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Abstract

The aim of this work is to give new necessary and sufficient conditions for the
existence of solution and Hermitian solution to some operators equations in Banach
and Hilbert spaces and give the general solutions and Hermitian solutions for the
first time via the inner inverses of elementary operators and via simple operators.
One of the main objective of this thesis is generalization of results of Alegra Dajié
and J. J. Koliha in [I35] and [16].

Résumé

Le but de ce travail est de donner de nouvelles conditions nécessaires et suff-
isantes d’existence des solutions et des solutions Hermitiennes de quelques équa-
tions opératorielles sur les espaces de Banach et de Hilbert, ensuite donner les
formes des solutions et des solutions Hermitiennes pour la premiére fois via les in-
veres intérieurs des opérateurs élémentaires et via les opérateurs simple. L'un des
principaux objectifs de cette thése c’est la généralisation des résultats de Alegra
Dajié et J. J. Koliha dans [135] and [16].

Key words: Banach spaces, Hilbert spaces, Inner inverse, Elementary opera-

tors, Operators equations, Hermitian solutions
AMS Classification 47B47, 47TA11, 47TA10, 47A53, 47A05, 47TA62, 15A09.
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(General introduction

Many problems of the theory of linear operators or in other fields of mathemat-
ics such as algebra, numerical analysis, optimal control, spectral theory ..., are
strongly linked to the notion of invertibility of the elements. This is the reason
why some mathematicians have thought of introducing new notions of invertibil-
ity "Generalized inverses" which are useful for the solutions to these problems.
Among them, we cite I. Fredholm, J. Von Neumann, M. Z Nashed, C. R. Caradus,
J. J. Koliha... and many others.

The concept of generalized inverses seems to have been first mentioned in print
in 1903 by Ivar Fredholm [22], who formulated a pseudo inverse for a linear integral
operator which is not invertible in the ordinary sense.

One year later, in 1904 Hilbert made implicit use of pseudo-inverses when con-
sidering the theory of linear ordinary differential equations. In fact, he introduced
the notion of the generalized Green’s function which was the integral kernel of the
pseudo-inverse of the differential operator.

In 1913, W. A. Hurwitz [24] reconsidered the same problem of Fredholm and
used the finite dimensionality of the null-space of Fredholm operators to give a
simple algebraic construction.

Generalized inverses of differential operators were consequently studied by nu-
merous authors, in particular, Myller (1906), Westfall (1909), Bounitzky in 1909,
Elliott (1928), and Reid (1931).

Generalized inverses of differential and integral operators thus antidated the
generalized inverses of matrices whose existence was first noted in 1920 by E. H.
Moore [42], who defined a unique inverse A™ called by him the "general reciprocal”
for every finite matrix (square or rectangular). E. H. Moore established the exis-
tence and uniqueness of AT for any A, and gave an explicit form for A in terms
of the sub-determinants of A and A*. His work received practically no attention
in the next 30 years, mostly because it used very complicated notation.

In 1951, Bjerhamar [6l [7, 8] recognized the least squares properties of certain
generalized inverses and noted the relation between some generalized inverses and
solutions to linear systems.

In 1955, Penrose [50] sharpened and extended Bjerhammar’s results on linear

v
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systems, and showed that Moore’s inverse, for a given matrix A, is the unique
matrix X satisfying the following four equations

AXA = A,
XAX = X,
(AX) = AX,
(XA = XA

The latter discovery has been so important that this unique inverse is now com-
monly called the Moore Penrose inverse. Since 1955 the theory of generalized
inverses and their applications and computational methods have been developing
rapidly. Many authors investigated various types of generalized inverses, also gen-
eralized inverses which satisfy some of the four Penrose’s equations. Generalized
inverses which satisfy some, but not all, of the four Penrose equations play an
important role in solution of systems of linear equations. The generalized inverse
which satisfy the first equation is noted {1}-inverse and is often called inner gen-
eralized inverse. Since we have used this generalized inverses in the general setting
of Banach and Hilbert spaces, we can therefore give a general definition. Let FE
and F' are Banach space and B(E, F') is the algebra of all bounded linear operators
and let A € B(E, F'), then any solution B in B(F, E) of the equation

ABA=A

will be called a pseudo-inverse, or {1}-inverse or inner inverse of A. An operator
with a pseudo-inverse will be called regular.

Many results have been obtained on the solvability of equations for matrices
and operators on Hilbert and Banach spaces using generalized inverses, see for
example |3, (4] [1T] 13, 7 23, 23 (38].

In 1973, Mitra [38] obtained a necessary and sufficient condition for the matrix
equations
A1 XB=C, A2X By =Y

to have a common solution.
In 1976, Khatri and Mitra [25] considered matrix equations of various types

AX =C; AX=C, XB=D and AXB=C

over the complex field and obtained conditions for Hermitian and non-negative
definite solutions and gave explicit solutions based on generalized matrix equations.

In 1979, Phadke and Thakare [51] attempted to describe Hermitian, positive
definite and semi-definite solutions for Hilbert space operators of

AX =C and AXA* =C,

v
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but several of their results are incorrect or have incorrect proofs.
In 1998,J. Grok|23] gives a necessary and sufficient condition for consistency of
this matrix equation

AXA* =C

and gave a representation of its general Hermitian solution.

In 2004, Q. W. Wang derived the necessary and sufficient for the existence and
the expression of the general solution to the same matrix equations over arbitrary
regular rings with identity.

In 2007, Alegra Daji¢ and J.J. Koliha [16] gives conditions for the existence
of Hermitian solutions and positive solutions for Hilbert spaces of some operator
equations

AX =Cand XB=D,

and obtained the formula for the general form of these solutions and corrected the
results of Phadke and Thakare [51].

In 2008, Alegra Daji¢ and J.J. Koliha [I5] reviews the precedent equations
from a new perspective by studying them in the setting of associative rings with
or without involution.

In 2011, N. Li, J. Jiang and W. Wang considered Hermitian solution and skew-
Hermitian solutions to a quaternion matrix equation

AXA*"+ BYB* =C,

In 2015, Alegra Daji¢ [14] gives conditions for the existence of solutions for
some operator equations between Banach spaces and obtains the formula for the
general solutions.

The aim of this thesis is to present new necessary and sufficient conditions for
the existence of a common solution of the operator equations Ma, g, (X) = C1 and
My, B,(X) = C3, using for the first time the generalized inverses of elementary
operators, where E, F, G and D are infinite complex Banach spaces and Ay, Ay €
B(F,E), By,By € B(D,G), and My, p,, Ma, p, are the multiplication operators
defined on B(G, F') by Ma, g, (X) = A1 XB; and My, p,(X) = A X By and we
derive a new and for the first time a representation of the general common solution
via the inner inverse of the elementary operator ¥ = Ma, p, + Ma, ,, We apply
this result to determine new necessary and sufficient conditions for the existence of
a Hermitian solution and a representation of the general Hermitian solution to the
operator equation M g(X) = C, where A, B and C are bounded linear operators
on Hilbert spaces. As consequence, we obtain well-known results of Alegra Dajié
and J. J. Koliha in [15]. We consider the same system

A1 X By =C1, Ay X By = Oy,
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where Aj, A2, By, B2, C) and 5 are linear bounded operators on Hilbert spaces,
and we give other necessary and sufficient conditions for the existence of a common
solution, we apply the result to determine new necessary and sufficient conditions
for the existence of a Hermitian solution and a representation of the general Her-
mitian solution to the operators equations AXB = C, and AXA*+ BYB* = C.

The thesis is organized in four chapters.

Chapter 1 is a reminder on essential notions about inner inverses and classes
of bounded linear operators, first we present some basic and important properties
of projections, second we introduce basic concepts of inner inverses and we recall its
algebraic and topological properties in Banach and Hilbert spaces. We also recall
the definitions of some classes of bounded linear operators Hilbert spaces. Finally
the convergence and stability concepts of operators and their characterizations are
given.

Chapter 2 is divided into 3 sections. In section 2.1, we present the inner
inverse for elementary operators in Banach space. In section 2.2, we give new
necessary and sufficient conditions for the existence of a common solution of the
operator equations

ﬂ'fA“BL(X) = Cl and J‘VfAQ,BQ (X) = CQ,

using for the first time the inner inverses of the elementary operators and derive
a new representation of the general common solution via the inner inverse of the
elementary operator ¥ = My, g, + M4, g, in Banach space. In section 2.3, we
apply the previous result to determine new necessary and sufficient condition for
the existence of a Hermitian solution and a representation of the general Hermitian
solution to the operator equation

Map(X) =C.

in Hilbert space. As consequence, we obtain well known results of Alegra Dajié
and J.J. Koliha in [15].

Chapter 3 is divided into 3 sections. In section 3.1, we give new necessary
and sufficient conditions for the existence of common solutions to the operator
equations

A1 X B, =Cp, Ay XBy= 0y,

where A1, A2, By, B2, C1 and C5 are linear bounded operators defined on Hilbert
spaces. In section 3.2, we apply the previous result to determine new necessary and
sufficient conditions for the existence of a Hermitian solution and a representation
of the general Hermitian solution to the operator equation

AXB = C,

vil
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where A, B and C are linear bounded operators. In section 3.3, we deduce neces-
sary and sufficient condition for the existence of Hermitian solution to the operator
equation

AXA*+ BYB* =C,

where A, B and C are linear bounded operators.

Chapter 4 This chapter is independent of the two previous ones. We present
a study developed by O. L. V. Costa and C. S. Kubrusly [13] "Lyapunov equation
for infinite dimensional discrete bilinear systems", published in Systems & Control
Letters 17(1991) pp 71-77. The first section of this chapter is about preliminar-
ies, we recall some concepts needed in this chapter. The second section we shall
conclude the proof for the equivalence between the assertions

o (M) < 1.
e for every Y € GT(H) there exists a unique solution X € G7(H) for

the Lyapunov equation ¥ = X — M(X),

where M is the operator defined on B(H) (H is a separable complex Hilbert space)

by
o

M(X) = J?LJA,A—(X) + (Celvek>fﬂAk,Al‘ (X)
k=1

and C'is a non-negative nuclear operator. This supplies a necessary and sufficient
condition for the convergence preserving property between input and state cor-
relation sequences, as required in the mean-square stability problem, for infinite-
dimensional discrete bilinear systems.
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0.1 Terminology
1. Let E and F be infinite complex Banach spaces

(a) B(E, F) be the set of all bounded linear operators from a Banach space
E ito F.

(b) G(E, F) be the set of all invertible operators from B(E, F).
2. Let H be a complex Hilber space

a ) be the set of all self adjoint non-negative operators.

(a) B
(b) G ) be the set of all strictly positive operators.
() B ) be the set of all compact operators.
(d)

)

d IEBL b(' tho set of all nuclear operators.

(e) B be the set of all non-negative nuclear operators.

3. Let A € B(H)

(a) A* the adjoint of A.

(b) A~ the inner inverse of A

(c) (4) the range of A.

(d) N(A) the kernel of A.

(e) J{ ) the spectrum of A.

(f) r4(A) the spectral radius of A.
(g) |- || tho norm.

(h) {.;.) inner product.

4. Elementary operators.
Let D and G be two other Banach spaces. Consider Ay, A2 € B(F, E),
By, B, € B(D,G).
(a) The multiplication operator on B(G, F') induced by Ay, By is
J"""IAL,BL X = AlXBl.
(b) In particular L4, = My, ; and Rg, = M;p,, where I is the identity
operator are the left and the right multiplication operators, respectively.
(¢) The elementary operator ¥ defined on B(G, F') is the sum of two mul-

tiplication operators

U= J'FL'JTAL:BL + J'MTAQ,BQ.

ix



Chapter 1

Preliminaries

In this introductory chapter, we will introduce some basic concepts and well-known
results that facilitate the understanding of this thesis, in particular the projections,
as well as some basic notions and theorems of inner inverses of operators in Banach
and Hilbert spaces. We also recall the spectrum and the classes of linear bounded
operators in Hilbert space that will be used throughout this thesis. Most contents

of chapter 1 are taken from [10], [44], [14],[15], [32], [57] and [47].

1.1 Projections

Let E, F be Banach spaces and let B(E, F') denote the set of all linear bounded
operators from F to F.

Proposition 1.1.1. Fach projection P determines a direct sum decompsition of

E, namely
E=TR(P)&N(P). (1.1)

Conversely every direct sum decomposition of E determines a projection.

Proof. It is clear that E = R(P)+ N(P), since each = € E may be written in the
form
x = Px + (x — Px).

Furthermore, Vo € R(P) are characterized by the fact that Pz = z.

So, if v € R(P) NN(P), then x = Pz =0, that is R(P) NN (P) = {0}. This
proves . Conversely let E = M & N, then Vz € E may be written uniquely in
the form x = x; + x9 with 1 € M and x2 € N. If we define P by Px = x1, then
it is clear that P is a linear operator such R(P) = M, N(P) = N, and P? = P.
We call P a projection of E onto M along N. O
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Remark 1.1.1.  The operator (I — P) 1is also a projection of E onto N along
M.

Definition 1.1.1. A subspace M of a Banach space E is said to have a comple-
mented subspace if there exists a subspace N such that K = M & N.

Theorem 1.1.1. Let M and N be closed subspaces such that E = M & N. Then

the progection P of E onto M along N is conlinuous.

Proof. Because of the closed graph Theorem it suffices to prove that P is a closed
operator. Suppose that
T, > x and Pz, —y.

Then
tp— Pr,—x—vy.

Since Px, € M and z,, — Px,, € N, it follows that
yeM and xz—yeN=N(P).

Then
Pr—Py=0 and Px=Py=y.
Thus P is closed. O

Remark 1.1.2.  The decomposition E = M & N in Theorem s said to be
topological direct sum because M and N are both closed subspaces.

Lemma 1.1.1.
1. The range of a continuous projector P on a Banach space E is closed.

2. A closed subspace of a Banach space E is complemented if and only if it is
the range of some continuous projector in E.

Proof.
1. Since R(P) = N(I — P), thus R(P) being the nullspace of a continuous

linear operator is a closed subspace.

2. Let M be a closed subspace of E. If M = R(P) for some continuous pro-
jector P on E, then E = R(P) @ N(P) and N (P) is closed. Thus M is
complemented.

Conversely, if M is complemented, let P be the continuous projector of E
onto M, and the result follow.

O
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1.2 Inner inverses in Banach spaces

Definition 1.2.1. Let A € B(E,F). An operator S € B(F,E) is said to be an
inner inverse of A if it satisfies the equation

ASA=A. (1.2)
We denote the inner inverse by A™.

Remark 1.2.1.

1. A € B(E,F) has an inner inverse iff N(A) and R(A) are closed and com-
plemented subspaces of E and F' respectlively.

2. If A has an inverse A~' in B(E, F), then A~! is the only inner inverse of

A.
Definition 1.2.2. An operator A € B(E, F) s called reqular if A~ exists.

Definition 1.2.3. Let A € B(E,F). An operator S € B(F, E) is said to be an
outer mverse of A if it satisfies the equation

SAS = S. (1.3)

Lemma 1.2.1. If S is an inner inverse of A, then the operator SAS satisfies both

equations and .

Proof. The proof of this assertion is a simple verification. If ASA = A, then
A(SAS)A = (ASA)SA= ASA = A,

and
(SAS)A(SAS) = S(ASA)SAS = S(ASA)S = SAS.

Theorem 1.2.1. [1{)/ Let A € B(E, F). Then

1. If S € B(F| E) is an inner and outer inverse of A, then AS is a projection
of F onto R(A) along to N'(S) and SA is a projection of E onto R(S) along
to N'(A).

2. If S € B(F,E) is an inner and outer inverse of A, then R(S) is a closed
complemented subspace of N'(A) and N'(S) is a closed complemented subspace
of R(A).
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3. Suppose that N(A) and R(A) are closed and complemented subspaces of E
and I respectively, P is a projection onto R(A) and M is a complementary
subspace to N'(A). Then S = A['P is an inner inverse of A, where Ay is
the restriction of A to M.

Proof.
1. Suppose that A has an inner and outer inverse, so that there exists an oper-
ator S which satisfies equation (|1.2)) and ([1.3).
Then, since
(AS)? = ASAS = AS,
and
(SA)?2 = SASA = SA,
it is clear that AS and SA are projection.
Clearly, R(AS) C R(A). Conversely, for each y € R(A) there exists z €
such that y = Az, we can write

Ar = ASAzx,

so that
R(A) CR(AS).
In a similar way, we have N(S) C N(AS) and if ASz = 0, then from
equation (1.3) we know that
Sr = SASx =0,
so that
N(AS) CN(S).
This means that, AS is a projection onto R(A) along to N'(S).
On the other hand, clearly R(SA) C R(S). Conversely, for each y € R(S)
such that y = Sz we can write

Sr = SASx,

so that
R(S) CR(SA).

In a similar way, we have N(A) C N(SA) and if SAz = 0, then from
equation (1.2) we know that

Ar = ASAx =0,

so that
N(SA) CN(A).
This means that SA is a projection onto R(S) along to N(A).

4
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2. According to property 1, there exist projections SA € B(E) and AS € B(F)
such that

N(SA)=N(A), R(AS) = R(A),
On other hand, There exist closed subspaces R(.S) and N(S) such that
E=N(A) & R(S), F=N(S) & R(A),

Thus, R(S) is a closed complemented subspace of N'(A) and N (S) is a closed
complemented subspace of R(A).

3. Suppose that R(A) and N(A) are closed and complemented subspaces in E
and F respectively

E=N(A)®M, F=N&R(A), (1.4)

let Ay = A/M, and let P be the continuous projection of F' onto R(A)
along N. Since A; is a bijective map of M onto R(A), which are both
closed subspaces, it follows from the inverse mapping theorem that Al_l is
continuous, hence A7'P is also continuous. Clearly A(A7'P)A = A. This
proves that S = A7'P is a bounded inner inverse for A.

O

Remark 1.2.2. Note that if S is an inner inverse and not an outer inverse, then
the arguments in the first and second part of Theorem |1.2.1l can be applied to the
operator SAS to show that the conclusions are true in general.

Theorem 1.2.2. [57] Let A € B(E, F). Then the following conditions are equiv-

alent:

1. There exist projections P € B(E) and Q € B(F) such that
R(P)=N(4),  R(@Q) =R(4), (1.5)

2. There exist closed subspaces M and N such that

E=NA)aM, F=Na&R(A), (1.6)

3. A has an inner inverse.

Proof.
(1) = (2) Clear from Lemma [1.1.1]

3
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(2) = (3) Suppose that M and N are closed subspaces such that
E=N(A) & M, F=Na&R(A),

from the third part of Theorem S = A7'P is an inner inverse of A. Thus
(2) = (3).

(3) = (1) Suppose that S is an inner inverse of A. Then from Theorem
SA is a projection and N(A) = N(SA), also AS is a projection and R(A)
R(AS). So (3) = (1), with P=1—SA and Q = AS.

oo

Examples
1. All projections are regular, in fact, if P2 = P then P is its own inner inverse.

2. A compact operator K with infinite dimensional range does not admit a
bounded inner inverse since R(K) is not closed.

3. Let A be a linear operator of finite rank (dimR(A) < oc). Then A has a
bounded inner inverse. Because R(A) being finite dimensional, is comple-
mented in F. Clearly A is bounded, N'(A) is closed and the quotient space
E/N(A) is finite dimensional, from which it follows that A(A) has a finite
dimensional complement; hence A/(A) is topologically complemented.

4. Let A : E — F be a Fredholm operator. Then A has a bounded inner
inverse. This follows from Theorem|[1.2.2] since N(A) is complemented in E,
and R(A) is closed and has finite codimension, so R(A) is complemented in
F. In particular , any operator of the form A = I — K, where K is compact
has a bounded inner inverse.

Remark 1.2.3. We have seen in Theorem how to characterize the set of
inner inverses in term of the formula S = AT P. However, in many situations,
this 1s notl so useful since we may not be able to describe all the projections onto
R(A) and N(A). We are able to describe the set of inner inverses in another way;
we first need a simple lemma.

Lemma 1.2.2. [I)] Let A, B € B(E, F) are regular operators and C' € B(E, F),
then the operator equation

AXB =C, (1.7)
has a solution if and only if
AACB B =0C. (1.8)
In which case, the general solution is
X=ACB +U—-A"AUBB™, (1.9)

where U € B(F, F) is an arbitrary operator.

6
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Proof. Suppose that X is a solution of equation (|1.7), then

C=AXB=AA AXBB B=AA CB B,
so the condition (|1.8) is necessary. If AA“CB~B = C holds, then Xy = A~CB~
is a solution of the operator equation (|{1.7]).

Now suppose that the condition (1.8 holds. Then clearly every operator of the

form ({1.9)) is a solution of (1.7]).
Conversely, if X is a solution of (1.7) then X — A~C'B~ is a solution of the
equation AXB = 0.
Let Xg=X — A~CB~, so that Xy = Xg— A~AX BB, then
X—-ACB =X,—A AXyBB ,
from which (1.9) follows. O

Corollary 1.2.1. Let A € B(E, F) is reqular operator and C € B(E,F), the
operator equation
AX =C,

has a solution if and only if

AAC=C.
In which case, the general solution is
X=A"C+ (U A"A)U,
where U € B(E) is an arbitrary operator.

Corollary 1.2.2. Let B € B(E, F') is regular operator and D € B(E, F'), then the
operator equation
XB =D,

has a solution if and only if

DB B =D.
In which case, the general solution is
X=DB +U(Ir—BB"),
where U € B(F) 1s an arbitrary operator.

Theorem 1.2.3. If A € B(FE., F) has an inner inverse A~ € B(F, E) satisfying
equations

AATA=A and A AA” = A",

then the set of inner inverses of A consists of all operators of the form
AT+ U - ATAUAA™,

where U € B(F, F) is an arbitrary operator.

L
i
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Proof. We know that AA~A = A. From Lemma [1.2.2] we conclude that the other
inner inverses are given by

A AA +U-A AUAA =A +U—-A AUAA ",
where U € B(F, E) is an arbitrary operator O
Remark 1.2.4.

o In [1], Arens considers the problem of finding all left inverses i.e. all solutions
of the equation
BA=1.

He shows that if By is any left inverse, then the family of left inverses is
given by
B = By+ V(I — AB),

where V' is an arbitrary operator.

Corollary 1.2.3. Suppose that M is a closed complemented subspace of Banach
space E and that Fy is a projection of & onto M. Then the family of projections
of E onto M s given by

P=F+ P[)U(I — Po),

where U € B(E) is an arbitrary operator.

Proof. Clearly Py is its own inner inverse. Hence, from the Theorem [I.2.3] all other
inner inverses of Py can be written

B = Py+U- PUPF,
Py+U - BRUP,.

But from such an inner inverse, we can obtain a projection onto M:

P = P,B,
= Fy+ BU - FUPF,,
P+ P[)U{f — Po).

Since all projections can be obtained by this way, the result follows. U
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1.3 Inner inverses in the Hilbert spaces case

In Hilbert space, it is well-known that every closed subspace is complemented.
Therefore an operator in Hilbert space is regular if and only if it has closed range.
Let H, K be Hilbert spaces and let B(H, K') denote the set of all linear bounded
operators from H to K.

Lemma 1.3.1. Let A € B(H, K) be regular operator, M and N are complemented
subspaces of R(A) and N(A) respectively. Then there exist an inner inverse A~ €

B(K,H) of A, such that

1. (I — A™A) is a projection onto N(A).

e

. R(AA™) = R(A).
9. N(AA™) = M.
CR(I— A—A) = N(A=A) = N(A).

B

n

. N(I—-AA)=R(AA)=N.
Theorem 1.3.1. [/} Let A € B(H, K). The following statements are equivalent

1. A has a bounded inner inverse.

e

. A* has a bounded inner inverse.
3. R(A) is closed.

4. R(A") is closed.

(s

. T has a bounded right inverse on R(A).

6. The restriction of A to N(A)* has a bounded inverse.

Before giving the inner inverses of matrix of operators we recall that if H and
K are Hilbert spaces, then the Cartesian product space H x K is itself a Hilbert

space and H x K will be denoted by H & K.

Lemma 1.3.2. [[7] Suppose that E is another Hilbert space. Let A € B(H, K),
B € B(H, E) are regular operators, then ( g ) € B(H, K & FE) is regular if only

A0
and if ( B 0 ) s regqular.
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- . . . A
Proof. Suppose that ( A- B~ ) is an inner inverse of ( B ) then

(5)+ #(5)=(5)

this implies that the equalities A(A"A+ B B) = Aand B(ATA+ B B)=B

holds. So,
A0 A~ B~ A0 [(AD
B 0 0 0 B o) \B 0}/

thus A0 is regular
s B o s regular.
A~ B~

Conversely, if 0 0 is an inner inverse of B o) then the equalities

A(A“A+ B B)=Aand B(A“A+ B™B) = B holds. So

(5)C #(5)-(5)

A
thus, ( B ) is regular. L

Lemma 1.3.3. [{7/ Let A € B(H,K) and B € B(E, K) be reqular operators. Then

( A B ) € B(H @ FE, K) is regular if and only if S = (Ix — AA™)B is regular.

L[ A A"BS(Ix - AA- .
@43)_( Sfﬁjiq) )) (1.10)

In this case

Lemma 1.3.4. [I6] Let A € B(H,K) and B € B(H, E) be regular operators.
Then the regularity of any one of the following operators implies the reqularity of
the remaining three operators:

D:mm—AﬂyM:mm—Bﬂy(g> md(i).

In this case an inner inverse of ( B ) s given by

( p ) =(Uy—BBM~ B —(Iy-B B)M AB~). (L1l

10
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1.4 The spectrum of bounded linear operators

Let A € B(E). For A € C, if the operator AT — A has an inverse, which is linear,
we denote it R(A, A) the inverse operator, that is

RN A)= (M — A, (1.12)

and call it the resolvent operator of A at A. The name resolvent is appropriate,
since R(A, A) helps to solve the equation

(M —-A)x=y.

Thus
r=R(\ Ay,

provided R(A, A) exists. More important, the investigation of properties R(\, A)
will be basic for an understanding of the operator A itself. Naturally, many prop-
erties of (Al — A) (or simply (A — A)) and R(\, A) depend on A, and spectral
theory is concerned with those properties. For instance, we shall interested in the
set of all A in the complex plane such that R(\, A) exists and bounded. For our
investigation of R(A, A), we shall need some basic concepts in the spectral theory
which are given as follows

Definition 1.4.1. The resolvent set of A is
p(A) ={A e C: (A — A) has an inverse in B(E)}, (1.13)

its complement

o(A) =C\ p(A4), (1.14)
15 called the spectrum of A. The number
ro(A) = sup{|\|; A € 0(A)}, (1.15)
1§ called the spectral radius of A.

for further reference |32, [57] we collect some important facts about spectrum,
resolvent operator and spectral radius in the following theorem.

Theorem 1.4.1. Let A € B(E).

1. The resolvent identities
VA e p(A), RINA)— R(p, A) = (u— AR, A)R(p, A),

moreover R(A, A) and R(p, A) commute for A\, p € p(A).

11
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2. if A € p(A) and [N — u| < [|R(N,A)|| 7Y, then € p(A). Thus p(A) is open
set in C.

3. The resolvent is an analytic map. Moreover

o0

R(AA) =) (=1)™(A = A)"(R(Ao, A))"H,

n=_0

for all Ao € p(A) such that |\ — Xo| < ||R(Xo, Al 7L

4. o(A) is closed in C.
Theorem 1.4.2. Let A € B(E). Then
1. o(A) is nonempty compact set in C.

2. The spectral radius is given by the Gelfand formula

ro(A) = lim ||A"||% = inf|lA"||x.
n—s 400 neM
3. We have
ro(A) < [ A],

equality holdes, for example, if E is a Hilbert space and A is normal, it means
commutes with its adjoint.

4. The Neumann series

I, = 1
I=5A7" =) 57md

n=>0

R(\, A) =

> =

converges in B(E) for each A € C with |\ > rs(A).

for every A\ with |A| > ||A|| we have A € p(A) and

o

RO A)) < ﬁ (1.16)

Note that the spectrum of bounded operator is never empty nor equal to C.
example 1.4.1. Let E = (*(Z) be the space of all summable complex sequences

r = (:Bn)n = ("'1 ‘r—21 x—].'l Iijla .1'2, "')1

12
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indexed by the integers, with the usual norm. For any e € R, let Ac € B(E) be
defined by Ac(x) =y, where © = (xn)n and y = (yn)n are related by

L1 ’E_fk % 0
.
Y"Ner, ifk=0

Then, we have

o(Ag) =D,
where I denotes the open complex unit disc. On the other hand,
0(A)=S=0D={\e€C: |\ =1}#0).
So, here the spectrum collapses when € changes from zero to a nonzero value.
The spectrum o(A) is partitioned into three disjoint sets as follows:

e The point spectrum o,(A) of A, is the set of A € C such that A — A is not
injective. A € 0p(A) is called an eigenvalue of A and for this A there exists a
non zero vector x such that Ar = Az called an eignvector corresponding to
A

e The continuous spectrum o.(A) of A, is the set of A € C such that A\— A
is injective but its range is not closed.

e The residual spectrum o,(A) of A, is the set of A € C such that A — A
is injective but its range is not dense in E.

Remark 1.4.1.
1. If E 1s finite dimension, then o.(A) = 0,(A) = ¢.
2. If E is a Hilbert space and A is a self-adjoint operator then o,.(A) = ¢.

3. If X € 0.(A), then X is not eigenvalue of A or of A*.

1.5 The classes of bounded linear operators
In this section we will investigate some classes of bounded linear operators A on a
complex Hilbert spaces.

Definition 1.5.1. Let A € B(H, K), then the unique operator A* € B(K, H) such
that
Ve e H, Yy e K: (Ax,y) = (z, A™y),

15 called the adjoint of A.

13
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Definition 1.5.2. An operator A € B(H) is said to be

—

. Hermitian (or self-adjoint): if A* = A.

2. strict positive: if and only if 3y > 0, such that (Az,z) > ~v||z||?, VY € H.
3. Unitary: if A*A=1= AA*, where I is the identity operator on H.
4. Isometry: if A*A=1

5. Projection: if A*> = A.
6. Contraction: if ||Al| < 1.
7. Strict_contraction: if ||A] < 1.

Proposition 1.5.1. If A € B(H) is Hermaitian then

(Az,z) =0, Yr € H if and only if A=0.

1.5.1 Non-negative operators

Definition 1.5.3. An operator A € B(H) is said to be non-negative if and only if
(Az,z) > 0, Vo € H.

Remark 1.5.1. If A is a non-negative operator, then A is Hermitian.

Theorem 1.5.1. Every non-negative A € B(H) has a unique operator T € B(H)
such that T® = A, then T = Az is called square root operator of A.

Theorem 1.5.2. Let A € B(H), then A*A is a non-negative operator in B(H)
and the unique square root of A*A is defined by

A2 = (4% A),

That s
Al = (A*A)V2,

and |A| is called the absolute value of A.

14
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1.5.2 Compact operators

Throughout this section E, F'and G will denote normed linear spaces and B (E, F)
the set of all compact operators of a normad space £ into F'. If E = F', we write
B.(FE) =B (E, F) the set of all compact operators on a normed space E.

Definition 1.5.4. [57] A linear operator A : E — F is compact if, for each
bounded subset Q2 of E, A(QY) s relatively compact in F'. Since F' is a metric space,
A is compact if and only if for each bounded sequence {x,} in E, the sequence
{Az,} contains a subsequence converging to some limit in F.

Theorem 1.5.3. [57] The set Boo(E, F) is a subspace B(E, F). if F is complete,
this subspace 1s closed.

Theorem 1.5.4. [57] Suppose that A € B(E,F) and B € B(F,G). If one the
operator A or B is compact, then BA is compact.

Remark 1.5.2.

1. If E isinfinite dimensional, then the identity operator I on E, is not compact.

2. If A is a compact operator whose domain E is infinite dimensional, then A
cannot have a bounded inverse. Since, if we suppose that A is invertible, then
AYA =1, on E must be compact, which would imply dimE < co.

Theorem 1.5.5. [33] If A € Bo(E, F) and X\ € C\ {0}, then R(\ — A) is closed.
Theorem 1.5.6. [33] I[f A€ B, (E.F), A€ C\ {0} and N'(A\[ — A) =0, then
RO — A) = H.

1.5.3 Nuclear operators

Recall that when E is a Banach space, the dual space E' = B(E, C), consists of
the bounded linear functionals ' on F, it is a Banach space with the norm

el e = inf{l'(x)] : = € B, [|«|| = 1}.

Definition 1.5.5. Let E and F' Banach space, An operator A € B(E | F') is nuclear
if there exist sequences (a;) C E', (bj) C F, and ();) is a set of complex numbers
obeying E?i”/\ﬂ < oo, with ||aj]| <1 and ||b;|| <1 for all j, such that

Az = Z/\ja}{x)bj, (1.17)
j=1

for all x € E.



CHAPTER 1. PRELIMINARIES

Proposition 1.5.2. every nuclear operator is compact
Proof. Note that the series in ((1.17) is absolutely convergent since
105 (@)bs | < 1Az Il (1.18)
and E?il|)\j| < oo. We shall show that a nuclear operator is compact.
Suppose that A is given by (1.17), and define A,,, n =1,2,3,..., by
T
Ape = Z Ajas(x)b;,
=
Clearly, A, € B(E, F) and dimR(A,) < n. Furthermore, (|1.18)) implies that
o0
1Az = Anz|l < (D D,
j=n+1

which shows that [[A — A,| — 0 as n — oo. since each A4, is compact, so is A by
Theorem O

In the following we suppose that H and K are two separable Hilbert spaces

Definition 1.5.6. [52] An operator A € B(H, K) ts said to be a nuclear operator
if there exists a sequence (aj)jen i K and a sequence (bj)jen in H such that

Az = Zaj(bj,x)hr, for all z € H, (1.19)
j=1
and -
S eyl byl < . (1.20)
j=1

The space of all nuclear operators from H to K is denoted by B, (H, K).
Remark 1.5.3. If A € By(H) is non-negative, then A is called trace class.

Proposition 1.5.3. [52] The space B,(H, K) endowed with the norm

o0

Az, b1.0) = E0Y llag| - (165l such that Az = a;(bj,x)u, x € H}, (1.21)
jEM j=1

15 a Banach space.

16
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Definition 1.5.7. [52] Let A € B(H) and let {er, k € N}, be an orthonormal
basis of H. Then we define

trA = Z(Aek, k) H, (1.22)

kel
if the series is convergent.

This definition could depend on the choice of the orthonormal basis. However,
note the following result concerning nuclear operators.

Proposition 1.5.4. [59] If A € B1(H), then trA is well-defined independently of
the choice of the orthonormal basis {ex, k € N}. Moreover we have that

|tr A

< [[Alls,m), (1.23)

Proof. Let (aj)jen and (bj)jen be sequences in H such that

Ar = Zaj(bj,:c}H,

jeN

for all x € H and 3, lla;j|la - [|bjl| < oo. |
Then we get for any orthonormal basis {e;, k€ N} of H that

(Aeg,ex)g = Z(eka aj)u - (€x, ) H.

jEN

and therefore

D NAewerhul < DD ewaj)m - (ex,bj)ul,

jEN JEN keEN
24 2,1
< > O Newapulz - O Iew bj)ul?)e,
JEN keM keM
= lalla - 16l < oo.
jEN

This implies that we can exchange the summation to get that

Z(Aek,ek)ﬂ = ZZ(e]ﬁ aj)H - {ex, bj>H = Z(%sbj)ff’

keN JEN keN JEN

and the assertion follows. O

17
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1.5.4 Correlation operators
Definition 1.5.8. [20] for any h € H, let ho h € B} (H) be defined as

(hoh)x = {x;h)h forall =€ H. (1.24)
Where By (H) = {T € BL(H) : tr(T) < oo}, The class of all non-negative nuclear
operators.
1.6 Convergence and stability of operators

Definition 1.6.1. [32] Let { Antn>0 be a sequence of operators on B(H, K).

1. A sequence {A,}n>0 is uniformly convergent if and only if there exists an
operator A € B(H, K) such that lim ||(A, — A)|| =0, denoted by A, = A.
Nn—0o

2. A sequence {An}no 15 strongly convergent if and only if there exists an
operator A € B(H, K) such that lim ||[(A,z — Ax)|| =0, Yo € H, denoted
n—o0

by An > A.

3. A sequence {A, }n>0 is weakly convergent if and only if there exists an opera-
tor A e B(H, K) such thatVer € HVy e K: lim (Ayz,x) = (Ax,y), Yz €
n—roo

H, denoted by A, 5 A
Definition 1.6.2. [2] Let A € B(H, K),

1. A is uniformly stable if the power sequence { A" }n>0 converges uniformly to
the null operator (i.e. ||A"|| — 0, as n — oo ).

2. A is strongly stable if the power sequence {A™},>0 converges strongly to the
null operator (i.e. ||A"z|]| — 0, as n — o0, Yr € H ).

3. A is weakly stable if the power sequence {A"},~o converges weakly to the null
operator (i.e. (A"z;y) — 0, as n — oo, Vo, y € H).

Remark 1.6.1. Let {A"},.>0 the power sequence in B(H, K), then

8

re(A)<l & A" 50 = A" 350 = A" 50.

Proposition 1.6.1. [72] Two Hilbert spaces H and K, are topologically isomor-
phic if and only if they are unitariy equivalent. Therefore

1. G(H,K) # 0 if and only if {U € G(H,K): U1 =U*} #0.

18
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A

2. For each A € B(H) and W € G(H, K), |[WAW™|| = [[w|A[w| .

3. A e B(H) is similar to a contraction ( resp. strict contraction ) if and only
if there ezists X € GT(H) such that || XAX || < 1 (resp. | XAX | < 1).

4. For any A€ B(H), X € G"(H) and o € |0,00]

| XAX| < « if and only if (a*X* — A*X?A) € BT (H).

b5

”XAX_IH < a if and only if (a?X? — A*X?A) € GT(H).

Proposition 1.6.2. [32] Let A € B(H, K), The following assertions are equiva-
lent:

1. A 50,

2. ro(A) < 1.

. NA™| < Ba™, for every n >0, for some 3> 1and a € (0,1).
- Ponto
2o

Theorem 1.6.1. [F1] Let A € B(H). The following assertions are equivalent:

BN

A"|P < o0, Vp > 0.

5

A"z||P < 00, Yz € H, Vp > 0.

1. re(A) < 1.
2. M = My 4 1s similar to a strict contraction.
3. There exists X € GT(H) such that
X — My a(X) € GT(H).
4. For everyY € GT(H) there exists X € GT(H) such that
Y = X — My (X).

for anyY € GT(H), X is given by

X =) atyat (1.25)

k=0

19
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Proof. 4= 3
For every Y € GT(H), there exists X € GT(H) such that
Y =X — M 4(X), then X — My 4(X) € GT(H).

3=2
Suppose that there exists X € G7(H) such that
X — My- 4(X) € GT(H). According to Proposition 1.6.1, we have

[XAX || <o & o®X? - A'X?A € G'(H).
Let a =1 and X = W2 € G*(H), then
X — M A(X) € GH(H),
this implies that _ o
[ X12AX HYE| < 1.

Thus A is similar to a strict contraction.

2=1

Suppose that A is similar to a strict contraction, then there exists W € G(H) such
that ||[WAW 1| < 1. Since

ro (A) =ry (WAW™) < [WwAW!.
Thus
re (A) < 1.

1=4 -
Suppose that r, (A) < 1, so that ) |
k=0

Let Y = R? € G*(H), then ¥n > 0, we have

AkHZ < 0.

i

1R e < 1Rl < 37 [[RAM < 1R (Y|

AR )12

We define a map
W: H — (2(H)
r — Wz = (Rz, RAz, ..),

W is linear and bounded with

wal* =3 |RA z||*, Vo € H.
k=0

So that W has a bounded inverse in R(W), then W € G(H). Thus
W e GF(H).

20
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Note that

(R = WP+ A" W[ A)z,z) ((R* = (W) z,2) + (A" |W|* Az, z) ,

= ((RR—|WP)z,z)+ |WAz|?,
= ||Re|® — |Wa|? + | WA|?,

= |Ra|” = Y ||RAM[|* + 3 || RAM e
k=0 k=0

IRl — 3 ||RAM|* + S HJ'%/-U*’.@H2 ,
k=0 k=1

|Rz||* = |Rz||* =0, Vo e H

2
bl

this implies that
R — W[+ A" W] A =0.

So that
R? = |W[* — A* |W|* A,
let X = [W|? and Y = R2, we get (4).

Suppose that Q? € GT(H) is another solution of the equation

R? = |W[* — A" |W|* A,

then
|RA || = (RA*z, RAFz),
= (A" RAY o),
= (A" (@ - A @Pa) Aa),
- <A*kQ2A’“x, sc> = <A*’°“Q?Ak+lx,x>,
= [lQAk|” ~ [lQa* x|,
hence

Yo lIRak]” = Yo (leAt|” - 4t a]").
k=0 k=0

1Qz|* — || QA™ 'z

2
b

21



CHAPTER 1. PRELIMINARIES

then Vo € H, Vk > 0, we have

Wal? = limY[|RA%|,
k=0

—r 0
: 2 n+l |12
= lim (JQz[ — [[QA™x|["),
2
= Q=]
because r, (A) < 1, thus
(WP =@ z,z)y = |[Wz|® - |Qu|?
= 0, Vre H,
therefore
Q= W),
So that X is the unique solution of
Y =X — Ma a(X), VY eG(H).
Finally, let Y = X — M. 4(X). then

n n n

T R YT YR

k=0 k=0 k=0
= X — A" XA e BY(H), Vn >0,

where X is the solution of the equation ¥ = X — JMA-,A{X), let

X, = zn:A*kYAk,

k=0
then
X = XII = [A " x A
< |x)]|A™)?, ve >0,
Hence

lim || X, — X|| < lim | X [l4a™.
n—oo n—oa

Since r, (A) < 1 (i.e. ||A"]| — 0), so that
lim || X, — X[ =0,
N—00

therefore

X = iA*kYA’C.

k=0
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Chapter 2

Operator equations and elementary
operators

2.1 Introduction

This chapter is the subject of an article [37] written in collaboration with Pr
Lombarkia published in Linear and Multilinear Algebra.
Let E, F. G and D be infinite complex Banach spaces and B(F, F) the Banach
space of all bounded linear operators from F' into E.

Consider A1, A2 € B(F,E), B1, Bz € B(D,G). Let

AH'JAL,BL X — ALX_Bl
be the multiplication operator on B(G, F') induced by A;, By. In particular
La, = Ma, 1 and Rp, = M1 B,,

where [ is the identity operator are the left and the right multiplication operators
respectively. The elementary operator ¥ defined on B(G, F') is the sum of two
multiplication operators

v = J'F"'fAL,BL + A"‘i-ierz Ba-

In this chapter, we give necessary and sufficient conditions for the existence of a
common solution of the operator equations My, g, (X ) = C) and My, g, (X) = Cs,
and we derive a new representation of the general common solution via the inner
inverse of the elementary operator ¥V = My, g, + M4, p,, we apply this result to
determine new necessary and sufficient conditions for the existence of a Hermitian
solution and a representation of the general Hermitian solution to the operator
equation My p(X) = C, where A, B and C are bounded linear operators on Hilbert
spaces. As consequence, we obtain well known results of Alegra Dajié and J. J.
Koliha in [I5].
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2.2 Inner inverses of elementary operators

Lemma 2.2.1. [I0] Let Ay, Ay € B(F, E), By, B, € B(D,G), such that
WU = My, B, + Ma, B, 1s reqular. Then the operator equation

U(X) =C,

has a solution if and only if

vU(C) =C.
A representation of the general solution is
X = ‘IJ_(O) -+ (IB(G,F) — ‘P_‘P)(U),
where U € B(G, F) is an arbitrary operator.

It can be easily seen that in the case, where A} = A € B(F,FE), B; = I and
Ay = By =0, Lemma reduces to the well-known result, here related as

Corollary 2.2.1. Let A € B(F, E), such that A is reqular. Then the operator

equation
L4(X)=20C,

has a solution X € B(E) if and only if
Lay-(C)=C.
A representation of the general solution is
X = Ly-(C) + (I — La-4)(U),
where U € B(E) is an arbitrary operator.
Proof. The operator equation La(X) = C has a solution if and only if

La(L4)™(C) =C.

Since
La-a= La-La,
it follows that if A~ is the inner inverse of A, then (L4)” = L,- is the inner
inverse of Ly.
Comnsequently, from Lemma we get the result. U

It can be easily seen that in the case, where 4y = Ay = A € B(F,E), B; =
By =B ¢ B(D, ), Lemma reduces to the well-known result, here related as
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Corollary 2.2.2. Let A € B(F, E) and B € B(D, G) be regular. Then the operator
equation
Myp(X) =C,

has a solution if and only if
Maya--8(C)=C.
A representation of the general solution is
X =My p-(C)+ (I~ My ans-)U).
where U € B(G, F) is an arbitrary operator.

Proof. Since
MaBMa- p- = Mas- -8,

it follows that, if A~ and B~ are the inner inverses of A and B, then (M4 )~ =
M 4~ p- 1s the inner inverse of M AB-
Consequently from Lemma we get the result. O

2.3 Common solution to the pair of equations
A/[AhBl (X) = Cl and A/[AQ’BQ(X) = 02

In the following section, we give necessary and sufficient conditions for the existence
of a common solutions of the operators equations

A'FL'LTAL’BL(X) :Cl and A?LJAZFBZ(X) :CQ,

we suppose that all the spaces are complex Banach spaces.
Theorem 2.3.1. Let Ay € B(F,E), Ay € B(F,N),B1 € B(D,G) and By €
B(M,G). such that Ay, By and ¥ = M, g, + MZAZA[AL BB B, W€ regular, then
the pair of equations

My, B, (X) = Cy, (2.1)

Ma, B, (X) = Cs, (2.2)
has a common solution if and only if

MALA;,B;BL(CU =0,

and

VU (Cy — Ay A C1 By By) = Cy — Ay AT C By Bs.
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If @ common solution to and extsts, a representation of the general
common solution is given by

X = My 5 (C))+ U (Cy— A ATC1By By) + (I — U 0)(V)
— My 55 [U(Cr— AATCIBIBy) + (I - 0T O)(V)],  (2.3)

where V € B(G, F') is an arbitrary operator.

Proof. Suppose that the pair of equations (2.1)) and (
Since equation ([2.1f) has solution, then from Corollary

2.2) has a common solution.
we have that

My, a; 5 8,(C1) = C1,
and the representation of the general solution to equation (2.1) is
Xy =My 5-(C1) + (Upp.p) — My 4, 8,8-)(U), (2.4)

where U € B(D, E) is an arbitrary operator.
Because equations (2.1)) and (2.2) have a common solution, there exists an
operator Uy € B(D, F), such that X, satisfies

ﬂifAQ,B? (Xl) = CQ.
Thus

My, B,(X1) = JMAQA; BT B, (C1) + My, ,(Up) + JM—AQA;AL,BLB; 5, (Do)
Cs,
which implies that
U(Uy) = Oy — Ay A C1 B By, (2.5)

has a solution, applying Lemma|2.2.1} the equation (2.5 has a solution if and only
if

DU~ (Cy — A2A, C1B] By) = Cy — A2 A C1B; Bo. (26)
Now assume that

My, - 573, (C1) = C1,

and

TU™(Cy — Ay AT C1 By By) = Cy — A3 AT C By Bs.

We can show that X as defined in (2.3) is a common solution to (2.1)) and (2.2]).
Let Xp an arbitrary common solution to (2.1) and (2.2). Then we have
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or

U(Xo) = Cy — AsA; C1 B Bs.
Letting V' = Xj in (2.3), we have that

X = M, 5 (C)+ 67 (Co— A2AT LB By) + (I — 170 (Xo)
— My, 5,5 [V (Cr = AATCLBy By) + (I — U7 ¥)(Xy)],
= My (C1) + Xo+ U (Cy — A ATCL By By) — U 0(Xo)
— My, B, [V (C2 = AgATC1LBY By) — W) (Xo)] + My 4, 5,5-(Xo),
My g (Cr) = My 4, g, 5 (X0) + X,
Xo.

Hence X as defined in (2.3]) is a representation of the general common solution to
21) and @2). O
Corollary 2.3.1. Let A € B(F,E), B € B(M,G), C; € B(G,E) and Cy €
B(M, F) such that A and ¥ = Rp+ M_,- o p = M(1_4- a) g are reqular, Then the
pair of operator equations

L, X =0C4, (27)
RuX = Oy, (2.8)

has o common solution if and only if
LaLa-Cr =y,

and

VU (Cy— A~C1B) = Cy — A~C)B.

If o common solution to and exists, a representation of the general
common solution is given by

X = Lp-(C1)+ VU (C2—AC1B)+ (I -0 0)(V)
— La-a[V(Cy— AC1B) + (I = 07T (V)]
where V € B(G, F) is an arbitrary operator.

In the following corollary, we can see that Corollary reduces to the well-
known result of Daji¢ and Koliha [15, Theorem 4.5]

Corollary 2.3.2. ([15, Theorem 4.5]) Let A,Cy € B(F,E), B,Cy € B(G, E), and
let A and B be reqular. Then the equations

AX =C) and XB = Cy, (2.9)
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have a common solution X € B(FE) if and only if
R(C1) C R(A), N(B) C N(Cs) and ACy, = CB.
The general common solution is of the form
X=AC+0CB —AACB  + (I -A"A)U(I — BB"), (2.10)
where U € B(E) is an arbitrary operator.

Proof. If A and B are regular, then the multiplication operator ¥ = M;_4- 4
is regular and M(;_4- 4) - is the inner inverse of M(;_4-a) 5.
Applying Corollary [2.3.1] we get that the equations

La(X)=C1, Rp(X)=C
have a common solution X € B(E) if and only if
Las-(C1)=C1 and YV (C;— A C1B)=Cy— A C1B.
The equation L44-(C1) = C1, implies that
AACL =,

which is equivalent to

R(C1) € R(A).

The condition
vy (Cy—A C1B)=Cy,— A 1B

implies that

J?LJ(I_A_A)’B_B(CQ — 44_01_8) = Cg — 44_01_8,

consequently

({—-A"A)CyB "B+ A"AAC B = Oy, (2.11)
applying A to the equation (2.11f) we get
AATC1B = AC,,

since

AATC = .

Hence
AC, = OB,
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using in equation (2.11)), the equality

AC, = OB,
we get
CyB™B = C,,

which is equivalent to

N(B) Cc N ().
From Corollary the general solution is of the form
X = Ly (C))+¥ (C—A C\B)+(I—-Vv ¥)(U)
— Lo AV (Co—AC1B)+ (I -0 Y)(U)],
where U € B(F) is an arbitrary operator, it follows that
X = A1+ ﬂf(f_A—A)’B— (02 — A_OlB) + {I — JPLJ(I_A—A]’B—B){U)
— A AM(1-a-4),5-8)(U),
using the equality ACy = C B, we get
X=AC1+CB —A ACHB™ + (I - A A)U(I — BB™), U € B(E).
O

2.4 Hermitian solution to the operator equation
Myp(X)=C

In this section, we suppose that F' = H and E = K are complex Hilbert spaces and
we determine conditions for the existence of a Hermitian solution to the operator
equation My g(X) = C.

Lemma2.4.1. Let A € B(H, K), B e ]B(K, H) and ¥ = J‘L'ifB-’A-—i—fL'f_B-A—A’BB—A— :
such that A, B and W are reqular. Then the operator equation

Myp(X) =C, (2.12)
has a Hermitian solution if and only if the pair of equations
fliIA,B{X) =C and J'FL'J{B-,A-(X) :O*, (213)

has a common solution, a representation of the general Hermitian solution to

is of the form
X+ X
Xp=""

where X 1s the representation of the general common solution to equations .
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Proof. From Theorem the pair of operator equations (2.13)) has a common
solution if and only if
Maa- 5-B(C) =C,

and
Uy (C*—B*A CB A")=C"—B*A CB A",

a representation of the general common solution to (2.13) is
X = My g (C)+V¥ (C" - B"ACB A") + (L - ¥ ¥)(V)
— ﬂifA—A,BB—[‘I’_(C* — B*A_CB_A*) + (I — ‘IJ_‘IJ)(V)]
Clearly, Xy is a Hermitian solution to (2.12)). O

Corollary 2.4.1. Let Ac B(H,K) and ¥V = Ry + M_a- g a- = M_a-a) 4 be
reqular operators. Then the operator equation

La(X)=C, (2.14)
has a Hermitian solution if and only if the pair of equations
LA(X)=C and Ry (X)=C", (2.15)
has a common solulion, o representation of the general Hermitiaon solulion to
2.14)) is of the form
X+ X"
Xu = —g )

where X is the representation of the general common solution to equations .

Proof. The result follows from Lemma [2.4.1] and Corollary O

In the following corollary, we can see that Corollary reduces to the well-
known result of Dajic and Koliha [I5] Theorem 4.6]

Corollary 2.4.2. ([13, Theorem 4.6]) Let A,C € B(H, K) be reqular operator.
then the operator equation
AX =0C,

has a Hermutian solution if and only if
R(C) CR(A) and AC* € B(K) is Hermitian.
The general Hermitian solution is of the form

Xp=ACH(I—AA)ACY +(I— A AU — A~A)*, U* =U e B(H).
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Proof. If A is regular, then the left multiplication operator ¥ = L4 is regular and
L 4- 1s the inner inverse of La,

applying Corollary and Corollary we get that the equation
LaX)=C
has a Hermitian solution Xy € B(H) if and only if
Laa-(C)=C,

and
YU (C*— ACA")=C*"— A~ CA*.

The equation L44-(C) = C implies that
AAC =C,

which is equivalent to
R(C) CR(A),

the condition

VU (C* — A" CA") = C* — ACA",

implies that
J"L'ir[;_A—A),(A-)—A-{C* — ‘47044*) =C"— A CA",

consequently

C*(A )" A*— A AC* (A )*A*—A C(AA A)'+A AA C(AA A)* =C*—A CA",

hence
ATACT — ATCA* =0, (2.16)
applying A to the equation (2.16]), we get
AC* = CA*~.

From Corollary the Hermitian solution is of the form

X+ X*
XHZ—;,

where X is the representation of the general common solution to equation (2.15]).
Then

X = Lo (C)+ T (C*—A"CA*)+ (I — T T)(U)
— L A[T(C - ATCAY) (I T (U),
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where U € B(K) is an arbitrary operator, it follows that

X = A C+ JWJ(I_A—A),(A—)—(C* — A_C/“L*) + (I - A'F"'if[I—A—A),A‘ (A‘)—){U)
ATA(I — M(1-a- a),a-(a)-)(U),

using the equality AC* = CA*, we have
X=AC+{I-AAQHAC)y+I-AAUI-A A"

Consequently, we get

Xp=AC+{I-AAAC)+(I-AAU(I-A"A), whereU" =U € B(H).

O
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Chapter 3

Hermitian solutions to some
operators equations

3.1 Introduction

This chapter is the subject of an article [9] written in collaboration with Pr F.
Lombarkia accepted in Facta universitatis (Ni§). Ser. Math. Inform.
We consider the same system us in the second chapter

A1 XBy =C1, AXBy=Cy,
where Ay, As, By, Ba,C1 and Cy are linear bounded operators on Hilbert spaces,
and we give other necessary and sufficient conditions for the existence of a common
solution, we apply the result to determine new necessary and sufficient conditions
for the existence of a Hermitian solution and a representation of the general Her-
mitian solution to the operators equations AXB = C, and AXA* + BYB* = C.
As consequence, we obtain well-known results of [16]

3.2 Common solution to the pair of equations A; X B, =
Cl and AQXBQ = CQ

Let Ay, Ay, By, By, C7 and Cy are linear bounded operators defined on Hilbert
spaces H, K, E, L, N and G. Before enouncing our main results, we need the
following lemmas

Lemma 3.2.1. [1]] Suppose that Ay € B(H,K), Ay € B(H,E), B, € B(L,G),
By € B(N.G), S1 = As(Ig — AT Ay) and My = (I — B1By ) By are regular

operators. Then

Tl = (IE — Slsl_)xqgr'll_ and Dl = Bl_Bg(L\ = 1'":':'!(1_1"1{[1),
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are regular with inner inverses Ty, = A1Ay and Dy = By Bi.

Lemma 3.2.2. [15] Let A, B € B(H, K) are regular operators and C, D € B(H, K),
then the pair of operators equations

AX =Cand XB =D, (3.1)
have a common solution ts
AAC=C DB B=D.and AD = CB, (3.2)
or equivalently
R(C) Cc R(A), R(D") Cc R(B"), and AD =CB.
A representation of the general solution is
X=AC+DB —AADB™ +(Ig—A"A)V(Ir—BB™), (3.3)
where V € B(K) is an arbitrary operator.

In the following theorem, we give necessary and sufficient conditions for the
existence of a common solution of the operator equations

A XBy =Cy, Ay XBy=0Chy.
Theorem 3.2.1. Suppose that Ay € B(H,K), A2 € B(H,FE), B1 € B(L,G),
By € B(N,G), My = (Ig — B1By)By and S1 = As(Iag — Ay A1) are regqular

operators and C, € B(L,K), Cy € B(N,E), then the following statement are
equivalent

1. The pair of equations
A XB,=C1, A XBy—= (5, (3.4)
have a common solution X.

2. There exists two operators U € B(N,K) and V € B(L, E), such that the
operator equation AXB = C is solvable, where

A L (o U
A(Az), B= (B By), c(v 02).
3. Fori=12, R(C;) C R(Ai), R(C}) € R(B?) and
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ThChDy = T12Ca Do,
where Tl = (IE - Sle)AgAl_, TQ = (IE - 515‘1_), D1 = BI_BQ(L\" - :hrl_lfl)
and DQ = (L\r — :lrfl_:Lfl)

Proof.
(1) & (2) We have

B A | (o U
AXB=C & (AQ)X(Bl Bg)( v oo )
A X B, = Cy,
Ay X By =T,
=
Ay XBy =V,
Ay X By = Cb.

Since the pair of equations
A1 X By = C) and A3 X By = (5,
has a common solution. Then, by applying Lemma [I.2.2] the operator equations
A1 XBy=U and A3 X By =V,
have a solution if and only if
U=AATUB;y By and V = Ay A; VB] By,

respectively. This is equivalent, there exists two operators U € B(N, K) and
V € B(L,E), such that the operator equation AXB = C is solvable. Thus
(1) = (2)

(2) = (3) According to Lemma m the operator equation AXB = C has a
solution if and only if

R(C)CR(A) and R(C*)C R(B"),
then, we deduce that
for i=1,2, R(C;) CR(A;) and R(C])C R(B]). (3.5)
On the other hand, we have

Ih'C\Dy = (Ig— S157)AAT C\ By Bo(In — My M),
— (Ip— S1S7) A AT A\ XoB1 By Bo(Iy — M7 M), (3.6)

where Xj is the common solution of the pair of equations ((3.4]).
Let
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This implies that
AQAI“M = Ay — 5] and BleBz = —M;. (37)

We insert in (3.6), to obtain

T\C\Dy = (Is — $157)(Az — 1) Xo(Bs — Mi)(Iy — My M),
= (Ig — 5151 )(Az — S1) Xo(Ba(Iy — My My),
— (I — S157) AsXoBa(In — M My).

Therefore

NC1Dy = ThCaDs. (3.8)
From (3.5 and (3.8]), we deduce that (2) = (3). Conversely, since

NC Dy = ToCa Dy,

then
R(T,Cy) € R(11) and R(DiCT) C R(D3).

By applying Lemma there exist U € B(V, K) which is the common solution
to the pair of equations

{ U =130y, (3.9)

UD, = C\Dy,

given by
U=T1Cy+ Ci1D\Dy — T T'"C\D\Dy + (Ixk — Ty Th) Z(In — D2 Dy),
where Z € B(N, K) is an arbitrary operator. On the other hand, we have
U=MA]UB; Bs,
then

U = AlAl_Tl_TQCQBZ_BQ —+ 441441_01D1D2_BQ_BQ — 441441_TL_T101D1D2_BQ_BQ
+ AAT( =TTT)Z(1 — D;Dy) By Bs.

After simplification we obtain
U=CD+ Tl_ (IE — Sle)Cglfl_:Lfl + (AlAl_ — Tl_Tl)Zﬂ'jfl_ﬂirl (310)

where Z € B(N, K) is an arbitrary operator.
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In the same way, since
NC\Dy = T2C3Ds,

then
R(T\C1) € R(T2) and R(D5C5) € R(Dy).
it follows from Lemma that there exist V € B(L, E') which is the common

solution to the pair of equations

{ I,V =TCh, (3.11)

VD) = CyDs,

given by

V =Ty, NCy + C2D2 DT — Ty ToCoDa Dy + (I — Ty 1) Z' (I — DDy ),
where Z' € B(L, E) is an arbitrary operator. On the other hand, we have

V =A2A, VB, B.

After simplification we obtain

V =T1C1 + 5157 Co(Iy — My My)Dy + S1S7 Z'(By By — D1D7), (3.12)
where Z' € B(L, E) is an arbitrary operator.

Thus, there exists U € B(N,K) and V € B(L, E) solutions of the pair of

equations , and as fori =1, 2, we have A;A; C; = C; and C;B; B; = C;,

we obtain

Vo
= C.

AACB B = (Cl ¢ )

So that, the operator equation AX B = C'is solvable and (3) = (2). O

Theorem 3.2.2. Suppose that Ay € B(H,K), A2 € B(H,FE), B1 € B(L,G),
By € B(N,G), My = (Ig — B1By)By and S1 = As(Iag — A A1) are reqular
operators and Cy € B(L, K), Cy € B(N, E), when any one of the conditions (2),
(3) of Theorem holds, a general common solution to the pair of equations
15 given by
X =(A1C1+ Iy — AT A)ST (V= A2ATC1)) By (Ig — BoMy (Ie — BiBy))
+ (AU + ({g — A A1)S] (O — AQATU))M| (I — BiBy ) + F
— (AT A1+ (Ig — AT A4Sy S)F(B1By + MMy (I — B1By)),
(3.13)
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where F € B(G, H) is an arbitrary operator and U, V are given by

U = OBy By(Iy — My M)+ AjA; (I — S5, )CoM, My + Ay A; ZM; M,
— 441442_(1,5' — 5151_)442441_24&:!1_?@1,
and
V o= (Ig — S157)AATCy + S157 Cy(Iy — My M) By By + S157 Z By By
— S1S7Z By By(In — M M) By By,

where Z € B(N,K), Z' € B(L, E) are arbitrary operators.

Proof. From Theorem we get that the pair of equations (3.4) has a common
solution equivalently the two conditions (2) and (3) holds.
On the other hand, since the pair of equations ((3.4) is equivalent to

(:jﬂX(Bl B?)Z(f}lg)- (3.14)

According to Lemmas [1.3.3| and [1.3.4] we have

( ‘il ) € B(H,K & F)and ( By By ) € B(L & N,G) are regular with inner
Az

inverses

A\ - - = = - i

— By B;M, (I — B,By) ) (3.16)

_ By

, B, B = :
and (B B) ( My (Ig — ByBY)
respectively. Using Lemma [1.2.2] we deduce that the general solution of (3.14)) is

given by

X:(ﬁ;) (f:l gz)(Bl By) +F—(:j;) (:j;)F(Bl B )( B By) .

(3.17)
By substituting (3.15]) and (3.16) in (3.17), we get the solution X as defined in
such that U, V" are given in (3.10f) and respectively and F € B(G, H)

is an arbitrary operator O

3.3 Hermitian solution to the operator equation
AXB=C

Based on Theorem |3.2.1) and Theorem [3.2.2] in this section we give necessary
and sufficient conditions for the existence of Hermitian solutions to the operator
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equation
AXB=2C,

and we obtain the general Hermitian solution to this operator equation. Before
enouncing our main results we have the following lemma

Lemma 3.3.1. Let A € B(H,K) and B € B(K,H), such that A, B, S} =
B*(Ig — A~ A) and My = (Ig — BB™)A* are regular, then the operator equation

AXB =C, (3.18)
has a Hermitian solution if and only if the pair of operator equations

AXB=C and B'XA"=C" (3.19)

has a common solution, a representation of the general Hermitian solution to

is of the form
X+ X

2 3
where X is the representation of the general common solution to equations (m)

Xn

Proof. From Theorem the pair of operator equations (3.19)) has a common
solution if and only if

R(C) C R(A) and R(C*) C R(B"),
and
(Ix —S15] )B*A—CB~A*(Ixk — M; My) = (Ixk — 5157 )C*(Ix — My M).

A representation of the general common solution to equations (3.19) is given by
(3.13)) in Theorem [3.2.2, where Ay = A, By = B, C, =C, Ay = B*, By = A* and
Cy = C". Clearly Xy is a Hermitian solution to (3.18§). O

From the above proof and Theorem we obtain the following corollary.

Corollary 3.3.1. Let Ac B(H,K), Be B(K,H), M, = (Iy — BB™)A* and
Sy = B*(Iy — A A) are regular operators and C € B(K), then the operator
equation

AXB =C,

has a Hermitian solution if and only if
1. R(C) Cc R(A) and R(C*) C R(B¥),

2. (Ix — $157)B* A~C B~ A*(Ix — My M) = (Ix — S187)C*(Ix — My My).
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In this case, a representation of the general Hermitian solution is of the form

X 4+ X"
Xn= 5
where
X=(ACH+{Iyg—-—A"A)S(V-B'AC))B (Ig — A*M{ (Ig — BB™))
+(A U+ (Iy—AA)S(C"—B*"AU))M; (Iy— BB )+ F (3.20)

—(A A4+ (Ig— A A)S| S1)F(BB + MM, (Ig— BB "),
where F' € B(H) is an arbitrary operator and U, V are given by

U = CB A*(Ix — My M)+ A(B*)™ (I — S1.S7)C* My My + AA~Z My M,
— A(B*)~(Ix — S1S7)B*A~Z My M,
and
V = (Ix—S1S])B*A~C+ 8,87 C*(Ix — My M)(A*)"B+ 5,57 Z B™B
— S\S{Z B A*(Ix — M{ M;)(A*) B,

where 7,7 € B(K) are arbitrary operators.

Corollary 3.3.2. Let A€ B(H,K), C € B(K) such that A is regular and C* = C.
Then the operator equation
AXA*=C, (3.21)

has a Hermitian solution X € B(H) if and only if
R(C) C R(A).
A representation of the general Hermitian solution is
X=ACA ) +Z-A"AZ(A” Ay, (3.22)
where Z € B(H) is an arbitrary Hermitian operator.
Proof. We put B = A* in Corollary we get the result. L

example 3.3.1. Let the operator equation AXA* = C, such that A : ¢* — C is
defined by

and C : C — C is defined by
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It is easy to check that A € B(¢2,C). We have A* : C — [? is defined by

. 111
"“’“‘Mléié -,
for all X € C. The inner inverse A~ : C — 2 of A is defined by
o A 11
AN =705 )

We have

AA—C(N) = AA‘(%),

A=, 1,
= 520G
k=0
A 4
= X =,
3273
= C(A).

Hence, from Corollary[3.5.9 we deduce that the operator equation AXA* = C has

a Hermitian solution given by
Xa=ACA" )"+ Z+A AZ(A”A)".
Where Z is an arbitrary Hermitian operator.

As a consequence of Corollary [3.3.1] we obtain the well-known Theorem of
Alegra Daji¢ and J.J. Koliha [16, Theorem 3.1].

Corollary 3.3.3. [16, Theorem 3.1] Let A,C € B(H, K) such that A is a reqular

operator. Then the operator equation
AX =C,
has a Hermitian solution X € B(H) if and only if
AA=C = C and AC* is Hermitian.
The general Hermitian solution is of the form
X=AC+(Ig—AAAC)+(Ig—-—A AZ(Iy—A A,

where Z' € B(H) is an arbitrary Hermitian operator.
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Proof. By applying Corollary the operator equation AX = C' has a Hermi-
tian solution if and only if

R(C) C R(A),
which is equivalent to

AATC =C,
and

Uy —Iy+AAA CA = Iy —Ig+AA)C,

this implies that

CA* = AC™.

Hence, AC* is Hermitian. In this case,
X = [ACH+(Ig—A A)ACH(Ig— A AC(A")

+ Iy — AA)Z/(Iy — AA)y — AC)],
= A CH+(Iy— A A)AC) + Iy — A A)Z'(Iy — AA)".

It follows that,

X+ X
==
—AC+(Ig— A AAC) + (Ig— A A) Z' (I — A~ A)".

Xy

O

3.4 Hermitian solutions to the operator equation
AXA*+ BYB*=C

In this section, we determine conditions for the existence of a Hermitian solution
to the operator equation AXA* + BY B* =C.

Theorem 3.4.1. Let A, B € B(H,K) and Ay = (Ix—AA™)B, C, = (Ix—AA™)C
and Sy = B(Ig — Ay A1) be all reqular and C € B(K) is Hermitian. Then the
operator equation

AXA*+ BYB*=C, (3.23)

has a Hermitian solution if and only if
1. WA (Ix — AA7)C(B*)"B* = (Ix — AA7)C,
2. (Ix — S257)[C — BA] (Ix — AA™)C(B*)"B*|(Ix — (A7)*A*) = 0.
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In this case, a representation of the general Hermitian solution is of the form

X+ X" Y—t—Y*)
2 72 '

(X Yu) =(
where X and Y are given by

X = A~(C — BY B*)(A")~ + F — A~ AF(A-A)",
Y = AT (I — AATYC(BY)~ + (In — AT A)Sy IV — BAT (I — AA™)C|(B*)-
+U — [AT A1+ (In — AT A1)Sy SJUB*(B) ™,

and

V = (I — S253 ) BA (Ix — AAT)C + $2S7 C(Ix — (A7) A")(A}) B
+ 5287 Z(BY)” (In — A1(A7)") B,

with F € B(H), U € B(H) and Z € B(K) are arbitrary Hermitian operators.
Proof. The operator equation (3.23)) is equivalent to
AXA*=C - BYB". (3.24)

Applying Corollary m the operator equation (3.24) has a Hermitian solution if
and only if

R(C' — BYB*) c R(A) & AA™(C— BYB*)=(C — BYB),
& (I—AA)(C—BYB*) =0. (3.25)

Then, (3.25) is equivalent to the operator equation
AYB* =, (3.26)

with Ay = (I — AA™)B, Cy = (I — AA™)C. From Corollary [3.3.1] the operator
equation (3.26) has a Hermitian solution if and only if

R(C1) CR(A1) & AATCL =0,
& A Ik — AA7)C = (Ixk — AAT)C, (3.27)
and

R(C}) c R(B) < Cy(B*) B* =0y,
& (Ix—AAT)C(BY) B = (Ix — AAT)C.  (3.28)

From ([3.27)) and ([3.28)), we get

AVAT (Ix — AAT)C(B*) B* = (Ix — AA™)C.

13
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On the other hand, we have
(Ix — S57)BAT (Ix — AAT)C(B) ™A% = (Ix — 5255 )C(Ixc — (A7) A%,
this implies that
(Ix — 5257)[C — BAT (Ix — AA")C(B) " B)(Ix — (A7) A%) = 0.
A representation of the general Hermitian solution to the operator equation
is of the form

Y +Y*
YH:—;a

where Y is given by (3.20) in Corollary (3.3.1)) such that A = A;, B = B* and
C=0.

Y = Aj(Ix — AAC(BY) + (In — A7 A)S; [V — BAT (I — AA™)C)(B")~
+ U-— [Al_Al -+ {IH — AIAHS{SQ]UB*(B*)_,

and

V = (Ig — 5255 )BA] (Ixk — AA™)C 4 525, C(Ix — (A7) A")(A]) B”
+ 5255 Z(BY) " (In — A1 (A7)") BT,
with U € B(H) and Z € B(K) are arbitrary Hermitian operators. We return to

the operator equation

AXA*=C - BYB*,

in order to fined the Hermitian solution X. By Corollary the operator
equation (3.24) has a Hermitian solution if and only if

R(C' — BY B*) C R(A).
So the operator equation (3.24) has a Hermitian solution X is given by
Xu=X=A (C—BYB")(A") +F—-A AF(A A)",

with F' € B(H) is an arbitrary Hermitian operator. U
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Chapter 4

Lyapunov equation for infinite
dimensional discrete bilinear
systems

4.1 Introduction

Control theorists in recent years developed extensively the mathematical theory
of so-called bilinear systems.

Bilinear systems are an important subclass of nonlinear dynamical systems,
with numerous applications in engineer, biology, ecology, physical process, and
economics. The main reason for this is that offers considerable intrinsic theoretical
interests since they form a transitive class between the linear and the general
nonlinear problems.

Since the beginning of the 1970’s, they have attracted the attention of many
researchers for example Mohler (1973), Bruni, Dipillo, and Koch (1974) Espana
and Landau (1978), Brockett (1979), and Mohler and Kolodziej (1980)..., Some of
them focused on continuous-time systems, and others on discrete-time. A simple
example is as follows.

example 4.1.1. Automobiles(Mohler, 1987)

The frictional force between an automobile brake shoe and drum is nearly pro-
portional to the product of the orthegonal force uy between the surfaces and their
relative velocity. Thought actually involving by the mechanical brake is commonly
approzimated by

dx
fb = Cpl dt .

Then, by a surnmation of engine force ug with mertial, braking, and other frictional
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forces, it is seen from Newton’s second law that the state of the vehicle is given by

d*x dx
F = mﬁ = —kcfa —kfy+ us
d. d
= —kqd—j — kcbuld—j + ug
@ _ —kcf@ B kcbuld_x Uup
dt? m dt m dt  m
Let vy =z, 19 = %, then we have the state equation is as follows:
dX
—r AX + w3 BX + Cus, (4.1)

where X is composed of x1, position, and xy, velocity; C' = |0, l/m]T;

4= (0 “eym )

0 0
B = ( 0 —key/m ) '

here k is a proportionality constant, cy is a vehicle frictional constant, ¢, is a brake
constant, and m 1is vehicle mass. Here 15 a bilinear systems.

Since most models in the real world are nonlinear, recently more and more at-
tention to the stability of nonlinear systems. Specifically, the stability of discrete
bilinear systems operating in a stochastic environment, where sufficient conditions
for mean-square stability were established. Many results have been obtained of
this stability, in 1985, Kubrusly and Costa [35] gives the necessary and sufficient
conditions for mean-square stability of finite-dimensional discrete bilinear systems
driven by random sequences. In 1986, Kubrusly [30] got mean square stability
conditions for discrete bilinear systems only independence and wide sense station-
arity are required for the second-order disturbance sequences involved. In 1989,
X. Yang et al [66] drove sufficient conditions ensuring the stability and asymptotic
stability of discrete bilinear systems with output feedback. Also, in [67], X. Yang
et al gives mean square stability conditions for stochastic models without the as-
sumption of stationarity for the random noise. After, in 1991 Costa and C. S.
Kubrusly present a study was motivated by the earlier works on finite-dimensional
stochastic bilinear systems in [30] and on infinite-dimensional deterministic linear
systems. Suppose in this chapter that H is a separable nontrivial complex Hilbert
space.
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Consider two operators sequences {R; € B(H);i > 0}, and
{X; € B(H);i > 0} recursively defined by a linear autonomous difference equation
Xiv1 = M(X;) + Rip, Xo = Ry, (4.2)
where
M :B(H) — B(H).

Recall that {X; € B(H);: > 0} converges in B(H) whenever {R; € B(H);i > 0}
converges in B(H) if and only if

re(M) < 1. (4.3)

Let us consider first a well-known particular case M = M 4, where M4 € B[B(H )]
is the multiplication operator defined by

Ma(X) = Maa (X)=AXAY, VX e B(H),
for some A € B(H ). Since Wl = J-'W;’A. | =
ro(Ma) = ro( A)2,
according to the Gelfand formula for the spectral radius. Hence,
ro(My) <1 if and only if ry(A) <1.

However, in [31], C.Kubrusly proved that r,(A) <1 if and only if

Ai||2 for every ¢ > 0, then

for every Y € G*(H) there exists a unique solution X € G*(H)

for the Lyapunov equation ¥ = X — M 4(X). (4.4)

The purpose of this section is to show that the equivalence between (4.3]) and
(4.4]) still holds for a more general case where, instead of setting M = My, we
take M = M, + J with J is an operator in B[B(H)] defined as follows:

>0
J— . *
J(X) = E (Cep;er) A X A vX e B(H),
k=1
where

o {A, € B(H);k > 0} is an arbitrary bounded sequence of operators,

e C € By (H) is any nonnegative nuclear operator,

e {er;k > 1} is a suitable orthonormal basis for H ensuring convergence for

the above infinite series.
This supplies a necessary and sufficient condition for the convergence preserving
property between input and state correlation sequences, as required in the mean-
square stability problem, for infinite-dimensional discrete bilinear systems.
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4.2 Preliminaries

Consider a bounded sequence of operators { Ay € B(H); k > 1}, and let {ex; k > 1}
be an orthonormal basis for H. Given C &€ IEBT(H) set Jn, € B[B(H)] as follows.
For each integer n > 1

n

Tn(X) =) (Cejer)Ma, a:(X) VX € B(H)
k=1

Assumption

Jn—= T €B[B(H)] as n—oo in B[B(H).

Under the above assumption, write
J(X) =Y (CeneryMaa; (X),  ¥X €B(H),
k=1

and, given A € B(H), let M € B|B(H)] be defined as
M(X) = Maa-(X)+ T(X), VX eB(H).

Remark 4.2.1. Note that the very definition of {7, € B[B(H)],n > 1} in terms
of bounded sequence { Ay, € B(H);k > 0} and a non-negative nuclear operator C'
is not enough to ensure its convergence as proved in an example given in [13]

For any W € GT(H) let W € G[B(H)] is the multiplication operator defined
by
W(X) = Mww(X) =WXW, VX € B(H),

so that W1 € G[B(H)] is such that
WHX) = My (X) =W ' XW™!, VX € B(H).
Proposition 4.2.1. For every W € GT(H)
(P1) W IlmMWwYB*(H)) CBT(H)
(P2) W MW = (W Mmw (D)

Proof. Consider the direct sum H = C & H, which is a Hilbert space with inner
product given by
(x;y) = v+ (1)
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foralx =@z and y=v Py in H, where §,v € C, and z,y € H.
Given the orthonormal basis {e; k > 1} for H set, for each k& > 0

foo 160 k=0,
T 0me, k>

so that {fx;k > 0} is an orthonormal basis for H.
Let C = (14 C) € BY (H) be the direct sum of the identity on C with C' € Bf (H),
so that

(Cx:y) = ({@ Crivay) =0+ (Criy),
forallx=§¢@rx e Handy =v Dy € H. In particular

1 ifk=1=0
(Cfiifi) =4 (Cepey) if k=1,
0 otherwise.

Thus, for each n > 1, set M,, € B[B(H)] as follows

Mu(X) = Maa-(X)+ Tu(X)
AXA" + J,(X)

= Z(Cfi;fQAkXAEa

e, 1=0
where Ay = A € B(H). So that
M, - M eB[B(H)] as n— occin BB(H),
where
M(X) = AXA + J(X)

oo

= Z <Cfg;fk>44kXA4*, VX e IB(H)

k=0

According to the convergence assumption on {7, € B[B(H)];n > 1}.
Now, since C € B (H) the spectral theorem says that
o0
Cx =Y vz f)fj, VzeH,
j=0

for some orthonormal basis { f/,j > 0} for H, where v; > 0 for every j > 0.
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Then, by continuity of the inner product, for every k,1 > 0
o0
(C i fu) =Y vl fis ST S
j=0
Hence, for each n > 1, for all x, y e H

(Mn(X)z3y) = ZZm (fs ) UFL: Fe) (X Al Aqy),

ki=0 j=

3 S KU A s £ A
=0 kJ=0

= S XZ (f 1) AL ) (s FiARw).
j=0 =0 k=0

Since addition is continuous. Thus, if X € BT (#), then , for every n > 1
(Mn(X)z; ) = Z X /22 fio ;) Agzl®, Ve H,

which implies that M,,(X) € BT(H). Therefore,
M(B* (1)) C B+ (1), (15)

because BT (H) is closed in B(H).
Now, by using Schwars inequality twice, and recalling that

IMa(D)2]] = | M (D))

since M, (I) € B¥(H) for every n > 1, we get

(M (X)z;39)| < IIXIIZ“r'jIIZ(ﬁ;f}% ?xIIIIZUk:f})A’EyIM

1111 Z fj||§j s i) Apa] )/ Z ng (s I ALyl?) 2,
j=0

||X||<Mn(f)_x:~"6)”2< n(D)y; J)U?,
X 1M (1) 2| Ma (D) 2y,
< XM [l -

A
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for all z, y € H and every n > 1, so that

M (X)) = |\m|\S:L|1|5|:l|(Mn(X)$; wl < XM

for all X € B(H) and every n > 1. Hence,
Ml = IMa (D],

because

IMa(D] < | Ml = i M (X[ < M (D]
for every n > 1. Therefore, since M,, = M as n — oo in B[B(H)],
M = IM(D)]- (4.6)

Finally, take an arbitrary W € G*(#) and set A, = W1 A,W € B(H) for every
k > 0. Thus,

WIMWKX) = WIMWXW)W !

o0

= Z(Cﬁ; [y ARX Ay VX € B(H).
k,1=0
Hence, (4.5]) implies (P1), and (4.6 implies (P2). O

Lemma 4.2.1. For any W € GT(H) and any o € (0, 00).
1 IWIMW| < a o alW? - M(W?) € BT (H),
2. IWITMW| < a e alW? — M(W?) € GT(H).
Proof. Take an arbitrary W € G*(H) and set M = WL MW € B[B(H)], so that
M(I) = WrMmwHw! e [B(H)).
Thus, for any a € (0;00)

(aW? — MWH)z:z) = (W2 —WW MW W)z, 2),

((

((aW — W MDW W)z Wz),

= ((@WW™'W — W MD)W W)z, W),
(aWW = WAIMOW YWz, W),
((ad — M(I))Wa;Wz), VYacH.
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Hence
aW? — M(W?) e BT (H)(e G™(H)),

if and only if

al — M(I) e B (H)(e GT(H)),
which in turn is equivalent to
MDY < a!?(< o'/,

since M(I) € B(H) by proposition (P1).
However, by Proposition (P2)

1M = M) = M)
Thus, the above inequality is equivalent to
M| < < ).
O

Proposition 4.2.2. [32] Let A € B(H, K), The following assertions are equiva-
lent:

1. There exists A~1 € B(R(A), K).
2. N(A) = {0} and R(A) = R(A).
3. There exists a real constant o > 0 such that ||Az|| > af|z||, for allx € H
(i.e. A is bounded below).
4.3 Stability for discrete bilinear systems

In the following section we shall conclude the announced proof for the equivalence

between assertions and with M = M 4 replaced by M =M, + J.
Theorem 4.3.1. The following assertions are equivalent:

1. 7o(M) < 1.

2. M s similar to a strict contraction.

3. There exists X € GT(H) such that

X — M(X) € G*(H).
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4. For everyY € GT(H) there exists X € GT(H) such that
Y = X — M(X).

Moreover, if the above holds, then the solution X € G*(H) of the Lyapunov equa-
tion Y = X — M(X), for any Y € GT(H), is unique and given by

X =" M(Y)=(I-M)"(Y), (4.7)
=0

where I standing for the identity in BB(H)].
Proof. 4 = 3, is trivially verified.
3 = 2 Suppose that there exists X € G'(H) such that X — M(X) € G'(H).
According to Lemma we have
IWITMW| < a < aW? — M(W?) e GT(H).
Let a =1 and X = W?2, then
X - M(X)e G (H),
this implies that _
W MW < 1.
Thus, M is similar to a strict contraction.
2 = 1 Suppose that M is similar to a strict contraction, then there exist
W € G(H) such that |[W IMW)| < 1. Since
re(WIMW) < WMWY,
and _
ro( W MW) =7, (M).
Thus
ro(M) < 1.

1 = 4 Suppose that r,(M) < 1, so that Z;ioHMJH < o0.
According to Proposition (P1) with W = I we get by induction on j that
MI(Y) e BT(H) for every j > 0 and Y € GT(H). Then, for every n > 0, Vo € I

1YY P )? < YY),

< ille(Y)lelz,
=0
< O IMIDIY I, (4.8)

j=0
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Hence we may define a map

O:H — Iy(H)
r — Q’xz“}’ioMj(Y)sz

@ 15 linear and bounded with

1@2?, @) = DM (Y)/2|)?, Vo € H. (4.9)
From (4.8)) and (4.9)), the operator @ is bounded below and from the Proposition
4.2.2| we have, ¢ has a bounded inverse in R(®). Thus
P GH(H).

By the continuity of the inner product we get, for every z € H,

(M(D*D)z; ) Z Cer; ex) Ar® QA x; ),
k=0
Z Cey; €k> (I’AIx P 4kx>12[H
k,1=0

However, for each k,1 > 0 and every z € H.

(@A z; DALYy = D AMI(Y)2 A MI(Y)2 Afa),
j=0
= D (MM (Y)Az; ),

j=0

= (4 M(Y))Ajz; ),
j=0

since {Z?:O My n > 0} converges in B[B(H)] whenever r,(M) < 1. Therefore,
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forall z € H,

M(@*®)z;z) = (Y (Ceper) Au(> MI(Y))Af; ),
ke 1=0 j=0
= (M{ZMJ(Y));‘S&B}
j=0
= > (MY )aa),
j=0

= D IME)a)?,
j=1
= [Pz} ) — Y 2|2,
so that, for all z € H,

(Y = @' 0+ M(P*D))zs2) = [[V2|? — || Bz, ) + (M(*®): ),
= 0,

Hence
Y =00 — M(D"P).

Thus, 1 = 4 with X = ®*® € GT(H). Moreover, such an operator is unique.
Indeed, if Y = X — M(X) € GT(H) for some X € GT(H), then for all z € H and
every 7 >0

M) 22)? = (MY )asa),
M (X) 2|2 — (| M () 2] .

Hence, for every =z € H,

Dl iy = nh_,nLOZ“Mj(Y)l/szl
=0
= lim (|| XY22|? — | M TYX)Y22)|?),
N—roo
= x|,
since

M) P)? < IMIX
—+ 0 as n— o0,

5%5)
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because 75(M) < 1. Therefore

(2@ - X)ayz) = ||®|fm — X2,
0, vz € I.

So that X = ®*®, which proves uniqueness. Finally, if X € G*(H) is the solution
of Y =X — M(X) e GT(H), then for cach n >0

n

ZMJ'(Y) = Z(MJ(X)—MJ’+1(X)),
j=0 j=0
= X - M"YX)eB"(H).
Thus
DN MIY)—X|| = [IMHHX),
j=0
< IMPHIX]] — 0 as n — o0,

because r,(M) < 1. Hence
ZMj(Y) — X asn —> o0 in B(H).
=0

However, since rs(M) < 1 implies that
(I- M) € GB(H)],
and that {377, M’ € B[B(H)];n > 0} converges in B[B(H)] to

(I - M) e GB(H).



Conclusion

In this work we presented new necessary and sufficient conditions for the exis-
tence of solutions and Hermitian solutions to some operators equations in Banach
and Hilbert spaces and we got the general solutions and Hermitian solutions via
the inner inverses of elementary operators and via simple operators. Our results
generalize and improve many previous results in the literature.
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on



Bibliography

[1]
2|

18]

19]

[10]

[11]

R. Arens, Dense inverse limit rings, Michigan Math. J., 5 (1958), 169-182.

Z. Bakhtiari and S. M. Vaezpour, Positive solutions to the system of operator
equations T;X = U; and T;XV; = U;, Journal of Math. Anal., 5 (2016), 102-
117.

J. K. Baksalary and R. Kala, The matrix equation AX — Y D = C, Linear
Algebra and Appl, 25 (1979), 41-43.

J. K. Baksalary and R. Kala, The matrix equation AX B+CY D = E. Linear
Algebra and Appl, 30 (1980), 141-147.

A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Theory and Applica-
tions, second ed, Springer, 2003.

A. Bjerhamar, A Generalized Matrix Algebra, Trans. Roy. Inst. Tech. Stock-
holm. 124 (1958), 32

A. Bjerhammar, Application of calculus of matrices to method of least squares
with special reference to geodetic calculations, Trans. Roy. Inst. Tech. Stock-
holm (1951), no. 49, 86 pp. (2 plates).

A. Bjerhammar, Rectangular reciprocal matrices, with special reference to
geodetic calculations, Bull. Géodésique (1951), 188-220.

A. Boussaid and F. Lombarkia, Hermitian solutions to the equation AX A* +
BY B* = C, for Hilbert space operators, Accepted in Facta universitatis (Nis).
Ser. Math. Inform.

S. R. Caradus, Generalised Inverse and operator Theory, Queen’s Paper in
Pure and Appl Math, vol. 50, Quenn’s Univ., Kingston, ON, 1978.

X.W. Chang, J. Wang, The symmetric solutions of the matrix equations

AX+YA=0C, AXAT+ BYBY = C and (ATXA, BTXB) = (C, D), Linear
Algebra Appl. 179 (1993), 171-189.

58



BIBLIOGRAPHY

[12]

[13]

[14]

[15]

16

S. L. Compbell, CD, Meyer, Generalized inverses of linear transformations,
Pitman Publishing limited, 1979, Reprinting, SIMA, 2010.

0. L. V. Costa and C. S. Kubrusly, Lyapunov equation for infinite dimensional
discrete bilinear systems, Systems & Control Letters, 17 (1991), 71-77.

A. Daji¢, Common solution of linear equations in ring, with application, Elec-
tonic Journal of Linear Algebra, Volume 30, 2015.

A. Dajié, J.J. Koliha, Equations ax = ¢ and #b = d in rings and rings with
involution with applications to Hilbert space operators, Linear Algebra and
its appl, 429 (2008), 1779-1809.

A. Daji¢ and J.J. Koliha, Positive solution to the equation AX = C and
X B = D for hilbert space operators, J. Math. Anal. Appl. 333 (2007), 567-
576.

[17] Y. Deng, X. Hu, On solutions of matrix equation AXA” + BY BT = C, J.

[18]

[19]

[20]

[21]

122]

[23]

24

125]

Comput. Math. 23 (2005), 17-26.

D.S. Djordjevié, V. Rakocevié¢, Lectures on generalized inverses, Faculty of
Sciences and Mathematics, University of Nis, (2008).
R. G. Douglas, On majorization, factorization, and range inclusion of opera-

tors on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.

F. O. Farid, M. S. Moslehian, Qing-Wen Wang, Zhong-Cheng Wu, On the
Hermitian solutions to a system of adjointable operator equations, Linear
Algebra and its Appl., 437 (2012), 1854-1891.

P. A. Fillmore and J. P. Williams, On operator ranges, Adv. Math, 7 (1971),
244-281.

I. Fredholm, Sur une classe d’ quations fonctionelles. Acta Math. 27(1903),

365-390.

J. Gro, A note on the general Hermitian solution to AXA* = B, Bull.
Malaysian Math. Soc. (Second Series), 21 (1998), 57-62.

W. A. Hurwitz, Or the pseudo-resolvent to the kernel uf an integral equation.
Trans. Amer. Math. Soc. 13(1912), 405-418.

C. G. Khatri and S. K. Mitra, Hermitian and nonnegative definite solution of
linear matrix equations, STAMJ. Appl. Math., 31 (1976), 579-585.

59



BIBLIOGRAPHY

26

27

[28]

[29]

[30]

[31]

[32]

[33]

34

[35]

|36]

[37]

[38]

[39]

P. Kirrinnis, Fast algorithms for the Sylvester equation AX — X B = C'". Theor
Comput Sci. 259 (2001), 623-638.

J.J. Koliha, V. Rakocevié, Invertibility of the diference of idempotents, Linear
Multilinear Algebra, 51 (2003), 97-110.

J.J. Koliha, V. Rakocevié, I. Starskraba, The diference and sum of projectors,
Linear Algebra Appl., 388 (2004), 279-288.

C. S. Kubrusly, Mean square stability dor discrete bounded linear systems in
Hilbert space, STAM J. Control and Optimisation, Vol. 23, No. 1, 1985.

C. S. Kubrusly, On discrete stochastic bilinear systems stability, J. Math.

Anal. Appl. 113(1986), 36-58.

C. S. Kubrusly, A Note On The Lyapunov Equation For Discrete Linear
Systems In Hilbert Space , App. Math. Lett. Vol. 2, (1989), 349-352.

C. S. Kubrusly, An Introduction to Models and Decompositions in Operator
Theory, Birkhuser, Boston, 1997.

C. S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhuser,
London, 2012.

C. S. Kubrusly and O. L. V. Costa, Mean-square stability for discrete bilinear
systems in Hilbert space , Systems & Control Letters, 19(1992), 205-211.

C. S. Kubrusly and O. L. V. Costa, Mean Square Stability Conditions for Dis-
crete Stochastic Bilinear Systems, IEEE Transactions on Automatic Control,

30(1985), 1082-1087.

N. Li, J. Jiang and W. Wang, Hermitian solution to a quaternion matrix
equation, Appl. Mechanics and materials, 50-51 (2001), 391-395.

Lombarkia F, Boussaid A (2019) Operator equations and inner in-
verses of elementary operators, Linear and Multilinear Algebra, DOI:

10.1080,/03081087.2019.1652239.

S. K. Mitra, Common solution to a pair of linear matrix equations A, X B, =
Cy, AyX By = Cy, Proc. Cambridge Philos. Soc., 74 (1973), 213-216.

S. K. Mitra, A pair of simultaneous linear matrix equations A, XB; = C,

Ay X By = 5 and a matrix programming problem, Linear Algebra Appl, 131
(1990), 107-123.

60



BIBLIOGRAPHY

[40]

[41]

[42]

43

44

45

1

47

[48]

[49]

[50]

M. Mohammadzadeh Karizaki, M. Hassani and S. S. Dragomir, Explicit so-
lution to modular operator equation TX S* — SX*T* = A, Krag. Journal of
math., 2 (2016), 280-289.

M. Mohammadzadeh Karizaki and D. S. Djordjevi, Solution to some solvable
modular operator equation, Func. Analysis, Appr. and Comp., 1 (2016), 7-13.

E. H. Moore, General Analysis Part I: Memoirs Amer. Philos. Soc. 1(1935),
especially pp. 147-209.

Z. Mousavi, R. Eskandari, M. S. Moslehian and F. Mirzapour, Operator equa-
tion AX +YB = C and AX A* + BY B* = C i Hilbert C*- modules, Linear
Alg. App., 517 (2017), 85-98.

M. Z. Nashed, Generalized inverses, Theory and Application, Academic Press,

NY, (1976).

A. Navarra, P. L. Odell and D. M. Young, A representation of the general
common solution to the matrix equations Ay XB; = € and Ay X By = Cy
with applications, Comput. Math. Appl, 41 (2001), 929-935.

A. B. Ozguler. The equation AX B4+CY D=EFE over a principal ideal domain.
STAM J. Matrix Anal. Appl, 12-3 (1991), 581-591.

P. Patricio and R. Puystjens, About the von Neumann regularity of triangular
block matrices, Linear Algebra and its Appl, 332/334 (2001), 485-502.

YX Peng, XY Hu, L. Zhang, An iteration method for the symmetric solutions
and the optimal approximation solution of the matrix equation AXB = C.
Appl Math Comput, 3(160) (2005), 763-777.

ZY Peng, XY Hu, The reflexive and anti-reflexive solutions of the matrix
equation AX = B, Linear Algebra Appl, 375 (2003), 147-155.

R. Penrose, A generalized inverse for matrices. Mathematic Proceedings of
the Cambridge Phil. Soc. 51(1955), 406-413.

S. V. Phadke and N. K. Thakare, Generalized inverses and operator equations,
Linear Algebra and its Appl, 23 (1979), 191-199.

C. Prévot and M. Rockner, A Concise Course on Stochastic Partial Differential
Equations, Springer, 2007.

W. T. Reid, Generalized inverses of differential and integral operators, pp.
1-25 in Theory and Applications of Generalized Inverses of Matrices: Sympo-
sium Proceedings, Texas Technological College, Lubbeck , Texas, 1968.

61



BIBLIOGRAPHY

/54

j62]

63

[64]

65

[66]

|67]

P. Sam Johnson, Multiplication operators with closed range in operator alge-
bra, J. Analysis Num. Theory 1, No. 1, 1-5 (2013).

N. Shinozaki and M. Sibuya, Consistency of a pair of matrix equations with
an application, Keio engineering reports, 27 (1974), 141-146.

DC. Sorensen, AC. Antoulas, Sylvester equation and approximate balanced
reduction. Linear Algebra Appl. 351/352 (2002), 671-700.

A. E. Taylor and D. C. Lay, Introduction to functional analysis, New York,

1980.

J. W. Van Der Woude, On the existence of a common solution X to the matrix
equations A; X Bj = Cjj, (i,j) € I'. Linear Algebra Appl, 375 (2003), 135-145.
J. Von Neumann, On regular rings. Proc. Natl. Acad. Sci USA 1936, 22 (12),
707-713.

Q. W. Wang, A system of matrix equations and a linear matrix equation over

arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43-54.

Q. W. Wang and Z. H. He, Some matrix equations with applications, Linear
Multilinear Algebra, Volume 60 (2012), 1327-1353.

G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations,
Science Press, (2003).

Q. Xu, Common hermitian and positive solutions to the adjointable operator
equations AX = C, XB = D, Linear Algebra and its Appl, 429 (2008), 1-11.

Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear

Algebra and its Appl, 429 (2008), 1997-2024.

G. Xu, M.Wei, D. Zheng, On solutions of matrix equation AXB4+CYD = F,
Linear Algebra Appl. 279 (1998), 93-109.

X. Yang, Lung-Kee Chen, AND R. M. Burton, Stability of discrete bilinear

systems with output feedback, Internat. J. Conrrol50 (1989), 2085-2092.

X. Yang, R. R. Mohler, AND L. K. Chen, Random parameter discrete bilinear

system stability, in “Proceedings of the 28th IEEE Conference on Decision and
Control,” Vol. 2, pp. 1196-1200, 1989.

62



