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Abstract

This work has reached this level by producing two journal papers and four conference papers.

The first journal paper is entitled, « On Codes over Fq +vFq +v2Fq », it appeared in Journal

of Applied Mathematics and Computing, 2017. In this paper we investigated linear codes with

complementary dual (LCD) codes and formally self-dual codes over the ring R = Fq+vFq+v2Fq,

where v3 = v, for q odd. We give conditions on the existence of LCD codes and present

construction of formally self-dual codes over R. Further, we give bounds on the minimum

distance of LCD codes over Fq and extend these to codes over R.

The second journal paper is entitled, « Zq(Zq + uZq)−Linear Skew Constacyclic Codes », it

appeared in Journal of Algebra Combinatorics Discrete Structures and Applications. In this

paper we study skew constacyclic codes over the ring ZqR, where R = Zq + uZq, q = ps for

a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZαqRβ.

Some structural properties of the skew polynomial ring R[x,Θ] are discussed, where Θ is an

automorphism of R. We describe the generator polynomials of skew constacyclic codes over

ZqR, also we determine their minimal spanning sets and their sizes. Further, by using the

Gray images of skew constacyclic codes over ZqR we obtained some new linear codes over Z4.

Finally, we have generalized these codes to double skew constacyclic codes over ZqR.

The third paper is entitled, « Formally Self-dual Codes over Ak », it was presented at CMA-

2014 (Tlemcen). In this paper we present several kinds of construction of formally self-dual

codes over the ring

Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.



The fourth paper is entitled, « LCD Codes over Fq +vFq +v2Fq », it was presented at CMA-

2016 (Batna). The purpose of this work is to investigate linear codes with complementary

dual(LCD) codes over the ring R = Fq + vFq + v2Fq, where v3 = v, for q odd.

The fifth paper is entitled, « Zq(Zq + vZq + . . .+ vm−1Zq)− Linear Cyclic, Skew Cyclic and

Constacyclic Codes », it was presented at ECMI-SciTech’2017 (Constantine). In this paper,

we study cyclic, skew cyclic and constacyclic codes over the ring Zq(Zq + vZq + . . .+ vm−1Zq),

where q = ps, p is a prime and vm = v. We give the definition of these codes as subsets of the

ring ZαqRβ.

The sixth paper is entitled, « Double Skew (1+u)−Constacyclic Codes over Z4(Z4 +uZ4) »,

it was presneted at IWCA-2019 (Oran). In this paper, we study skew constacyclic codes over

the ring Z4R where R = Z4 + uZ4, for u2 = 0. We give the definition of these codes as subsets

of the ring Zα4Rβ. Further, we have generalized these codes to double skew (1+u)−constacyclic

codes over Z4R.

Keywords: Formally self-dual codes, LCD codes, optimal codes, Gray map, automorphism,

skew constacyclic codes, skew polynomial rings, double skew constacyclic codes.



Résumé

Ce travail a atteint ce niveau en produisant deux papiers et quatre papiers de conférence.

Le premier papier est intitulé, « On Codes over Fq + vFq + v2Fq », Journal of Applied

Mathematics and Computing, 2017. Dans lequel, nous traitons les codes LCD est les codes

formellement auto-duaux sur Fq + vFq + v2Fq, où v3 = v, pour q impair. Nous avons donné

des conditions sur l´existence des codes LCD et nous présentons la construction de codes

formellement auto-duaux sur R. Nous donnons des borne sur la distance minimale des codes

LCD sur Fq et nous avons étendu ces résultats aux codes sur R.

Le deuxième papier est intitulé « Zq(Zq+uZq)−Linear Skew Constacyclic Codes », Journal of

Algebra Combinatorics Discrete Structures and Applications. Dans lequel, nous avons étudions

les codes tordus constacycliques sur l´anneau ZqR où R = Zq + uZq, q = ps pour un premier p

et u2 = 0. Nous donnons la définition de ces codes comme sous-ensembles de l´anneau ZαqRβ.

Certaines propriétés structurales d´anneau polynomial tordus R[x,Θ] ont été discutées, où Θ

est un automorphisme de R. Nous présenterons les polynomes générateurs de codes tordus

constacycliques sur ZqR, nous déterminons leurs ensembles de enjambant minimales et leurs

dimension. De plus, en utilisant les images Gray de codes tordus constacycliques sur ZqR, nous

avons obtenu de nouveaux codes linéaires sur Z4. finalement, nous avons généralisé ces codes

pour doubler les codes tordus constacycliques sur ZqR.

Le troisième travail que nous avons fait est intitulé, « Formally Self-dual Codes over Ak-

», était présenté à la conférence CMA-2014 (Tlemcen). Dans ce travail, nous présentons Les

différentes constructions des codes formellement auto-duaux sur l´anneau

Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.



Le quatrième travail est intitulé, « LCD Codes over Fq+vFq+v2Fq », présenté à la conférence

CMA-2016 (Batna). Dans ce travail, nous étudions les codes (LCD) sur l´anneau R = Fq +

vFq + v2Fq, où v3 = v, pour q impair.

Le cinquième travail est intitulé, « Zq(Zq + vZq + . . .+ vm−1Zq)−Linear Cyclic, Skew Cyclic

and Constacyclic Codes », présenté à la conférence ECMI-SciTech’2017 (Constantine). Dans

ce travail, nous étudions les codes cycliques, les codes tordus et les codes constacycliques sur

l´anneau Zq(Zq + vZq + . . . + vm−1Zq), où q = ps, p est un premier et vm = v. Nous donnons

la définition de ces codes comme sous-ensembles de l´anneau ZαqRβ.

Le sixième article était intitulé, ” Double Skew (1 + u)−Constacyclic Codes over Z4(Z4 +

uZ4)”, IWCA-2019 (Oran). Dans ce travail, nous avons étudié les codes tordus constacyclicques

sur l´anneau Z4R, où R = Z4 + uZ4, pour u2 = 0. Nous avons donné la définition de ces codes

comme des sous-ensembles de l´anneau Zα4Rβ. De plus, nous avons généralisé ces codes pour

les codes doublement tordus (1 + u)−constacycliques sur Z4R.

Mots Clés:

Code formellement auto-dual, code LCD, optimal code, Gray map, automorphism, code tordus

constacycliques , anneau polynomial tordus , code doublement tordus constacycliques.



Notation

Fq =: finite field with q elements.

R =: finite rings.

wL =: Lee weight.

LCD codes =: Linear codes with complementary dual.

Wn,k =: Weighing matrix.

Θ(.) =: An automorphism.

R[x,Θ] =: Skew polynomial ring.

Z(R[x,Θ]) =: Center of the ring R[x,Θ].
R[x]
〈xn−1〉 =: The quotient ring.
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Introduction

The area of error-correcting codes allows the receiver to detect and correct error. Error-

correcting codes are often based on algebra, arithmetic, geometry and the list is not exhaustive.

We are on the bounds between computer science and mathematics.

The linear codes over finite rings are the subject of this thesis. Recently, this type of codes

raised a great interest for their new role in algebraic coding theory and for their successful

application in combined coding and modulation [?].

Linear codes with complementary dual (LCD) codes over finite fields were first studied by

Massey [?], more recently by Carlet and Guilley [?] and Dougherty et al. [?]. LCD codes can

be used to protect information against side channel attacks [?]. Formally self-dual codes are

an important because they have weight enumerators that are invariant under the MacWilliams

transform, and can have better parameters than self-dual codes [?].

Cyclic codes and their various generalizations such as constacyclic codes and quasi-cyclic

(QC) codes have played a key role in this quest. One particularly useful generalization of cyclic

codes has been the class of quasi-twisted (QT) codes that produced hundreds of new codes with

best known parameters [?,?,?,?,?,?,?] recorded in the database [?]. Yet another generalization

of cyclic codes, called skew cyclic codes, were introduced in [?] and they have been the subject

of an increasing research activity over the past decade. This is due to their algebraic structure

and their applications to DNA codes and quantum codes [?,?,?]. Skew constacyclic codes over

various rings have been studied in [?,?,?,?,?,?,?,?,?,?] as a generalization of skew cyclic codes

over finite fields.

Recently, P. Li et al. [?] gave the structure of (1+u)-constacyclic codes over the ring Z2Z2[u]

i



Introduction ii

and Aydogdu et al. [?] studied Z2Z2[u]-cyclic and constacyclic codes. Further, Jitman et al.

[?] considered the structure of skew constacyclic codes over finite chain rings. More recently

A. Sharma and M. Bhaintwal studied skew cyclic codes over ring Z4 + uZ4, where u2 = 0.

This thesis is organized as follows.

• In the first chapter we includes basic concepts and definitions of classical coding theory

over finite rings, in particular, we give the preliminaries about linear codes over Fq +

vFq + v2Fq and linear codes over Zq + uZq.

• In the second chapter, we present several kinds of construction of formally self-dual codes

over Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.

• In the third chapter consider LCD codes over R. Necessary and sufficient conditions

and the existence of LCD codes over R are given and LCD codes are constructed from

weighting matrices. Tables of LCD codes up length 40 are given from skew matrices and

conferences matrices over the fields Fp with p a prime number such that 3 < p ≤ 23.

We present three constructions of formally self-dual over R. Further, LCD codes are

constructed which are also formally self-dual codes. We give bounds on the minimum

distance on LCD codes over the fields Fq, hence we translate these bounds to the minimum

distance of the free LCD codes over R.

• In the fourth chapter we give some results on skew constacyclic codes over the ring R. We

study the algebraic structure of skew constacyclic codes over the ring ZqR, we includes

the work on the generator polynomials of these codes, their minimal spanning sets and

their sizes. Then we determine the Gray images of skew constacyclic codes over R and

ZqR. These codes are then further generalized to double skew constacyclic codes in the

next section. Finally, we use the Gray images of skew constacyclic codes over ZqR to

obtain some new linear codes over Z4.

• In the fifth chapter we give some basic results about the ring R = Zq+uZq, where q = ps,

p is a prime and u2 = 0 and linear codes over ZqR, we construct the non-commutative
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ring R[x,Θ], where the structure of this ring depends on the elements of the commutative

ring R and an automorphism Θ of R. We give some results on skew constacyclic codes

over the ring R. Then we determine the Gray images of skew constacyclic codes over R

and ZqR. These codes are then further generalized to double skew constacyclic codes in

the next section. Finally, we use the Gray images of skew constacyclic codes over ZqR to

obtain some new linear codes over Z4.

• In the fifth chapter, we introduce and study the algebraic structure of cyclic, constacyclic

codes and their duals over the <−module Zαq<β, where < = Zq + uZq + . . . + um−1Zq
and um = 0. Moreover, we investigate the structure properties of cyclic polynomial ring

Zq<[x] and the set Zq[x]/〈xα−1〉×<[x]/〈xβ−1〉 and constacyclic polynomial ring Zq<[x]

and the set Zq[x]/〈xα − 1〉 × <[x]/〈xβ − λ〉.



Chapter 1

Preliminaries

1.1 Notions in ring theory

The class of finite rings is interesting as the first natural class of rings which allows to bring

forth problems and conjectures, check validity and demonstrate the efficiency of results in general

theory of rings.

In the last 20–30 years increased interest in possible application of finite rings, different from

the fields, in coding theory and cryptography [?]. We have the following notions and result

given in [?].

A ring is a set R with an operation called addition:

for any a, b ∈ R, there is an element a+ b ∈ R,

and another operation called multiplication:

for any a, b ∈ R, there is an element ab ∈ R,

that satisfy the following conditions:

1. Addition is associative, i.e;

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

1
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2. There is an element of R, called the zero element and written 0, which has the property

that

a+ 0 = 0 + a = a for all a, b ∈ R.

3. Every element a ∈ R has a negative, an element of R written −a, which satisfies

a+ (−a) = (−a) + a = 0.

4. Addition is commutative, i.e;

a+ b = b+ a for all a, b ∈ R.

5. Multiplication is associative, i.e;

(ab)c = a(bc) for all a, b, c ∈ R.

6. Multiplication is distributive over addition, i.e;

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

Let’s start with some useful definitions:

Definition 1.1. Let a, b be in a ring R.

1. If a 6= 0 and b 6= 0 such that ab = 0 or ba = 0, therefore we say that a and b are zero

divisors.

2. If ab = ba = 1, therefore we say that a is a unit or that a is invertible.

Definition 1.2. A ring R is integral if and only if R 6= {0} and is no zero divisor, in other

words

ab = 0⇒ (a = 0 or b = 0).

Definition 1.3. A field is a commutative ring in which every non-zero element is invertible.
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Example 1.1. • Z is an integral domain but not a field.

• The set

Z [i] = {a+ bi, a, b ∈ Z} ,

is an integral domain, but it is not a field.

Definition 1.4. Let R be a ring. The characteristic of R denoted by char(R), is the smallest

non-negative n such that

n · 1R = 1R + 1R + . . .+ 1R︸ ︷︷ ︸
n times

= 0.

If no such n exists then we define the char(R) = 0.

Example 1.2. • The characteristic of Q, R, and C is 0.

• The characteristic of Zp is p, for any prime p.

1.1.1 Ring homomorphism

Definition 1.5. A ring homomorphism Φ : R −→ R′ is an application that preserves both

operations of R, so for all a, b ∈ R:

1. Φ(a+ b) = Φ(a) + Φ(b)

2. Φ(ab) = Φ(a)Φ(b)

3. Φ(1R) = 1R′ .

Definition 1.6. Let R and R′ be rings and let Φ : R −→ R′ be a ring homomorphism. Then

Φ is a ring isomorphism if and only if Φ is a bijection.
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1.1.2 Ideal and quotient rings

Definition 1.7. Let I be a subset of a ring R. Then an additive subgroup of R having the

property that

rx ∈ I for r ∈ R, x ∈ I,

is called a left ideal of R.

On the other hand we have

xr ∈ I for r ∈ R, x ∈ I,

is called a right ideal of R. If an ideal happens to be both a right and a left ideal, then we call

it an ideal (or a two-sided ideals) of R.

Example 1.3. • nZ = {kn; k ∈ Z} for any n ∈ Z is an ideal in Z.

• In Z6, the set I = {2k ∈ Z6; k ∈ Z} is an ideal.

Definition 1.8. An ideal I in R is said proper if I 6= R.

Definition 1.9. Let R be a ring, and let I be an ideal. We define the quotient ring as :

R/I = {r + I : r ∈ R}

1.1.3 Maximal and prime ideals

Definition 1.10. Let R be a ring and I an ideal of R. The ideal I is a prime ideal of R for

any a, b ∈ R, we have that

ab ∈ I ⇒ a ∈ I or b ∈ I

Example 1.4. The prime ideals of Z are {0} and the nZ for n prime.

Theorem 1.1. If I is an ideal in the commutative ring R, then I is a prime ideal if and only

if R/I is an integral domain.

Example 1.5. Z/6Z is not integral domain, since 6 is not prime.

Corollary 1.1. In a commutative ring, a maximal ideal is prime.
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Theorem 1.2. Let R be a unitary commutative ring and let M be an ideal of R. Then the

factor ring R/M is a field if and only if M is a maximal ideal of R

Lemma 1.1. (Zorn’s Lemma ) Every inductively ordered set has a maximal element.

Corollary 1.2. Every non-invertible element of R is contained in a maximal ideal.

Definition 1.11. (Principal ideals ) An ideal I of a ring R is called principal if there is an

element a ∈ I such that I = 〈a〉, where

I = 〈a〉 = {ar : r ∈ R}.

In other words, the ideal is generated by the element a.

Example 1.6. 2Z = {0,±2,±4, . . . , } is a principal ideal and is generated by 2.

Definition 1.12. (local ring ) The ring R is local if and only if it has a unique maximal

ideal.

1.1.4 Finite chain ring

Definition 1.13. A finite commutative ring with identity 1 6= 0 is called a finite chain ring if

its ideals are linearly ordered by inclusion.

A finite chain ring is also a principal ideal ring. If 〈γ〉 is the maximal ideal of the finite chain

ring R, then 〈γ〉 is nilpotent with nilpotency index some integer e. The ideals of R form the

following chain

0 = 〈γe〉 ( 〈γe−1〉 ( . . . ( 〈γ〉 ( R.

The nilradical of R is 〈γ〉.

Hence all the all the elements of 〈γ〉 are nilpotent. Then the elements of R/〈γ〉 are units. Since

〈γ〉 is a maximal ideal, the residue ring R/〈γ〉 is a field which we denote by K.

Consider the surjective ring morphism (−):

− : R → K

a 7→ ā = a mod γ
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|K| = q = pr for a certain integer r, then

|R| = |K| · |〈γ〉| = |K| · |K|e−1 = |K|e = per.

1.1.5 Module

Let R be a commutative ring with unity.

Definition 1.14. An R−module is an abelian group (M,+) together with an action of R, i.e

a map
R×M → M

(r,m) 7→ rm

satisfying the following conditions:

1. r(m+ n) = rm+ rn for all r ∈ R,m, n ∈M.

2. (r + s)m = rm+ sm for all r, s ∈ R,m ∈M .

3. (rs)m = r(sm) for all r, s ∈ R,m ∈M.

4. For all m ∈M one has 1m = m.

If the ring R is a field K, an R-module is by definition exactly the same as an K-vector

space.

Definition 1.15. Let M be an R−module. A subset N ⊆M is said to be a submodule of M if:

1. N is a subgroup of (M,+).

2. For all r ∈ R, and for all m ∈ N one has rm ∈ N .

1.1.6 Free module

Definition 1.16. Let M be an R−module and let subset N ⊆M . Then
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• N is linearly independent, that is

r1x1 + r2x2 + . . .+ rnxn = 0⇒ r1 = r2 = . . . = rn = 0,

for ri ∈ R and distinct x1, x2, . . . , xn ∈ N.

• N spans M if every m ∈M can be written as

m = r1x1 + r2x2 + . . .+ rnxn,

where r1, r2, . . . , rn ∈ R and x1, x2, . . . , xn ∈ N.

• N is a basis of M if M is linearly independent and N spans M.

Definition 1.17. Let N be a subset of an R-module M . If M has a nonempty basis N , then

M is a free R-module on the set N .

Example 1.7. 1. R-module R has the base {1}. Then R is a free R−module.

2. The vector space Fn over a field F is a free F -module.

Proposition 1.3. If M is a finitely generated free R−module, then the cardinality of any basis

of M is finite. Furthermore, any two bases have the same cardinality.

Definition 1.18. Let M be a finitely generated free R-module. Then the cardinality of any

basis of M is called the rank of the free module M.

1.1.7 Frobenius rings

For algebraic coding theory, the most important class of ring is the class of Frobenius ring [?].

One of the most sinificant implications

Definition 1.19. If R and R′ are two rings, then an R-R′-bimodule is an abelian group (M,+)

such that:

1. If M is a left R-module and a right R′-module.
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2. For all r ∈ R, r′ ∈ R′ and m ∈M we have:

(rm)r′ = r(mr′).

Let R be a unitary ring, the group characters of the additive group R is noted by R̂ =

HomZ(R,C×). This group has a structure of an R−R−bimodule defined by:

χr(x) = χ(rx),

for all r, x ∈ R, and χ ∈ R̂.

Definition 1.20. A finite ring R is called a Frobenius ring if RR̂ =R R.

We can see that if R is a finite Frobenius ring, then R and R̂ are isomorphic too.

1.1.8 Chinese remainder theorem

Let R be a commutative ring, and let I1, I1, . . . , In be ideals in R. The ideal I1 + I2 + . . . + In

is the ideal formed of sums a1 + a2 + . . .+ an, where ai ∈ R for i = 1, 2, . . . , n.

Definition 1.21. 1. We say that I1, I2, . . . , In are foreign if we have I1 + I2 + . . .+ In = R.

2. We say that I1, I2, . . . , In are foreign in twos if Ii and Ij for all i 6= j.

Theorem 1.4. Let I1, I1, . . . , In be ideals in R, such that

Ii + Ij = R, i 6= j.

Then the morphism of ring

ϕ : R→ R/I1 ⊕R/I2 ⊕ . . .⊕R/In

conclude isomorphism ring

R/I1 ∩ I2 ∩ . . . ∩ In → ⊕ni=0R/Ii
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1.1.9 Polynomial rings

Let R be a commutative ring with unity. The ring of polynomials over R is the ring R[x]. It

defined to be the set of all formal sums

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

where ai ∈ R are called the coefficients of f .

For two polynomials f(x) = ∑
i
aixi and g(x) = ∑

i
bixi

• their sum (f + g)(x) is defined to be the polynomial

∑
i

(ai + bi)xi.

• their product (fg)(x) is the polynomial

(
∑
i

aixi)(
∑
i

aixi) = (
∑
i

ckxk),

where ck = ∑
k=i+j

aibi.

Definition 1.22. Let R be an integral domain. Then the units in R[x] are precisely the units

in R.

Theorem 1.5. (Division Algorithm) Let F be a field, and let f, g ∈ F[x], where g(x) 6= 0.

There

f(x) = g(x)q(x) + r(x),

where f, g ∈ F[x], with r(x) = 0 or deg r(x) < deg r(x).

1.2 Linear codes over finite rings

Definition 1.23. Let R be a ring. A code over R of length n is subset C of Rn. If C is an

R−submodule of Rn, then C is linear.
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The vectors of C are called the words of the code C.

Example 1.8. Let C1 be a code over Z3
4 such as

C1 = {000, 121, 202, 323},

then C1 is linear because:

121 + 202 = 323 ∈ C1

121 + 323 = 000 ∈ C1

202 + 323 = 121 ∈ C1

Let C2 be a code over Z4 such as

C2 = {000, 011, 203}

is non-linear because:

011 and 203 ∈ C1 but 011 + 203 is not in C2.

1.3 The parameters of a code defined over ring R

We define over Rn a metric, called Hamming distance denoted by dH(x, y) between two

vector x, y ∈ Rn is the number of coordinates which have different entries.

dH(x, y) =| {i : xi 6= yi} | .

The Hamming weight a vector x is the number of its nonzero entries and is denoted by

wH(x).

The minimum distance denoted by dmin(C) of a code C defined over R is the smallest

Hamming distance between any two code words of the code

dmin(C) = {min dH(x, y)|x, y ∈ C}.

The minimum weight is the smallest of the weights of a non-zero code words. That is

wmin(x) = {min wH(x)|x ∈ C}.

Lemma 1.2. Let C be a linear code, then dmin(C) = wmin(C).
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1.4 Codes over some rings

1.4.1 Linear codes over the ring Fq + vFq + v2Fq

In this subsection, we present some basic results on linear codes over the ring R = Fq + vFq +

v2Fq, where v3 = v and q odd [?, ?]. The ring R is equivalent to the ring Fq [v]
〈v3−v〉 . This shows

that R is a finite commutative, principal ring with the following non-trivial maximal ideals

〈v〉, 〈1− v〉, 〈1 + v〉.

Hence by the Chinese remainder theorem we have

R = R/〈v〉 ⊕R/〈1− v〉 ⊕R/〈1 + v〉. (1.1)

It is convenient to write the decomposition given in (??) using orthogonal idempotents R which

is given by

R = η1R⊕ η2R⊕ η3R = η1Fq ⊕ η2Fq ⊕ η3Fq, (1.2)

where η1 = 1− v2, η2 = v+v2

2 , η3 = v2−v
2 .

Each element x of R can be expressed uniquely as

x = a0 + va1 + v2a2,

where ai ∈ Fq, i = 0, 1, 2.

A linear code C of length n over R is an R-submodule of Rn. An element of C is called a

codeword of C. A generator matrix of C is a matrix whose rows generate C. The Hamming

weight wH(c) of a codeword c is the number of nonzero components in c. The Euclidean inner

product is

〈x, y〉 = x0y0 + x1y1 + . . .+ xn−1yn−1,

where x, y ∈ Rn. The dual code C⊥ of C with respect to the Euclidean inner product is defined

as

C⊥ = {x ∈ Rn; 〈x, y〉 = 0,∀y ∈ C}.
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A code C is self-dual if C = C⊥ and C is self-orthogonal if C ⊆ C⊥.

For a linear C code of length n over R, define

C1 =
{
a ∈ Fnq ; ∃b, c ∈ Fnq ; η1a+ η2b+ η3c ∈ C

}
,

C2 =
{
b ∈ Fnq ; ∃a, c ∈ Fnq ; η1a+ η2b+ η3c ∈ C

}
,

C3 =
{
c ∈ Fnq ; ∃a, b ∈ Fnq ; η1a+ η2b+ η3c ∈ C

}
.

It is clear that C1, C2 and C3 are linear codes of length n over Fq. A direct consequence of the

ring decomposition of R in (??) is that a linear code C over R can be uniquely expressed as

C = η1C1 ⊕ η2C2 ⊕ η3C3. (1.3)

Moreover, from (??) and the definition of the dual code we have that

C⊥ = η1C
⊥
1 ⊕ η2C

⊥
2 ⊕ η3C

⊥
3 . (1.4)

Further, C is self-dual if and only if C1, C2, and C3 are self-dual over Fq. If G1, G2 and G3 are

generator matrices of C1, C2 and C3, respectively, then

G =


η1G1

η2G2

η3G3

 , (1.5)

is a generator matrix of C. Often when working with codes over rings, an image to the

underlying field is employed. For the ring R considered a Gray map is defined as follows.

Definition 1.24. The Gray map Ψ from Rn to F3n
q is defined by

Ψ : Rn → F3n
q

(r0, r1, . . . , rn−1) 7→ (a0, a0 + b0 + c0, a0 − b0 + c0, . . . , an−1 + bn−1 + cn−1, an−1 − bn−1 + cn−1),

where ri = ai + vbi + v2ci, i = 0, 1, . . . , n− 1.

For r = a+ vb+ v2c in R, the Lee weight of r is defined as

wL(a+ vb+ v2c) = wH(a, a+ b+ c, a− b+ c),
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where wH denotes the Hamming weight of v over Fq. Let dH denotes the minimum Hamming

distance of a code C. For a codeword c = (c0, c1, . . . , cn−1), the Lee weight is defined as wL(c) =
n−1∑
i=0

wL(ci) and the Lee distance between codewords c and c′ is defined as dL(c, c′) = wL(c− c′).

The minimum Lee distance for a code C is then dL(C) = min dL(c, c′), c 6= c′, ∀c, c′ ∈ C.

Definition 1.25. A linear code C of length n over R and minimum Lee distance dL is called

an [n, |C|, d]R code. Further if it is with minimum Hamming distance dH , then it is denoted

[n, |C|, dH ]R. If C has minimum Lee distance dL and is free R− submodule that is isomorphic as

a module to Rk, then the integer k is called the rank of C and the code is denoted as [n, k, dL]R.

Proposition 1.6. [?] Let C be an [n, |C|, dL]R code. Then Ψ(C) is a [3n, k, d = dL] linear code

over Fq. Further, if C⊥ is the dual of C, then Ψ (C)⊥ = Ψ
(
C⊥

)
.

Remark 1.1. If there exists an [n, k, dH ] code C over Fq, then there exists a [3n, k, dH ]R code

C = η1C ⊕ η2C ⊕ η3C.

Lemma 1.3. If C is a linear code of length n over R with generator matrix G, then

Ψ(G) =


Ψ(η1G1)

Ψ(η2G2)

Ψ(η3G3)

 =


G1 0 0

0 G2 0

0 0 G3

 , (1.6)

and dH(Ψ(C)) = min{dH(C1), dH(C2), dH(C3)}.

Cyclic codes over Fq + vFq + v2Fq

We now give some useful results on cyclic codes over R. A code C is said to be cyclic if it

satisfies

(cn−1, c0, . . . , cn−2) ∈ C, whenever (c0, c1, . . . , cn−1) ∈ C.

It is well known that cyclic codes of length n over R can be considered ideals in the quotient

ring R[x]
〈xn−1〉 via the following R-module isomorphism

Rn → R [x] /〈xn − 1〉

(c0, c1, . . . , cn−1) 7→ c0 + c1x+ . . .+ cn−1x
n−1
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Definition 1.26. The reciprocal of the polynomial h(x) = h0 + hxx+ . . .+ hkx
k is defined as

h∗(x) = xdeg(h(x)h(x−1).

If h(x) = h∗(x), then the polynomial h(x) is called self-reciprocal.

Proposition 1.7. [?] Let C be a cyclic code of length n over R. Then there exist polynomials

fi(x) which are divisors of xn − 1 in Fq[x] such that C = 〈η1f1(x), η2f2(x), η3f3(x)〉 and |C| =

q3n−deg(f1(x)+f2(x)+f3(x)). Further

C⊥ = 〈η1h
∗
1(x), η2h

∗
2(x), η3h

∗
3〉,

where hi(x) ∈ Fq[x] such that xn − 1 = f1(x)h1(x) = f2(x)h2(x) = f3(x)h3(x).

Definition 1.27. Let C be a linear code of length n over Fq and (c0, c1, . . . , cn−1) = (c1|c2| . . . |cl)

be a codeword in C divided into l equal parts of length m where n = ml. If ϕl = (σ(c1)|σ(c2)| . . . |σ(cl)) ∈

C, where ϕ is the usual cyclic shift of C, then the linear code C which is permutation equivalent

to C is called a quasi-cyclic code of index l.

Proposition 1.8. If C is a cyclic code of length n over R, then Ψ(C) is a 3-quasi cyclic code

of length 3n over Fq.

Proof. The result follows from Definition ?? and the definition of the Gray map Ψ.

Corollary 1.3. There is no cyclic self-dual cyclic code of length n over R.

Proof. We know that C = η1C1 ⊕ η2C2 ⊕ η3C3. From [?, Theorem 1] we have that C1, C2

and C3 are self-dual cyclic code over Fq if and only if q is power of 2 and n is even. Since we

assumed that q is odd, the result follows.

1.4.2 Linear codes over the ring Zq + uZq

Consider the ring R = Zq + uZq, where q = ps, p is a prime and u2 = 0. The ring R is

isomorphic to the quotient ring Zq[u]/ 〈u2〉. The ring R is not a chain ring, whereas it is a

local ring with the maximal ideal 〈u, p〉. But R is not principal since the ideal 〈p, u〉 can not
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be generated by any single element of this ideal [?]. Each element r of R can be expressed

uniquely as

r = a+ ub, where a, b ∈ Zq.

The ideals of R are of the following forms [?]

1. 〈pi〉 for 0 ≤ i ≤ s,

2.
〈
pku

〉
for 0 ≤ i ≤ s− 1,

3. 〈pj + u〉 for 1 ≤ i ≤ s− 1,

4. 〈pj, u〉 for 1 ≤ i ≤ s− 1.

Lemma 1.4. Let R = Zq + uZq, where Zq is a subring of R. Then an element λ ∈ R is unit

in Zq if and only if λ is unit in R.

Proof. Assume that λ = α is unit in R where α ∈ Zq. Then there exists an element β = β1 ∈ R

such that λ.β = 1 so α.β1 = 1 which implies that α 6= 0, so α is unit in Zq. Conversely, suppose

that α is unit in Zq and we will prove that λ is unit in R. then, let λ−1 = α−1. Since α is unit

in Zq then αα−1 = 1, thus λλ−1 = 1. This implies that λ is unit in R.

For a linear code Cβ of length β over R, its torsion Tor(Cβ) and residue Res(Cβ) codes are

codes over Zq, defined as follows

Tor(Cβ) = {b ∈ Zβq : ub ∈ Cβ}

and

Res(Cβ) = {a ∈ Zβq : a+ ub ∈ Cβ for some b ∈ Zβq }.

Definition 1.28. A linear code C
β

of length β over the ring Zq + uZq is Zq + uZq−submodule

of (Zq + uZq)β.
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The dual of linear codes over Zq + uZq

We introduce an inner product on (Zq + uZq)β. Further, the Euclidean inner product defined

by

〈v′, w′〉 =
β−1∑
i=0

v′iw
′
i,

for v′ = (v′0, v′1, . . . , v′β−1) and w′ = (w′0, w′1, . . . , w′β−1) in Rβ.

Definition 1.29. Let Cβ be a linear code over R of length β. then we define the dual of Cβ as

C⊥β = {v′ ∈ Rn; 〈v′, w′〉 = 0,∀w′ ∈ C}.

Note that from the definition of the Euclidean inner product, C⊥ is also a linear code over

R of length β.



Chapter 2

Formally self-dual codes over Ak

Binary formally self-dual codes have been extensively studied. For results on these codes, we

refer the reader to [?,?]. A code is called isodual if C is equivalent to C⊥, and is called formally

self-dual if C and C⊥ have the same weight enumerator. In this chapter we present several

kinds of construction formally self-dual codes over Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.

Apart of this chapter already appeared in [?].

2.1 Linear codes over the ring Ak

We begin by defining the finite commutative ring Ak and codes over these ring. The following

results are analogous to the ones obtained in [?], [?], [?] for the ring Ak.

The rings are defined as follows.

For integers k > 1, let Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉 . For example

• For k = 1, A1 = F2 [v1] / 〈v2
1 = v1〉 .

• For k = 2, A2 = F2 [v1, v2] / 〈v2
1 = v1, v1v2 = v2v1〉 .

Lemma 2.1. The ring Ak has characteristic 2 and cardinality 22k . The only unit in the ring

Ak is 1.

17
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The ring Ak is not local ring with maximal ideal 〈w1, . . . , wn〉, where wi ∈ {vi, 1 + vi} of

cardinality 22k−1.

2.1.1 Gray map

From [?], [?] we define the Gray map is deductively extending it from the Gray map on Ak as

follows:

• for k = 1 the Gray map is defined as

φ1 : A1 → F2
2

a+ bv1 7→ φ1(a+ bv1) = (a, a+ b)

For A1 this is realized as

0→ 00

1→ 11

v → 01

1 + v → 10.

• We extend this map inductively as follows. For k ≥ 2 the Gray map is defined as

φk : Ak → A2
k−1

α + βvk 7→ φk(α + βvk) = (α, α + β),
where α, β ∈ Ak−1

Then define

Φk : Ak → F2k
2

by

Φ1(γ) = φ1(γ),

Φ2(γ) = φ1(φ2(γ))

and

Φk(γ) = φ1(φ2(. . . (φk−2(φk−1(γ)) . . .).
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2.1.2 Dual codes over Ak

We begin with the following definitions. In the space Ank , with w, v ∈ Ank , we attach the

standard Euclidean inner-product:

v.w =
∑

viwi,

and define

C⊥ = {v; v.w = 0 for all w ∈ C}.

A code is called self-dual if C = C⊥. It is called isodual if C is equivalent to C⊥.

The Hamming weight enumerator wtC(x, y), define by

wtC(x, y) =
∑
v∈C

xn−wt(v)ywt(v),

where wt (v) is the number of non-zero coordinates of v. The code C is called formally self-dual

if wC (x, y) = wC⊥(x, y).

Since the ring Ak is a Frobenius ring, we have

| C || C⊥ |=| Ank | .

2.2 Different constructions of formally self-dual codes

over Ak

In this section, we present three constructions of formally self-dual codes over the finite ring

Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.

Theorem 2.1. [?, Theorem 1] If C is a formally self-dual code over Ak, then the image under

the corresponding Gray map is a binary formally self-dual code.

The proof of the next theorems is the same as that for [?, Theorem 3.1] given over Rk.

Theorem 2.2. Let M be an n × n matrix over Ak such M t = M. Then the code generated

G = [In |M ] is an isodual code and hence a formally self-dual code of length 2n .
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Proof. Let the matrix

G = [In |M ]

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 . . . M1n

M21 M22 . . . M2n
. . .

Mn1 Mn2 . . . Mnn


.

This is a matrix of type 2n× n. Consider the following matrix

G′ =



M11 M21 . . . Mn1

M12 M22 . . . Mn2
. . .

M1n M2n . . . Mnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In


.

G and G′ generate codes with free rank k × n. We need to show that C ′ = C⊥. Let u the

i− th row of G and j− th row of G′. Since Ak has characteristic 2 and M t = M , then we have

〈u, v〉k = Mij +Mji = 0. There for C ′ = C⊥ and C is equivalent to C⊥.

Example 2.1. Let k = 1 and n = 2, and let the matrix

M =

 1 v

v 1

 .
We have M = M t. Then
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G =

 1 0 1 v

0 1 v 1

 .

generates a formally self-dual code of length 4 over A1.

Example 2.2. Let k = 2 and n = 3 and let the matrix

M =


1 v1 1 + v1

v1 v2 v1v2

1 + v1 v1v2 1 + v1v2

 .

We have M = M t. Then

G =


1 0 0 1 v1 1 + v1

0 1 0 v1 v2 v1v2

0 0 1 1 + v1 v1v2 1 + v1v2


generates a formally self-dual code of length 6 over A2.

An n× n square matrix M is called circulant if it is in the following form

M =



M11 M12 M13 . . . M1n

M1n M11 M12 . . . M1n−1

M1n−1 M1n M11 . . . M1n−2
... ... ... ...

M12 M13 M14 . . . M11


.

Theorem 2.3. Let M be a circulant matrix over Ak of order n. Then G = [In |M ] generates

an isodual code and hence a formally self- dual code over Ak.
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Proof. Consider

M =



M11 M12 . . . M1n

M1n M11 . . . M1n−1
. . .

M12 M13 . . . M11



the circulant matrix over Ak of n× n. Let C be the code generated by

G = [In |M ]

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 . . . M1n

M1n M11 . . . M1n−1
. . .

M12 M13 . . . M11


of 2n× n. And C ′ generated by

G′ =



M11 M1n . . . M12

M12 M11 . . . M13
. . .

M1n M1n−1 . . . M11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In


of 2n × n. Let v be the i − th row of G, and let w be the j − th row of G′. Then 〈v, w〉k =

Mij +Mij = 0. Since the ring Ak has characteristic 2 and, therefore C ′ and C⊥ are orthogonal.

Since they both have rank n, then C ′ = C⊥. We show that C is equivalent to C ′. Let σ be

the permutation of rows such that after applying it to G′, the first column of σ(M t) is the

same as the first column of M. For every column of M is then equal to a column of σ(M t),
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for the matrix M is circulant. So that τ(σ(M t)) = M , when τ apply the necessary column

permutation. We apply another column permutation ρ so that σ(In) = In. We obtain that that

C and C ′ are equivalent and therefore C is formally self-dual.

As straight formal result from theorem and definition we obtain that, If C is a linear code

over Ak of length 2n, generated by [In |M ] , where M is a circulant matrix, then φk(C) is a

binary formally self-dual code of length 2k+1n.

Example 2.3. Consider v = (1, 1 + v1v2, v2, v1, v1 + v2) the first row of the matrix circulant

M =



1 1 + v1v2 v2 v1 v1 + v2

v1 + v2 1 1 + v1v2 v2 v1

v1 v1 + v2 1 1 + v1v2 v2

v2 v1 v1 + v2 1 1 + v1v2

1 + v1v2 v2 v1 v1 + v2 1



And let

G =


I5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 + v1v2 v2 v1 v1 + v2

v1 + v2 1 1 + v1v2 v2 v1

v1 v1 + v2 1 1 + v1v2 v2

v2 v1 v1 + v2 1 1 + v1v2

1 + v1v2 v2 v1 v1 + v2 1



the generator matrix of C. And let
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G′ =



1 v1 + v2 v1 v2 1 + v1v2

1 + v1v2 1 v1 + v2 v1 v2

v2 1 + v1v2 1 v1 + v2 v1

v1 v2 1 + v1v2 1 v1 + v2

v1 + v2 v1 v2 1 + v1v2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I5



the generator matrix of C ′. It is easy to see that G′ generates C⊥, and C is equivalent to

C ′ = C⊥ hence the codes are isodual.

Theorem 2.4. Let M be a circulant matrix over Ak of order n− 1. Then the matrix

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ω . . . ω

ω
... M

ω


,

where α, ω ∈ Ak, is generator matrix of a formally self-dual code over Ak.

Proof. Let

M =



M11 M12 . . . M1n−1

M1n−1 M11 . . . M1n−2
. . .

M12 M13 . . . M11


,
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a circulant matrix over Ak of order n− 1. We have

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ω . . . ω

ω M11 . . . M1n−1
. . .

ω M12 . . . M11


,

where α, ω ∈ Ak.

And let G′ be given as

G′ =



α ω . . . ω

ω M11 . . . M12
. . .

ω M1n−1 . . . M11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In



Let C = 〈G〉 and C ′ = 〈G′〉. Both C and C ′ are codes of free rank n. Let v be the first row

of G and w be the first row of G′. Then 〈u,w〉k = α + α = 0. Let v be the first row of G, and

let w be the j − th row of G′. We have 〈u,w〉k = ω + ω = 0. Let v be the i− th row of G, and

let w be the j − th row of G′. We have 〈u,w〉k = Mij +Mij = 0. Hence we have C ′ = C⊥. We

see that C and C ′ will have same weight enumerator. Hence C and C⊥ have the same weight

enumerators.

Example 2.4. Let n = 3, α = 1 + v1, w = 1 + v2 and

M =

 1 1 + v1v2

v1 + v2 1
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Then

G =


1 0 0 1 + v1 1 + v2 1 + v2

0 1 0 1 + v2 1 1 + v1v2

0 0 1 1 + v2 v1 + v2 1



generates a formally self dual code.



Chapter 3

On codes over Fq + vFq + v2Fq

In this chapter, we consider LCD and formally self-dual codes over the ring R = Fq+vFq+v2Fq,

where v3 = v and q is an odd prime power. We give conditions on the existence of LCD

codes over this ring. Further, several constructions of LCD codes are given, in particular from

weighing matrices. Constructions of formally self-dual codes over R are also presented. In

addition, bounds on the minimum distance of LCD codes over Fq are given and extended to

codes over R. LCD codes and formally self-dual codes are of practical as well as theoretical

interest. For example, LCD codes over Fq can easily be decoded [?], and this property also

applies to LCD codes over R because this ring can be seen as the direct product Fq × Fq × Fq.

Further, LCD codes can be used to obtain optimal entanglement-assisted quantum codes [?].

Apart of this chapter already appeared in [?].

3.1 LCD codes over R

A linear codes with complementary dual (LCD) code is defined as a linear code C whose dual

code C⊥ satisfies

C ∩ C⊥ = {0}.

LCD codes have been shown to provide an optimum linear coding solution [?].

For LCD codes over R, we have the following result.

27
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Theorem 3.1. A code C = η1C1⊕ η2C2⊕ η3C3 of length n over R is an LCD code if and only

if C1, C2 and C3 are LCD codes over Fq.

Proof. A linear code C = η1C1 ⊕ η2C2 ⊕ η3C3 has dual code C⊥ = η1C
⊥
1 ⊕ η2C

⊥
2 ⊕ η3C

⊥
3 . We

have that

C ∩ C⊥ = η1(C1 ∩ C⊥1 ) + η2(C2 ∩ C⊥2 ) + η3(C3 ∩ C⊥3 ).

Due to the direct sum we have

C ∩ C⊥ = {0}

if and only if

Ci ∩ C⊥i = {0},

for i = 1, 2, 3. Thus C is an LCD code.

Theorem 3.2. If C is an LCD code over Fq, then C = η1C ⊕ η2C ⊕ η3C is an LCD code over

R. If C is an LCD code of length n over R, then Ψ(C) is an LCD code of length 3n over Fq.

Proof. The first part is deduced from Theorem ??. From Proposition ?? we have that Ψ (C)⊥ =

Ψ(C⊥). Since Ψ is bijective and C ∩ C⊥ = {0}, the result follows.

We next give a necessary and sufficient condition on the existence of LCD codes over R.

First we require the following result due to Massey [?].

Proposition 3.3. If G is a generator matrix for an [n, k] linear code C over Fq, then C is an

LCD code if and only if the k × k matrix GGt is nonsingular.

Theorem 3.4. If G is a generator matrix for a linear code C over R, then C is an LCD code

if and only if GGt is nonsingular.

Proof. The generator matrix of C can be expressed in canonical form as

G =


η1G1

η2G2

η3G3

 . (3.1)
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Since the ηi are orthogonal idempotents, a simple calculation gives

GGt =


η1G1G

t
1 0 0

0 η2G2G
t
2 0

0 0 η3G3G
t
3.

 . (3.2)

From Proposition ?? a necessary and sufficient condition for a code over Fq with generator

matrix Gi to be LCD is that GiG
t
i be non singular. Hence the proof follows from the generator

matrix given in (??).

We now give conditions on the existence of cyclic LCD codes over R using the generator

polynomial. This is an extension of the following result due to Massey [?].

Lemma 3.1. Let C be a cyclic code over Fq generated by f(x), then C is LCD if and only if

f(x) is self-reciprocal.

Theorem 3.5. A cyclic code C = 〈η1f1(x), η2f2(x), η3f3(x)〉 is an LCD code over R if and

only if for all 1 ≤ i ≤ 3, fi(x) is a self-reciprocal polynomial.

Proof. The result follow from Proposition ?? and Lemma ??.

3.1.1 Existence of LCD codes over R

In this section, we show that the class of LCD codes are is an abundant class of codes over R.

3.1.2 LCD codes from Weighing Matrices

In [?], the authors constructed LCD codes from orthogonal matrices and left the existence

of LCD codes from other classes of combinatorial objects as an open problem. Thus, in this

section we construct LCD codes over Fq and R from weighing matrices.

We start with the following definition.
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Definition 3.1. A weighing matrix Wn,k of order n and weight k is an n× n (0, 1,−1)-matrix

such that WW t = kIn; k ≤ n. A weighing matrix Wn,n, respectively Wn,n−1, is called a

Hadamard matrix, respectively conference matrix. A matrix W is symmetric if W = W t. A

matrix W is skew-symmetric (or skew) if W = −W t.

Tables of weighing matrices are given in [?]. Weighing matrices have been used to construct

self-dual codes [?]. The following results show that it is also possible to construct LCD codes

from weighing matrices.

Proposition 3.6. Let Wn,k be a weighing matrix of order n and weight k. We have the following

results.

(i) let α be a nonzero element of Fq such that α2 + k 6= 0 mod q. Then the matrix

G = [αIn | Wn,k] (3.3)

generates an LCD [2n, n] code over Fq.

(ii) Let Wn,k be a skew weighing matrix of order n, and α and β nonzero elements of Fq such

that α2 + β2 + k 6= 0 mod q. Then the matrix

G = [αIn | βIn +Wn,k] (3.4)

generates a [2n, n] LCD code over Fq.

Proof. The result follows from Definition ?? and Proposition ??.

Hence from Remark ?? and Proposition ?? we have the following result.

Corollary 3.1. Under the condition of Proposition ?? the following matrix
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G =


η1G

η2G

η3G

 , (3.5)

is the generator matrices of a [2n, n] LCD code over R.

Example 3.1. Let q = 3, n = 6, and α = 2 so that α2 + 4 6= 0 mod 3. Then for the weighing

matrix W6,4 given by

W6,4 =



0 1 1 1 1 0

−1 0 0 1 −1 1

−1 0 0 −1 1 1

−1 −1 1 0 0 −1

−1 1 −1 0 0 −1

0 −1 −1 1 1 0


,

G = [2I | W6,4] generates a [12, 6, 5] LCD code over F3.

Next we show that if q is odd there always exists a suitable matrix to construct an LCD

codes.

Theorem 3.7. [?, Theorem 7.32] Assume q ≡ 3 mod 4, η be the quadratic character of Fq and

bij = η(j − i) for 1 6 i, j 6 q, i 6= j. Then we have a Hadamard matrix given by

H =



1 1 1 1 . . . 1

1 −1 b12 b13 . . . b1q

1 b21 −1 b23 . . . b2q

1 b31 b32 −1 . . . b3q
... ... ... ... ...

1 bq1 bq2 bq3 . . . −1


. (3.6)
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Corollary 3.2. For all nonzero α ∈ Fq such that q ≡ 3 mod 4, the code generated by

G = [αIq+1 | H] , (3.7)

where H is the Hadamard matrix of order q+1 given in (??), is an LCD code over Fq of length

2(q + 1).

Proof. If q ≡ 3 mod 4, then From [?, Lemma 3.3] α2 + 1 has no solution in Fq. The result then

follows from Proposition ?? and Theorem ??.

Example 3.2.

H4 =



1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1


.

Gives an [8, 4, 4] LCD code over F3. According to [?] this is an optimal code.

In [?] the authors constructed self-dual codes from conference matrices. We note that if

α2 + k = 0 has solution, the matrix [αIn | Wn,k] generates a self-dual code over Fq. Then exists

α′ 6= 0 such that α′2 + k 6= 0, from Proposition ?? [α′I | Wn,k] generates an LCD code with

the same parameters as the self-dual code. This result also holds for the minimum distance of

LCD codes generated by G = [α′I | βI + Wn,k]. It is easy to verify that whenever we have a

skew matrix Wn,k, we can construct a skew matrix W2n,2k+1 where

W2n,2k+1 =

 Wn,k −Wn,k − I

Wn,k + I Wn,k.

 (3.8)

The above results were used to construct the LCD codes over Fp, p prime, 3 < p ≤ 23, given

in Tables 1, 2, 3, and 4. It is worth noting that for many parameters a self-dual code cannot

be constructed from weighing matrices, whereas for the same parameters (except for the case

p = 3) it was always possible to construct LCD codes.
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Table 3.1: LCD codes from conference matrices with N = 8, 12 and 16 from Proposition ??

p α β d α d α β d

5 2 1 4 1 6 2 1 7

7 1 3 5 1 6 2 1 7

11 1 2 5 1 6 1 0 7

13 2 3 5 1 6 1 6 7

17 2 8 5 1 6 2 3 7

19 1 8 5 1 6 2 7 7

23 3 4 5 1 6 3 0 7

Table 3.2: LCD codes from conference matrices with N = 20, 24 and 28 from Proposition ??

p α d α β d α d

5 2 8 1 0 9 1 10

7 1 8 2 3 9 2 10

11 1 8 1 0 9 1 10

13 1 8 5 5 9 1 10

17 1 8 1 6 9 1 10

19 1 8 2 8 9 1 10

23 1 8 1 0 9 1 10
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Table 3.3: LCD codes from conference matrices with N = 32, 36 and 40 from Proposition ??

p α β d α d α β d

5 2 2 10 1 12 2 0 13

7 1 3 11 1 12 1 0 13

11 1 5 11 1 12 1 0 13

13 2 6 11 1 12 1 4 13

17 1 0 11 1 12 1 0 13

19 1 0 11 1 12 1 0 13

23 1 2 11 1 12 1 0 13

Table 3.4: LCD codes from the skew matrix W14,9 from Proposition ??

p α β d

5 2 0 8

7 2 2 10

11 1 3 10

13 2 4 11

17 1 2 11

19 2 3 11

23 2 6 11
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3.1.3 General construction of LCD codes

We start with the following lemma.

Lemma 3.2. If R = Fq + vFq + v2Fq with q = pr a power of an odd prime, then the following

hold:

(i) there exists α ∈ R such that α2 + 1 = 0 if q ≡ 1 mod 4,

(ii) there exist α, β ∈ R such that α2 + β2 + 1 = 0 if q ≡ 3 mod 4, and

(iii) for every q there exist α, β, γ, δ ∈ R such that α2 + β2 + γ2 + δ2 = 0 in R.

Proof. It is easy to show that if there exist solutions over Fq for cases (i)-(iii), then these

solutions also hold over R since Fq is a subring of R. Hence we only need show that these

solutions exist over Fq.

From [?, Lemma 3.3], if q ≡ 1 mod 4 then −1 is a square in Fq, which proves (i). From

[?, p. 281], if q ≡ 3 mod 4 then there exist α, β ∈ Fq such that α2 + β2 + 1 = 0, which proves

(ii). From [?, Theorem 370], we have that every prime is the sum of four squares, which proves

(iii).

The next result shows that it is always possible to construct LCD codes over R.

Theorem 3.8. If P is the generator matrix of a self-dual code over R, then the generator

matrix G = [I | P ] generates an LCD code over R. If G = [I | P ] is the generator matrix of a

linear code over R, then the following hold:

(i) If q ≡ 1 mod 4 and α2 + 1 = 0, then the code over R with generator matrix G′ =

[I | P | αP ] generates an LCD code over R.

(ii) If q ≡ 3 mod 4 and α, β ∈ Fq such that α2 + β2 + 1 = 0, then G′ = [I | P | αP | βP ]

generates an LCD code over R.

(iii) If R = Fq + vFq + v2Fq with q = pr, then G′ = [I | P | αP | βP | δP | γP ] such that

α2 + β2 + γ2 + δ2 = p generates an LCD code over R.

Proof. Part (i) is just a verification. The other parts follow from Lemma ??.
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3.2 Construction of formally self-dual codes over R

Recall that a code C is called formally self-dual if C and C⊥ have the same weight enumerator.

Codes which are equivalent to their dual are called isodual codes, and isodual codes are also

formally self-dual. we present three constructions of formally self-dual codes over R. First, we

give the following result which links formally self-dual codes over R to formally self-dual codes

over Fq.

Theorem 3.9. If C is formally self-dual codes over R, then the image under the corresponding

Gray map is formally self-dual code.

Proof. The result follows from Theorem ?? and the fact that the Gray map is an isometry.

An n× n square matrix M is called λ-circulant if it is in the following form

M =



M11 M12 M13 . . . M1n

λM1n M11 M12 . . . M1n−1

λM1n−1 λM1n M11 . . . M1n−2
... ... ... ...

λM12 λM13 λM14 . . . M11


.

If λ = 1 this matrix is circulant and there is a vast literature on double circulant and bor-

dered double circulant self-dual codes [?].

The proof of the next theorem is the same as that for [?, Theorem 6.1] given over Fq + vFq.

It is given here for completeness.

Theorem 3.10. Let M be a λ-circulant matrix over R of order n. Then the code generated by

G = [In |M ] is a formally self-dual code over R.
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Proof. Let C be the code generated by G = [In | M ] and C ′ be the code generated by G′ =

[M t | − In]. It easy to verify that the codes C and C ′ are orthogonal codes, and since they

both have free rank n, C ′ = C⊥. Let C ′′ be the code generated by G′′ = [M t | In]. Since

wt(a) = wt(−a) for any a in R the codes C ′ and C ′′ have the same weight enumerator. In

order to complete the proof, we show that C ′′ is equivalent to C, therefore C is formally self-

dual. Let σ be the permutation

σ = (1, n)(2, n− 1) . . . (k − 1, n− k + 2)(k, n− k + 1),

where k = n/2. If M ′ is the matrix obtained by applying σ on the rows of M and M ′′ is the

matrix obtained by applying σ on the columns of M ′, then M ′′ = M t. Hence, M and M t are

equivalent. Similarly, by applying a suitable column permutation we obtain that G and G′′ are

equivalent. Thus, C and C ′′ are equivalent and therefore C is formally self-dual.

Example 3.3. Let q = 3, n = 4, λ = 1 + v and M be the following λ-circulant matrix

M =



2v + 2v2 2 + v + v2 1 + 2v 2

2 + 2v 2v + 2v2 2 + 2v + 2v2 1 + 2v

1 + 2v2 2 + 2v 2v + 2v2 2 + 2v + 2v2

2 + v2 1 + 2v2 2 + 2v 2v + 2v2


.

Then G = [I4 | M ] generates a formally self-dual code of length 8 over F3 + vF3 + v2F3. The

Gray image of this code is a [24, 12, 9] formally self-dual code over F3. This is an optimal code.

Example 3.4. Let q = 5, n = 3, λ = 2 + v and M be the following λ-circulant matrix

M =


3v + 2v2 4v 3 + 2v

1 + 2v + 2v2 3v + 2v2 4v

3v + 4v2 1 + 2v + 2v2 3v + 2v2

 .

Then [I3 | M.] generates a formally self-dual code of length 6 over F5 + vF5 + v2F5. The Gray

image of this code is a [18, 9, 7] formally self-dual code over F5.
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Theorem 3.11. Let M be an (n− 1)× (n− 1) λ-circulant matrix. Then the code generated by

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ω . . . ω

ω
... M

ω


where α, ω ∈ R, is a formally self-dual code over R.

Proof. The proof is similar to that of Theorem ??.

Example 3.5. Let q = 3, α = 2 + v + 2v2, ω = 2 + 2v, λ = 1 + v2, n = 3 and

M =

 2 1 + v

1 + 2v + v2 2

 .

Then

G =


1 0 0 2 + v + 2v2 2 + 2v 2 + 2v

0 1 0 2 + 2v 2 1 + v

0 0 1 2 + 2v 1 + 2v + v2 2

 ,

generates a formally self-dual code of length 6 over F3 + vF3 + v2F3. The Gray image of the

code is an [18, 9, 6] formally self-dual code over F3. This is an optimal code.

Using a proof similar to that of Theorem ??, we have the following construction of formally

self-dual codes over R.

Theorem 3.12. Let A be an n× n matrix over R such that At = A. Then the code generated

by G = [In |A] is a formally self-dual code over R of length 2n.
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Example 3.6. Let q = 5, n = 3, and A be the matrix

A =


4v + 1 v + v2 4 + 4v

v + v2 4v 1 + v

4 + 4v 1 + v 1 + v

 .

We have that A = At, so [I5 | A] generates a formally self-dual code of length 6 over

F5 + vF5 + v2F5. The Gray image of this code is a [18, 9, 7] formally self-dual code over F5.

Example 3.7. Let q = 3, n = 5, and A be the matrix

A =



0 v 2 + v 1 + 2v + 2v2 2v + 2v2

v 2v + 2v2 2 1 + v 1 + v2

2 + v 2 2v2 2 + v + v2 1 + 2v

1 + 2v + 2v2 1 + v 2 + v + v2 1 v

2v + 2v2 1 + v2 1 + 2v v 2


.

We have that A = At, so [I3 | A] generates a formally self-dual code of length 10 over

F3 + vF3 + v3F3. The Gray image of this code is a [30, 15, 9] formally self-dual code over F3.

Proposition 3.13. Let C1, C2, and C3 be linear codes of length n over Fq. C1, C2, and C3 are

isodual codes if and only if C = η1C1 ⊕ η2C2 ⊕ η3C3 is an isodual code of length n over R.

Proof. Let τ 1, τ 2, and τ 2 be monomial permutations such that τ 1(C1) = C⊥1 , τ 2(C2) = C⊥2

and τ 3(C3) = C⊥3 . Then η1τ 1(C1) ⊕ η2τ 2(C2) ⊕ η3τ 3(C3) = η1C
⊥
1 ⊕ η2C

⊥
2 ⊕ η3C

⊥
3 . Since

C⊥ = η1C
⊥
1 ⊕ η2C

⊥
2 ⊕ η3C

⊥
2 , it follows that C is equivalent to C⊥.

A formally self-dual code with only even weights is said to be an even formally self-dual code,

otherwise it is an odd formally self-dual code. The next theorem is the same as the condition
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given by Dougherty [?].

Theorem 3.14. Linear odd formally self-dual codes exist over R for all lengths.

3.2.1 Construction of LCD formally self-dual codes over R

LCD formally self-dual codes over R are constructed in this subsection.

Theorem 3.15. With the same assumptions as in Theorem ??. The code generated by G =

[In|A] is an LCD formally self-dual code over R if and only if GGt is nonsingular.

Proof. From Theorem ??, we know that G generates a formally self-dual code. To prove that G

generates an LCD codes we apply the conditions of Theorem ?? on the matrix G = [In|A].

Example 3.8. Let q = 3, n = 4, and

A =



v 0 v v

0 0 0 0

v 0 v v

v 0 v v


,

so that A = At. It is easily determined that GGt is nonsingular. Then G = [I3 |A] generates

an LCD formally self-dual code of length 8 over F3 + vF3 + v2F3.

Theorem 3.16. With the same assumptions as in Theorem ??, the matrix G = [In|M ] gener-

ates an LCD formally self-dual code over R if and only if GGt is nonsingular.

Example 3.9. Let q = 5, n = 4, λ = 4v2 and M be the following λ-circulant matrix



3. On codes over Fq + vFq + v2Fq 41

M =



2v2 0 v 0

0 2v2 0 v

4v 0 2v2 0

0 4v 0 2v2



It is easily determined that GGt is nonsingular. Then G = [I4 |M ] generates an LCD for-

mally self-dual code of length 18 over F5 + vF5 + v2F5.

Theorem 3.17. With the same assumptions as in Theorem ??, the code generated by

G =


In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α ω . . . ω

ω
... M

ω



is an LCD formally self-dual code over R if and only if GGt is nonsingular.

Example 3.10. Let q = 3, n = 3, λ = v2 and M be the following λ-circulant matrix

M =

 v v

v v

 .
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If α = v and ω = v2, it is easily determined that for the matrix

G =


1 0 0 v v2 v2

0 1 0 v2 v v

0 0 1 v2 v v

 ,

GGt is nonsingular. Then G generates an LCD formally self-dual code of length 6 over

F3 + vF3 + v2F3.

3.3 Bounds on LCD codes

we begin with the following bound was given by Dougherty et al. [?]

LCD[n, k]q := max{d there exists an [n, k, d]q LCD code}.

They also gave estimates and results for this bound. For linear codes over Fq we have the

following bound

B(n, k)q := max{d there exists an [n, k, d]q code }.

The next result gives an upper bound on d for an LCD code over Fq

Proposition 3.18. If an [n, n/2, d]q self-dual code C exists, then LCD[3n, n/2]q ≥ d. In

particular, if C is an extremal self-dual code over F2, then LCD[3n, n/2]2 ≥ 4n
24 +4 if n 6= 22 mod

24, and LCD[3n, n/2]2 ≥ 4n
24 + 6 if n ≡ 22 mod 24. For F3 and n ≡ 0 mod 4, LCD[3n, n/2]3 ≥

3n/12 + 3.

Proof. If there exists an [n, n/2, d]q self-dual code with generator matrix P , then the matrix

G = [I | P ] satisfies GGt = I, and hence by Proposition ?? G generates an LCD code with

parameters [3n, n/2,≥ d]. In the binary case, the bound given corresponds to the condition on
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extremal binary self-dual codes. In the ternary case, the bound corresponds to the condition

on the existence of extremal ternary self-dual codes.

The proof of the following result follows from Theorem ?? and the Singleton bound.

Proposition 3.19. If there exists an [n, k, d]q code over Fq, then

d ≤ LCD[n+ k, k]q ≤ B(n+ k, k)q ≤ n+ 1 if q = 2m,

d ≤ LCD[2n+ k, k]q ≤ B(2n+ k, k)q ≤ 2n+ 1 if q ≡ 1 mod 4,

d ≤ LCD[3n+ k, k]q ≤ B(3n+ k, k)q ≤ 3n+ 1 if q ≡ 3 mod 4,

d ≤ LCD[4n+ k, k]q ≤ B(4n+ k, k)q ≤ 4n+ 1 for all q.

Proposition 3.20. If q is odd, then

LCD[q + 1, q − 2µ]q = B(q + 1, q − 2µ)q = 2µ+ 2,

for 1 ≤ µ ≤ q−1
2 .

If q is even, then

LCD[q + 1, q − 1− 2µ]q = B(q + 1, q − 1− 2µ) = 2µ+ 2 + 3,

for 1 ≤ µ ≤ q−1
2 − 1.

Proof. From [?, Theorem 8], if q+1−k is odd (this case correspond to q and k both even or odd),

then the cyclic code generated by the polynomial g1(x) = ∏µ
i=−µ(x−αi) is a [q+1, q−2µ, 2µ+2]q

maximum distance separable (MDS) cyclic code. Since g1(x) is self-reciprocal, from Lemma ??

the code is LCD. Since the code is also MDS, the result follows.

If q is even and k is odd, then the polynomial g2(x) = ∏q/2
i=q/2−µ(x−αi)(x−α−i) generates a

[q + 1, q − 1− 2µ, 2µ+ 3]q MDS cyclic code from [?, Theorem 8]. Since g2(x) is self-reciprocal,

the code is LCD by Lemma ??. The result then follows since the code is MDS.

For codes over R, define the bound

LCD[n, k]R := max{d there exists an[n, k, dL]R free LCD code over R}.

From Remark ?? we have the following bound
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LCD[n, k]R ≥ LCD[n, k]q, (3.9)

which gives the following result.

Corollary 3.3. All of the lower bounds on LCD[n, k]q given in [?] are also lower bounds on

LCD[n, k]R.



Chapter 4

Zq(Zq + uZq)−Linear skew constacyclic

codes

The classes of cyclic and constacyclic codes play a very signifiant role in the theory of error

correcting codes. In D. Boucher et al. [?], generalized class of linear cyclic codes by using

generator polynomials in non-commutative skew polynomial rings. In this paper, we study

skew constacyclic codes over the ring ZqR, where R = Zq + uZq, q = ps for a prime p and

u2 = 0. We give the definition of these codes as subsets of the ring ZαqRβ. Some structural

properties of the skew polynomial ring R[x,Θ] are discussed, where Θ is an automorphism

of R. We describe the generator polynomials of skew constacyclic codes over ZqR, also we

determine their minimal spanning sets and their sizes. Further, by using the Gray images of

skew constacyclic codes over ZqR we obtained some new linear codes over Z4. Finally, we have

generalized these codes to double skew constacyclic codes over ZqR. Apart of this chapter

appeared in [?].

4.1 Skew polynomial ring over R

In this subsection we construct the non-commutative ring R[x,Θ]. The structure of this ring

depends on the elements of the commutative ring R and an automorphism Θ of R. Note that

an automorphism Θ in R must fix every element of Zq, hence it satisfies Θ(a+ub) = a+ δ(u)b.

45
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Therefore, it is determined by its action on u. Let δ(u) = k + ud, where k is a non-unit in Zq,

k2 ≡ 0 mod q and 2kd ≡ 0 mod q. Then,

Θ(a+ ub) = a+ δ(u)b = (a+ kb) + udb, (4.1)

for all a + ub ∈ R. Further, let Θ an automorphism of R and let m be its order. The skew

polynomial ring R[x,Θ] is the set of polynomials over R in which the addition is defined as the

usual addition of polynomials and the multiplication is defined by the rule

xa = Θ(a)x.

The multiplication is extended to all elements in R[x,Θ] by associativity and distributivity.

The ring R[x,Θ] is called a skew polynomial ring over R and an element in R[x,Θ] is called a

skew polynomial. Further, an element g(x) ∈ R[x,Θ] is said to be a right divisor (resp. left

divisor) of f(x) if there exists q(x) ∈ R[x,Θ] such that

f(x) = q(x)g(x) ( resp. f(x) = g(x)q(x)).

In this case, f(x) is called a left multiple (resp. right multiple) of g(x).

Example 4.1. Define a map Θ on R = Z4 + uZ4 such that

Θ(a+ ub) = a+ (u+ 1)b.

for all a+ ub ∈ R. We can easily verify that Θ is an automorphism of order 2.

Lemma 4.1. [?, Lemma 1] Let f(x), g(x) ∈ R[x,Θ] be such that the leading coefficient of g(x)

is a unit. Then there exists q(x), r(x) ∈ R[x,Θ] such that

f(x) = q(x)g(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(g(x)).

Definition 4.1. [?, Definition 3.2] A polynomial f(x) ∈ R[x,Θ] is said to be a central polyno-

mial if

f(x)r(x) = r(x)f(x)

for all r(x) ∈ R[x,Θ].
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Theorem 4.1. The center Z(R[x,Θ]) of R[x,Θ] is RΘ[xm]; where m is the order of Θ and RΘ

is the subring of R fixed by Θ.

Proof. We know R = Zq+uZq is the fixed ring of Θ. Since order of Θ is m, for any non-negative

integer i, we have

xmia = (Θm)i(a)xmi = axmi

for all a ∈ R. It gives xmi ∈ Z(R[x,Θ]), and hence all polynomials of the form

f = a0 + a1x
m + a2x

2m + · · ·+ alx
lm

with ai ∈ R are in the center. Conversely, let f = f0 + f1x + f2x
2 + · · · + fkx

k ∈ Z(R[x,Θ])

we have fx = xf which gives that all fi are fixed by Θ, so that fi ∈ R. Further, choose a ∈ R

such that Θ(a) 6= a. Then it follows from the relation af = fa that fi = 0 for all indices i not

divides m. Thus

f(x) = a0 + a1x
m + a2x

2m + · · ·+ alx
lm ∈ RΘ[xm].

Corollary 4.1. Let f(x) = xβ − 1, then f(x) ∈ Z(R[x,Θ]) if and only if m | β. Further,

xβ − λ ∈ Z(R[x,Θ]) if and only if m | β and λ is fixed by Θ.

4.2 Skew constacyclic codes over R

In this subsection we generalize the structure and properties from [?] to codes over Zq + uZq.

Hence the proofs of many of the theorems will be omitted.

We start with some structural properties of R[x,Θ]/〈xβ − λ〉. The Corollary ??, shows that

the polynomial (xβ − λ) is in the center Z(R[x,Θ]) of the ring R[x,Θ], hence generates a two-

sided ideal if and only if m | β and λ is fixed by Θ. Therefore, in this case R[x,Θ]/〈xβ −λ〉 is a

well-defined residue class ring. If m - β, then the quotient space R[x,Θ]/〈xβ − λ〉 which is not

necessarily a ring is a left R[x,Θ]-module with multiplication defined by

r(x)(f(x) + (xβ − λ)) = r(x)f(x) + (xβ − λ),
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for any r(x), f(x) ∈ R[x,Θ].

Next we define the skew λ−constacyclic codes over the ring R. A code of length β over R is

a nonempty subset of Rβ. A code C is said to be linear if it is a submodule of the R−module

Rβ. In this thesis, all codes are assumed to be linear unless otherwise stated.

Given an automorphism Θ of R and a unit λ in R, a code Cβ is said to be skew constacyclic,

or specifically, Θ− λ−constacyclic if Cβ is closed under the Θ− λ−constacyclic shift:

ρΘ,λ : Rβ → Rβ

defined by

ρΘ,λ((a0, a1, . . . , aβ−1)) = (λΘ(aβ−1),Θ(a0), . . . ,Θ(aβ−2)). (4.2)

In particular, such codes are called skew cyclic and skew negacyclic codes when λ is 1 and −1,

respectively. When Θ is the identity automorphism, he become classical constacyclic and we

denote ρλ the constacyclic shift.

In the rest of paper, we restrict our study to the case where the length β of codes is a

multiple of the order of Θ and λ is a unit in RΘ, where RΘ denotes the subring of R fixed by

Θ.

The proofs of the next theorems are analogous to the proofs of [?] given for the ring Z4 +uZ4,

therefore we omit them.

Theorem 4.2. [?, Theorem 3] A code Cβ of length β in Rβ = R[x,Θ]/〈xβ − λ〉 is a Θ −

λ−constacyclic code if and only if Cβ is a left R[x,Θ]−submodule of the left R[x,Θ]−module

Rβ.

Corollary 4.2. [?, Corollary 2] A code C of length β over R is Θ − λ−constacyclic code if

and only if the skew polynomial representation of C is a left ideal in R[x,Θ]/〈xβ − λ〉.

The following theorem is the generalization of the Theorems 4 and 5 of [?].

Theorem 4.3. Let Cβ be a skew contacyclic code of length β over R. Then, Cβ is a free prin-

cipally generated skew constayclic code if and only if there exists a minimal degree polynomial

gβ(x) ∈ Cβ having its leading coefficient a unit such that Cβ = 〈gβ(x)〉 and gβ(x) | xβ − λ.

Moreover, Cβ has a basis {gβ(x), xgβ(x), . . . , xβ−deg(gβ(x))−1} and |Cβ| = |R|β−deg(gβ(x)).



4. Zq(Zq + uZq)−Linear skew constacyclic codes 49

4.2.1 The dual of skew constacyclic codes over R

In this subsection, we study duals of Θ− λ−constacyclic codes over R. Further, the Euclidean

inner product defined by

〈v′, w′〉 =
β−1∑
i=0

v′iw
′
i,

for v′ = (v′0, v′1, . . . , v′β−1) and w′ = (w′0, w′1, . . . , w′β−1) in Rβ.

Definition 4.2. Let Cβ be a Θ− λ−constacyclic code of length β over R. Then its dual C⊥β is

defined as

C⊥β = {v′ ∈ Rβ; 〈v′, w′〉 = 0 for all w′ ∈ Cβ}.

Lemma 4.2. Let Cβ be a code of length β over R, where β is a multiple of the order of the

automorphism Θ and λ is fixed by Θ. Then Cβ is Θ − λ−constacyclic if and only if C⊥β is

Θ − λ−1−constacyclic. In particular, if λ2 = 1, then Cβ is Θ − λ−constacyclic if and only if

C⊥β is Θ− λ−constacyclic.

Proof. Note that, for each unit λ in R, λ ∈ RΘ if and only if λ−1 ∈ RΘ, since λ ∈ RΘ, so is λ−1.

Let v′ = (v′0, v′1, . . . , v′β−1) ∈ Cβ and w′ = (w′0, w′1, . . . , w′β−1) ∈ C⊥β be two arbitrary elements.

Since Cβ is Θ− λ−constacyclic code,

ρβ−1
Θ,λ (v′) =

(
Θβ−1(λv′1),Θβ−1(λv′2), . . . ,Θβ−1(λv′β−1),Θβ−1(v′0)

)
∈ Cβ.

Then, we have

0 = 〈ρβ−1
Θ,λ (v′), w′〉

= 〈(Θβ−1(λv′1),Θβ−1(λv′2), . . . ,Θβ−1(λv′β−1),Θβ−1(v′0)), (w′0, . . . , w′β−1)〉

= λ〈(Θβ−1(v′1),Θβ−1(v′2), . . . ,Θβ−1(v′β−1),Θβ−1(λ−1v′0)), (w′0, . . . , w′β−1)〉

= λ

(
Θβ−1(λ−1v′0)w′β−1 +

β−1∑
j=1

Θβ−1(v′j)w′j−1

)
.

As β is a multiple of the order of Θ and λ−1 is fixed by Θ, it follows that

0 = Θ(0) = Θ(λΘβ−1(λ−1v′0)w′β−1 +
β−1∑
j=1

Θβ−1(v′j)w′j−1)

= λ(v′0Θ(λ−1w′β−1) +
β−1∑
j=1

v′jΘ(w′j−1))

= λ〈ρΘ,λ−1(w′), v′〉.
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This implies that, ρΘ,λ−1(w′) ∈ C⊥β . In addition, assume that λ2 = 1. Then λ = λ−1. Therefore;

Cβ is a Θ− λ−constacyclic code.

The converse follows from the fact that (C⊥β )⊥ = Cβ.

4.3 ZqR−Linear skew constacyclic codes

In this section, we study skew λ−constacyclic codes over the ring ZqR.

We known that the ring Zq is a subring of the ring R. Let (α, β) denote n = α + 2β where

α and β are positive integers. We construct the ring

ZqR = {(e, r); e ∈ Zq, r ∈ R}.

The ring ZqR is not an R−module under the operation of standard multiplication. To make

ZqR an R−module, we follow the approach in [?] and define the map

η : R→ Zq
a+ ub 7→ a.

It is clear that the mapping η is a ring homomorphism. Now, for any d ∈ R, we define the

multiplication ∗ by

d ∗ (e, r) = (η(d)e, dr).

This multiplication can be naturally generalized to the ring ZαqRβ as follows.

For any d ∈ R and v = (e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ ZαqRβ define

dv = (η(d)e0, η(d)e1, . . . , η(d)eα−1, dr0, dr1, . . . , drβ−1),

where (e0, e1, . . . , eα−1) ∈ Zαq and (r0, r1, . . . , rβ−1) ∈ Rβ.

The following results are analogous to the ones obtained in [?,?] for the ring Z2(Z2 + uZ2).

Lemma 4.3. The ring ZαqRβ is an R-module under the above definition.

The above Lemma allows us to give the next definition.

Definition 4.3. A non-empty subset C of ZαqRβ is called a ZqR-linear code if it is an R−submodule

of ZαqRβ.
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We note that the ring R is isomorphic to Zq as an additive group. Hence, for some positive

integers k0, k1 and k2, any ZqR-linear code C is isomorphic to a group of the form

Zk0
q × Z2k1

q × Zk2
q .

Definition 4.4. If C ⊆ ZαqRβ is a ZqR-linear code, group isomorphic to Zk0
q ×Z2k1

q ×Zk2
q , then

C is called a ZqR-additive code of type (α, β, k0, k1, k2), where k0, k1, and k2 are as defined

above.

The following results and definitions are analogous to the ones obtained in [?].

Let C be a ZqR-linear code and let Cα (respectively Cβ) be the canonical projection of C on

the first α (respectively on the last β) coordinates. Since the canonical projection is a linear

map, Cα and Cβ are linear codes over Zq and over R of length α and β, respectively. A code

C is called separable if C is the direct product of Cα and Cβ, i.e.,

C = Cα × Cβ.

We introduce an inner product on ZαqRβ. For any two vectors

v = (v0, . . . , vα−1, v
′
0, . . . , v

′
β−1), w = (w0, . . . , wα−1, w

′
0, . . . , w

′
β−1) ∈ Zαq ×Rβ

let

〈v, w〉 = u
α−1∑
i=0

viwi +
β−1∑
j=0

v́jẃj.

Let C be a ZqR-linear code. The dual of C is defined by

C⊥ = {w ∈ Zαq ×Rβ, 〈v, w〉 = 0,∀v ∈ C}.

If C = Cα × Cβ is separable, then

C⊥ = C⊥α × C⊥β . (4.3)

Now we are ready to define the skew constacyclic codes over ZαqRβ. We start by the following

Lemma.
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Lemma 4.4. Let R = Zq + uZq, where Zq is a subring of R. Then an element λ is unit in R

if and only if η(λ) is unit in Zq.

Proof. Assume that λ is unit in R; where λ = λ1 + uλ2 and λ1, λ2 ∈ Zq, then we have

λ.v = v.λ = 1 and since η is a ring homomorphism, then we have η(λ.v) = η(v.λ) = η(1) thus

η(λ).v′ = v′.η(λ) = 1 which means that η(λ) is unit in Zq, where v′ = η(v) ∈ Zq.

Conversely, suppose that η(λ) = λ1 is unit in Zq we should prove that λ = λ1 +uλ2 is unit in

R. The fact that λ is unit in R means that λ.λ−1 = 1, therefore λ.λ−1 = (λ1+uλ2)(λ1+uλ2)−1 =

(λ1 + uλ2)(λ−1
1 + uλ3) = λ1λ

−1
1 + u(λ2λ

−1
1 + λ1λ3), then we denote λ3 = −λ2λ

−1
1

λ1
= −λ2(λ−1

1 )2

and since λ1 is unit in Zq, then λ1λ
−1
1 = 1 which implies that λ.λ−1 = 1, so λ is unit in R.

Definition 4.5. Let Θ be an automorphism of R. A linear code C over ZαqRβ is called skew

constacyclic code if C satisfies the following two conditions.

(i) C is an R−submodule of ZαqRβ,

(ii)

(η(λ)Θ(eα−1),Θ(e0), . . . ,Θ(eα−2), λΘ(rβ−1),Θ(r0), . . . ,Θ(rβ−2)) ∈ C

whenever

(e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ C

Remark 4.1. Θ(ei) = ei for 0 ≤ i ≤ α− 1, as ei ∈ Zq (the fixed ring of Θ).

In polynomial representation, each codeword c = (e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) of a skew

constacyclic code can be represented by a pair of polynomials

c(x) =
(
e0 + e1x+ · · ·+ eα−1x

α−1, r0 + r1x+ · · ·+ rβ−1x
β−1

)
= (e(x), r(x)) ∈ Zq[x]/〈xα − η(λ)〉 ×R[x,Θ]/〈xβ − λ〉.

Let h(x) = h0 + h1x + · · · + htx
t ∈ R [x,Θ] and let (f(x), g(x)) ∈ Zq[x]/〈xα − η(λ)〉 ×

R[x,Θ]/〈xβ − λ〉. The multiplication is defined by the basic rule

h(x)(f(x), g(x)) = (η(h(x))f(x), h(x)g(x)),
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where η(h(x)) = η(h0) + η(h1)x+ · · ·+ η(ht)xt.

Lemma 4.5. A code C of length (α, β) over ZqR is a Θ− λ−constacyclic code if and only if

C is left R[x,Θ]−submodule of Zq[x]/〈xα − η(λ)〉 ×R[x,Θ]/〈xβ − λ〉.

Proof. Assume that C is a skew constacyclic code and let c ∈ C. We denote by c(x) =

(e(x), r(x)) the associated polynomial of c. As xc(x) is a skew constacyclic shift of c, xc(x) ∈ C.

Then, by linearity of C, r(x)c(x) ∈ C for any r(x) ∈ R[x,Θ]. Thus C is left R[x,Θ]−submodule

of Zq[x]/〈xα−η(λ)〉×R[x,Θ]/〈xβ−λ〉. Conversely, suppose that C is a left R[x,Θ]−submodule

of Zq[x]/〈xα − η(λ)〉 × R[x,Θ]/〈xβ − λ〉, then we have that xc(x) ∈ C. Thus, C is a Θ −

λ−constacyclic code.

The converse is straightforward.

Theorem 4.4. Let C be a linear code over ZqR of length (α, β), and let C = Cα × Cβ, where

Cα is linear code over Zq of length α and Cβ is linear code over R of length β. Then C is a

skew λ−constacyclic code if and only if Cα is a η(λ)−constacyclic code over Zq and Cβ is a

skew λ−constacyclic code over R.

Proof. Let (e0, e1, . . . , eα−1) ∈ Cα and let (r0, r1, . . . , rβ−1) ∈ Cβ. If C = Cα × Cβ is a skew

constacyclic code, then

(η(λ)Θ(eα−1),Θ(e0), . . . ,Θ(eα−2), λΘ(rβ−1),Θ(r0), . . . ,Θ(rβ−2)) ∈ C,

which implies that

(η(λ)Θ(eα−1),Θ(e0), . . . ,Θ(eα−2)) ∈ Cα

as Θ is fixed by Zq, then

(η(λ)eα−1, e0, . . . , eα−2) ∈ Cα

and

(λΘ(rβ−1),Θ(r0), . . . ,Θ(rβ−2)) ∈ Cβ.

Hence, Cα is a constacyclic code over Zq and Cβ is a Θ− λ−constacyclic code over R.
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On the other hand, suppose that Cα is a constacyclic code over Zq and Cβ is a Θ −

λ−constacyclic code over R. Note that

(η(λ)eα−1, e0, . . . , eα−2) ∈ Cα

and

(λΘ(rβ−1),Θ(r0), . . . ,Θ(rβ−2)) ∈ Cβ.

Since C = Cα × Cβ and Θ(ei) = ei, then

(η(λ)Θ(eα−1),Θ(e0), . . . ,Θ(eα−2), λΘ(rβ−1),Θ(r0), . . . ,Θ(rβ−2)) ∈ C,

so C is a skew constacyclic code over ZqR.

Corollary 4.3. Let C = Cα × Cβ be a skew λ−constacyclic code over ZqR, where β is a

multiple of the order Θ and λ−1 is fixed by Θ. Then the dual code C⊥ = C⊥α × C⊥β of C is a

skew λ−1-constacyclic code over ZqR.

Proof. From Equation (??), we have C⊥ = C⊥α ×C⊥β . Clearly, if Cα is a constacyclic code over

Zq then C⊥α is also a constacyclic code over Zq. Moreover, from Lemma (??), we have C⊥β is

a skew λ−constacyclic code over R. Hence the dual code C⊥ is skew λ−1−constacyclic over

ZqR.

4.4 Gray images of skew constacyclic codes over ZqR

In this section, we define a Gray map on ZqR, and then extend it to ZαqRβ. We discuss the

Gray images of ZqR−skew constacyclic codes where λ is fixed by Θ. We start by recalling some

results which we will need its in the next.

From [?, Definition 2] we have the following definition

Definition 4.6. Let Cβ be a linear code over R of length β = N` and let λ be unit in R. If for

any codeword  c0,0, c0,1, . . . , c0,`−1, c1,0, c1,1, . . . , c1,`−1, . . . ,

cN−1,0, cN−1,1, . . . , cN−1,`−1

 ∈ Cβ,
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then λΘ(cN−1,0), λΘ(cN−1,1), . . . , λΘ(cN−1,`−1),Θ(c0,0),Θ(c0,1), . . . ,Θ(c0,`−1), . . . ,

Θ(cN−2,0),Θ(cN−2,1), . . . ,Θ(cN−2,`−1)

 ∈ Cβ.
Then we say that Cβ is a Θ − λ−quasi-twisted code of length β. If ` is the least positive

integer satisfies that β = N`, then Cβ is said to be a Θ − λ−quasi-twisted code with index `.

Furthermore, if Θ is the identity map, we call Cβ a quasi-twisted code of index l over R.

According to [?], we define a Gray map φ over R by

φ : Rβ → Z2β
q

φ(a+ ub) = (b, a+ b),

where a, b ∈ Zβq .

Furthermore, for r = a+ ub ∈ R, we define a map

Φ : ZqR 7→ Z3
q

by

Φ(e, r) = (e, φ(r)) = (e, b, a+ b),

and it can be extended componentwise ZαqRβ to Znq as

Φ(e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) = (e0, e1, . . . , eα−1, φ(r0), φ(r1), . . . , φ(rβ−1)),

for all

(e0, e1, . . . , eα−1) ∈ Zαq

and

(r0, r1, . . . , rβ−1) ∈ Rβ,

where n = α + 2β. Φ is known as the Gray map on ZαqRβ. Let a ∈ Z2β
q with a = (a0, a1) =

(a(0) | a(1)), a(i) ∈ Zβq , for i = 0, 1. Let σ⊗2 be a map from Z2β
q to Z2β

q given by

σ⊗2(a) = (σλ(a(0)) | σλ(a(1))),
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where σλ is a constacyclic shift from Zβq to Zβq given by

σλ(a(i)) = (λai,β−1, a(i,0), . . . , a(i,β−2)),

for every a(i) = (a(i,0), a(i,1), . . . , a(i,β−1)) where a(i,j) ∈ Zq, for j = 0, 1, . . . , β − 1. A linear code

Cβ of length 2β over Zq is said to be a quasi-twisted of index 2 if σ⊗2(Cβ) = Cβ.

In addition, for each Θ ∈ Aut(R), let TΘ : Rβ 7→ Rβ be a linear transformation given by

TΘ(a0, a1 . . . , aβ−1) = (Θ(a0),Θ(a1) . . . ,Θ(aβ−1)).

Remark 4.2. Cβ is a skew constacyclic code if and only if TΘ ◦ ρλ(Cβ) = Cβ.

Proposition 4.5. With the previous notation, we have TΘ ◦ φ ◦ ρλ = σ⊗2 ◦ φ.

Proof. Let ri = ai + ubi be the elements of R for i = 0, 1, . . . , β − 1, we have

ρλ(r0, r1, . . . , rβ−1) = (λrβ−1, r0, r1, . . . , rβ−2).

If we apply φ, we have

φ(ρλ(r)) = φ(λrβ−1, r0, . . . , rβ−2)

= (λbβ−1, b0, . . . , bβ−2, λ(aβ−1 + bβ−1), a0 + b0, . . . , aβ−2 + bβ−2).

where φi(r) = (bi, ai + ubi), now we apply TΘ in the above equation we get,

TΘ ◦ φ(ρλ(r)) = TΘ(λbβ−1, b0, . . . , bβ−2, λ(aβ−1 + bβ−1), a0 + b0, . . . , aβ−2 + bβ−2)

= (Θ(λbβ−1),Θ(b0), . . . ,Θ(bβ−2), λΘ(aβ−1 + bβ−1),Θ(a0 + b0), . . . ,Θ(aβ−2 + bβ−2)) ,

since λ is fixed by Θ and by (??), for any a ∈ Zq, we have Θ(a) = a. So, we have

TΘ ◦ φ ◦ ρλ(r) =

 λbβ−1, b0, . . . , bβ−2, λ(aβ−1 + bβ−1),

(a0 + b0), . . . , (aβ−2 + bβ−2)

 .
For the other direction,

σ⊗2(φ(r)) = σ⊗2(b0, b1, . . . , bβ−1, a0 + b0, a1 + b1, . . . , aβ−1 + bβ−1)

=

 λbβ−1, b0, . . . , bβ−2, λ(aβ−1 + bβ−1),

(a0 + b0), . . . , (aβ−2 + bβ−2)

 ,
and the result follows.
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As a consequence of the above Proposition, we have the following theorem.

Theorem 4.6. Let Cβ be a code of length β over R. Then Cβ is a skew λ−constacyclic code

of length β over R if and only if φ(Cβ) is a quasi-twisted code of length 2β over Zq of index 2.

Proof. The necessary part follows from Proposition ??, i.e.,

σ⊗2 ◦ φ(Cβ) = TΘ ◦ φ ◦ ρλ(Cβ) = φ(Cβ).

For the sufficient part, assume that φ(Cβ) is a quasi-twisted code of index 2, then

φ(Cβ) = σ⊗2 ◦ φ(Cβ) = TΘ ◦ φ ◦ ρλ(Cβ).

The injectivity of φ implies that TΘ (ρλ(Cβ)) = Cβ, i.e., Cβ is a skew constacyclic code over

R.

Theorem 4.7. Let C = Cα × Cβ be Θ − λ−constacyclic code of length n = α + 2β over

Zq[x]/〈xα − η(λ)〉 ×R[x,Θ]/〈xβ − λ〉.

(i) If α = β, then Φ(C) is a quasi-twisted code of index 3 and length 3α.

(ii) If α 6= β and λ = 1, then Φ(C) is a generalized quasi cyclic code of index 3.

Proof. Assume that C = Cα×Cβ is a skew λ−constacyclic code over ZqR then by Theorem ??,

we have that Cα is a constacyclic codes over Zq and Cβ is skew constacyclic codes over R.

Further, from Theorem ??, we have that, if Cβ is skew constacyclic code over R then φ(Cβ) is

a quasi twisted code of length 2β over Zq of index 2. Which implies that

Φ(e, r) =

 λeα−1, e0, . . . , eα−2, λbβ−1, b0, . . . , bβ−2,

λ(aβ−1 + bβ−1), (a0 + b0), . . . , (aβ−2 + bβ−2)

 ,
for any (e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ C. Therefore,

1. if α = β, then Φ(C) is a quasi-twisted code of length 3α over Zq of index 3.

2. if α 6= β and λ = 1, then according to [?], Φ(C) is a generalized quasi-cyclic code of index

3.
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4.5 The generators and the spanning sets for ZqR−skew

constacyclic codes

In this section, we find a set of generators for ZqR−skew constacyclic codes as a leftR[x,Θ]−submodules

of Zq[x]〈xα − η(λ)〉 × R[x,Θ]/〈xβ − λ〉. Let C be a ZqR−skew constacyclic codes, C and

R[x,Θ]/〈xβ − λ〉 are R[x,Θ]−modules and w define the following mapping:

Ψ : C → R[x,Θ]/〈xβ − λ〉

where

Ψ(f1(x), f2(x)) = f2(x).

It is clear that Ψ is a module homomorphism whose image is aR[x,Θ]−submodule ofR[x,Θ]/〈xβ−

λ〉 and ker(Ψ) is a submodule of C.

Proposition 4.8. Let C be a skew constacyclic code of length n over ZqR. Then

C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉,

where f(x) | (xα − η(λ)) and g(x) | a(x) | (xβ − λ).

Proof. Assume that β is a positive integer coprime to the characteristic of R, by similarly

theory of cyclic codes over Z2Z4 (see. [?]) we have that

Ψ(C) = (a(x) + ug(x)) with a(x), g(x) ∈ R[x,Θ] and g(x) | a(x) | (xβ − λ).

Note that:

ker(Ψ) = {(f(x), 0) ∈ C : f(x) ∈ Zq[x]/〈xα − η(λ)〉}.

Define the set I to be

I = {f(x) ∈ Zq[x]/〈xα − η(λ)〉 : (f(x), 0) ∈ ker(Ψ)}.

Clearly, I is an ideal of Zq[x]/〈xα − η(λ)〉. Therefore, there exist a polynomial

f(x) ∈ Zq[x]/〈xα − η(λ)〉,
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such that

I = 〈f(x)〉.

Now, for any element

(c1(x), 0) ∈ ker(Ψ),

we have

c1(x) ∈ I = 〈f(x)〉

and there exists some polynomials

m(x) ∈ Zq[x]/〈xα − η(λ)〉

such that

c1(x) = m(x)f(x).

Thus

(c1(x), 0) = m(x) ∗ (f(x), 0),

which implies that ker(Ψ) is a left submodule of C generated by one element of the form

(f(x), 0) where f(x) | (xα − η(λ)). Thus, by the first isomorphism theorem, we have

C/ker(Ψ) ∼= 〈a(x) + ug(x)〉.

Let (l(x), a(x) + ug(x)) ∈ C, with

Ψ(l(x), a(x) + ug(x)) = 〈a(x) + ug(x))〉.

Then any ZqR−skew constacyclic code of length (α, β) can be generated as leftR[x,Θ]−submodule

of

Zq[x]/〈xα − η(λ)〉 ×R[x,Θ]/〈xβ − λ〉

by two elements of the form (f(x), 0) and (l(x), a(x) + ug(x)), in other word, any element in

the code C can be described as

d1(x) ∗ (f(x), 0) + d2(x) ∗ (l(x), a(x) + ug(x)),
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where d1(x) and d2(x) are polynomials in the ring R[x,Θ]. In fact, the element d1(x) can be

restricted to be an element in the ring Zq[x]. We will write this as:

C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉,

where, f(x) | (xα − η(λ)) and g(x) | a(x) | (xβ − λ).

Lemma 4.6. If C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉 is a ZqR−skew constacyclic code, then we

may assume that deg (l(x)) ≤ deg (f(x)).

Proof. Suppose that deg (l(x)) ≥ deg (f(x)) with deg (l(x)) = i. Consider an other ZqR−skew

constacyclic code of length (α, β) with generators of the form

D = 〈(f(x), 0), (l(x), a(x) + ug(x)) + xi ∗ (f(x), 0)〉

= 〈(f(x), 0), (l(x) + xif(x), a(x) + ug(x))〉.

Clearly, D ⊆ C. However, we also have that:

(l(x), a(x) + ug(x)) = (l(x) + xif(x), a(x) + ug(x))− xi ∗ (f(x), 0),

which implies that (l(x), a(x) + ug(x)) ∈ C. Therefore, C ⊆ D implying C = D.

Lemma 4.7. If C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉 is a ZqR−skew constacyclic code, then we

may assume that f(x) | xβ−λ
g(x) l(x).

Proof. Since
xβ − λ
g(x) ∗ (l(x), a(x) + ug(x)) = (x

β − λ
g(x) l(x), 0),

it follow that

Ψ(x
β − λ
g(x) ∗ (l(x), a(x) + ug(x))) = 0.

Therefore,

(x
β − λ
g(x) l(x), 0) ∈ ker(Ψ) ⊆ C

and

f(x) | (x
β − λ
g(x) )l(x).
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The above Lemma shows that if the ZqR−skew constacyclic code C has only one generator

of the form C = 〈l(x), a(x) + ug(x)〉 then, (xα − η(λ)) | xβ−λ
g(x) l(x) with g(x) | a(x) | (xβ − λ).

Thus from this discussion and Lemma ?? and ??, we have the following results.

Theorem 4.9. Let C be a skew constacyclic code of length n over ZqR. Then C can be identified

uniquely as

C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉,

where f(x) | (xα − η(λ)) and g(x) | a(x) | (xβ − λ). and l(x) is a skew polynomial satisfying

deg (l(x)) ≤ deg (f(x)) and f(x) | xβ−λ
g(x) l(x).

Proof. Following from Proposition ??, Lemma ?? and ??, we can easily see that C = 〈(f(x), 0), (l(x), a(x)+

ug(x))〉,where the polynomials f(x), l(x), a(x) and g(x) are stated in the theorem. Now, we will

prove the uniqueness of the generators. Since 〈f(x)〉 and 〈a(x) + ug(x)〉 are skew constacyclic

codes over Zq and R respectively, then, the skew polynomials f(x), a(x) and g(x) are unique.

Now, suppose that

C = 〈(f(x), 0), (l1(x), a(x) + ug(x))〉

= 〈(f(x), 0), (l2(x), a(x) + ug(x))〉,

then, we have

((l1(x)− l2(x)), 0) ∈ ker (Ψ) = 〈f(x), 0〉,

which implies that

l1(x)− l2(x) = f(x)j(x),

for some skew polynomial j(x), and since deg (l1(x) − l2(x)) ≤ deg (l1(x)) ≤ deg (f(x)) then

j(x) = 0 and l1(x) = l2(x).

Definition 4.7. Let A be an R−module. A linearly independent subset B of A that spans A

is called a basis of A. If an R−module has a basis, then it is called a free R−module.

Note that if C is a ZqR−skew constacyclic code of the form

C = 〈(f(x), 0), (l(x), a(x) + ug(x))〉,
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with g(x) 6= 0, then C is a free R−module. If C is not of this form then it is not a free

R−module. But we still present a minimal spanning set for the code. The following theorem

gives us a spanning minimal set for ZqR−skew constacyclic codes.

Theorem 4.10. Let C be a skew constacyclic code of length n over ZqR, where f(x), l(x), a(x)

and g(x) are as in Theorem ?? and

f(x)hf (x) = xα − η(λ), a(x)ha(x) = xβ − λ, a(x) = g(x)m(x).

Let
S1 =

deg (hf )−1⋃
i=0

{xi ∗ (f(x), 0)},

S2 =
deg (ha)−1⋃

i=0
{xi ∗ (l(x), a(x) + ug(x))},

and

S3 =
deg (m)−1⋃

i=0
{xi ∗ (η(ha(x))l(x), uha(x)g(x))}.

Then

S = S1 ∪ S2 ∪ S3,

forms a minimal spanning set for C and C has qdeg (hf )q2deg (ha)qdeg (m) codewords.

Proof. Let

C(x) = η(d(x))(f(x), 0) + e(x)(l(x), a(x) + ug(x)) ∈ Zq[x]/〈xα − η(λ)〉 ×R[x,Θ]/〈xβ − λ〉

be a codeword in C where d(x) and e(x) are skew polynomials in R[x,Θ]. Now, if

deg (η(d(x))) ≤ deg (hf (x))− 1,

then

η(d(x))(f(x), 0) ∈ Span(S1).

Otherwise, by using right division algorithm we have

η(d(x)) = hf (x)η(q1(x)) + η(r1(x)),



4. Zq(Zq + uZq)−Linear skew constacyclic codes 63

where q1(x), r1(x) ∈ R[x,Θ] and η(r1(x)) = 0 or deg (η(r1(x))) ≤ deg (hf (x))− 1.

Therefore,
η(d(x))(f(x), 0) = (hf (x)η(q1(x)) + η(r1(x)))(f(x), 0)

= η(r1(x))(f(x), 0).

Hence, we can assume that

η(d(x))(f(x), 0) ∈ Span(S1).

Now, if

deg (η(e(x))) ≤ deg (ha(x))− 1,

then

η(e(x))(l(x), a(x) + ug(x)) ∈ Span(S2).

Otherwise, again by the right division algorithm, we get polynomials q2(x) and r2(x) such that:

e(x) = q2(x)ha(x) + r2(x),

where

r2(x) = 0 or deg (r2(x)) ≤ deg (ha(x))− 1.

So, we have

e(x)(l(x), a(x) + ug(x)) = (q2(x)ha(x) + r2(x))(l(x), a(x) + ug(x))

= q2(x)(η(ha(x))l(x), uha(x)g(x)) + r2(x)(l(x), a(x) + ug(x)).

Since

r2(x) = 0 or deg (r2(x)) ≤ deg (ha(x))− 1,

then

r2(x)(l(x), a(x) + ug(x)) ∈ Span(S2).

Let us consider

q2(x)(η(ha(x))l(x), uha(x)g(x)) ∈ Span(S),

we know that

xβ − λ = a(x)ha(x) = g(x)m(x)ha(x)
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and also we have

f(x) | x
β − λ
g(x) l(x).

Therefore,
xβ − λ
g(x) l(x) = f(x)k(x).

Again, if

deg (q2(x)) ≤ deg (m(x))− 1

then

q2(x)(η(ha(x))l(x), uha(x)g(x)) ∈ Span(S3).

Otherwise,

q2(x) = xβ − λ
ha(x)g(x)q3(x) + r3(x),

with

r3(x) = 0 or deg (r3(x)) ≤ deg (m(x))− 1.

So,

q2(x)(η(ha(x))l(x), uha(x)g(x)) =
(

xβ−λ
ha(x)g(x)q3(x)η(ha(x))l(x), xβ−λ

ha(x)g(x)q3(x)uha(x)g(x)
)

+ r3(x)(η(ha(x))l(x), uha(x)g(x))

=
(

xβ−λ
ha(x)g(x)q3(x)η(ha(x))l(x), 0

)
+ r3(x)(η(ha(x))l(x), uha(x)g(x)).

Since
xβ − λ
g(x) l(x) = f(x)k(x),

then (
xβ − λ

ha(x)g(x)q3(x)η(ha(x))l(x), 0
)
∈ Span(S1)

and hence

r3(x)(η(ha(x))l(x), uha(x)g(x)) ∈ Span(S3).

Consequently, S = S1 ∪ S2 ∪ S3 forms a minimal spanning set for C.
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4.6 Double skew constacyclic codes over ZqR

In this subsection, we study double skew constacyclic codes over ZqR. Let ń = ά + 2β́ and
´́n = ´́α + 2´́

β be integers such that n = ń + ´́n. We consider a partition of the set of the n

coordinates into two subsets of ń and ´́n coordinates, respectively, so that C is a subset of

ZάqRβ́ × Z´́α
qR

´́
β.

Definition 4.8. A linear code C of length n over ZqR is called a double skew constacyclic code

if C satisfies the following conditions.

(i) C is an R−submodule of Zά+´́α
q Rβ́+´́

β.

(ii) (η(λ)Θ(éά−1),Θ(é0), . . . ,Θ(éά−2), λΘ(ŕβ́−1),Θ(ŕ0), . . . ,Θ(ŕβ́−2) |

η(λ)Θ(´́e´́α−1),Θ(´́e0), . . . ,Θ(´́e´́α−2), λΘ(´́r´́
β−1

),Θ(´́r0), . . . ,Θ(´́r´́
β−2

)) ∈ C.

whenever

(é0, . . . , éά−1, ŕ0, . . . , ŕβ́−1 | ´́e0, . . . , ´́e´́α−1,
´́r0, . . . , ´́r´́

β−1
) ∈ C.

Remark 4.3. Θ(éi) = éi and Θ(´́ei) = ´́ei for 0 ≤ i ≤ α− 1, as éi, ´́ei ∈ Zq (the fixed ring of Θ).

Denote by R
ά,β́,´́α,´́β

the ring:

Zq[x]/〈xά − η(λ)〉 ×R[x,Θ]/〈xβ́ − λ〉 × Zq[x]/〈x´́α − η(λ)〉 ×R[x,Θ]/〈x
´́
β − λ〉.

In polynomial representation, each codeword

c = (é0, é1, . . . , éά−1, ŕ0, . . . , ŕβ́−1 | ´́e0, ´́e1, . . . , ´́e´́α−1,
´́r0, . . . , ´́r´́

β−1
)

of a double skew constacyclic code can be represented by four polynomials

c(x) =



é0 + é1x+ · · ·+ éά−1x
ά−1,

ŕ0 + ŕ1x+ · · ·+ ŕβ́−1x
β́−1,

´́e0 + ´́e1x+ · · ·+ ´́e´́α−1x
´́α−1,

´́r0 + ´́r1x+ · · ·+ ´́r´́
β−1

x
´́
β−1


= (é(x), ŕ(x) | ´́e(x), ´́r(x)) ∈ R

ά,β́,´́α,´́β
.

Let

h(x) = h0 + h1x+ · · ·+ htx
t ∈ R [x,Θ]
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and let

(f́(x), ǵ(x) | ´́
f(x), ´́g(x)) ∈ R

ά,β́,´́α,´́β
.

We define the multiplication of h(x) and (f́(x), ǵ(x) | ´́
f(x), ´́g(x)) by

h(x)(f́(x), ǵ(x) | ´́
f(x), ´́g(x)) = (η(h(x))f́(x), h(x)ǵ(x) | η(h(x)) ´́

f(x), h(x)´́g(x)),

where η(h(x)) = η(h0)+η(h1)x+ · · ·+η(ht)xt. This gives us the following Theorem. But before

that, we need to give the following Remark.

Remark 4.4. If c(x) = (é(x), ŕ(x) | ´́e(x), ´́r(x)) represents the code word c, then xc(x) represents

the ń´́n−skew constacyclic shift of c.

Theorem 4.11. A linear code C is a double skew constacyclic code if and only if it is a left

R[x,Θ]−submodule of the left-module R
ά,β́,´́α,´́β

.

Proof. Assume that C is a double skew constacyclic code. Let c ∈ C, and let the associated

polynomial of c be c(x) = (é(x), ŕ(x) | ´́e(x), ´́r(x)). Since xc(x) is an ń´́n−skew constacyclic

shift of c. (See Remark ??), then xc(x) ∈ C. Further, by the linearity of C, it follows that

h(x)c(x) ∈ C, for any h(x) ∈ R[x,Θ]. Therefore C is a left R[x,Θ]−submodule of R
ά,β́,´́α,´́β

.

Converse is straightforward.

4.7 New linear codes over Z4

Codes over Z4, sometimes called quaternary codes as well, have a special place in coding theory.

Due to their importance, a database of quaternary codes was introduced in [?] and it is available

online [?]. Hence we consider the case q = 4 to possibly obtain quaternary codes with good

parameters. We conducted a computer search using Magma software [?] to find skew cyclic

codes over Z4(Z4 +uZ4) whose Gray images are quaternary linear codes with better parameters

than the currently best known codes. We have found ten such codes which are listed in the

table below.

The automorphism of R = Z4 + uZ4 that we used is Θ(a + bu) = a + 3bu = a − bu. In

addition to the Gray map given in Section 4.1, there are many other possible linear maps
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from Z4 + uZ4 to Z`4 for various values of `. For example, the following map was used in [?]

a+ bu→ (b, 2a+ 3b, a+ 3b) which triples the length of the code. We used both of these Gray

maps in our computations, and obtained new codes from each map.

We first chose a cyclic code Cα over Z4 generated by gα(x). The coefficients of this polynomial

is given in ascending order of the terms in the table. Therefore, the entry 31212201, for exam-

ple, represents the polynomial 3+x+2x2 +x3 +2x4 +2x5 +x7. Then we searched for divisors of

xβ−1 in the skew polynomial ring R[x,Θ] where R = Z4+uZ4 and Θ(a+bu) = a−bu. For each

such divisor gβ(x) we constructed the skew cyclic code over Z4R generated by (gα(x), gβ(x))

and its Z4-images under each Gray map described above. As a result of the search, we obtained

ten new linear codes over Z4. They are now added to the database ([?]) of quaternary codes.

In the table below, which Gray map is used to obtain each new code is not explicitly stated,

but it can be inferred from the values of α, β and n, the length of the Z4 image. If n = α+ 2β,

then it is the map given in section 4.1 and if n = α+ 3β it is the map described in this section.

For example, the second code in the table has length 57 = 15 + 3 · 14. This means that the

Gray map that triples the length of a code over R is used to obtain this code.

When xβ−1 = g(x)h(x) we can use either the generator polynomial g(x) or the parity check

polynomial h(x) to define the skew cyclic code over R. For the codes given in the table below

we used the parity check polynomial because it has smaller degree. In general a linear code C

over Z4 has parameters [n, 4k12k2 ], and when k2 = 0, C is a free code. In this case C has a

basis with k vectors just like a linear code over a field. All of the codes in the table below are

free codes, hence we will simply denote their parameters by [n, k, d] where d is the Lee weight

over Z4.

Our computational results suggest that considering skew cyclic and skew constacyclic codes

over Zq(Zq + uZq) is promising to obtain codes with good parameters over Zq.
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Table 4.1: New quaternary codes

α β gα gβ Z4 Parameters

15 14 31212201 x4 + (u+ 1)x3 + x2 + (3u+ 2)x+ 3u+ 3 [43, 8, 26]

15 14 31212201 x4 + (u+ 1)x3 + x2 + (3u+ 2)x+ 3u+ 3 [57, 8, 38]

15 14 3021310231 x3 + 2ux2 + (3u+ 3)x+ 2u+ 3 [43, 6, 30]

15 14 3021310231 x3 + 3x2 + (3u+ 2)x+ 1 [57, 6, 42]

7 14 3121 x4 + (3u+ 3)x3 + 3x2 + (u+ 2)x+ 3u+ 3 [35, 8, 20]

7 14 3121 x4 + (u+ 3)x3 + (u+ 1)x2 + (u+ 2)x+ 3u+ 3 [49, 8, 32]

7 14 12311 x3 + (2u+ 1)x2 + 3ux+ 3u+ 3 [35, 6, 22]

7 14 12311 x3 + (2u+ 1)x2 + ux+ u+ 1 [35, 6, 24]

7 14 12311 x3 + ux2 + (3u+ 3)x+ 1 [49, 6, 35]

7 14 12311 x3 + (u+ 2)x2 + x+ 1 [49, 6, 36]



Chapter 5

Zq(Zq + uZq + . . . + um−1Zq)− Linear

cyclic and constacyclic codes

In this chapter, we study cyclic and constacyclic codes over the ring Zq(Zq+uZq+. . .+um−1Zq),

where q = ps, p is a prime and um = 0. We give the definition of these codes as subsets of

the ring Zq(Zq + uZq + . . . + um−1Zq). These codes can be identified as submodules of the

<[x]−module Zq[x]/〈xα− 1〉×<[x]/〈xα−λ〉, were < = Zq +uZq + . . .+um−1Zq. Apart of this

chapter appeared in [?].

5.1 Linear codes over the ring <

In this section, we introduce and study cyclic and constacyclic codes over the ring < = Zq +

uZq + . . . + um−1Zq, where q is a prime power and um = 0. We generalize the structure and

properties from [?] to codes over Zq + uZq + . . . + um−1Zq. Hence the proofs of many of the

theorems will be omitted.

5.1.1 Cyclic codes over the ring <

Consider the ring < = Zq + uZq + . . . + um−1Zq, where q = ps, p is a prime and um = 0. The

ring < is isomorphic to the quotient ring Zq[u]/ 〈um〉. The ring < is a commutative not chain

69
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ring with maximal ideal 〈p, u〉. Each element r of < can be expressed uniquely as

r = r0 + ur1 + . . .+ um−1rm−1, where ri ∈ Zq, i = 0, 1, . . .m− 1.

Definition 5.1. A linear code Cβ of length β over the ring < is <−submodule of <β.

Next we define the cyclic codes over the ring <. Let ρ be the standard cyclic shift operator

on <β.

A linear code Cβ of length β over < is cyclic if

ρ(c0, c1, . . . , cβ−1) = (cβ−1, c0, . . . , cβ−2) ∈ Cβ

whenever

(c0, c1, . . . , cβ−) ∈ Cβ.

We introduce an inner product on (Zq +uZq + . . .+um−1Zq)β. Further, the Euclidean inner

product defined by

〈v′, w′〉 =
β−1∑
i=0

v′iw
′
i,

for v′ = (v′0, v′1, . . . , v′β−1) and w′ = (w′0, w′1, . . . , w′β−1) in <β.

Definition 5.2. Let C be a linear code over < of length β. then we define the dual of C
β

as

C⊥β = {v′ ∈ <β|〈v′, w′〉 = 0,∀w′ ∈ Cβ}.

Lemma 5.1. Let Cβ be a code of length β over <. Then Cβ is cyclic if and only if C⊥β is cyclic

over < of length β.

Proof. Let v′ = (v′0, v′1, . . . , v′β−1) ∈ Cβ and w′ = (w′0, w′1, . . . , w′β−1) ∈ C⊥β be two arbitrary

elements. Since Cβ is cyclic code,

ρβ−1(v′) = (v′1, v′2, . . . , v′β−1, v
′
0) ∈ Cβ.
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Then, we have
0 = 〈ρβ−1(v′), w′〉

= 〈(v′1, v′2, . . . , v′β−1, v
′
0), (w′0, . . . , w′β−1)〉

= 〈(v′1, v′2, . . . , v′β−1, v
′
0), (w′0, . . . , w′β−1)〉

= v′0w
′
β−1 +

β−1∑
j=1

v′jw
′
j−1

= 〈ρβ−1(w′), v′〉

This implies that, ρ(w′) ∈ C⊥β . Then Cβ is a cyclic code. The converse follows from the fact

that (C⊥β )⊥ = Cβ.

5.1.2 Constacyclic codes over the ring <

In this subsection, we define the λ−constacyclic codes over the ring <. Let ρλ be the standard

λ−constacyclic shift operator on <β. A linear code Cβ of length β over < is cyclic if

ρλ(c0, c1, . . . , cβ−1) = (λcβ−1, c0, . . . , cβ−2) ∈ Cβ

whenever

(c0, c1, . . . , cβ−) ∈ Cβ.

Lemma 5.2. Let Cβ be a code of length β over <. Then Cβ is λ−constacyclic if and only if

C⊥β is λ−1−constacyclic over < of length β..

Proof. Let v′ = (v′0, v′1, . . . , v′β−1) ∈ Cβ and w′ = (w′0, w′1, . . . , w′β−1) ∈ C⊥β be two arbitrary

elements. Since Cβ is cyclic code,

ρβ−1
λ (v′) = (λv′1, λv′2, . . . , λv′β−1, v

′
0) ∈ Cβ.

Then, we have
0 = 〈ρβ−1

λ (v′), w′〉

= 〈(λv′1, λv′2, . . . , λv′β−1, v
′
0), (w′0, . . . , w′β−1)〉

= λ〈(v′1, v′2, . . . , v′β−1, λ
−1v′0), (w′0, . . . , w′β−1)〉

= λ(λ−1v′0w
′
β−1 +

β−1∑
j=1

v′jw
′
j−1)

= λ〈ρβ−1
λ−1 (w′), v′〉
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This implies that, ρ−1
λ (w′) ∈ C⊥β . Then Cβ is a λ−1−constacyclic code. The converse follows

from the fact that (C⊥β )⊥ = Cβ.

5.2 Linear codes over ring Zq<

In this section, we present some basic results on linear codes over the ring Zq(Zq + uZq + . . .+

um−1Zq).

Let n = α+mβ where α and β are positive integers. We consider the ring Zq with q elements

and the ring < = Zq + uZq + . . .+ um−1Zq, where um = 0. We construct the ring

Zq< = {(e, r)|e ∈ Zq and r ∈ <}.

The ring Zq< is not an <− module under the operation of standard multiplication.

To make the ring Zq< an <− module, this is an extension of the following result due to

Abualrbub [?].

η : Zq< → Zq
r0 + ur1 + . . .+ um−1rm−1 7→ η(r0 + ur1 + . . .+ um−1rm−1) = r0.

For d ∈ <, the multiplication is defined as

d ∗ (e, r) = (η(d)e, de2r).

This multiplication can be generalized over the ring ZαqRβ in the following way:

for any d ∈ < and v = (e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ Zαq<β define

dv = (η(d)e0, η(d)e1, . . . , η(d)eα−1, dr0, dr1, . . . , drβ−1).

The following results are analogous to the ones obtained in [?,?] for the ring Z2(Z2 + uZ2).

Lemma 5.3. The ring Zαq<β is an <-module under the above definition.

Lemma ?? allows us to give the next definition.

Definition 5.3. A non-empty subset C of Zαq<β is called a Zq<-linear code if it is an <-

submodule of Zαq<β.
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The following results and definitions are analogous to the ones obtained in [?].

Let C be a Zq<-linear code and let Cα (respectively Cβ) be the canonical projection of C on

the first α (respectively on the last β) coordinates. Since the canonical projection is a linear

map, Cα and Cβ are linear codes over Zq and over < of length α and β, respectively. A code

C is called separable if C is the direct product of Cα and Cβ, i.e.,

C = Cα × Cβ.

We introduce an inner product on Zαq<β. For any two vectors

v = (v0, . . . , vα−1, v
′
0, . . . , v

′
β−1), w = (w0, . . . , wα−1, w

′
0, . . . , w

′
β−1) ∈ ZαqRβ

let

〈v, w〉 = um−1
α−1∑
i=0

viwi +
β−1∑
j=0

v́jẃj.

Let C be a Zq<-linear code. The dual of C is defined by

C⊥ = {v ∈ Zαq<β; 〈v, w〉 = 0,∀w ∈ C}.

If C = Cα × Cβ is separable, then

C⊥ = C⊥α × C⊥β . (5.1)

5.3 Zq<− Linear cyclic codes

In this section give some useful results on cyclic codes over Zαq<β. Let

ZαqRβ = {(e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1)|e0, e1, . . . , eα−1 ∈ Zq and r0, r1, . . . , rβ−1 ∈ <}.

A nonenempty sebset C of Zαq<β is called a Zq<−linear code if C is an <−submodule of Zαq<β.

Definition 5.4. Sebset C of Zαq<β is called Zq<−linear cyclic codes if

1. C is a linear code.



5. Zq(Zq + uZq + . . . + um−1Zq)− Linear cyclic and constacyclic codes 74

2. If

(e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ C

then

(eα−1, e0, . . . , eα−2, rβ−1, r0, . . . , rβ−2) ∈ C.

In polynomial representation, the codewords (eα−1, e0, . . . , eα−2, rβ−1, r0, . . . , rβ−2) of cyclic

code consisting of two polynomials

c(x) =

 e0 + e1x+ . . .+ eα−1x
α−1,

r0 + r1x+ . . .+ rβ−1x
β−1


= (e(x), r(x)) ∈ Zq[x]/〈xα − 1〉 × <[x]/〈xβ − 1〉.

Let

f(x) = f0 + f1x+ . . .+ ftx
t ∈ < [x]

and let

(g(x), h(x)) ∈ Zq[x]/〈xα − 1〉 × <[x]/〈xβ − 1〉

the multiplucation is defined by tha basic rule

f(x) ∗ (g(x), h(x)) = (η(f(x))g(x), f(x)h(x)).

Where

η(f(x)) = η(f0) + η(f1)x+ . . .+ η(f1)xt.

The multiplication above is well-defined. Moreover, Zq[x]/〈xα − 1〉 × <[x]/〈xβ − 1〉 is an <[x]-

module with respect this muliplucation.

Theorem 5.1. Let C be a linear code over Zq< of length (α, β), and let C = Cα × Cβ, where

Cα is linear code over Zq of length α and Cβ is linear code over < of length β. Then C is a

cyclic code if and only if Cα is a cyclic code over Zq and Cβ is a cyclic code over <.

Proof. Let (e0, e1, . . . , eα−1) ∈ Cα and let (r0, r1, . . . , rβ−1) ∈ Cβ. If C = Cα × Cβ is a cyclic

code, then

(eα−1, e0, . . . , eα−1, rβ−1, r0, . . . , rβ−1) ∈ C,
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then

(eα−1, e0, . . . , eα−1) ∈ Cα

and

(rβ−1, r0, . . . , rβ−1) ∈ Cβ.

Hence, Cα is a cyclic code over Zq and Cβ is a cyclic code over <.

On the other hand, suppose that Cα is a cyclic code over Zq and Cβ is a cyclic code over <.

Note that

(eα−1, e0, . . . , eα−1) ∈ Cα

and

(rβ−1, r0, . . . , rβ−1) ∈ Cβ.

Since C = Cα × Cβ, then

(eα−1, e0, . . . , eα−1, rβ−1, r0, . . . , rβ−1) ∈ C,

so C is a cyclic code over Zq<.

Corollary 5.1. Let C = Cα × Cβ is cyclic over Zq<, then its dual code C⊥ is also cyclic and

moreover we have C = C⊥α × C⊥β .

Proof. From Equation (??), we have C⊥ = C⊥α × C⊥β . According to Lemma (??), we have C⊥β
cyclic code over R. On the other hand, we know that the dual code of evry cyclic code over Zq
is also cyclic. Hence the dual codes C⊥ is cyclic over Zq<.

5.4 Zq<− Linear constacyclic codes

In this section, we study constacyclic codes over Zq<. And we show that Zq<−linear consta-

cyclic code of length (α, β) can be identified as <[x]-submodules of Zq[x]/〈xn−1〉×<[x]/〈xn−λ〉,

where λ be an unit in <. Now we are ready to define the constacyclic codes over Zαq<β. We

start by the following Definition.
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Definition 5.5. A linear code C over ZαqRβ is called constacyclic code if C satisfies the fol-

lowing two conditions.

(i) C is an <−submodule of Zαq<β,

(ii)

(eα−1, e0, . . . , eα−2, λrβ−1, r0, . . . , rβ−2) ∈ C

whenever

(e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) ∈ C

In polynomial representation, each codeword c = (e0, e1, . . . , eα−1, r0, r1, . . . , rβ−1) of a con-

stacyclic code can be represented by a pair of polynomials

c(x) =
(
e0 + e1x+ · · ·+ eα−1x

α−1, r0 + r1x+ · · ·+ rβ−1x
β−1

)
= (e(x), r(x)) ∈ Zq[x]/〈xα − 1〉 ×R[x]/〈xβ − λ〉.

Let h(x) = h0 +h1x+ · · ·+htx
t ∈ R [x] and let (f(x), g(x)) ∈ Zq[x]/〈xα−1〉×<[x]/〈xβ−λ〉.

The multiplication is defined by the basic rule

h(x)(f(x), g(x)) = (η(h(x))f(x), h(x)g(x)),

where η(h(x)) = η(h0) + η(h1)x+ · · ·+ η(ht)xt.

Theorem 5.2. Let C be a linear code over Zq< of length (α, β), and let C = Cα × Cβ, where

Cα is linear code over Zq of length α and Cβ is linear code over < of length β. Then C is a

λ− constcyclic code if and only if Cα is a cyclic code over Zq and Cβ is a λ−constcyclic code

over <.

Proof. Let (e0, e1, . . . , eα−1) ∈ Cα and let (r0, r1, . . . , rβ−1) ∈ Cβ. If C = Cα × Cβ is a λ−

constcyclic code, then

(eα−1, e0, . . . , eα−1, λrβ−1, r0, . . . , rβ−1) ∈ C,



5. Zq(Zq + uZq + . . . + um−1Zq)− Linear cyclic and constacyclic codes 77

then

(eα−1, e0, . . . , eα−1) ∈ Cα

and

(λrβ−1, r0, . . . , rβ−1) ∈ Cβ.

Hence, Cα is a cyclic code over Zq and Cβ is a λ−constcyclic code over <.

On the other hand, suppose that Cα is a cyclic code over Zq and Cβ is a λ− constcyclic code

over <. Note that

(eα−1, e0, . . . , eα−1) ∈ Cα

and

(λrβ−1, r0, . . . , rβ−1) ∈ Cβ.

Since C = Cα × Cβ, then

(eα−1, e0, . . . , eα−1, λrβ−1, r0, . . . , rβ−1) ∈ C,

so C is a λ−constcyclic code over Zq<.

Corollary 5.2. Let C = Cα × Cβ be a λ−constacyclic code over Zq<. Then the dual code

C⊥ = C⊥α × C⊥β of C is a λ−1-constacyclic code over Zq<.

Proof. From Equation (??), we have C⊥ = C⊥α ×C⊥β . Clearly, if Cα is a constacyclic code over

Zq then C⊥α is also a constacyclic code over Zq. Moreover, from Lemma(??), we have C⊥β is a

λ−constacyclic code over R. Hence the dual code C⊥ is λ−1−constacyclic over Zq<.



Conclusion and perspectives

In this thesis we were able solve certain problems in the theory of correcting codes, especially

the construction of certain type of codes over some finite rings.

In the first part of this thesis we present several kinds of construction of formally self-dual

codes over Ak = F2 [v1, . . . , vk] / 〈v2
i = vi, vivj = vjvi〉.

In the second part, LCD codes and formally self-dual codes were considered over the ring

R = Fq + vFq + v2Fq, where v3 = v, for q odd. Conditions were given on the existence of LCD

codes and constructions presented for LCD and formally self-dual codes over R. Some of the

results presented can easily be generalized to codes over some Frobenius rings such as those in

[?]. As an extension of the results in [?], we gave bounds on LCD codes over Fq, and these

used to obtain bound on LCD codes over R. Thus lower bounds on LCD codes over Fq are

also lower bounds on LCD codes over R. LCD codes were presented which were constructed

from weighing matrices. It will be interesting to construct LCD codes from other combinatorial

objects. Further, it should be possible to obtain a linear programming bound for codes over R.

In the third part, skew constacyclic codes are considered over the ring ZqR, where R =

Zq + uZq, q is a prime power and u2 = 0 and their algebraic and structural properties are

studied. Considering their Gray images, we obtained some new linear codes over Z4 from skew

cyclic codes over ZqR. Moreover, we generalized these codes to double skew constacyclic codes.

In the fourth part, cyclic and constacyclic codes are considered over the ring Zq(Zq + uZq +

. . .+um−1Zq), where q is a prime power and um = 0 and their algebraic and structural properties

are studied.

Further research objective will include:

78
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. Finding other applications of codes over rings such as code for DNA computing with good

combinatorial and thermodynamical properties.

. Exploring other kind of Frobenuis ring to construct optimal codes.

. Another approach is to use codes over rings for secret sharing or cryptographical purpose.

For example new kind of secret sharing different from the one given in [?].



Appendix A

Appendix

A.1 Coding theory

A.1.1 Linear codes over finite fields

Let Fq be the finite field of q elements. A linear codes C over Fq, is defined as a k−dimensional

vector subspace of Fnq , and C called an [n, k] linear code over Fq, with length n and dimension

k. An element of C is called a word of C. Any matrix whose rows form a basis for C is called

a generator matrix for C. Since C is of dimension k and length n, then a generator matrix is

of type k × n, and then |C| = qk.

We can define over Fnq a metric d(., .) called Hamming distance, defined by

d(x, y) = |{i xi 6= yi}|,

where x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) are vectors of Fnq . The Hamming weight

w(x) of a codeword x is the number of nonzero coordinates x

w(x) = d(x, 0).

The minimum distance of a C ⊂ Fnq code is given by

d(C) = min{d(x, y) | x, y ∈ C, x 6= y}.

80
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The minimum weight of a C code is

w(C) = min{w(x) | x ∈ C, x 6= 0}.

A [n, k] linear code C of minimal distance d is called a [n, k, d]−code.

Remark A.1. In a linear code the minimum distance is equal to then minimal weight.

A.1.2 The duality of linear codes

We will use the following definition of the inner product in Fnq × Fnq .

Definition A.1. Let C be a [n, k] linear code in Fnq . The dual code of C is the orthogonal of

the usual e inner product defined over Fnq × Fnq by

〈x, y〉 = x0y0 + x1y1 + . . .+ xn−1yn−1,

where x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) in Fnq . This code is noted C⊥ and is

defined by

C⊥ = {x ∈ Fnq ; 〈x, y〉 = 0 for all y ∈ C}.

Example A.1. On F2 if C = {000, 111}, then C⊥ = {000, 011, 110, 101}.

If C is an [n, k] code in Fnq , then the dual code C⊥ of C is a linear [n, n− k] code.

A.1.3 Self-dual codes

If C ⊆ C⊥ then C is called self-orthogonal and if C = C⊥, then C is called self-dual code. In

this case must be a [n, n/2] code with n even; it is reach for a linear code C we have

dimC + dimC⊥ = n.

Then a [n, k] linear code is self-dual if and only if it is self-orthogonal with k = n/2.
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A.2 Cyclic codes over finite fields

Cyclic codes play a very important role in the coding theory. We give in this section some

useful results on cyclic codes over finite field.

Definition A.2. A linear code C of length n over Fq is cyclic code if C satisfies the property

that:

(c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C.

It is well known that cyclic codes of length n over Fq can be considered ideals in the quotient

ring Rn = Fq [x]
〈xn−1〉 via the following Fq-module isomorphism

Fnq → Fq [x] /〈xn − 1〉

(c0, c1, . . . , cn−1) 7→ c0 + c1x+ . . .+ cn−1x
n−1

The shift to the right is nothing more than the multiplication by x and then a cyclic code

C is an ideal of Rn. Since Rn is a principal ideal ring and then is an ideal of Rn generated by

a polynomial g(x). We summarize the properties of cyclic codes in the following lemma

Lemma A.1. For a cyclic linear code C over the finite field Fq there exists a unique monic

polynomial g of minimal degree such that the following hold:

1. C is generated by g in Fq[x]/〈xn − 1〉

2. g is a divisor of xn − 1 in Fq[x].

3. If the dimension of the code C is K, the generator polynomial has degree n− k.

Using the coefficients of the generator polynomial, the generator matrix can given by

G =



g

xg
...

xkg


=



g0 g1 . . . gn−1 0 . . . 0

0 g0 . . . gn−k−1 gn−k 0 . . .
... . . . ... . . . ...

0 . . . 0 g0 g1 . . . gn−k


, (A.1)
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Let C be an [n, k] cyclic code with a generator g(x) =
n−k∑
i=0

gix
i. Since g(x) is a divisor of

xn − 1. Hence

xn − 1 = g(x)h(x)

for some h(x) of degree k. Where h(x) is called the check polynomial of C.

Proposition A.1. [?, Proposition 3] Let h(x), g(x) be, respectively, the parity-check and the

generator polynomial of the cyclic code C. The dual code C⊥ is cyclic with generator polynomial

g⊥ = xdeg(h)h(x−1).

A.3 Skew cyclic codes over finite fields

In this section we want to generalize the notion of cyclic codes over Fq to the notion of θ−cyclic

codes. The following results are analogous to the ones obtained in [?].

Definition A.3. Let Fq be a finite field and θ an automorphism of Fq. A skew cyclic code is

a linear code satisfies the property that

c = (c0, c1, . . . , cn−1) ∈ C ⇒ σ(c) = (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C,

Where σ(c) is the skew cyclic shift of C.

Let θ an automorphism of Fq and let m be its order. Define the skew polynomial ring Fq[x; θ]

on the set

Fq[x; θ] = {cn−1x
n−1 + . . .+ c1x+ c0; ci ∈ Fq}.

The skew polynomial ring Fq[x, θ] is defined as the usual addition of polynomials and the

multiplication is defined by the rule

xa = θ(a)x.

The multiplication is extended to all elements in Fq[x, θ] by associativity and distributivity.

Further, an element g(x) ∈ Fq[x, θ] is said to be a right divisor (resp. left divisor) of f(x) if

there exists q(x) ∈ Fq[x, θ] such that

f(x) = q(x)g(x) ( resp. f(x) = g(x)q(x)).

In this case, f(x) is called a left multiple (resp. right multiple) of g(x).



A. Appendix 84

A.4 Constacyclic codes over finite fields

The class of constacyclic codes plays a significant role in the theory of error correcting codes.

These include cyclic and negacyclic codes, which have been well studied since 1950’s [?].

Throughout this section Fq denotes a finite field with q elements. The following results are

analogous to the ones obtained in [?] and [?].

Definition A.4. Let λ be a unit in Fq, a linear code C is called λ−constacyclic if

(c0, c1, . . . , cn−1) ∈ C ⇒ (λcn−1, c0, . . . , cn−2).

code of length n over Fq can be identified as an ideal in the quotient ring Fq[x]/〈xn− λ〉 via

the following Fq-module isomorphism

Fnq → Fq [x] /〈xn − λ〉

(c0, c1, . . . , cn−1) 7→ c0 + c1x+ . . .+ cn−1x
n−1

If λ = 1, λ−constacyclic codes are just cyclic codes.

Define the Euclidean inner product of u, v ∈ Fnq in the usual way: if u = (u1, u2, . . . , un) and

v = (v1, v2, . . . , vn). We say u and v are orthogonal if

〈u, v〉 = 0.

The dual of a linear code C in Fnq is

C⊥ = {u ∈ Fnq ; 〈u, v〉 = 0 for all y ∈ C}.

Theorem A.2. [?, Theorem 1] If C is a λ−constcyclic code over Fq, then C⊥ is a λ−1−constacyclic

code over Fq.

Corollary A.1. [?, Corollary 2] The only self-dual constacyclic codes over finite fields are

cyclic or negacyclic codes.
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A.5 Skew constacyclic codes over finite fields

Given an automorphism θ of Fq and a unit λ in Fq, a linear code C of length n over Fq is said

to be skew λ−constacyclic code if C is invariant under the skew λ−constacyclic

(c0, c1, . . . , cn−1) ∈ C ⇒ (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C,

code of length n over Fq can be identified as an ideal in the quotient ring Fq [x; θ] /〈xn − λ〉 via

the following Fq-module isomorphism

Fnq → Fq [x; θ] /〈xn − λ〉

(c0, c1, . . . , cn−1) 7→ c0 + c1x+ . . .+ cn−1x
n−1

In particular, such codes are called skew cyclic when λ = 1. When θ is the identity automor-

phism, they become classical constacyclic.

Theorem A.3. [?, Lemma 2] A code C in Fq[x; θ]/〈xn − λ〉 is a skew λ− constacyclic code if

and only if C is a left Fq[x; θ]− submodule of Fq[x; θ]/〈xn − λ〉.

Lemma A.2. [?, Lemma 3] Let C be a lef Fq[x; θ]− submodule of Fq[x; θ]/〈xn − λ〉. Then C

is a skew λ−constacyclic code generated by a monic polynomial with minimal degree in C.
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[13] N. Aydin, A. Halilović, A Generalization of Quasi-twisted Codes: Multi-twisted codes,

Finite Fields and Their Applications, 45, pp. 96–106, 2017.

[14] N. Aydin, I. Siap, New quasi-cyclic codes over F5, Appl. Math. Lett., 15 (7), pp. 833–836,

2002.

[15] N. Aydin, I. Siap and D. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes

and new linear codes, Designs, Codes and Cryptography, 24 (3), pp. 313–326, 2001.

[16] I. Aydogdu, T. Abualrub and I. Siap, Z2Z2[u]−cyclic and constacyclic codes, IEEE Trans-

actions on Information Theory, 63 (8), pp. 4883–4893, 2016.

[17] G. K. Bakshi, M. Raka, A class of constacyclic codes over a finite field, Finite Fields and

Their Applications, 18 (2), pp. 362–377, 2012.

[18] R. K. Bandi, M. Bhaintwal, A note on cyclic codes over Z4 + uZ4, Discrete Mathematics,

Algorithms and Applications, 8 (1), pp. 1–17, 2016.

[19] A. Batoul, K. Guenda, A. Kaya, and B. Yildiz, Cyclic isodual and formally self-dual codes

over Fq +vFq, European Journal of Pure and Applied Mathematics, 8(1), pp. 64–80, 2015.

[20] N. Bennenni, K. Guenda and S. Mesnager, DNA cyclic codes over rings, Adv. in Math. of

Comm., 11 (1), pp. 83–98, 2017.



Bibliography

[21] T. Blackford, Isodual constacyclic codes, Finite Fields and Their Applications, 24, pp.

29–44, 2013.

[22] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm.

Comput., 18(4), pp. 379–389, 2007.

[23] C. Carlet, S. Guilley, Complementary dual codes for counter-measures to Side-Channel

Attacks, Coding Theory and Applications CIM Series in Mathematical Sciences, 3, pp.

97-105.

[24] Y. Cengellenmis, A. Dertli and S. T. Dougherty, Codes over an infinite family of rings

with a Gray map, Des. Codes Cryptogr, 72, pp. 559–580, 2014.

[25] K. Chatouh, K. Guenda, T.A. Gulliver and L. Noui, Secret Sharing Schemes Based on Gray

Images of Linear Codes over Rq,m, International Conference on Coding and Cryptography

ICCC, USTHB, Algiers, Algeria, November 2–5, 2015.

[26] C. J. Colbourn, J. H. Dinitz, The Handbook of combinatorial theory, CRC Press, Nov.

2006.

[27] R. Daskalov, P. Hristov, New binary one-generator quasi-cyclic codes, IEEE Trans. Inf.

Theory, 49 (11), pp 3001–3005, 2003.

[28] R. Daskalov, P. Hristov and E. Metodieva, New minimum distance bounds for linear codes

over GF(5), Discrete Math., 275 (1–3), pp. 97–110, 2004.

[29] Database of Z4 Codes. [online] Z4Codes. info (Accessed March, 2018).

[30] H. Q. Dinh, A. K. Singh, S. Pattanayak and S. Sriboonchitta, Cyclic DNA codes over the

ring F2 + uF2 + vF2 + uvF2 + v2F2 + uv2F2, Designs, Codes and Cryptography, 86 (7), pp.

1451–1467, 2018.

[31] S. T. Dougherty, Formally self-dual codes and Gray mapes, Proceesings of the Interna-

tional Workshop on Algebraic and Combinatorial Coding Theory, pp. 136–141, Jun. 2012,

Pomorie, Bulgaria.



Bibliography

[32] S.T. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok and P. Solé, The combinatorics of LCD codes:

Linear Programming bound and orthogonal matrices, International Journal of Information

and Coding Theory, 4(2–3), pp. 116–128, 2015.
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[70] M. Shi, T. Yao, A. Alahmadi, and P. Solé, Skew cyclic codes over Fq + vFq + v2Fq, IEICE

Trans. Fundamentals, E98-A( 8), pp. 1845–1848, 2015.

[71] J. J. Watkins, Topics in commutative ring theory, Princeton University press, 2007.

[72] B. Yildiz, N. Aydin, Cyclic codes over Z4 + uZ4 and their Z4-images , Int. J. Information

and coding Theory, 2 (4), pp. 226–237, 2014.

[73] S. Zhu and L. Wang, A class of constracyclic codes over Fp + vFp and its Gray image,

Discrete Mathematics, 311( 23-24), pp. 2677–2682, 2011.


	 Introduction
	Preliminaries
	Notions in ring theory
	Ring homomorphism
	Ideal and quotient rings
	Maximal and prime ideals
	Finite chain ring
	Module
	Free module
	Frobenius rings
	Chinese remainder theorem
	Polynomial rings

	Linear codes over finite rings
	The parameters of a code defined over ring  R 
	Codes over some rings
	Linear codes over the ring Fq+vFq+v2Fq 
	Linear codes over the ring Zq+u Zq 


	 Formally self-dual codes over Ak 
	Linear codes over the ring  Ak  
	Gray map
	Dual codes over  Ak 

	Different constructions of formally self-dual codes over Ak 

	On codes over Fq+vFq+v2Fq
	LCD codes over R
	Existence of LCD codes over R
	LCD codes from Weighing Matrices
	General construction of LCD codes

	Construction of formally self-dual codes over R
	Construction of LCD formally self-dual codes over R

	Bounds on LCD codes

	 Zq(Zq+uZq)-Linear skew constacyclic codes
	Skew polynomial ring over R
	Skew constacyclic codes over R
	 The dual of skew constacyclic codes over  R  

	ZqR-Linear skew constacyclic codes
	Gray images of skew constacyclic codes over ZqR 
	The generators and the spanning sets for ZqR-skew constacyclic codes
	Double skew constacyclic codes over ZqR 
	New linear codes over Z4

	Zq(Zq+uZq+ …+um-1Zq)- Linear cyclic and constacyclic codes
	Linear codes over the ring 
	Cyclic codes over the ring 
	Constacyclic codes over the ring 

	Linear codes over ring Zq 
	 Zq- Linear cyclic codes
	 Zq- Linear constacyclic codes

	Conclusion and perspectives
	Appendix
	Coding theory
	Linear codes over finite fields
	The duality of linear codes
	Self-dual codes

	Cyclic codes over finite fields
	Skew cyclic codes over finite fields
	Constacyclic codes over finite fields
	Skew constacyclic codes over finite fields

	Bibliography

