USA, 2012. EDA Consortium.

Fan, M., Han, Q., Quan, G. and Ren, S. (2014). Multi-core partitioned scheduling for fixed-

priority periodic real-time tasks with enhanced rbound. In Quality Electronic Design

(ISQED), 2014 15th International Symposium on, pages 284–291, March 2014.

Forget, J., Grolleau, E., Pagetti, C. and Richard, P. (2014). Dynamic priority scheduling of

periodic tasks with extended precedences. tel-00978366, version 1 - 14 Apr 2014 160 In IEEE

References

78

16th Conference on Emerging Technologies Factory Automation (ETFA), Toulouse, France,

September 2011.

Gan; J., Gruian; F., Paul Pop, P. and Madse. J. (2011). Energy/Reliability trade-offs in fault-

tolerant event-triggered distributed embedded systems. In Proc. of the 16th Asia South Pacific

Design Automation Conference ASP-DAC, 2011, pp. 731-736.

https://doi.org/10.1109/ASPDAC.2011.5722283.

Girault, A. and Kalla, H. (2009). A novel bicriteria scheduling heuristics providing a guaranteed

global system failure rate. IEEE Transactions on Dependable and Secure Computing, 2009,

Vol. 6, Oct.-Dec. 2009, pp. 241-254

Girault, A. and Kalla, H. (2009). A novel bicriteria scheduling heuristics providing a guaranteed

global system failure rate. IEEE Trans. on Dependable and Secure Computing, 2009, 6: 241-

254. https://doi.org/10.1109/TDSC.2008.50

Girault, A., Kalla, H. and Sorel, Y. (2004). A scheduling heuristics for distributed real-time

embedded systems tolerant to processor and communication media failures. International

Journal of Production Research, 2004, Vol. 42, pp. 2877-2898.

Gui, S. and Luo, L. (2013). Reliability analysis of real-time fault-tolerant task models. Design

Automation for Embedded Systems, Vol. 17, March 2013, pp. 87-107.

Gupta, R. (2004). Dynamic voltage scaling for system wide energy minimization in real-time

embedded systems. In Low Power Electronics and Design, 2004. ISLPED ’04. Proceedings of

the 2004 International Symposium on, pages 78– 81, Aug 2004.

Han, Q. (2015). Energy-aware fault-tolerant scheduling for hard real-time systems. PhD thesis,

Florida International University, 2015

Han, Q., Fan, M., Nin, L. and Quan, G. (2015). Energy minimization for fault tolerant scheduling

of periodic fixed-priority applications on multiprocessor platforms. In Proceedings of 2015

Design, Automation and Test in Europe Conference and Exhibition (DATE), Grenoble,

France, March 2015, pp. 830-835.

Han; Q., Fan, M. and Quan, G. (2013). Energy minimization for fault tolerant real-time

applications on multiprocessor platforms scheduling using checkpointing. In Low Power

Electronics and Design (ISLPED), IEEE International Symposium on, Beijing, China,

September 2013, pp. 76-81. https://doi.org/10.1109/ISLPED.2013.6629270

Han, C.-C., Shin, K. and Wu, J. (2003). A fault-tolerant scheduling algorithm for real-time

periodic tasks with possible software faults. Computers, IEEE Transactions on, 52(3):362 –

372, march 2003.

Hashimoto, K, Tsuchiya,. T. and Kikuno, T. (2002). Effective scheduling of duplicated tasks for

fault-tolerance in multiprocessor systems. IEICE Transactions on Information and Systems,

E85-D(3):525–534, march 2002.

Hu, Y., Liu, C., Li, K., Chen, X. and Li, K. (2016). Slack allocation algorithm for energy

minimization in cluster systems. Future Generation Computer Systems, vol. 74, pp. 119-131,

2016. https://doi.org/10.1016/j.future.2016.08.022

https://ieeexplore.ieee.org/author/37853381600
https://ieeexplore.ieee.org/author/37373881000
https://ieeexplore.ieee.org/author/37278880300
https://ieeexplore.ieee.org/author/37265832800
https://doi.org/10.1109/ASPDAC.2011.5722283
https://ieeexplore.ieee.org/author/38235636400
https://ieeexplore.ieee.org/author/37282717200
https://doi.org/10.1109/ISLPED.2013.6629270

References

79

Huang, J., Blech, J., Raabe, A., Buckl, C. and Knoll, A. (2011). Analysis and optimization of fault-

tolerant task scheduling on multiprocessor embedded systems. In Proceedings of the Seventh

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS ’11, pages 247–256, New York, NY, USA, 2011. ACM.

Quan, G. and Niu, L. (2004). Fixed priority scheduling for reducing overall energy on variable

voltage processors. In In 25th IEEE Real-Time System Symposium, pages 309–318. IEEE

Computer Society, 2004.

Qin, X. and Jiang, H. (2006). A novel fault-tolerant scheduling algorithm for precedence

constrained tasks in real-time heterogeneous systems. Science Direct, Parallel Computing 32

(2006) 331–356

Izosimov, V. (2009). Scheduling and optimization of fault-tolerant distributed embedded systems.

PhD thesis, Linköping University, 2009.

Izosimov, V., Pop, P., Eles, P. and Peng, Z. (2008). Scheduling of fault tolerant embedded

systems with soft and hard timing constraints. In Proceedings of 2008 Design, Automation

and Test in Europe Conference (DATE), Munich, Germany, March 2008, pp. 915-920.

Izosimov, V., Pop, P., Eles, P. and Peng, Z. (2012). Scheduling and optimization of fault-tolerant

embedded systems with transparency/ performance trade-offs. ACM Trans. Embedded

computing systems (TECS), Vol. 11, September 2012, Article No. 61.

Jimenez, M., Palomera, R. and Couvertier. I. (2014). Introduction to embedded systems using

microcontrollers and the MSP430. Springer 2014. DOI: 10.1007/978-1-4614-3143-5_1

Kada B. and Kalla, H. (2019a). An efficient fault-tolerant scheduling approach with energy

minimization for hard real-time embedded systems. CIT , 2019.

Kada B. and Kalla, H. (2019b). A Fault-Tolerant Scheduling Algorithm Based on Checkpointing

and Redundancy for Distributed Real Time Systems. IJDST, Vol 10, issue 3, article 4, July-

Sept 2019. DOI https://doi.org/10.4018/IJDST.2019070104.

Kalla, H. (2004). Génération automatique de distributions/ordonnancements temps réel fiables et

tolérant les fautes. PhD thesis, Institut national polytechnique de Grenoble, spécialité systèmes

et logiciel, 2004.

Kermia, O., Ordonnancement temps-réel multiprocesseur de taches non-préemptives avec

contraintes de précédences, de périodicité stricte et de latence. PhD thesis, Université Paris

XI, 2009.

Kim, J., Lakshmanan, K. and Rajkumar, R. R.. (2010). R-batch: Task partitioning for fault-

tolerant multiprocessor real-time systems. In Proceedings of the 2010 10th IEEE

International Conference on Computer and Information Technology, CIT ’10, pages 1872–

1879, Washington, DC, USA, 2010. IEEE Computer Society.

Krakowiak, S. (2004). Tolerance aux fautes – 1 introduction, techniques de base. Ecole doctorale

de Grenoble Master 2 Recherche “Systèmes et Logiciel”, Université Joseph Fourier Projet

Sardes (INRIA et IMAGLSR), 2003-2004.

References

80

Krishna, C. M. (2014). Fault-tolerant scheduling in homogeneous real-time systems. ACM

Computing Surveys, Vol. 46, April 2014, Article No. 48.

Kumar, A. and Alam, B. (2015). Improved EDF algorithm for fault tolerance with energy

minimization. IEEE International Conference on Computational Intelligence &

Communication Technology (CICT), Ghaziabad, India, February 2015. doi:

10.1109/CICT.2015.84

Kumar, P. and Rachit, G. (2011). Soft-checkpointing based hybrid synchronous checkpointing

protocol for mobile distributed systems. International Journal of Distributed Systems and

Technologies, 2(1), 1-13. doi:10.4018/jdst.2011010101

Laprie, JC. (1995) Dependability - ITS ATTRIBUTES, IMPAIRMENTS AND MEANS. In:

Randell B., Laprie JC., Kopetz H., Littlewood B. (eds) Predictably Dependable Computing

Systems. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-79789-7_1

Legout, V. (2014). Ordonnancement temps réel multiprocesseur pour la réduction de la

consommation énergétique des systèmes embarqués. PhD thesis, Institut Des Sciences Et

Technologies Paris. 2014.

Leung, J. Y.-T. and Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of

Periodic Real-Time Tasks. Performance Evaluation, Vol 2, Issue 4, December 1982, Pages

237-250. https://doi.org/10.1016/0166-5316(82)90024-4.

Li, L., Choi, K., & Nan, H. (2011). Effective algorithm for integrating clock gating and power

gating to reduce dynamic and active leakage power simultaneously. Proceedings of 12th

International Symposium On Quality Electronic Design, pp. 1-6.

Li, Z., Ren, S. and Quan, G. (2015). Energy minimization for reliability-guaranteed real-time

applications using DVFS and checkpointing techniques. Journal of Systems Architecture, vol.

61, pp. 71-81, 2015. http://dx.doi.org/10.1016/j.sysarc.2014.12.002

Li, Z.; Wang;L., Ren, S. and Quan, G. (2013). Energy minimization for checkpointing-based

approach to guaranteeing real-time systems reliability. In Proc. IEEE 16th Int. Symp.

Object/Compon./Service-Oriented Real-Time Distrib. Comput. (ISORC), 2013, pp. 1-8.

http://dx.doi.org/10.1109/ISORC.2013.6913209

Lin, C-H. and Liao C.-J. (2008). Makespan minimization for multiple uniform machines. Comput.

Ind. Eng., 54(4):983–992, 2008

Liu, J. (2000). Real-Time Systems. Prentice Hall, NJ, 2000.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard real-

time environment. Journal of ACM, 20(1), pp. 46-61, January 1973.

Mahmood, A., Khan, S., Albalooshi, F. and Awwad, N. (2017). Energy-aware real-time task

scheduling in multiprocessor systems using a hybrid genetic algorithm. Electronics, 2017, 6(2),

40. http://dx.doi.org/10.3390/electronics6020040

https://doi.org/10.1109/CICT.2015.84
https://www.sciencedirect.com/science/article/abs/pii/0166531682900244#!
https://www.sciencedirect.com/science/article/abs/pii/0166531682900244#!
https://www.sciencedirect.com/science/journal/01665316/2/4
https://ieeexplore.ieee.org/author/37301926900
https://ieeexplore.ieee.org/author/37282717200
https://ieeexplore.ieee.org/author/38026062000
https://ieeexplore.ieee.org/author/37301926900
https://ieeexplore.ieee.org/author/37282717200
https://scholar.google.com/citations?user=EWlcdLoAAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=PSBc1ZoAAAAJ&hl=ar&oi=sra
http://dx.doi.org/10.3390/electronics6020040

References

81

Marouf, M. (2012). Ordonnancement temps réel dur multiprocesseur tolérant aux fautes appliqué

à la robotique mobile. PhD thesis, Ecole nationale supérieure des mines de paris, Spécialité

Informatique T. R, Robotique et Automatique, 2012.

Megel, T. (2012). Placement, ordonnancement et mécanismes de migration de tâches tempsréel

pour des architectures distribuées multicœurs. PhD thesis, Institut National Polytechnique de

Toulouse (INP Toulouse), 2012.

Melhem, R., Mosse, D. and Elnozahy, E. (2004). The interplay of power management and fault

recovery in real-time systems. IEEE Trans. Comput., 2004, 53: 217-231.

https://doi.org/10.1109/TC.2004.1261830

Meroufel, B.and Belalem, G. (2014). Collaborative services for fault tolerance in hierarchical data

grid. International Journal of Distributed Systems and Technologies, 5(1), 1-21, January-March

2014. doi: 10.4018/ijdst.2014010101

Motaghi, M. H.and Zarandi, H. R. (2014). DFTS : Dynamic fault-tolerant scheduling for real-

time tasks in multicore processors. Microprocessors and Microsystems Journal of Elsevier,

Vol. 38, February 2014, pp. 88-97.

Ndoye, F. (2014). Ordonnancement temps réel préemptif multiprocesseur avec prise en compte

du coût du système d’exploitation. PhD thesis. Université Paris-Sud, 2014

Nicolescu, B., Savaria, Y. and Velazco, R. (2004). Software detection mechanisms providing full

coverage against single bit-flip faults. IEEE Trans. on Nuclear Science, 51(6), 3510-3518,

2004.

Nikolov, D. (2015). Fault tolerance for real-time systems analysis and optimization of roll-back

recovery with checkpointing. Doctoral Dissertation Fault-tolerant computing Lund, January

2015

Oh, Y. and Son, S. H. (1995). Allocating fixed-priority periodic tasks on multiprocessor systems.

Real-Time Syst., 9(3):207–239, Nov. 1995.

Oh, Y. and Son, .S. H. (1997). Scheduling real-time tasks for dependability. Journal of

Operational Research Society, 48(6):629–639, June 1997

Oh, N., Shirvani, P. P., and McCluskey, E. J. (2002a). Control-flow checking by software

signatures. IEEE Trans. on Reliability, 51(2), 111-122, 2002

Oh, N., Shirvani, P. P., and McCluskey, E. J. (2002b). Error detection by duplicated instructions

in super-scalar processors. IEEE Trans. on Reliability, 51(1), 63-75, 2002.

Oh, N., Shirvani, P. P., and McCluskey, E. J. (2002c). Error detection by selective procedure call

duplication for low energy consumption. IEEE Trans. on Reliability, 51(4), 392-402, 2002.

Pop, P., Izosimov, V., Eles, P. and Peng, Z. (2009). Design optimization of time-and- cost-

constrained fault-tolerant embedded systems with checkpointing and replication. IEEE Trans.

Very Large Scale Integration (VLSI) Systems, Vol. 17, March 2009, pp. 389-340.

Pop, P., Poulsen, K. H., Izosimov, V. and Eles, P. (2007). Scheduling and voltage scaling for

energy/reliability trade-offs in fault tolerant time-triggered embedded systems.

Hardware/software code-sign and system synthesis, pp. 233-238, 2007.

https://ieeexplore.ieee.org/author/37063523100

References

82

Peti, P., Obermaisser, R. and Kopetz, H. (2005). Out-of-Norm Assertions. Proc. 11th IEEE

Real-Time and Embedded Technology and Applications Symp. (RTAS), 209- 223, 2005.

Qamhieh, M. (2015). Scheduling of parallel real-time dag tasks on multiprocessor systems. Ph.D

thesis, Paris-Est University, 2015.

Qin, X. and Jiang, H. (2006). A novel fault-tolerant scheduling algorithm for precedence

constrained tasks in real-time heterogeneous systems. SceinceDirect, Parallel computing 2006.

Ropars, T., Lefray, A., Kim, D. and Schiper, A. (2015). Efficient process replication for MPI

applications: sharing work between replicas. 29th IEEE International Parallel & Distributed

Processing Symposium (IPDPS2015), Hyderabad, India, 2015. <hal-01121959>

Runge, A. (2012). Reliability enhancement of fault-prone many-core systems combining spatial

and temporal redundancy. 2012 IEEE 9th International Conference on Embedded Software

and Systems (HPCC-ICESS), 2012.

Salehi, M., Tavana, M., K., Rehman, S., Shafique, M., Ejlali, A. and Henkel, J. (2016). Two-state

checkpointing for energy-efficient fault tolerance in hard real-time systems. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, July 2016, pp. 2426 –

2437.

Samal, A. K., Mall, R. and Tripathy, C. (2014). Fault tolerant scheduling of hard real-time tasks

on multiprocessor system using a hybrid genetic algorithm. Swarm and Evolutionary

Computation journal of Elsevier, Swarm and Evolutionary Computation Journal of Elsevier,

Vol. 14, February 2014, pp. 92-105.

Saraswat, P. K., Pop, P. and Madsen, J. (2010). Task mapping and bandwidth reservation for

mixed hard/soft fault-tolerant embedded systems. In Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2010 16th IEEE (pp. 89-98). IEEE.

Shin, K. and Ramanathan, P. (1994). Real-Time Computing: A New Discipline of Computer

Science and Engineering. Proc. IEEE, 82(1):6–24, Jan. 1994.

Srinivasan, J. Adve, S. V., Bose, P., Rivers, J. A., Hu, C. K., Emma, P., Linder, B. and Wu, E. Y.

(2003). Ramp: A model for reliability aware microprocessor design. IBM Research Report,

RC23048, 2003.

Tavana, M. K., Teimouri, N., Abdollahi, M. and Goudarzi, M. (2014). Simultaneous hardware

and time redundancy with online task scheduling for low energy highly reliable standby-

sparing system. ACM Trans. Embedded Computing Systems, Vol. 13, Issue 4, November

2014, Article No. 86.

Wei, T., Mishra, P., Wu, K. and Zhou, J. (2012). Quasi-static fault tolerant schemes for energy-

efficient hard real-time systems. Systems and Software Journal of Elsevier, Vol. 85, June 2012,

pp. 1386-1399.

Yahiaoui, K. L’apport des outils de l’intelligence artificielle dans les systemes temps-reel :

ordonnancement des taches. PhD thesis, Université d’Oran, 2013

Zahaf, H. E. (2016). Energy efficient scheduling of parallel real-time tasks on heterogeneous

multicore systems. Ph.D thesis, Université de Lille 1, Sciences et Technologies, 2016.

https://www.researchgate.net/profile/Armin_Runge?_sg%5B0%5D=9wC_nr4yB-v9M060bhZPisQcspP-XP1vko-urjFDlEUeoG5vlFaP82RHiizJvI9XEsAirG0.f-7rBOcuPlkbsc_1LGtAoUfHiwkajdi9JpztomIOwwXZwVdKkaOZ85zix0xpo68J_nkYeMjRPgputy-yWR_Apg&_sg%5B1%5D=iFCqXgalL9CSCDLs5xUDqI4TYdUOEfUObIWp3rmj8X1Cj0vC7SQ6z528_eF9QUsQdKPpF1E.WJUDk7PnXvSTAgd8YQCiJfnW5wWbIZ_j0VYzKngbYzz-toGyyq869TMDrOQVX8q5AP9OqyPo5F_2r5MBfQsOiQ

References

83

Zammali, A. (2016). Approche d’intégrité bout en bout pour les communications dans les

systèmes embarqués critiques : application aux systèmes de commande de vol d’hélicoptères.

PhD thesis, Université Paul Sabatier - Toulouse III, 2016.

Zarinzad,] G., Rahmani, A.M. and Dayhim, N. (2008). A novel intelligent algorithm for fault

tolerant task scheduling in real-time multiprocessor systems. In: Proceedings of the Third

International Conference on Convergence and Hybrid Information Technology; 2008 Nov

11–13; p. 816–21.

Zhang, J., Sha, E. H-M., Zhuge, Q., Yi, J. and Wu, K. (2014). Efficient fault-tolerant scheduling

on multiprocessor systems via replication and deallocation. International Journal Embedded

Systems, Vol. 6, Nos. 2/3, 2014, pp. 216–224.

Zhang, L., Li, k., Xu, Y., Ying, M., Zhang, F. and Li, K. (2015). Maximizing reliability with energy

conservation for parallel task scheduling in a heterogeneous cluster. Information Sciences, vol.

319, pp. 113-131, 2015. https://doi.org/10.1016/j.ins.2015.02.023.

Zhang, Y. and Chakrabarty, K. (2006). A unified approach for fault tolerance and dynamic power

management in fixed-priority real-time embedded systems. IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, Vol. 25, Issue 1, January 2006, pp. 111-125.

Zhang, Y. Chakrabarty, K. and Swaminathan ,V. (2003). Energy-aware fault tolerance in fixed-

priority real-time embedded systems. In Proceedings of the 2003 IEEE/ACM international

conference on Computer-aided design, ICCAD ’03, pages 209–, Washington, DC, USA, 2003.

IEEE Computer Society.

Zhao, B., Aydin, H. and Zhu, D. (2013). Shared recovery for energy efficiency and reliability

enhancements in real-time applications with precedence constraints. ACM Trans. Des.

Autom. Electron. Syst., 18, 2, Article 23 (March 2013), 21 pages.

http://dx.doi.org/10.1145/2442087.2442094

Zhu, X., Ge, R., JinguangSun, J. and He, C. (2013). Energy-efficient elastic scheduling for

independent tasks in heterogeneous computing systems. Systems and Software Journal of

Elsevier, Vol. 86, pp. 302-314, 2013. https://doi.org/10.1016/j.jss.2012.08.017

Zhu, D., Melhem, R. and Mosse, D. (2004). The effects of energy management on reliability in

real-time embedded systems. Proc. of the International Conference on Computer Aided

Design, pp. 35-40, 2004.

Zhu, D. and Aydin, H. (2009). Reliability-aware energy management for periodic real-time tasks.

IEEE Transactions on Computers, 58(10), pp. 1382 – 1397, 2009.

https://doi.org/10.1016/j.ins.2015.02.023
https://scholar.google.com/citations?user=MTMmNecAAAAJ&hl=ar&oi=sra
http://dx.doi.org/10.1145/2442087.2442094
https://www.sciencedirect.com/science/article/abs/pii/S0164121212002336?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121212002336?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121212002336?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121212002336?via%3Dihub#!
https://doi.org/10.1016/j.jss.2012.08.017

