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 الملخص:

 

مع مناقشة ةمحدبّ  -E و الدوال مجموعات المعمقة حول مفاهيم  بدراسةقمنا  الأطروحة،في هذه    

-التقارب و التقارب السلمي الخاص بالتكاملات الدالية   خصائصها الأساسية، ثم تم إدخال التحليل 

دبةمح -E 

التزايدية العامة و نظمها و الخاصة بالمتراجحات  مساهمة، قمنا بتصحيح بعض الأعمالالفي إطار 

تم تقديم فئة جديدة من دوال النواة ذات الحاجز المزدوج، المختلفة  التحسين الخطي، أجل  كذلك من

 عن تلك الموجودة.

 

Abstract: 

In this thesis, an in-depth study is started on the concepts of  E-convex sets 

and functions  with a discussion of its basic properties, then we introduced 

the limit analysis by - convergence and the convergence of scale of E-

convex functional integrals. 

As part of the contribution, we corrected some works on general 

variational inequalities and their systems and also, we presented for linear 

optimization, a new class of kernel functions with double barrier term, 

different from the existing ones. 

 

Résumé : 

 

Dans cette thèse, une étude approfondie est débutée sur les concepts 

d’ensembles et de fonctions E-convexes avec une discussion sur ses 

propriétés de base, ensuite, on a introduit l’analyse limite par - 

convergence et la convergence d’échelle des intégrales fonctionnelles E-

convexes. 

 

Dans le cadre de la contribution, nous avons corrigé quelques travaux sur 

les inégalités variationnelles générales et leurs systèmes  et  également, on 

a présenté pour l’optimisation linéaire, une nouvelle classe de fonctions 

noyaux  à  double terme barrière, différentes de celles existantes. 
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Introduction

Convex Analysis, Variational Inequalities and linear programming are importance fields
of mathematics which plays a vital role in optimization. The main ingredients of convex
analysis is related to convex sets and convex functions which are fundamentally employed
in convex optimization problems. However, many sets and functions are nonconvex, which
restrains the development and application of mathematical programming especially the-
ories of optimization. Therefore, the research on convexity and generalized convexity is
one of the most important aspects in mathematical programming.
During the past years, exactlly In 1999, E.A.Youness [41] generalised the concepts of con-
vex sets and convex functions and presented the definitions of E-convex set and E-convex
function, and discussed basic properties and conclusions of E-convex set and E-convex
function, and then Muhammad Aslam Noor [27] used this concept on general variational
inequalities theories which was introduced by Stampacchia in 1964,it has appeared as a
fascinating and interesting branch of mathematical and engineering sciences with a wide
range of applications in physics, biology, social sciences, and economics...
For linear programming. also known as Operations research Linearity indicates that
there are no variables raised to higher powers, exponential or logarithmic. This class
of problems involves minimizing (or maximizing) a linear objective function whose vari-
ables are real numbers constrained to satisfy a system of linear equality and inequality.
The fields of application of these problems are very numerous both in the nature of the
problems addressed (planning and control of production, distribution in networks) and
in the industrial sectors: manufacturing industry, energy (oil, gas, electricity), transport,
telecommunications, industry, finance. The most well-known methods of solving linear
programming problems in real numbers are simplex method and interior point methods.
This methods, turned out to solve practical problems efficiently. Interest in linear pro-
gramming develops rapidly, and by 1951 its use spread to industry. Today it is almost
impossible to find an laboratory that is not using linear programming in some form.
This Thesis is structured as follows:
In chapter 1 the consepts of E-convex set, E-convex function and semi-E-convex function
are introduced and their properties are given. We also correcred the results obtained in
Youness [41] concerning the characterization of an E-convex function f in terms of its
E-epigraph and gave a weak condition for a lower semicontinuous function on Rn to be
an E-convex function fo a linear mapE. The limit analysis by Γ-convergence techniques
and scale convergence of E-convex integral functionals is studied in chapter 2.
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In chapter 3, a critical view about Muhammad Aslam noor’s paper [27] are given and
we discussed them in [8]. Also we present three studies on system of general variational
inequalities:

1. System of Nonlinear General Variational inequalities Involving g-relaxed cocoercive
mappings.

2. Corrections to a Paper "on Projection Algorithms for Solving System of General
Variational Inequalities."

3. On General convergence analysis for two-step projection methods and applications
to variational problems.

Finally in chapter 4 a new class of kernel functions which differs from the existing kernel
functions in which it has a double barrier term is introduced for linear optimization.



Chapter 1

About E-convexity

1.1 On E-Convex and semi E-convex Functions for a
Linear Map E

Duca and Lupsa [12] show that the results obtained in Youness [41] concerning the char-
acterization of an E-convex function f in terms of its E-epigraph are incorrect. In this
chapter we introduce the correct form of this Theorem which will be used in our study
(see [7])

1.1.1 Preliminaries
Let M be a nonempty subset of Rn and let E : Rn → Rn be a map. We recall:

Définition 1.1.1. [41] A set M ⊆ Rn is said to be E-convex in Rn if

tE(x) + (1− t)E(y) ∈M,

for each x, y ∈M and all t ∈ [0, 1].

Remark 1.1.2. If M is an E-convex set, than it may not be a classical convex set. For
example, M =

[
−1, −1

2

]
∪ [0, 1] and E(x) = x2,∀x ∈ R. Clearly, this is an E-convex set

but not a classical convex set.

Définition 1.1.3. [41] A function f : M → R is said to be E-convex on M if M is
E-convex and

f (tE(x) + (1− t)E(y)) ≤ tf (E (x)) + (1− t)f (E (y)) ,

for each x, y ∈M and all t ∈ [0, 1].

Définition 1.1.4. [38] A function f :M → R is said to be semi-E-convex on M if M is
E-convex and

f (tE(x) + (1− t)E(y)) ≤ tf (x) + (1− t)f (y) ,

for each x, y ∈M and all t ∈ [0, 1].
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Remark 1.1.5. [38] A semi-E-convex function on an E-convex set is not necessary an
E-convex function.

Proposition 1.1.6. [38] Suppose the function f : Rn → R is E-convex on an E-convex
set M ⊆ Rn. Then f is semi-E-convex on set M if and only if f (E (x)) ≤ f (x) for each
x ∈M .

Définition 1.1.7. [38] We define a map E × I as follows:

E × I : Rn × R → Rn × R
(x, t) → (E × I)(x, t) = (E(x), t) .

Définition 1.1.8. [17] A function f : Rn → R is lower semi-continuous if and only if
for every real number α, the set {x ∈ Rn : f (x) ≤ α} is closed.

The following Proposition characterize lower semi-continuous functions which shall be
used in the sequal.

Proposition 1.1.9. [17] A function f : Rn → R is lower semi-continuous if and only if
its epigraph epi (f) = {(x, α) ∈ Rn × R : f (x) ≤ α} is closed.

Définition 1.1.10. Let (x, s), (y, t) ∈ Rn+1, with x, y ∈ Rn and s, t ∈ R. The line
segment [(x, s), (y, t)] (with endpoints (x, s) and (y, t)) is the segment

{α(x, s) + (1− α)(y, t) : 0 ≤ α ≤ 1} .

If (x, s) ̸= (y, t), the interior ](x, s), (y, t)[ of [(x, s), (y, t)] is the segment

{α(x, s) + (1− α)(y, t) : 0 < α < 1} .

In a similar way, we can define [(x, s), (y, t)) and ((x, s), (y, t)].

1.1.2 Main results
The Theorem (3.1) of Youness [41] concerning the characterization of an E-convex func-
tion f in terms of its E-epigraph is modified to the following Theorem.

Theorem 1.1.11. Let E : Rn → Rn be a linear and idempotent map, then the function
f : Rn → R is E-convex on Rn if and only if its E-epigraph is E × I-convex on Rn×R.
Where E − e (f) = {(x, α) ∈ Rn × R : f (E(x)) ≤ α}.

Proof. Suppose that f is E- convex, let (x1, α1) , (x2, α2) ∈ E − e (f) . We have

f (E (αE (x1) + (1− α)E (x2))) = f (αE (x1) + (1− α)E (x2)) ,

≤ αf (E (x1)) + (1− α) f (E (x2)) ,

≤ αα1 + (1− α)α2.
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Thus α (E × I) (x1, α1) + (1− α) (E × I) (x2, α2) ∈ E − e (f) .
For the converse part suppose that E − e (f) is E × I-convex.
We see that (x1, f (E (x1))) , (x2, f (E (x2))) ∈ E − e (f) then α (E × I) (x1, f (E (x1))) +
(1− α) (E × I) (x2, f (E (x2))) ∈ E − e (f). Therfore

f (αE(x1) + (1− α)E(x2)) ≤ αf (E (x1)) + (1− α)f (E (x2)) ,

This completes the proof

We are now in a position to state the main results of this chapter.

Theorem 1.1.12. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be
lower semi-continuous. Suppose that there exists an α ∈ ]0, 1[ such that for all x, y ∈ Rn,
s, t ∈ R such that f (E(x)) < s, f (E(y)) < t,

f (αE(x) + (1− α)E(y)) < αs+ (1− α)t,

then f is E-convex.

Proof. By Theorem (1.1.11), it is sufficient to show that E− e (f) is E× I-convex as a
subset of Rn×R. By contradiction, suppose that there exist (x1, α1), (x2, α2) ∈ E − e (f)
(with x1, x2 ∈ Rn and α1, α2 ∈ R) and α0 ∈ ]0, 1[ such that,
(α0E (x1) + (1− α0)E (x2) , α0α1 + (1− α0)α2) /∈ E − e (f) .
Let x0 = α0E (x1)+(1− α0)E (x2) and λ0 = α0α1+(1− α0)α2, then (x0, λ0) /∈ E−e (f).
Using the fact that E is an idempotent map, we see that,
(E (x1) , α1), (E (x2) , α2) ∈ E − e (f) . Let

A = E − e (f) ∩ [(E (x1) , α1), (x0, λ0)]

and
B = E − e (f) ∩ [(x0, λ0) , (E (x2) , α2)] .

Since f is lower semi continuous, E is continuous (linear on Rn), by Proposition (1.1.9)
epi (f ◦ E) = E − e (f) is a closed subset of Rn×R. Consequently, A and B are bounded
and closed subsets of Rn×R. Also we have (x0, λ0) /∈ A and (x0, λ0) /∈ B. Thus there
exist ZA = (x3, α3) ∈ A and ZB = (x4, α4) ∈ B such that,

min
Z∈A

∥Z − (x0, λ0)∥ = ∥ZA − (x0, λ0)∥

and
min
Z∈B

∥Z − (x0, λ0)∥ = ∥ZB − (x0, λ0)∥ .

Hence, we have
]ZA, ZB[ ∩ E − e (f) = ∅. (1.1)

On the other hand, since ZA ∈ E − e (f) and ZB ∈ E − e (f), we get
f (E(x3)) < α3 + ε, f (E(x4)) < α4 + ε for each ε > 0.
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Since α (α3 + ε)+(1−α) (α4 + ε) = αα3+(1−α)α4+ε. By the hypothesis of the theorem,
we obtian

f (αE(x3) + (1− α)E(x4)) < αα3 + (1− α)α4 + ε.

Since ε is an arbitrary positive real number, it follows that

f (E(αx3 + (1− α)x4)) ≤ αα3 + (1− α)α4. (1.2)

Using (1.2) we get

(αx3 + (1− α)x4, αα3 + (1− α))α4) ∈ E − e (f) .

Therfore
αZA + (1− α)ZB ∈ E − e (f)

which contradicts (1.1). Thus, we conclude that E − e (f) is E × I-convex.

Theorem 1.1.13. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be
lower semi-continuous. Then f is E-convex if and only if there exists an α ∈ ]0, 1[ such
that for all x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ αf (E(x)) + (1− α)f (E(y)) .

Proof. Follows from Theorem (1.1.12), with s = f (E(x)) + ε and t = f (E(y)) + ε for
each ε > 0, then taking ε→ 0.

Theorem 1.1.14. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be
lower semi-continuous. Then f is E-convex if and only if for all x, y ∈ Rn, there exists
an α ∈ ]0, 1[ (α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ αf (x) + (1− α)f (y) . (1.3)

Proof. Let f : Rn → R E-convex. From Definition (1.1.3), it follows that, for all x, y ∈ Rn,
there exists an α ∈ ]0, 1[ such that (1.3) holds. For the converse part, By Theorem (1.1.11),
it is sufficient to show that E−e (f) is E×I-convex as a subset of Rn×R. By contradiction,
suppose that there exist (x1, α1), (x2, α2) ∈ E − e (f) (with x1, x2 ∈ Rn and α1, α2 ∈ R)
and α0 ∈ ]0, 1[ such that:
(α0E (x1) + (1− α0)E (x2) , α0α1 + (1− α0)α2) /∈ E − e (f) .
Let x0 = α0E (x1)+(1− α0)E (x2) and λ0 = α0α1+(1− α0)α2, then (x0, λ0) /∈ E−e (f) .
We follow the proof of Theorem (1.1.12). Having defined A, B, ZA = (x3, α3) , ZB =
(x4, α4) , we find that:

]ZA, ZB[ ∩ epi (f) = ∅. (1.4)

On the other hand, by the hypothesis of the theorem , for x = x3 and y = x4, there exists
an α ∈ ]0, 1[ such that

f (αE(x3) + (1− α)E(x4)) ≤ αf (E(x3)) + (1− α)f (E(x4)) . (1.5)
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Using (1.5) we get

f (E (αx3 + (1− α)x4)) ≤ αα3 + (1− α)α4.

So,
αZA + (1− α)ZB ∈ E − e (f)

which contradicts (1.4). Thus, we conclude that E − e (f) is E × I-convex.

According to Theorems (1.1.13) and (1.1.14) with E = IdRn , we have the following
results about convex functions.

Theorem 1.1.15. Let f : Rn → R be lower semi continuous. Then f is convex if and
only if there exists an α ∈ ]0, 1[ such that, for all x, y ∈ Rn,

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) .

Corollary 1.1.1. Let f : Rn → R be lower semi continuous. Then f is convex if and
only if for all x, y ∈ Rn,

f

(
1

2
(x+ y)

)
≤ 1

2
[f (x) + f (y)] .

Theorem 1.1.16. Let f : Rn → R be lower semi continuous. Then f is convex if and
only if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) .

1.1.3 Conclusion
Remark 1.1.17. In definition (1.1.3), if we take a linear map E we get the Definition
of convexity of (f ◦ E) on M (in the case when M is convex).

According to Theorems (1.1.15), (1.1.16) and corollary (1.1.1) with remarek (1.1.17)
we have the following results

Theorem 1.1.18. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous. Then f is E-convex if and only if there exists an α ∈ ]0, 1[ such that for all
x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ αf (E(x)) + (1− α)f (E(y)) .

Corollary 1.1.2. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous. Then f is E-convex if and only if for all x, y ∈ Rn,

f

(
1

2
(E(x) + E(y))

)
≤ 1

2
[f (E(x)) + f (E(y))] .
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Theorem 1.1.19. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous. Then f is E-convex if and only if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[
(α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ αf (E(x)) + (1− α)f (E(y)) .

Using Proposition (1.1.6) we ’ll find results about semi-E-convex functions :
Theorem 1.1.20. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if
there exists an α ∈ ]0, 1[ such that for all x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ αf (E(x)) + (1− α)f (E(y)) .

Corollary 1.1.3. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if
for all x, y ∈ Rn,

f

(
1

2
(E(x) + E(y))

)
≤ 1

2
[f (E(x)) + f (E(y))] .

Theorem 1.1.21. Let E : Rn → Rn be a linear map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if
for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ αf (E(x)) + (1− α)f (E(y)) .

1.2 A Critical View and corrections of F.Mirzapour’s
Paper

Recently, F.Mirzapour [16] published a paper in HJMS entitled by "On semi-E-convex
and quassi semi-E-convex functions", volume 41 (6) (2012), 841-845. But, this results are
incorrect. In this notes some results are given to correct the main results in [16]

1.2.1 Commentaries
1 Throughout his proofs of theorems, the condition f (E (x)) ≤ f (x) for all x ∈ X was

not applied any where.

2 F. Mizapour found (x̃, s) and (ỹ, t) such that:

min
a∈A

∥a− (x0, λ0)∥ = ∥(x̃, s)− (x0, λ0)∥ ,

and
min
a∈B

∥a− (x0, λ0)∥ = ∥(ỹ, t)− (x0, λ0)∥ .

Where A and B are bounded and closed subsets of X× R
This existence is true just in the finite dimention case, for example X = Rn.
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3 (The last line on page 842) and ( line 25 on page 843). He passed from this inequality

f (αE(x̃) + (1− α)E(ỹ)) ≤ αs+ (1− α)t

to
α (x̃, s) + (1− α) (ỹ, t) ∈ epi (f)

and he created a contradiction with (2,1) on theorem 2.1 and a contradiction
with (2,3) on theorem 2.2. This passage is not true, because the inequality

f (αE(x̃) + (1− α)E(ỹ)) ≤ αs+ (1− α)t

implies
(αE (x̃) + (1− α)E (ỹ) , αs+ (1− α)t) ∈ epi (f) .

Hence
α (E (x̃) , s) + (1− α) (E (ỹ) , t) ∈ epi (f) ,

then there is no contradiction with (2,1) and (2,3).

4 (Line 33 on page 844). He passed from this inequality

f (αE(x̃) + (1− α)E(ỹ)) ≤ λ∗

to
αE (x̃) + (1− α)E (ỹ) ∈ Fλ∗

and he created a contradiction with (6). This passage is true, but there is
no contradiction with (6).

Comments on his Example

He found that

1 f (E (x)) � f (x)

2 For each x, y ≥ 0, there exists λ ∈ ]0, 1[ such that

f (αE(x) + (1− α)E(y)) ≤ αf (x) + (1− α)f (y) .

The two results is not true because :

1 Let x ∈ [0,+∞[,we have:

a if x = 0 then E (0) = 0, f (E (0)) = 0, f (0) = 0.
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b If x /∈ Q then E (x) = 0, f (E (x)) = 0, 0 < f (x) .

c If x =
m

n
∈ Q, (m,n) = 1, then E (x) =

1

n
, f (E (x)) =

{
1 if n = 1
2
n

if n > 1
, and

f (x) =


1 if n = m
m2 if n = 1,m > 1
2m
n

if m < n
.

We conclude that for all x ∈ [0,+∞[ : f (E (x)) ≤ f (x) .

2 Here is a counterexemple, if we take x = 1
4
, y = 1 we ’ll find :

f (λE(x) + (1− λ)E(y)) =
λ

2
+ 2(1− λ),

λf(x) + (1− λ)f(y) =
λ

2
+ (1− λ)

and f (λE(x) + (1− λ)E(y)) ≤ λf(x) + (1− λ)f(y) ⇒ 2 ≤ 1

wich contradicts 2 > 1.

1.2.2 Results for semi-E-convex functions
Lemma 1.2.1. Let E : Rn → Rn be a linear and idempotent map. Consider
(x, u) ∈ [(E (x) , s), (E (y) , t)]. Then

E (x) = x.

Proof. Let (x, u) ∈ [(E (x) , s), (E (y) , t)], then there exist α ∈ [0, 1], such that
(x, u) = α(E (x) , s) + (1 − α)(E (y) , t). Using the fact that E is linear and idempotent
map, we have

(E × I) (x, u) = (E (αE (x) + (1− α)E (y)) , αs+ (1− α)t)

= (αE (x) + (1− α)E (y) , αs+ (1− α)t)

= (x, u) .

On the other hand (E × I) (x, u) = (E (x) , u), therfore E (x) = x.

We shall make use the following three sets:

HSci = {f : Rn → R, f is lower semi continuous} , (1.6)
HL,I = {E : Rn → Rn, E is linear and idempotent} (1.7)

and for each E ∈ HL,I we define HE as follows:

HE = {f ∈ HSci, f (E (x)) ≤ f (x) for all x ∈ Rn} (1.8)
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Theorem 1.2.2. Let E ∈ HL,I , and f ∈ HE. Suppose that there exists an α ∈ ]0, 1[ such
that for all x, y ∈ Rn, s, t ∈ R such that f (x) < s, f (y) < t,

f (αE(x) + (1− α)E(y)) < αs+ (1− α)t.

Then f is semi-E-convex.
Proof. By Theorem (1.1.11), it is sufficient to show that epi (f) is E × I-convex as a
subset of Rn×R. By contradiction, suppose that there exist (x1, α1), (x2, α2) ∈ epi (f)
(with x1, x2 ∈ Rn and α1, α2 ∈ R) and α0 ∈ ]0, 1[ such that,
(α0E (x1) + (1− α0)E (x2) , α0α1 + (1− α0)α2) /∈ epi (f) .
Let x0 = α0E (x1) + (1− α0)E (x2) and λ0 = α0α1 + (1− α0)α2, then (x0, λ0) /∈ epi (f).
Using the fact that f ∈ HE, we see that (E (x1) , α1), (E (x2) , α2) ∈ epi (f) . Let

A = epi (f) ∩ [(E (x1) , α1), (x0, λ0)]

and
B = epi (f) ∩ [(x0, λ0) , (E (x2) , α2)] .

Since f ∈ HSci, by Proposition (1.1.9), epi (f) is a closed subset of Rn×R. Consequently,
A and B are bounded and closed subsets of Rn×R.
Also we have (x0, λ0) /∈ A and (x0, λ0) /∈ B. Thus there exist ZA = (x3, α3) ∈ A and
ZB = (x4, α4) ∈ B such that,

min
Z∈A

∥Z − (x0, λ0)∥ = ∥ZA − (x0, λ0)∥

and
min
Z∈B

∥Z − (x0, λ0)∥ = ∥ZB − (x0, λ0)∥ .

Hence, we have
]ZA, ZB[ ∩ epi (f) = ∅. (1.9)

On the other hand, since ZA ∈ epi (f) and ZB ∈ epi (f), we get
f (x3) < α3 + ε, f (x4) < α4 + ε for each ε > 0.
Since α (α3 + ε)+(1−α) (α4 + ε) = αα3+(1−α)α4+ε. By the hypothesis of the theorem,
we obtian

f (αE(x3) + (1− α)E(x4)) < αα3 + (1− α)α4 + ε.

Since ε is an arbitrary positive real number, it follows that

f (αE(x3) + (1− α)E(x4)) ≤ αα3 + (1− α)α4. (1.10)

Since ZA ∈ A ⊂ [(E (x1) , α1) , (E (x2) , α2)] and
ZB ∈ B ⊂ [(E (x1) , α1) , (E (x2) , α2)]. By Lemma (1.2.1) we have E (x3) = x3 and
E (x4) = x4. Using (1.10) we get

(αx3 + (1− α)x4, αα3 + (1− α))α4) ∈ epi (f) .

Therfore
αZA + (1− α)ZB ∈ epi (f)

which contradicts (1.9). Thus, we conclude that epi (f) is E × I-convex.
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Theorem 1.2.3. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower
semi-continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and
only if there exists an α ∈ ]0, 1[ such that for all x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ αf (x) + (1− α)f (y) .

Proof. Follows from Theorem (1.2.2) with s = f (x) + ε and t = f (y) + ε for each ε > 0,
then taking ε→ 0.

Corollary 1.2.1. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower
semi-continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and
only if for all x, y ∈ Rn,

f

(
1

2
(E(x) + E(y))

)
≤ 1

2
[f (x) + f (y)] .

Theorem 1.2.4. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower
semi-continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and
only if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ αf (x) + (1− α)f (y) . (1.11)

Proof. Let f : Rn → R be semi-E-convex. From Definition (1.1.4), it follows that, for all
x, y ∈ Rn, there exists an α ∈ ]0, 1[ such that (1.11) holds. For the converse part, By
Theorem (1.1.11), it is sufficient to show that epi (f) is E×I-convex as a subset of Rn×R.
By contradiction, suppose that there exist (x1, α1), (x2, α2) ∈ epi (f) (with x1, x2 ∈ Rn

and α1, α2 ∈ R) and α0 ∈ ]0, 1[ such that:
(α0E (x1) + (1− α0)E (x2) , α0α1 + (1− α0)α2) /∈ epi (f) .
Let x0 = α0E (x1) + (1− α0)E (x2) and λ0 = α0α1 + (1− α0)α2, then (x0, λ0) /∈ epi (f) .
We follow the proof of Theorem (1.2.2). Having defined A, B, ZA = (x3, α3) , ZB =
(x4, α4) , we find that:

]ZA, ZB[ ∩ epi (f) = ∅. (1.12)

On the other hand, by the hypothesis of the theorem , for x = x3 and y = x4, there exists
an α ∈ ]0, 1[ such that

f (αE(x3) + (1− α)E(x4)) ≤ αf (x3) + (1− α)f (x4) . (1.13)

Since ZA ∈ [(E (x1) , α1) , (E (x2) , α2)] , ZB ∈ [(E (x1) , α1) , (E (x2) , α2)]. By Lemma
(1.2.1) we have E (x3) = x3 and E (x4) = x4. Using (1.13) we get

f (αx3 + (1− α)x4) ≤ αα3 + (1− α)α4.

So,
αZA + (1− α)ZB ∈ epi (f)

which contradicts (1.12). Thus, we conclude that epi (f) is E × I-convex.
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If we take E = IdRn, we get E ∈ HL,I , and HE = HSci. Then we find results about
convex functions.

Corollary 1.2.2. Let f : Rn → R be lower semi-continuous. Then f is convex if and only
if there exists an α ∈ ]0, 1[ such that, for all x, y ∈ Rn,

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) .

Corollary 1.2.3. Let f : Rn → R be lower semi-continuous. Then f is convex if and only
if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) .

Corollary 1.2.4. Let f : Rn → R be lower semi-continuous. Then f is convex if and
only if for all x, y ∈ Rn,

f

(
1

2
(x+ y)

)
≤ 1

2
[f (x) + f (y)] .

1.2.3 Results for quassi-semi-E-convex functions
Définition 1.2.5. [38] A function f : M → R is said to be quassi-semi-E-convex on M
if M is E-convex and

f (tE(x) + (1− t)E(y)) ≤ max {f (x) , f (y)} ,

for each x, y ∈M and all t ∈ [0, 1].

Proposition 1.2.6. [38] The function f : Rn → R is quassi-semi-E-convex on Rn if and
only if the level set Kα = {x ∈ Rn : f (x) ≤ α} is E-convex on Rn for each α ∈ R.

Lemma 1.2.7. Let E : Rn → Rn be a linear and idempotent map. Consider x ∈
[(E (x) , (E (y)]. Then

E (x) = x.

Proof. Let x ∈ [(E (x) , (E (y)], then there exist α ∈ [0, 1], such that x = αE (x) + (1−
α)E (y) . Using the fact that E is linear and idempotent map, we have

E (x) = E(α(E (x) + (1− α)(E (y))

= αE (x) + (1− α)E (y)

= x.

This completes the proof.

Theorem 1.2.8. Let E ∈ HL,I , and f ∈ HE. Then f is quassi-semi-E-convex if and only
if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ max {f (x) , f (y)} .
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Proof. By Proposition (1.2.6), it is sufficient to show that Kλ = {x ∈ Rn : f (x) ≤ λ}
is E -convex on Rn for each λ ∈ R. By contradiction, suppose that there exists a real
number λ0 such that the set {x ∈ Rn : f (x) ≤ λ0} is not E-convex. Thus, there exist
α0 ∈ ]0, 1[ and x, y ∈ Kλ0 , such that α0E (x) + (1− α0)E (y) /∈ Kλ0 .
Let x0 = α0E (x) + (1 − α0)E (y), then x0 /∈ Kλ0 . Using the fact that f ∈ HE, we see
that E (x) , E (y) ∈ Kλ0 . Let

A = Kλ0 ∩ [(E (x) , x0]

and
B = Kλ0 ∩ [(E (y) , x0]

Since f ∈ HSci, by Proposition (1.1.9), Kλ0 is a closed subset of Rn. Consequently, A and
B are bounded and closed subsets of Rn.
Also we have x0 /∈ A, and x0 /∈ B. Thus, there exist ZA ∈ A and ZB ∈ B such that,

min
Z∈A

∥Z − x0∥ = ∥ZA − x0∥

and
min
Z∈B

∥Z − x0∥ = ∥ZB − x0∥ .

Hence, we have
]ZA, ZB[ ∩Kλ0 = ∅ (1.14)

On the other hand, by the hypothesis of the theorem, for ZA, ZB ∈ Rn there exists an
α ∈ ]0, 1[ such that,

f (αE(ZA) + (1− α)E(ZB)) ≤ max {f (ZA) , f (ZB)} . (1.15)

Since ZA ∈ Kλ0 , ZB ∈ Kλ0 . We have,

f (ZA) ≤ λ0 and f (ZB) ≤ λ0. (1.16)

Combining (1.15) and (1.16), we obtain,

f (αE(ZA) + (1− α)E(ZB)) ≤ λ0 (1.17)

By Lemma (1.2.7) we have E (ZA) = ZA and E (ZB) = ZB. Using (1.17) we get

f (αZA + (1− α)ZB) ≤ λ0.

So,
αZA + (1− α)ZB ∈ Kλ0 ,

which contradicts (1.14). Thus, we conclude that Kλ = {x ∈ Rn : f (x) ≤ λ} is E-convex
on Rn for each λ ∈ R.

Corollary 1.2.5. Let E ∈ HL,I , and f ∈ HE . Then f is quassi-semi-E-convex if and
only if there exists an α ∈ ]0, 1[ such that for all x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ max {f (x) , f (y)} .
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If we take E = IdRn, we have that E ∈ HL,I , and HE = HSci. Then we find results
about quassi convex functions.

Corollary 1.2.6. Let f : Rn → R be lower semi-continuous. Then f is quassi convex if
and only if for all x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αx+ (1− α)y) ≤ max {f (x) , f (y)} .

Corollary 1.2.7. Let f : Rn → R be lower semi-continuous. Then f is quassi convex if
and only if there exists an α ∈ ]0, 1[ such that for all x, y ∈ Rn

f (αx+ (1− α)y) ≤ max {f (x) , f (y)} .



Chapter 2

Homogenization of E-convex integral
functionals with scale convergence

2.1 Introduction
The introduction of the scale convergence and its application to the study of the Γ−convergence
of non-periodically oscillating functionals is due to Mascarenhas and Toader[1]. More pre-
cisely, they studied the Γ−convergence of the sequence of functionals:

Jn(v) =

∫
Ω

f(x, αn(x), E (v))dx,

where, Ω is an open bounded subset of RN , Π is a metrizable compact space, αn :
Ω → Π is a sequence of measurable functions, v ∈ L2(Ω) and E : ξ → E (ξ) is a linear
function from R into R, i.e (E (ξ) = ξ).
f : (x, λ, ξ) → f (x, λ, ξ) is a function from Ω×Π×R into R+, wich satisfies the following
conditions:

• f is (ξ)-convex;

• there exists C > 0, such that for every ξ ∈ R

1

C

(
|ξ|2
)
≤ f(x, λ, ξ) ≤ C

(
1 + |ξ|2

)
, a.e (x, λ) ∈ ×Ω× Π (2.1)

• f,
∂f

∂ξ
are (x)−measurable, (λ, ξ)−continuous

By using, the theory of Γ−convergence, the fundamental theorem for Young measures
and the scale convergence, Mascarenhas and Toader proved that the following integral
functional:

Jhom(v) = inf

{∫
Ω

∫
Π

f(x, λ, w(x, λ))dµ, w ∈ H, v (x) =
∫
Π

w(x, λ)dµx

}
18
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is the Γ−limit of the sequence (Jn) , for every v ∈ L2(Ω), with H=L2
µ(Ω × Π), µ is

the Young measure assaciated to (αn) and µx is the disintegration of µ with respect to
Lesbegue measure.

In this study, we deal with the same sequence of the nonperiodic integral functionals:

Fn(v) =

∫
Ω

f(x, αn(x), E (v(x)))dx,

where,

• E : R → R is a k-Lipschitz function and g (0) = 0.

• f is E − (ξ)-convex;

and we will prove that

F hom(v) = inf

{∫
Ω

∫
Π

f(x, λ, E (w(x, λ)))dµ, w ∈ H, v (x) =
∫
Π

w(x, λ)dµx

}
is the Γ−limit of the sequence (Fn)

The chapter is organized as follows:
Some useful results concerning Young measures are given, the so-called scale convergence
and related results are introduced, as well as a proof of the main result.

2.2 Young measures and the measurable functions
Let O be an open bounded subset of RN and let S be a metrizable space. We denote by:
dx the Lebesgue measure on RN ; F (O) the family of all Lebesgue measurable subsets of
O and B (S) the Borel σ−field of S; M+ (O × S) the set of the positive Radon measures.

Définition 2.2.1. 1. A Young measure on O×S, is an any µ ∈ M+ (O × S) , whose
projection on O is dx, i.e. µ (A× S) = dx (A) , for all A ∈ F (O) .

2. The function Ψ: O × S → R is said to be:

(a) An integrand if Ψ is F (O)⊗B(S)-measurable
(b) A normal integrand if Ψ is an integrand and Ψ(x, .) is lower semicontinuous

for dx-a.e. x in Ω

(c) A Carathéodory integrand if Ψ is an integrand and Ψ(x, .) is continuous for
dx-a.e. x in Ω.

3. A sequence (Ψn)n in L1
(
Ω,RN

)
is uniformly integrable if:
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(a) (Ψn)n is bounded in L1
(
Ω,RN

)
(b) for every A ∈ Ω mN (A) → 0 ⇒ sup

n

∫
A

∥(Ψn (x))n∥ dx→ 0

We denote by Y (O × S) , the set of all Young measures on O × S, and we say that,
the sequence µn narrow converges to µ in Y (O × S) and we write µn

nar→ µ, if for each Ψ
in Cthb (O × S) ( the set of the Caratheodory bounded integrands), we have ⟨Ψ, µn⟩ →
⟨Ψ, µ⟩ .

Theorem 2.2.2. [disintegration [24]]
Let µ ∈ Y (O × S) , then for a.e − x in O,there exists a probability measures µx from S,
such that for all Ψ : O × S → R+, µ−measurable∫

O×S
Ψ(x, λ)dµ =

∫
O

∫
S

Ψ(x, λ)dµxdx.

Then we write µ = µx ⊗ dx

Let α : O → S, be a measurable function and G : x → (x, α (x)) from O into O × S,
the graph mapp of α. Denotting by µα = dx ◦ G−1, the image measure of dx on O by
G. Then µα ∈ Y (O × S) , and for every A ∈ F (O) and every B ∈ B (S) µα(A × B) :=
dx(A ∩ α−1(B)). So, for each µα−measurable function Ψ : O × S → R+, we have∫

O×S
Ψ(x, λ) dµα =

∫
O

Ψ(x, α (x)) dx.

By using Therem 2.2.2, we obtain µα = δα⊗ dx, here δα denotes the Dirac measure of
α. µα is said the Young measure associated to α. For a measurable sequence αn : O → S,
we say that

1. µ in Y (O × S) is generated by αn, if the sequence of the Young measures associated
to αn, narrow converges to µ. Or equivalently for all ϕ in Cthb (O × S)∫

O

ϕ (x, αn (x)) dx→
∫
O×S

ϕ (x, λ) dµ.

2. The sequence µn in Y (O × S) is tight if, for every η > 0, there exists a compact
space Kη ⊂ S, such that sup

n
µn {O × (S \Kη)} < η, or

sup
n
dx {x ∈ O; αn(x) ∈ (S \Kη)} < η, if µn is associated to αn.

Note that, if S = RN , and αn is a bounded sequence in L1
(
O;RN

)
, then the sequence

of theire associated Young measure is tight. If now, S is a compact space, then the
sequence µn of the Young measure associated to αn is tight.

Theorem 2.2.3 (see [24]). Eevery tight sequence µn in Y (O × S), admits a subsequence
µnk

witch narrow converges in Y (O × S) .
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Proposition 2.2.4. If the sequence (µn) is relatively compact in Y (O × S1) and if the
sequence (νn) is relatively compact in Y (O × S2). Then, the sequence (µn, νn) is relatively
compact in Y (O × S1 × S2) .

Theorem 2.2.5. [Fundamental theorem for Young measures [24]]
Let αn : O → S be a sequence of measurable functions, such that the sequence of their
associated Young measures narrow converges to µ, then

(a) If ψ : O × S → R is a normal integrand such that, the sequence of the negative
parts

{
ψ (x, αn (x))

−} is uniformly integrable in O, then∫
O×S

ψ (x, λ) dµ ≤ lim inf
n

∫
O

ψ (x, αn (x)) dx.

(b) If ψ : O×S → R is a Carathéodory integrand such that, the sequence {ψ (x, αn (x))}
is uniformly integrable in O, then∫

O×S
ψ (x, λ) dµ = lim

n

∫
O

ψ (x, αn (x)) dx.

2.3 The scale convergence
In order to treat the periodic homogenization, the notion of two scale convergence is
developed in [18] and [19]. As remarked by [25] the two scale limit represents in fact
the barycenter of a Young measure. More recently, [23] introduced the scale convergence,
which generalizes the multiscale convergence introduced by [18] and [19] This new concept,
seems to be a powerful tool to study by Γ−convergence, the nonperiodic case.

Définition 2.3.1. The sequence (vn) in L2(Ω), αn-converges to v ∈ L2
µ(Ω× Π) if for all

ϕ ∈ L2(Ω;C(Π)); ∫
Ω

vn(x)ϕ(x, αn(x))dx→
∫
Ω×Π

v(x, λ)ϕ(x, λ)dµ,

We will say that v is the αn − limt of the sequence vn.

The definition 2.3.1 is justified in view of the following compactness theorem

Theorem 2.3.2. [23] From each bounded sequence (vn) in L2(Ω) there exist a subsequence
(vnk

), witch αnk
-converges to w ∈ L2

µ(Ω× Π)).
In particular, for a.e. x in Ω

vnk
⇀

∫
Π

w(x, λ)dµx weakly in L2(Ω).

Proposition 2.3.3. [23] Let w be in L2(Ω;C(Π)) and wn(x) = w(x, αn(x)). Then, for
all Carathéodory integrand ϕ : Ω × Π × R → R such that, there exist a positive constant
C and p ∈ L1(Ω) satisfying, for all (λ, ξ) ∈ Π× R
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|ϕ(x, λ, ξ)| ≤ C(p(x) + |ξ|2), a.e x ∈ Ω.

We have ∫
Ω

ϕ(x, αn(x), wn(x))dx→
∫
Ω×Π

ϕ(x, λ, w(x, λ))dµ

In particular (wn), αn-converges to w.

Proposition 2.3.4. [25]
L2(Ω;C(Π)) is dense in H = L2

µ(Ω× Π).

2.4 The main result
Let (X, τ) be a Banach space, and let {Fn, F , n ∈ N} be a family of functions mapping
X into R∪{+∞} . Let us recall the following notion of Γ−convergence,. For an overview
about Γ−convergence, we refer the reader to [7] and [8].

Définition 2.4.1. [17] We say that the sequence (Fn)n∈N Γ−convergences to F at x in
X iff the two following sentences hold:

1. for every sequence (xn)n∈N, converging to x in X, F (x) ≤ lim inf
n→+∞

Fn (xn) .

2. for every x ∈ X, there exists a sequence (xn) of X, converging to x such that,
F (x) = lim inf

n→+∞
Fn (xn) .

We are now in a position to state the main result of this section.
Let

{
Fn;F

hom
}

be the familly of the integrales functionals defined in the introduction.
Then we have:

Theorem 2.4.2. Fn Γ−converges weakly to F hom in L2(Ω).

Proof. We prove the assertions (1) and (2), in definition (2.4.1), of the Γ−convergence.

Poof of (1): Let v, vn be a sequence in L2(Ω), such that vn ⇀ v weakly
Let (vnk

) be the subsequence of (vn) extracted in theorem (2.3.2) still denoted (vn), which
αnk

-converges to w ∈ H, with v(x) =
∫
Π
w(x, λ)dµx, a.e x ∈ Ω

From proposition (2.3.4), there exists a sequence
(
wk
)

in L2(Ω;C(Π)) such that

∥∥wk − w
∥∥
H <

1

k
.

Define wkn (x) := wk (x, αn (x)), using the fact that f is E − ξ-convex, we have

Fn(vn) ≥ Fn
(
wkn
)
+

∫
Ω

∂f

∂ξ

(
x, αn, E

(
wkn
)) (

E (vn)− E
(
wkn
))
dx.
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Therfore

Fn(vn) ≥ Fn
(
wkn
)
+

∫
Ω

∂f

∂ξ

(
x, αn, E

(
wkn
))
E (vn) dx−

∫
Ω

∂f

∂ξ

(
x, αn, E

(
wkn
))
E
(
wkn
)
dx

By (2.1), and the fact that f is E − ξ-convex, we have :∣∣∣∣∂f∂ξ (x, λ, E(ξ))

∣∣∣∣ ≤ C |1 + |E(ξ)||

and since E (0) = 0 we obtain∣∣∣∣∂f∂ξ (x, λ, E (ξ))

∣∣∣∣ ≤ C |1 + |ξ||

So ∂f

∂ξ

(
x, αn, g

(
wkn
))

belong to L2(Ω;C(Π)),

Taking respectivly in proposition (2.3.3) ϕ(x, λ, ξ) = E (ξ)
∂f

∂ξ
(x, λ, E (ξ)), and ϕ(x, λ, ξ) =

f (x, λ, E (ξ)) we have respectively when n→ +∞

∫
Ω

∂f

∂ξ

(
x, αn, E

(
wkn
))
E
(
wkn
)
dx→

∫
Ω×Π

∂f

∂ξ

(
x, λ, E

(
wk (x, λ)

))
E
(
wk (x, λ)

)
dµ

and
Fn
(
wkn
)
→
∫
Ω×Π

f(x, λ, E
(
wk (x, λ))

)
)dµ

Since ∂f

∂ξ

(
x, αn, E

(
wkn
))
E (vn) belong to L1(Ω;C(Π)). Therfore one can apply the

statement (b) of theorem (2.2.5). Hence when n→ +∞

∫
Ω

∂f

∂ξ

(
x, αn, E

(
wkn
))
E (vn) dx→

∫
Ω×Π

∂f

∂ξ

(
x, λ, E

(
wk (x, λ)

))
E (w (x, λ)) dµ

For fixed k, we obtain:

liminf
n→+∞

Fn (vn) ≥
∫
Ω×Π

f(x, λ, E
(
wk (x, λ))

)
)dµ+

+

∫
Ω×Π

∂f

∂ξ

(
x, λ, E

(
wk (x, λ)

)) (
E (w (x, λ))− E

(
wk (x, λ)

))
dµ

On the other hand, since wk is close to w in the norm of H
one obtians:

liminf
n→+∞

Fn (vn) ≥
∫
Ω×Π

f(x, λ, E
(
wk (x, λ))

)
)dµ+O

(∥∥wk − w
∥∥
H

)



2.4 The main result 24

By (2.1), and the fact that f is E − ξ-convex, we have :

|f (x, λ, E(ξ1))− f (x, λ, E(ξ2))| ≤ C |1 + |E(ξ1)|+ |E(ξ2)|| |E(ξ1)− E(ξ2)|

and since E (0) = 0 we obtain∣∣f (x, λ, E (wk))− f (x, λ, E ((w)))
∣∣ ≤ C

∣∣1 + ∣∣wk∣∣+ |w|
∣∣ ∣∣wk − w

∣∣ ≤ 1

k

Then
lim
k→+∞

∫
Ω×Π

f(x, λ, E
(
wk (x, λ))

)
)dµ =

∫
Ω×Π

f(x, λ, E (w (x, λ))))dµ

Finally,
lim inf
n→+∞

Fn(vn) ≥
∫
Ω×Π

f(x, λ, E (w(x, λ)))dµ ≥ F hom(v).

Proof of (ii) Let v be an element of L2(Ω). We prove that, there exists a sequence (vn)
in L2(Ω) such that {

vn ⇀ v in L2(Ω) weakly;
lim
n
Fn(vn) = F hom(v).

Let
(
wk
)

be a minimizing sequence of the following minimizing problem

inf

{∫
Ω

∫
Π

f (x, λ, g (w(x, λ))) dµ;w ∈ H, v (x) =
∫
Π

w(x, λ)dµx

}
.

By the proposition (2.3.4), there exists
(
wk
)

in L2(Ω;C(Π)) such that∥∥wk − wk
∥∥
H <

1

k
. Then, for all φ ∈ L2(Ω)∣∣∣∣∫

Ω×Π

[
wk(x, λ)− wk(x, λ)

]
φ(x)dµ

∣∣∣∣ ≤ 1

k
∥φ∥L2(Ω) ,

Therefore

lim
k→+∞

∫
Ω×Π

wkφdµ = lim
k→+∞

∫
Ω×Π

wkφdµ =

lim
k→+∞

∫
Ω

∫
Π

wkφdµx(λ)dx =

∫
Ω

φ(x)v(x)dx.

In other hand, we have

∣∣∣∣∫
Ω×Π

f
(
x, λ, E

(
wk
))

− f
(
x, λ, E

(
wk
))
dµ

∣∣∣∣ ≤
∫
Ω×Π

C
(
1 +

∣∣wk∣∣+ ∣∣wk∣∣) ∣∣wk − wk
∣∣ dµ

≤ C

k
;
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Then

lim
k→+∞

∫
Ω×Π

f
(
x, λ, E

(
wk
))
dµ = lim

k→+∞

∫
Ω×Π

f
(
x, λ, E

(
wk
))
dµ = F hom(v).

Setting wkn(x) := wk(x, αn(x)), from the proposition (2.3.3), we have, when n→ +∞∫
Ω

f
(
x, αn (x) , E

(
wkn (x)

))
dx→

∫
Ω×Π

f
(
x, λ, E

(
wk
))
dµ

and ∫
Ω

wkn(x)φ(x)dx→
∫
Ω×Π

wk(x, λ)φ(x)dµ

For k = k (n) such that k (n) ≥ n we obtain, when :n→ +∞∫
Ω

f
(
x, αn (x) , E

(
wk(n)n (x)

))
dx→ F hom(v).

∫
Ω

wk(n)n (x)φ(x)dx →
∫
Ω

∫
Π

w (x)φ(x)dµx (λ) dx

=

∫
Ω

v (x)φ(x)dx

for all φ ∈ L2(Ω).
Finally setting: vn := wk(n)n if n = k (n), vn := v if n ̸= k (n),
The sequence vn satisfies

vn ⇀ v in L2(Ω) weakly
lim

n→+∞
Fn(vn) = F hom(v).



Chapter 3

On general and system of General
variational inequalities

3.1 Corrections to a Paper "on Projection Algorithms
for Solving System of General Variational Inequal-
ities

This section is to illustrate that the main result of the paper [ Muhammad Aslam Noor,
Khalida Inayat Noor, Projection algorithms for solving system of general variational in-
equalities, Nonlinear Analysis. 70 (2009) 2700-2706] is incorrect. We also present and
study the new iterative method (3.1.6) to correct the main result of [29].

Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by ⟨., .⟩ and
∥.∥, respectively. Let K be a closed convex set in H.
For given nonlinear operators T1, T2, g, h. We consider the problem of finding (x∗, y∗) ∈
K ×K such that :{

⟨ρT1 (y∗, x∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT2 (x∗, y∗) + y∗ − h (x∗) , h (v)− y∗⟩ ≥ 0,∀v ∈ H : h (v) ∈ K, η > 0

which is called the system of general variational inequalities (SGHVID).
For this purpose, we recall the following well knowns concept.

Définition 3.1.1. A mapping T : H → H is called λ-Lipschitz continous if there exist
constant λ > 0, such that :

∀x, y ∈ H : ∥T (x)− T (y)∥ ≤ λ ∥x− y∥

26



3.1 Corrections to a Paper "on Projection Algorithms for Solving System of General
Variational Inequalities 27

Définition 3.1.2. A mapping T : H → H is called rlaxed (α, β)-cocoercive if there exist
constants α > 0, β > 0 such that :

∀x, y ∈ H : ⟨T (x)− T (y) , x− y⟩ ≥ −α ∥T (x)− T (y)∥2 + β ∥x− y∥2

Proposition 3.1.3. Let K be a closed convex set in H, for given an element z ∈ H,
x ∈ K satisfies the inequality

⟨x− z, y − x⟩ ≥ 0,∀y ∈ K

if and only if
x = PK (z)

where PK is a projection of H into K.

It is known that PK is a nonexpansive mapping, i.e

∥PK (x)− PK (y)∥ ≤ ∥x− y∥ ,∀x, y ∈ H.

Using Proposition 3.1.3, we can easily show that, finding the solution (x∗, y∗) ∈ K ×K
of (SGHVID) is equivalent to finding (x∗, y∗) ∈ K ×K such that{

x∗ = (1− αn)x
∗ + αnPK [g (y∗)− ρT1 (y

∗, x∗)]
y∗ = (1− αn) y

∗ + αnPK [h (x∗)− ηT2 (x
∗, y∗)]

where αn ∈ [0, 1] for all n ≥ 0.
In the following section, We show that the proof of M. A. Noor and K. I. Noor in [29] is
incorrect.

About [29]
M. A. Noor and K. I. Noor used the following iterative algorithm for solving the problem
(SGHVID)

Algorithm 3.1.4 (Algorithm 3.1 in [29] ). For arbitrary chosen initial points x0, y0 ∈ K,
compute the sequences {xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT1 (yn, xn)]
yn+1 = PK [h (xn+1)− ηT2 (xn+1, yn)]

where αn ∈ [0, 1] for all n ≥ 0.

Theorem 3.1.5 (Theorem 4.1 in [29] ). Let (x∗, y∗) be the solution of SGHVID. Sup-
pose that T1 : H ×H → H is relaxed (γ1, r1)−cocoercive and µ1 Lipschitzian in the first
variable, and T2 : H × H → H is relaxed (γ2, r2)−cocoercive and µ2 Lipschitzian in the
first variable. Let g be relaxed (γ3, r3)−cocoercive and µ3 Lipschitz and let h be relaxed
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(γ4, r4)−cocoercive and µ4 Lipschitz continous. If

∣∣∣∣ρ− r1 − γ1µ
2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1k1 (2− k1)

µ2
1

, r1 > γ1µ
2
1 + µ1

√
k1 (2− k1), k1 < 1,

∣∣∣∣η − r2 − γ2µ
2
2

µ2
2

∣∣∣∣ <
√

(r2 − γ2µ2
2)

2 − µ2
2k2 (2− k2)

µ2
2

, r2 > γ2µ
2
2 + µ2

√
k2 (2− k2), k2 < 1,

where
k1 =

√
1− 2 (r3 − γ3µ2

3) + µ2
3

k2 =
√

1− 2 (r4 − γ4µ2
4) + µ2

4,

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0, y0 ∈ K, xn and

yn obtained from Algorithm (3.2.2) converge strongly to x∗ and y∗ respectively.
Next we will prove that theirs proof is incorrect. Let us consider the following text

quoted from the proof of ( Theorem 4.1 in [29] ).
Proof. To prove the result, we need first to evaluate ∥xn+1 − x∗∥ for all n ≥ 0.

∥xn+1 − x∗∥ = ∥(1− αn)xn + αnPK [g (yn)− ρT1 (yn, xn)]− (1− αn)x
∗ − αnPK [g (y∗)− ρT1 (y

∗, x∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥PK [g (yn)− ρT1 (yn, xn)]− PK [g (y∗)− ρT1 (y

∗, x∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥[g (yn)− ρT1 (yn, xn)]− [g (y∗)− ρT1 (y

∗, x∗)]∥
= (1− αn) ∥xn − x∗∥+ αn ∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y

∗, x∗)]∥
+ αn ∥yn − y∗ − [g (yn)− g (y∗)]∥

From the relaxed (γ1, r1)−cocoercive and µ1 Lipschitzian definition for the first variable
on T1, we have:

∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y
∗, x∗)]∥2 = ∥yn − y∗∥2 − 2ρ⟨T1 (yn, xn)− T1 (y

∗, x∗) , yn − y∗⟩
+ ρ2 ∥T1 (yn, xn)− T1 (y

∗, x∗)∥2

≤ ∥yn − y∗∥2 + 2ργ1 ∥T1 (yn, xn)− T1 (y
∗, x∗)∥2

− 2ρr1 ∥yn − y∗∥2 + ρ2 ∥T1 (yn, xn)− T1 (y
∗, x∗)∥2 .

=
[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

]
∥yn − y∗∥ .2

Commentaries
1. There are a clear mistakes in the above formulation so it is not true because:

• We can’t apply the relaxed (γ1, r1)−cocoercive definition for the first variable
on T1, (the second variable of T1 in ⟨T1 (yn, xn) − T1 (y

∗, x∗) , yn − y∗⟩ is not
equal).
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• Also with ∥T1 (yn, xn)− T1 (y
∗, x∗)∥2, we can’t apply the Lipschitz continuity

definition for the first variable on T1.

2. The same error used when, they evaluated ∥xn+1 − x∗ − η [T2 (xn+1, yn)− T2 (x
∗, y∗)]∥2.

Main result
Now we suggest and analyze the following iterative method for solving the problem
SGHVID.

Algorithm 3.1.6. For arbitrary chosen initial points x0, y0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT1 (yn, xn)]
yn+1 = (1− αn) yn + αnPK [h (xn)− ηT2 (xn, yn)]

where αn ∈ [0, 1] for all n ≥ 0.

Special cases
1/ For T1 = T2 = T in Algorithm (3.1.6), we arrive at

Algorithm 3.1.7. For arbitrary chosen initial points x0, y0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT (yn, xn)]
yn+1 = (1− αn) yn + αnPK [h (xn)− ηT (xn, yn)]

where αn ∈ [0, 1] for all n ≥ 0.

Which is the aproximate solvability of the following system:{
⟨ρT (y∗, x∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0, ∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT (x∗, y∗) + y∗ − h (x∗) , h (v)− y∗⟩ ≥ 0, ∀v ∈ H : h (v) ∈ K, η > 0

2/ For g = h in Algorithm (3.1.6), we get

Algorithm 3.1.8. For arbitrary chosen initial points x0, y0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT1 (yn, xn)]
yn+1 = (1− αn) yn + αnPK [g (xn)− ηT2 (xn, yn)]

where αn ∈ [0, 1] for all n ≥ 0.
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Which is the aproximate solvability of the following system:{
⟨ρT1 (y∗, x∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT2 (x∗, y∗) + y∗ − h (x∗) , g (v)− y∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, η > 0

3/ For T1 = T2 = T , and g = h in Algorithm (3.1.6), we have the following Algorithm
Algorithm 3.1.9. For arbitrary chosen initial points x0, y0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT (yn, xn)]
yn+1 = (1− αn) yn + αnPK [g (xn)− ηT (xn, yn)]

where αn ∈ [0, 1] for all n ≥ 0.

Which is the aproximate solvability of the following system:{
⟨ρT (y∗, x∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT (x∗, y∗) + y∗ − h (x∗) , g (v)− y∗⟩ ≥ 0, ∀v ∈ H : g (v) ∈ K, η > 0

Now we present the convergence criteria of Algorithm (3.1.6) under some suitable condi-
tions and this is the main result of this part.
Theorem 3.1.10. Let (x∗, y∗) be the solution of SGHVID. Suppose that T1 : H ×
H → H is relaxed (γ1, r1)−cocoercive and µ1-Lipschitzian in the first variable and let
T1 be λ1-Lipschitz continous in the second variable. Let T2 : H × H → H is relaxed
(γ2, r2)−cocoercive and µ2 Lipschitzian in the first variable and let T2 be λ2-Lipschitz
continous in the second variable. Let g be relaxed (γ3, r3)−cocoercive and µ3 Lipschitz
and let h be relaxed (γ4, r4)−cocoercive and µ4-Lipschitz continous. If

k1 <
1

2
, r1 > γ1µ

2
1 + µ1

√
3

4
− k21 + k1,

∣∣∣∣ρ− r1 − γ1µ
2
1

µ2
1

∣∣∣∣ <
√
(r1 − γ1µ2

1)
2 − µ2

1

[
3

4
− k21 + k1

]
µ2
1

, ρ <
1

2λ1

(3.1)


k2 <

1

2
, r2 > γ2µ

2
2 + µ2

√
3

4
− k22 + k2,

∣∣∣∣η − r2 − γ2µ
2
2

µ2
2

∣∣∣∣ <
√
(r2 − γ2µ2

2)
2 − µ2

2

[
3

4
− k22 + k2

]
µ2
2

, η <
1

2λ2

(3.2)

where
k1 =

√
1− 2 (r3 − γ3µ2

3) + µ2
3

k2 =
√

1− 2 (r4 − γ4µ2
4) + µ2

4,

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0, y0 ∈ K, xn and

yn obtained from Algorithm (3.1.6) converge strongly to x∗ and y∗ respectively.
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Proof. To prove the result, we need first to evaluate ∥xn+1 − x∗∥ for all n ≥ 0.

∥xn+1 − x∗∥ = ∥(1− αn) (xn − x∗) + αn [PK [g (yn)− ρT1 (yn, xn)]− PK [g (y∗)− ρT1 (y
∗, x∗)]]∥

≤ (1− αn) ∥xn − x∗∥+ αn ∥PK [g (yn)− ρT1 (yn, xn)]− PK [g (y∗)− ρT1 (y
∗, x∗)]∥

≤ (1− αn) ∥xn − x∗∥+ αn ∥[g (yn)− ρT1 (yn, xn)]− [g (y∗)− ρT1 (y
∗, x∗)]∥

≤ (1− αn) ∥xn − x∗∥+ αn ∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y
∗, x∗)]∥

+ αn ∥yn − y∗ − [g (yn)− g (y∗)]∥
≤ αn ∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y

∗, xn) + T1 (y
∗, xn)− T1 (y

∗, x∗)]∥
+ αn ∥yn − y∗ − [g (yn)− g (y∗)]∥+ (1− αn) ∥xn − x∗∥

≤ (1− αn) ∥xn − x∗∥+ αn ∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y
∗, xn)]∥

+ ραn ∥T1 (y∗, xn)− T1 (y
∗, x∗)∥+ αn ∥yn − y∗ − [g (yn)− g (y∗)]∥

From the relaxed .(γ1, r1)−cocoercive for the first variable on T1, we have

∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y
∗, xn)]∥2 = ∥yn − y∗∥2 − 2ρ⟨T1 (yn, xn)− T1 (y

∗, xn) , yn − y∗⟩
+ ρ2 ∥T1 (yn, xn)− T1 (xn, y

∗)∥2

≤ −2ρ
[
−γ1 ∥T1 (yn, xn)− T1 (y

∗, xn)∥2 + r1 ∥yn − y∗∥2
]

+ ∥yn − y∗∥2 + ρ2 ∥T1 (yn, xn)− T1 (y
∗, xn)∥2

≤ 2ργ1 ∥T1 (yn, xn)− T1 (y
∗, xn)∥2 − 2ρr1 ∥yn − y∗∥2

+ ∥yn − y∗∥2 + ρ2 ∥T1 (yn, xn)− T1 (y
∗, xn)∥2

From the µ1-Lipschitzian definition for the first variable on T1, we have:

∥yn − y∗ − ρ [T1 (yn, xn)− T1 (y
∗, xn)]∥2 ≤

[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

]
∥yn − y∗∥2

In a similar way, using the (γ3, r3)−cocoercivity and µ3-Lipschitz continuity of the oper-
ator g; we have:

∥yn − y∗ − [g (yn)− g (y∗)]∥ ≤ k1 ∥yn − y∗∥
From the λ1-Lipschitzian definition for the second variable on T1, we have:

∥T1 (y∗, xn)− T1 (y
∗, x∗)∥ ≤ λ1 ∥xn − x∗∥

As a result, we have:

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1 ∥yn − y∗∥+ αnρλ1 ∥xn − x∗∥ (3.3)

where,
θ1 = k1 +

[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

] 1
2

Similary we have:

∥yn+1 − y∗∥ ≤ (1− αn) ∥yn − y∗∥+ αnθ2 ∥xn − x∗∥+ αnηλ2 ∥yn − y∗∥ (3.4)
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where,
θ2 = k2 +

[
1 + 2ηγ2µ

2
2 − 2ηr2 + η2µ2

2

] 1
2 .

It is clear from the conditions (3.1) and (3.2) that,

θ1 + ηλ2 < 1 and θ2 + ρλ1 < 1.

Then from (3.3) and (3.4),

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1 ∥yn − y∗∥+ αnρλ1 ∥xn − x∗∥
+ (1− αn) ∥yn − y∗∥+ αnθ2 ∥xn − x∗∥+ αnηλ2 ∥yn − y∗∥
≤ (1− αn) [∥xn − x∗∥+ ∥yn − y∗∥] + σαn [∥xn − x∗∥+ ∥yn − y∗∥]

where,
σ = max (θ1 + ηλ2, θ2 + ρλ1) < 1.

Set
zn = ∥xn − x∗∥+ ∥yn − y∗∥ .

So,
zn+1 ≤ (1− (1− σ)αn) zn

wich implies that:

zn+1 ≤
k=n∏
k=0

(1− (1− σ)αk) z0

Since 0 < σ < 1 and
∞∑
k=0

αk = ∞, it implies in light of [35] that

lim
n→+∞

k=n∏
k=0

((1− (1− σ)αk)) = 0 therfore xn → x∗ and yn → y∗.

Corollary 3.1.1. We can replace the conditions (3.1) and (3.2) by (3.5) and (3.6) where,
0 < p1 < 1 and 0 < p2 < 1.

k1 < p1, r1 > γ1µ
2
1 + µ1

√
−k21 + 2p1k1 + 1− p21,∣∣∣∣ρ− r1 − γ1µ

2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1 [−k21 + 2p1k1 + 1− p21]

µ2
1

ρ <
1− p2
λ1

(3.5)



k2 < p2, r2 > γ2µ
2
2 + µ2

√
−k22 + 2p2k2 + 1− p22,∣∣∣∣η − r2 − γ2µ

2
2

µ2
2

∣∣∣∣ <
√

(r2 − γ2µ2
2)

2 − µ2
2 [−k22 + 2p2k2 + 1− p22]

µ2
2

,

η <
1− p1
λ2

(3.6)
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Remark 3.1.11. If T1, T2 : H → H are univariate operators, then Algorithm (3.1.6) can
be replaced by the folloing Algorithm.

Algorithm 3.1.12. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT1 (yn)]
yn = PK [h (xn)− ηT2 (xn)]

where αn ∈ [0, 1] for all n ≥ 0.

Which is the approximate solvability of the system (3.7) :{
⟨ρT1 (y∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT2 (x∗) + y∗ − h (x∗) , h (v)− y∗⟩ ≥ 0,∀v ∈ H : h (v) ∈ K, η > 0

(3.7)

For the system (3.7), we use Algorithm (3.1.12) and present the following Theorem
which uses less conditions than the previous Theorem.

Theorem 3.1.13. Let (x∗, y∗) be the solution of (3.7). Suppose that T1, T2, g, h : H → H
be both relaxed-cocoercive with constants (γ1, r1), (γ2, r2), (γ3, r3), (γ4, r4) and Lipschitz
continuous with constants µ1, µ2, µ3, µ4 respectively. If

k1 < 1, r1 > γ1µ
2
1 + µ1

√
−k21 + 2k1,∣∣∣∣ρ− r1 − γ1µ

2
1

µ2
1

∣∣∣∣ <
√

(r1 − γ1µ2
1)

2 − µ2
1 [−k21 + 2k1]

µ2
1

,
(3.8)


k2 < 1, r2 > γ2µ

2
2 + µ2

√
−k22 + 2k2,∣∣∣∣η − r2 − γ2µ

2
2

µ2
2

∣∣∣∣ <
√
(r2 − γ2µ2

2)
2 − µ2

2 [−k22 + 2k2]

µ2
2

.
(3.9)

Where
k1 =

√
1− 2 (r3 − γ3µ2

3) + µ2
3

k2 =
√

1− 2 (r4 − γ4µ2
4) + µ2

4,

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0 ∈ K, xn and yn
obtained from Algorithm (3.1.12) converge strongly to x∗ and y∗ respectively.

Proof. To prove the result, we need first to evaluate ∥xn+1 − x∗∥ for all n ≥ 0.

∥xn+1 − x∗∥ = ∥(1− αn)xn + αnPK [g (yn)− ρT1 (yn)]− (1− αn)x
∗ + αnPK [g (y∗)− ρT1 (y

∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥PK [g (yn)− ρT1 (yn)]− PK [g (y∗)− ρT1 (y

∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥[g (yn)− ρT1 (yn)]− [g (y∗)− ρT1 (y

∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥yn − y∗ − ρ [T1 (yn)− T1 (y

∗)]∥
+ ∥yn − y∗ − [g (yn)− g (y∗)]∥
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From the relaxed (γ1, r1)−cocoercive on T1, we have :

∥yn − y∗ − ρ [T1 (yn)− T1 (y
∗)]∥2 = ∥yn − y∗∥2 − 2ρ⟨T1 (yn)− T1 (y

∗) , yn − y∗⟩
+ ρ2 ∥T1 (yn)− T1 (y

∗)∥2

≤ −2ρ
[
−γ1 ∥T1 (yn)− T1 (y

∗)∥2 + r1 ∥yn − y∗∥2
]

+ ∥yn − y∗∥2 + ρ2 ∥T1 (yn)− T1 (y
∗)∥2

≤ 2ργ1 ∥T1 (yn)− T1 (y
∗)∥2 − 2ρr1 ∥yn − y∗∥2

+ ∥yn − y∗∥2 + ρ2 ∥T1 (yn)− T1 (y
∗)∥2

From the µ1-Lipschitzian definition on T1, we have:

∥yn − y∗ − ρ [T1 (yn)− T1 (y
∗)]∥2 ≤

[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

]
∥yn − y∗∥2

In a similar way, using the (γ3, r3)−cocoercivity and µ3-Lipschitz continuity of the oper-
ator g; we have:

∥yn − y∗ − [g (yn)− g (y∗)]∥ ≤ k1 ∥yn − y∗∥
As a result, we have:

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1 ∥yn − y∗∥ (3.10)

where,
θ1 = k1 +

[
1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1

] 1
2

Now we evaluate ∥yn+1 − y∗∥ for all n ≥ 0.

∥yn − y∗∥ = ∥PK [h (xn)− ηT2 (xn)]− PK [h (x∗)− ηT1 (x
∗)]∥

≤ ∥[h (xn)− ηT2 (xn)]− [h (x∗)− ηT2 (x
∗)]∥

≤ ∥xn − x∗ − η [T2 (xn)− T2 (x
∗)]∥+ ∥xn − x∗ − [h (xn)− h (x∗)]∥

From the relaxed .(γ2, r2)−cocoercive on T2, we have :

∥xn − x∗ − η [T2 (xn)− T2 (x
∗)]∥2 = ∥xn − x∗∥2 − 2η⟨T2 (xn)− T2 (x

∗) , xn − x∗⟩
+ η2 ∥T2 (xn)− T2 (x

∗)∥2

≤ −2η
[
−γ2 ∥T2 (xn)− T2 (x

∗)∥2 + r2 ∥xn − x∗∥2
]

+ ∥xn − x∗∥2 + η2 ∥T2 (xn)− T2 (x
∗)∥2

≤ 2ηγ2 ∥T2 (xn)− T2 (x
∗)∥2 − 2ηr2 ∥xn − x∗∥2

+ ∥xn − x∗∥2 + η2 ∥T2 (xn)− T2 (x
∗)∥2

By using the (γ4, r4)−cocoercivity and µ4-Lipschitz continuity of the operator h, we have:

∥xn − x∗ − [h (xn)− h (x∗)]∥ ≤ k2 ∥xn − x∗∥
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As a result, we have:
∥yn − y∗∥ ≤ θ2 ∥xn − x∗∥ (3.11)

where,
θ2 = k2 +

[
1 + 2ηγ2µ

2
2 − 2ηr2 + η2µ2

2

] 1
2

It is clear from the condition (3.8) and (3.9) that

θ1 < 1 and θ2 < 1.

It follow that from (3.21) and (3.22),

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1θ2 ∥xn − x∗∥

wich implies that:

∥xn+1 − x∗∥ ≤
k=n∏
k=0

(1− (1− θ1θ2)αk) ∥x0 − x∗∥

Since 0 < θ1θ2 < 1 and
∞∑
k=0

αk = ∞ it implies in light of [35] that

lim
n→+∞

k=n∏
k=0

((1− (1− θ1θ2)αk)) = 0 therfore xn → x∗ and yn → y∗.

Remark 3.1.14. For g = h and T1 = T2 = T , in Algorithm (3.1.12) we arrive at

Algorithm 3.1.15. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} by using

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT (yn)]

where αn ∈ [0, 1] for all n ≥ 0.

Which is the approximate solvability of the general variational inequality:

⟨T (x∗) , h (v)− x∗⟩ ≥ 0,∀v ∈ H : h (v) ∈ K

which has been considered and studied by M. A. Noor [28].
For g = h = I and T1 = T2 = T , in Algorithm (3.1.12) we get

Algorithm 3.1.16. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [yn − ρT (yn)]
yn = PK [xn − ηT (xn)]

where αn ∈ [0, 1] for all n ≥ 0.

Which is the approximate solvability of the following system of variational inequalities
(SNVI): {

⟨ρT (y∗) + x∗ − y∗, v − x∗⟩ ≥ 0,∀v ∈ K, ρ > 0
⟨ηT (x∗) + y∗ − x∗, v − y∗⟩ ≥ 0,∀v ∈ K, η > 0

which has been considered and studied by Ram U. Verma [33].
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3.2 On General convergence analysis for two-step pro-
jection methods and applications to variational
problems

This section is to illustrate that the main result of the paper [Ram U. Verma, Gen-
eral convergence analysis for two-step projection methods and applications to variational
problems, Applied Mathematics Letters. 18 (2005) 1286-1292] is incorrect by giving an
counterexample. We also present and study a new iterative method (3.2.5) to correct the
main result of [33].
Throughout this section we assume that H is a real Hilbert space whose inner product and
norm are denoted by ⟨., .⟩ and ∥.∥ respectively. In this part, we consider a system of two
nonlinear variational inequality (abbreviated as SNVI) problems as follows: determine
elements x∗, y∗ ∈ K such that :{

⟨ρT (y∗) + x∗ − y∗, v − x∗⟩ ≥ 0,∀v ∈ K, ρ > 0
⟨ηT (x∗) + y∗ − x∗, v − y∗⟩ ≥ 0,∀v ∈ K, η > 0

(3.12)

In this note new approximation schemes (3.2.5) are discussed for solving the problem
(SNVI). The results obtained in this section correct the main results in [33].

We recall:

Définition 3.2.1. A mapping T : H → H is called r-strongly monotonic if there exist
constant r > 0, such that :

∀x, y ∈ H : ∥T (x)− T (y)∥ ≥ r ∥x− y∥2 .

Using Proposition 3.1.3, we can easily show that, finding the solution (x∗, y∗) ∈ K×K
of (3.12) is equivalent to finding (x∗, y∗) ∈ K ×K such that{

x∗ = (1− αn)x
∗ + αnPK [g (y∗)− ρT (y∗)]

y∗ = PK [g (x∗)− ηT (x∗)]

where αn ∈ [0, 1] for all n ≥ 0.
In the following section, we show that the results of Verma in [33] are incorrect.

About [33]
Verma used the following iterative algorithm for solving the problem (SNVI)

Algorithm 3.2.2 (Algorithm 3.1 in [33] ). For arbitrary chosen initial points x0, y0 ∈ K,
compute the sequences {xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [yn − ρT (yn)]
yn = (1− βn)xn + βnPK [xn − ηT (xn)]

where αn, βn ∈ [0, 1] for all n ≥ 0.
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Theorem 3.2.3. [Theorem 3.1 in [33] ] Let H be a real Hilbert space and K a nonempty
closed convex subset of H. Let T : K → H be strongly r-monotonic and µ-Lipschitz
continous. Suppose that x∗, y∗ ∈ K form a solution to the SNVI problem. If

0 < ρ <
2r

µ2

0 < η <
2r

µ2

and αn, βn ∈ [0, 1],
∞∑
n=0

αnβn = ∞, then for arbitrarily chosen initial points x0, y0 ∈ K, xn
and yn obtained from Algorithm (3.2.2) converge strongly to x∗ and y∗ respectively.

Commentaries
The sequence yn does not converge to y∗ because:
If we take: 

0 < ρ <
2r

µ2

0 < η <
2r

µ2

αn = βn =
1

2

It is clear that
∞∑
n=0

αnβn = ∞, and
xn+1 =

1

2
xn +

1

2
PK [yn − ρT (yn)]

yn =
1

2
xn +

1

2
PK [xn − ηT (xn)]

By using Theorem (3.2.3), we obtian:
x∗ =

1

2
x∗ +

1

2
PK [y∗ − ρT (y∗)]

y∗ =
1

2
x∗ +

1

2
PK [x∗ − ηT (x∗)]

Which is equivalent to, {
x∗ = PK [y∗ − ρT (y∗)]
2y∗ − x∗ = PK [x∗ − ηT (x∗)]

Using Proposition (3.1.3), we arrive at{
⟨ρT (y∗) + x∗ − y∗, v − x∗⟩ ≥ 0, ∀v ∈ K,
⟨ηT (x∗) + 2y∗ − 2x∗, v − 2y∗ + x∗⟩ ≥ 0,∀v ∈ K.

Which is not the same problem SNVI.
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Remark 3.2.4. Let us consider the following text quoted from the proof of ( Theorem 3.1
in [33] ):
Similary, we have

∥yk − y∗∥ = ∥(1− βk) (xk − x∗) + βnPK [xk − ηT (xk)]− βnPK [x∗ − ηT (x∗)]∥
≤ (1− βk) ∥xk − x∗∥+ βk ∥[xk − x∗]− η [T (xk)− T (x∗)]∥

≤ (1− βk) ∥xk − x∗∥+ βk
[
1− 2ηr + (ηµ)2

] 1
2 ∥xk − x∗∥

= (1− βk) ∥xk − x∗∥+ βkσ ∥xk − x∗∥ ,

where σ =
[
1− 2ηr + (ηµ)2

] 1
2 < 1.

This remark implies that the mistake is not an erratum.

Main result
Now we suggest and analyze the following iterative method for solving (3.12).

Algorithm 3.2.5. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [yn − ρT (yn)]
yn = PK [xn − ηT (xn)]

where αn ∈ [0, 1] for all n ≥ 0.

Theorem 3.2.6. Let (x∗, y∗) be the solution of (3.12). Suppose that T : H → H be
strongly r−monotonic and µ−Lipschitz continuous. If

0 < ρ <
2r

µ2

0 < η <
2r

µ2

(3.13)

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0 ∈ K, xn and yn
obtained from Algorithm (3.2.5) converge strongly to x∗ and y∗ respectively.

beginproof To prove the result, we need first to evaluate ∥xn+1 − x∗∥ for all n ≥ 0.

∥xn+1 − x∗∥ = ∥(1− αn)xn + αnPK [yn − ρT (yn)]− (1− αn)x
∗ + αnPK [y∗ − ρT (y∗)]∥

≤ (1− αn) ∥xn − x∗∥+ αn ∥PK [yn − ρT (yn)]− PK [y∗ − ρT (y∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥[yn − y∗]− ρ [T (yn)− T (y∗)]∥
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Since T is r−strongly monotonic, we have :

∥yn − y∗ − ρ [T (yn)− T (y∗)]∥2 = ∥yn − y∗∥2 − 2ρ⟨T (yn)− T (y∗) , yn − y∗⟩
+ ρ2 ∥T (yn)− T (y∗)∥2

≤ −2ρ
[
r ∥yn − y∗∥2

]
+ ∥yn − y∗∥2 + ρ2 ∥T (yn)− T (y∗)∥2

From the Lipschitzian definition on T , we have:

∥yn − y∗ − ρ [T (yn)− T (y∗)]∥2 ≤
[
1− 2ρr + ρ2µ2

]
∥yn − y∗∥2

As a result, we have:

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1 ∥yn − y∗∥ (3.14)

where θ1 = [1− 2ρr + ρ2µ2]
1
2

Now we evaluate ∥yn − y∗∥ for all n ≥ 0.

∥yn − y∗∥ = ∥PK [xn − ηT (xn)]− PK [x∗ − ηT (x∗)]∥
≤ ∥[xn − x∗]− η [T (xn)− T (x∗)]∥

Similary, Since T is r−strongly and µ−Lipschitz continuous mapping, we obtain :

∥yn − y∗∥ ≤ θ2 ∥xn − x∗∥ . (3.15)

where θ2 = [1− 2ηr + η2µ2]
1
2

Notice that θ1 < 1 and θ2 < 1 from assumption (3.13), and hence from (3.14) and
(3.15), we have

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1θ2 ∥xn − x∗∥

wich implies that:

∥xn+1 − x∗∥ ≤
k=n∏
k=0

(1− (1− θ1θ2)αk) ∥x0 − x∗∥

Since 0 < θ1θ2 < 1 and
∞∑
k=0

αk = ∞ it implies in light of [35] that

lim
n→+∞

k=n∏
k=0

((1− (1− θ1θ2)αk)) = 0 therfore xn → x∗ and yn → y∗. endproof

3.3 On Extended General Variational Inequalities
In this notes (see [8]) we show that Lemmas 2.1 and 3.1 in [27] [Mohamed Aslam Noor,
Applied Mathematical Letters 22 (2009) 182-186] are incorrect by analyzing his proofs.
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Definitions and somme results in [27]

In this section we recall the relatived lemmas given in [27] which will be used in our study.
Let H be a real Hilbert space whose inner product is denoted by ⟨., .⟩.

Définition 3.3.1. ( Def 2.1 in [1] ) Let K be any set in H. The set K is said to be
hg-convex if there exist functions g, h : H → H such that

tg(v) + (1− t)h(u) ∈ K,

for each u, v ∈ H : h(u), g(v) ∈ K and all t ∈ [0, 1].

Définition 3.3.2. ( Def 2.2 in [1] ) A function F : K → R is said to be hg-convex on K
if K is hg-convex and

F (tg(v) + (1− t)h(u)) ≤ tF (g (v)) + (1− t)F (h (u)) ,

for each u, v ∈ H : h(u), g(v) ∈ K and all t ∈ [0, 1].

Lemma 3.3.3. ( Lemma 2.1 in [1] ) Let F : K → R be a differentiable hg-convex
functions. Then u ∈ H : h(u) ∈ K is the minimum of the hg-convex function F on K if
and only if it satisfies the inequality

⟨F ′ (h (u)) , g (v)− h (u)⟩ ≥ 0, ∀v ∈ H : g (v) ∈ K,

where F ′ (u) is the Frechet differential of F at u.

Lemma 3.3.4. ( Lemma 3.1 in [1] ) The function u ∈ H : h(u) ∈ K is a solution of the
extended general variational inequality

⟨Tu+ h(u)− g(u), g(v)− h(u)⟩ ≥ 0,∀v ∈ H : g(v) ∈ K, (3.16)

if and only if u ∈ H : h(u) ∈ K satisfies the relation

h(u) = PK [g(u)− ρTu] , (3.17)

where PK is the projection operator and ρ > 0 is a constant.

On Lemma 2.1

Throughout his proof of Lemma 2.1 (the converse part) he found :

F (h(u)) ≤ F (g(v)),∀v ∈ H : g(v) ∈ K

this inequality implies not that h(u) ∈ K is the minimum of F on K in H.
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On Lemma 3.1

By a careful reading, we discovered that Lemma 3.3.4 ( Lemma 3.1 in [1] ) is the main
tool of the paper. Unfortunately it is not true because :
If u ∈ H : h(u) ∈ K be a solution of 3.16. Then we have,

⟨h(u)− (g(u)− Tu), g(v)− h(u)⟩ ≥ 0, ∀v ∈ H : g(v) ∈ K, (3.18)

which implies, (using the characterization of the Projection onto a Convex Set K) that

h(u) = PK [g(u)− Tu] ,

which is not the required 3.17.

Remark 3.3.5. We can not add ρ > 0 in (3.16).

3.4 System of Nonlinear General Variational inequal-
ities Involving g-relaxed cocoercive mappings

In this section, we introduce and consider a new system of nonlinear general variational
inequalities involving two g-relaxed (α, β)-cocoercive operators. We suggest and analyze
an iterative method for this system of general variational inequalities. We establish a
convergence result for the proposed method under certain conditions. Our results can be
viewed as a refinement and improvement of the previously known results for variational
inequalities.
Throughout this study we assume that H is a real Hilbert space whose inner product
and norm are denoted by ⟨., .⟩ and ∥.∥ respectively. In this part, we consider, based on
the projection method, the approximate solvability of a system of g-relaxed cocoercive
variational inequalities in Hilbert spaces. The results obtained extend and improve the
main results in [33].
Let K be a closed convex set in H. For given non linear operator T1, T2, g : H → H, we
consider a system of nonlinear variational inequality (3.19) problem as follows: to find
x∗, y∗ ∈ K such that :{

⟨ρT1 (y∗) + x∗ − g (y∗) , g (v)− x∗⟩ ≥ 0,∀v ∈ H : g (v) ∈ K, ρ > 0
⟨ηT2 (x∗) + y∗ − g (x∗) , g (v)− y∗⟩ ≥ 0, ∀v ∈ H : g (v) ∈ K, η > 0

(3.19)

Special cases

1/ If T1 = T2 = T , then the problem (3.19) is equivalent to finding x∗ ∈ K such that

⟨T (x∗) , g (v)− x∗⟩ ≥ 0, ∀v ∈ H : g (v) ∈ K

which has been considered and studied by M. A. Noor [28].
2/ If g = I and T1 = T2 = T , then the problem (3.19) is equivalent to the following
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system of variational inequalities (SNVI): finding (x∗, y∗) ∈ K ×K such that{
⟨ρT (y∗) + x∗ − y∗, v − x∗⟩ ≥ 0,∀v ∈ K, ρ > 0
⟨ηT (x∗) + y∗ − x∗, v − y∗⟩ ≥ 0,∀v ∈ K, η > 0

which has been considered and studied by Ram U. Verma [33].

We recall:

Définition 3.4.1. Let g : H → H be a map. A mapping T : H → H is called g-relaxed
(α, β)-cocoercive if there exist constants α > 0, β > 0 such that :

∀x, y ∈ H : ⟨T (x)− T (y) , g (x)− g (y)⟩ ≥ −α ∥T (x)− T (y)∥2 + β ∥g (x)− g (y)∥2

For g = I, the identity operator. Definition (3.4.1) reduces to the standard definition
of relaxed (c,r)-cocoercivity .
Using Proposition (3.1.3), we can easily show that, finding the solution (x∗, y∗) ∈ K ×K
of (3.19) is equivalent to finding (x∗, y∗) ∈ K ×K such that{

x∗ = (1− αn)x
∗ + αnPK [g (y∗)− ρT1 (y

∗)]
y∗ = PK [g (x∗)− ηT2 (x

∗)]

where αn ∈ [0, 1] for all n ≥ 0.

Main result

Now we suggest and analyze the following iterative method for solving (3.19).

Algorithm 3.4.2. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [g (yn)− ρT1 (yn)]
yn = PK [g (xn)− ηT2 (xn)]

where αn ∈ [0, 1] for all n ≥ 0.

If g = I and T1 = T2 = T , then algorithm (3.4.2) reduces to the following

Algorithm 3.4.3. For arbitrary chosen initial points x0 ∈ K, compute the sequences
{xn} and {yn} using{

xn+1 = (1− αn)xn + αnPK [yn − ρT (yn)]
yn = PK [xn − ηT (xn)]

where αn ∈ [0, 1] for all n ≥ 0.
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which is mainly due to Verma [33] (see Algorithm 2.3 in [33])

Theorem 3.4.4. Let (x∗, y∗) be the solution of (3.19). Suppose that T1, T2 : H → H
be both g-relaxed-cocoercive with constants (γ1, r1), (γ2, r2) and Lipschitz continuous with
constants µ1, µ2 respectively. Let g : H → H be µ−Lipschitz continuous. If{

θ1 = [µ2 + 2ργ1µ
2
1 − 2ρr1µ

2 + ρ2µ2
1]

1
2 < 1,

θ2 = [µ2 + 2ηγ2µ
2
2 − 2ηr2µ

2 + η2µ2
2]

1
2 < 1

(3.20)

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0 ∈ K, xn and yn
obtained from Algorithm (3.4.2) converge strongly to x∗ and y∗ respectively.

Proof. To prove the result, we need first to evaluate ∥xn+1 − x∗∥ for all n ≥ 0.

∥xn+1 − x∗∥ = ∥(1− αn)xn + αnPK [g (yn)− ρT1 (yn)]− (1− αn)x
∗ + αnPK [g (y∗)− ρT1 (y

∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥PK [g (yn)− ρT1 (yn)]− PK [g (y∗)− ρT1 (y

∗)]∥
≤ (1− αn) ∥xn − x∗∥+ αn ∥[g (yn)− ρT1 (yn)]− [g (y∗)− ρT1 (y

∗)]∥

From the g-relaxed (γ1, r1)−cocoercive on T1, we have :

∥g (yn)− g (y∗)− ρ [T1 (yn)− T1 (y
∗)]∥2 = ∥g (yn)− g (y∗)∥2 − 2ρ⟨T1 (yn)− T1 (y

∗) , g (yn)− g (y∗)⟩
+ ρ2 ∥T1 (yn)− T1 (y

∗)∥2

≤ −2ρ
[
−γ1 ∥T1 (yn)− T1 (y

∗)∥2 + r1 ∥g (yn)− g (y∗)∥2
]

+ ∥g (yn)− g (y∗)∥2 + ρ2 ∥T1 (yn)− T1 (y
∗)∥2

≤ 2ργ1 ∥T1 (yn)− T1 (y
∗)∥2 − 2ρr1 ∥g (yn)− g (y∗)∥2

+ ∥g (yn)− g (y∗)∥2 + ρ2 ∥T1 (yn)− T1 (y
∗)∥2

From the Lipschitzian definition on T1 and g , we have:

∥g (yn)− g (y∗)− ρ [T1 (yn)− T1 (y
∗)]∥2 ≤

[
µ2 + 2ργ1µ

2
1 − 2ρr1µ

2 + ρ2µ2
1

]
∥yn − y∗∥2

As a result, we have:

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1 ∥yn − y∗∥ (3.21)

Now we evaluate ∥yn − y∗∥ for all n ≥ 0.

∥yn − y∗∥ = ∥PK [g (xn)− ηT2 (xn)]− PK [g (x∗)− ηT1 (x
∗)]∥

≤ ∥[g (xn)− ηT2 (xn)]− [g (x∗)− ηT2 (x
∗)]∥
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Similary, Since T2 is a g-relaxed (γ2, r2)−cocoercive and g is µ-Lipschitz continuous map-
ping, we obtain :

∥yn − y∗∥ ≤ θ2 ∥xn − x∗∥ . (3.22)

Notice that θ1 < 1 and θ2 < 1 from assumption (3.23), and hence from (3.21) and
(3.22), we have

∥xn+1 − x∗∥ ≤ (1− αn) ∥xn − x∗∥+ αnθ1θ2 ∥xn − x∗∥

wich implies that:

∥xn+1 − x∗∥ ≤
k=n∏
k=0

(1− (1− θ1θ2)αk) ∥x0 − x∗∥

Since 0 < θ1θ2 < 1 and
∞∑
k=0

αk = ∞ it implies in light of [35] that

lim
n→+∞

k=n∏
k=0

((1− (1− θ1θ2)αk)) = 0 therfore xn → x∗ and yn → y∗.

If g = I and T1 = T2 = T , then the following theorem can be directly obtained
from Theorem (3.4.4)

Theorem 3.4.5. Let (x∗, y∗) be the solution of (3.19). Suppose that T : H → H be
(γ, r)-relaxed-cocoercive and µ-Lipschitz continuous mappings. If{

θ1 = [1 + 2ργµ2 − 2ρr + ρ2µ2]
1
2 < 1,

θ2 = [1 + 2ηγµ2 − 2ηr + η2µ2]
1
2 < 1

(3.23)

and αn ∈ [0, 1],
∞∑
n=0

αk = ∞, then for arbitrarily chosen initial points x0 ∈ K, xn and yn
obtained from Algorithm (3.4.2) converge strongly to x∗ and y∗ respectively.



Chapter 4

A new parameterized logarithmic
kernel function for linear
optimization with a double barrier
term yielding the best known
iteration bound

4.1 An introduction to kernel functions and its roles
After the groundbreaking paper of Karmarkar [20], Kernel functions play an important
role in the complexity analysis of the interior point methods (IPMs) for linear optimization
(LO).

In 2001, Peng et al. [32] designed a new paradigm of primal-dual algorithms based
on the socalled self-regular proximity functions for LO. They improved iteration bound
and achieved the best known complexity results for large and small-update methods.
Subsequently, in 2004 Bai et al. [5] proposed new kernel function with an exponential
barrier term, and introduced the first new kernel function with a trigonometric barrier
term. These functions enjoy useful properties and determine new search directions for
primal-dual interior point algorithms. Based on these functions, they obtained the best
known complexity results for large-update methods, namely, O

(√
n log n log n

ε

)
and good

numerical results.
In 2008, El Ghami et al. [14] proposed parameterized kernel function with a logarith-

mic barrier term. This function generalized the kernel functions given in [15, 36].
In 2018, Bouafia et al. [10] proposed a parameterized logarithmic kernel function for

primal-dual IPMs. They obtained the best known complexity results for large and small-
update methods, they took the middle between Peng [32] and Elghami’s [14] barrier as a
barrier term. The objective of this chapter is to introduce a new class of kernel functions
which differs from the existing kernel functions in which it has a double barrier term (
logarithmic-exponential barrier term ) . This chapter is organized as follows. In Sect 2,

45
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we recall the preliminaries. In Sect 3 and 4, we define a new kernel function and give
its properties which are essential for the complexity analysis. The estimate of the step
size and the decrease behavior of the new barrier function are discussed in Sect 5. Also
we derive the complexity result for both large-update and small-update methods. Some
numerical results are provided in Section 6. Finally, we end up the chapter by a conclusion

4.2 Preliminaries
In this section we recall some basic concepts and the generic IPMs, we consider linear
optimization (LO) problem in the standard format:

min< c, x >: Ax = b, x ≥ 0, (P)

where A ∈ Rm×n, rank(A) = m, b ∈ Rm, and c ∈ Rn, and its dual problem

max< b, y >: ATy + s = c, s ≥ 0. (D)

A new polynomial-time method for solving LO is proposed by Karmarkar [20]. After that,
this method was developped in the literature which play an important role for solving
linear optimization problem and its variants are now called IPMs. For more details about
the subject, we can refer to Bai et al. [4], Peng et al. [31], Roos et al. [36] and Ye
[40]. Without loss of generality, we assume that (P ) and (D) satisfy the interior point
condition (IPC), i.e., there exist (x0, y0, s0) such that

Ax0 = b, x0 > 0, ATy0 + s0 = c, s0 > 0. (4.1)

It is well known that finding an optimal solution of (P ) and (D) is equivalent to solving
the following system

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = 0. (4.2)

The basic idea of primal-dual IPMs is to replace the third equation in (4.2), the so-called
complementarity condition for (P ) and (D), by the parameterized equation xs = µe, with
µ > 0. Thus we consider the system

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = µe. (4.3)

Surprisingly enough, if the IPC is satisfied, then there exists a solution, for each µ > 0,
and this solution is unique. It is denoted as (x(µ), y(µ), s(µ)), and we call x(µ) the µ-
center of (P ) and (y(µ), s(µ)) the µ-center of (D). The set of µ-centers (with µ running
through all positive real numbers) gives a homotype path, which is called the central path
of (P ) and (D). The relevance of the central path for LO was recognized first by Megiddo
[26] and Sonnevend [37]. If µ → 0, then the limit of the central path exists, and since
the limit points satisfy the complementarity condition, the limit yields optimal solutions
for (P ) and (D). From a theoretical point of view, the IPC can be assumed without loss
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of generality. In fact, we may, and will, assume that x0 = s0 = e. In practice, this can
be realized by embedding the given problems (P ) and (D) into a homogeneous self-dual
problem, which has two additional variables and two additional constraints. For this and
the other properties mentioned above, see [36].

The IPMs follow the central path approximately. We briefly describe the usual ap-
proach. Without loss of generality, we assume that (x(µ), y(µ), s(µ)) is known for some
positive µ. For example, due to the above assumption, we may assume this for µ = 1,
with x(1) = s(1) = e. We then decrease µ to µ = (1 − θ)µ for some fixed θ ∈]0, 1[, and
we solve the following Newton system:

A∆x = 0, AT∆y +∆s = 0, s∆x+ x∆s = µe− xs. (4.4)

This system uniquely defines a search direction (∆x,∆y,∆s). By taking a step along the
search direction, with the step size defined by some line search rules, we construct a new
triple (x, y, s). If necessary, we repeat the procedure until we find iterates that are "close"
to (x(µ), y(µ), s(µ)). Then µ is again reduced by the factor 1− θ, and we apply Newton’s
method targeting the new µ-centers, and so on. This process is repeated until µ is small
enough, say until nµ ≤ ϵ, at this stage, we have found an ϵ-solution of problems (P ) and
(D). The result of a Newton step with step size α is denoted as

x+ = x+ α∆x, s+ = s+ α∆s, y+ = y + α∆y, (4.5)

where the step size α satisfies 0 < α ≤ 1. Now we introduce the scaled vector v and the
scaled search directions dx and ds as follows:

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (4.6)

System (4.4) can be rewritten as follows:

Adx = 0, AT∆y + ds = 0, dx + ds = v−1 − v, (4.7)

where A = 1
µ
AV −1X, V = diag(v), X = diag(x). Note that the right-hand side of the

third equation in (4.7) is equal to the negative gradient of the logarithmic barrier function
Φ(v), i.e., dx + ds = −∇Φ(v), system (4.7) can be rewritten as follows:

Adx = 0, AT∆y + ds = 0, dx + ds = −∇Φ(v), (4.8)

where the barrier function Φ(v) : Rn
++ → R+ is defined as follows:

Φ(v) = Φ(x, s;µ) =
n∑
i=1

ψ(vi), (4.9)

ψ(vi) =
v2i − 1

2
− log vi. (4.10)
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We use Φ(v) as the proximity function to measure the distance between the current iterate
and the µ-center for given µ > 0. We also define the norm-based proximity measure,
δ(v) : Rn

++ → R+, as follows

δ(v) =
1

2
||∇Φ(v)|| = 1

2
||dx + ds||, (4.11)

We call ψ(t) the kernel function of the logarithmic barrier function Φ(v). In this study, we
replace ψ(t) by a new kernel function ψNew(t) and Φ(v) by a new barrier function ΦNew(v),
which will be defined in Sect. 4.3. Note that the pair (x, s) coincides with the µ-center
(x(µ), s(µ)) if and only if v = e. It is clear from the above description that the closeness
of (x, s) to (x(µ), s(µ)) is measured by the value of Φ(v) with τ > 0 as a threshold value.
If Φ(v) ≤ τ , then we start a new outer iteration by performing a µ-update; otherwise, we
enter an inner iteration by computing the search directions at the current iterates with
respect to the current value of µ and apply (4.5) to get new iterates. If necessary, we
repeat the procedure until we find iterates that are in the neighborhood of (x(µ), s(µ)).
Then µ is again reduced by the factor 1 − θ with 0 < θ < 1, and we apply Newton’s
method targeting the new µ-centers, and so on. This process is repeated until µ is small
enough, say until nµ < ϵ; at this stage, we have found an ϵ-approximate solution of LO.
The parameters τ , θ and the step size α should be chosen in such a way that the algorithm
is optimized in the sense that the number of iterations required by algorithm is as small
as possible. The choice of the so-called barrier update parameter θ plays an important
role in both theory and practice of IPMs . Usually, if θ is a constant independent of the
dimension n of the problem, for instance, θ = 1

2
, then we call the algorithm a large-update

(or long-step) method. If θ depends on the dimension of the problem, such as θ = 1√
n

,
then the algorithm is called a small-update (or short-step) method.

In most cases, the best complexity result obtained for small-update IPMs is O
(√

n log n
ε

)
.

For large-update methods the best obtained bound is O
(√

n log n log n
ε

)
, which until now

has been the best known bound for such methods [5, 32].
In this part, we define a new kernel function and propose primal-dual interior point

methods which improve all the results of the complexity bound for large-update methods
based on a logarithmic-exponential kernel function for LO. Another interesting choice is
m dependent with n, which minimizes the iteration complexity bound. In fact, if we take
m = log n , we obtain the best known complexity bound for large-update methods namely
O
(√

n log (n) log
(
n
ε

))
. This bound improves the so far obtained complexity results for

large-update methods based on a logarithmic kernel function given by El Ghami et al. [5].
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Generic Primal-dual IPMs for LO
Input:
a dimension of the problem n, n ∈ N
a proximity function ΦNew(v),
a threshold parameter τ > 1
an accuracy parameter ϵ > 0,
a fixed barrier update parameter θ, 0 < θ < 1,

begin
x = e, s = e, µ = 1, v = e.
while nµ ≥ ϵ do
begin (outer iteration)
µ = (1− θ)µ,
while Φ(x, s;µ) > τ do
begin (inner iteration)
solve the system (4.8) , Φ(v) replaced by ΦNew(v) to obtain (∆x,∆y,∆s),
choose a suitable step size α,
x = x+ α∆x, y = y + α∆y, s = s+ α∆s

v =
√

xs
µ

,
end (inner iteration)
end (outer iteration)

end .

Generic algorithm

4.3 The new kernel function and its properties
In this section, a new kernel function with its properties are provided. We call ψ(t):
R∗

+ −→ R+ a kernel function if it is twice differentiable and satisfies the following condi-
tions

ψ′(1) = ψ(1) = 0, ψ′′(t) > 0, lim
t→0+

ψ(t) = lim
t−→+∞

ψ(t) = +∞.

In the other words, a kernel function is a univariate strictly convex function which is
defined for all positive real t and is minimal at t = 1 whereas the minimal value equals 0
(see El Ghami et al. [5] ). Now, let us introduce our new kernel function, which are used
in the above Generic Algorithm.

ψ(t) = t2 − 1− log(t) +
em( 1

t
−1) − 1

m
, m > 0. (4.12)
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Kernel function Large update References
1
2
(t2 − 1)− log(t) O

(
n log n

ε

)
[5]

1
2
(t− 1

t
)2 O

(
n

2
3 log n

ε

)
[30]

1
1+p

(t1+p − 1)− log(t), p ∈ [0, 1] O
(
n log n

ε

)
[14]

1
2
(t2 − 1) + e(

1
t
−1) − 1 O

(√
n(log n)2 log n

ε

)
[5]

1
2
(t2 − 1) + t1−q−1

q−1
, q > 1 O

(
qn

q+1
2q log n

ε

)
[32]

t− 1 + t1−q−1
q−1

, q > 1 O
(
qn log n

ε

)
[4]

1
2
(t2 − 1− log(t)) + t1−q−1

2(q−1)
, q > 1 O

(
qn

q+1
2q log n

ε

)
[10]

p
2
(t2 − 1) + ep(

1
t
−1) − 1, p ≥ 1 O

(√
np5(log pn)2 log n

ε

)
[11]

t2 − 1− log(t) + em( 1t −1)−1
m

,m > 0 O
(
m
√
n(1 + log(n)

m
)2 log n

ε

)
New

Table 1. Examples of kernel functions and its iteration bound for large-update methods.

It can be easily seen that as t→ 0+ or t→ +∞, then ψ(t) → +∞. Therefore, ψ(t) is
indeed a kernel function. As we need the first three derivatives of ψ(t), we list them here:

ψ
′
(t) = 2t− t−1 − t−2em( 1

t
−1), (4.13)

ψ
′′
(t) = 2 + t−2 + (m+ 2t)t−4em( 1

t
−1), (4.14)

ψ
′′′
(t) = −[2t−3 + (6t2 + 6mt+m2)t−6em( 1

t
−1)]. (4.15)

4.4 Eligibility of the new kernel function
Next lemma serves to prove that the new kernel function (4.12) is efficient.

Lemma 4.4.1. Let ψ(t) be as defined in (4.12) and t > 0. Then,

ψ
′′
(t) > 2, (4.16)

ψ
′′′
(t) < 0, (4.17)

tψ
′′
(t)− ψ

′
(t) > 0, (4.18)

tψ
′′
(t) + ψ

′
(t) > 0, (4.19)
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Proof. It is easy to see that (4.16) and (4.17) follow from (4.14) and (4.15) respectively.
To prove (4.18) and (4.19), we have from (4.13) and (4.14) the following

tψ
′′
(t)− ψ

′
(t) = 2t−1 + (m+ 3t)t−3em( 1

t
−1) > 0.

and

tψ
′′
(t) + ψ

′
(t) = 4t+ (m+ t)t−3em( 1

t
−1) > 0,

the right-hand side of the above equality is positive, which proves (4.19).

The last property (4.19) in lemma 4.4.1 is equivalent to convexity of composed func-
tions t→ ψ(et) and this holds if only if

ψ(
√
t1t2) ≤

1

2
(ψ(t2) + ψ(t2)) , for any t1, t2 ≥ 0. (4.20)

This property is known in the literature, and it was demonstrated by several researchers
(see [20, 40]).

Lemma 4.4.2. For ψ(t), we have

(t− 1)2 ≤ ψ(t) ≤ 1

4

[
ψ

′
(t)
]2

, t > 0. (4.21)

ψ(t) ≤ 1

2
[5 +m] (t− 1)2, t > 1. (4.22)

Proof. For (4.21), using (4.16), we have

ψ(t) =

∫ t

1

∫ x

1

ψ
′′
(y)dydx ≥

∫ t

1

∫ x

1

2dydx = (t− 1)2.

ψ(t) =

∫ t

1

∫ x

1

ψ
′′
(y)dydx ≤

∫ t

1

∫ x

1

1

2
ψ

′′
(x)ψ

′′
(y)dydx

=
1

2

∫ t

1

ψ
′′
(x)ψ

′
(x)dx

=
1

2

∫ t

1

ψ
′
(x)dψ

′
(x) =

1

4

[
ψ

′
(t)
]2
.

Since ψ(1) = ψ
′
(1) = 0, ψ′′′

(t) < 0, ψ′′
(1) = 5 +m, and by using Taylor’s Theorem, we

have

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1

2
ψ

′′
(1)(t− 1)2 +

1

6
ψ

′′′
(ξ)(t− 1)3

≤ 1

2
ψ

′′
(1)(t− 1)2

=
1

2
[5 +m] (t− 1)2,

for some ξ, 1 ≤ ξ ≤ t. This completes the proof.
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Now, we analysis the generic algorithm by Following the steps presented in [5].

Step 1. (steps 1 and 3 in [5]) we derive some bounds for σ(t) and ρ(t).
Let σ : [0,∞[ → [1,+∞[ be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,∞[ → ]0, 1]
be the inverse function of −1

2
ψ

′
(t) for all t ∈ ]0, 1]. Then we have the following results.

Proposition 4.4.3. For ψ(t), we have

1 +

√
2s

5 +m
≤ σ(s) ≤ 1 +

√
s, s ≥ 0. (4.23)

ρ(z) ≥ 1

1 + 1
m
log(2z + 1)

, z > 0. (4.24)

Proof. For (4.23), let s = ψ(t), t ≥ 1, i.e., σ(s) = t, t ≥ 1.
By (4.21), we have s ≥ (t− 1)2, this implies that t = σ(s) ≤ 1 +

√
s.

By (4.22), we have:

s = ψ(t) ≤ 1

2
(5 +m)(t− 1)2, t ≥ 1, so t = σ(s) ≥ 1 +

√
2s

5 +m
.

For (4.24), let z = −1
2
ψ

′
(t), t ∈]0, 1]. By the definition of ψ′

(t), we have:

2z = −2t+ t−1 + t−2em( 1
t
−1)

≥ −2 + t−1 + t−2em( 1
t
−1)

≥ −1 + t−2em( 1
t
−1)

≥ −1 + em( 1
t
−1).

which implies t = ρ(z) ≥ 1
1+ 1

m
log(2z+1)

. This completes the proof.

Step 2. Derive a lower bound for δ in term of Φ

Proposition 4.4.4. Let δ(v) be as defined in (4.11). Then we have

δ(v) ≥
√
Φ(v). (4.25)

Proof. Using (4.21), we have

Φ(v) =
n∑
i=1

ψ(vi) ≤
n∑
i=1

1

4

[
ψ

′
(vi)
]2

=
1

4
||∇Φ(v)||2 = δ(v)2,

so δ(v) ≥
√

Φ(v).
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4.5 An Estimation for the step size
Step 3. In this section, we compute a default step size α, we have

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s.

Using (4.6), we have

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx) ,

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds) .

So, we have v+ =
√

x+s+
µ

=
√

(v + αdx) (v + αds). Define for α > 0, f(α) = Φ(v+)−Φ(v).
Then f(α) is the difference of proximities between a new iterate and a current iterate for
fixed µ. By (4.19), we have

Φ(v+) = Φ
(√

(v + αdx) (v + αds)
)
≤ 1

2
(Φ((v + αdx)) + Φ((v + αds))) .

Therefore, we have f(α) ≤ f1(α), where

f1(α) =
1

2
(Φ((v + αdx)) + Φ((v + αds)))− Φ(v). (4.26)

Obviously, f(0) = f1(0) = 0. Taking the first two derivatives of f1(α) with respect to α,
we have

f
′

1(α) =
n∑
i=1

(
ψ

′
(vi + αdxi)dxi + ψ

′
(vi + αdsi)dsi

)
,

f
′′

1 (α) =
n∑
i=1

(
ψ

′′
(vi + αdxi)d

2
xi
+ ψ

′′
(vi + αdsi)d

2
si

)
.

Using (4.6) and (4.11), we have

f
′

1(0) =
1

2
< ∇Φ(v), (dx + ds) >= −1

2
< ∇Φ(v),∇Φ(v) >= −2δ(v)2.

For convenience, we denote v1 = min(v), δ = δ(v), Φ = Φ(v).

Remark 4.5.1. Throughout this study, we assume that τ ≥ 1. Using Lemma 4.4.4 and
the assumption that Φ(v) ≥ τ , we have δ(v) ≥ 1.

From Lemmas 4.1-4.4 in [5], we have the following Lemma 4.5.2-4.5.5, because ψ(t) is
kernel function and ψ

′′
(t) is monotonically decreasing.
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Lemma 4.5.2. [Bai et al.[5]] Let f1(α) be as defined in (4.26) and δ(v) be as defined in
(4.11). Then we have f ′′

1 (α) ≤ 2δ2ψ
′′
(vmin − 2αδ). Since f1(α) is convex, we will have

f
′
1(α) ≤ 0 for all α less than or equal to the value where f1(α) is minimal, and vice versa.

The previous Lemma leads to the following three Lemmas:

Lemma 4.5.3. [Bai et al.[5]] f ′
1(α) ≤ 0 certainly holds if α satisfies the inequality

ψ
′
(vmin)− ψ

′
(vmin − 2αδ) ≤ 2δ (4.27)

Lemma 4.5.4. [Bai et al.[5]] The largest step size α holding (4.27) is given by α =
ρ(δ)−ρ(2δ)

2δ
.

Lemma 4.5.5. [Bai et al. [5]] Let α be as defined in Lemma 4.5.4. Then α ≥ 1
ψ′′ (ρ(2δ))

.

Now, we are in position to prove the following Lemma

Lemma 4.5.6. Let ρ and α be as defined in Lemma 4.5.5. If Φ(v) ≥ τ ≥ 1, then we
have α ≥ 1

2+[1+ 1
m

log(4
√

Φ(v)+1)]2[1+(m+2)(4
√

Φ(v)+1)]
.

Proof. Using Lemma 4.5.5, (4.14), (4.24), and (4.25) we have

α ≥ 1

ψ′′ (ρ(2δ))

=
1

2 + [ρ(2δ)]−2 + (m+ 2ρ(2δ))[ρ(2δ)]−4em( 1
ρ(2δ)

−1)

≥ 1

2 + [1 + 1
m
log(4δ + 1)]2 + (m+ 2)[ρ(2δ)]−2[ρ(2δ)]−2em( 1

ρ(2δ)
−1)

≥ 1

2 + [1 + 1
m
log(4δ + 1)]2 + (m+ 2)[1 + 1

m
log(4δ + 1)]2[4δ + 1]

≥ 1

2 + [1 + 1
m
log(4δ + 1)]2[1 + (m+ 2)(4δ + 1)]

≥ 1

2 + [1 + 1
m
log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

This completes the proof.

Denoting

α̃ =
1

2 + [1 + 1
m
log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

, (4.28)

we have that α̃ is the default step size and that α̃ ≤ α.

Step 4. finding a positive constants κ and γ
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Lemma 4.5.7. [Lemma 4.5 in [5]] If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2.

Proposition 4.5.8. Let Φ0 ≥ Φ(v) ≥ 1 and let α̃ be the default step size as defined in
(4.28). Then, we have

f(α̃) ≤ −κ [(Φ)0]
1−γ (4.29)

with κ = 1
18m[1+ 1

m
log(4

√
Φ0+1)]2

and γ = 1
2
.

Proof. from (4.25), (4.28) and by using Lemma 4.5.7 (Lemma 4.5 in [5]) with α = α̃ we
have

α̃δ2 =
δ2

2 + [1 + 1
m
log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

≥ Φ(v)

2 + [1 + 1
m
log(4

√
Φ(v) + 1)]2[1 + (m+ 2)(4

√
Φ(v) + 1)]

≥ Φ(v)

2
√

Φ(v) + [1 + 1
m
log(4

√
Φ(v) + 1)]2[1 + (m+ 2)5]

√
Φ(v)

≥
√

Φ(v)

2 + [1 + 1
m
log(4

√
Φ0 + 1)]2[1 + (m+ 2)5]

≥
√

Φ(v)

18m[1 + 1
m
log(4

√
Φ0 + 1)]2

This completes the proof.

step 5. Calculate the uniform upper bound (Φ)0 for Φ(v).

Lemma 4.5.9. Let σ : [0,∞[ → [1,+∞[ be the inverse function of ψ(t) for t ≥ 1. Then
we have

Φ(βv) ≤ nψ

(
βσ

(
Φ(v)

n

))
, v ∈ R∗, β ≥ 1.

Proof. Using (4.17) and (4.18), and Lemma 2.4 in [5], we can get the result. This com-
pletes the proof.

Proposition 4.5.10. Let 0 ≤ θ < 1, v+ = v√
1−θ . If Φ(v) ≤ τ , then we have

Φ(v+) ≤
2
√
2τn+ 2τ + θn

(1− θ)
.
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Proof. Since 1√
1−θ ≥ 1 and σ

(
Φ(v)
n

)
≥ 1, then σ(Φ(v)

n )√
1−θ ≥ 1. And for t ≥ 1, we have

ψ(t) ≤ t2 − 1.
Using Lemma 4.5.9 with β = 1√

1−θ , (4.23), and Φ(v) ≤ τ , we have

Φ(v+) ≤ nψ

(
1√
1− θ

σ

(
Φ(v)

n

))

≤ n


σ
(

Φ(v)
n

)
√
1− θ

2

− 1

 =
n

(1− θ)

([
σ

(
Φ(v)

n

)]2
− (1− θ)

)

≤ n

(1− θ)

[1 +√2
Φ(v)

n

]2
− (1− θ)


≤ n

(1− θ)

(
2

√
2τ

n
+

2τ

n
+ θ

)
=

2
√
2τn+ 2τ + θn

(1− θ)
.

This completes the proof.

Denote

(Φ)0 =
2
√
2τn+ 2τ + θn

(1− θ)
= L (n, θ, τ) , (4.30)

then (Φ)0 is an upper bound for Φ(v+) during the process of the algorithm.

Step 6. (An upper bound for the total iteration bound)

Lemma 4.5.11. Let K be the total number of inner iterations in the outer iteration.
Then we have

K ≤ 36m[1 +
1

m
log(4

√
Φ0 + 1)]2(Φ0)

1
2

Proof. By Lemma 1.3.2 in [31], we have :

K ≤ [(Φ)0]
γ

κγ
= 36m[1 + 1

m
log(4

√
Φ0 + 1)]2(Φ0)

1
2 . This completes the proof.

The number of outer iterations is bounded above by log(n
ϵ )

θ
(see [36] Lemma II.17, page

116). By multiplying the number of outer iterations by the number of inner iterations,
we get an upper bound for the total number of iterations, namely,

36m[1 +
log(4

√
Φ0 + 1)

m
]2(Φ0)

1
2
log
(
n
ϵ

)
θ

. (4.31)
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Step 7. For large-update methods with τ = O(n) and θ = Θ(1), we get

Φ0 = O(n)

and by choosing m = log(n) the iteration bound becomes

O
(√

n log(n) log
(n
ϵ

))
iterations complexity .

In case of a small-update methods, we have τ = O(1) and θ = Θ
(

1√
n

)
. Substitution of

these values into (4.31) does not give the best possible bound. A better bound is obtained
as follows.
By (4.22), (4.23) with ψ(t) ≤ 1

2
[m+ 5] (t− 1)2, t > 1. We have

Φ(v+) ≤ nψ

(
1√
1− θ

σ

(
Φ(v)

n

))
≤ n(m+ 5)

2

(
1√
1− θ

σ

(
Φ(v)

n

)
− 1

)2

=
n(m+ 5)

2(1− θ)

(
σ

(
Φ(v)

n

)
−
√
1− θ

)2

≤ n(m+ 5)

2(1− θ)

(
1 +

√
Φ(v)

n
−

√
1− θ

)2

≤ (m+ 5)

2(1− θ)

(
θ
√
n+

√
τ
)2

where we also used that 1−
√
1− θ = θ

1+θ
≤ θ and Φ(v) ≤ τ , using this upper bound for

(Φ)0, we get

Φ0 = O(m)

and the iteration bound becomes

O
(
m

3
2
√
n log

(n
ϵ

))
iterations complexity .

4.6 Numerical results
In this section, we deal with the numerical implementation of this algorithm applied
to the large dimension problem. Here we used Iter which means the iterations number
produced by the algorithm. The implementation is manipulated in Matlab. Our tolerance
is ϵ = 10−4. For our kernel we take m = log(n) .

Example 4.6.1. We consider the following (LO) problem (see [10])

n = 2k, A(i, j) =
{

0 if i ̸= j and j ̸= i+ k
1 if i = j or j = i+ k
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c(i) = −1, c(i+k) = 0, b(i) = 2, and the interior point condition (IPC), x0(i) = x0(i+k) =
1, y0(i) = −2, s0(i) = 1, s0(i+k) = 2 for i = 1, ..., k. To prove the effectiveness of our new
kernel function ψ and evaluate its effect on the behavior of the algorithm, we conducted
comparative numerical tests between it and Elghami’s kernel [5], ψGh = 1

2
(t2 − 1)− log(t)

. We summarize this numerical study in Tables 2, 3 and 4.

Kernel functions Large update Outer It. Inner It. Time(s)
ψGh O

(
n log

(
n
ϵ

))
5 6219 0.4998

ψ O
(√

n log(n) log
(
n
ϵ

))
5 3943 0.4785

Table 2. Comparison for k = 25, n = 50.

Kernel functions Large update Outer It. Inner It. Time(s)
ψGh O

(
n log

(
n
ϵ

))
5 11977 2.9003

ψ O
(√

n log(n) log
(
n
ϵ

))
5 5830 1.9039

Table 3. Comparison for k = 50, n = 100.

Kernel functions Large update Outer It. Inner It. Time(s)
ψGh O

(
n log

(
n
ϵ

))
5 17675 15.4944

ψ O
(√

n log(n) log
(
n
ϵ

))
5 7355 8.2340

Table 4. Comparison for k = 75, n = 150.



Conclusion

In this thesis, The concepts of E-convex sets, E-convex functions are developed and dis-
cussed it’s basic properties. this studies allows to treat the limit analysis by Γ-convergence
and scale convergence of E-convex integral functionals. Also we presented and corrected
some works on E-convexity, on General and System of General Variational Inequalities.
Finally we propose a new double barrier function and primal-dual interior point algo-
rithms for LO and analyze the large-update and small-update versions of the primal-
dual interior point algorithm that are based on the parameterized kernel function (4.12)
with a logarithmic-exponential barier term. Another interesting choice is m dependent
with n, which minimizes the iteration complexity bound. In fact, if we take m =
log n, we obtain the best known complexity bound for large-update methods namely
O
(√

n log (n) log
(
n
ε

))
. This bound improves the so far obtained complexity results for

large-update methods based on a logarithmic kernel function given by El Ghami et al.
[5].
As a perspective, it would be interesting to study with time-dependent variable the Γ-
convergence of E-convex integral functionals. Also in linear programming it would be
interesting to search for a kernel function with a trigonometric barier term, primal-dual
interior point algorithms for LO, analyze the large-update and small-update versions of
the primal-dual interior point algorithm .
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