

République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université Batna 2 – Mostefa Ben Boulaïd
Faculté de Technologie

Département de Génie Industriel

Thèse

Préparée au sein du laboratoire d’Automatique & Productique

Présentée pour l’obtention du diplôme de :

Doctorat en Sciences en Génie Industriel
Option : Génie Industriel

Sous le Thème :

An Optimized Approach to Software Security via Malware

Analysis

Présentée par :

OURLIS Lazhar

Devant le jury composé de :

M. ABDELHAMID Samir MCA Université de Batna 2 Président

M. BELLALA Djamel MCA Université de Batna 2 Rapporteur

Mme. BOUAME Souhila MCA Université de Batna 2 Examinateur

M.DJEFFAL Abdelhamid MCA Université de Biskra Examinateur

M.KAHLOUL Laid Prof Université de Biskra Examinateur

M. BENMOHAMMED Mohamed Prof Université de Constantine 2 Examinateur

Novembre 2020

To my parents and family

Contents

List of Figures. .I

List of Tables. .II

Program Listings. III

Abbreviations. IV

Publications. .V

Acknowledgements. .VI

Abstract. VII

Chapter

1 Introduction .. 1

1.1 Motivation for the research .. 3

1.2 Thesis scope .. 3

1.3 Thesis outline .. 3

2 Malware Overview ... 5

2.1 A Brief History of Malware .. 5

2.2 Malware definition ... 16

2.3 Malware propagation vectors .. 17

2.4 Malware concealment strategies .. 20

2.4.1 Encryption .. 20

2.4.2 Stealth ... 20

2.4.3 Packing ... 21

2.4.4 Oligomorphism ... 21

2.4.5 Polymorphism .. 22

2.4.6 Metamorphism ... 23

2.5 Malware obfuscation techniques .. 23

2.6 Malware types .. 25

2.7 Malware analysis ... 30

2.7.1 Static analysis ... 30

2.7.2 Dynamic analysis ... 300

2.7.3 Memory analysis (memory forensics) .. 31

2.8 Malware detection .. 31

2.8.1 Signature-based detection .. 32

2.8.2 Heuristic-based detection ... 36

3 Pattern-matching algorithms .. 37

3.1 Pattern-matching problem ... 37

3.2 Exact pattern-matching algorithms .. 39

3.3 Brute force algorithm ... 39

3.4 The Boyer-Moore algorithm ... 40

3.4.1 The bad character heuristic .. 41

3.4.2 The good suffix heuristic .. 43

3.5 The Aho-Corasick algorithm .. 47

3.5.1 Review of the AC algorithm .. 49

3.5.2 Review of the AC algorithm using the next-move function 54

4 SIMD Implementation of the Aho-Corasick Algorithm using Intel® AVX2 57

4.1 Intel© SIMD extensions .. 59

4.1.1 MMX™ Technology .. 60

4.1.2 Streaming SIMD Extensions (SSE) ... 61

4.1.3 Advanced Vector Extensions (AVX) ... 63

4.1.4 Test for AVX2 support ... 65

4.2 Vectorization: Data Parallelism .. 68

4.3 Vectorization approaches (SIMD programming methods) .. 69

4.4 Characteristics of SIMD operations .. 71

4.5 SIMD Implementation of the Aho-Corasick Algorithm using Intel® AVX2 73

4.5.1 Vectorization of the Aho-Corasick Algorithm using Intel® AVX2 73

4.5.2 Experimental results ... 76

5 Improving the Signature Scanner using an Optimized Aho-Corasick algorithm 80

5.1 Scanning for byte-stream signatures .. 82

5.2 The signature scanner tool ... 85

5.3 Performance analysis ... 87

5.3.1 Performance according to the malware database ... 88

5.3.2 Performance according to the malware signature size ... 90

6 Conclusion ... 92

BIBLIOGRAPHY . 93

i

List of Figures

Figure 2. 1: Aycock's classification of malware .. 26

Figure 2. 2: Adleman’s classification of malware ... 26

Figure 2. 3: Microsoft malware classification ... 27

Figure 2. 4: Malware detected by the MSRT by means of propagation ability 28

Figure 2. 5: Kaspersky Lab malware classification diagram... 29

Figure 2. 6: Hexadecimal representation of a typical malware signature and the

corresponding x86 code snippet .. 33

Figure 2. 7: Hexadecimal representation of a generic malware signature.............................. 34

Figure 2. 8: ClamAV signature for the Virut malware ... 34

Figure 3. 1: Application fields using pattern-matching ... 37

Figure 3. 2: The bad character shift heuristic .. 41

Figure 3. 3: The good suffix .. 43

Figure 3. 4: The matching suffix occurs somewhere else in the pattern 44

Figure 3. 5: A partial of a good suffix occurs as a prefix of the pattern 44

Figure 3. 6: Pattern-matching machine for the set of keywords {these, this, the, set} 50

Figure 3. 7: State transitions using the next-move function .. 56

Figure 4. 1: Classification of parallel architectures .. 58

Figure 4. 2: Intel® SIMD extensions ... 59

Figure 4. 3: MMX data types... 60

Figure 4. 4: The 128-bit Streaming SIMD Extensions .. 62

Figure 4. 5: Intel SIMD registers (AVX) .. 64

Figure 4. 6: Intel SIMD registers (AVX-512) ... 65

Figure 4. 7: General procedural flow of application detection of AVX 66

Figure 4. 8: Scalar vs. SIMD vector addition .. 68

Figure 4. 9: SIMD programming methods .. 70

Figure 4. 10: Vectorization process of the AC algorithm using AVX2 instructions 74

Figure 5. 1: Expanding malware signature .. 87

Figure 5. 2: Performance chart according to the database size ... 88

ii

List of Tables

Table 4.1: First-generation short-vector processors .. 58

Table 4.2: Running times generated while searching different text file size for sets of

different patterns .. 77

Table 4.3: Running times generated while searching different text file size for sets of

10 different short patterns .. 78

Table 4.4: Running times generated while searching different text file size for sets of

10 different long patterns ... 78

Table 5.1: Analysis on ClamAv database .. 80

Table 5.2: Malware MD5 signatures ... 81

Table 5.3: Malware basic string signatures ... 83

Table 5.4: Some regular expression features allowed in ClamAV malware signatures 84

Table 5.5: Malware regex signatures ... 85

Table 5.6: Malware records ... 86

Table 5.7: Execution times generated when varying the malware database size

(Amount of scan = 1GB) ... 88

Table 5.8: Execution times generated when varying the malware database size

(Amount of scan = 1GB, 5GB & 10GB) ... 89

Table 5.9:Execution times generated when varying the malware signature size 90

iii

Program Listings

Listing 3.1 C++ implementation of the brute force algorithm .. 40

Listing 3.2 The BadCharacter table ... 42

Listing 3.3 C++ implementation of the bad character shift heuristic 42

Listing 3.4 Preprocessing for good suffix shift case1 ... 46

Listing 3.5 Preprocessing for good suffix shift case 2 .. 47

Listing 3.6 C++ implementation of algorithm 1 - Pattern-matching maching 50

Listing 3.7 ASM implementation of algorithm 1 - Pattern-matching maching 52

Listing 3.8 Query performance module ……………………………………………………..58

Listing 3.9 C++ implementation of the AC algorithm using the next-move function ………60

Listing 3.10 ASM implementation of the AC algorithm using the next-move function ……60

Listing 4.1 AVX detection process pseudocode ... 66

Listing 4.2 AVX2 detection process pseudocode ... 67

Listing 4.3 Examples of non-contiguous memory access ... 71

Listing 4.4 Examples of data dependencies …………………………………………………72

Listing 4.5 SIMD implementation of the AC algorithm ... 75

iv

Abbreviations

AC

ACL

Aho-Corasick

Access Control List

ASIC Application-Specific Integrated Circuit

 API

 ATM

Application Programming Interface

Automated Teller Machine

 AV Anti-virus

AVX Advanced Vector Extension

BM Boyer-Moore

C&C Command & Control

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CW Commentz-Walter

DFA Deterministic Finite Automaton

DOS Denial Of Service

FAT File Allocation Table

FMA Fused Multiply-Add

FPGA Field Programmable Gate Arrays

FTP File Transfer Protocol

IA-32 Intel Architecture 32-bit

ICC Intel® C++ compiler

 IDS Intrusion Detection System

IM

IPP

Instant Messenger

Integrated Performance Primitives

 IPS Intrusion Prevention System

IRC

KMP

Internet Relay Chat

Knuth-Morris-Pratt

KSN Kaspersky Security Network

MBR Master Boot Record

MKL Math Kernel Library

MtE Mutation Engine

OS Operating System

P2P Peer-to-Peer

PC

PE

Personal Computer

Portable Executable

POP Post Office Protocol

RSA Rivest–Shamir–Adleman

SIMD Single Instruction Multiple Data

SMTP Simple Mail Transfer Protocol

SSE Streaming SIMD Extensions

URL Uniform Resource Location

VB Visual Basic

VBS Visual Basic Script

WM Wu-Manber

v

Publications in support of this dissertation

L. Ourlis and D. Bellala, "SIMD Implementation of the Aho-Corasick Algorithm using Intel

AVX2", Scalable Computing: Practice and Experience, vol. 20, no. 3, pp. 563-576, 2019.

Available: 10.12694/scpe.v20i3.1572.

Other publications

1. D. Bellala, L. Ourlis and H. Smadi, "Optimal Planning of Nurses’ Redeployment at

Patient Overflow", in AASRI International Conference on Circuits and Systems (CAS

2015), Atlantis Press, 2015. Available: https://doi.org/10.2991/cas-15.2015.84

2. D. Bellala, L. Ourlis, H. Smadi, "Genetic Algorithm Optimization for the Average

Position Analysis of a Welding Robot through a Metal Spar", in MIC’2015

Metaheuristics International Conference, Agadir, Morocco, 7-10 June 2015.

3. D. Bellala, H. Smadi, A. Medjghou and L. Ourlis, "Constructive and Enhanced

Heuristics for a Welding Process Optimization of a Central Girder of a Semi-Trailer",

in 6th International Conference on Metaheuristics and Nature Inspired computing,

Marrakech, Morocco, 27-31 October 2016. sciencesconf.org:meta 2016:108942.

4. Dj. Bellala, L. Ourlis and H. Smadi, "Optimized Positioning of a Robot Arm boring

Regularly Distributed holes on a metallic sheet using Simulated Annealing Heuristic"

in 6th International Conference on Metaheuristics and Nature Inspired computing,

Marrakech, Morocco, 27-31 October 2016. sciencesconf.org: meta2016: 108942.

5. Dj. Bellala, H. Kalla and L. Ourlis, "Optimization of an Underground Water Pipeline

Building using Swarm Intelligence Algorithm PSO" in 7th International Conference on

Metaheuristics and Nature Inspired computing, Marrakech, Morocco. 27-31 October

2018. sciencesconf.org: meta2018.

https://dx.doi.org/10.2991/cas-15.2015.84

vi

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Dr. Bellala Djamel, for his

support and guidance during the course of my doctoral thesis.

Furthermore, I would like to thank my best friend Mr. Bezza Badredddine for his expert

advice in programming Intel processors, and particularly in writing AVX code. Without his

help, insightful comments and feedback, this dissertation would not be possible.

I want to thank my wife and my daughter. I spent many times working throughout my

thesis, and they have always been supportive and understanding.

I want to thank my father, my mother, my brother and my sisters.

Finally, I want to thank my work colleagues at CNL Batna agency.

vii

Abstract

Today, most anti-malware engines are heuristics. They classify objects, data streams and

memory areas as benign or malicious based on their behavior. Most anti-virus manufacturers

recognize that heuristic approach by itself allows to achieve up to 90% efficiency in terms of

detection rate, but consumes more of system resources: Such anti-malware engines, available

as open-source, are extremely inefficient in terms of system load since they extensively use

machine learning algorithms. To reduce such system load, signature-based detection

technology, which allows to filter most of all known malware samples, is strongly

recommended to be used in conjunction with heuristics and cloud-based detection technologies.

In this work, we present a fast signature scanner to detect malware, based on an improved Aho-

Corasick (AC) algorithm for pattern searching, designed so that it can benefit from

vectorization techniques, which add a form of data parallelism to the AC code. It is

implemented with Intel© Advanced Vector Extensions (AVX2) packed instructions.

viii

Résumé

De nos jours, la plupart des moteurs d’analyse de solutions anti-malware sont heuristiques. Ils

classent les objets, les flux de données ainsi que les zones mémoires comme bénins ou

malveillants en fonction de leur comportement. La plupart des fabricants d'antivirus

reconnaissent que l'approche heuristique permet d'atteindre jusqu'à 90% d'efficacité en termes

de taux de détection, mais consomme davantage de ressources systèmes : de tels moteurs anti-

malware, disponibles en open-source, sont extrêmement inefficaces en termes d’utilisation de

ressources système car ils font souvent appel à des algorithmes d'apprentissage automatique.

Pour réduire cette charge système, il est fortement recommandé d'utiliser la détection par

signature statique, qui permet de filtrer à elle seule la majorité des échantillons de programmes

malveillants connus, en conjonction avec les technologies de détection heuristiques et celles

basées sur le cloud. Dans ce travail, nous présentons un scanner de signatures rapide pour la

détection de programmes malveillants, basé sur une version améliorée de l’algorithme Aho-

Corasick pour la recherche de chaînes de caractères (ou motifs), conçue pour pouvoir bénéficier

des techniques de vectorisation qui ajoutent une forme de parallélisme de données au code de

l’algorithme. La solution proposée est implémentée en utilisant le jeu d’instructions d’Intel®

Advanced Vector Extensions (AVX2).

ix

 ملخص

 العناصر، أي أنها تصنف إحتماليةهي محركات برامج فيروسات الاعلام الالي، معظم محركات مكافحة في الوقت الراهن

 حتماليةالا طرقبناءً على سلوكها. ال) خالية من الفيرويسات(أو غير ذلك الذاكرة على أنها ضارةمن وتدفق البيانات ومناطق

هذا من تقليل لل من موارد النظام. برةمعت نسبةولكنها تستهلك ٪ من حيث معدل الكشف،90تصل إلى نسبةبتحقيق تسمح

من عينات كبيرةنسبة بتصفية لوحدها ، والتي تسمحالبصمةالعبء على النظام ، يوصى باستخدام تقنية الكشف القائمة على

ه في هذ . كلاودالقائمة على التقنيات الوالطرق الاحتمالية مع تقنيات الكشف القائمة على بالترابط البرامج الضارة المعروفة،

 نسخة محسنة من استناداً إلى صمم للكشف عن البرامج الضارة، ذو مردودية عالية لبصمات الفيروسات كاشفا، نقدم الدراسة

ا Aho-Corasick (AC)خوارزمية في عن المستعمل الحروفلبحث والمسلسلة من برمجة ، الاستفادة يمكنها بحيث

تعليمات تجسيده باستعمال تمالحل المقترح البيانات. في معالجة توازيال، التي تضيف شكلاً من ”Vectorization“ةتقني

 Advanced Vector Extensions (AVX2) ®Intel .

1

Chapter 1

1 Introduction

Software is everywhere, it runs your car and it controls your cell phone. It is also how you

access your bank financial services, receive electricity and natural gas, and fly from coast to

coast [1]. Our numeric society depends highly on software to handle the sensitive and high-

value data on which people's privacy, livelihood, health, and very lives depend. Its security is

challenged on a daily basis by malware (malicious code such as viruses and worms).

The growth of the Internet connections, rapid multiplication of social networks and the

advent of 4G that offers great opportunities for mobile networks led to an exponential

increase in malware attacks. Every day a hundred million of samples with potentially harmful

executable code are submitted to data security companies for analysis. From the threat

landscape of 2015, Symantec Corporation reports that 430 million new unique pieces of

malware were created during the same year, that is to say an increase of 36% compared to

2014 [2]. In their Malware Statistics Bulletin of 2016, Kaspersky Security Network (KSN),

using data collected from computers running Kaspersky Lab products from 213 countries and

territories worldwide, has detected a total of 4,071,588 unique malicious programs, recognized

261,774,932 unique malicious URLs and blocked attempts to launch malware capable of

stealing money via online banking on 2,871,965 devices [3]. IT security experts believe that

malware threats are their biggest worry for the upcoming years. They are also worried about

the fact that the new malware is too sophisticated for being analyzed and then be out of their

analysis and security capabilities.

Security applications such as anti-malware solutions, intrusion detection/prevention

systems (IDS/IPS), and firewalls are very specialized applications that rely heavily on

signature scanning and require pattern-matching capabilities at very high speeds with less

memory usage. In fact, pattern-matching is a time and processor-intensive operation, and a

bottleneck to the performance of these applications. In malware detection, pattern-matching

2

algorithm is at the heart of the anti-virus1 (AV) scanner, it handles hundred thousand of

patterns and contribute to more than 90% of the total running time of the system.

The basic form of malware detection is signature-based. When a new malware is

identified, a new signature is created and added to the database. The signatures are typically

byte-streams or small hashes that contain enough information specific to particular malware

instances [4]. During the scanning process, the AV engine will compare the file under

inspection to the database of all known malware signatures. If the file matches one signature,

then the file is flagged as being infected and the AV engine knows exactly which procedure

to apply in order to perform disinfection.

This approach is challenged by the increasing number of malware (large database to

handle by the AV engine) and the shortened duration time for the effectiveness of signatures.

It is effective only if the database contains the malware signatures (malware database must be

frequently updated). Its major drawback is its inability to detect new or unknown malware and

zero-day attacks2. The strength of the signature based-detection relies on the assumption that

the behavior of one instance of a malicious software is representative of all instances [5]. This

means, for example in case of a worm-type malware that usually propagate via network

connections, the behavior of all compromised nodes can often be reliably predicted by just

studying one node of the worm. Despite its drawback, this detection technique remains the

most commonly used method of identifying malware and has many advantages which include

its scanning speed that can be further increased by using other detection algorithms or

changing the implementation of the existing ones. John Aycock wrote “With hundreds of

thousands of signatures to look for, searching for them one at a time is infeasible. The biggest

technical challenge in scanning is finding algorithms which are able to look for multiple

patterns efficiently, and which scale well” [6, p. 55].

In the following thesis, we introduce efficient algorithmic designs for multiple pattern-

matching that utilizes modern SIMD instructions introduced in 2013 with Intel processors:

SIMD vectorization of the Aho-Corasick (AC), a widely used algorithm in today's malware

scanners.

1 However, anti-virus software has historically targeted a specific subset of malware, it is used interchangeably

with anti-malware software. Both terms refer to software designed to detect, protect against, and remove

malicious software.

2 Zero-day attacks, or zero-day exploits, refer to attacks on software security weaknesses (vulnerabilities) that

have not been patched or made public.

3

1.1 Motivation for the research

The motivation for the research undertaken in this PhD study is based on two important aspects

for malware detection. First, signature-based detection is still a predominant technique to

protect against malware because byte-stream (basic strings and regex patterns) signatures

remain the only accurate way of detecting malicious code, which are not expected to disappear

anytime soon according to AV compagnies. If signature-based detection does not guarantee

perfection, it guarantees the protection from the most widespread threats. Second, the process

of matching this type of signatures is usually the slowest, compared to matching other

signature types such as MD5 hashes. Therefore, the focus is on byte-stream signatures since

they are the most time-consuming operation of the scanning process (more than 90%) in order

to reduce the overall scanning time of the AV software.

1.2 Thesis scope

This thesis is part of the optimization of malware detection. In particular, the

studies and research conducted here aim to improve the performance of the AV engine when

matching objects against malware byte-stream signatures stored in the program’s malware

definition database (improving the scanning process). To this end, we have analyzed the

problem of malware detection using signature scanning and its reliance on the AC algorithm,

a multi-pattern matching algorithm used in AV software like ClamAV and in many IDS like

Snort. The proposed solution benefits from features implemented in modern processors that

provide direct support for vectorization, a hardware optimization technique synonymous with

early vector supercomputers, notably the various Cray platforms (like the Cray-1, 1975).

Developers typically relay on the process of revising the scalar-oriented code loops, often by

taking advantage of the compiler’s auto vectorization, to generate vectorized objects utilizing

the AVX/SIMD instructions.

1.3 Thesis outline

Chapter 2 presents an overview of the world of malware. It provides a brief historical of

malware demonstrating how it evolved side-by-side with software technology and this co-

evolution is expected to continue. It outlines malware propagation vectors, or methods to

spread malware, and concealment strategies deployed by malware authors from a simple

encryption to modern metamorphism. This chapter presents malware types or classification

4

according to John Aycock, Adelman, Microsoft and Kaspersky Labs. It also provides

information on how malware is analyzed and detected.

Chapter 3 considers the pattern-matching problem and aims to give a comprehensive

description on a subject and the application fields where it is applied. A complete review of

some popular exact pattern-matching algorithms such as the Boyer-Moore and the AC

algorithms are provided with their implementation.

Chapter 4 provides the bulk of our work; it provides a basic overview of the concepts behind

parallel implementation of the AC algorithm using Intel® SIMD technology (AVX2), and

gives a step-by-step guide to the vectorization process of the algorithm.

Chapter 5 presents a direct application of a vectorized AC algorithm: an implementation of a

fast signature scanner that uses the optimized AC algorithm to detect malware.

Chapter 6 summarizes the thesis, and highlight directions for future work.

5

Chapter 2

2 Malware Overview

Most security threats start from the web, an effective place that provides great opportunities

for fraudulent or abusive behavior and illegal access to business and sensitive client data. A

malicious web page exploits a vulnerability in a program to gain arbitrary code execution,

which allows to downloading and installing a malicious program, or malware, that infects the

host.

2.1 A Brief History of Malware

A brief incursion in the history of malware shows that the idea of a computer virus, or a self-

replicating string of code, extends back to 1949, when early computer scientist John Von

Neumann wrote the “Theory and Organization of Complicated Automata”, a paper where he

postulated the potential for a self-reproducing automata, or how a computer program could

reproduce itself. In the 1950s, Bell Labs employees brought Von Neumann's idea to life when

they created “Core Wars”, a game where programs competed for control of the system [7].

The earliest viruses began to appear in the early 1970s. The first known computer virus

was the “Creeper Worm” written for the Tenex operating system by Bob Thomas in 1971 at

BBN Technologies. Thomas wanted to experiment a self-replicating program, he showed that

it was possible for a computer program to move across a network but disappointed because

Creeper didn’t install instances of itself on several connected computer targets: Creeper gained

access independently through a modem to the ARPANET3 and copied itself to a remote system

(Tenex terminal being infected), without being detected, where it displayed the message: “I’M

THE CREEPER : CATCH ME IF YOU CAN”, but then stopped, found another Tenex system,

opened a new connection and removed itself from the previous one as it propagated. Shortly

3 ARPANET or Advanced Research Projects Agency Network is a US military packet-switching network with

distributed control and one of the first networks to implement the TCP/IP protocol suite. Both technologies

became the technical foundation of the Internet.

http://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
http://history-computer.com/Internet/Maturing/Thomas.html

6

after, Thomas’ colleague, Ray Thomlinson – the inventor of e-mail, developed an enhanced

version of Creeper that not only moved through the network, but had the ability to replicate

itself. To complement his work, he created the Reaper program in 1973, which moved through

the network and removed any copies of Creeper it found. Thomlinson did not realize, but he

had created the very first piece of AV software. Although Creeper has not achieved all its

goals and Reaper was a very rudimentary AV, both marked milestones in the history of

computer virology [8].

When did the term “computer virus” arise? In November 1983, Fred Cohen, a graduate

student from the University of Southern California demonstrated a computer virus during a

security seminar at Lehigh University in Pennsylvania when inserting a floppy disk,

containing his code written for a parasitic application that seized control of computer

operations, into a VAX11/750 mainframe computer. The attendees noted how code hidden in

a Unix program installed itself and took control of the system in a few minutes, bypassing all

security mechanisms current at that time, replicating and spreading to other connected

machines in the network. In 1984, Cohen published the results of his work in a paper

“Computer Viruses – Theory and Experiments” [9] that defines a major computer security

problem called a virus. It was the first paper to explicitly call a self-reproducing program a

“virus”, a term introduced by Cohen’s academic adviser Prof. Leonard Adelman - the co-

inventors of the RSA encryption [10].

In the early days of the personal computer (PC), before networks and internet connectivity

became widespread, computer viruses spread on removable media and much often by infected

floppy disks. Then a virus evolved to a computer worm, a standalone malware that spread

through networks, and unlike a computer virus, it does not need a host program to propagate.

Nowadays, malicious software comes in many forms including rootkits, Trojans, bots,

ransomwares, etc., and can spread through email attachments, scam links on corrupted web

pages, Internet file downloads and social engineering. Since malware inception, one thing has

remained constant: it’s continues to grow in frequency and sophistication, and still one of the

most destructive menace affecting small and medium businesses (SMBs), large enterprises

and government agencies. According to Cybersecurity Ventures, 91% of cyberattacks begin

with spear phishing email, which are commonly used to infect businesses with ransomware.

It predicts there will be ransomware attacks on businesses every 14 seconds with the global

damage costs are to reach $11.5 billion annually by 2019 [11].

https://en.wikipedia.org/wiki/Ray_Tomlinson
https://www.digitaltrends.com/computing/best-free-antivirus-software/
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Floppy_disk
https://www.prnewswire.com/news-releases/cybercrime-damages-are-predicted-to-cost-the-world-6-trillion-annually-by-2021-300540158.html
https://blog.knowbe4.com/bid/252429/91-of-cyberattacks-begin-with-spear-phishing-email
https://blog.knowbe4.com/bid/252429/91-of-cyberattacks-begin-with-spear-phishing-email

7

• History of Malware — From an Academic Beginning to the Morris Worm, and the

Viral Era (1970 – 1999)

Early malware was simple file infector or boot sector, often spreading offline through the

sharing of disks. However, the advent of new communication mediums gave rise to new

opportunities for malware authors to cause trouble through sending their malicious creations

by taking advantage of networks. In the following, a non-exhaustive list of the most significant

early malware before the year 2000.

▪ 1971 – Creeper: An experimental self-replicating program designed to test how a

program might move across a network between connected computers.

▪ 1974 – Rabbit: A self-replicating program written in Visual Basic Script (VBS) that

made multiple copies of itself on a single computer until it crashes the system. It was

named so for the speed at which it replicated [12].

▪ 1982 – Elk Cloner: Written by Richard Skrenta, a 15-year-old student from

Pittsburgh, Elk Cloner is one of the earliest widespread, self-replicating

viruses designed to affect Apple computers through a floppy disk. The Elk

Cloner virus, described by its author as "some dumb little practical joke”, was the first

virus that affected a machine during its booting process. Every 50th time that the

machine would boot up, Elk Cloner displayed a friendly little poem on the infected

system: “It will get on all your disks; It will infiltrate your chips; Yes, it’s Cloner…”.

No serious damage was known to have been caused by the virus, but it is considered

being responsible for the first large-scale computer virus outbreak in history [13].

▪ 1986 – Brain Virus: Generally considered as the first IBM PC compatible boot-sector

virus to infect MS-DOS computers, and one of the first stealth virus since it redirected

the user to an early stored boot sector each time a program tried to access it. Its origin

stems from two brothers, Basit Farooq Alvi and Amjad Farooq Alvi, from Lahore,

Pakistan. They created the Brain virus to test flaws in their company’s software: they

just wanted to prevent their customers of making illegal copies of the software they

had developed. The brothers claimed that their creation was intended to be harmless.

They created the virus only for illegal copies of the software and put their contact

details such as their names, phone numbers, and their shop’s address in the virus code,

so that users whose computers were infected (running a pirated copies of their

software) could contact them for inoculation. Despite the authors’ claims, many users

around the world reported that the virus not simply renaming the computer floppy drive

https://www.lifewire.com/what-is-a-boot-sector-2625815
https://en.wikipedia.org/wiki/IBM_PC_compatible

8

and displaying a copyright message about the pirated software but it wiped data and

caused their drives to become extremely slow and not responding. In the following the

message displayed by the Brain virus on infected computers: “Welcome to the

Dungeon © 1986 Brain & Amjads (pvt). BRAIN COMPUTER SERVICES 730

IZANAMI BLOCK ALLAMA IQBAL TOWN LAHORE-PAKISTAN PHONE:

430791,443248,280530. Beware of this VIRUS.... Contact us for vaccination...” [14].

▪ 1988 — Morris Worm: Created by Cornell student Robert Tappan Morris aged 22

when trying to gauge the size of the Internet. To do so, he wrote a program designed

to propagate across networks, infiltrating DEC VAX and Sun terminals running BSD

UNIX connected to the Internet by exploiting three weaknesses:

1. Vulnerability in the debug mode of Unix’s famous “Sendmail” program;

2. A buffer overrun hole in the “Finger” daemon protocol, a software that helped

to find logged on users in the system;

3. REXEC/RSH (Unix programs that enable the user to run shell commands on a

remote computer) network login set up without passwords.

The worm corrupted thousands of Unix-based systems (more than 6000 University,

military, and research center computers) and bring the network to its knees the first

day released: the worm penetrated and crippled 10% of the Internet, the rest of the

networks slowed down. Even though this was not the first worm, it was considered the

first major attack, which was a wake-up call for Internet security engineers, to consider

the risk of software bugs and start research and development for network security, and

led to the creation of the Computer Emergency Response Team (CERT) for issues that

might affect the Internet as a whole [15, 16].

▪ 1991 — Michelangelo Virus: A variant of Stoned, a family of boot sector viruses

dating from 1988 that move the original master boot record (MBR) of the hard drives

and the boot sector of floppy disks. Named so because it was designed to infect DOS

systems on March 6th, the birthday of the famed Renaissance artist Michelangelo. On

that date, the virus would trigger its payload: it would overwrite the first one hundred

sectors of the hard disk or any diskette present, with random characters. In addition, it

does not check if the MBR has already been infected by the same or other boot viruses,

and moves the previous virus to the original MBR location, thus making recovery of

the MBR impossible, which resulted in loss of data. John McAfee, an information

security pioneer, predicted that the virus could have infected more than 5 million

machines, which was important that days. On March 6, 1992, the impact of the virus

https://en.wikipedia.org/wiki/Robert_Tappan_Morris
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://cert.org/about/
https://en.wikipedia.org/wiki/Hard_disk

9

differed from what the world’s media was expected: only a few thousand machines

were infected [17].

▪ 1999 — Melissa Virus: The first mass-mailing virus also known as Kwyjibo (or

Simpsons, the popular television series), written in Visual Basic (VB) by David L.

Smith from New Jersey. The virus struck users of Microsoft word-processing programs

Word 97 and Word 2000 by inserting a macro module named Melissa, then spreading

as an email attachment using Microsoft Outlook, noted with the subject "Important

Message from [the name of someone]" and body text that reads "Here is that document

you asked for...don't show anyone else". Melissa virus started as an infected file

“list.doc” posted on “alt.sex” newsgroup, claiming to be a list of usernames and

passwords for 80 obscene websites that require memberships. Once the file opened,

this causes the Melissa macro to be executed (when macros were enabled). The VB

macro copies the virus-infected file into the “normal.dot” file used by Microsoft Word

for custom settings. It inserts (HKEY_CURRENT_USER Software Microsoft Office

"Melissa?"="...by Kwyjibo") entry in the Windows registry as a signature to avoid

reinfection, and finally opens Microsoft Outlook and mails itself to the first 50

addresses in the Outlook address book. If Internet access or Outlook are not available,

it would still infect other Word documents. Melissa was mostly innocuous and did not

cause too much damage to infected user’s PC. However, its mechanisms caused Denial

of Service (DOS) attacks, which brought down the servers as they became overloaded

with messages created by the virus (organizations’ servers that relied on Microsoft

Outlook as their email client) [18].

• History of Malware — Use of Toolkits to Create Malware and Astonishing Rates

of Infection (2000 – 2009)

Between the years 2000 and 2009, Internet and email worms made headlines around the world.

They grew significantly in number and in how fast they spread. At the same time, we witnessed

the appearance of malware toolkits, crimeware kits targeting websites, and SQL injection

attacks. Here’s a summary of the most notable malware released during this period.

▪ 2000 – ILOVEYOU Worm: Developed in VBS by two young programmers Reonel

Ramones and Onel de Guzman from Philippines. The VBS worm, also known as Love

Letter or Love Bug, is a destructive self-replicating computer worm that hit an

estimated 50 million Windows PCs on May 2000. It started spreading via MS Outlook

as an email message masqueraded in a love letter with the subject line "ILOVE YOU"

http://vmyths.com/column/2/2002/2/23/
https://en.wikipedia.org/wiki/Philippines
https://en.wikipedia.org/wiki/Microsoft_Windows

10

and the attachment "LOVE-LETTER-FOR-YOU.txt.vbs". It was the first successful

worm that propagate using social engineering. The “.vbs”, as it is an extension for a

file type that is known by the OS, was often hidden by default on Windows versions

of the time. The worm spread worldwide, inflicting $15 billion in damages, corrupting

different types of files with media extensions (such as images, documents and mp3

files), and shutting down computer systems of different corporations, government

offices including the Pentagon and the CIA, Wall Street firms, etc. According to

security expert Graham Cluley, there was nothing particularly smart about the worm’

code that explained why it had spread around the world so quickly, the reason was that

the worm responded to a universal need: the desired to be loved [19].

▪ 2001 – Anna Kournikova Worm: On February 11 of the year 2001, Jan de Wit, a 20-

year-old Dutch student who called himself “OnTheFly”, unleashed the Anna

Kournikova worm by disseminating it onto the newsgroup and it quickly began to

spared. It only taken de Wit a few hours to create this malicious program using a Visual

Basic Worm Generator toolkit developed by an 18 years old Argentinean programmer

called [K] Alamar. The Anna Kournikova worm did not corrupted data on the infected

machines but is very similar to the ILOVEYOU worm, in the way it is a VBS worm

that propagated using social engineering -choosing a very attractive tennis player Anna

Kournikova “the bait” as a name to the email attachment, and causing troubles in email

servers around the world [20].

▪ 2003 – SQL Slammer Worm: Sometimes called Sapphire, was the fastest computer

spreading worms of all time, and surprisingly no worm has beat it since. It spread so

widely and so quickly that human response was ineffective. As it began propagating

throughout the Internet, the worm infected more than 90% of vulnerable hosts (about

75,000) within 10 minutes, slowing down Internet traffic, flooding networks

worldwide, cancelling airline flights, interfering with election in Canada, and causing

significant disruption to financial and government institutions. The worm exploited a

buffer overflow vulnerability in Microsoft's SQL Server and Microsoft SQL Server

Desktop Engine (MSDE) 2000. Although the patch had been released by Microsoft six

months earlier, many organizations had not yet applied it. The worm spread as an in-

memory process (only 376 bytes in size), and thus fitting inside a single packet, which

allowed it to enjoy a rapid propagation from infected servers to different routers

worldwide. These routers upon infected started sending the worm to random IP

addresses, and sometimes crashed under the burden of extremely high traffic to handle.

https://en.wikipedia.org/wiki/Dutch_people
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/MSDE

11

This caused a denial of service (DOS) attacks condition on targets, which resulted in

slowing down the networks including the Internet [21].

▪ 2004 – Cabir Worm: Although this worm had no harmful effects, it is noteworthy

because it is the first malware designed to infect mobile phones, and a wake-up call to

demonstrate vulnerabilities in technology. The worm affected phones running the

Symbian OS that support Bluetooth technology (Nokia's Series 60 smartphone

platform). The worm arrived in a phone messaging inbox as a telephone game file

"caribe.sis", and when the user clicked the file and chose to install it, the worm became

activated (and each time the phone is turned on). When this happened, it would display

“Caribe” on the phone screen, and started looking for new phones to infect over

wireless Bluetooth signals [22].

▪ 2005 – Sony BMG Rootkit: The Sony BMG scandal was unveiled on October 2005,

when researcher Mark Russinovich posted on his blog detailed description of the

rootkit software secretly installed by the company on millions of its music CDs, as part

of its deceptive and illegal copy-protection measures. The rootkit, which often hides

its existence and the existence of other malicious software from security applications

(such as AV software), creates vulnerabilities on compromised machines, thus making

them susceptible to infection by other worms and viruses. It also prevents other

software from playing and/or burning copies of the CDs [23].

▪ 2007 – Zeus Trojan horse: Often called Zbot, a most successful pieces of botnet

designed for cyber thieves. First detected in July 2007 when it was used to steal online

information from the U.S. Department of Transportation, and became widespread in

March 2009. Originally, the malware only targeted machines running Microsoft

Windows, but some newer versions of the Trojan have been found on some mobile

devices running Symbian, BlackBerry or Android systems. While the Trojan can do a

number of malicious and nasty things on infected machines, it mainly created a botnet,

and then acted as a financial services Trojan designed to steal banking credentials by

man-in-the-browser keystroke logging or form grabbing. Zeus was mainly spread

through spam messages that often came in the form of email, and drive-by downloads

via corrupted legitimate websites. The malware was used worldwide by cyber

criminals. By 2010, it was estimated that the Trojan accounted for 44% of the banking

malware infections, and caused damages worth US$100 million since its inception.

The most famous case involved the arrest of more than 100 computer hackers by the

https://en.wikipedia.org/wiki/Bluetooth
https://usa.kaspersky.com/resource-center/threats/botnet-attacks
https://usa.kaspersky.com/resource-center/threats/data-theft
https://en.wikipedia.org/wiki/Man-in-the-browser
https://en.wikipedia.org/wiki/Keystroke_logging
https://en.wikipedia.org/wiki/Form_grabbing
https://en.wikipedia.org/wiki/Drive-by_download

12

FBI for bank fraud in Eastern Europe after stealing $ 70 million using the Trojan [24,

25].

▪ 2008 – Koobface, Torpig & Conficker malware

July 31 – Koobface: A multi-platform worm computer that targeted Microsoft

Windows, Mac OS X, and Linux systems. It propagated primarily through social

networking websites (like Bebo, Facebook, Skype, Netlog, Yahoo Messenger,

MySpace, Twitte, etc), and uses compromised machines to build a peer-to-peer botnet.

The worm much often sent malicious video links via social networking sites, which

redirected users to false YouTube pages hosted on compromised web servers. Koobface

allows hackers to track and record sensitive information about compromised users, such

as logins and passwords entered on particular websites, and even find out sensitive

financial data such as credit card numbers and banking information [26].

March 3 – Torpig: Torpig, also called Anserin or Sinowal, is a type of botnet that

spread through Microsoft Windows systems infected by the Mebroot rootkit by a

variety of Trojan horses. It exploited vulnerabilities found in older versions of web

browsers and some popular software such as Java, Adobe Reader and Flash, for the

purpose of stealing sensitive data including emails, Windows passwords, FTP

credentials, POP and SMTP accounts. Once the machine is infected, it joins the network

of zombies for the botnet, and thus allowing attackers full access to the system. One of

the key points of interest about the Trojans used is that they can exist for so long (more

than a year) and quietly collect information from the compromised machine without the

victim's knowledge [27]. Trojans’ creators periodically release new variants to ensure

they stay undetectable and maintain their uninterrupted grip on compromised machines.

The use of the Mebroot – a master boot record (MBR) rootkit, which is a new breed of

stealthy malware, replaces the compromised system's MBR upon infection, and keeps

the amount of system changes to a minimum. This makes it very difficult to detect from

within the infected system by AV software or other protection means [28]. It is quite

surprising that the Mebroot write to the MBR from within Windows OS then executes

itself during the OS loading “starting process” without the need for any registry or file

changes [28]. By November 2008, the Torpig has compromised more than 270,000

online bank accounts and 240,000 credit and debit cards from financial institutions

worldwide [27] . In 2009, a team of researchers at UC Santa Barbara took control of the

Torpig botnet for ten days. During that time, they observed more than 180 000 infected

machines (number of actual bots), collected over 70 GB of stolen data and redirected

https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Skype
https://en.wikipedia.org/wiki/Yahoo_Messenger
https://en.wikipedia.org/wiki/Botnet
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mebroot
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/Zombie_(computer_science)
https://en.wikipedia.org/wiki/Credit_card
https://en.wikipedia.org/wiki/Debit_card

13

1.2 million IPs to their private Command & Control (C&C) server. Within just ten days,

the Torpig was able to steal 8,310 login accounts at 410 different institutions, and 1,660

unique credit and debit card numbers worldwide, including cards from Visa (1,056),

MasterCard (447), American Express (81), Maestro (36), and Discover (24) [29].

 November 21 – Conficker: Conficker worm, also known as Downadup or Kido,

targeted Windows PCs worldwide. It could have originated from either Ukraine or

China, and gained a great media attention expecting the worm to deliver massively

destructing payload by April 1, 2009. While that never happened “false alarm”, the

worm quietly turned more than 10 million PCs into servers of e-mail spam (through the

installation of another virus “Waledac”), and made them joining a network of zombies

that received commands from a remote server (a botnet) [30].

• History of Malware — State-sponsored Cyber Warfare, Increasingly Pervasive and

Profitable (2010 – Present time)

Between 2010 and the present time, malicious programs gained in sophistication and

complexity with dramatic growth in ransomware and other malicious schemes. Now they have

the ability to infiltrate factories, affect industrial control systems and become more profitable.

In June 17, a state sponsors malware “Stuxnet”, appeared. It was the first discovered malware

targeting military systems. CryptoLocker, CryptoWall and CryptoDefense ransomwares,

using cryptoviral extortion techniques, enter the scene by the end of 2013. Recently, other

more elaborated malware created by well-funded development teams, upped the game

dramatically such as the WannaCry ransomware and the Petya malware. These are some

notable varieties of malware that have had a major impact between 2010 and today.

▪ 2010 – Stuxnet Worm: A most complex and sophisticated malware ever created,

designed specifically to target industrial controllers made by Siemens, used in Iran’s

uranium enrichment equipment. The worm exploited zero-day vulnerabilities4,

rootkits, AV evasion techniques, network infection routines, peer-to-peer updates, a

C&C interface and included the ability to infect hardware “physical payload” as well

as software. Kaspersky Lab's R. Schouwenberg estimated that it took two to three years

for a team of ten developers to create the worm in its final form [31]. It is widely

acknowledged that the worm was created by U.S. and Israeli intelligence agencies. The

4 A zero-day vulnerability is a software issue with no known patches. Until a fix is available, cybercriminals

could exploit it.

https://en.wikipedia.org/wiki/Conficker
https://www.theguardian.com/technology/windows
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Petya_(malware)

14

classified worm development program has been codenamed "Operation Olympic

Games" [31]. Stuxnet targeted only programmable logic controllers (PLCs), used to

control and automate machine processes for separating nuclear material, including the

rotational speed of the centrifuges that powers nuclear weapons and reactors. First, it

scans networks looking for computers running the Microsoft Windows OS, then

seeking out Siemens Step7 software that is used to reprogram the PLC devices. Once

finding a PLC computer, the malware updates its code over the Internet and begins its

damage by sending instructions to the electro-mechanical equipment the computer

controlled. At the same time, false feedbacks are sent to the main controller in a way

that anyone monitoring the equipment would have had no indication of a problem until

the equipment crashes [32]. The Stuxnet compromised over 200,000 machines mainly

in Iran, and severely ruined its nuclear installations by destroying 10% (about 1000)

centrifuges between November 2009 and January 2010 [32].

▪ 2013 – CryptoLocker: Is a Trojan ransomware targeting Microsoft Windows. It

encrypts files on compromised systems, using RSA encryption with the private key

stored only on the malware's control servers, and then asks for a ransom to recover the

files back. While the Trojan itself is not difficult to remove, the affected files remain

encrypted until the victim makes payment. CryptoLocker uses the Gameover ZeuS

botnet and malicious email attachments to spread across the Internet seeking out

Windows PCs, and then encrypts files stored on local or mounted network drives.

Between September 2013 and May 2014, CryptoLocker affected approximately

500,000 victims worldwide, and there were around $30 million in ransom payments

[33].

▪ 2015 – BlackEnergy: Towards the end of the year 2015, about half of the dwellings

in the Ivano-Frankivsk region of Ukraine (about 1.4 million inhabitants) were left

without electricity for few hours. According to the Ukrainian news media TSN, the

cause of the blackout is a hacker attack, which was not an isolated case since other

Ukrainian energy companies were also targeted by cybercriminals at the same time,

using the BlackEnergy backdoor to plant a KillDisk module onto the compromised

computers that would render them unbootable [34]. According to Kaspersky Lab

researchers, the infection vector used in these attacks was Microsoft Word documents

that spread as an attachment in a spear-phishing emails. Upon opening the document,

a dialog box appears to inform the user that macros must be enabled to display its

content. Activating the macros triggers the BlackEnergy malware infection [35]. The

https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Laboratory_centrifuge
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Siemens

15

Ukrainian security company published two screenshots of emails used to spoof the

sender address to appear to be belonging to the Ukrainian parliament. This is a good

example demonstrating the use of social engineering instead of exploiting software

vulnerabilities. If victims are trapped, they end up infected with malware [34].

▪ 2017 – WannaCry & NotPetya ransomwares

May – WannaCry ransom: Also known as Wanna Decryptor, is a bundle of

malicious software including a worm, a backdoor and ransomware. It targets Windows

PCs by encrypting data and refusing access to the infected systems until receiving the

ransom payments (300 to 600 Dollars in Bitcoin cryptocurrency). The malware

propagated via “EternalBlue” exploit5, which takes advantage of a vulnerability in the

SMB protocol6, first uncovered by the USA's National Security Agency (NSA), and

was patched by Microsoft at the time to close the exploit, but older versions of

Windows and those left unpatched were left open to attacks. The WannaCry holds

down systems through email attachment or as a download masqueraded in something

harmless that many users end up clicking on it. Within 24 hours, WannaCry had

infected more than 230,000 computers, and brought down major computer systems

over 150 countries. It affected hospitals, financial institutions, telecommunication

companies, and many other industries. The U.S. Government, under Trump

administration, officially attributes the WannaCry cyberattack to North Korea [36].

June – NotPetya ransomware: NotPetya an evolution of the Petya malware, a family

of encrypting ransomware discovered in 2016 that propagated via infected email

attachments, targeting Microsoft Windows systems and infecting the master boot

record (MBR) to encrypt a hard drive’s file system, and therefore preventing the

system from booting unless the victim makes a payment. In June 2017, NotPetya (the

name given by Kaspersky Lab to this Petya variant) was used in global cyberattack,

targeting Ukraine and affecting many critical infrastructure of the country. It

propagated by taking advantage of the “EternalBlue” exploit, which was earlier used

by the WannaCry ransomware. In fact, whether the ransom is paid or not, the system

5 An exploit is a piece of software, a chunk of data, or a sequence of commands designed to take advantage of a

flaw or vulnerability in a computer system, typically for malicious purposes such as installing malware, usually

posted by hacker groups.

6 Server Message Block (SMB) is the transport protocol used by Windows machines for a wide variety of

purposes such as file sharing, printer sharing and access to remote Windows services, which operates over TCP

ports 139 and 445.

https://cys-centrum.com/ru/news/uisgcon11_2015#pic-5
https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/E-mail_attachment
https://en.wikipedia.org/wiki/E-mail_attachment
https://en.wikipedia.org/wiki/2017_cyberattacks_on_Ukraine
https://en.wikipedia.org/wiki/Ukraine
https://en.wikipedia.org/wiki/EternalBlue
https://en.wikipedia.org/wiki/WannaCry

16

will never be decrypted since this variant is modified so that it is unable to recover its

own changes thus leaving the computer completely unusable [37].

• History of Malware — Is This Just the Beginning?

Today malware gained much of its initial footing, every device with a microprocessor is at

risk. Cybercriminals have successfully deployed malware to infect more devices from

computers to just about everything electronic such as smartphones, ATM & vending

machines, security cameras, nuclear plants, etc. Recently, a new kind of threat is discovered:

a “pre-installed malware” has been found on more than 7.4 million Android devices. Google

security researcher Maddie Stone explained how pre-installed applications are exploited to

execute malware without drawing the user's attention. This security vulnerability targeted

Android’s open-source operating system. And since these are pre-installed applications, they

cannot be detected by AV software, or removed from these devices, they can only be

deactivated. This type of malicious software is harder to spot and more difficult to get rid of.

Always according to Stone "If malware or security issues can make its way as a pre-installed

application, then the damage it can do is greater, and that's why we need so much reviewing,

auditing and analysis" [38].

2.2 Malware definition

Malware, or malicious software, is a general term for various types of software designed to

infiltrate and compromise a computing device functions, bypass access controls and steal

sensitive data. The term “virus”, introduced in Fred Cohen’s work in 1984 as “a program that

can infect other programs by modifying them to include a possibly evolved copy of itself” [9]

and commonly used to designate a more general class of malicious programs, is misleading

since other classes of malicious programs such as Trojans or bots have nothing to do with

viruses [39]. In its special publication of July 2013, the National Institute of Standards and

Technology (NIST) defines malware as “a program that is covertly inserted into another

program with the intent to destroy data, run destructive or intrusive programs, or otherwise

compromise the confidentiality, integrity, or availability of the victim’s data, applications, or

operating system.” [40].

In technical terms, a malware consists up to six main parts, although it is not necessary to

have all these parts in place at the same time [41]:

https://en.wikipedia.org/wiki/Mobile_malware
https://www.csoonline.com/article/2985858/cyber-attacks-espionage/new-malware-program-infects-atms-dispenses-cash-on-command.html
https://www.csoonline.com/article/2985858/cyber-attacks-espionage/new-malware-program-infects-atms-dispenses-cash-on-command.html
https://techcrunch.com/2016/11/18/this-security-camera-was-infected-by-malware-in-98-seconds-after-it-was-plugged-in/
https://www.reuters.com/article/us-nuclearpower-cyber-germany/german-nuclear-plant-infected-with-computer-viruses-operator-says-idUSKCN0XN2OS

17

1. Insertion or infection mechanism enables a malware to insert itself on the victim’s

target and mostly avoids multiple infections;

2. Avoidance deploys methods to evade detection;

3. Eradication uses methods, which allow a malware to remove itself after the payload

has been executed;

4. Replication mechanism gives a malware the ability to create instances of itself and to

propagate to other targets;

5. Trigger is a specified event that initiates the payload execution;

6. Payload is the portion of a malware’ program that creates an imminent threat of

damage to the target victim.

2.3 Malware propagation vectors

Malware authors use a variety of methods, often known as propagation vectors, to spread their

malicious creations. Instant messaging, email attachments and drive-by downloads are the

most used vectors for spreading malware through social engineering and scam techniques. Ad-

based malware, software cracks, video codecs and Microsoft products activators (made

available as a free download) are also used by hackers for this purpose. Malware no longer

relies on a user action (or a negligent user's inaction) to spread. Some popular applications

such as Java & Visual Basic scripts, ActiveX, and Java applets make it possible for it to

propagate without the user interaction. Persistent Internet connections provide great

opportunities for attackers and malware authors to exploit software vulnerabilities that are not

yet patched (before the software vendor publishes a security update to address them). Any

other support, medium or mechanism used for distributing or sharing malicious software is

considered as a vector for malware propagation. In what follows, we give details of some of

the most widely used propagation vectors.

• Email attachments: Email attacks exploit vulnerabilities in the email software or in its

libraries (usually used to display images, PDF or Word files). When the email software

downloads a message and displays it, an embedded manipulated object can exploit these

vulnerabilities and causes the malicious code to be executed. Across different threat

vectors, email attachment is the most frequently used delivery mechanism to spread

malware, no other distribution vector comes close: not compromised websites or network

file sharing technologies, nor malvertising campaigns. According to Symantec Internet

Security Threat Report of 2017, 74% of compromised emails distributed their payload

https://en.wikipedia.org/wiki/Vector_(malware)
https://www.bleepingcomputer.com/news/security/new-rumba-stop-ransomware-being-installed-by-software-cracks/

18

via email attachments [42]. Hackers use sophisticated programs that are typically able to

retrieve weak email passwords, allowing them to access thousands of email accounts.

This means anyone could potentially receive compromised emails from friends, banks

(claiming there is something wrong with the account), or big-name corporations (also

known as phishing emails) with dangerous attachments and might not hesitate to open

them because he trusts them. Fraudulent FedEx and UPS emails are very common [43].

• Drive-by downloads: The malware deliver its payload simply by opening a malicious

email message, clicking on a deceptive pop-up window or visiting a compromised

website without the knowledge of the user [44]. In the latter case, viewing is enough to

cause the infection without the need to click anywhere on the malicious web pages of a

compromised website. In drive-by download attack, malware authors exploit

vulnerabilities within a web browser or its plugins7 (now mostly deprecated), using

scripting languages8 (JavaScript) to inject their malicious code [45]. Outdated and

obsolete software, such as old browsers or old operating systems, can significantly

increase the risk of infection via drive-by downloads vector. By now, drive-by

downloads may include more sophisticated attacks such as advanced ransomware

packages that spread quickly over a network once downloaded [46]. A term drive-by

install, which refers to installation rather than download, is sometimes used instead.

• Phishing: A form of social engineering9 attacks that use email or malicious web sites and

solicit personal data, often financial, from a person’s computer to steal their money. The

problem with phishing attacks is that humans trust email as a platform, and that’s their

first downfall [47]. The most known phishing scenario is as follows: a user is suddenly

alerted by email from his bank, often suggesting that there is something wrong with his

account, and asking him to confirm his login and password. When he clicks the link in

the email, he is taken to a compromised webpage that resembles, more or less, to that of

7 A plugin or addon is a software component that adds a specific feature or improves a specific functionality of

an existing program. Two web plugins examples are the Adobe Acrobat Reader that enables the web browser to

read .PDF files and the Adobe Flash Player for playing videos.

8 A scripting language is a programming language for a special run-time environment used to automate

the execution of certain tasks, which alternatively could be executed by a human operator. Scripting languages

are also used to extract information from data sets. They are less code intensive compared to traditional

programming languages.

9 Social engineering is the term used for a broad range of malicious activities accomplished through human

interactions (attacks that exploit weaknesses of humans rather than holes found in software). It uses psychological

manipulation to trick users into making security mistakes or divulging confidential information.

http://www.howardtechadvisors.com/blog/tech-tips-and-tricks/importance-resetting-passwords/
http://www.howardtechadvisors.com/blog/tech-news/protect-phishing-scams-tips/
https://en.wikipedia.org/wiki/Deprecation
https://en.wikipedia.org/wiki/Software_component
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Adobe_Flash_Player
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Run-time_environment
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Confidentiality

19

the actual bank — but actually designed to steal his credentials. When a user responds

with the requested information, after entering his login and password on the malicious

webpage, attackers can use them to gain access to his account [48]. Of all attack vectors,

phishing attacks remain the most commonly exploited, they accounted for more than

90% of all successful cyberattacks [49]. Phishing attempts targeting specific individuals

or companies are known as spear phishing, whereby attackers tailor their messages based

on the information gathered about their target to increase their odds of success [47].

The most illustrative example is the case of a Russian cyber espionage Threat Group-

4127 targeting email accounts linked to Hillary Clinton's 2016 presidential campaign

and the U.S. Democrat National Committee, reported under the name Fancy Bear.

According to the report analysis, published in June 2016 by SecureWorks® Counter

Threat Unit™ (CTU) researchers tracking the activities of the group, the attack used a

spear phishing campaign targeting more than 1800 Google accounts. In particular, the

group implemented the accounts-google.com domain, and used a Bitly URL-shortening

service to hide the location of a spoofed Google login webpage. Users who clicked the

link were directed to a compromised Google account login webpage. That’s how the

group could recover usernames and logins entered to access the contents of the

associated Gmail account [50].

• Ad-Based malware10: Online advertisements, or ads, embedding malware owned by

hackers and cybercriminals, usually distributed via popular trusted websites that make

users potentially vulnerable. In 2016, millions of people could get infected just by

visiting some large and established websites such as The New York Times, MSN.COM

(owned by Microsoft) and some popular gossip sites [51]. Malicious ads can also be

directly embedded into trusted applications. Malware is injected onto the user’s machine

by clicking or sometimes by just viewing a malicious ad. When this happened, victims

are often redirected to an exploit kit11 landing page on a compromised server. Once the

victim’s machine successfully connected to the server, the exploit kit executes to

determine software vulnerabilities that could be used by the attacker to upload and

execute malware (Experts call these attack vectors “drive-by attacks”), and could also

10 Not to confuse with Adware (advertising-supported software), which is a software that automatically

displays or downloads advertising material such as banners or pop-ups when a user is online.

11 An exploit kit is a type of malware that runs on web servers with the purpose of identifying software

vulnerabilities in a client’s machine. Angler kit surfaced in 2013 is an example of a cyber criminals’ favorite

exploit kit responsible for 80% of drive-by attacks that time.

http://www.prweb.com/releases/2017/09/prweb14742215.htm
http://www.prweb.com/releases/2017/09/prweb14742215.htm
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Cyber_spying
https://en.wikipedia.org/wiki/Hillary_Clinton
https://www.tylercybersecurity.com/blog/exploit-kit-101-what-you-need-to-know

20

perform additional malicious actions such as stealing data, locking or holding the

machine ransom, or adding it to a botnet. All this happened behind the scenes, out of

sight and without any interaction from the user [52]. However, malicious ads can be

blocked by installing an appropriate program or a browser plugin against ads and self-

executing scripts. But ad publishers don’t like this trend. They always claimed that

blocking ads is attacking the freedom of speech. They have a good alibi since ads bring

them a lot of money [51].

2.4 Malware concealment strategies

Malware concealment is a real challenge for AV analysts. Malware authors use different

strategies to hide their malicious creation and make it last as longer as possible. These

strategies cannot fully prevent the process of detection of malware but prolonged it. The longer

malware can hide itself from detection, the more time it has for spread and infection. In the

following, we review these strategies and their evolution from a simple encryption to modern

metamorphism.

2.4.1 Encryption

The earliest method used by malware authors to escape analysis was encryption. Cascade,

appeared in 1987, was the first known encrypted malware [53]. An encrypted malware is made

of the malware main body (infection, trigger, and payload) encrypted in some way and the

decryption loop. When the malware is encrypted, it cannot execute until decrypted. The idea

behind this form of obfuscation is that the decryptor loop is small enough compared to the

malware body, and only provides a smaller profile for AV software to detect [6, p. 35].

Encryption can be achieved through 1:1 mapping transforming code “byte by byte” such as

the substitution cipher, zero-operand instruction such as INC (increment) or NEG (negate)

instructions, reversible instruction including ADD or XOR with random keys, encryption keys

(used in cryptography), etc.

2.4.2 Stealth

Malware normally modifies data resources on the infected system. A stealth malware is a

malware that conceal the infection itself, not just its body. Furthermore, it tries to hide from

both the user and AV software [6, p. 37]. When other applications within an infected system

request parts of the resources previously modified by the malware, stealth code provides the

21

unchanged data instead of the viral code [54]. An example of a stealth infection is the Brain

virus released in 1986 (the first DOS virus) that infected the boot sector of disks formatted

with the DOS File Allocation Table (FAT) file system. Brain redirected all attempts to read

an infected sector, supposed to contain boot instructions, to other sectors on the disk where

the original uninfected boot sector is located [55].

2.4.3 Packing

Packing or “executable compression” also known as “self-extracting archive” is a technique

of compressing and/or encrypting an executable file12. Both the packed data with the unpacking

routine code are combined into a single packed executable (an archived file) that can be

restored to its original executable form when the packed file is loaded into memory [56]. Users

wouldn’t have to unpack it manually before it could be executed [57]. While packers can be

used to make files smaller, to save storage space or reduce data transmission time, by software

companies in distributing their products, they are also used by malware authors as a form of

malware obfuscation. The packing adds an extra layer of code wrapped around a malware to

conceal it. As a result, any archived file must be unpacked for analysis before a piece of

malware can be detected. Usually malware authors pack their code multiple times using

different packers to bypass detection and thwart analysis. But doing so, they create successive

new variants of the same malware [59]. Unless an AV scanner understands which packers are

used and how they are applied, it can’t track malicious code through the packed file [59].

Among obfuscation techniques, packing is the most used due to the availability of several free

and open-source packers. According to [60], among 20, 000 malware samples collected in

2008, more than 80% appear to be using packing techniques from 150 different packing

families. Moreover, there is evidence that nearly half of new discovered malware were simply

repacked versions of existing ones.

2.4.4 Oligomorphism

Malware authors realized that spotting encrypted malware remains simple for AV software

since the decryptor is long enough and doesn’t change, so they decided to implement mutated

12 Based on their behaviors, packers can be classified into four categories: (i) Compressors that reduce file sizes

through compression with little or no anti-unpacking tricks such as Ultimate Packer for Executables (UPX); (ii)

Crypters that encrypt the original file contents without any compression such as Yoda’s Crypter; (iii) Protectors

combine features from both compressors and crypters such as Armadillo; (iv) Bundlers pack a software package

of several executable and other data files into a single bundled executable file, which unpacks files within the

package without extracting them to disk such as PEBundle [58].

22

decryptor loop's code that change with each infection. The simplest technique to do so is the

use of several decryptors instead of a single one. An oligomorphic or semi-polymorphic

malware is an encrypted malware which has a predefined set of different decryptors. The

malware randomly picks a new decryptor for each new infection. For example, Whale had 30

different decryptor variants [61], and W95/Memorial 96 decryptors [62]. In terms of detection,

oligomorphism only makes a malware slightly more difficult to catch. AV software will

simply have to list all possible decryptors, and look for them all [6, p. 38].

2.4.5 Polymorphism

To overcome the limitation of oligomorphism, malware authors create polymorphic malware

that would generate an infinite number of decryptor loop variations, thus making analysis more

difficult. Examples include 1260 or V2PX virus developed by Mark Washburn in 1990 as part

of a research project aiming to demonstrate the limitation of AV scanner at that time

(considered as the first polymorphic malware) [63], Tremor virus that has almost six billion

possible decryptors! [64], and the Virlock ransomware discovered in 2014 (the first instance

of polymorphic ransomware) [65]. Clearly polymorphic malware can't be detected by

enumerating all the possible decryptors, but how can the polymorphic malware detect previous

infection? and how does change its decryptor for each new infection? When the malware

morphs, it must be able to recognize infection by any of its mutating form. This couldn’t be

possible, only if the infection detection mechanism is totally independent of the malware code.

Many solutions for overcoming this hurdle exist, such as using a file timestamp13, a file size14,

filesystem features15, hiding a flag in unused areas of an executable file, or using external

storage. Regarding the decryptors changing problem, it can be resolved by using the mutation

engine, or MtE (written by the Bulgarian Dark Avenger in 1991). It turns out to be a toolkit,

which can permute code in a large number of ways, and therefore converts an ordinary

malware to a polymorphic one by supplying a new decryption routine with an encrypted

malware body at each request [63].

13 A malware could modify the timestamp of an infected file, so that the sum of its time and date represents a

constant value K for all infections. Since many software programs only display the last two digits of the year, an

infected file's year could be increased by 100 without drawing attention [6, p. 39].

14 The size of an infected file can be increased to some meaningful size, such as a multiple of 1234 [6, p. 39].

15 Some filesystems (such as NTFS) allow files to be tagged with arbitrary attributes that can be used by a

malicious program to store code, data, or flags which indicate that a file has been infected [6, p. 39].

https://searchsecurity.techtarget.com/definition/ransomware

23

2.4.6 Metamorphism

A metamorphic malware is a malware that has the ability to change its internal structure

without altering its functionality. Igor Muttik defined a metamorphic malware as a body-

polymorphic [63]. It does not have a decryptor loop (because it isn’t encrypted) or a constant

malware body but is able to create a new generation of malware that will look completely

different. In contrast to a polymorphic malware that doesn’t change its MtE after each infection

because it can’t reside in the encrypted part (a malware body), a metamorphic malware

completely re-writes its code including its MtE, so that each newly infection of itself no longer

matches its previous iteration. [6, p. 46]. Notable examples of metamorphic malware include

the Win32/Apparition, Win32/Evol, Win95/Zmist and {Win32, Linux}/Simile.

Metamorphism is relatively simple to implement in malware that spread as source code, like

macro viruses. Win32/Apparition virus, written in Pascal, carries its source code and drops it

whenever a compiler is found on a system being infected, the virus' mutation engine undoes

old obfuscations, applies new transformations, in a way that will look completely different,

and recompiles itself.

2.5 Malware obfuscation techniques

The obfuscation is a programming technique that makes code intentionally obscured (to

prevent reverse engineering or to hinder analysis using heuristics) and harder to understand

(deliver unclear code to anyone who try to break it) [60]. It consists of converting code, by

applying several transformations, to a new different version in appearance but functionally

equal to the original one (before being obfuscated). Originally, this technique intended to

protect the intellectual property of software developers, but since it is extensively used by

malware authors in changing their code signature continually to evade detection by AV

scanners, it is therefore important to analyze how it is applied to malware. In what follow, we

give the most commonly obfuscation techniques used by polymorphic and metamorphic

malware. They mutate the code syntactically but keep the semantics of code same.

• Garbage code insertion: Garbage code insertion is a rudimentary technique that injects

some ineffective instructions over a program to change its binary sequence appearance

while keeping its behavior [67]. This will make the program's control-flow more

complex and more difficult to understand. Various types of garbage codes come in the

form of instructions that are not executed such as NOP (no operation–do nothing) values,

instructions that have no effect on program outcomes such as “ADD EAX, 0”, or those

24

located in areas of the program that will never be executed (refer to as dead-code). The

Win95/Zperm family of viruses are examples of malware that create new variants by

removal and insertion of garbage instructions [62].

• Register reassignment: Register reassignment is another simple technique that exchange

registers (for example, by switching EAX, EBX and EDX registers with EBX, EDX and

EAX registers) or memory variables in different instances of a malware, which modifies

the binary sequence of the code without altering its behavior [67]. The W95/Regswap

virus is a good malware example that uses the same code but different registers in each

new generation [62].

• Subroutine reordering: In this technique, the original code of the malware is obfuscated

by changing the order of its subroutines in a randomized manner [67]. This reordering is

irrelevant and does not affect the execution of the malware. Such technique can generate

n! subroutine permutations, where n is the number of subroutines. For example,

Win32/Ghost malware had 10 subroutines, leading to 10! or 3628800 different malware

variants [62].

• Instruction substitution: In this technique, the original code evolves by replacing some

instructions with other semantically equivalent ones [68]. For instance, MOV can be

replaced with PUSH/POP. For example,

MOV EAX, 4

 Can be replaced by the equivalent instructions sequence:

PUSH 4

POP EAX

This technique can greatly change the signature of the code and makes it harder to de-

obfuscate especially when implemented via a library of equivalent instructions that made

unavailable [69].

• Code transposition: Code transposition or code permutation reorders the sequence of the

instructions of the original code while preserving its behavior [70]. There are two

methods to deploy this technique. The first one shuffles the instructions in a random

manner, and then recovers the original execution order by inserting the unconditional

branches or jumps. The second method creates new variants by reordering the

independent or free instructions that have no impact on one another. Since it is very hard

to find this kind of instructions, this method is very difficult to implement, but can

increase the cost of detection.

25

• Code integration: One of the most advanced technique to obfuscate code introduced by

the Win95/Zmist malware, which binds itself to the code of the program to infect [68].

First, the Win95/Zmist decompile its target program into small manageable objects,

seamlessly inserts itself between them, and then reassembles the integrated code (the

original program and the malware) into a single executable.

2.6 Malware types

Malicious software can be classified different ways in order to distinguish the types of

malware from each other. This allows for understanding their threat level, the way they infect

and how to defeat them. They can be classified according to:

• The malware specific behavior or its mode of operation.

• The malware attack vectors or the method used to deliver its malicious payload.

• The type of vulnerability in an operating system (OS) or application that can leave it

open to malware exploits.

• The malware specific objective. As an example, a Spyware aims to steal personal or

organizational information.

• The targeted platform or device, such as a specific OS or attacks that target a mobile

device.

• The malware stealth techniques or how malware hides itself. As an example, a

Rootkit that hides its existence (and the existence of other malicious programs) by

replacing legitimate OS components with malicious equivalent ones.

 In 2006, Aycock classified malware into ten (10) different types according to their

method of operation [6, p. 11-21] as shown in Fig.2.1. Three (03) characteristics are associated

with each malware type: (i) Self-replicating or the way it propagates, (ii) Population growth

that describes the change in the number of malware instances due to replication and (iii)

Parasitic a technique whereby malware is inserted into existing files “executable files” on a

system in order to exist. Also, according to Aycock a logic bomb is a type of malicious code

that can be standalone or inserted into existing code, with a payload that is executed using a

pre-defined date as a trigger. A logic bomb has the following characteristics: possibly parasitic,

doesn’t replicate and has no population growth.

26

Figure 2.1: Aycock's classification of malware [6]

In 2010, Filiol in his research has taken up the Adleman’s classification of malware in

which malicious programs are classified into two (02) main classes “Simple” and “Self-

Reproducing” based on their specific objective [39] as shown in Fig. 2.2. Also, a malware in

Trojan’s class is a malicious program masqueraded as harmless to lure a user to use it and

inadvertently runs the Trojan. Malware of this class has generally as an objective the steal of

sensitive data. Also, Spyware, password-grabbing login programs, keyloggers, etc., are

particular instances of Trojans.

Figure 2.2: Adleman’s classification of malware [39]

To better understand the malware threats landscape, Microsoft researchers have

developed a taxonomy for classifying malicious software according to their methods of

propagation as shown in Fig.2.3. This classification method was published in Microsoft

Security Intelligence Report of 2011 “Zeroing in on malware propagation methods” [71]. To

apply this taxonomy, they analyzed infections reported by the Microsoft Malicious Software

Removal Tool (MSRT), running over 600 million Windows PCs worldwide, and specifically

targeting malware families with relatively high risk for the user.

27

Figure 2.3: Microsoft malware classification [71]

Malware families use different mechanisms to spread. When a malware is discovered on

a machine, it is very hard to determine its actual propagation mechanism used to get into the

system. To overcome the difficulty in determining the exact propagation method used to

spread the malware infection, an “equal buckets” approach was used in which the detections

of these families were evenly distributed between each category in which they were known to

spread. For example, Win32/Conficker worm propagates by either exploiting a CVE16-2008-

4250 vulnerability, by taking advantage of AutoRun on mapped and removable drives, or by

using a password dictionary. Using this approach, 100 Conficker infections will be translated

into 25 vulnerability-related propagations, 25 into AutoRun USB, 25 into AutoRun network,

and 25 into password brute force activity. Families that spread via exploits were classified

according to the time elapsed since the release of the patch fixing the vulnerability by the

software vendor (the age of the security update closing the exploit) at the time of analysis. We

distinguish between:

• Zero-day. If the exploit is discovered at any time before the release of the MSRT

version that detected it, it is considered a zero-day exploit.

• Update Available. The security update related to the vulnerability was first released

less than a year before the recorded detection.

• Update Long Available. The security update related to the vulnerability was first

released more than a year before the recorded detection.

16 CVE, short for Common Vulnerabilities and Exposures, is a list of publicly disclosed computer security flaws.

Each entry of the list contains an identification number, a description, and at least one public reference—for

publicly known cybersecurity vulnerabilities. When someone refers to a CVE, they usually mean the CVE ID

number assigned to a security flaw.

28

For example, the vulnerability exploited by Conficker worm, was issued by Microsoft

(security bulletin MS08-067) in October 2008, so it will be listed in the “Update Long

Available” category (when referring to the year 2011).

Figure 2.4: Malware detected by the MSRT by means of propagation ability [71]

Figure 2.4 shows the results of the analysis:

• Infections relying on user interaction to spread account for 45% of the total analyzed.

• Infections caused by malicious software that misused USB AutoRun feature accounted

for 26 % and those misused network AutoRun accounted for 17%.

• 5.6% of the MSRT detections analyzed were caused by exploits (3.2% are classified

as “Update Long Available”, 2.4% are classified as “Update Available”, and no

infection was caused by exploit classified in “Zero-day” category).

• Viruses, or file infectors, accounted for 4 % of detections.

• The password brute force (accounted for 2%) and Office macro (0.3%) infections of

the total, were each identified in just one of the malware families examined.

Alternatively, Kaspersky Lab classifies malware or unwanted objects according to their

activity on the target victim. Each object is given a clear description and a specific location

in the classification tree diagram. Objects whose behavior possessing the least threat are

placed in the lower area of the diagram, and those having a greater threat behavior are placed

in the upper part as shown in Fig.2.5.

Since individual malware items often have several malicious functions and propagation

modes, additional classification rules are required to avoid any possible location confusion in

the classification diagram. Also, a malware item that spread via an email attachment or as files

29

using P2P (peer-to-peer) networks and has the ability to harvest email addresses from a host

victim, can be classified either as an Email-Worm, a P2P-Worm, or a Trojan-Mailfinder. To

avoid any confusion about classifying this malware item, the following rules are applied: (i) a

threat level is assigned to each behavior, and (ii) risky behaviors outrank behaviors with a

relatively low risk. So, in a given example, the malware item will be classified as an Email-

Worm, since the P2P-Worm or Trojan-Mailfinder behaviors are less risky than the Email-

Worm behavior.

In case of a malware item that has multiple functions with equal threat levels such as

Trojan-ArcBomb, Trojan-Notifier, Trojan-Proxy, Trojan-Clicker, Trojan-SMS, Trojan-

Mailfinder, Trojan-Banker, Trojan-IM, Trojan-GameThief, Trojan-Ransom, Trojan-DDoS,

Trojan-Spy, Trojan-PSW, Trojan-Dropper, or Trojan-Downloader – the malware item will be

simply classified as a Trojan. In the same way, a malware item such as IM-Worm, P2P-Worm,

or IRC-Worm – will be classified as a Worm [72].

Figure 2.5: Kaspersky Lab malware classification diagram [72]

https://www.kaspersky.com.au/resource-center/threats/trojans
https://www.kaspersky.com.au/resource-center/threats/trojans
https://www.kaspersky.com.au/resource-center/threats/trojans
https://www.kaspersky.com.au/resource-center/threats/trojans

30

2.7 Malware analysis

Malware analysis is essentially concerned with the study of malware's behavior [73]. It refers

to the process by which the purpose, functionality, origin, type and potential impact of a given

malware are determined. The analysis’ objective is to understand the working of malware and

how can be detected and removed. It involves analyzing the infected file to determine

identifiable patterns that can be used for the purpose of generating a signature of the malware,

further utilized by security applications such as AV software to detect it. The method by which

malware analysis is performed generally falls under one of the following three types:

2.7.1 Static analysis

This is the process of analyzing and dissecting the different resources of the malware binary

file without executing it. All possible execution paths of the program are explored. The

extracted information collected from analysis can reveal simple characteristics of the malware

such as its file type, strings embedded within a file (referencing filenames, URLs or domain

names controlled by the attacker) and the functions and libraries being called by the

executable, or most complicated characteristics such as identification of the maliciousness

based on unencrypted code or strings found in the malware (fingerprinting the malware) [74].

Static analysis is easy and not risky. It is easy since no special conditions are required to

conduct analysis, the piece of malware is simply subjected to different static analysis tools. It

is without risk of an infection occurring because the malware is not running during the analysis

[74].

Dynamic analysis

Dynamic analysis, also known as behavioral analysis, is the process of executing the suspected

binary file in an isolated environment and observing its behavior while it is actually running

[73]. Dynamic malware analysis provides a more in-depth view into the malware’s functions

compared to static analysis. Usually, a sandbox environment17 is used as an isolated test

environment to prevent the malware from escaping and actually infecting the system, such

environments are virtual systems that can be rolled back to their initial clean state after the

analysis is complete [75]. Changes triggered by the malware’s execution, such as

17 A security mechanism for separating running programs that provides a fully implemented malware test

environment with the appropriate dynamic analysis tools where the analyst can run and observe a malware’s

behavior.

31

modifications in the file system or configuration files, are generally monitored and recorded

during analysis [74].

2.7.2 Memory analysis (memory forensics)

 This is the technique of analyzing the memory image (analyzing volatile data18 in a

computer’s memory dump19) taken from the running computer to extract artifacts relevant to

the malicious program before the infected system is powered off [73]. It is typically a forensic

technique to investigate and identify malware attacks that do not leave detectable tracks on

hard drive data but very few signs of infection elsewhere such as fileless20 malware [76].

Memory forensics is especially useful to track stealth and evasive capabilities of malicious

software.

2.8 Malware detection

 While malware analysis is about studying the behavior of the malicious code, malware

detection is about detecting its presence in the system or distinguishing whether a specific

program is malicious or not [77]. It is the process of scanning the computer and files to detect

the malware that is present in the system [78]. It involves using signatures generated during

the analysis process and focuses on methods that detect certain malware’ classes. Both,

malware analysis and malware detection are essential to protect the system.

Detecting malware programs by their behavior or appearance is proved that is undecidable

[79]; there is no such algorithm that can detect all malware forms. However, by tuning existing

algorithms or combining different scanning techniques, a good detection rate can be achieved.

To detect malware, AV products use signature-based detection and heuristics.

Detection is the most important task that an AV does up in comparison to other tasks:

identification (which form of malware is it?) and disinfection or cleaning. It can be performed

using generic methods that deduce the presence of a malicious code from environmental

anomalies (both known and unknown malware can be detected) or using malware-specific

methods, which only work with known malware [6, p. 53].

18 the data stored in temporary memory (RAM) on a computer while it is running. When the computer is turned

off, volatile data is lost immediately.

19 A memory dump or a core dump is a snapshot capture of computer memory data from a specific instant.

20 Fileless malware, also known as memory-resident malware, is a type of malicious program that writes itself

directly onto a computer’s system memory.

http://www.howtogeek.com/196672/windows-memory-dumps-what-exactly-are-they-for/

32

To detect malware, AV products use signature detection for exact matches and

heuristics21 for extrapolated detection. Heuristics is a generic term for various techniques like

emulation, file anomalies, API hooking, sandboxing and data mining, used to detect unknown

or complex malware instances by their behavior, for which signatures are not yet available.

AV software is expected to detect all infected files on a system. Unfortunately, this is not

the case. Detection isn’t perfect and can result in false alarms (or false positives FPs). A false

positive22 is when an AV software examines a legitimate file or a website and reports a

malware even though a malware isn't really there, which can damage the file by removing

useful code when disinfecting, or even crash the machine when quarantining or deleting

system files. This can occur due to a faulty signature or after improper disinfection, refers to

as ghost positive, where a malware is detected that is no longer there by the same or other AV

engines [80]. False positives are one of the most important measurement for AV quality.

2.8.1 Signature-based detection

Signature-based detection is a basic technique to protect against malware and still the most

widely used today, and an important viable component of anti-malware defences that AV

companies continue to improve. In this technique, AV engine (the scanner) compares input

blocks of a file under inspection against the signatures (or patterns) of all known malware.

These signatures are stored in the program’s malware definition database, which is regularly

updated. If the file matches one signature, then the scanner assumes that this file is infected.

Otherwise, it is considered safe. Signature-based detection scanning is similar to finding the

offending bytes in the file being inspected.

The signature for an executable malware typically is a series of machine code bytes,

usually known as “byte-streams” or “strings”. They are created by examining the disassembled

code of a malware binary. Sequence of bytes are extracted from the suspicious section of the

disassembled code, and used in building the signature of the malware. A typical signature

looks like as shown in Fig.2.6. This kind of signatures can be efficiently matched using string

processing algorithms presented in the next chapter. Other kind of signatures exist, they can

be checksums (modified versions of the CRC32 algorithm are generally used), cryptographic

21 The terms “heuristics-based” and “behavioral detection” are often used interchangeably.

22 In contrast, a false negative is when the AV software examines an infected file and doesn't detect a malware

that's present.

33

hashes (cryptographic hash functions such as MD5, SHA1, and SHA2), fuzzy hashing (fuzzy

hash algorithms are applied) and graph-based hashes for executable files [4]. For the purpose

of our study, we focus on byte-stream signatures since they require a significant time to be

processed by the virus scanner despite their minority in today AV database signatures.

Experiments on the ClamAv23 databases [80, 81], show that 95% of the total scanning time

was spent matching basic string and regex24 signature types, which only account for less than

10% of the total signatures.

Figure 2.6: Hexadecimal representation of a typical malware signature and the corresponding

x86 code snippet

In the early days of AV software, malware signatures numbered in the hundreds. Scanning

a file was fairly quick. Now, there is an astonished number25 of known viruses, worms,

Trojans, and other malware types that AV software struggle to detect by keeping scanning

performance within acceptable limits. To keep a handle on performance, AV engines classified

signatures by the type of infection they represent- boot sector, executable file, macros, scripts,

etc. When scanning a particular file, only the signatures that pertain to that file type are

matched. For example, a script signature would not be used to scan an executable file. Next,

certain rules are applied to avoid scanning the complete file. Depending on the type of the file

being scanned– .exe, .doc, or .pdf, the scanning process is limited to areas (the beginning, the

end, or some specific locations) in the file that are more likely to contain a malicious code

[83].

23 ClamAntiVirus (or ClamAV) is one of the most widely used open-source anti-malware toolkits available.

Initially developed for UNIX systems but latter a Windows version was produced.

24 Regex signature type is an extension of the basic string signature type with various wildcards, written in a

custom language with regular expression-like syntax.

25 The ClamAV malware database is updated at least every four hours and as of 10 February 2017 contained over

5,760,000 malware signatures (source: https://en.wikipedia.org/wiki/Clam_AntiVirus#Mac_OS_X).

90FF1683EE0183EB0475F6

Below, we give the assembly code that represents opcodes, which make
up the signature.

start: 0x401A2E length: 0xC

90 nop

FF 16 call dword ptr [esi]

83 EE 01 sub esi, 1

83 EB 04 sub ebx, 4

75 F6 jnz short loc_401A30

34

While it is more effective to identify a specific malware, it can be quicker to detect a

malware family through a generic signature, like the one shown in Fig.2.7. Many viruses,

worms and Trojans start as a single infection, but grow into dozens of slightly different strains,

through mutation or modifications by other malware writers. Instead of creating a separate

signature for every malware variant, malware researchers find locations that all malware in a

family share, and create a single generic signature. These signatures are created using

wildcards26 since they contain fragments of unique code from a number of different locations

in the compromised file. Using wildcards allow the scanner to detect if a malicious code is

padded with other junk code [83].

Figure 2.7: Hexadecimal representation of a generic malware signature

String scanning, wildcards and mismatches methods, as described in [63] and briefly

explained below are the most popular methods used by AV software to detect malware based

on their string signatures. For example, the ClamAV scanner defines a simple format for

representing signatures including disjunctions (aa|bb), gaps {n-m}, wildcards’?’ and character

classes [84] as shown in Fig.2.8. In addition to generic detection other methods, which involve

scanning for pre-defined sequences of bytes, such as hashing, bookmarks, top-and-tail

scanning, entry-point and fixed-point scanning are also applied to speed up the scanning

process.

Figure 2.8: ClamAV signature for the Virut malware [84]

• String scanning: The AV scanner searches for a sequence of bytes that is typical to

a particular malware instance, extracted for each different malicious program and

26 A wildcard is a character that may be substituted for zero or more characters in a string. Common wildcard

characters include * - to match any number of characters (or bytes), ? - to match a single character, and % - to

match zero or more characters.

FF1890EF16C00F9EB04{-3}683EE0183EB04F6C9A00??7A

{-3} is a wildcard for 0 to 3 arbitrary bytes
? is a wildcard for one arbitrary byte

(8a|86)0666(29|31)(c8|d0|d8|e8|f8)(86|88)0646

Below, we give the corresponding x86 code snipet .

8a 06 ; mov al, byte ptr [esi]

66 31 e8 ; mov ax, bp

88 06 ; mov byte ptr [esi], al

46 ; inc esi

https://pc.net/glossary/definition/character
https://pc.net/glossary/definition/string

35

cataloged in an AV signatures database. The following example is a signature string

of the W32/Beast virus in EXE files, published in [85]: 83EB 0274 1683 EBOE 740A

81EB 0301 0000.

• Wildcards: The scanner is allowed to skip one or more bytes and some regular

expressions. Some early generation encrypted, polymorphic, and even metamorphic

malware can be spotted using this method. In the following example the bytes

represented by the character ‘?’ are skipped. The wildcard %3 means that the scanner

will try to match the next byte (03 in the example below) in any of the three positions

that follow it 83EB 0274 ??83 EBO? 740A 81EB %3 0301 0000.

• Mismatches: Used to create generic signatures for a family of malware. They allow

any given number of bytes in a string to be of arbitrary value, regardless of their

position. For example, the 0F 02 03 04 0A 07 08 FF string with the mismatch value

of 2 would match the following pattern 0F E8 03 04 0A 07 9A FF.

Signature detection based on string signatures is challenged by the increasing number of

malicious programs since an AV engine uses a separate signature for each malware variant,

and vulnerable to evasion techniques (such as obfuscating internal data, environmental

awareness, timing-based evasion, confusing automated tools, etc.) since the signatures are

derived from known malware. Its major flaw is its inability to detect new malware and zero-

day attacks. Its strength relies on the assumption that the behavior of one instance of malicious

software is quite similar of all instances27 [86]. This detection technique still the most

commonly used method of identifying malware and has many advantages which include:

• Does not require the malware sample to run to detect it;

• Less number of resources is required for malware detection;

• During the scanning process, false alarms are almost impossible because the

signatures are mostly unique [81];

• It provides exact nature of infection, which other techniques like integrity checker28

cannot provide [87];

• It is simple to update a signature database with new ones whenever new malware is

discovered [82];

27 For worms, this means that by studying one node of the worm, the behavior of all nodes that are compromised

by the worm can be reliably predicted.

28 A technique that looks up for signatures based on checksums and cryptographic hashes.

36

• Its scanning speed can further be increased by using other detection algorithms or

optimizing the implementation of the existing ones (Tuning an algorithm's

implementation). For example, by exploiting optimization capabilities offered by

new microprocessors like vectorization.

2.8.2 Heuristic-based detection

Heuristics is a generic term for various techniques like emulation, sandboxing, data mining,

API hooking and file anomalies, used to detect complex malware. Heuristic scanner inspects

the code statically and dynamically to determine the probabilities of a file infection.

Static heuristic methods are based on the examination of a malicious file looking for

sequences of instructions, which are generally indicative of suspicious code that differentiate

the malware from safe files like junk code, decryption loops, use of undocumented API calls,

etc. The heuristic data collected from this examination are then analyzed by weighting each

heuristic’s value. If the result obtained by summing these values exceeds a predefined

threshold, then the file is considered to be probably infected.

Dynamic heuristics are almost the same as static heuristics with the difference that the

data, about the code being analyzed, are collected from the emulator29. In this technique, AV

engine inspects a running program's behavior looking for suspicious actions. It may look for

the program trying to write directly to the disk, or a program eavesdropping over a network

connection using TCP/IP ports, etc. These dynamic methods incur a run-time overhead for

monitoring that is not imposed by static methods [6, p. 80].

 Heuristics are generally used to spot new malware threats before signature updates

become available.

29 A safe virtual environment to monitor running code.

37

Chapter 3

3 Pattern-matching algorithms

In computer science, pattern-matching occurs as part of data processing (such as text data

mining, web search, bibliographic search programs, or searching and substitution commands

within text editors), digital forensics (digital signatures demonstrating the authenticity of a

digital message or document), full text search (utility programs such as grep, awk and sed of

Unix systems), speech and image recognition, information retrieval (biological sequence

analysis and gene identification), plagiarism, and anti-malware solutions (intrusion detection

systems IDS, virus scanners, web and spam filters, etc.). Figure 3.1 shows different application

fields using a pattern-matching concept. All these application fields usually process a large

quantity of textual data, and require pattern-matching capabilities at very high speeds with less

memory usage.

Figure 3.1: Application fields using pattern-matching

3.1 Pattern-matching problem

Pattern-matching, sometimes also referred to as string-matching, or string-searching is the

concept of finding a sequence of characters, often called patterns, inside a provided text (or

binary data). The matching process includes the location of these patterns inside the text.

Formally, pattern-matching is the problem of locating all occurrences of a pattern P of length

m in a text T of length n. Both the pattern and the searched text are vectors of elements of a

https://en.wikipedia.org/wiki/Computer_science

38

finite set called an alphabet Σ30. We say that pattern P occurs with valid shift s in text T

if 0 <= s <= n−m and T[s + 1.s + m] = P[1..m].The pattern-matching is therefore the problem

of finding all valid shifts with which a pattern P occurs inside a text T [88].

Pattern-matching algorithmic complexity is usually analyzed by the running time of the

algorithm and the memory space required by the computations. To this, we can add a setup

time, or a substantial amount of computation before the algorithm can begin searching (time

spent during the pre-processing phase), and the need for backtracking or not (since moving

back and forth through the search text can entail some form of buffering if the search text

doesn’t exist in memory, but sent to the program as a stream of data) [89, p. 96-97].

Considering the running time feature, all pattern-matching algorithms perform on the order of

a + bn, where a is the pre-processing time, b is a constant indicating the number of

comparisons made for each character, and n is the number of characters in the text being

searched. The effectiveness of the algorithms is measured according to their ability to lower

the value of b. Effective ones perform in less than one comparison per character searched

(b < 1), termed as sub-linear pattern-matching algorithms [89, p. 96-97].

Algorithmic complexity is concerned about how fast a particular algorithm performs.

Specifically, we want to determine the amount of time taken by an algorithm to execute on

some inputs without depending on its implementation. Of course, the algorithm will take

different amounts of time on the same inputs that depend on the processor, memory or disk

speed, the machine instruction set, the compiler, etc. In this context, the computational

complexity is introduced. It refers to the worst-case time that an algorithm can take in order to

solve a given problem [90] i.e., the execution instance that causes maximum number of

operations to be executed. Both average-case and best-case times provide valuable

information of the algorithmic performance related to specific cases but usually we are most

interested in the worst-case in analyzing an algorithm because it defines clearly its running

time upper bound which is good information.

Many algorithms to solve pattern-matching problem exist. They are classified either as

single or multiple pattern algorithms based on the number of patterns to look for. For k patterns

to be matched, the single-pattern matching algorithm must be repeated k times. In contrast, the

multiple pattern-matching algorithm need only to be executed once. Applications that relay on

30 The alphabet Σ may be a usual human alphabet (for example, the letters A through Z in the Latin alphabet).

Other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = A,C,G,T}).

39

this class of algorithms may require exact (case of most applications) or approximate pattern-

matching31. The performance of security applications heavily relies on signature scanning and

require exact pattern-matching capabilities at very high speeds with less memory

consumption.

3.2 Exact pattern-matching algorithms

The intuitive method of solving the exact pattern-matching problem is to compare the pattern

to every position in the text and check for a match. This method was presented by the naïve,

or brute force string search algorithm, and is considered to be the first algorithm [3.3]. Later,

large number of algorithms have been developed to solve single exact string-matching

problem including Karp-Rabin algorithm, the Knuth-Morris-Pratt (KMP) algorithm, and

several variants of the Boyer-Moore (BM) algorithm like Turbo BM, Reverse Colussi, Boyer-

Moore-Horspool (BMH), Quick search, etc. In real world applications such as bioinformatics,

text mining, and malware detection there may be more patterns to deal with simultaneously.

The multiple pattern-matching algorithms solve the problem of finding more patterns

concurrently. Many solutions for exact string-matching of multiple patterns is known to exist.

However, most of them have been designed for moderately sized pattern sets, and therefore

they do not fit well with larger sets of patterns. The most commonly used solutions are Aho-

Corasick, Wu-Manber and Commentz-Walter algorithms.

3.3 Brute force algorithm

In the naive, brute force algorithm we check for all positions, between 0 and n-m, in the text

at which the pattern could match. The algorithm requires no pre-processing phase, and the

scanning process can be performed in any order (but usually, it is carried out from left to right)

one character at a time. Formally, the pattern P is compared against the text factor32 T[0..m],

then against T[1..1 + m], then against T[2..2 + m] etc., until there are no more matching

characters. If P is exhausted (in which case an occurrence of P is found) or a mismatch occurs,

31

Approximate pattern-matching (or a fuzzy string searching) is the technique of finding strings that match

a pattern approximately. In contrast to exact pattern-matching in which a complete pattern is compared with the

selected text window, in approximation matching only a small portion of the pattern is considered. The most

illustrative application of approximate matchers is spell checking.

32 The text factor T[j..j + m] currently being compared against the pattern P is called the text window.

https://en.wikipedia.org/wiki/String_(computing)
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/wiki/Spell_checking

40

the text window is shifted one character to the right, and the matching process is restarted. The

corresponding C++ code is given in listing 3.1.

Listing 3.1: C++ implementation of the brute force algorithm

// Input: Text = T[0 ... n], Pattern = P[0 ... m]
// The Output_matching_pos function reports positions of all occurrence of P in T

void BF_search(unsigned char* T, unsigned char* P, int n, int m)
{
 int i, j;

 for (i = 0; i <= n - m; i++)
 {
 for (j = 0; j<m; j++)
 if (T[i + j] != P[j]) break;
 if (j == m) Output_matching_pos(i); //pattern found
 }
}

--

The outer loop is called at most n-m+1 times and the inner loop is executed m times for every

iteration of the outer loop, so the worst-case time complexity of the brute force algorithm is

m × (n-m+1), and since m is very small compared to n, the total comparisons is ~ m×n: the

overall time complexity of the algorithm is O(m×n). This can happen, for example, when

P = am−1 b and T = an.

The brute force algorithm is very easy to implement. However, its practical running time

may be too slow, especially with larger texts and patterns compared to other algorithms. To

reduce the number of character comparisons, different approaches exist. They all start by

processing the pattern to gain information on its structure and the occurring characters it

contained (pre-processing phase) before starting the process of matching the pattern against

the text (searching phase).

3.4 The Boyer-Moore algorithm

In 1977 Robert S. Boyer and J Strother Moore published their paper "A Fast String Searching

Algorithm" [91]. One of the most classic and efficient string-searching algorithms, which is

considered as a benchmark for practical string-search literature. Their technique proposed a

new approach to solve the pattern-matching problem without examining all the characters in

the text. For each alignment of the pattern P with the text T, the algorithm scans for an

occurrence of P by processing its characters from right to left rather than from left to right as

in the brute force algorithm. In case of a mismatch, the pattern is shifted to the right of the text

https://en.wikipedia.org/wiki/Robert_S._Boyer
https://en.wikipedia.org/wiki/J_Strother_Moore

41

based upon two functions: the bad character shift and the good suffix shift, pre-computed

during the pre-processing phase (heuristic approach). Basically, whenever we have a

mismatch, we try both functions. Each function will tell us the number of characters in text T

that can be skipped, and simply we take the maximum of the two. Both of the above functions

can be used independently to search a pattern in a text.

In general, the algorithm runs faster when working on a large alphabet and its speed

increases as the pattern length increases. On typical inputs, the Boyer-Moore algorithm makes

~n/m character comparisons to search for a pattern in the text: O(m/n) best performance [92].

However, it is not optimal to use if the pattern to match is very short or has a low probability

to be found in the text. The time complexity of the algorithm is O(m×n) during the searching

phase, and O(m+σ) in the pre-processing phase [93].

3.4.1 The bad character heuristic

The idea behind a bad character shift is simple. The character of the text T which doesn’t

match with the current character of the pattern P is called the bad character. Upon mismatch,

we shift P until the mismatch becomes a match, or we move P past the mismatching character

in T as shown in Fig 3.2.

Figure 3.2: The bad character shift heuristic

In the example above (Step 1 - first alignment of the pattern with the text), comparison

between “C” and “F” causes a mismatch at position 4 in the text. The bad character “C” occurs

in the pattern at positions 0 and 1, the pattern P can be shifted over the text T by 03 positions

(or skip 02 alignments) so that the rightmost “C” in the pattern is aligned to text character “C”

(aligning in order for a mismatch to become a match). In step 2, the bad character “A” doesn’t

occur anyway to the left in the pattern. That means, we have to move P all the way past the

mismatching character “A” in T.

42

To implement the bad character shift, we use a table (an array BadCharacter[]) that gives,

for each character in the text T, the index of its rightmost occurrence in the pattern P (or -1 if

the character does not exist in the pattern). This value tells us exactly how far to shift the

pattern to the right (the number of characters to skip) if that character occurs in the text and

causes a mismatch during the matching process, as show in in listing 3.2.

Listing 3.2: The BadCharacter table

--
void BC_Heuristic(char* pattern, int* BadCharacter, int M)
{
 int m = M; //pattern length

 for (int i = 0; i<MAXCHAR; i++) //set position to -1 for all characters
 BadCharacter[i] = -1;

 for (int i = 0; i < M; i++) //rightmost position for character in pattern
 BadCharacter[pattern[i]] = i; //-1 for characters not in pattern
}

--

With the BadCharacter table pre-computed, the implementation of the bad character shift

heuristic is straightforward. While the amount of shift is less or equal (n-m), the pattern is

aligned with the text at position shift+j, and the matching process starts. We have an index

shift+j moving from left to right through the text, and an index j moving from right to left

through the pattern. For each alignment, we keep decreasing the value of j from (m-1) down

to 0 as long as the pattern character matches the text character (pat[j] is equal to

txt[shift + j]). If the value of j is reduced to -1 that means all the pattern characters matched

the text characters for this alignment. Otherwise, there is a character mismatch at shift+j

position. The amount of the shift value is updated in both cases accordingly and another

alignment begins, as show in in listing 3.3.

Listing 3.3: C++ implementation of the bad character shift heuristic

--

void SearchPattern(char* txt, char* pat, int *array, int N, int M)

{ int n = N; //txt lenght
 int m = M; //pat lenght

 BC_Heuristic(pat, BadCharacter, m); //fill bad character array
 int shift = 0;
 int j;

 while (shift <= (n - m))
 {
 j = m - 1;
 while (j >= 0 && pat[j] == txt[shift + j])
 {

43

 j--; //decreasing j when the pattern character
 } // matches the text character

 if (j < 0)
 { //pattern found
 if ((shift + m) <= n)
 shift += m - BadCharacter[txt[shift + m]];
 }
 else
 { //pattern not found
 shift += max(1, j - BadCharacter[txt[shift + j]]);
 }
 }
}
--

The bad character heuristic can lead to a shift distance of m (length of the pattern), if the

first comparison causes a mismatch and the mismatching text character does not occur anyway

in the pattern. The time complexity for the bad character shift algorithm is O(m/n) for best

case and O(m×n) for the worst case.

3.4.2 The good suffix heuristic

The main idea of a good suffix heuristic is to shift the pattern more efficiently when a

mismatch occurs by aligning the overlapping part of the text and the pattern together.

Considering the illustration given in Fig 3.3. A substring of pattern P (the green part) which

has been matched with a substring t of text T, is called good suffix. The question is where

should the pattern be shifted to find the next possible location for checking when a mismatch

occurs? two cases have to be considered.

Figure 3.3: The good suffix

• Case 1: The matching suffix occurs somewhere else in the pattern, as shown in

Fig 3.4. In this case, we shift the pattern to the right, over the text, so that the green

parts are aligned.

44

Figure 3.4: The matching suffix occurs somewhere else in the pattern

• Case 2: Only a partial of the good suffix, the dark green part, occurs at the beginning

of the pattern, as shown in Fig 3.5. In this case, we shift the pattern to the right, over

the text, so that the dark green parts are aligned.

Figure 3.5: A partial of a good suffix occurs as a prefix of the pattern

To implement the good-suffix heuristics, a shift table is created during the pre-processing

phase that is done separately for each case. Each entry of the table shift[i] contains the shift

distance of the pattern if a mismatch occurs at position (i – 1). That is, the suffix of the pattern

starting at position i has matched, and a mismatch occurs at position (i – 1) in the text. Before

we go any further in our implementation, let us first discuss the idea of the border of a string.

 Definition:

 Let x = x0 ... xk-1, k a string of length k over an alphabet Σ.

A prefix of x is a substring u (x starts with u) with

u = x0 ... xb-1 where b {0, ..., k}

A suffix of x is a substring u (x ends with u) with

u = xk-b ... xk-1 where b {0, ..., k}

45

A prefix (suffix) u of x is called a proper prefix (suffix), if u ≠ x. That is, its length b is less

than k.

A border of x is a substring r, which is both proper prefix and proper suffix of x, with

r = x0 ... xb-1 and r = xk-b ... xk-1 where b {0, ..., k-1}

Its length b is called the width of the border.

Example:

 Let x = babab.

 The proper prefixes of x are {ε, b, ba, bab, baba}.

The proper suffixes of x are {ε, b, ab, bab, abab}.

The borders of x are {ε, b, bab}, having widths 0, 1 and 3 respectively.

The empty string ε has no border, and is always a border of x, for all x Σ +.

In the pre-processing phase, the borders of the suffix of the pattern have to be

determined since the matching suffix is a border of a suffix of the pattern. Then, during the

searching phase, the shift distance will be computed according to the prefix that has matched.

Now let's go back to our implementation and consider each case independently, as explained

in [94]:

• Case 1: To determine the borders of the pattern suffixes, we use a bpos (border

position) table. However, the inverse mapping is needed between a given border and

its corresponding shortest suffix in the pattern. Each entry bpos[i] contains the starting

position of the wideset border of the pattern suffix starting at position i. The suffix ε at

position m has no border, therefore bpos[m] is set to (m+1). Similar to the Knuth-

Morris-Pratt algorithm [95]. The shift position is determined by the borders which

cannot be extended to the left, as shown in the following example:

Considering the suffix babab, its widest border bab starting at position 2, starting at

position 4. Therefore, bpos[2] = 4.

The widest border of suffix ab starting at position 5 is ε, starting at position 7.

Therefore, bpos [5] is set to (m+1) = 6+1= 7.

https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm#section2

46

The suffix babab starting at position 2, has border bab starting at position 4 that cannot

be extended to the left since (P[1] =b) ≠ (P[3]=a). Therefore, the shift distance

shift[4] = the difference 4 – 2 = 2 if bab has matched and then a mismatch occurs.

In addition, the suffix babab starting at position 2 has another border b, starting at

position 6. Following the same reasoning, the shift distance shift[6] = 6- 2 = 4 in case

if b has matched and then a mismatch occurs.

Finally, considering the suffix b starting at position 6, which has border ε starting at

position 7 that cannot be extended to the left. The shift distance shift[7] = 7 – 6 = 1 if

nothing has matched. That is, a mismatch occurs in the first comparison.

Listing 3.4: Preprocessing for good suffix shift case1

--

// preprocessing for good suffix case1
void preprocess_gsuffix_case1(int *shift, int *bpos, char *pat, int m)
{
 // m is the length of pattern
 int i = m, j = m + 1;
 bpos[i] = j;

 while (i>0)
 {
 //if characters at position i-1 and j-1 are different,
 //then continue searching to right of the pattern for border
 while (j <= m && pat[i - 1] != pat[j - 1])
 {
 //if the character preceding the occurrence of a substring t in
 //pattern P is different than the mismatching character in P,
 //we stop skipping the occurrences and shift the pattern from i to j
 if (shift[j] == 0)
 shift[j] = j - i;

 //Update the position of next border
 j = bpos[j];
 }
 // if the pattern characters at positions i-1 and j-1 matched ==>
 // border is found, and its starting position is stored in bpos table
 i--;
 j--;
 bpos[i] = j;
 }

}

--

• Case 2: In this case where only a part of the good suffix occurs at the beginning of the

pattern, the latter has to be shifted as far as its widest matching border allows.

Therefore, for each suffix the widest border of the pattern that is contained in that

suffix has to be determined. The starting position of the widest border of the pattern at

all is stored in bpos[0].

47

In the above example, the value of bpos[0] equal to 5 since the border ab starts at that

position. Initially, this value is stored in all free entries of the table shift. But when the

suffix of the pattern becomes shorter than this value, the algorithm continues with the

next wider border of the pattern, as shown in listing 3.5.

Listing 3.5: Preprocessing for good suffix shift case 2

--

// preprocessing for good suffix case2
void preprocess_gsuffix_case2(int *shift, int *bpos, char *pat, int m)
{
 int i, j;
 j = bpos[0];
 for (i = 0; i <= m; i++)
 {
 // j = bpos[0] is stored in all free entries of the shift table
 if (shift[i] == 0)
 shift[i] = j;

 //if the suffix becomes shorter than bpos[0],
 //the value of j is set to the position of next widest border
 if (i == j)
 j = bpos[j];
 }
}

--

The good suffix heuristic can lead to a shift distance of m (length of the pattern), if only

the first comparison was a match, and the matched character does not occur elsewhere in the

pattern. Due to its difficulty in understanding and implementing, some versions of the Boyer-

Moore algorithm, such as the Horspool algorithm [96] or the Sunday algorithm [97], are

implemented without the good suffix heuristic. They claimed that the good suffix would not

save many comparisons. However, this is not the case for small alphabets [94].

3.5 The Aho-Corasick algorithm

Suppose we need to search a large medical database for any and all references to chest pain,

chronic bronchitis, or pneumonia at the same time. Of course, we could simply do the search

once for each of these phrases (or keywords), but there is a more suitable solution that will

search the database in a single pass for any occurrence of these keywords. The proposed

approach was first presented by Alfred V.Aho and M. J. Corasick [98]. The technique they

48

developed revolves around constructing a finite automaton during the pre-processing phase

from a set of keywords (or patterns). The matching involves the automaton scanning the text

string, stepping through the input characters one at a time and changing the state of the

automaton. At every state transition for every text character, the algorithm checks if there is a

match by observing whether the current state is an output state (which indicates that a pattern

has been found) or not. The time complexity of the Aho-Corasick (AC) algorithm is

proportional to the total length of the patterns during the pre-processing phase and only

proportional to the size of the text being processed during the searching phase [89, p.128]. The

AC algorithm has the advantage of examining each text character only once, and locating all

occurrences of patterns within a given text in one pass. Its major drawback is the space

memory required to store the automaton states, which increases with their number. Other

algorithms in respect to multiple pattern-matching were developed, the most common are Wu-

Manber and Commentz-Walter algorithms.

The Wu-Manber (WM) algorithm [99] uses the bad-character shift (indicating the

characters to skip during the scanning phase) from the Boyer-Moore algorithm, but looks at

blocks of text instead of single characters to improve the matching performance: both the

pattern and the text are treated as blocks. The algorithm also builds three tables during the pre-

processing phase: the hashing or SHIFT table to determine the number of characters that can

be skipped when scanning the text, the HASH and PREFIX tables to determine which pattern

is a candidate for a match (and eventually to verify this match) when the shift value equals

to 0. In practice, the algorithm is more suitable when dealing with patterns of similar length,

and its running time does not increase in proportion to the size of the pattern set. But, in case

of short patterns, the scanning time increases due to the decrease in characters shifting [100].

The Commentz-Walter (CW) algorithm [101] is a suffix-based, exact multiple string-

matching solution that combines the concepts of Boyer-Moore and AC algorithms. In the pre-

processing phase, the CW algorithm constructs a finite-automaton similar to that of the AC

algorithm but from the reversed set of patterns to use the shifting method of the Boyer-Moore

algorithm, which usually handles mismatches in a way to obtain a sub-linear time complexity.

The matching involves the automaton scanning through the text string in a backward manner:

characters of the patterns are scanned from right-to-left beginning with the rightmost one,

exactly as the Boyer-Moore algorithm does. The length of the matching window is the

minimum pattern length. In case of a mismatch or a complete match of the pattern, the CW

algorithm uses a recomputed shift table to identify portions of the text to be skipped and shifts

49

the window to the right accordingly. With small numbers of patterns to look for, Boyer-Moore

aspects of the CW algorithm can make it faster than the AC algorithm, but with larger numbers

of patterns, the AC algorithm has a slight advantage [102, 103].

3.5.1 Review of the AC algorithm

The AC algorithm, first described by Alfred V. Aho and Margeret J. Corasick at Bell

laboratories in 1975 [98], is a direct extension of the Knuth-Morris-Pratt (KMP) algorithm

[95], which uses automata approach to solve multiple pattern-matching problems. Initially

designed to accelerate the library bibliographic search program. The performance gained using

this algorithm was between 5x and 10x faster compared to the original program [98].

The AC algorithm builds a finite state machine (FSM) from the patterns, then uses the

pattern-matching machine to locate all occurrences of these patterns (that may overlap) within

a given text in one pass. Each state of the machine is identified by a number (an integer value).

When a character of an input text is processed, one or more finite automaton state transitions

are made. State transitions (or machine behavior) are dictated by three functions, namely: (i)

the goto function g indicates state transitions by mapping a pair (current state, input character)

into either a state or a fail state. In the latter case, the fail state is indicated by calling the failure

function. Some of these states are designed as output states indicating that a set of patterns has

been found, (ii) the failure function f defines which state transition to move to in case of a

mismatched character, (iii) the output function indicates the patterns found and their locations

in the text when the machine reaches an output state.

We can better describe how the algorithm works by considering an example. Suppose we

want to search a text for the set of patterns {these, this, the, set}. An appropriate state machine

for these four (04) patterns is described in the Goto, Failure and Output tables as shown in

Fig 3.6. We start with an empty goto function (all characters →S0), and then we add all

patterns, one by one. In the same time, we construct the Output table. In the second step, we

compute the failure function and update the Output table as described next.

Once the automaton is built, the matching process is straightforward using the above-

mentioned functions. The machine inspects all the characters from the beginning of the text

successively, one character at a time, by changing the state of the automaton (goto function is

operating) and occasionally emitting output (output function is operating). If there is no valid

state transition for the character under inspection, then the machine detects a transition failure

and tries to investigate a match from other states (failure function is operating). We start in

50

state 0, and then we examine each character of the text. For example, if a character t is seen in

state 0, then we move to state 1. An h character would then take us to state 2. However, if the

next character is not an e or i, we consult Fail [2] and change to state 0. Note that from state

2, Goto[2][’e’] = 3 and Goto[2][’i’] = 6, but Goto[2][anything else] = FAIL STATE. If we

arrive at a state with a non-empty Output function, then a matching string is found. The

corresponding C++ code is given in listing 3.6.

Figure 3.6: Pattern-matching machine for the set of keywords {these, this, the, set}

Listing 3.6: C++ implementation of algorithm 1 - Pattern-matching maching according to[98]

--

//str is a pointer to the text to search

//N is the number of the characters to be examined (size of the text)
void AC_Search(unsigned char *str, int N)
{
 int state = 0; for (int i = 0; i<N; i++)
 {
 unsigned char c = str[i];
 while (Goto[state][c] == FAIL_STATE) {state = Fail[state];}
 state = Goto[state][c];
 //output
 if (Output[state] != NULL) {//Here we report a match}
 }
}

51

In the following, we construct the various tables of the AC algorithm. First, we construct

the Goto and Output tables. We start with an empty Goto table and step by step we process

each word from the pattern set by keeping track of the state transition made in the Goto table

when examining each character. Where possible, we overlay patterns that begin with the same

characters. We also construct the Output table at the same time: each pattern is identified

within the Output table by using its output state as an index to this table. For example, to build

the Goto table in Fig 3.6, we start with the pattern these (S0 ─ t → S1─ h → S2 ─ e → S3 ─ s

→ S4 ─ e → S5). Next, we add the pattern this (S2─ i → S6─ s → S7), and finally the pattern

set (S0─ s → S8─ e → S9─ t → S10). The pattern the (S0─ t → S1─ h → S2─ e → S3)

overlays with the pattern these, which is already processed. We just consider its output state

in the Output table. Then, we construct the Fail table by taking into account the overlapping

search patterns, and the possibility that a given state might find multiple search patterns. We

proceed by examining all states of the Goto table by defining “depth” to be the distance of

state x from state 0. Then, states 1 and 8 are at depth 1, while states 2 and 9 are at depth 2.

Intuitively, Fail[depth 1 states] should bring us to state 0. But Fail [depth 2 states] depends on

both Fail and Goto functions of the depth 0 and 1 states. In general terms, Fail[depth n states]

depends on the Fail and Goto functions of all states of lesser depth. Consider, for example, the

computation of Fail [10] shown in Fig 3.6. The character that brought us from state 3 to state

4 was s. Now, we search all other transitions from state 0 to state 3 that make use of s. We find

just one s that takes us from state 0 to state 8. Therefore, Fail [10] is set to 8. Note how the

calculation of Fail has turned up the overlap of the patterns these and the. Output is updated at

the same time. When an overlap is discovered, we need only to update (by concatenating) the

content indexed by the two overlapping states.

Finally, we must deal with issues that may affect the performance of the algorithm such

as its searching speed and the memory requirements. Indeed, we must define the number of

possible states, stored as integers, that our machine might have (#define MAXSTATES xx).

This number depends on the number and the length of the patterns to look for. For example,

in case of searching an English text for a set of 10 short patterns (words) having length less or

equal 18 characters, MAXSTATES is set to about 80. While searching for a set of 10 long

patterns (sentences) having length between 19 and 70 characters, MAXSTATES will be set to

about 600 (see the experience results reported in Tables 4.3 and 4.4). The next issue is how to

store the state transitions of the Goto function. This would involve a jump table for each state,

which depends on the type of the search being performed: if we are searching an English text

52

for some words (patterns are subset of 256 characters), then the table would contain a next

state for each ASCII character (among 256 possibilities), and the Goto table will be defined as

follows (int Goto[MAXSTATES][256];). While searching DNA sequences for DNA

keywords (patterns are subset of 4 characters A, C, G and T), the Goto table will be declared

as follows (int Goto[MAXSTATES][4];). Finally, when dealing with virus signatures based

on byte stream or regular expressions (patterns are subset of hexadecimal characters and

wildcards), defining the Goto table as (int Goto[MAXSTATES][25];) is more than enough.

Notice that the memory requirements of the AC algorithm can be taken directly from the

different tables used in constructing the automaton during the pre-processing phase since it is

the only structure used in the matching process. Unfortunately, the space complexity can be

quite large depending on the alphabet and the patterns set. In the worst case it would be

O(m×c) where c is the size of the alphabet Σ and m is the total length of the patterns.

To speed up the matching process, the AC_search() function implemented in C++ (listing

3.6) can be rewritten in assembly as follows:

Listing 3.7: ASM implementation of algorithm 1 - Pattern-matching machine according to[98]

--
//str is a pointer to the text to search
//N is the number of the characters to be examined (size of the text)
declspec(naked) void __fastcall AC_Search_asm(unsigned char *strp, int N)
{
 _asm push ebp //To locate strp and N parameters in debug mode
 _asm mov ebp, esp

 _asm push esi
 _asm push ebx
 _asm push edi

 //fastcall ==> edx == N ecx == strp eax == last param
 _asm add edx, ecx // edx == N+strp
 _asm xor esi, esi // esi == state == 0

loopi :
 //unsigned char c = str[i];
 //while (Goto[state][c] == Fail_STATE) { state = Fail[state]; }
 //state = Goto[state][c];
 _asm jmp do_while_test

redo_this_while :
 _asm mov esi, dword ptr Fail[esi * 4] //state = Fail[state];

 do_while_test :
 _asm movzx ebx, byte ptr[ecx] //c=str[i] //c==ebx
 _asm mov eax, esi
 _asm shl eax, 10
 _asm cmp dword ptr Goto[eax + ebx * 4], -1
 _asm jz redo_this_while
 _asm mov esi, dword ptr Goto[eax + ebx * 4] //state = Goto[state][c];

53

#ifdef Include_Output
 // OutCount[state] += OutPutf[state];
 _asm mov eax, OutPutf[esi * 4] //OutPutf must be static
 _asm add OutCount[esi * 4], eax //OutCount must be static
#endif
 _asm inc ecx
 _asm cmp ecx, edx
 _asm jle loopi

 _asm pop edi
 _asm pop ebx
 _asm pop esi

 _asm pop ebp
 _asm ret
}

--

We also need to measure the execution time, or a CPU time, of a given function. To this

end, we include the following C++ module “QueryPerformance.h” to our program.

Listing 3.8: Query performance module

#ifndef Time_ms_unitH
#define Time_ms_unitH
#include<windows.h>

class Time_ms{
 LARGE_INTEGER frequency;
 LARGE_INTEGER start;
 LARGE_INTEGER end;

 double interval()
 {
 return static_cast<double>(end.QuadPart - start.QuadPart) /
frequency.QuadPart;
 }

public:
 Time_ms()
 {
 ::QueryPerformanceFrequency(&frequency);
 Start();
 }

 void Start() //to be called just before calling the function for which we
 //wish to measure a CPU time
 {
 ::QueryPerformanceCounter(&start);
 }

 double End() //to be called just after the function for which we
 //wish to measure a CPU time returns
 {
 ::QueryPerformanceCounter(&end);
 return interval();
 }
};
#endif

--

54

3.5.2 Review of the AC algorithm using the next-move function

The failure function f as implemented in the previous AC algorithm is not optimal. Consider

the pattern-matching machine of Fig 3.6. We see Goto[4] [’e’] = 5. If the machine is in state 4

and the current input character is not an e, then the machine would enter state Fail[4] = 8.

Since the machine has already determined that an input character is not an e, it does not need

to consider the value of the goto function of state 8 on e. In fact, if the pattern set was not

present, then the machine could change directly from state 4 to state 0. Thus, skipping an

intermediate transition to state 0. To eliminate unnecessary failure transitions in the previous

version of the AC algorithm (the original version), the next-move function of a deterministic

finite automaton (DFA) can be used in place of the goto and failure functions. Converting the

algorithm to a DFA allows to indicate for each pair (given state, given character) the next state

to move to, which is always a valid state.

Listing 3.9: C++ implementation of the AC algorithm using the next-move function

--
//len_movef:table indicating the number of characters to process for each state
//movef_char: table indicating the character being processed for a given state
//movef_nextstate: table indicating the next state if a match occurs
void AC_Nextmove_search(unsigned char *str, int N)
{
 int state = 0;
 for (int j = 0; j < N; j++)
 {
 unsigned char c = str[j];
 for (int i = 0; i < len_movef[state]; i++)
 {
 if (c == movef_char[state][i])
 {
 state = movef_nextstate[state][i];
 goto nextOK;
 }
 }
 state = 0;

nextOK:
 //Statement used in [98] and can be skipped if we want to do output later
 if (Output[state] != NULL) { //Here we report a match }

 //Here we use an array to do output after processing the whole text
 OutCount[state] += OutPutf[state]
 }
 }
}

The next-move function is computed from the goto and the failure functions using

algorithm 4 in [98]. The purpose of this function is to build the three (03) following tables:

len_movef, movef_char and movef_nextstate (indicating respectively for each state the

55

number of characters to process, the character being processed and the next state in case of a

match) used by the algorithm. The next-move function is coded as follows. For example, in

state 0, we have a transition on s to state 8, a transition on t to state 1, and all other transitions

on any other characters are to state 0 (not shown in Fig 3.6). The C++ code for the next-move

function according to [98] is given in listing 3.9, and its corresponding ASM version in listing

3.10.

Listing 3.10: ASM implementation of the AC algorithm using the next-move function

--
declspec(naked) void __fastcall movef_search_asm(unsigned char *strp, int N)
{
 //fastcall ==> edx == N ecx == strp eax == last param
 _asm push ebp
 _asm mov ebp, esp

 _asm push esi
 _asm push ebx
 _asm push edi

 _asm add edx, ecx // edx == N+strp
 _asm mov ebp, ecx
 _asm xor esi, esi // esi == state == 0

loopj :
 _asm mov al, [ebp]

loopi :
 _asm mov ecx, len_movef[esi * 4]
 _asm shl esi, 8 // state = state*256
 // 256 = size of a line of movef_nextstate table
 _asm mov ebx, ecx
 _asm lea edi, movef_char[esi]
 _asm repne scasb
 _asm jne notfound
 _asm sub ebx, ecx
 _asm dec ebx // when char is at 0 position, ecx is decremented by 1 via
 // repne scasb instruction

 _asm add esi, ebx // state_X_256 = state_X_256 + i

 // state = movef_nextstate[state][i];
 // 4 = table movef_nextstate element size

 _asm mov esi, movef_nextstate[esi * 4]
 goto nextOK;

notfound:
 _asm xor esi, esi

nextOK :
 // OutCount[state] += OutPutf[state];
 _asm mov eax, OutPutf[esi * 4] //OutPutf must be static
 _asm add OutCount[esi * 4], eax //OutCount must be static
 _asm inc ebp
 _asm cmp ebp, edx
 _asm jle loopj

56

 _asm pop edi
 _asm pop ebx
 _asm pop esi

 _asm pop ebp
 _asm ret
}

Theoretically, the DFA can reduce up to 50% of state transitions, which would reduce

extra comparisons and accelerate significantly the matching process. In practice such

accelerations cannot be reached since the pattern-matching machine spends a lot of its time in

state 0, from which there are no failure transitions [98] as shown in our experience results

reported in Tables 4.2, 4.3 and 4.4. From the above pseudo-code and algorithms 1, 2 and 3

given in [98], it appears clearly that building the different tables is the difficult task of the AC

algorithm. The searching process is easy once these tables are available. This method of coding

state transitions is more economical than storing them as a two-dimensional array. However,

it requires extra memory space larger than the corresponding representation for the goto

function. Using the next-move function with the set of patterns {these, this, the, set} would

make the sequence of state transitions shown in Fig 3.7.

Figure 3.7: State transitions using the next-move function

57

Chapter 4

4 SIMD Implementation of the Aho-Corasick

Algorithm using Intel® AVX2

Over the years, computer designers have always improved the performance of the machines.

The limitations of the speed of electronic components, which has achieved extremely high

packaging densities of circuits and almost reached its limits has led to a search for other

accelerating mechanisms at architectural level with the aim to (i) decrease latency, or the time

from start to completion of an operation, by using multiple register sets, placing high speed

memory -caches between the processor and main memory, hardware implementation of

frequently-executed operations, etc. and (ii) increase bandwidth, or the width and rate of

operations, through one of the following two forms of parallelism: pipelining and replication

[104].

Pipelining is the process of breaking down the execution of an operation into several

stages, which enables simultaneous execution of different stages for a stream of operations by

different modules able to operate concurrently (the pipeline). This process allows each

subsequent operation to enter the pipeline as soon as the previous operation has exited the first

stage. Once all stages of the pipeline are filled, a new result of an operation execution becomes

available after every unit of time it takes to complete the slowest stage. Replication, on the

other hand, is the process of duplicating executing units (replicating hardware resources) to

enable simultaneous execution of different operations [104].

Common parallel architectures that use pipelining and/or replication can be classified as

shown in Figure 4.1. This classification clearly situates the multimedia extensions, which

borrow concepts from both the instruction-level parallel and the data parallel architectures,

and when incorporated in process-level parallel architectures, they enable exploiting

multilevel parallelism.

58

Figure 4.1: Classification of parallel architectures [105]

Multimedia extensions follow the Single Instruction Multiple Data (SIMD33) paradigm,

where a single control unit dispatches instruction to a set of simple processing items that apply

each of these instructions synchronously to different data, thus providing a new way to utilize

data parallelism at instruction level [104]. Different processors, as shown in Table 4.1, support

different multimedia instruction sets each with its own characteristics, but the underlying

concepts are quite the same.

Processor Vector Extension Name

Sun UltraSPARC VIS (Visual Instruction Set)

Hewlett-Packard PA-RISC MAX (Multimedia Acceleration eXtensions)

Intel Pentium MMX

Intel Pentium SSE (Streaming SIMD extensions)

Intel Core i7 SSE4 (Streaming SIMD extensions)

Intel Sandy Bridge processor AVX (Advanced Vector Extensions)

Silicon Graphics MDMX (MIPS Digital Media eXtentions)

Digital Alpha MVI (Motion Video Instructions)
PowerPC AltiVec

AMD K6-2 3Dnow!

AMD XOP, FMA4, CVTI16

ARM NEON

MIPS DSP ASE

Table 4.1: First-generation short-vector processors [106]

In the following, we focus on multimedia extensions to the Intel® architecture, and more

specifically on Advanced Vector Extensions (AVX).

33 From Flynn’s taxonomy 1966 (a specific classification of parallel computer architectures): SISD, SIMD,

MISD and MIMD

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

59

4.1 Intel® SIMD extensions

The SIMD extensions were originally designed to speed up processing applications such as

image processing, 3D rendering, video and audio processing, speech recognition, and data

communication algorithms. They can also be used for other data-intensive scientific

computations such as computational biology.

Figure 4.2: Intel® SIMD extensions

For Intel processors, the vector instructions have been gradually introduced in different

processor generations. Started with the MMX™ in 1996 (instructions in this extension operate

only on packed integer values and rarely used in modern processors), followed by several

Streaming SIMD Extensions (SSE) versions from 1999 to 2008 (available in almost any today

processor), and continued to this day with AVX (supported in new processors). Figure 4.2

shows different Intel SIMD extensions to the IA-32 architecture34.

34 IA-32 short for “Intel Architecture 32-bit”, is the 32-bit version of the x86 instruction set architecture, which

is initially developed by Intel and implemented in its 8086 microprocessor (in 1978) ant its 8088 variant. The

x86 family includes microprocessors compatible with the Intel 8086 instruction set.

https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Microprocessor

60

4.1.1 MMX™ Technology

In 1996, Intel announced the first widely deployed desktop SIMD with a multimedia extension

technology, called MMX35, to the IA-32 architecture incorporated into the Pentium® processor

P55C. The 64-bit MMX™ technology is a major improvement in Intel's architecture to

accelerate multimedia applications. Microsoft incorporated support for these extensions in

Direct3D, interactive 3D graphics, a set of API services for real-time, and their Visual C++

compiler [109]. The MMX™ technology consists of the following extensions to the Intel

architecture:

• Single Instruction Multiple Data (SIMD) techniques for logic and arithmetic

operations on packed data from/to 64-bit registers.

• Eight 64-bit wide MMX registers accessed directly using the register names MM0

to MM7, shared with Floating-Point (FP) registers.

• Four new 64-bit integer data types:

- 8 packed bytes (8 x 8-bit)

- 4 packed words (4 x 16-bit)

- 2 packed doublewords (2 x 32-bit)

- 1 quadword (l x 64-bit)

• 57 new basic general-purpose integer instructions that operate on the 64-bit data

types to take advantage of the MMX technology.

Figure 4.3: MMX data types [109]

The MMX technology supports basic arithmetic operations, logical operations,

comparison, conversion instructions to convert between the new data types - pack data

together, and unpack from small to larger data types, shift instructions that operate on the

64-bit integer data types, and data movement (data transfer for MMX registers or 32-bit and

64-bit load/store to memory) [109].

35 MMX is actually not an abbreviation but a meaningless initialism trademarked by Intel [107]. The MMX

initials have been explained as standing for MultiMedia eXtension [108], Multiple Math eXtension, or Matrix

Math eXtension.

https://en.wikipedia.org/wiki/Initialism
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/wiki/MMX_(instruction_set)#cite_note-7
https://en.wikipedia.org/wiki/MMX_(instruction_set)#cite_note-NYT.1997Jan09-1

61

4.1.2 Streaming SIMD Extensions (SSE)

The MMX™ extensions introduced SIMD capability into the IA-32 architecture, with the

64-bit MMX registers, 64-bit packed integer data types, and instructions to perform SIMD

operations on packed integers. SSE extensions expand the SIMD execution model to handle

packed and scalar single-precision floating-point values contained in 128-bit registers.

In 1999, Intel introduced the Pentium III processor where they incorporated the SSE

extensions (an update to MMX™), also called Katmai New Instructions (KNI) since they were

originally included on the Katmai processor, which was the code name for the Pentium III

core revision. Others processors based on the Pentium III core such as the Celeron 533A and

faster Celeron processors also support SSE instructions [110].

The SSE instructions are especially useful with MPEG236 decoding. Processors

supporting SSE can perform MPEG2 decoding in software at high-speed without the need to

have an additional hardware decoder card. They are also much faster than previous processors

in the field of speech synthesis and recognition. The main advantage of SSE over MMX™ is

the support for single-precision floating-point SIMD operations, which was a bottleneck in the

3D graphics processing. SSE extensions are fully compatible with all software written for

IA-32 processors before, and SSE floating-point instructions can be mixed with MMX™

instructions with no performance penalties. SSE adds 70 new instructions for graphics and

sound processing over what MMX™ provided, control data cache ability, and data prefetching

[110].

SSE expanded over the generations of Intel® processors to include SSE2, SSE3/SSSE3,

and SSE4. These technologies add the following extensions to the IA-32 architecture, while

maintaining full compatibility with previous IA-32 processors, applications and operating

systems:

• Eight 128-bit registers: XMM0 - XMM7

• Two 128-bit floating-point and five 128-bit integer data types that can be used as:

- 4 packed single-precision floating-point numbers (4 x 32-bit)

- 2 packed double-precision floating-point numbers (2 x 64-bit)

- 16 packed bytes (16 x 8-bit)

- 8 packed words (8 x 16-bit)

- 4 packed doublewords (4 x 32-bit)

- 2 packed quadwords (2 x 64-bit)

- 1 double quadword (l x 128-bit)

36 MPEG2 is an audio and video codec standard published by the Moving Pictures Expert Group. It is the codec

used to compress digital broadcast video and DVDs.

62

• Instructions that operate on 128-bit packed single-precision FP and additional

64-bit SIMD integer data types.

Figure 4.4: The 128-bit Streaming SIMD Extensions [114, p. 182]

Each SSE version adds new instructions to perform on multiple data objects and increases

performance:

✓ SSE2, also called Willamette New Instructions (WNI), was introduced in November

2000 with the Pentium 4 processor, and added 144 additional SIMD instructions. It

brought two major features: double-precision (64-bit) floating point for all SSE

operations, and extended SIMD integer instructions introduced with MMX™

technology from 64 to 128 bits (XMM registers). SSE2 included all the previous

MMX™ and SSE instructions.

✓ SSE3, called Prescott New Instructions (PNI), is an upgrade to SSE2 introduced in

February 2004, with the Pentium® 4 Prescot processor. It included 13 new SIMD

instructions that are primarily designed to improve thread synchronization, complex

math, and specific application areas such as media and gaming. It also allowed to add

or multiply two numbers that are stored in the same register, which wasn't possible in

the earlier versions. SSE3 included all the previous MMX™, SSE, and SSE2

instructions.

✓ SSSE3 (Supplemental SSE3), Merom New Instructions (MNI), was first introduced

in June 2006 in Intel® processors based on the Core microarchitecture with the Xeon

5100 series server processors, and later in the Core 2 processors. SSSE3 adds 32 new

SIMD instructions to SSE3 to accelerate computations on packed integers.

✓ SSE4, added 54 new instructions in Intel® 64 processors. A subset of 47 of these

instructions were made available in January 2008 on the successor of Intel® Core™

microarchitecture (code named Penryn) -versions of the Intel® Core 2 processors. This

https://en.wikipedia.org/wiki/Double-precision
https://wikivisually.com/wiki/Core_(microarchitecture)

63

subset, referred to as SSE4.1 or Penryn New Instructions (PNI), was designed to

accelerate the workloads of media, imaging, and 3D processing. It also improved

compiler vectorization and support for DWORD computations. In November 2008,

SSE4.1 was updated with the second subset of 7 instructions supported by Intel®

processors based on the Nehalem microarchitecture -Core i7 processors, referred to as

SSE4.2. These instructions improved string and text processing, and enhanced the

capability of the 128-bit integer SIMD capability in SSE4.1. SSE4 supports

all previous SSE version instructions [111].

4.1.3 Advanced Vector Extensions (AVX)

AVX is the next generation of the SIMD instruction sets, which increases the CPU registers

size, provides an instruction format which allows three input arguments, and extends vector

processing capability. This results in higher performance and more efficient data management

for image and audio/video processing, 3D modeling, financial analytics, scientific simulations,

and more. These extensions include Intel® AVX, Intel® AVX2, and Intel® AVX-512.

✓ Intel® AVX, is a 256-bit SIMD operations extension of Intel® SSE, designed to deal

with applications which make a more intense use of floating-point operations such as

visual processing, cryptography and data mining. In this extension, the support for

integer operands is lacking. It was released in the early 2011s as part of the second-

generation Intel® Core™ processor family (supported first by the Intel® Sandy Bridge

processor released in Q1, 2011). AVX extends the previous SIMD instructions by:

• Expanding all 16 XMM registers (128-bit SIMD registers) to 256 bits: YMM0 –

YMM15, while SSE instructions operate on the lower half of the YMM registers.

• Adds a three-operand non-destructive operation where the destination register is

different from the two source operands.

• Introduces a new prefix coding scheme, referred to as VEX37, in instruction

encoding format [112].

• Introducing new operations to enhance vectorization such as:

- Broadcasts;

- Masked load & store.

37 The VEX (from "vector extensions") prefix encoding allows the definition of new instructions and the

extension or modification of previously existing instruction codes. It applies to SIMD instructions operating on

YMM and XMM registers, but it is not supported for instructions operating on MMX™.

https://en.wikipedia.org/wiki/Instruction_(computer_science)

64

Figure 4.5: Intel SIMD registers (AVX) [114, p. 329]

Processors based on the Sandy Bridge microarchitecture and supporting AVX include

Core i7, Core i5, and Core i3 second and third-generation processors along with Xeon

series E3, E5, and E7 processors [113].

✓ Intel® AVX2, also known as Haswell New Instructions, was released in 2013 with the

fourth generation Intel® Core™ processor family (supported first by the Intel® Haswell

processor released in Q2, 2013). Intel® AVX2 follows the same programming model

as the Intel® Advanced Vector Extensions (Intel® AVX), and extends it with:

• Support for integer computation demanding algorithms by extending SSE and

AVX with 256-bit integer instructions.

• AVX2 includes the Fused Multiply-Add (FMA) extension which allows numbers

to be multiplied and added in one operation: three-operand fused multiply-

accumulate support (FMA3)

• Enhances vectorization with Gather operation that loads vector items from non-

contiguous memory locations, and introduces vector Shift operations.

• It provides enhanced functionalities for Broadcast/Permute operations on data

elements, and instructions to fetch non-contiguous data elements from memory.

The specification of the AVX2 instruction set and information needed to create

applications using this extension are available under the Intel® Architecture Instruction

Set Extensions Programming Reference [114]. Processors based on the Haswell

microarchitecture and supporting AVX2 include Core i7, Core i5, and Core i3 fourth

generation processors and Xeon E3 (v3) series processors based on the Haswell

microarchitecture [113].

https://en.wikipedia.org/wiki/FMA_instruction_set
https://en.wikipedia.org/wiki/FMA_instruction_set

65

✓ Intel® AVX-512 consist of several extensions to the 256-bit Advanced Vector

Extensions AVX/AVX2 family of SIMD instructions announced by Intel® in July of

2013 and implemented later in Intel® Knights Landing processors (2016). These

extensions not all meant to be supported by all processors implementing them38.

AVX-512 extensions use a new EVEX prefix encoding with support for 512-bit vector

registers, double the number of registers (32 registers ZMM0 – ZMM31), double the

width of data registers (512-bit/register) and double the width of Fused-Multiply Add

(FMA) units, compared to Intel® AVX2. Intel® AVX-512 instructions offer higher

performance capabilities for the most demanding computational tasks [115].

Figure 4.6: Intel SIMD registers (AVX-512)

In the vectorization process of the AC algorithm proposed in section 4.5, we use AVX2

extension to benefit from SIMD instructions operating on integer data type since states

generated in the pattern-matching machine by running the AC algorithm are coded as

integer values. But prior to using AVX2 instructions, we must first make sure that

hardware and operating system support this extension as explained next.

4.1.4 Test for AVX2 support

In order for an application software to correctly use the AVX (or AVX2) instructions and

avoid runtime crashes, it must properly detect hardware support for these instructions using

CPUID instruction39, and never assumes that by simply knowing the processor’s model,

38 For example, the Intel's Knights Landing processor (2016) supports the following AVX-512 extensions:

AVX-512 Foundation, AVX-512 Conflict Detection Instructions (CD), AVX-512 Exponential and Reciprocal

Instructions (ER) and AVX-512 Prefetch Instructions (PF).

39 The CPUID (CPU IDentification) instruction is a processor supplementary instruction introduced by Intel in

1993 with the Pentium and SL-enhanced 486 processors allowing software to discover details of the processor

features.

http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/intel-powers-the-worlds-fastest-supercomputer-reveals-new-and-future-high-performance-computing-technologies
https://en.wikipedia.org/wiki/Knights_Landing_(microarchitecture)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Processor_supplementary_instruction
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Pentium
https://en.wikipedia.org/wiki/SL-enhanced_486

66

family, or its brand name. It is important to understand that AVX (or AVX2) instruction set is

supported on a particular processor only if the corresponding CPUID feature flag is set [116].

In assembly language, the CPUID instruction takes no parameters but instead it implicitly uses

the EAX register to determine the processor feature information (values returned in EAX,

EBX, ECX and EDX registers, according to the input value entered initially in EAX register).

1- Detection of AVX instructions

Application detection of AVX instruction set operating on the YMM state follows the

general procedural flow as shown in Fig 4.7.

Figure 4.7: General procedural flow of application detection of AVX [114]

According to Intel® Architecture Instruction Set Extensions Programming Reference

[114], the application software must identify that the operating system supports the

XGETBV instruction, the YMM register state, in addition to processor’s support for

YMM state management using XSAVE/XRSTOR and AVX instructions as illustrated by

the following pseudocode.

Listing 4.1: AVX detection process pseudocode [114]

 INT supports_AVX()
 {
 // Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 ==> XGETBV is
 // enabled for application use.
 // Detect CPUID.1:ECX.AVX[bit 28] = 1 ==> AVX instructions supported.
 // Results returned in EAX
 mov eax, 1
 cpuid
 and ecx, 018000000H
 cmp ecx, 018000000H // check both OSXSAVE and AVX feature flags
 jne not_supported

https://en.wikipedia.org/wiki/Assembly_language

67

 // processor supports AVX instructions and XGETBV is enabled by OS

 mov ecx, 0 // specify 0 for XFEATURE_ENABLED_MASK register
 XGETBV // result in EDX:EAX
 and eax, 06H

 cmp eax, 06H // check OS has enabled both XMM and YMM state support
 jne not_supported
 mov eax, 1
 jmp done

 NOT_SUPPORTED:
 mov eax, 0
 done

}

 --

2- Detection of AVX2 instructions

According to [114], hardware support for AVX2 is indicated by the CPU identification

instruction “CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1”. But prior to this,

application software must first identify that hardware supports AVX as explained

before. AVX2 detection process pseudocode is given below.

Listing 4.2: AVX2 detection process pseudocode [114]

INT supports_avx2()
{
 // result in EAX
 mov eax, 1
 cpuid
 and ecx, 018000000H
 cmp ecx, 018000000H // check both OSXSAVE and AVX feature flags
 jne not_supported

 // processor supports AVX instructions and XGETBV is enabled by OS
 mov eax, 7
 mov ecx, 0
 cpuid
 and ebx, 20H
 cmp ebx, 20H // check AVX2 feature flags
 jne not_supported

 mov ecx, 0 // specify 0 for XFEATURE_ENABLED_MASK register
 XGETBV // result in EDX:EAX
 and eax, 06H
 cmp eax, 06H // check OS has enabled both XMM and YMM state support
 jne not_supported

 mov eax, 1
 jmp done

 NOT_SUPPORTED :
 mov eax, 0
 done :
}

68

4.2 Vectorization: Data Parallelism

Vectorization, or SIMD processing, is the process in which an algorithm is converted from a

sequential or scalar implementation, that performs an operation one pair of operands at a time,

to a vector process where multiple data operands are simultaneously performed in only one

instruction (data-level parallelism), provided that this scalar algorithm is suitable for being

parallelized using vectorization techniques [117]. In SIMD processing, operands40 are treated

not as individual integers or float-point numbers but rather as vectors. Moreover, not only

SIMD instructions like addition, logical OR, data movement, conversion or comparison

operate on vectors but also reading from and writing to memory (load/store instructions)

operate on vectors too (all operations in SIMD are vector operations). In the example of the

figure below, only one SIMD instruction is needed to process vector items, whereas in

sequential processing, without SIMD, multiple instructions would be used instead.

Figure 4.8: Scalar vs. SIMD vector addition

Figure 4.8 shows a comparison between scalar and SIMD vector addition. In case of scalar

addition of four elements of vector A(a1, a2, a3, a4) with four elements of vector

B(b1, b2, b3, b4), each element of A and B is first read from memory before being added

together, and then written back to the memory associated with vector C(c1, c2, c3,c4).

The CPU reads separately a1 and b1 form memory to the CPU registers (02 load instructions),

adds a1 with b1 (01 add instruction) and saves the result back to the memory (01 store

instruction). Instructions are issued in the same manner for other vector elements, giving rise

to a total of 16 separate instructions: 4 × (02 load, 01 add, 01 store) instructions. In case of

40 Adjacent data items of the same type and size refer to as vectors or packed data.

69

SIMD addition, the same task is performed, but this time only (01 load instruction) is used to

read four elements of vector A from memory, similarly (01 load instruction) is used to read

elements of B, then (01 SIMD add instruction) sums the corresponding elements of A and B,

with a final (01 store instruction) used to write back four elements of C to memory, resulting

in 04 separated SIMD instructions. In theory, the speed can be multiplied by 4: 16 separate

instructions are reduced to 04 to produce the same result.

4.3 Vectorization approaches (SIMD programming methods)

A key to increase application performance is to take advantage of vectorization, which occurs

when code makes use of SIMD instructions. Different approaches to achieving vectorization

exist. The Intel® C++ compiler (ICC) provides several levels of vectorization supports such as

inline assembly, intrinsics, C++ vector libraries and auto-vectorization (see Fig 4.9).

1. The first form of vectorization is to explicitly call the processors SIMD instructions using

directly low-level assembly code (or inline assembly such as C-ASM in C/C++ code)

and available registers. This way of utilizing vector instructions offers more control over

the program and yields the maximum performance of the system but cross-platform

porting is quite difficult (changes must be made at the source code level to execute the

same program on another processor architecture);

2. Use of the compiler intrinsic functions (assembly-coded C style functions that provide

access to many Intel® instructions, including SIMD instructions, without the need to

explicitly write assembly code). In this approach, high level languages such as C/C++ or

FORTRAN can be used to write the code. It provides almost the same benefits as using

inline assembly and saves us to deal with register allocations, instructions scheduling

and stack calls;

3. Use of Intel® Cilk™ Plus array notation41 and elemental function42 syntax. These

notations can be used separately from each other to help the compiler perform

parallelization. More details to using these language extensions can be found in [118].

41 Intel Cilk Plus includes extensions to C and C++ that allows for parallel operations on arrays.

In array notation A[0:n] = 5; sets the first n elements of array A to 5. Its equivalent scalar C/C+ Code:

for (i = 0; i < n; i++) A[i] = 5;

42 An elemental function is a regular function, which can be invoked either on scalar arguments or on array

elements in parallel.

70

4. Use of high-level mathematics libraries, such as Intel® MKL (Math Kernel library),

which implement vector instructions of common operations for linear algebra, signal

analysis, statistics, etc [119]. Intel® MKL functions are fully thread-safe, so that multiple

calls implying different threads will not conflict with one another [117]. Intel® Integrated

Performance Primitives, or IPP library for C/C++ developers, is another cross-platform

software library (available for Linux, macOS, Windows and Android operating systems.)

that provides vectorized functions, which can be used for multimedia and data processing

applications [117].

5. Compiler auto-vectorization: The easiest form of vectorization where no changes to the

source code are required. As a result, the portability of the code is preserved. When

compiling from high-level languages such as C/C++ or Fortran, automatic vectorization

is enabled at the compiler default optimization level -O2. However, to gain the most from

automatic-vectorization, there are several ways in the compiler can be provided with

additional information that enable it to better vectorize -does the transformation and

produces efficient SIMD code based on a handful of directives (compiler hints) in the

code like #pragma SIMD statements to automatically guide the compiler to vectorize

more loops, #restrict keywords indicating to the compiler that a given array corresponds

to a unique region of memory (to eliminates the need for run-time checks for overlapping

arrays), etc. This approach is referred to as auto-vectorization hints, or semi auto-

vectorization [119];

Figure 4.9: SIMD programming methods

71

Compiler auto-vectorization is the easiest form of vectorization that is present in many

modern compilers (C/C++/Fortran), where specific portions of the sequential code are

converted into equivalent parallel ones intended for use on vector processors. This is the most

convenient way to do vectorization because cross-platform porting is preserved (performed by

the compiler), in contrast to embedding SIMD assembly code into a source program, which is

rather complicated because it requires careful handling of data transfers between available

vector registers and memory. This latter method delivers better performance than the compiler

auto-vectorization, but cross-platform porting is not guaranteed [119]. It is chosen here

because it seems to be the most effective one for speeding up the AC algorithm.

4.4 Characteristics of SIMD operations

In SIMD processing, the same operation is applied to each element of the source operands.

However, this is a constraint because programs often do not map well onto pure vector

operations and even if it is the case, they might not reach the best resource utilization [120].

Programs can benefit from SIMD processing if they have highly repetitive loops, and use

intensively instructions that operate on independent values in parallel. The practical speed-up

with vectorization comes from the efficient data movement and the identification of

vectorization possibilities in the program itself [121]. Vectorization fails if the structure of the

program is not suitable for parallelization and its data types are either mixed, dependent or not

aligned.

In the following we outline two main obstacles to vectorization that either prevent it or

cause the compiler to decide that vectorization would not be worthwhile:

• Non-contiguous memory accesses: Considering 04 consecutive integers or floats that

can be loaded directly from memory in a single AVX instruction. If the 04 integers are

not aligned43, they must be loaded separately, which is less effective since it implies

using multiple instructions. In listing 4.3, we give two illustrative examples of non-

contiguous memory access: loops with non-unit stride, and loops with indirect

addressing.

Listing 4.3: Examples of non-contiguous memory access

--

// arrays accessed with stride 2

43 Alignment is the adjustment of any data object in relation with other objects.

72

for (int i = 0; i<SIZE; i += 2) b[i] += a[i] * x[i];

// indirect addressing of x using index array
for (int i = 0; i<SIZE; i += 2) b[i] += a[i] * x[index[i]];

• Data Dependencies: Vectorization involves changes in the order of operations within

a loop, since each SIMD instruction operates on several data items simultaneously.

Vectorization is made possible only if this change of order does not impact the results

of the calculation. All data dependencies must be respected to prevent incorrect results.

The example of listing 4.4 shows a case of data dependencies where data items that are

written to memory may appear in other iteration of the individual loop.

Listing 4.4: Examples of data dependencies

// Example of read-after-write dependency (also known as flow dependency)
A[0] = 0;
for (j = 1; j<MAX; j++) A[j] = A[j - 1] + 1;
// this is equivalent to:
A[1] = A[0] + 1; A[2] = A[1] + 1; A[3] = A[2] + 1; A[4] = A[3] + 1;

// Example of write-after-read dependency (an anti-dependency)
for (j = 1; j<MAX; j++) A[j - 1] = A[j] + 1;
// this is equivalent to:
A[0] = A[1] + 1; A[1] = A[2] + 1; A[2] = A[3] + 1; A[3] = A[4] + 1;

In this example, the first loop cannot be vectorized because if the first two iterations

are executed concurrently by a SIMD instruction, the value of A[1] may be used by

the second iteration before it has been calculated by the first iteration, which could

yield erroneous results. The second loop is also not safe for parallel execution, since

A[1] may be used by the second iteration (iteration with the write) before it has been

red by the first iteration. Nevertheless, it should be noted that in the second loop, no

iteration with a higher value of j can complete before an iteration with a lower value

of j, and so vectorization is safe; yields the same result as non-vectorized code.

For helping the compiler to better vectorize the code, we should avoid complex loop

termination conditions and dependencies between loop iterations. We should also avoid

branches such as switch, goto or return statement, and prefer the use of array notation to

pointers because C programs impose very few restrictions on their use. Since effective

vectorization comes from efficient data movement, we have to choose an appropriate data

73

layout that, in combination with code restructuring44, will result in aligned memory accesses

throughout the program: If our compilation targets Intel® AVX2 instructions, we try to align

the data of the code on a 32- byte boundary since AVX data movement instructions, as other

AVX instructions, are rather sensitive to alignment [122].

4.5 SIMD Implementation of the Aho-Corasick Algorithm using Intel®

AVX2

One effective way to benefit from different levels of parallelism included in modern processors

is the use of vectorization. The program to optimize has to be written using available vector

registers (XMM, YMM and ZMM in case of Intel® processors) and SIMD instructions

(MMXTM, Streaming SIMD Extensions SSE and AVX instructions in case of Intel®

processors). In this section, we try to identify vectorization opportunities from the structure of

the AC program (its code structure), we particularly look to parallelize some data processing.

4.5.1 Vectorization of the Aho-Corasick Algorithm using Intel® AVX2

The second version of the AC algorithm, using the next-move function, seems vectorizable.

Considering the sequence of state transitions in Fig 3.7. Each time the machine enters a new

state, a text character being inspected, has to be matched against all characters of that state

transitions one at a time. One way to speed up the searching process is by comparing

simultaneously the text character to all characters of that state transitions. For example, if the

machine enters state S2 then the character being examined is concurrently compared to e, i, t

and s characters (data-level parallelism). This can be achieved using vector processing

techniques. To implement the vectorized algorithm, we use VPBROADCASTB and

VPCMPEQB Intel® AVX2 instructions. The VPBROADCASTB instruction loads a byte

integer (a text character being processed) from memory via ECX and EDX registers and

broadcasts it to thirty-two (32) locations in YMM1 register (data are aligned to 32-byte

boundaries in order to use AVX extension). Next, we load all characters of state transitions of

a current state in YMM2 register using VMOVUPS instruction. Finally, a SIMD comparison

is performed between these two registers YMM1 and YMM2 using VPCMPEQB instruction,

and the result is given in YMM3 register. The next state is indicated by using the value of

YMM3 register as an index to another table, namely movef_nextstate table. This parallel

44 like loop peeling, which consists in removing a number of loop iterations from the loop, and moving them in

front of or after the loop, as appropriate. Other types of loop optimization exist such as loop interchange (changes

the ordering of nested loops to minimize memory stride), loop unrolling (reduce iterations), etc.

74

matching process, as shown in Fig 4.10, is repeated until all characters of an input text are

processed.

Figure 4.10: Vectorization process of the AC algorithm using AVX2 instructions

Note that when the number of patterns of a given state (max = 32 patterns/state) is not

important, only few bytes of YMM2 register will be used. In this case, as shown in the example

of Fig 4.10, we can write code to avoid comparing YMM1 register bytes ranging from byte 4

to byte 31 (having “chi” value) to their counterparts in YMM2 register (having zero value),

but this is useless since the speed of comparison will not be affected (remains the same)

because we are doing SIMD comparison. The vectorized version of the AC program using the

next-move function is given in listing 4.5.

75

Listing 4.5: SIMD implementation of the AC algorithm

--

// Here we convert the scalar AC algorithm using the next-move function
// given in listing 3.9 to a vector process

_declspec(naked) void __fastcall AC_NextMove_search_avx2(unsigned char *strp, int N)

{
 // fastcall ==> edx == N ecx == strp eax == last param

 _asm push ebp
 _asm mov ebp, esp
 _asm push esi
 _asm push ebx
 _asm push edi

 _asm add edx, ecx // edx == N + strp
 _asm xor esi, esi // esi == state == 0
loopj :
 _asm VPBROADCASTB ymm1, [ecx] // ymm1 size = 32 bytes(characters)

 // first we start by coding the loopi code fragment in listing 3.9:
 // (1) for (int i = 0; i < len_movef[state]; i++) {}
 // (2) if (c == movef_char[state][i]) { ..(3)....}
 _asm lea ebx, movef_char
 _asm mov eax, esi
 _asm shl eax, 8 //edx == state*256 (256 bytes -line size in "movef_char" array)
 _asm vmovups ymm2, [eax + ebx]

 //comparison result in ymm3 0xff 0x00 0x00 0xff 0xff 0x00
 _asm vpcmpeqb ymm3, ymm2, ymm1
 //comparison result in eax 1 0 0 1 1 0
 _asm vpmovmskb eax, ymm3
 // i == eax == 2
 _asm bsf eax, eax

 //for a given state, the number of state transitions <=32 (len_movef[state]<=32)
 _asm jz nonzero // bsf instruction (if flagzero == 1) then jump

 // (3) {state = movef_nextstate[state][i]; goto nextOK;}
 // state = state*256, 256 bytes - size of a line in "movef_nextstate" array
 _asm shl esi, 8
 _asm add esi, eax //state = state + i
 _asm lea edi, movef_nextstate //state = movef_nextstate[state][i];
 _asm mov esi, [edi + esi*4] //4 bytes -"movef_nextstate" array element size
 goto nextOK;

nonzero :
 _asm xor esi, esi

nextOK : // OutCount[state] += OutPutf[state];
 _asm mov eax, OutPutf[esi * 4] //OutPutf must be static
 _asm add OutCount[esi * 4], eax //OutCount must be static

 _asm inc ecx
 _asm cmp ecx, edx
 _asm jle loopj

 _asm pop edi
 _asm pop ebx
 _asm pop esi
 _asm pop ebp
 _asm ret
}

--

76

4.5.2 Experimental results

In this section we evaluate the performance of the vectorized AC algorithm by comparing it

to the AC algorithm using the next-move function as proposed by the authors in [98]. In

particular, we compare the running time of the AC_NextMove_search_AVX2 program to the

AC_NextMove_ search_ ASM program (the AC algorithm using the next-move function,

coded in assembly before vectorizing the code as given in listing 3.10). Comparison is done

by including the time of the pre-processing phase. The programs have been compiled with

Microsoft Visual Studio Ultimate 2013 (version 12.0.21005.1 REL) and experiments were

executed on LENOVO laptop, a 1.9 GHz CPU Intel I3-4030U with 4 GB RAM running

Microsoft Windows 8.1 Pro 64 bits.

For the evaluation purpose, we first use different files of plain English text, collected from

the Gutenberg website (http://www.gutenberg.org), their total size is ranging from 1 MB to

1 GB, and different pattern sizes categorized as follows: (i) sp short patterns designing English

words of length less or equal 18 bytes and, (ii) lp long patterns designing English phrases of

length greater than 18 bytes. Patterns were arbitrarily chosen, some of them may exist or not

in text files to be processed (especially when matching an important number of patterns).

Each input file is processed by running respectively AC_NextMove_search_ASM and

AC_NextMove_search_AVX2 programs. During the matching phase, the text characters of

each file is matched against either sp and lp patterns of different size. All functions of the pre-

processing phase are coded in C++ language. Only the search function, which behaves as a

finite state string pattern-matching machine is coded in assembly (in case of

AC_NextMove_search_ASM program) and codded using AVX2 instructions (in

AC_NextMove_search_AVX2 program). The pre-processing phase consists of the following

functions: the goto, the failure and the next-move functions that implement respectively

algorithms 2, 3 and 4 in [98].

Table 4.2 summarizes the running times of the algorithms. Here we would point out that

the vectorized AC algorithm, as implemented here, use only one YMM register (32 bytes

length), which limits the number of state transitions to 3245 (that can be reached once more

than 100 patterns are used especially in case of long ones).

45 32 is the maximum number of state transitions that YMM register can hold: each state is coded using 1 byte.

77

Table 4.2: Running times generated while searching different text file size for sets of different

patterns

To deal with an important number of patterns, the AC_NextMove_AVX2 program has to

be adjusted in a way that it uses a variable to store YMM value when the number of next states

(state transitions) exceeds 32, or uses more than one YMM register instead. Another

alternative is the use of ZMM registers (AVX- 512) where the width of the register is increased

to 512 bits allowing to have up to 64 state transitions/register.

The experimental results reported in Table 4.2 show that the AC_NextMove_AVX2

program performs better than its counterpart AC_NextMove_ASM in all cases. The speed up

gained depends on the pattern length and the number of patterns to search for. It is important

to highlight the fact that in practice the AC algorithm, as stated by the authors in [98] and

confirmed by our experiments, spends most of its time in state 0 (more than 90% of its

processing time in most cases). From Table 4.2, we can also notice that the speed-up gained

is independent on the file size.

78

In the second phase of our experiment, we use 10 different patterns (sp first then lp next

having different lengths) to search for, through different file sizes, and we measure the

speed-up gained in terms of time processing (in %) when executing the vectorized AC

algorithm (see Tables 4.3 and 4.4).

Table 4.3: Running times generated while searching different text file size for sets of 10

different short patterns

Table 4.4: Running times generated while searching different text file size for sets of 10

different long patterns

79

Here, we give a theoretical value (TheoV) of the speed-up when comparing the running time

of the AC_NextMove_AVX2 algorithm against the AC_NextMove_ASM algorithm. This

value is calculated by incrementing a variable inside an inner loop in AC_NextMove search

function and dividing its value by the number of the processed characters at the end of the

outer loop (which is the size of the input file). When considering these values, it is clearly

noticeable from Tables 4.3 and 4.4 that the speed-up gained is independent on the file size. In

order to get a clear idea about the automaton built, the number of states generated and the

number of the states that can be reached from state 0 are given for each execution.

Experimental results clearly show that the vectorized version of the AC algorithm, using

the next-move function, yields better performance in terms of speed whose running time

ranged from two (×2) up to eight (×8) of its original counterpart (not vectorized). The

speed-up gained depends on the number of the patterns to search for and their length but not

on the file size.

The use of vectorization results on a higher return in performance and efficiency that

depend on the code structure. But, once again, the programmer must examine at first the

structure of the code to vectorize in depth to identify parts (code fragments) that offer

vectorization opportunities, and make the data structures in the code nearly fit the structure

built into the hardware.

80

Chapter 5

5 Improving the Signature Scanner using an

Optimized Aho-Corasick algorithm

A significant part of the AV software execution time is dedicated to the scanning process:

objects are scanned against a set of malware signatures in order to determine if they are safe

or malicious. As it is important that the scanning process be as fast as possible, efforts must

be made to minimize the time spent during matching these signatures. Considering AV

databases, and particularly those of ClamAv software that have been used as experimental

signature set in many researches related to malware scanning solutions [123, 124, 125, 126].

Most of the signatures contained in these databases are MD546 hashes of files, and the rest are

basic string, regular expression (regex) patterns, and other type of signatures related to

archives and spam e-mails. In their work on memory-based multi-pattern signature scanning

for ClamAv antivirus [126], Dien et al, analyzed ClamAV database (database of September

2013 - ClamAv version 0.98.4) and found that 93.96% of the signatures are MD5 hashes but

only account for around 8% of scanning time, and 4.7% are basic string and regex patterns

(both types are byte-stream signatures) that account for 91.80% of scanning time, as shown in

table 5.1.

Signature types Basic string Regex patterns MD5 hashes Other Total

No. Signatures 88,885 9,670 2,277,804 47,866 2,424,225

No. Sig. ratio (%) 3.67% 0.40% 93.96% 1.97% 100%

Scan time ratio (%) 63.86% 27.94% 8.20% 100%

Table 5.1: Analysis on ClamAv database [126]

As we can see from Table 5.1, the largest portion of malware signatures are MD5 hashes.

However, scanning against this type of signatures does not take time, and simply realized by

46 The Message-Digest Algorithm 5 (MD5) is the most commonly used hash function for malware analysis,

though the Secure Hash Algorithm 1 (SHA-1) and SHA-256 are also popular. MD5 hash is 128-bit string or 32

hexadecimal digits long. The idea behind the algorithm is to convert any size or length data (text or binary) to

fixed size “hash value” output.

81

applying an MD5 hash function to the file (usually a specific section in a PE47 file) being

scanned, and matched the function result against all ClamAV database hashes of malware

signatures. To implement an MD5 malware scanner, signature hashes can be collected from

https://virusshare.com/hashes.4n6 web site, and get their corresponding names from the

VirusTotal web site (Owned by Chronicle Security, a part of Google cloud that provides free,

multi-scanner malware insights, and automatically share types of malware with the security

community) at: https://www.virustotal.com/gui/file//detection. The GitHub repository is also

a good choice since it provides both malware names and their MD5 hash signatures

https://github.com/ytisf/theZoo/blob/master/malwares/Binaries.

Table 5.2: Malware MD5 signatures

47 The Portable Executable (PE) format is a file format for executables, DLLs, FON Font files, etc., used in

both x86 and x64 versions of Windows operating systems.

https://chronicle.security/products/virustotal/
https://www.bing.com/search?q=Microsoft+Windows&filters=sid%3a16aeb6d9-9098-0a40-4970-8e46a4fcee12&form=ENTLNK

82

Table 5.2 gives some examples of malware MD5 signatures. However, it should be noted

that the same malware can be identified differently when submitted to different AV engines

(aliases). For example, the “Ransomware Wannacry_Plus” can be identified as

Ransom:Win32/CVE-2017-0147.A (Microsoft), Ransom.WannaCrypt (Malwarebytes), or

Ransom_WCRY.SMALYM (TrendMicro) to cite just a few. VirusTotal can provide a complete

list of different aliases attributed to the same malware. So why different AV engines find the

same malware as different? Because of the different ways that AV vendors seek out and

classify malware. Each AV vendor uses different conventions to name every malware sample

it discovers. The majority of malware samples are named based on the information extracted

from the samples, such as their functionality (Downloader, Banker), the author’s name (Morris

worm), or they are given a completely generic name (Agent, Threat or Malware). In some

cases, the malware authors name their creations themselves (Petya ransomware named by its

creator "Janus Cybercrime Solutions" or shortly Janus).

 As noted earlier from Table 5.1, MD5 signatures consume around 8% of scanning time

despite their majority in AV database. Therefore, we ignore this kind of signatures and focus

on byte-stream signatures since they consume more than 90% of the scanning time in order to

reduce the overall scanning time of the AV software.

5.1 Scanning for byte-stream signatures

In contrast to scanning for MD5 hashes that does not take time, scanning for byte-streams

(basic strings and regular expressions) takes a significant amount of time since the scanning

process is carried out for inside the file. Therefore, the scanning time that can be optimized is

the one related to scanning against this type of signatures.

The basic string signature, a simplest form of a malware signature, is essentially byte

sequences (one or more constant sequence of bytes) common to a particular malware file that

normally should not appear in other safe files. Table 5.3 gives few examples of such

signatures. Each entry of the table consists of the malware name, followed by a short

description of the malware, and its signature in hexadecimal format to detect its presence.

The basic string signatures, used in the experience, are especially collected from the

German University of Freiburg (https://ad-teaching.informatik.uni-freiburg.de/cplusplus-

ss2012/virus-signatures.txt) and the online United Kingdom magazine “Virus Bulletin”

(https://www.virusbulletin.com/uploads/pdf/magazine/) websites.

83

Unlike MD5 signatures that are of fixed length (32 hexadecimal digits), basic string

patterns can be of any length as shown in Table 5.3.

Table 5.3: Malware basic string signatures

A regular expression, or regex signature is an extension of the basic signature with various

wildcards. For detecting complex file infectors (polymorphic malware samples) that change

their physical forms (binary signatures) after every infection, regex signature support is

necessary. Table 5.4 shows some regex features allowed in the ClamAV pattern set. For

example, the wildcard “*” in ClamAv means matching any number of bytes: the pattern

aac*bbc means that there can be 0 or more bytes between the symbols aac and bbc.

Formally, “*” virtually separate a signature into two parts, e.g. aac*bbc is treated as two

sub-signatures aac and bbc with any number of bytes between them. Each sub-signature must

include a block of two static characters somewhere in its body [127].

84

Symbol Meaning

?? match any byte, i.e. wildcard byte

a? match a high nibble (the four high bits)

?a match a low nibble (the four low bits)

(aa|bb) match aa or bb

!(aa|bb) match any byte except aa or bb

* match any number of bytes

{n} match n bytes

{-n} match n or less bytes

{n-} match n or more bytes

{n-m} match between n and m bytes (m > n)

Table 5.4: Some regular expression features allowed in ClamAV malware signatures

The signature for Cascade.1704.E virus “fa8bece800005b81eb????{1-

8}8db7????bc????31343124464c75f8” is defined with some wildcards ({n-m},??). Each

symbol “??” can be replaced with any 1-byte data and the symbol “{n-m}” can be replaced

with within in range from n to m number of bytes. When searching for this regex signature,

the matching engine must be able to match separate patterns “fa8bece800005b81eb”, “8db7”,

“bc”, “31343124464c75f8”, and verify the distant constraints between these patterns. More

regex pattern examples are given in Table 5.5.

For instance, the AC algorithm in its original or vectorized forms can only handle basic

string patterns, while certain malware patterns such as worm signatures could be specified by

regular expressions. Of course, it can be advanced to systematically construct a finite state

pattern-matching machine, which can indicate the ending position in a finite input string for

malware patterns that are specified by regular expressions. Tsern-Huei Lee, proposed a

generalized AC algorithm for signature based anti-virus applications, to handle patterns based

on regex expressions. They addressed the problem of constructing a finite state pattern-

matching machine for a set of strings W together with n simple regular expressions RE1, RE2,

…, and REn. Each REk expression must at least include one symbol among: “*” (match any

number of symbols), “?” (match any symbol), or “{min, max}” (match minimum of min,

maximum of max symbols) used in regular expression definition. Like the AC algorithm, its

construction procedure yields a pattern-matching machine dictated by the goto, failure, and

output functions. The difference is that its constructed pattern-matching machine consists of

multiple separated goto graphs connected by failure functions [128].

85

Table 5.5: Malware regex signatures

5.2 The signature scanner tool

The scanner tool consists of a malware signature database and a malware detection engine.

• The signature database also known as the dat file contains the uniquely identifiable

signatures of all collected malware. To build the database, we have collected more than

1000 malware basic string signatures from the web that are in HEX format without

commas or blank spaces. In our implementation, each malware record has two fields:

a name of the malware and its signature as shown in Table 5.6.

86

Table 5.6: Malware records

• The malware detection engine is implemented using the vectorized AC algorithm that

enables scanning huge amounts of files in a very short period of time. It scans files of

all types for malware excluding boot sector and partition table, which explains the

absence of a malware type field from a malware records table. The scan is done by

searching the whole files for entire signatures.

In practice, several techniques are used to reduce the performance cost of signature

scanning. These techniques are made available by expanding the signatures to include

additional information such as the type of an object to which is applied, the areas being

examined withing the object, and the size of the areas being scanned [129] as shown in Fig.5.1.

To keep scan times down, two main techniques are usually deployed:

• First, malware signatures are classified by the type of infection they represent. This

may include, boot sector, partition table, executable file or data file types. When a

particular object is scanned, this is usually done through a process of elimination. Only

the signatures that pertain to that object type will be used. For example, boot sector

87

signatures cannot be applied to executable files. The more signatures the AV engine

has to match, the longer the scan is going to last. Limiting scanning by object type

can significantly reduce the search space without impacting the effectiveness of a

scanner.

• Second, when a particular file is scanned, a flag is used to denote if the engine only

searches (i) at some specific file locations that are most likely to contain the signature

and particularly at the entry point (the location in the file where program execution

begins), (ii) for nibbles of signatures or (iii) searches the whole file if nothing is found.

In case of a nibble match, further matching with the respective entire signature is

curried out. Scanning an entire file for a sequence of bytes is not feasible, but searching

for nibbles of signatures at certain specific file locations such as the entry point of an

executable program or its header section accelerates the matching process and reduces

the amount of a scan [129].

Figure 5.1: Expanding malware signature [129]

5.3 Performance analysis

Here, we keep the same searching functions, which behave as a finite state string pattern-

matching machine, used in chapter 4 for the evaluation of SIMD implementation of the AC

algorithm. The only thing that changes is that the files to be analyzed can be of various types:

executable or data files, opened in binary mode, and matched against all malware patterns in

the database.

To evaluate the performance of the scanner tool engine implementing the

AC_NextMove_search_AVX2 function, we test it against the one implementing the

AC_NextMove_search_ASM function for various malware signatures by varying the malware

database size as a first step. Then we test the two programs by varying the malware signature

size.

Malware Name: W32.Sample.A
Byte Signature: 0A 8E 91 82 86 4C D2

Malware Name: W32.Sample.A
Byte Signature: 0A 8E 91 82 86 4C D2
File Types: Executable files
Scan Region: Program entry point
Scan Length: 112 bytes

Simple malware signature Extended malware signature

88

The programs have been compiled with Microsoft Visual Studio Ultimate 2013 (version

12.0.21005.1 REL) and experiments were conducted on DELL Inspiron 15 (3000 series)

laptop, a 7th Generation Intel® Core™ i5-7200U Processor (3MB Cache, base clock speed 2.5

GHz and TurboBoost up to 3.1 GHz) with 6 GB RAM running Microsoft Windows 10 pro 64

bits.

5.3.1 Performance according to the malware database

In this test, we start the two programs to scan different files occupying 1 GB disk space by

varying the malware signature database size. We keep the previous malware signatures and

we add new ones to the database before running the next experience. Table 5.7 and Fig. 5.2

show the performance of the scanners.

The results reported in Table 5.7 and Fig.5.2 show that the scanner using the vectorized

version of the AC algorithm performs better than its counterpart using the scalar version of

the AC algorithm when varying the malware database size.

Database

size

(Number of

malware

signatures)

Size of

malware

signatures

(Bytes)

T1 (seconds)

AC_NextMove

_ASM

T2 (seconds)

AC_NextMove

_AVX2

10 960 5.56971 3.15060

20 2036 7.30916 3.11254

50 5306 7.07618 3.02233

 100 14094 10.32911 4.24513

 500 75618 16.61124 6.18173

 1000 161972 24.03371 8.59318

Table 5.7: Execution times generated when varying the malware database size

(Amount of scan = 1GB)

Figure 5.2: Performance chart according to the database size

0

5

10

15

20

25

30

10 20 50 100 500 1000

SC
A

N
 T

IM
ES

 (
se

cs
)

DATABASE SIZE (Number of malware signatures)

T1 (seconds) AC_NextMove _ASM T2 (seconds) AC_NextMove _AVX2

89

In the second phase of the experience, we repeat the same experience by varying the

amount of scan (5 GB and 10 GB). Table 5.8 summarizes the running times of the programs

including those of the previous experience (1 GB) and gives the increase in the scanning speed

(speedup) when comparing these programs: the scanner using the vectorized version of the

AC algorithm and the one using the scalar version of the AC algorithm.

The results of this experience, as reported in Table 5.8, show that the vectorized scanner

outperforms its counterpart using the scalar version of the AC algorithm when varying the

amount of scan.

Total

size of

files to

scan

(GB)

Database

size

(Number of

malware

signatures)

Size of

malware

signatures

(Bytes)

T1 (seconds)

AC_NextMove

_ASM

T2 (seconds)

AC_NextMove

_AVX2

Speedup (%)

(AC_AVX2/

AC_ASM)

1

5

10

10

960

5.56971

27.74999

56.60074

3.15060

15.62186

31.98025

76.78

77.64

76.99

1

5

10

20

2036

7.30916

36.61182

74.27199

3.11254

15.52961

31.49397

134.83

135.75

135.83

1

5

10

50

5306

7.07618

35.31963

71.80279

3.02233

15.10217

30.64606

134.13

133.87

134.30

1

5

10

100

14094

10.32911

46.00147

97.01154

4.24513

18.93131

39.88751

143.31

142.99

143.21

1

5

10

500

75618

16.61124

94.02869

193.09861

 6.18173

34.97731

72.02133

168.71

168.82

168.11

1

5

10

1000

161972

24.03371

109.84837

226.83957

 8.59318

39.19973

81.07411

179.68

180.23

179.79

Table 5.8: Execution times generated when varying the malware database size

(Amount of scan = 1GB, 5GB & 10GB)

Always considering the results reported in Table 5.8, the execution times generated by

the third experience (database size = 50) when running the scanner using the scalar AC

algorithm are shorter than the execution times generated by the second experience despite the

number of malware signatures, which is much lower (database size = 20). This is due to the

pattern-matching machine behavior (the automaton built from the data of the signatures), and

precisely depends directly on the content of state S0, where the automaton spends most of its

90

time [98]. On the other side, when running the scanner using the vectorized AC algorithm, it

can be noted that the execution times generated always by the third experience are the shortest

times of all experiences. This is also due to the pattern-matching machine behavior and the

contents of YMM2 register during the execution: the number of hexadecimal symbols in

YMM2 register (the number of states) to be matched simultaneously to the hexadecimal

symbol in YMM1 register (the symbol being processed that comes from the file under

inspection) as shown in Fig 4.10.

Finally, from Table 5.8, we notice that the speedup, or the performance gained, is

independent on the file size.

5.3.2 Performance according to the malware signature size

In this test, we run the two programs to scan 1 GB of different files by varying the malware

signature size (only one signature is in the malware database at a time). We increase the

signature size before running the next experience (by choosing another signature). Table 5.9

shows the performance of the scanner programs.

Size of a

malware

signature

(Bytes)

T1 (seconds)

AC_NextMove

_ASM

T2 (seconds)

AC_NextMove

_AVX2

Speedup (%)

(AC_AVX2/

AC_ASM)

32 2.35828 1.82128 29.48

62 2.36226 1.82119 29.71

90 2.36146 1.81974 29.77

146 2.35684 1.82178 29.37

216 2.35879 1.82600 29.18

270 2.35608 1.81693 29.67

334 2.38097 1.81963 30.85

Table 5.9:Execution times generated when varying the malware signature size

 (Amount of scan = 1 GB)

The results reported in Table 5.9 show that the scanner using the vectorized AC algorithm

outperforms (speedup 30%) the scanner using the scalar version of the algorithm when

scanning files looking for just one malware signature even when varying its size (increasing

the malware signature size). The gain in speed processing supplied by vectorization

(three-operand AVX instructions) is more important compared to the one provided by

executing two-operand assembly instructions in spite of:

• Accessing memory using AVX instructions is more time consuming (32 bytes are

used to read from/ or write to memory in order to process one hexadecimal symbol)

compared to the scalar AC algorithm (1 byte is used to perform the same operation);

91

• Instruction execution times in the previous extensions of the x86 instruction set are

usually faster than those of the AVX extensions (AVX instructions usually have a

long latency48) [130];

In the study of malware signatures, this case is of no importance since an average AV

database stores approximately hundreds of thousands of basic string signatures.

48 Latency is the number of processor clocks it takes for an instruction to have its data available for use by

another instruction.

92

Chapter 6

6 Conclusion

Although anti-malware technologies have evolved over the years, they still include classic

signature matching technique as one of their main layers of defense against malware. The anti-

malware software would monitor all the data coming from outside and entering the system. It

would analyze and scan the contents to check if the source code or hashes in the files or packets

match with any of the patterns of known threats in the repository. This fast-matching technique

based on byte patterns, simple to implement and update for security vendors, complements

more sophisticated detection methods and more advanced security threats analysis.

When malware arrives in AV company, it is first analyzed by automated analysis systems

or by security experts when necessary. If the analysis revealed that it is actually a malware, a

proper signature of the sample is extracted and added to the AV database malware signatures.

The signature patterns are series of machine code bytes, usually known as “byte-streams” or

“strings”. They can be basic (simple strings), or fairly complex including wildcard characters.

They are consumed by simple pattern-matching techniques (for example, a specific sequence

of bytes), cyclic redundancy codes CRCs (checksums), or cryptic hashes (MD5/SH-1/ SHA-

256).

When a particular object has to be scanned, the AV engine matches its content against all

appropriate entries in the AV database signatures. If it matches one signature, then the engine

knows exactly which malware it is and which procedure has to be performed in order to contain

the malicious object and do disinfection.

Signature-based detection relies on the definition files that contain signatures for viruses,

worms and other types of malware that have been encountered in the wild. It cannot defend

against threats unless their signatures are already added to the database. For this, AV software

maintained its repository of known and identified threats; it automatically downloads new,

updated definition files once a day or even more often. The effectiveness of AV products is

measured in terms of the AV vendors having the maximum malware signatures, and their

ability to include new signatures and make them available to their client systems. In the same

93

time, AV researchers constantly trim unnecessary signatures to cope with the database size

that goes on increasing day by day, and to keep the product's scan time down. Even though,

signature-based detection does not provide complete defense, it guarantees protection against

millions of known and active threats.

Typically, AV software spends a bulk of its time scanning data streams against a large

number of known signatures in the database. Its performance relies on the pattern-matching

algorithm that it implements. Therefore, the used algorithm must be fast enough and scalable

(able to maintain its efficiency when dealing with large databases). Techniques like partial or

approximate matches may also be used to reduce the scanning time. In our work, we have

analyzed the problem of malware detection based on signature scanning technique and showed

how it can be implemented in practice. We have proposed a vectorized AC algorithm, which

builds a fast finite state machine for matching occurrences of malware signature patterns

simultaneously in linear time. The matching process is done with SIMD acceleration, which

adds a form of data parallelism to the AC code (where one instruction or operation can be

applied to a vector, or series of adjacent data). Others approaches to achieve matching

performance exist, such as those based on specialized hardware, like ASICs and FPGAs, but

are usually tied to a specific implementation, and very hard to code or modify.

The vectorized AC algorithm is implemented with Intel® AVX2 instruction set (Haswell

New Instructions), an extensions to the x86 instruction set architecture released in 2013 with

the fourth generation Intel® Core™ processor family and later supported by AMD processors

(Excavator in 2015). This choice is well justified because AVX2 provides support for integer

computation, thing that was lacking in the legacy SSE and AVX (introduced with Intel® Sandy

Bridge processor in 2011). This AVX2 property allows to apply SIMD instructions to the

machine states generated during the pre-processing phase of the AC algorithm, which can only

be encoded as integer values.

In Chapter 4, we gave in-depth details of the vectorization process of the AC algorithm,

in which the AC code is converted from its scalar implementation, which does an operation

one pair of operands at a time, to a vector process, where a single instruction (SIMD operation)

can refer to a vector. The important thing to consider before converting the scalar-oriented

code is to identify vectorization opportunities from its code fragments, especially determining

the loops that can be parallelized. Still, not all loops can or will be parallelized. This is exactly

why we have considered the version of the AC algorithm using the next-move function, whose

source code seems vectorizable. When vectorization is applied on computing systems that

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Excavator_(microarchitecture)

94

support such actions, it results in more efficient data processing and a high application

performance.

Vectorization now is more important than ever. Generating vectorized object code

utilizing the AVX/SIMD instructions is a great way to accelerate software applications. For

optimal performance boost, this hardware optimization technique can be combined with

multithreading, where multiple activities can proceed concurrently in the same program for

maximum utilization of the CPU. Both techniques are important when optimizing an

application. Benchmarks have shown that combining theme can result in a higher performance

boost (sometimes more than ×100) over just using vectorization or multithreading alone [131].

So, the next step toward speeding up the matching process of the AV scanner is multithreaded

parallel implementation of the vectorized AC algorithm.

95

Bibliography

[1] G. McGraw, Software Security: Building Security In. Addison-Wesley Professional, 2006, pp

25-26.

[2] Symantec Corporation, "Internet Security Threat Report, Vol. 21", Symantec Corporation World

Headquarters, Mountain View, CA 94043 USA, 2016. [Online]. Available:

https://docs.broadcom.com/doc/istr-16-april-volume-21-en.

[3] M. Garnaeva, F. Sinitsyn, Y. Namestnikov, D. Makrushin and A. Liskin, "Kaspersky Security

Bulletin: OVERALL STATISTICS FOR 2016", Kaspersky Lab, 2016. [online]. Available at:

https://media.kasperskycontenthub.com/wp-

content/uploads/sites/43/2018/03/07182326/Kaspersky_Security_Bulletin_2016_Statistics_EN

G.pdf.

[4] J. Koret and E. Bachaalany, The Antivirus Hacker’s Handbook. Indianapolis: John Wiley &

Sons, 2015, pp. 77-86.

[5] A. Edward Danso, J.B. Hayfron-Acquah, D. Dominic, A. Michael and A. Brighter, "Camouflage

Worm Detection and Counter-Measures", International Journal of Inventive Engineering and

Sciences (IJIES), vol. 2, no. 9, 2014.

[6] J. Aycock, Computer Viruses and Malware. Boston, MA: Springer Science+Business Media,

LLC, 2006.

[7] J. Love, "A Brief History of Malware—Its Evolution and Impact", Lastline. [Online]. Available:

https://www.lastline.com/blog/history-of-malware-its-evolution-and-impact/. [Accessed: 11- Jul-

2018].

[8] "The History of Malware, from Pranks to Nuclear Sabotage", Digital Trends. [Online].

Available: https://www.digitaltrends.com/computing/history-of-malware/. [Accessed: 22- Jul-

2018].

[9] F. Cohen, "Fred Cohen & Associates", All.net. [Online]. Available: http://all.net/books/virus/

[Accessed: 22- Jul- 2018].

[10] "The History of Computer Viruses", OpenMind. [Online]. Available:

https://www.bbvaopenmind.com/en/technology/digital-world/the-history-of-computer-viruses/.

[Accessed: 22- Jul- 2018].

[11] "Global Ransomware Damage Costs Predicted To Hit $11.5 Billion By 2019", Cybercrime

Magazine. [Online]. Available: https://cybersecurityventures.com/ransomware-damage-report-

2017-part-2/. [Accessed: 24- Jul- 2018].

[12] "The very first viruses: Creeper, Wabbit and Brain.", Info Carnivore, 2010. [Online].

Available: https://infocarnivore.com/the-very-first-viruses-creeper-wabbit-and-brain/.

[Accessed: 30- Jul- 2018].

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07182326/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07182326/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07182326/Kaspersky_Security_Bulletin_2016_Statistics_ENG.pdf
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/

96

[13] "The first computer virus was designed for an Apple computer, by a 15 year old", Quick Heal

Blog | Latest computer security news, tips, and advice. [Online]. Available:

https://blogs.quickheal.com/the-first-pc-virus-was-designed-for-an-apple-computer-by-a-15-

year-old/. [Accessed: 30- Jul- 2018].

[14] "Brain -The first computer virus was created by two brothers from Pakistan. They just wanted

to prevent their customers of making illegal software copies", The Vintage News, 2016. [Online].

Available: https://www.thevintagenews.com/2016/09/08/priority-brain-first-computer-virus-

created-two-brothers-pakistan-just-wanted-prevent-customers-making-illegal-software-copies/.

[Accessed: 03 - Aug- 2018].

[15] "The History of Cyber Security — Everything You Ever Wanted to Know ", SentinelOne,

2019. [Online]. Available: https://www.sentinelone.com/blog/history-of-cyber-security/.

[Accessed: 07- Dec- 2019].

[16] "Morris Worm Turns 30 by Dinesh Abeywickrama & Inoshi Ratnasekera", Siyalla News, 2019.

[Online]. Available: https://www.siyalla.info/2019/03/03/the-morris-worm-turns-30/.

[Accessed: 07- Dec- 2019].

[17] "The Michelangelo Virus, 25 Years Later", Trend Micro - Cybercrime & Digital Threats, 2017.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-

michelangelo-virus-25-years-later. [Accessed: 06 - Aug- 2018].

[18] "What is Melissa virus? - Definition from WhatIs.com", SearchSecurity. [Online]. Available:

https://searchsecurity.techtarget.com/definition/Melissa-virus. [Accessed: 07 - Aug- 2018].

[19] "Love Bug: The Virus That Hit 50 Million People Turns 15", Vice.com. [Online]. Available:

https://www.vice.com/en_us/article/d73jnk/love-bug-the-virus-that-hit-50-million-people-

turns-15. [Accessed: 07 - Aug- 2018].

[20] G. Cluley, "Memories of the Anna Kournikova worm", Naked Security. [Online]. Available:

https://nakedsecurity.sophos.com/2011/02/11/memories-anna-kournikova-worm/. [Accessed:

09 - Aug- 2018].

[21] "The Slammer Worm", Spamlaws.com. [Online]. Available:

https://www.spamlaws.com/slammer-worm.html. [Accessed: 09 - Aug- 2018].

[22] "Cabir: World's First Wireless Worm", Technewsworld.com. [Online]. Available:

https://www.technewsworld.com/story/34542.html. [Accessed: 13- Aug- 2018].

[23] "Sony BMG Copy Protection", Malware Wiki. [Online]. Available:

https://malware.wikia.org/wiki/Sony_BMG_Copy_Protection. [Accessed: 13- Aug- 2018].

[24] "Zeus Virus", usa.kaspersky.com. [Online]. Available: https://usa.kaspersky.com/resource-

center/threats/zeus-virus. [Accessed: 13- Aug- 2018].

[25] Unisys Stealth Solution Team, "Zeus Malware: Threat Banking Industry", Unisys Corporation,

USA, 2010. [Online]. Available: https://botnetlegalnotice.com/citadel/files/

Guerrino_Decl_Ex1.pdf. [Accessed: 13- Aug- 2018].

[26] "Koobface", En.wikipedia.org. [Online]. Available: https://en.wikipedia.org/wiki/Koobface.

[Accessed: 16- Aug- 2018].

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-michelangelo-virus-25-years-later
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-michelangelo-virus-25-years-later

97

[27] "BBC NEWS | Technology | Trojan virus steals banking info", News.bbc.co.uk. [Online].

Available: http://news.bbc.co.uk/2/hi/technology/7701227.stm. [Accessed: 16- Aug- 2018].

[28] "News from the Lab Archive: January 2004 to September 2015", Archive.f-secure.com.

[Online]. Available: https://archive.f-secure.com/weblog/archives/00001393.html. [Accessed:

16- Aug- 2018].

[29] R. Naraine, "Botnet hijack: Inside the Torpig malware operation", ZDNet, 2009. [Online].

Available: https://www.zdnet.com/article/botnet-hijack-inside-the-torpig-malware-operation/.

[Accessed: 16- Aug- 2018].

[30] "Conficker", Malware Wiki. [Online]. Available: https://malware.wikia.org/wiki/Conficker.

[Accessed: 16- Aug- 2018].

[31] J. Fruhlinger, "What is Stuxnet, who created it and how does it work?", CSO Online. [Online].

Available: https://www.csoonline.com/article/3218104/what-is-stuxnet-who-created-it-and-

how-does-it-work.html. [Accessed: 19- Aug- 2018].

[32] "Stuxnet", En.wikipedia.org. [Online]. Available: https://en.wikipedia.org/wiki/Stuxnet.

[Accessed: 19- Aug- 2018].

[33] "What is CryptoLocker Ransomware and How to Remove it", What is CryptoLocker

Ransomware and How to Remove it. [Online]. Available: https://www.avast.com/c-

cryptolocker. [Accessed: 21- Aug- 2018].

[34] R. Lipovsky, A. Cherepanov, R. Lipovsky and A. Cherepanov, "BlackEnergy trojan strikes

again: Attacks Ukrainian electric power industry", WeLiveSecurity. [Online]. Available:

https://www.welivesecurity.com/2016/01/04/blackenergy-trojan-strikes-again-attacks-

ukrainian-electric-power-industry/. [Accessed: 23- Aug- 2018].

[35] "BlackEnergy APT Attacks in Ukraine", www.kaspersky.com. [Online]. Available:

https://www.kaspersky.com/resource-center/threats/blackenergy. [Accessed: 23- Aug- 2018].

[36] "Yahoo is now a part of Verizon Media", Finance.yahoo.com. [Online]. Available:

https://finance.yahoo.com/news/trump-administration-blames-north-korea-wannacry-

ransomware-065507252.html. [Accessed: 04- Nov- 2018].

[37] “Emerging Threats to Industrial Control Systems", INCIBE-CERT, 2018. [Online]. Available:

https://www.incibe-cert.es/en/blog/emerging-threats-industrial-control-systems. [Accessed: 04-

Nov - 2018].

[38] A. Ng, "Android malware that comes preinstalled is a massive threat", CNET. [Online].

Available: https://www.cnet.com/news/android-malware-that-comes-preinstalled-are-a-

massive-threat/. [Accessed: 03- Feb- 2019].

[39] E. Filiol, "Viruses and Malware", Handbook of Information and Communication Security,

Heidelberg: Springer, 2010, pp. 747-769, 2010.

[40] S. Murugiah and S. Karen, Guide to Malware Incident Prevention and Handling for Desktops

and Laptops, Special publication SP800-83. U.S. Department of Commerce - National Institute

of Standards and Technology NIST, 2013, p. 2. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-83r1.pdf. [Accessed: 10- Mar-

2018].

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-83r1.pdf

98

[41] S. Harris and F. Maymi, CISSP® All-in-One Exam Guide, 7th ed. New York: McGraw-Hill

Education, 2016, pp. 15-64.

[42] N. Ben, Internet Security Threat Report - Email Threats 2017. Symantec, 2017, p. 9.

[Online]. Available: https://www.symantec.com/content/dam/symantec/docs/security-center/

white-papers/ istr-email-threats-2017-en.pdf. [Accessed: 15- Mar- 2018].

[43] "Why You Should Download All Email Attachments to Your Desktop Before Opening -

Howard Tech Advisors", Howard Tech Advisors. [Online]. Available:

https://www.howardtechadvisors.com/blog/security/download-email-attachments-desktop-

opening/. [Accessed: 15- Mar- 2018].

[44] S. Olsen, "Web surfers brace for pop-up downloads", CNET, 2002. [Online]. Available:

https://www.cnet.com/news/web-surfers-brace-for-pop-up-downloads/. [Accessed: 16- Mar-

2018].

[45] L. Van Lam, W. Ian, G. Xiaoying and K. Peter, "Anatomy of Drive-by Download Attack",

in Proceedings of the Eleventh Australasian Information Security Conference - Volume 138.

AISC '13., Darlinghurst, Australia, 2013, pp. 49–58.

[46] "Malware Attack Vectors: What to Expect in 2018", Lastline. [Online]. Available:

https://www.lastline.com/blog/malware-attack-vectors/. [Accessed: 16- Mar- 2018].

[47] "Spear Phishing Remains Preferred Point of Entry in Targeted, Persistent

Attacks", Threatpost.com. [Online]. Available: https://threatpost.com/spear-phishing-remains-

preferred-point-entry-targeted-persistent-attacks-113012/77267/. [Accessed: 18- Mar- 2018].

[48] "What is Phishing and how does it affect email users", usa.kaspersky.com. [Online]. Available:

https://usa.kaspersky.com/resource-center/preemptive-safety/what-is-phishings-impact-on-

email. [Accessed: 18- Mar- 2018].

[49] "New Email Security Report from IRONSCALES Identifies Email Phishing Attack Detection,

Mitigation and Remediation as Biggest Challenge for Security Teams", PRWeb. [Online].

Available: http://www.prweb.com/releases/2017/09/prweb14742215.htm. [Accessed: 18- Mar-

2018].

[50] "Threat Group-4127 Targets Google Accounts", Secureworks.com. [Online]. Available:

https://www.secureworks.com/research/threat-group-4127-targets-google-accounts. [Accessed:

18- Mar- 2018].

[51] M. Prague and M. Brno, "Malware in ads causes trouble for millions of people. But ad

publishers still fight against ad blocking - Blog MasterDC.com", Master Internet.

[Online]. Available: https://www.masterdc.com/blog/malware-in-ads-threatens-millions-drive-

by-attacks-ad-agencies-against-blocking/. [Accessed: 21- Mar- 2018].

[52] "Malvertising", CIS. [Online]. Available: https://www.cisecurity.org/blog/malvertising/.

[Accessed: 21- Mar- 2018].

[53] F. Skulason, "Virus Encryption Techniques," Virus Bulletin, November 1990, pp. 13-16.

[54] B. Rad, M. Maslin and I. Suhaimi, "Camouflage in malware: from encryption to

metamorphism", International Journal of Computer Science and Network Security, vol. 12, no.

8, pp. 74-83, 2012.

99

[55] "Stealth Virus", Spamlaws.com. [Online]. Available: https://www.spamlaws.com/stealth-

virus.html. [Accessed: 24- Mar- 2018].

.

[56] G. Vigna, "When Malware is Packing Heat", Lastline. [Online]. Available:

https://www.lastline.com/labsblog/malware-packing/. [Accessed: 27- Mar- 2018].

[57] P. Arntz and P. Arntz, "Explained: Packer, Crypter, and Protector", Malwarebytes Labs.

[Online]. Available: https://blog.malwarebytes.com/cybercrime/malware/2017/03/explained-

packer-crypter-and-protector/. [Accessed: 27- Mar- 2018].

[58] W. Yan, Z. Zheng and A. Nirwan, "Revealing packed malware", IEEE Security & Privacy,

vol. 6, no. 5, pp. 65-69, 2008. Available: https://pdfs.semanticscholar.org/

785a/8d4e207f3c5a6f587f2ce7278316ca3462e7.pdf

[59] "Packer", Encyclopedia.kaspersky.com. [Online]. Available: https://encyclopedia.

kaspersky.com/glossary/packer/. [Accessed: 27- Mar- 2018].

[60] M. Morgenstern and A.Marx, "Runtime packer testing experiences", in 2nd International

CARO Workshop, 2008.

[61] Kaspersky Lab. Virus.DOS.Whale, 2000. Whale appeared c. 1990.

[62] P.Szor. “Hunting for metamorphic”. In Virus Bulletin Conference, 2001.

[63] P. Szor, The art of computer virus research and defense. Upper Saddle River, N.J.: Addison-

Wesley, 2005.

[64] C. Fischer. TREMOR analysis (PC). VIRUS-L Digest, 6(88), 1993.

[65] "What is polymorphic virus? - Definition from WhatIs.com", SearchSecurity. [Online].

Available: https://searchsecurity.techtarget.com/definition/polymorphic-malware. [Accessed:

27- Mar- 2018].

[66] "What is Obfuscation? - Definition from Techopedia", Techopedia.com. [Online]. Available:

https://www.techopedia.com/definition/16375/obfuscation. [Accessed: 30- Mar- 2018].

[67] W. Wong and M. Stamp, "Hunting for metamorphic engines", Journal in Computer Virology,

vol. 2, no. 3, pp. 211-229, 2006.

[68] E. Konstantinou, "Metamorphic Virus: Analysis and Detection", Royal Holloway, University

of London, 2008. [Online]. Available: http://www.rhul.ac.uk/mathematics/techreports.

[Accessed: 30- Mar- 2018].

[69] A. Balakrishnan and S. Chloe, Code obfuscation literature survey| CS701 Construction of

Compilers. University of Wisconsin, Madison: Computer Sciences Department, 2005. [Online].

Available: http://pages.cs.wisc.edu/~arinib/writeup.pdf

[70] M. Christodorescu and J. Somesh, "Static analysis of executables to detect malicious patterns",

in 12th conference on USENIX Security Symposium, 2003, pp. 169-186.

[71] "Microsoft Security Intelligence Report volume 11 (January - June 2011) | An in-depth

perspective on software vulnerabilities and exploits, malicious code threats, and potentially

unwanted software in the first half of 2011 ZEROING IN ON MALWARE PROPAGATION

METHODS", Microsoft.com, 2011. [Online]. Available: https://www.microsoft.com/en-

us/download/details.aspx?id=27605. [Accessed: 03- Apr- 2020].

http://www.rhul.ac.uk/mathematics/techreports

100

[72] "Types of Malware", www.kaspersky.com.au. [Online]. Available:

https://www.kaspersky.com.au/resource-center/threats/malware-classifications. [Accessed: 03-

Apr- 2018].

[73] M. K A, Learning malware analysis. Birmingham, UK: Packt Publishing, 2018, pp. 8-9.

[74] C. Elisan, Advanced Malware Analysis. McGraw-Hill Education, 2015, pp. 5-7.

[75] "Malware analysis", En.wikipedia.org. [Online]. Available: https://en.wikipedia.org/

wiki/Malware_analysis. [Accessed: 04- Apr- 2018].

[76] "What Are Memory Forensics? A Definition of Memory Forensics", Digital Guardian.

[Online]. Available: https://digitalguardian.com/blog/what-are-memory-forensics-definition-

memory-forensics. [Accessed: 04- Apr- 2018].

[77] S. Katzenbeisser, J. Kinder and H. Veith, "Malware Detection", Encyclopedia of Cryptography

and Security, pp. 752-755, 2011.

[78] "What is Malware Detection? | Importance of Malware Tool", Comodo Enterprise. [Online].

Available: https://enterprise.comodo.com/what-is-malware-detection.php. [Accessed: 06- Apr-

2018].

[79] F. Cohen, "Computer viruses: Theory and experiments", Computers & Security, vol. 6, no. 1,

pp. 22-35, 1987. Available: https://www.profsandhu.com/cs5323_s18/cohen-1987.pdf.

[80] I.Muttik, "STRIPPING DOWN AN AV ENGINE", in VIRUS BULLETIN CONFERENCE,

Oxfordshire, England, 2000, pp. 59-68.

[81] "SANS Institute: InfoSec Reading Room - Malicious Code", Sans.org. [Online]. Available:

https://www.sans.org/reading-room/whitepapers/malicious/bypassing-malware-defenses-

33378. [Accessed: 08- Apr- 2018].

[82] K. Sandeep and H. Eugene, A GENERIC VIRUS SCANNER IN C++ |The COAST Project -

Technical Report CSD-TR-92-Q62. West Lafayette, IN 47907-1398: Department of Computer

Sciences Purdue University, 1992.

[83] "Antivirus Research and Detection Techniques", ExtremeTech. [Online]. Available:

https://www.extremetech.com/computing/51498-antivirus-research-and-detection-techniques.

[Accessed: 08- Apr- 2018].

[84] W. Christian, F. Kevin, Y. Fabian and R. Konrad, "From Malware Signatures to Anti-Virus

Assisted Attacks - Computer Science Report No. 2016-03", Technische Universität

Braunschweig of Germany. Institute of System Security, 2016, p. 6. Available:

https://arxiv.org/pdf/1610.06022.pdf.

[85] P. Szor, "Virus analysis 1: Beast regards", Virus Bulletin, 1999.

[86] J. Nazario, Defense and detection strategies against Internet worms. Boston, MA: Artech

House, 2004, p. 176.

[87] S. Kanaujiya, D. Tripathi and N. Sharma, "Improving Speed of the Signature Scanner using

BMH Algorithm", International Journal of Computer Applications, vol. 11, no. 4, pp. 27-31,

2010.

https://arxiv.org/pdf/1610.06022.pdf

101

[88] T. Cormen, C. Leiserson, L. Ronald and R. Stein, Introduction to algorithms, 3rd ed. Mass:

Massachusetts Institute of Technology, 2009, pp. 906-907.

[89] A. Binstock and J. Rex, Practical algorithms for programmers. Reading, Mass: Addison-

Wesley, 1995.

[90] F. Lance and H. Steve, A Short History of Computational Complexity. 2002. [Online].

Available: https://people.cs.uchicago.edu/~fortnow/papers/history.pdf

[91] R. Boyer and J. Moore, "A fast string searching algorithm", Communications of the ACM, vol.

20, no. 10, pp. 762-772, 1977. Available: 10.1145/359842.359859.

[92] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Upper Saddle River, NJ: Addison-Wesley,

2011, p. 770-773.

[93] C. Charras and T. Lecroq, Handbook of exact string-matching algorithms. London: Kings

College Publ, 2004, pp. 91.

[94] "Boyer-Moore algorithm", Inf.hs-flensburg.de, 2018. [Online]. Available: https://www.inf.hs-

flensburg.de/lang/algorithmen/pattern/bmen.htm. [Accessed: 07- Feb- 2019].

[95] D. Knuth, J. Morris, Jr. and V. Pratt, "Fast Pattern Matching in Strings", SIAM Journal on

Computing, vol. 6, no. 2, pp. 323-350, 1977. Available: 10.1137/0206024.

[96] R. Horspool, "Practical fast searching in strings", Software: Practice and Experience, vol. 10,

no. 6, pp. 501-506, 1980. Available: 10.1002/spe.4380100608.

[97] D. Sunday, "A very fast substring search algorithm", Communications of the ACM, vol. 33, no.

8, pp. 132-142, 1990. Available: 10.1145/79173.79184.

[98] A. Aho and M. Corasick, "Efficient string matching: an aid to bibliographic

search", Communications of the ACM, vol. 18, no. 6, pp. 333-340, 1975. Available:

10.1145/360825.360855.

[99] S. Wu and M. Udi, "A fast algorithm for multi-pattern searching", University of Arizona.

Department of Computer Science, 1994, pp. 1-11.

[100] L. Salmela, J. Tarhio and J. Kytöjoki, "Multipattern string matching withq-grams", Journal

of Experimental Algorithmics, vol. 11, pp. 1.1, 2007. Available: 10.1145/1187436.1187438.

[101] B. Commentz-Walter, "A string matching algorithm fast on the average", In Proc. Springer

6th International Colloquium on Automata, Languages, and Programming, Berlin, Heidelberg,

1979, pp. 118-132.

[102] A. Aho, "Algorithms for finding patterns in strings" in Handbook of theoretical computer

science, vol A. J. Leeuwen, Amsterdam: Elsevier, 1990, pp. 257-297.

[103] A. Jony, "Analysis of multiple string pattern matching algorithms", International Journal of

Advanced Computer Science and Information Technology (IJACSIT), vol. 3, no. 4, pp. 344-353,

2014.

[104] A. Bik, The software vectorization handbook. Hillsboro, Or.: Intel Press, 2006, pp. 1-3.

[105] D. Sima, K. Peter, F. Terence, Advanced computer architectures - a design space approach.

International computer science series, Harlow: Addison-Wesley, 1997.

https://people.cs.uchicago.edu/~fortnow/papers/history.pdf
https://www.worldcat.org/search?q=au%3ASima%2C+D.&qt=hot_author

102

[106] A. Clements, Computer organization and architecture, 1st ed. Stamford, CT: Cengage

Learning, 2014, pp. 316.

[107] "Intel | Data Center Solutions, IoT, and PC Innovation", Intel. [Online]. Available:

http://www.intel.com/content/www/us/en/trademarks/mmx.html. [Accessed: 11- Feb- 2019].

[108] "Makers Unveil PCs With Intel's MMX Chip", Archive.nytimes.com. [Online]. Available:

https://archive.nytimes.com/www.nytimes.com/library/cyber/week/010997intel.html.

[Accessed: 11- Feb- 2019].

[109] Intel MMX™ Technology Overview. - Intel Corporation, 1996. [Online]. Available:

https://www.ee.ryerson.ca/~courses/ele818/mmx.pdf

[110] S. Mueller, Upgrading and repairing PCs, 19th ed. Indianapolis, Ind.: Que Pub., 2010, pp.

71-73.

[111] Intel® SSE4 Programming Reference, Intel Corporation, 2007. [Online]. Available:

http://www.info.univ-angers.fr/pub/richer/ens/l3info/ao/intel_sse4.pdf. [Accessed: 15- Jan-

2016].

[112] Instruction Set Architecture Extensions, Intel Corporation. [Online]. Available:

https://software.intel.com/en-us/isa-extensions/ intel-avx. [Accessed: 07- Jan- 2016].

[113] D. Kusswurm, Modern X86 Assembly Language Programming. Berkeley, CA: Apress, 2014,

pp. 01-03.

[114] Intel® Architecture Instruction Set Extensions Programming Reference. Intel Corporation,

2016. [Online]. Available: https://www.naic.edu/∼phil/ software/intel/319433-014.pdf.

[115] "Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Overview", Intel. [Online].

Available: https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-

overview.html. [Accessed: 14- Feb- 2019].

[116] "How to detect New Instruction support in the 4th generation Intel®...", Intel. [Online].

Available: https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-

the-4th-generation-intel-core-processor-family. [Accessed: 14- Feb- 2019].

[117] An introduction to Vectorization with the Intel C++ Compiler. Intel Corporation, 2016.

[Online]. Available: https://software.intel.com/sites/default/ files/An\ Introduction\ to\

Vectorization\ with\ Intel\ C++\ Compiler\ 021712.pdf.

[118] AVX Vectorisation and Cilk Plus. Oxford e-Research Centre, 2016. [Online]. Available:

http://www.oerc.ox.ac.uk/projects/asearch/ software/avx.

[119] A. Vladimirov, R. Asai and V. Karpusenko, Parallel programming and optimization with

Intel Xeon Phi coprocessors, 2nd ed. Sunnyvale, CA 94085, USA: Colfax International, 2015,

pp. 157-158.

[120] D. Page, Practical Introduction to Computer Architecture. London: Springer London, 2009,

pp. 389-390.

[121] J. Jeffers, J. Reinders and A. Sodani, Intel Xeon Phi coprocessor high-performance

programming Knights Landing Edition. Cambridge, MA: Morgan Kaufmann, 2016, pp. 11 - 12.

103

[122] A Guide to Vectorization with Intel® C++ Compilers. Intel Corporation, 2012. [Online].

Available:

https://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf

[123] X. Zhou, X. Bo, Q. Yaxuan and L. Jun, "MRSI: A fast pattern matching algorithm for anti-

virus applications", In Proc. IEEE Seventh International Conference on Networking, icn, 2008,

pp. 256–261.

[124] J. T. L. Ho and G. G. F. Lemieux, "PERG: A scalable FPGA-based pattern-matching engine

with consolidated Bloomier filters," In Proc. IEEE International Conference on Field-

Programmable Technology, Taipei, 2008, pp. 73-80, doi: 10.1109/FPT.2008.4762368.

[125] V. Alexandre Nuno, "Detecting Computer Viruses using GPUs", Pdfs.semanticscholar.org.

[Online]. Available: https://pdfs.semanticscholar.org/a878/94e14761d2afd0b51cfbbaa2b2819

f8f31a1.pdf. [Accessed: 15- Feb- 2019].

[126] N. Dien, T. Tran and N. Tran, "Memory-based multi-pattern signature scanning for clamav

antivirus", In Proc. Springer International Conference on Future Data and Security

Engineering, Cham, ’11, 2014, pp. 58-70.

[127] Creating signatures for ClamAV, ClamAV. [Online]. Available:

https://aws.huihoo.com/clamav/signatures.pdf. [Accessed: 02- Jan- 2018].

[128] L. Tsern-Huei, "Generalized aho-corasick algorithm for signature based anti-virus

applications", In Proc. IEEE 16th International Conference on Computer Communications and

Networks, 2007, pp. 792-797.

[129] H. Bidgoli, Handbook of information security - Threats, Vulnerabilities, Prevention,

Detection, and Management. Hoboken, N.J.: John Wiley & Sons, 2006, pp. 450 - 458.

[130] "Software optimization resources. Lists of instruction latencies, throughputs and micro-

operation breakdowns for Intel, AMD and VIA CPUs ", Agner.org. [Online]. Available:

https://www.agner.org/optimize//instruction_tables.pdf. [Accessed: 27- Feb- 2018].

[131] R. Friedman, "More Than Ever, Vectorization and Multithreading are Essential for

Performance - insideHPC", insideHPC, 2017. [Online]. Available:

https://insidehpc.com/2017/08/essential-performance/. [Accessed: 27- Feb- 2019].

https://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf

