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Title: Stabilization of some evolution systems with time delays

Abstract:

In this thesis, we study stability problems for some evolution equations (wave equation, Schrodinger
equation) with delay terms in the (linear or nonlinear) boundary or internal feedbacks. Under some
assumptions, uniform decay rates for the solutions are established. Some of these results are obtained
by introducing appropriate energies and by proving observability like inequalities, whereas the others
are deduced from estimates for suitable Lyapunov functionals.
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Introduction

The delay is defined as the time between instant of application of action on the system and the mo-
ment of its reaction.

Time delay appears in various systems such as biological, chemical, engineering and physical systems
(see [31], [10], [58], 2], [3], (73], [4], [81], [5], [6], [1].[76])-

The most classic example of time delay systems is the shower presented in Figure 1 (see [85]), where
the water temperature results for mixing between cold and hot water. The user wishes to obtain the
desired temperature as quickly as possible, while taking into account the time produced by transport
through the tap to the shower head. This time is a delay which depends on the water pressure and
the length of the pipe.

— the shower head
.-"lllI Il\.
the pipe

hot water cold water

Figure 1. Sketch of a shower system

The stability analysis of control systems governed by ordinary differential equation subjected to con-
stant or time-varying delay has been one of the main interests for many researchers in systems theory
(see [37], [67], [72], [29], [82]). Two methods were proposed to derive delay dependent or delay in-
dependent stability conditions; one is based on Lyapunov-Razumikhin functionals whereas the other
uses Lyapunov-Krasovskii functionals.

Stability problems for PDE systems with time delays have also been the subject of extensive studies
and this since the pioneering work of Datko et al [24] on the effect of time delays in feedback stabiliza-
tion of the wave equation. Below, we review some of the most relevant publications regarding stability
problems for specific delayed partial differential equations, namely wave equation and Schrodinger
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equation. In [24] the authors considered the following system

U (2, 1) — Ugg(x,t) + 20us(z,t) + au(z,t) =0, O0<z<1l, t>0,
u(0,) =0, t>0, (1)
uzp(1,t) = —kug(1,t — 1), t>0,

with a, k are positive constants. They proved that, if k satisfies

62a+1

k< —5——
e?® +1

the system is stable for all sufficiently small delays. However, if

e 4+ 1

k> ———
e?e +1

they constructed a set D such that for each 7 € D system admits an exponentially increasing
solution.

Similar results were obtained in Datko [23| for the two-dimensional wave equation with damping
introduced through Neumann-type boundary conditions on one edge of a square boundary and the
Euler Bernoulli beam equation in one dimension with damping introduced through a specific set of
boundary conditions on the right end point.

Xu et al [83] studied the stability of the one-dimensional wave equation with a constant time delay
term in the boundary feedback

Ut — Ugy = 0, O<ax<l1l, t>0,

u(0,t) = 0, t>0,

uzp(1,t) = —kpus — k(1 — p)ue(1,t —7), t>0, (2)
u(z,0) = up(x), u(x,0) = ui(x), 0<z<l1

w(1,t —7) = f(t —71), t e (0,7).

where £ > 0. They proved by adopting a spectral analysis approach that the system (2| is exponentially
1

stable when y > 5 and unstable if p < % For the case u = % they showed that the system is
asymptotically stable for some delays.

Nicaise and Pignotti [62] extended this result to a multidimensional wave equation with a delay term in
the boundary or internal feedbacks. Under appropriate assumptions they established the exponential
stability of the solution by introducing a suitable energy function and by using an observability
inequality deduced from Carleman estimates for the wave equation [48]. On the contrary if one
of the assumptions is not satisfied they proved the existence of a sequence of delays for which the
corresponding solution is not stable.

Ammari et al [7] considered the boundary stabilization problem for the wave equation with interior
delay. Under Lions geometric condition, they showed an exponential stability result provided that the
delay coefficient is small enough.

Nicaise et al ([66], [64]) derived, by introducing an appropriate Lyapunov functional, necessary and

explicit conditions that guarantee the exponential stability of the solution of the wave equation with
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a time-varying delay term in the boundary feedback.

The asymptotic bahaviour of the solution of the wave equation with a nonlinear time-varying delay
term in the nonlinear boundary or internal feedbacks has been investigated in [13], [64] and [52].
In |70], the authors considered compactly coupled wave equations with a delay term in the internal
or boundary feedbacks. Using Carleman estimates for coupled wave equations due to Lasiecka and
Triggiani [46], they established stability results in appropriate energy space.

In all the works mentioned above, it is assumed that the delay is concentrated at a fixed time. The
case of the wave equation with distributed delay has been studied in [63] where stabilization results
are given.

For the Schrodinger equation with time delay several studies have been done, see for example [30],
[20], [18] and [65]. We state in particular, the reference [65] where stability and instability results
were established for the multi-dimensional Schrodinger equation with a delay term in the boundary
or internal feedbacks.

The aim of this thesis is to provide further results on stability of the wave and the Schrodinger
equations with time delays. The main body of this work consists of six chapters. In the first chapter,
we gather the main tools used throughout this thesis. We recall some basic features of semigroups of
linear and nonlinear operators and their applications to abstract Cauchy problems in Hilbert spaces.
We also define the stability concepts for abstract Cauchy problems we are interested in and give some
of their characterizations.

In the second chapter, we study the stability of the wave equation with a delay term in the nonlinear
boundary or internal feedbacks. Under suitable assumptions, global existence and uniform decay
rates for the solutions are established. The proof of existence of solutions relies on a construction of
suitable approximating problem for which the existence of solution will be established using nonlinear
semigroup theory and then passage to the limit gives the existence of solutions to the original problem.
The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the
energy function and by establishing a comparison theorem which relates the asymptotic behaviour of
the energy and of the solutions to an appropriate dissipative ordinary differential equation.

Chapters three, four and five are devoted to the Schrodinger equation defined on an open bounded
domain €2 of R™ with a delay term and subject to a dissipative feedback. In chapter three, we consider
the case of the equation with a delay term in the nonlinear internal or boundary feedbacks. We show
that it is well-posed in L?(f2) by adopting a nonlinear semigroup theory approach. Moreover, we
prove that it is stable in L?(£2) with uniform decay rates described, as in chapter two, by a dissipative
ordinary differential equation.

Chapter four analyzes the case of the equation with interior delay and a boundary feedback acting
on the Neumann boundary condition while homogeneous boundary condition of Dirichlet type are
imposed on the complementary part. Under Lions geometric assumption, exponential stability of the
solution in the energy space H%l (€2) is established on condition that the delay coefficient is sufficiently
small. The proof uses multipliers technique and a suitable Lyapunov functional.

Chapter five deals with the case where the boundary or the internal feedback contains a delay term of
distributed type. If some hypothesis are satisfied, it is proved that the solution decays exponentially
in appropriate energy spaces. These results are obtained by showing some observability estimates.



INTRODUCTION iv

In Chapter six, we consider a system of compactly coupled wave equations with distributed delay terms
in the boundary or internal feedbacks. In both cases, we establish that the semigroup generating
the dynamics of the closed-loop system is exponentially stable. The approach we adopt combines
Carleman estimates for coupled non-conservative hyperbolic systems due to Lasiecka and Triggiani
[46] and compactness-uniqueness argument.



Notation

= is the equal by definition

— designates the convergence

— continuous and dense injection

\Y% stands for the gradient operator

A is the Laplace operator

div is the divergence operator

N set of the positive integers

R set of the real numbers

C set of the complex numbers

Q open bounded domain of R™

r the sufficiently smooth boundary of €2

C>*(Q) the space of infinitely differentiable functions in €2

D(9Q) the space of C*°(Q) functions with compact support in €2
D'(Q2) the distributions space on

D(A) domain of the operator A

X' dual space of X



ISy,

LP(Q)

L=(Q)

L2

loc

([0, 0); X)

Wk’p(Q)
C([07 OO),X)

C([0, 0); X)

inner product

the absolute value for the real number
or modulus for the complex number

the norm

bounded linear operators from X to X
real part

imaginary part

complex conjugate number

class of Lebesgue measurable complex (or real)
-valued functions with [, [u(z)[P dz < 00;1 < p < 00

class of bounded measurable functions from 2
to C or R with |u(z)| < C a.e in Q

class of functions which are in L?((a, b); X)
for all a,b € [0, 00)

Sobolev space of order k
class of continuous functions from [0, c0) to X

class of continuously differentiable functions from
[0,00) to X



Chapter 1

Preliminaries

In this chapter, we recall for later use some well know results from the theory of semigroups of linear
and nonlinear operators and existence results for abstract Cauchy problems in Hilbert spaces. We
also define the stability concepts for abstract evolution equations in Hilbert spaces we are interested

in and provide some of its characterizations.

1.1 Semigroups of continuous linear operators

Let X be a Hilbert space.

Definition 1.1. A one-parameter family S(t) for 0 <t < oo of L(X) is a Co—(or strongly continu-

ous) semigroup on X if
(a) S(t+s)=S(t)S(s) for everyt,s>0.
(b) S(0) =1, (Iis the identity operator in X ).
(c) im0 [|S(t)x —z|| =0 forallx e X.

Definition 1.2. Let S(t) be a Cy—semigroup defined on X. The infinitesimal generator A of S(t) is
the linear operator defined by

Ax = }lLiL%(S(h)x —x)/h, for x € D(A)

where D(A) = {z € X;lim,_,o(S(h)x — z)/h exists in X}.

Theorem 1.1. (Engel and Nagel [26]) Let S(t) be a semigroup. There exist constants w € R and
M > 1 such that the following holds:

IS < Me".

If w=0 and M =1, then S(t) is called a Cy—semigroup of contraction.
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Theorem 1.2. (Lumer-Phillips) (Pazy [69]) A linear operator A : D(A) C X — X generates a
strongly continuous semigroup of contractions (S(t))i>0 on X if and only if A is m-dissipative, i.e.,
it satisfies

e Re(Ax,z), <0, Vz € D(A),
e M — A is onto for some (hence all) A > 0.

Proposition 1.3. ( Curtain and Zwart [22]). Sufficient conditions for a closed, densely defined
operator on X to be the infinitesimal generator of a Cy-semigroup satisfying ||S(t)|| < e“t are:

Re (Az,z) < w||z|®> forz € D(A);
Re (A*z,z) < w|z||® for z € D(A").

1.2 Nonlinear operators

Definition 1.3. The operator A: D(A) C X — X is called
e monotone (dissipative) if

Re (Azxy — Azo,x1 — 22) > (X)0, for all z1,29 € D(A)

e strongly monotone if there is C > 0 for which

Re (Axy — Axg, 1 — 23) > Cllzy — 22|%, for some C > 0 and all x1,29 € D(A).

Definition 1.4. A monotone operator A : D(A) C X — X is said to be mazimal monotone if the
graph of A

G(A) ={(x,Az) :x € D(A)},
is mot properly contained in the graph of any other monotone operator in X.

Proposition 1.4. (Brezis [14]) Let A : D(A) C X — X be an operator in X. The following two
assertions are equivalent.

e A is maximal monotone.

e A is monotone and Range(I + A) = X.

Definition 1.5. Let A be an operator from X to X such that D(A) = X. A is said to be hemi-
continuous on X if the function R 5 t — (A(x) + tza), w) is continuous for all xi, x2 and w in
X.

Theorem 1.5. (Barbu [11]). Let B be a monotone, everywhere defined and hemicontinuous operator
from X to X. Then B is maximal monotone. If in addition B is coercive, then Range(B) = X.

Proposition 1.6. (Barbu [11]) Let B be a monotone, hemicontinuous operator from X to X. Let
A be a maximal monotone operator from X to X. Then A+ B is maximal monotone in X x X.
Moreover, if A+ B is coercive then Range(A+ B) = X.
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1.3 Semigroups of nonlinear operators

Definition 1.6. Let G be a closed subset of X. A continuous semigroup of nonlinear contractions on
G is a family of operators S(t), 0 <t < oo, from G to G, satisfying the following conditions:

(1) S(t+s)xr=S(t)S(s)z, Vreg, Vt,s>0,
(2) SO)x =z, VYred,
(8) limy_yo |S(t)z —z|| =0, Vxeg,
(1) 1St — S@yl < |l —yll, YoyeG, V>0,
Definition 1.7. Let S(t) be a semigroup on G. The infinitesimal generator Ay of S(t) is defined by

Aoz = }lLim(S(h)ac —x)/h, x € D(Ap)

—0

where
D(Ap) = {z € G; limp—0(S(h)x — x)/h exists in X }.

Theorem 1.7. (Barbu [11]) Let S(t) be a semigroup of nonlinear contractions defined on a closed
convex subset G of X. Then the generator Ay of S(t) is densely defined on G.

Theorem 1.8. (Barbu [11], Komura [42]) Let A be a densely defined, mazimal dissipative operator
in X, then it generates a nonlinear contractions semigroup S(t) on X.

1.4 Abstract Cauchy problems

Let X be a Hilbert space and let A : D(A) C X — X be an operator. Consider the homogeneous
Cauchy problem

du(t)y = Au(t), t>0,

(1.1)

u(0) = x.
where z € X.
To define solution concepts for and to present results pertaining their existence, we distinguish
two cases depending on whether the operator A is linear or nonlinear.
Case I. A is linear

Definition 1.8. A function u : [0,T] — X is a strong solution of on [0, T] if u is continuously
differentiable on [0,T] and for all t € [0,T) u(t) € D(A) and satisfies (1.1)).

Theorem 1.9. (Curtain and Zwart [22]) If A is the infinitesimal generator of a Co—semigroup S(t)
on X, then for all x € D(A) the abstract Cauchy problem has a unique strong solution given by

u(t) = S(t)x. (1.2)
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Definition 1.9. A functionu € C([0,T]; X) is a weak solution of on [0, T] if for everyy € D(A*)
where A* is the adjoint of A, the function (u(t),y) is absolutely continuous on [0,T] and

4

dt
Theorem 1.10. (Curtain and Zwart [22]) If A is the infinitesimal generator of a Co—semigroup S(t)
on X, then for every x € X, the problem (1.1)) has unique weak solution given by .

(u(t),y) = (u(t), A*y) a.e. on [0,T].

Case II. A is nonlinear.

Definition 1.10. A function u € C([0,T]; X) is a weak solution for if there exist sequences
(un) € WH*(0,T; X) such that:

o Wn(t) = Au,(t), forae t>0,n=12..
o u, = ue C([0,T];X)
e u(0) =x.

Definition 1.11. The function u € C([0,T]; X) is called a strong solution of if:
e u is absolutely continuous on each compact subinterval of |0, T7.
e u(t) € D(A) for almost every t > 0.
e u(0) =z and u satisfies %(t) = Au(t), a.e. t > 0.

Theorem 1.11. (Djafari Rouhani and Khatibzadeh [25]) Suppose that A : D(A) C X — X is
mazimal dissipative and x € D(A). Then there exists a unique weak solution of .

Theorem 1.12. (Djafari Rouhani and Khatibzadeh [25]) Suppose that A : D(A) C X — X is mawi-
mal dissipative and x € D(A), then the problem has a unique strong solution u € W1>°(0,T; X).

1.5 Stability concepts

Consider in a Hilbert space X, the differential equation

%(t) ~ Ault), >0, (1.3)

where A is an operator from D(A) C X into X. We assume that (1.3) has a unique solution subject
to the condition u(0) = x, which we denote by u(.,z). We also assume that 0 is an equilibrium point

for (|L.3)).

Many concepts of stability have been defined for systems described by (/1.3]), and we are interested
in the following:
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Definition 1.12. The equilibrium of said to be

e uniformly exponentially stable, if there exist constants 6 > 0, M > 0 and € > 0 such that if
|z|| <€, then
lu(t, )| < Me™*|ll, VYt =0,

e polynomial stable if there exist constants oo > 0, M > 0 and € > 0 such that if ||| <€, then

M
lut, )l < 4 llzll, V>0

Remark 1.1. The previous definition is local since it shows how the state evolves after starting near
the equilibrium point. If uniform exponential or polynomial stability holds for any initial state x, then
the equilibrium is said to be globally uniformly exponentially or polynomially stable.

In the case where A is a closed linear operator generating a Cop-semigroup S(t) then
u(t,z) = S(t)x
and we have the following results
Proposition 1.13. (Engel and Nagel [26]) The system is:

e uniformly exponentially stable if and only if there exist constants 6 > 0, M > 1 such that

IS(t)|| < Me™®, for all t >0,

e polynomially stable if and only if there exist constants a > 0, M > 1 such that

|S®)|| < Mt=, for all t > 0.

Proposition 1.14. (Engel and Nagel [20]) For a linear Cy-semigroup (S(t))i>0, the following asser-
tions are equivalent.

o (S(t))t>0 is uniformly exponentially stable.

o There exists ty such that ||S(to)|| < 1.

1.6 Jensen’s inequality

Theorem 1.15. ( Niculescu and Persson [68]) Let (2,3, 1) be a finite measure space and let g : € —
R be a p—integrable function. If ¢ is a convex function given on an interval I that includes the image

of g, then
1
/gd,uEI
B Ja

¢<;/diu> S;/degdu-

and

provided that ¢ o g is p-integrable.



Chapter 2

Stability of the wave equation with a
delay term in the nonlinear boundary
or internal feedbacks

2.1 Introduction

In this chapter, we address the problem of stability for a multi-dimensional wave equation with a delay
term in the nonlinear boundary or internal feedbacks.

Let Q be an open bounded domain of R"™ with smooth boundary I' which consists of two non-empty
parts I'y and I'y such that, I'y UTy = T’ with Ty N Ty = (. Let v(.) denote the unit normal on I'
pointing towards the exterior of 2.

In Q, we consider the wave equation with a nonlinear delay term in the boundary conditions

u(z,t) — Au(x,t) =0 in 2 x (0, +00),
U(JZ',O) = U,()(Z'), ’LLt(.T,O) = ul(‘r) in Q7
u(z,t) =0 on T’y x (0,+00), (2.1)
g—Z(:ﬁ,t) = —ay f(u(x,t)) — agg(u(z,t — 7)) on I's x (0,400),
u(z,t — 1) = folx,t —7) on I'y x (0,7),
where
) % is the normal derivative and 7 > 0 is the time delay.

e o1 and as are positive constants.
e ug,u; and fy are the initial data which belong to appropriate Hilbert spaces.
e f and g are real-valued functions of class C(R).

In absence of delay, that is as = 0, stability problems for (2.1)) have received a lot of attention in
the literature, (see for example [17], [86], [43], [40], [16]), and the energy estimates obtained depend

8
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on the nonlinear function f.
Nicaise et al [64] considered the case where the delay 7 depends on time and the nonlinear functions
f and g are subject to the following conditions:

e f,9€C(R),

o |f(s)| <ci]s| for all s € R,

o (f(s1) — f(s2))(s1 — s2) > ¢z |s1 — so|? for all 51,55 € R,
e [g(s)] < c3|slfor all s € R,

o |g(s1) —g(s2)| <ca|si— s2| forall sq,s2 €R,

where ¢;,7 = 1, ...,4, are positive constants.

Under some regularity assumptions on the delay function 7, they established a well-posedness result
and an exponential stability estimate for problem . Well-posedness is proved by using nonlinear
semigroup theory whereas the exponential estimate is obtained by introducing suitable energy and
Lyapunov functionals. Li el al [52] investigated the case where the Laplacian is replaced by a second
order differential operator with space variable coefficients, aj, as and 7 depend on time, and the
functions f and g satisfy the following conditions:

o f,g€ C(R),

o sf(s) > |s]? for s € R,

o [f(s)] <css| for [s| > 1

o 52+ (f(5))2 < es(sf(s)/7 for |s| <1,
o (9(5))* < sf(s) for s € R,

where ¢5 and p are positive constants with p > 1. Assuming the well-posedness of the problem (which
is not trivial), they obtained a uniform decay rates for the solutions by adopting a Riemann ge-
ometry methods. One of the main purposes of this chapter is to study the existence and asymptotic
behaviour of the solutions of under the following assumptions on the nonlinear functions f and g .

(H1) (i) f is a continuous monotone increasing function on R;
(13) sf(s) >0 for s # 0;
(iii) sf(s) < Mys? for |s| > 1, for some M; > 0;

(H2) (i) g is an odd non-decreasing locally Lipschitz continuous function on R;
(13) sg(s) > 0 for s # 0;
(iii) sg(s) < Mas? for |s| < 1, for some My > 0;
(iv) sg(s) > Mzs? for |s| > 1, for some Mz > 0;
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(v) arsg(s) < G(s) < azsf(s), where G(s) = [ g(r)dr, for some positive
constants a; and as.

(H3) a; > 202,

(H4) There exists 9 € R" such that, with m(z) = = — zo,
m(z).v(z) <0 onT};.

Remark 2.1. As an example of functions f and g for which assumptions (H1) and (H2) hold we

have
f(x):x+1+x2
and s -
g\) = =¥ (14 22)2

We adopt an approach due to Lasiecka and Tataru [43] to establish global existence and uniform
decay rates for the solutions. The proof of existence of solutions relies on a construction of a suitable
approximating problem for which the existence of solution will be established using nonlinear semi-
group theory and then passage to the limit gives the existence of solutions to the original problem.
The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the
energy function and by establishing a comparison theorem which relates the asymptotic behaviour of
the energy and of the solutions to an appropriate dissipative ordinary differential equation.

Remark 2.2. e [t follows from the mean value theorem and the monotonicity of g that a1 < 1.

o Assumption (H3) can be considered as a nonlinear version of the assumption (1.8) in [62].
Regarding the existence of the solutions to the system , we have the following result.
Theorem 2.1. Assume (H1)—(H3). Then, for each (uo,u1, fo) € Hp () x L*(Q) x L?(T9; L*(0, 7)),
problem has at least one solution
u € C([0,+00); Hy, (2)) N C([0, +00);: L*(R2)),

such that 5
u
ug € leoc([ov +OO); LQ(FQ))7 a2 € L2

v loc([07+oo);L2(F2))- (22)

Where
H () ={ueH(Q):u=0 on Ty}

In order to state our stability result, we introduce as in [43] a real valued strictly increasing concave
function h(s) defined for s > 0 and satisfying

h(0) = 0; (2.3)
h(sf(s)) > s>+ f%(s) for |s| < N, for some N > 0, (2.4)

and we define the following functions:
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~ s
h(s) = h(mes 22),5 >0,

where X9 =T'9 x (0,T) and T is a given constant.

p(s) = (cI +h)"'Ks, (2.5)

where ¢ and K are positive constants. Then p is a positive, continuous, strictly increasing
function with p(0) = 0.

qs)=s—T+p)s), s>0 (2.6)

q is also a positive, continuous, strictly increasing function with ¢(0) = 0.

Let E(t) be the energy function corresponding to the solution of (2.1)) defined by

1
E(t) = ;/Q{|Vu(x,t)|2+ |ut(a:,t)|2}dx—|—§/r2/0 G(ug(z,t — p7))dpdr, (2.7)

where the positive constant £ is such that

2T 2T
2(1—a1) < € < (a1 — azaz). (2.8)
al a

Theorem 2.2. Assume hypotheses (H1)— (H4). Let u be a solution to (2.1)) with the properties stated
in Theorem[2.4. Then for some Ty > 0,

E() < 5(;0 —1)(E(0)) fort > T,

where S(t) is the solution of the differential equation
d
750 +a(5() =0, 5(0) = E(0). (2.9)

If we additionally assume that the function f(s) is of a polynomial growth at the origin, the
following explicit decay rates are obtained.

Corollary 2.1. Assume in addition to (H1) — (H4) that there exist positive constants by and by such
that

f(s)s < bis*  forall s € R, (2.10)
f(s)s > by|sP™ for |s| <1, for somep > 1. (2.11)

Then
BE(t) < Me™™ ifp=1, (2.12)

E(t) < Mttr ifp>1. (2.13)
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In this chapter, we also study the stability problem for the wave equation with a delay term in the
nonlinear internal feedback. More precisely, we consider the system described by

u(z,t) — Au(z, t) + a(z) {on f(u(z, 1)) + aog(u(z, t — 7))} =0 in Q2 x (0, +00),
u(z,0) = uo(z), ut(x,0) = uy(x) in Q,
u(z,t) =0 on I' x (0, 4+00),
u(x,t — 1) = fo(z,t — 1) on Q x (0,7),
(2.14)
where

a1, a, ug,u, fo, 7, f and g are as above and af(.) is a function in L>°(Q2) such that
a(x) > 0 a.e. in Q and a(z) > ap > 0 a.e. in w, (2.15)

where w C 2 is an open neighbourhood of T'.

In the absence of delay (i.e. ag = 0), this problem has been considered by several authors ( [32],
33], [34], [35],[38], [39], [61], [59], [12])-
For f and g linear, the problem has been treated in [62]. Benaissa et al [13] considered the case where
the coefficients a1, as and the delay 7 are time-dependent. Regarding the functions f and g they
assumed the following.

e f is a non-decreasing function of class C'(R) and satisfies,

Y1 lsl <1 lf(s)] < y2ls|  for [s| < e for some € >0,

e g is an odd non-decreasing of class C*(R) satisfying

‘9/(5)‘ < s,
v489(s) < G(s) < v5sf(s),

where G(s) = fotg(r)dr, and v;,7 = 1,..., 5, are positive constants.

They proved the global existence and uniqueness of solution by using Faedo-Galerkin procedure.
Moreover, they obtained energy decay estimate of the solution by employing the multiplier method
combined with some integral inequalities.
The second purpose of this chapter is to investigate the stability problems for when f and ¢
are subject to the assumptions (H1) — (H4). We use again the Lasiecka-Tataru approach to establish
existence and uniform decay rates for the solutions.

The following theorem provides a result on existence and regularity of solutions to the problem
(2.14).

Theorem 2.3. Assume (H1) — (H3). Then, for each (ug,u1, fo) € HL(Q) x L*(Q) x L?(; L*(0, 7)),
problem has at least one solution

u € C([0,+00); HE () N CL([0, +00); L*(Q)).



2.1. INTRODUCTION 13

To state the stability result, we recall the function h introduced after Theorem and we define
this time the functions

~ s
h(s)=h >0
O =1 (5ig) 50
where Q = Q x (0,7) and T is a given constant.

p(s) = (C"T+h) Y (Kys), (2.16)

where C" and K5 are positive constants.

q(s)=s—(I+p)'(s), s >0. (2.17)
Obviously p and ¢ have the same properties as the functions p and ¢ given by ([2.5) and ([2.6))

respectively.

Let F(t) be the energy function corresponding to the solution of (2.14)) defined by

1
F(t)= ;/Q{|Vu(x,t)|2+ ]ut(x,t)|2} dx + g/ga(x)/o G(ug(x,t —Tp)) dpdz, (2.18)

where

2ra; tan(1 — ag) < pu < 27ay (o — azan). (2.19)
The main result can be stated as follows.
Theorem 2.4. Assume hypotheses (H1)—(H4). Let (u,us) be a solution to with the properties
listed in Theorem[2.3. Then for some Ty > 0,

Flt) < S(;O “1)(F(0)) for t > To, (2.20)

where S(t) is the solution of the differential equation
d

$S(t) +q(S(t)) =0, S(0) = F(0) (2.21)
and q 1s given by .
Corollary 2.2. Assume in addition to (H1)—-(H4) that for some positive constants a,b,
f(s)s < bs* for each real s, (2.22)
f(s)s>a|s|Pt for |s|<1, for some p>1. (2.23)
Then
F(t) < Ce™™ ifp=1,
F(t) < CtTr ifp>1, (2.24)

where C' > 0 and B > 0.
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The chapter is organized as follows. Theorem Theorem and Corollary is proved in
Section whereas Section contains the proof of Theorem Theorem and Corollary
Some results of this chapter have been presented in the conference proceedings paper [27].

2.2 Stabilization of the wave equation with a nonlinear delay term
in the boundary conditions

2.2.1 Proof of Theorem [2.1]

In order to be able to manage the boundary condition with the delay term and inspired from [83] and
[62], we introduce the auxiliary variable:

y(xz, p,t) =u(x,t —7p); x €T9,pe (0,1),t>0. (2.25)
Then problem ([2.1)) is equivalent to

ug(x,t) — Au(z,t) =0 in Q x (0, +00),
yi(z, p,t) + 7 y,(x, p,t) =0 on I's x (0,1) x (0, +00),
u(x,0) = ugp(x), ug(x,0) = uq(x) in Q,
u(z,t) =0 on I'y x (0,+00), (2.26)
w = —alf(ut(:v,t)) — agg(y(z, 1,t)) on I's x (0,4+00),
y(z, p,0) = fo(z,—7p) on I'y x (0,1),
y(x, 0 ) = w(x,t) on 'y x (0, +00).

To prove Theorem we adopt the following two step procedure. We first construct an auxiliary
approximating problem for which the existence of the unique solution will be established by the ar-
guments of nonlinear semigroup theory. In the second step, we obtain the solutions of problem
as the limits of the approximating equations.

Proposition 2.5. Assume that for the continuous f and g the hypotheses (H1)(4ii) and (H2)(v) are
fulfilled. If w € C(0,T; H%l ()N CL0,T; L%(Q)) is a solution to problem such that:

ug |r,€ L*(0,T; L*(T2)), (2.27)

then the following energy identity holds for every t > 0

E(T) — E(0) = —on / g, 1) f g (2, £)) A5 — s / g (, £ — 7))y (1) s

PPN P
-1
-T2E [ Gtutat 1) ~ Gl 1)) 45 (2.28)
P
and consequently
E(T) - E(0) < —01/2 u(z,t) f(ue(z, ) + y(z, 1, 1) g(y(z, 1, t))d22, (2.29)
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where . .
C1 = min {Ozl T 2 §a2 — (aao, TTfal + as(ag — 1)} ,
with £ as in @
Proof of Proposition [2.5 It follows from (H1)(iii), (H2)(v) and (2.27) that
0
a—u Ir,€ L2(0,T; L*(Ty)). (2.30)

Then by virtue of the Lemma 2.2 in [43], it is enough to prove the identity (2.28)) for smooth solutions
u e C(0,T; H*(Q)) N C' (0, T; Hp, (Q)).

We multiply the first equation in (2.26)) by u; and integrate by parts over 2, we get

%% i {\Vu(a:,t)]Q + uf(m,t)} dr = - /F2 ug(z,t) f(u(2,t)) dl’ — 042/ 9(y(z,1,t))ur(x,t) dr.

I'>
(2.31)
We multiply the second equation in (2.26) by € g(y(z, p,t)) and integrate over I's x (0,1), we obtain

1
/F /0 (e, p, g (y(z, 9, 1)) + 7 Eyp(2, o, g (2, pr 1))} dpdD = 0.

We have
O (. .1)) = a0y 1),
T 0(2.0.0) = vyl .90, 1)
Consequently,

eo [ [ owpyapar =g L LG p.0) dpar

= —Tlg/ y(x,1,t)) — G(y(z,0,t))] dT. (2.32)
From and-, we have

1d
24t |, {|Vu(:r:,t)|2 +ut2(m,t)} dx + th/ / Gy(z, p,t))dpdl’ = —ay /F2 wy(,t) f (g (2, 1)) dT
-1 1
~ar [ gty -T2E [ o)+ T [ Glut o). (2.33)
= Ly Iy

We integrate both sides of (2.33)) over (0,7"), we obtain

B(T) — E(0) = —on /2
7'_1§ 2

2 s,

g, 1) f (g (2, 1)) A5 — s /Z gy (2, — 7))y (1) s

[G(ur(z,t — 7)) — G(ug(z,t))] d3s. (2.34)
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From ([2.25)) and assumption (H2)(v), we have

G(ut(,t)) < ague(w,t) f(ue(z, 1)),
- G(y(x7 L t)) < —aﬂ/(-% L, t)g(y(x7 1, t))

Hence
T~ 1a
E(T)—-E(0) < —(ag — 2€ 2)/E up(x,t) f(u(z, b)) dXe — aQ/E g(y(z, 1,t))u(z, t) dXe
—771¢q
% /22 y(z, 1,t)g(y(x, 1,t)) d>3s. (2.35)

Let G* be the conjugate function of the concave function G

G*(s) = sup (st — G(1)).

teR+

Then G* is the Legendre transform of G, which is given by (Arnold ([8] p. 61-62))
G*(s) = s(G")7L(s) — G[(G")"L(s)] for all 5> 0,

and satisfies
st < G*(s)+ G(t) for all s,t > 0. (2.36)
But from the definition of GG, we have
G*(s) = sg~'(s) = Gl(g~ ' (s)].
Hence

G*(lg(y(z, 1,1))]) = g(y(z, 1,1))y(z, 1,t) — G(y(x, 1,1))
< (I —any(z, 1, 1)g(y(z, 1,1)). (2.37)

Making use of (2.35) and (2.36]), we get

T~ 1¢a 7 1¢a
B(T) =~ BO) < ~(o = —5) [ w0l 0) =2 =T [ y(a 10000 1.6) 4z,

+cm/<GWmeD+G%W@@J¢»md&.

P

(2.37)) together with assumption (H2)(v) implies

T asy

2

E(T) - E(0) < — (a1 — — az0) /Z wy (1) f g (1)) A5

T
—( 5

—ag(l — al))/E y(x,1,t)g(y(x, 1,t)) dXs.
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Therefore
E(T) - E0) < =Cy | Aw(z, 1) f(u(z, 1) + y(z, 1,0)g(y(x, 1,1))} dX2, (2.38)
pIp}
where . .
C) = min {(al T 25“2 ~ asag), (2% 4 ap(ay — 1))}.
with € as in ([2.8]).
O
Theorem 2.6. Assume that:
x The function g is Lipschitz continuous on R, with L as a Lipschitz constant. (2.39)
x f(s1) — f(s2) > r(s1 — s2) for all sy — s2 > 0 and fizved r > 0. (2.40)

Then, for each (ug,u1, fo) € Hlll(Q) x L2(Q) x L?(T'9; L2(0, 7)), problem W has a unique solution
u € C(0, 00; H%l(Q)) N CY0,00; L*(Q)).

Moreover if the assumptions (H1)(iii), (H2)(i#) and (H2)(v) are fulfilled, then

0
us € L2(0, 00; LA(T5)), 8—“ € L2(0, 00; L*(Ts)). (2.41)
v
Proof of Theorem [2.6, This follows from nonlinear semigroup theory.

Let A: L?(2) — L?(Q) be the operator defined by

AC = —A( with D(A) = {g e H%(Q), gg —0only, (=0 onfl} .
v
Let N : L?(T') — L%*(Q) be the Neumann map
ON
ANp =0, Ny ‘Flz 0, TVSO ‘FQZ P-

It is well known (see [79]) that
N € L(IAT) — H2(Q) C H2%(Q) = D(A179)),

and
N*A*n=n|p, forne D(A%). (2.42)

Denote by H the Hilbert space

H = Hp () x L*(Q) x L*(T9; L*(0,1)).
Next define
A:DA) CH—H
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¢ n
Al n | =] A(-¢C—a1Nf(n) —aaNg(6(;1))) |, (2.43)
0 —7'*19;,
with

D(A) = {¢ € Hy, (), n € Hp, (2),0 € L*(T2: H'(0,1)); =¢ — a1 N f(1)) — a2Ng(6(:; 1)) € D(A)}

Then we can rewrite (2.26)) as an abstract Cauchy problem on H

where

W(t) = (u(x7t)7ut(x7t)7y(x7p’t))T7 Wl(t) = (ut(x7t)7utt(xat)7yt(x7pat))T'

We will show that the operator A defined by ([2.43) is maximal dissipative on the Hilbert space H
equipped with the inner product

¢ ¢
< || 7 > = [ {A¥c(a). 438 + (o) }daz+5// (2,p). (. p) dpa,
9 6 T2
with I
rasL < 6 < 2r(ayr — O%), (2.44)
Lo (2.45)
T (65)]
First, we prove that A is dissipative.
Let U = (¢,n,0)T, V =((,7,0)T € D(A). Then
(AU — AVU = V), = —ay / AN(f(na)) — f(i(@))) (n(z) - i(a)) de

—az [ AN(g(0(,1)) — g(0e. 1)) (0(a) — (0))

Q

1 ~ .

=5 [ [ 00 =Byl )0 p) = ) dp T
= a1 [ (F0(e) = FEIN A (0(e) = () T
—a [ (6000, 1)) = 9(0a. 1)N" A" (o(e) ~ i) T

Q

o1 ~ o1

0(z,1) — 0(x, 1)?dT +
FQ FQ

16(,0) — B(z,0)[dT.
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From , we have
(AU = AVU = V) = — al/r (f(n(@)) = f((2)))(n(z) — (z)) dT
— az/F (9(0(x, 1)) = g(0(x, 1))) (n(x) — 7)) dT

1 -1 <
— 52 /Fz(e(a:, 1) — 0(x,1))%dT + 62 /Fz(Q(x,O)—G(a:,O))2dF.

Using assumptions (2.39)), (2.40) and the Cauchy-Schwartz’s inequality, we obtain

(AU — AV, U = V) < —oqr [ |n(x) —7(x) 2dF+a2L/ 0(z,1) — 0(z,1)?dT

-1
o2l [y S ar - /yem f(z,1)2dT
> ),
o1 -
+ n(z) — f(x)[d T

Therefore

-1
(AU — AV:U — V), < - (w ool or ) [ (o) — (o) Par

2 2
-1 R
- (—‘”L Lo > 10(2,1) — 6(z, 1)|%dT.
2 2 Ty

From ([2.44]), we conclude that
(AU — AV;U = V), <0.

Thus A is dissipative.
In order to establish maximality, we need to prove the range condition

range(A — A) = H for a fixed A > 0.

Let (k,1,m)T € H, we seek w = (¢,n,0)T € D(A) solution of
("4 - )‘I)w = (ka l7 m)T7
or equivalently

AN —n=k, (2.46)
An—A[-¢—aiNf(nr,) — azNg(6(z,1))] =, (2.47)
AN+T1710, =m. (2.48)
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Hence 1
(= X(n + k). (2.49)
From (2.48]) and the last line of (2.26]) we have
eﬁ(xap) = —7')\(9<.:L‘,p) + Tm(l',p), pEe (07 1)a
0(x,0) = n(z).
The unique solution for the above initial value problem is given by
p
0(z, p) = n(x)e NP + Te)‘Tp/ m(x,0)e’ do, x ey, pe(0,1),
0
and in particular
0(x,1) = n(z)e ™" + 2, (2.50)

where .
2y = Te)‘T/ m(zx,0)e’do, x € Ty.
0

Insertion of (2.49) and ([2.50) into (2.47)) yields

1 1
A1+ A+ a1 AN f(nr, ) + a2 ANg((nyr, Je N + Zg) = 1 — Ak

A
Set ] R
Tn=n+ XAn + a1 AN f(n) + a2ANg(n),
where
F) = f(r, ),
and

g(n) = g((mr, )e ™™

+
Lemma 2.1. The operator T is surjective from V = D(A%) = H} (Q) onto V! = (D(A

(Hp, ()"

Proof of Lemma |2.1. For n €V, let

~

Bn = a1 AN f(n) + s ANg(n),

and 1
Cn=Mn+ XAn.

Then
Tn=Bn+Cn.

According to Barbu [11] (Corollary 1.3, page 48), in order to establish surjectivity of the operator T,

it is sufficient to prove that B is monotone and hemicontinuous, C' is maximal monotone, and B + C

is coercive.
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Monotonicity of B.
Let n,v € V. Then

~

(=B — (=B)v,n = v)yruv = —ar(AN(f(n) = F(v)),n = v)yrsv
—az(AN(g(n) = g(v)),n — v)vixv
= —a1(F(n) = F(0), N"A*(n = 0)) 121
—ax(g(n) —g(v), N"A™(n = v)) r2(ry)
< —(a1r — asLe ™) [(yry) = (0 )22y
By , we conclude that
(=B)n— (=B)v,n —v)yrxy <0.
Thus (—B) is dissipative, then B is monotone.
Hemicontinuity of B.
Let n,v,w € V. We will prove that the function

t =< B(n+tv),w >yxy

is continuous. Indeed, we have

~ ~

[(B(n+ tv) — B(n + tov), w)vxv| = (a1 AN (f(n + tv) — f(n + tov)), w)vixv
+ (2 AN (g(n + tv) — g(n + tov)), w)vrxv|
< War f(n+ tv) = f(n + tov), N*A*w) r2(ry|
+ [{a2g(n + tv) — g(n + tov), N" A*w) r2(1,)|

< cljwl[ g2 {If (0 +tv) — f(n + tov) | L2(ry)
+1[g(n + tv) = g(n + tov)| 2y }-

From assumption (2.39)), we have

~

[(B(n +tv) — B(n +tov), w)yrxy| < C||w\|L2(r2){\|f(n +tv) — f(n +tov)| L2(ry)

LI = )0l
The continuity of f allows us to deduce that
[(B(n + tv) — B(n + tov), w)vixv| <&,

for |t — to| < 0. This proves the continuity of the function ¢ — (B(n + tv), w).
Mazimal monotonicity of C.
For n,v € V, we have

1 1
(Cn—Cv,n—v)yrxy = (A + XAn — v — XAv,n —V)yixv

1
= M=l +

1 (A = v),n = vhyrey = Ml = ol

(2.51)

(2.52)
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so that C' is maximal monotone. Since we are working with V, V'’ framework and the operator AN :
L?(T's) — V' is bounded, the operator C' is continuous, then it is maximal monotone.

Coercivity of B+ C.

This follows from (2.51)) and (2.52]). O

The operator 7T is surjective from V onto V' . Then n € V and consequently ¢ = % € V. One
easily shows that (¢, n,0) is also in D(A). Indeed from ([2.47)), we have

A[C+ a1Nf(n) + aaNg(0(z,1))] =1 — Ap € L*(Q).

Hence

~

(+aiNf(n)+aaNg(b(z,1)) € D(A).

From nonlinear semigroup theory and the density of D(.A) in H, we obtain existence and uniqueness
of the solution
u e C(0,T; Hp, (2)) N CH0, T; L*(Y),

for all T' > 0.
To obtain (2.41)) we first notice that for ({y, 7y, fo) € D(A), we have

1
Mo |F € Hz (F)7
and after using assumption (H1) (%) and (2.39))

% € LQ(F2) ) f(770 ‘Fz) € L2(F2)>g(f0 |F2) S L2(F2)

Let (u,u,y) denote the solution of problem (2.26)) corresponding to the initial datum ((g, 79, fo) €
D(A). Then, by the semigroup property, we have (u(t),u(t),y(t)) € D(A) and consequently

0
s |py€ L¥(0, 75 L7(2), 5o I, € L(0, T3 L(D)).
Thus we are in a position to apply the estimate (2.38)) of Proposition Hence for all ¢ > 0,
t
E(t)+ Cy / / (f(up)ug + g(ug(z, s — 7))ug(z, s — 7)) dl ds < E(0). (2.53)
0 Jry

Recalling assumption (2.40]), we obtain
t t
E(t)+ Clr/ |ug|? dT" ds + C4 / / g(ug(x,s — T)up(x, s — 7)) dl' ds
0 FQ 0 1—‘2

1
< [VCof2 + ol + /0 /F fola, —rp)PdTdp.  (2.54)
2

Since D(.A) is dense in H, the above inequality can be extended to all (¢g, 7, fo) € H.
The estimate (2.54) together with assumptions (H2)(4i) implies

utlr, € LQ(O, 00; LQ(F2)).
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Moreover, from hypotheses (H1)(74) and (2.39)), it follows that
furlry) € L*(0, 005 L*(T'2)), g(ur(.,t —7)[r,) € L*(0,00; L*(T2)),

and consequently
ou

— € L*(0, 00; L*(T'9)).
L € 12(0,00, TX(T2))
Completion of the proof of Theorem
We consider next the following approximation of system (2.1) with [ — +o00 as the parameter of

approximation,
uge(z,t) — Auy(x,t) =0 in Q x (0, +00),
ul(l‘,O) = uO(x)ault(m?O) = ul(x) in Qa
w(z,t) =0 on I'y x (0, +00), (2.55)
w = —a fi(up(x, b)) — aogi(up(z, t — 7)) on I'y x (0, +00),
w(z,t —71) = folx, t — 1) on I'y x (0,7),
where

fiCune(e, 1)) = Fun(w,0) + Tz, 1),

and the functions g; are defined by

g(s), [s| <1
g(s)=1q 9(), s>1 (2.56)
g(_l)7 s < —l

Notice that for each value of the parameter [, the functions g; and f; satisfy the hypotheses of Theorem
Thus, there exists a solution (u;, uy) of (2.55) such that

wi € C(0,T: H () N CH(0,T; L2(2),

for any finite T' > 0 and

0
wy € L(0,00: L%(T)) , 51 € L2(0, 003 L*(Tw))

(2.57)
filwe |r,) € L*(0,00; L2(T2)), gi(ue(.,t —7) |r,) € L*(0, 00; L*(T'2)).

We prove that we can extract a subsequence from the above sequence of solutions u; that has a limit
which is a solution of the original problem (2.1)). To accomplish this we need the following.

Lemma 2.2. Under the assumptions of Theorem we have as | — 400 and uy(x,t — 7) —
ug(x,t — 7) weakly in H' ()

g(un(z.t — 7)) —> g(ue(z,t — 7)) in L*(T). (2.58)
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Proof of Lemma [2.2 We write

/|gl(ult(l‘7t_7—))_g(ult(l"at_T))FdF§2|: |9(ult($7t_7—))|2drl+/ g + [g(=1)>dTy |,
r Iy

I
(2.59)
where
Ly={x el :|uy(x,t —7)] >1}.
Then, by Sobolev’s Embeddings
HY2(T) ¢ L5 (D), n>2, (2.60)
H'Y2)cLP(I), 1<p<oo, n=2 (2.61)
We have for n > 2 L
on—2\ Zn-2 -2\ %
(L) < [ (utee - ) .
I, r
therefore
m-2\ % _ony2
mesT, < / (It = ) 552 ) 77 12, (2.62)
r

Analogously, for n = 2 the above inequality is valid with any exponent for [.
By assumptions (H2)(#), (H2)(v) and by (2.62)),

lg(up(z,t —7)*dTy < M [ |uy(z,t — 1) dL}

Iy I
2n—2] n1 n—1-n-—2

<M [ |uge(z, t — )| "2 ] (mesTy) "1 —_ 50, (2.63)

V]

n—2
9 9 2n—2 [ n—1 2_2(n71)
lg(1)|7dly < M1 mesT') < M |ue(x,t — 7)| n=2 == — 0 0, (2.64)
Iy ry
where
M= mag;{M;, ("’2M1)2}. (2.65)
ai

Combining the results of (2.59),(2.63) and (2.64) gives (2.58]). O

By using regularity properties (2.57)), we are in a position to apply the estimate (2.53) for each
t > 0, to obtain

t
Ei(t) + Cl{/o g {(f(uy) + %ult)ult +up(z, s — 7)g(up(x, s — 7))} dl ds} < E;(0), (2.66)

where Ej(t) is defined by (2.7) with u replaced by v;.
Recalling assumption (H2)(v) together with (H1)(74), we readily obtain

E(0) < C (Juol g (e, lual L2y, [fol L2rax 0,0 ) » (2.67)
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and from (H1)(7i), combined with (H2)(ii), (2.66) and (2.67)), we infer that

lwel 20,7, 12(r0)) < C (Juol ), lualrze), fol L2araxo,0)) ) » (2.68)

‘ul|C(O,T;H1£1(Q)) + |wi| c0,m522(02)) < C- (2.69)

Therefore, on a subsequence we have

w; — u weakly in H(Q x (0,7)), (2.70)

and by the trace theorem
wr — ulp strongly in L™(0, T; L*(I's)), (2.71)
uy|r — wr weakly in L2(0,T; L*(T'9)). (2.72)

Hypotheses (H1), (H2) together with the compactness of the embeddings in (2.60)-(2.61) and (2.72)
also give

g(uy(z,t — 7)) — g(ug(x,t — 7)) in L*(0,T; L2(F2)), (2.73)
fuglr) — f* weakly in L?(0,T; L*(T'y)) for some f* € L*(0,T;L*(Ty)). (2.74)

Let (ug, um,) be the solutions of ([2.55)) corresponding to the parameters [ and m. Then

|V (u — Um)(t)|%2(9) + [ (e — umt)(t)’%Q(Q) + 0‘1/0 /FQ(f(Ult) — f(ume)) (uig — ) dU ds

11,/ 5 11,/ 5
<ai(;+—) lug|? dT dt + a1 (5 + —) |ty |? T ds
Lm”Jo Jr, Lm”Jo Jr,
t
+ 042/ \91(we (2,8 = 7)) — gm(Ume (2,5 — 7))| |wsg — Upe| dT ds. (2.75)
0 JI'g

The result (2.58) of Lemma[2.2) together with (2.72)) and (2.68) implies the convergence to zero (when
[,m — 00) of the last term on the RHS of (2.75].

Similarly, by (2.72)) the first two terms on the RHS of (2.75)) converge to zero.
Thus, we have obtained

w — uw e C(0,T; Hp () N CH0,T; L*(R)), (2.76)

for any finite 7' > 0 and

lim (f(ugg) — f(ume)) (ugg — upme) d¥2 = 0. (2.77)

l,m—o0 PO

From ([2.72)),(2.74) and (2.77) we also get

lim [ J (ug)uge d¥o — S (ug)ug d¥o — Sy dEQ] + 11_131 / J (U ) U d¥e = 0.
DN m—oo [y,

[—o0 Y PO
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Hence, again using (2.72)),(2.74) and changing m to [ we obtain

2 lim f(ult)ult dZQ =2 f*ut dzg (278)

l—o00 22 22

But (2.78) combined with (2.72)), (2.74]) and the monotonicity of f, by virtue of Lemma 13, p.42 in
[11], yields

[ = flur). (2.79)
Passing to the limit in (2.55)) and recalling (2.79)) together with (2.70)- (2.73]), gives
up(z,t) — Au(x,t) =0 in D' (9 x (0, +00)),
u(x,0) = ug(z), ug(x,0) = uq(x) in Q,
u(x,t) =0 on I'; x (0,4+00), (2.80)
9u = —ay f(ug) — azg(ue(.,. — 7)) in Lo(0, 400;T2),
u(x, t — 1) = folz,t — 1) on I'y x (0,7),

with the regularity
ou

5, U € L*(0,T; L*(Ty)),

for any finite 7' > 0.
The proof of Theorem [2.1] is thus complete.

2.2.2 Proofs of Theorem and Corollary
Proof of Theorem [2.2]

Proposition 2.7. Assume the hypotheses (H1) — (H4). Let u be a solution of guaranteed by
Theorem [2.1. Then
T—a
/a {\Vu(t)\%%g) + |Ut(t)\%2(n)} dt < C {’VU\%N(O,T;B(Q)) + ’ut|%°°(0,T;L2(Q))}

+c{ | Al OF + 17, ) + g —r>>|2}d22} + Orllull e gppiave s (2:81)
2

where the constant C does not depend on T and o, 0 < & < % are small enough arbitrary but fized.

Proof of Proposition [2.7. As for the proof of Proposition it is sufficient to establish (2.81]) for
smooth solution u € C(0,7T; H*(Q)) N C*(0, T; H%l(Q))
We multiply the first equation in (2.1]) by m.Vu and we integrate by parts over @ = Q x (0,7"). This

gives:

1
/ upmVu dQ = [ug(mVau)|d — = [ m.vju® dSe + n/ us|? dQ, (2.82)
Q 2 Js, 2 Jq
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/AumVudQ—l/ @QmudZ +(n—1)/]Vu|2dQ
Q 2 bl ov ' ! 2 Q
ou 1 9
+ —(m.Vu)d¥, — - |Vul*m.vdXs. (2.83)
PO 81/ 2 o

From ([2.82)), (2.83)) and assumption (H4), we have

n
3 |t = wuyae + [ 1Vurde < o {I9urmoy + Il oo

+o{/22

Multiplying the first equation in (2.1) by u and integrating by parts, we get

2 dul? 2
lug)® + % + |Vul

dzg} . (2.84)

1

€

ou

2
ey + e\ulz

2

/Q{]Vu\2 —|w[?}dQ < C {‘u‘%W(O,T;LZ(Q)) + ut|7 oo 0,7 120 +/2 d22} , (2.85)

where € > 0 can be taken arbitrary small. Combining (2.85)) with (2.84]) and applying trace theory,
yields

ou?
/{|Ut|2 + |VU’2}dQ <C |VU|%W(O,T;L2(Q)) + |ut|%oo(0’T;L2(Q)) +/ |Ut|2 + ' + |VU|2 d¥g o .
Q PO 8V
(2.86)
But
2 u|? 2
|Vu|* = a0l T |V ul, (2.87)
where V., u is the tangential gradient of w.
Thus
ou |
/Q{\Ut’Q +|Vu[?}dQ < C {’vu‘%m(O,T;LQ(Q)) w7 oo (0,752 () +/2 g + ‘ayl + ]VTuF] dz?} :
2
(2.88)
From Lemma 7.2, inequality 7.5 in [44], we have
e 2 2, |oul’ 2
/ [vpara< ., /Z wl? + (50 | 52 + CrllliZag pipascay |- (289
« 2 2
Applying (2.88)) with (0,7") replaced by (a, T — ) and using ([2.89) yields
T 2 2 2 2
/ {\Vu(t)hz(n) + |ut(7f)\L2(Q)} dat <C {|VU|L°°(O,T;L2(Q)) + |ut|L°°(0,T;L2(Q))}
2 |Ou ? 2
+C ”U,t‘ + | = dXls +CTHU||L2[OT~H1/2+5(Q)}' (2.90)
Mo 8V 0
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The sought-after estimate (2.81]) follows from (2.90) and the fact that
ou

%(x,t) = —ay f(u(x,t)) — aog(ue(x,t — 7)) on Xs.

O

Proposition 2.8. Assume that the hypotheses (H1) — (H4) are fulfilled. Let T > 0 be sufficiently
large. Then

E(T)<Cr [/E {ug(, ) 4+ | f(ue(z, ) * + glue(z, t — 7))ug(2,t — 1)} dSa| . (2.91)
Proof of Proposition [2.8 Set
E(t) = Ey(t) + Eq(t),
where
B0) = 5 [ {0 + Vua ) do.
and

1
Eq(t) = g/r /0 G(ut(x,t —1p))dpdr.

From the mean value theorem, the monotonicity of g and change of variable, we have
/OT Ei(t)dt < C’/OT/F g(ue(z,t — 7))u(x, t — 1) dI' dt. (2.92)
2
As for Es(t), we deduce from and (2.81)),
/ U Bt dt < CRIE(T) + ay /

e, ) f (. 1)) dSs + 0 / o(ug(z, t — 7))un(, ) A5
Yo

P
+ 771 [ Gug(z,t —7))dSs — 77 | Glug(z,t)) dXy
EQ E2

5 |ou(z,t)
+/Ez{|ut<a:,t>| n

2
}d%s + ||U||%2[0,T;H1/2+E(Q)]]'

Therefore

T—a
/ E(t)dt < Cr[E(T) + . {lue(z, )1 + | f (ue(w, ) + |g(ue(z, t — 7))} dSs

+ . Gug(x, t — 7)) dSg + . G(ug(x,t)) dXe + ||u|]i2[O,T;H1/2+E(Q)]].
2 2
On the other hand, for a fixed «

e T
/ Et)dt+ |  Ey(t)dt < 2aE(0)
0 T—a

< 20{E(T) +/2 {luez, ) + |f (ue(z, 0)* + |g(ue(z, t — 7)) |7} dS2

+77 | Gug(z,t — 7)) dSe — 77 | G(ug(z,t)) dEs}.
Yo Yo
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Thus,
T
/0 E.(t) dt < Op[E(T) + /E (e D + 1 (e, 0) 2 + g s (£ — 7)[2} d
+ [ Glulat =) d+ | Glune,0)dSs + [l ey (2:93)

22 22

Combining (2.93) and (2.92) yields

T
/0 E(t)dt < Cr[E(T) + /E (e, O + [ (g, D)2 + g un, £ — 7)) 2} ds

+ G(u(x, t — 7)) dXe + G(ug(x,t)) dXe + / g(ug(z,t — 7))ug(xz, t — 7) d3o
PN PP )3

+ ||UH%/2[0’T;H1/2+E(Q)]]‘ (2.94)

Then
E(T) < CT[/E {lur (@, ) + 1 f (w2, )] + g(ue(z, t = 7))[7} d2o

+ G(u(z,t — 7)) d¥g + G(ug(z,t)) dXe + / glug(z, t — 7))ug(z, t — 1) d¥g]
3o 3o 2

+ CTHUH%Q[QT;HUQ-FE(Q)]'
Again from the mean value theorem and the monotonicity of g, we have
Gug(z,t — 7)) < glug(x, t — 7))ug(z, t — 7). (2.95)

By using assumptions (H2) (%), (H2)(v) and (2.95), we obtain

E(T) < Cr { . e O + 17 ) + gl = 7))o - T)}dﬁz}
+ CTHU||%2[O’T;H1/2+E(Q)}‘ (2.96)

To get the requested inequality l) from 1) we need to absorb the lower order term |u\%2[0 ToH1/24e Q)]
To achieve this, we employ a compactness uniqueness argument. Suppose that (2.91)) is not true. Then,

there exists a sequence (u,) of solution of problem (2.1)) such that

E™(T)>n {/ {1t (2, 8) 2 + | f (wne (2, ) > + glune(x, t — 7)) une(z,t — 7)} ng] , (2.97)
3o
where E™(T') is the energy corresponding to (u,) at the time 7.
From ([2.96)),
B0 < Cr | [ {lunas) + 15 Cune e, ) + glan( = D)~ )} 5]
PP

+ CT||un||%2[07T;H1/2+E(Q)}' (2.98)
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(2.98) together with (2.97) implies
n [ [ a0 + 1, 0 + gl = 7t = 7)) d&]
Yo

< Cr [/E {une(z, ) + | f (une (2, 8))[* + g(uni (@, t — 7)) g (x, t — 7)} dZQ}

+ Orllunll o o 2ve o)

That is

[ {tne (2, 8) 12 + | f (g (2, )2 + glune (@, t — 7)) g (z,t — 7)} dEQ]

3o
Cr 9

< mHU"HLQ[O,T;H1/2+6(Q)}' (2.99)

Denote 1
Cp = ||unHL2(O,T;H1/2+E(Q)) ,an = C—un
Thus
Han”L?(o,T;Hl/HE(Q)) =1 (2.100)

Dividing both sides of (2.99) by ¢2 and using (2.100]), we obtain

2
3o Cn “n n= CT
(2.101)
Thus, (2.101) implies
1i An 2 Yo — 2.102
Jm 8 [tnt (2, t)|" dXe = 0, (2.102)
nt(2, 1))
lim M d¥s =0, (2.103)
n—-+oo ¥y Cn
i [ 9@t — T)Q)um(xv L7 g, — 0, (2.104)
n—+00 b Ch

On the other hand, since each solution satisfies the energy estimate (2.98)), we obtain after dividing
both sides of such estimate by ¢2 and invoking (2.100))

‘f(umg(.f,t))’Q + g(unt(xat - T)Q)Unt(xat — T) }dEQ + 1} (2105)

n

1 I
S E,(T)<C (@t
2 EaT) < Col [ {0 + 1 :
From ([2.105), it follows that the sequence (@,) is bounded in H'( x (0,7)). Since H(Q x (0,7))
is compactly embedded in L?(0,T; H'/?*¢(2)), there exists a subsequence still denoted by (,) such
that
Ty, — U strongly in L2(0, T; HY/*+<()).
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Then from (2.100))
HaHH(o,T;Hl/%e(Q)) =1 (2.106)

Moreover, u, satisfies

Unte(,t) — AUy (x,t) =0 in Qx (0,7),
Up(z,t) =0 on ¥ =I'1 x(0,7), (2.107)
%%(%t) = _qq fm@t) ) 9@ (@toT)) on L.

Passing to the limit in (2.107)), and invoking (2.102)-(2.104)), and assumption (H2)(7ii), gives

at(l',t) =0 on 22,

and
Uy (x,t) — Au(z,t) =0 in Q% (0,7),
u(z,t) =0 on X,
dulz) — on .

Thus v = U, € C(0,T; L?(2)) satisfies

v (x,t) — Av(z,t) =0 in Q x (0,7),

v(z,t) =0 on X =TI x(0,7),
WZO on Xs.

From Holmogren’s uniqueness Theorem ( [54], Chap. 1, Theorem.8.2), we conclude that
v(z,t) =0 in Qx(0,7).

This implies

Thus u verifies

—Au(z) =0 in Q,
u(z) =0 on T,
o

l(;ij) =0 on Fg.

The solution of the above problem is u = 0, which contradicts (2.106)). Then, the desired inequality
(2.91)) is proved. O

Proposition 2.9. Assume (H1) — (H4). Then, the energy E(T) of problem satisfies
E(T) +p(E(T)) < E(0),

where p(.) is defined by (2.5), and T > 0 sufficiently large.
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Proof of Proposition [2.9. Denote

Y3 = {us € L*(%2) : |Jug| > N a.e.},
Yy =3 — X3

From assumptions (H1) and (H2), we have
g {uf (z,t) + f2(ue(, 1))} dSs < (a7 ' My ap + M) | Fae, ), (2.108)
3 3
On the other hand, from ([2.4)
/E {u2(z,t) + f2(ug(z, 1)} dBy < /Z R(f(ug(z,t))us(z, t)) dXy. (2.109)
4 4
By Jensen’s inequality,

1
mes Xg Jy,

/ h(f(ue(x, t))ue(z,t)) dEy < mesXah < flug(z,t))u(z, t) d22>
P

= mes Yo h < . fug(z, t))ue(z, t) ng) . (2.110)

Combining inequalities (2.108]), (2.109)), (2.110) with the result of Proposition gives

Fun(, £z, £) dSs + /

E(T) < Cr {(a11M31a2 + M)
P

ug(x,t — 7)g(ug(x, t — 7)) ng}
P
+ Crmes Yy h ( fug(z, t))ug(x, t) dEg)
P
< Cr {(al_le,)_lag + M) fug(z, t))ug(z, t) d3o -l—/

ug(x,t — 7)g(ug(x, t — 7)) ng}
Yo

P

+ Crmes Sy h < {f(ue(z,t))ue(z, t) + ue(z, t — 7)g(ue(z, t — 7))} dZ‘g) .

P
Setting
Ky — 1 'C,:aflMglanLMl
Crmes s’ mes o ’
we obtain
E(T)<Cl flug(z, 1) ug (2, t) dXy + ! / (z,t = 7)g(w(z,t — 7)) dX
— | w(z,t —7)g(us(z,t — 7
> Kl 5, u (&, U\, 2 Kl m@SEQ s, t\<Ly glut\ T, 2
1 -
# g ([ Gty + et - ngule.e - )} ass).
P

or

K1 E(T) < (¢ +h) < {f(ue(z, t))ue(x, t) + up(z, t — 7)g(ue(x, t — 7))} ng) ,

Yo
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where

1
mes o

.

¢ = max {C’,
But from ([2.29)), we have

g {f(ue(z, t))ug(z, t) + ug(z, t — 7)g(u(z, t — 7))} d30 < Cl_l(E(O) — E(T)).

Therefore

(el +h)~ (K E(T)) = p(E(T)) < E(0) - E(T),

with K = ClKl.
Hence

p(E(T)) + E(T) < E(0).
O

Completion of the proof of Theorem Applying the result of Proposition [2.9] we obtain
for m =0,1,2....

p(E(m(T +1))+ E(m(T + 1)) < E(mT).
Thus, we are in a position to apply Lemma 3.3 in [43] with
sm = E(mT), so = E(0).
This yields
E(mT) < S(m), m=0,1,2,...

where S(t) is a solution of the differential equation Let t = mT + 7 and recall the evolution

property, we obtain
E(t) < E(mT) < S(m) < S(%F) < S(%-1) fort > T,

which completes the proof of Theorem
Proof of Corollary It is sufficient to construct a function h having the property (2.4)).

From (2.10) and (2.11]), we have
!/1{U?Cmt)+-f20u(x,ﬂ)}d24f£(1—Fbﬁt/)l@@ut)d24
P

g

<) [ 07 e (e, )7 0

< B0 [ (e )l )7 a2,



2.2. STABILIZATION OF THE WAVE EQUATION WITH A NONLINEAR DELAY TERM IN

THE BOUNDARY CONDITIONS 34
We can take
e 2 2
h(s) =057 (1 4+ b7)s™, where m = —— < 1.
(s) 2 ( 1) w P
Then

p(s) = (eI + ﬁ)fl(Ks);
Therefore
cp + d(by,b2)s™ = K,

where d is a constant that depends on b; and bs.
Also, recall that

a(s) = s — (I +p)7'(s).

Since asymptotically (for s small) we have, for some constant a > 0 ,

p(s) ~ as'/™ and therefore q(s) ~ ast/™,
by solving equation (2.9)), we find
th e )T if p> 1
S(tye = 4 At ter =) i p> (2.111)
e Yy if p=1,

where ¢; and ¢y depend only on « and p.
Finally, the estimates (2.12)) and (2.13) follow from Theorem
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2.3 Stabilization of the wave equation with a nonlinear delay term
in the internal feedback

2.3.1 Proof of Theorem [2.3

In order to be able to manage the boundary condition with the delay term and inspired from [83] and
[62], we introduce the auxiliary variable:

y(x, p,t) = ug(x,t —7p); x€Q,pe(0,1),t>0.

Then, the system (2.14)) is equivalent to

(uu(z,t) — Au(z, t) + a(z) {a1 f(ue(z, 1) + a2g(y(z,1,1)))} =0 in Q x (0, +00),
ye(z, p,t) + 77 yp(z:,p,t) =0 in Q x (0,1) x (0,400),
u(x,0) = uo( ), ug(z,0) = ug(x) in €,
u(x,t) = on I' x (0,400),
y(x,p, ) fO(xa —Tp) in  x (07 1)7
L y(x,0,t) = w(x,t) in Q2 x (0, +00).
(2.112)

To prove Theorem we adopt the same approach as the one used to prove Theorem

Proposition 2.10. Assume that for the continuous f and g the hypotheses (H1)(iii) and (H2)(v)
are fulfilled. If u € C(0,T; H(Q))NCY(0,T; L3(Q)) is a solution to problem , then the following
energy identity holds for every t > 0

F(T)—-F(0) = —041/ a(x)u(x,t) f(u(z, 1)) dQ — ag/ a(x)g(ug(z,t — 7))ue(x, t) dQ

Q Q
- 7_21“ / a(@)[Gug(z,t — 7)) — Glug(z, 1))] dQ, (2.113)
Q

and consequently

F(T) - F(0) < —Cl/Qa(iv) {w(z, t) f(w(z,t)) +y(z,1,8)9(y(z,1,1)} dQ, (2.114)
where . .

4 :min{al— T ag—agaz,T Mal—i—az(al—l)},

with @ as in .

Proof. By virtue of the Lemma 2.2 in [43], it is enough to prove the identity (2.113) for smooth

solutions

u e C(0,T; H*(Q)) N CH0,T; HL(Q)).
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We multiply the first equation in (2.112)) by u; and integrate by parts over €2, we get

1d

>q ; a(z) {|Vu(a:,t)’2 + u?(x,t)} dr = —al/ a(@)u(z,t) f(ug(z,t)) do

Q
—ag/a(a:)g(y(x,l,t))ut(:c,t) dx. (2.115)
Q

We multiply the second equation in (2.112)) by pa(z) g(y(z, p,t)) and integrate over Q x (0,1), we
obtain

1
[ a@) [ e 0atu(e.p.0) + 7 uale. . 09(ule. . 0)} dpdz =0,
Q 0

We have
e 0) = (. ,1)-9(u( 1),
B (0 p.1) = 1)y p.).
Consequently,

d 1 - 1y
1 [ a@ [ Gt p)dpde == [ ata) [ ZGwp ) dpda

= 7—_1,u/ a(z)[G(y(x,1,t)) — G(y(z,0,t))] dz. (2.116)
Q

From ([2.115)) and(2.116) we have

1d
24t Jq
= —oq/Qa(x)ut(:n,t)f(ut(x,t)) dm—ag/Qa(:v)g(y(:E,1,t))ut(1‘,t) dx

1
{\Vu(w,t)]z—i—uf(:r,t)} dx—i-g% Qa(:Jc)/0 G(y(z, p,t)) dpdx

1 71
- QH/Qa(m)G(y(x,l,t))dx—i— QM/QQ(QU)G(ut(x,t))dac. (2.117)

We integrate both sides of (2.117)) over (0,7"), we obtain

F(T) - F(0) = —ay /

a(z)u(z,t) f(ug(x,t)) dQ — az / a(x)g(ue(z,t — 7))ue(x, t) dQ
Q

Q

T—l
- 2“/@(1(96)[G(ut(x,t—7'))—G(ut(x,t))] Q. (2.118)

From and assumption (H2)(v), we have

Glue(w,t)) < ague(, t) f(we(w, 1)),
- G(y(ﬁ, L, t)) < _aly(x’ L, t)g(y(x, L, t))
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7'_1 a
FT) = FO) < ~(01 = ) [ alwu(o,0f0ue,0)4Q ~ 0 | atelo(u(r. 1,0)u( ) 4@
—71ua
2’”/Qa(x)y(x,1,t)g(y(x,1,t))d@. (2.119)

Let G* be the conjugate function of the concave function G

G*(s) = sup (st — G(t)).
teR+

Then G* is the Legendre transform of G, which is given by (Arnold ([8] p. 61-62))
G*(s) = s(G") 71 (s) — G[(G")"L(s)] for all s> 0.

and satisfies
st < G*(s) + G(t) for all s,t>0. (2.120)

But from the definition of GG, we have

Hence

G*(lg(y(x, 1,1)]) = g(y(=, 1,1))y(z, 1,t) — G(y(z, 1,t))
< (1 —al)y(rv,l,t)g(y(x,l,t)). (2'121)

Making use of (2.119)) and (|2.120)), we get

F(T) — F(0) < (a1 — 1) /Q a(z)ug(z, £) f (us( £)) dQ

T uay
2

+ oz /Q a(z)(G(lut(z, 1)]) + G (l9(y (2, 1,1))])) dQ-

/Q a@)y(e, 1, Dg(y(z, 1,1)) dQ

(2.121) together with assumption (H2)(v) implies

FT) = F0) < ~(o1 =T ~a302) | (o, 05 (n,1) 0@
(" oat =) [ et 109000 1,0) 40

Therefore
F(T) - F(0) < —Cy /Q fuale, ) Fluna, 0) + g, 1, Ogy(e,1,6)} dQ, (2.122)
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where . .
. “ua “ua
C) = mln{(al . 2“ 2 _ asas), (M 4 ao(ar — 1))},
with p as in (2.19).
O

Theorem 2.11. Assume that

x The function g is Lipschitz continuous on R, with L as a Lipschitz constant. (2.123)

x f(s1) — f(s2) > r(s1 — s2) for all s; — so > 0 and fized r > 0. (2.124)

Then, for each (ug,u1, fo) € H () x L2(Q) x L*(Q; L?(0,7)), problem has a unique solution
u € C(0,00; Hi () N CL(0,00; L*(Q)).

Proof of Theorem [2.11]. This follows from nonlinear semigroup theory.
Denote by H the Hilbert space.

H = HYQ) x L2(Q) x L2 L2(0,1)),

where
H(Q)={uec H(Q):u=0 on T}.
Next define
A:D(A) cH— H,
S 7
Al o | = Ac—afoufm) +ase0 1))} |, (2.125)
0 —7'_19,,
with

D(A) = {(¢,n,0) € H* () N Hy(2) x Hy(Q) x L H'(0,1)); n = 6(x,0) in Q} .
Then we can rewrite as an abstract Cauchy problem on H

aw ~

—(t) = A(W(t)),

() = AW (1) 120
W(0) = Wy,

where

’

W(t) = (u(xat)aut(xat)ay(x7pvt))T7 w (t) = (ut(x7t)7utt(xvt)7yt(x7pvt))T7W0 = (u07u17f0)T'
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We will show that the operator A defined by (2.125]) is maximal dissipative on the Hilbert space H
equipped with the inner product

¢ ¢ ) 1 )
<( 797 ) , ( g )>ﬁ = /Q {V((m).vg(m) +77(a:).77(x)} d:c+5/ﬂa(x)/0 O(x,p).0(x,p)dpdz,
with I
rasl < 6 < 2r(ayr — O‘%), (2.127)
Lo (2.128)
r o a

First, we prove that A is dissipative.
Let U = (¢,n,0)T € D(A) and V = ({,7,0)" € D(A). Then

(v -aviv=v) = [ Vi) i) V(@) ~ @) da
o

o

(C(z) = ¢(x)) (n(x) —i(z)) dx

Integrating by parts in p, we obtain

1 ~ ~
[ @) [ 0w 0) = 0. )0, ) — Dl ) i =
Q 0
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Therefore
(AU - aviv =) = a1 [ ala)(f(o(a)) = £la))0(a) = i) da
- ozz/ a(x)(g(0(z, 1)) — g(0(x,1))) x (n(x) — §i(z)) dz
Q

o1t
2

o1

/ a(z)(0(x,1) — 0(z,1))% da + / a(z)(6(x,0) — 0(z,0))? dz.
Q Q

By using assumptions (2.39)), (2.40) and the Cauchy-Schwartz’s inequality, we obtain

<AU —AV;U - V>ﬁ < —alr/ga(:c)m(x) —i(x) P dz + % [ a(@)loe,1) - 6(z,1)|? da
asL - o1 ~
+ 222 [ a@inte) = a(e)*de = T [ a(@)lo(a,1) = b 1) de
o1

5 | a@inta) = i) de

Therefore

<AU —AV;U - V>ﬁ < - <a1r - % - 6T21> /Qa(:v)|17(x) —i(z)* dx

_ <_0‘;L n 57;) /Qa(a:)|0(a:, 1) — bz, 1) da.

From ([2.127)), we conclude that
<AU _Av.U - v>ﬁ <0.

Thus A is dissipative.
In order to establish maximality, we need to prove the range condition

range(M — A) = H for a fixed A.

Let (k,1,m)T € H we seek a w = (¢,n,0)T € D(A) solution of
(A — Aw = (k,1,m)T,

or equivalently

AN —n=k, (2.129)
An—=AC+aoraf(n)+azag(d(z,1)) =1, (2.130)
N0+ 7710, =m. (2.131)

Hence 1
(= X(n + k). (2.132)



2.3. STABILIZATION OF THE WAVE EQUATION WITH A NONLINEAR DELAY TERM IN
THE INTERNAL FEEDBACK 41

From (2.131)) and the last line of (2.112)) we have

ap(xv p) = —7A0(z,p) + Tm(x, p), p € (0,1)

0(x,0) = n(x)
The unique solution for the above initial value problem is given by

A A P A
O(z,p) =n(x)e P +1e” Tp/ m(z,0)e’? do, z e, pe(0,1),
0
and in particular
0(z,1) = n(x)e ™ + 2o, (2.133)

where )
2y = Te_M/ m(x,0)e*do, x €.
0

Insertion (2.132)) and (2.133)) into problem ([2.130]) yields

1 1
An — XAT] +araf(n)+asagne ™ +2y) =1+ XAk c L*(Q).

Set
~ 1
Tn= —XAn—i-ozlaf(n) + s ag(ne*)‘T%—Zo) + An. (2.134)

Lemma 2.3. The operator T given by (2.134)) is surjective from L*(Q) onto L?(Q)

Proof. Let
Tn=DBn+Cn, ne L*Q),

where B : L?(Q) — L?(f2) defined by
By =aiaf(n)+azagne™ + Zo),
and C: D(C) = H*(Q) N HY(Q) € L2(Q) — L?(Q) defined by

1
Cn=xn— XAn.

According to Barbu [11] (Corollary 1.3, p.48), in order to establish surjectivity of the operator T, it is
sufficient to prove that B is monotone, hemicontinuous, C is maximal monotone and B+ C is coercive.
Monotonicity of B.

Let n,v € L*(Q). Then

(=B)n = (=B)v,n = v)12(0) = —u1 / a(z)(f(n) = f())(n —v)de

Q
—as / a(z)(g(ne ™ + Zo) — glve™ + Zo))(n — v) da
Q

IN

—0417"/ a(:v)]n—v[de—l—agLe_M/a(x)|77—v|2dx
Q Q

< —(a1r — agLe™7) / a(z)|n — v|* dx.
Q
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By , we conclude that
(=B)n — (=B)v,n —v)2(0) < 0.

Thus (—B) is dissipative, then B is monotone.
Hemicontinuity of B.
Let ,v,w € L?(Q)). We will prove that the function

t =< B(n+tv),w >12(Q)>

is continuous. Indeed, we have

[(B(n + tv) = B(n + tov), w) 2(0|

1 [ a@)(flr-+ t0) = Fln+ tov) wd
Q

+ a9 /Q a(z)(g((n + tv)e ™ + Z9) — g((n + tov)e ™ + Zp)) wdz

<

a1 [ ale)(f+t0) = F0+ 1)) wda
Q

_|_

s [ aa)lal(n-+ o)™ 4+ Z0) = gl(n+ tav)e ™ + 20)) wda
< cullallolle {1560+ ) = o+ t00)l 3
g+ t0)e™ + Z0) — gl(n + tov)e™ + zomLzm)}.
From assumption , we have
B + t) — By + tov), w) ey < CIIwHLzm)Ha\oo{Hf(n 1) — 01+ tov) 2@
LIt - to>vuLa(m}.

The continuity of f allows us to deduce that

[(B(n + tv) — B(n + tov), w) 2| <&

for |t — to| < . This proves the continuity of the function ¢t — (B(n + tv), w).
Mazimal monotonicity of C.
For n,v € V, we have

1 1
(Cn = Cv,n = v)r2ge) = (M = AN = Av+ LAV, 1 = ) 12(g)

1
= An =l 72 + NIV = l72) 2 0. (2.135)
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According to Barbu |11] (Theorem 1.3, p.40), the operator C continuous and monotone then it is
maximal monotone.
Coercivity of B+ C.

(T 2) = <A77—XAn+a1af( ) +azagne ™ + 20)n) 12y
—A/!n!de+ /|V7]|2dx+a1/ af(n nd:r—i—ag/ ag(ne + Zy)ndx
Q
1
A/!n[2d$+/]n\2dm+a1/ af(n ndx+a2/ ag(n )‘T—i—Zo)nda:,
Q cpA Jo 0

where ¢, > 0 is called Poincaré constant.

By using (2.123)) and (2.124)), we obtain
- 1
Frmiz 2 A [ e+ [ P do+arrlal [ o ds
Q CpA JQ Q

as L as Le
=28 ol [ 10 do— 2 ol [ 0 da
Q Q

1 s L as L
> (3 o5+ vl = 22 ol = 5 el ) [

where ||ZO|]%2(Q) <ec
Therefore

(T2 = ClallZa g
for some constant C' > 0 as long as A > %Haﬂm(l +¢). O

The operator 7 is surjective from L?(€2) onto L(Q). One easily shows that (¢, 7, #) is also in D(A).
Indeed from ([2.130f), we have
~AC+araf(n)+azag@(z,1))=1— e L*(Q).
Thus A¢ € L%(2). Then ¢ € H?(Q) N H}(Q). By using (2.129) and (2.131)), we have n € H}(2) and
0 € L*(Q, H'(0,1)).
From nonlinear semigroup theory and the density of D(A) in #, we obtain if (ug, u1, fo) € H unique

existence of the solution
ue C(0,T; Hy(2)) N CH(0,T; L*(2)),

for any finite 7' > 0. O

We consider next the following approximation of system ([2.14)) with [ — +o00 as the parameter of

approximation,

ultt(xvt) - Aul('xa t) + a(x) {alfl(ult(xat)) + a?Ql(ult(xvt - T))} =0 in 2 X (O’ +OO),
u(z,0) = up(z), we(z,0) = ur () in 0,

uy(x,t) =0 on I' x (0, 400),
up(z,t — 1) = fo(z,t — ) in Q x (0,7),

(2.136)
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where

Fulun(e, 1) = Flun(e, 1)) + Jol, 1),

and the g; are defined by

g(s), [s| <1
q(s)=1q 9(), s>1 (2.137)
g(_l)7 s < —

Notice that for each value of the parameter [, the functions g; and f; satisfy the hypotheses of Theorem

211
Thus, there exists a solution (uy, uy) of (2.136)) such that

u € C([0, +00); Hy (€2)) N C([0, 00); L*(92)),
and
uy € LQ(O,oo;LQ(Q)) , filuy) € LZ(O,oo;LQ(Q)) , gllug(z,t—1)) € L2(0,oo;L2(Q)). (2.138)

We prove that we can extract a subsequence from the above sequence of solutions w;, that has a limit
which is a solution of the original problem (2.14]).
To accomplish this we need the following.

Lemma 2.4. Under the assumptions of Theorem . We have as | — +oo and uy(x,t — 1) —
u(z,t — 7) weakly in H(£2)

g(up(z, t — 7)) — glw(x,t — 7)) in LQ(Q). (2.139)

Proof. We write

/ g1 (e (2, t = 7)) = g(uge (e, t = 7))|* dar <2 [ lg (e, t —7))|* d + / gD + lg(=D)> d | ,
Q 9]

9)
(2.140)
where
O ={zeQ:|uy(z,t—1) >1}.
Then, by Sobolev’s Embeddings
HY(Q) ¢ L2 (Q), n>2, (2.141)
HY Q) CLP(Q), 1<p<oo, n=2 (2.142)

We have for n > 2

(/gllannZ)nQ_n2 </Q(|(u1t(x,t—7))|f’g>’2‘f’

—2n

n—2
mestg/ (I(u;t(az,t—f))!%) e, (2.143)
Q

therefore
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Analogously, for n = 2 the above inequality is valid with any exponent for I.
By assumptions (H2) (zii), (H2)(v) and by (2.143]),

lg(u(z,t — )P dU < ¢ | |up(a,t —7)]>dy

97 9]
n—2
2n n n—(n—2)
<c [/ |uge(x, t — T)]n2] (mesy) ™ n — 00 0, (2.144)
)
since n — 2 < n.
2 2 2n_ o 2—2n
lg(D)|*d < cl"mesy < ¢ luge(z, t —7)|"—2 72—, 0. (2.145)
Ql Ql
Combining the results of (2.140)),(2.144]) and (2.145]) gives (2.139)). O
We are in a position to apply energy estimate (2.114]) for each ¢ > 0, we obtain
1
(0 + O] [ [ ala {(Ftuntent) + Funte ) (a.8) + ot = Pt~ )} dods
< F(0), (2.146)
where Fj(t) is defined by (2.18]) with u (respectively G) replaced by w; (respectively Gj).
F(0) < C (Juol (e lurl 2@ | fol L2x 0,r)) ) - (2.147)
From hypotheses (H1), (H2), (2.146) and (2.147)), we infer that
lurel 20,7020 < C ([uol i1 (0 [ual L2, [ fol L2x(0.7)) ) (2.148)
lwil oo, m ) + lwlcorz2 @) < C- (2.149)
Therefore, on a subsequence we have
u; — u weakly in H(Q x (0,T)), (2.150)
uy; — uy weakly in L?(0,T; L?(Q)). (2.151)

Hypotheses (H1), (H2) together with compactness of the embeddings (2.141))-(2.142) and (2.151)
together also give.

g(up(x,t — 7)) — g(ug(z,t — 7)) in L2(0, T; L2(Q)), (2.152)
fluy) — f* € L*0,T; L*(Q)) weakly in L?(0,T; L*()) for some f* e L*(0,T;L*(Q)). (2.153)

Let (ug, um) be the solutions of (2.136]) corresponding to the parameter [ and m. Then from the energy
identity

1t — 1) (8) By + (= ) (1) 23 + 1 / | ) ) = ) e = ) s

< al/ / |Ult| dr + ( 041// |umt| dx ds

+ 042/0 /Q a(x)|gi(we(z, s — 7)) — gm(ume(z, s — 7))| |ug — wme| dx ds. (2.154)
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The result of Lemma together with (2.150f), (2.151)) and (2.148) imply the convergence to
zero (when [,m — o0) of the last two terms on the right hand side (2.154).

Similarly, by the first two terms on the right hand side of converge to zero.

Thus, we have obtained

u — u € C(0,T; HY(Q)) nCH(0,T; L*(Q)), (2.155)
and .
l}%igloo/o /Q(f(ult) — fume))(uig — wmt) de dt = 0. (2.156)

From (2.151)),(2.153]) and (2.156]) we also obtain

llggo [/OT/Qf(ult)ultdxdt—/OT/Qf(ult)ut d:r:dt—/OT/Qf*ult da:dt]

T
+ lim/ /f(umt)umtd:rdt:O.
Q

m—0o0 0

Hence, again using (2.151)),(2.153) and changing m to [ we obtain

T T
2 lim / / fug)uy de dt = 2/ / frug dx dt. (2.157)
=00 Jo Ja 0 Ja

But (2.157) combined with (2.151)),(2.153) and monotonicity of f, according to Barbu [11] ( Lemma
13, p. 42), yields

= flu). (2.158)
Passing to the limit in (2.136)) and recalling (2.158|) together with (2.150)- (2.152)) gives
uit(z,t) — Au(z,t) + a(z) {on f(u(2, 1)) + asg(w(z,t — 7))} =0 in D'(€2 x (0, +00)),
u(z,0) = ug(z), ut(x,0) = uq(x) in Q,
u(z,t) =0 on I' x (0,400),
u(x, t — 1) = folz,t —7) in Q x (0,7).
(2.159)

The proof of Theorem 2.3 is thus complete.

2.3.2 Proofs of Theorem [2.4] and Corollary [2.2]
Proof of Theorem [2.4]

Proposition 2.12. There exists a time T such that for all T > T*, there exists a positive constant
Ct such that

[/ / ) {|ue(z, )2 + | f(ue(z,8))? + g(ue(z,t — 7))ug(2,t — 7)}dwdt| . (2.160)
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Proof. We write the solution u of (2.14]) as u = ¢ + v where ¢ solves

u(,t) = Ap(z,t) in © x (0; +00),
o(z,t) =0 on I' x (0, 4+00), (2.161)
o(,0) = uo(z), @z, 0) = ur(z) in €,

and v satisfies

v (z,t) = Av(z,t) — a(x){oq f(u(z, 1)) — aog(u(z,t — 7))} in  x (0;+00),
v(z,t) =0 on I' x (0, 4+00), (2.162)
v(z,0) = v(x,0) =0 in Q.

Denote by Fi,(t) the standard energy of (2.161), that is

Folt) =5 [ L@t + V(. 0} do
and F,(t) the standard energy of (2.162),

Fy(t) = ;/Q{]vt(x,t)\z 4 [Vo(z, )2} da.

It is follows from [ [62] Proposition 4.2] that for all T' > Tj, there exists a positive constant ¢ depending

on T such that -
RO <e [ [latPdod.
0 w

< / / x|, (z,t)|? d dt. (2.163)

On the other hand, from the mean value theorem for integrals and monotonicity of g, we have

Using ([2.15)) we get

G@zﬁlmw<w®.

Therefore

1 1
5 [ o) [ Gua—ro)dpds < § [ ata) [ atw)gtuta.~rp)uta.~rp) dpda.

By a change of variable, we obtain for T' > 7

i 1 T
2/Qa(m)/0 G(ut(x, —Tp))dpdx§0/0 /Qa(x)g(ut(x,t—T))ut(x,t—T) dx dt. (2.164)
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If we take T' > T* := max {Tp, 7}, since the energy is non-increasing, from (2.163) and (2.164) we
deduce that

u 1
F(T) < F(0) :F¢(0)+2/§2a(x)/0 G(u(z, —7p)) dpdz

T
<oT/0 /Qa(x){got(x,t)]2+g(ut(w,t—7))ut($,t—7)} du dt

IN

T
CT/O /Qa(x) {lur(z, ) + vz, t)|* + g(wi(z,t — 7))wy(z,t — )} dadt
T
<Cr [ [ ata) {fule.OF + £l 0)F + glue.t = )use.t ~ 1)} dode
0 Q

T
2
+C’T/0 /Qa(x)|vt(x,t)| dz dt . (2.165)

=K

It remains to estimate the term K.
We differentiate the energy function F,(t) with respect to ¢, we obtain

%Fv(t) =— /Q a(x){an f(ue(z,t))ve(z, t) + asg(ue(z, t — 7))ve(z, t) } dx,

from which we get after using Cauchy-Schwarz’s inequality
) < C/ o) {1f (e, 1)1 + |oe(z, t)* + |g(ue (2, t — 7)) *} da, +/ o2, 1)]* da.
From the definition of F,(t), we obtain
GFO < F0)+C [ @[ )P +lgtuna,t = 1)) da,
Multiplying the last inequality by (e~!) and integrating over (0,t), we get

<Ce// D) {1f (e, )] + g (s, t — )%} da .

We conclude for ¢ € (0,7), that is
W< [ [ @0 + lotutet - 7)) de,
which gives

/ /]vtx 0 |2dxdt<C/ / D) 1f (e, )2 + Jue(, )2 + |g(ue(z, ¢ — 7)) 2} da dt.

By using assumptions (H2)(#7) and (H2)(v), we have

K= / / z)|v(x, t)|? da dt

= C/ / ){|f (ug(, )% + Jue(, ) + g(ue(z, t — 7))ug(z, t — 1)} de dt. (2.166)

Finally, combining (2.166) and (2.165]) we obtain the desired estimate given in (2.160]). O
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Proposition 2.13. Assume (H1) and (H2). Then, the energy F(T) of problem satisfies
F(T) + BF(T) < F(0), (2.167)

where p(.) is defined by , and T > 0 sufficiently large.

Proof. Denote
Q1= {us € L*(Q) : |ug] > 6 ae.},
Q2 =Q — Q1.

From hypotheses (H1) and (H2), we have

/ a(@) (@, ) + (1)} dQr < (a7 M; las + M) / o) F(ug(z,6) ez, £) dQr.  (2.168)

1 1

On the other side, from (2.4)) and from the fact that A is concave and increasing, having in mind that
a(z) < lafloo +1,

and
a(x)

— < a(x),
TF ol = 4@

we deduce that

/a(x){th(x,t)+f2(Ut(x7t))}dQ2S/ a(x)h(f (us(z, t))ur(z, 1)) dQ2

2 2

= a ﬂ UL\ T UL\
= [0 bl o ), )

< [ 0+ lallon (12 e 0)ute.0)) ds

1+ [l

< / (1 + llallcc)h(a(a) f(us(z, t))us (2, 1)) dQ2.  (2.169)
By Jensen’s inequality,

(1+ lafloo) /Q ha() f (e (o, ) ur(, 1)) dQs
1

mes Q)

<+ uanoo)mes@h( /Q () f (e, 1)y, 1) d@)

— (1+ [lalloo)mes @F ( /Q () f (i, ) e, ) d@) . (2.170)



2.3. STABILIZATION OF THE WAVE EQUATION WITH A NONLINEAR DELAY TERM IN
THE INTERNAL FEEDBACK 50

Combining inequalities ([2.168), (2.169) and (2.170)) with the result of Proposition [2.12] gives

F(T) < Cr {m;lMg—l@ ) /Q o) f (e (2 ), £) dQ + / a()ur(a, t — 7)g(ur(at — 7)) d@}

Q
+ Cr (1 + ||lal|c) mes Qh (/Q a(x) f(ug(z, t))u(z, t) dQ)

<Cr {(aflMs_laz + M) /Q a(x) f(ut (2, t))us(z,t) dQ + / a(w)u(z,t — 71)g(us(z,t — 7)) dQ}

Q
+ Cr (1 + ||al|oo) mes Q//{ </Q a(x){f(ue(z,t))ue(x, t) +ue(z, t — 7)g(ue(z,t — 7))} dQ> .

(2.171)
Setting
K, = 1 o 67 Mytay + M,y
Cr (1+ [lallos) mes Q° (1 + [lallo)mes Q
we obtain
F(T) < /Q al@) f (g @, 1)) ur(x, ) dQ
1
+ Kl (1 + ”aHoo) mesQ /Q(I(l‘)ut(l‘,t - T)g(ut(‘rvt - T)) dQ
b ( [ el ). 0) + et = g - T))}dQ> |
1 Q
Set .
0" =maa { O e mera |
consequently

K\ F(T) < (C"I +E) </ a(x){f(ue(z,t))up(x, t) + wp(x, t — 7)g(w(x, t — 7))} dQ) . (2.172)
Q
On the other hand, by using the inequality , we obtain
/Q a(@){f (u(, 6)yur(, 1) + wg(a,t = 7)g(uy(w,t = 7))} dQ < CyH(F(0) — F(T)). (2.173)
By and , we obtain
(C"I+h)~ (K2 F(T)) = B(F(T) < F(0) — F(T),

where K2 == ClKl.
Finally,

p(F(T))+ F(T) < F(0).
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Applying the result of Proposition [2.13| we obtain for m =0, 1, 2....
P(F(m(T+1))+ F(m(T + 1)) < F(mT).
Thus, we are in a position to apply [|43], Lemma 3.3, p.531] with
Sm = F(mT), so = F(0).
This yields
F(mT) < S(m), m=0,1,2,...
Let t = mT + 7 and recall the evolution property, we obtain
F(t) < F(mT) < S(m) < S(%5) < S(4—1) fort > T,

which completes the proof of Theorem

e Proof of Corollary

It is enough to construct a function h with the property ([2.4)).
From hypotheses (2.22)) and ({2.23]), we have

/"cwxnu%uaw—%f%uxxxn}d@Q <1+wﬁy/ o)l (z,1) dQs

2

<1+#y/ o) @ (e £)yug(z, )77 dQs

(1+0?) Gt a(x)(f(u(z t))ut(:v,t))ﬁ dQs.
Q2
We can take
Bi(s) = @t (14 52)s™, where 2
s)=a s™, where m = —— < 1.
p+1
Then
Bls) = (C"I + 1) (Kas).
Therefore

C"p+d(a,b)s™ = Kas

where d is a suitable constant depending on a, b.
Also, recall that

q(s) =s— (I +p) " (s).
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Since asymptotically (for s small) we have, for some constant 5 > 0 ,
p(s) ~ BsY™ and therefore g(s) ~ Bs'/™,

by solving equation (2.21]) with g as above, we obtain

1-p 2 .
Sty ={ AltTarz)s it p>1 (2.174)
e Pty if p=1,

where c1, ¢a depend only on 3 and p.
Finally, (2.24)) follows from Theorem The proof of Corollary is complete.



Chapter 3

Stability of the Schrodinger equation
with a delay term in the nonlinear
boundary or internal feedbacks

3.1 Introduction

In this chapter, we study stability problems for the Schrodinger equation with a nonlinear delay term
in the boundary or internal feedbacks.
Let Q be an open bounded domain of R™ with smooth boundary I' which consists of two non-empty

parts I'y and I'y such that, ' UTy, =T with Ty N Ty = 0.
In addition to these standard hypothesis, we assume the following.

(A) There exists zp € R” such that, with m(z) = 2 — z,
m(z).v(x) <0on Iy, (3.1)
where v(.) is the unit normal on I' pointing towards the exterior of €.

In Q, we consider the Schrodinger equation with a delay term in the nonlinear boundary feedback:

ug(x,t) — iAu(x,t) =0 in Q x (0; +00),

u(x,0) = up(x) in Q,

u(x,t) =0 on I'; x (0,4+00), (3.2)
%(l‘,t} = ialf(u(xat)) + iozzg(u(x,t - T)) on FQ X (01 —I—OO),

u(z,t —71) = folx,t —71) on I's x (0,7),

where
e ug and fy are the initial data which belong to suitable spaces.

° 8% is the normal derivative.

53
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e 7 is the time delay.
e o1 and as are positive constants.
e f and g are complex-valued functions of class C(C).

In the absence of delay (i.e. ag = 0), uniform decay rates have been established for the solutions
of (3.2)) in [57] and [51] when f is linear and in [19] and [47] for f nonlinear.
In [65], the authors examined the system (3.2) with f and g linear. They proved under the assumption

a1 > 9

that the solution decays exponentially to zero in the energy space L?(£2).

In this chapter, we address the uniform stability problem for (3.2) in the case where both f and g
are nonlinear.
To this aim, we need to make the following assumptions.

(H.1) (i) f(s) is continuous complex-valued function with f(0) = 0.
(i) Re(f(z) — f(y),z —y) > K|z —y|?> forall z,y € C and K > 0.
(iii) Im{f(2)z} =0.
Thus in particular for y = 0, we have from (ii) that Re{f(z)z} > K|z|? which implies in view

of (iii) that Re{f(2)z} = f(2)z > K|z|? and consequently f(2)z = |f(z)z|.

(H.2) (i) g is a Lipschitz continuous, complex-valued function; |g(z) — g(y)| < Li|z — y| Vz,y € C with
9(0)=0.

(ii) Im{g(2)z} =0, Vz € C.
(H.3) a > 22k,
(H.4) There exist positive constant M > 0, such that
|f(2)] < M|z|P, for |z| > 1, Vze€C;

where p =5 for n = dimQ = 2,
p=3for n =dimQ = 3.

Remark 3.1. (i) Particular example of a function f satisfying assumption (H.1) is:

f(z)=|z]"2+ Kz, 0<r<1,
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(11) As an example of a function g for which assumption (H.2) holds we have:

BECIINEEY
g@_{ Sz o>t P EC

where 7 is a locally Lipschitz continuous function of a real variable.

In order to state the stability result, we proceed as in the previous chapter. So, let h be the real

valued strictly increasing concave function defined for s > 0 and satisfying

h(0) = 0
hf(2)z) > |z|+|f(2)* for |2| < 6; for some § >0,z € C

and define the following functions:

-~ z
= >
W) = h(—), 2 20,

where Y9 =Ty x (0,7, T is a given constant.

p(z) = (C"I + h) " (K3z2),

where O and K3 are positive constants.

¢2)=z—T+p)z), 2>0,

q is also a positive, continuous, strictly increasing function with ¢(0) = 0.

Then p and q are positive, continuous, strictly increasing functions with p(0) = ¢(0) = 0.

We define the energy of a solution of (3.2)) by

1 1
B) =5 [ 0P de+ 5 [ [ et =) Pdpd
2

where

Liao
2

Tagly < p < 27(Kog —

).

(3.9)

We show that if {2,T'1,'s} satisfies (A), and the functions f and g verify assumptions (H.1)—(H.4),
then we obtain uniform decay rates of the energy of solutions. The proof of this result is, as in the

previous chapter, based on certain integral inequalities for the energy functional and a comparison

theorem that relates the asymptotic behaviour of the energy and of the solutions to a dissipative

ordinary differential equation. This result is stated in the following theorem.
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Theorem 3.1. Let n = dimQ = 2,3. Assume hypotheses (H.1)—(H.4) and (A). Let u be the solution
to . Then, for some Ty > 0,

B(t) < S(jfo C1)(E0),  Vt>T, (3.10)

where S(t) is the solution of the differential equation
d
22 () +4(5@)) =0, 5(0) = E(0), (3.11)

where the function q is defined by .

In this chapter, we will also study the stability problem for the Schrédinger equation with a delay
term in the nonlinear internal feedback. More precisely, we consider the system described by

ug(x,t) — iAu(z, t) + a(x){oa f(u(z, t)) — asg(u(z,t — 7))} =0 in Q x (0;+00),

u(z,0) = up(x) in §,

u(z,t) = on I' x (0, 400), (3.12)
u(z, t — 1) = folz,t — 1) in 2 x (0, 7),

where aq, g, ug, fo, f and g are of as above and a(.) is a function in L% (2)— function such that
a(x) >0 a.e. in Qand a(z) > ap > 0 a.e. inw, (3.13)

where w is an open neighborhood of I's.

Stability problems for the undelayed system corresponding to (3.12)) (i.e. ag = 0) have been treated
for both linear [57] and nonlinear [15] functions f.
Nicaise and Rebiai [65] obtained stability and instability results for the system with f and ¢
linear. In fact, they proved under the assumption

a1 > o, (3.14)

that the solution decays exponentially to zero in the energy space L?(Q2). On the contrary, if
does not hold they constructed a sequence of delays for which the corresponding solution of is
unstable.

Here, we consider the case when f and g are nonlinear and satisfy in addition to (H.1), (H.2), (H.3)
and the following,

(H.5) There exists M > 0 such that
()] < 2], for |2 > 1.

Remark 1. (i) Particular examples of a function f satisfying assumptions (H.1), (H.5) are:

1
f(z)=|z["2+ Kz, for 0<r<1and K >0;or f(z) = |z|?¢ 22+ Kz, for K > 0.
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Remark 2. In [36], regional boundary stabilization of the one-dimensional Schridinger equation with
a nonlinear delay term of the form

pu(z, t —7(6))|u(z, ),
and with bounded internal disturbance, is studied by using the backstepping method.

Before stating the stability result for (3.12]), we consider the function h introduced by (3.4) and
define as we have done previously, the functions:

~ z

h(z) =h >0
()= hZ )220,
where Q = Q x (0,7), T is a given constant.
[ ]
P(z) = (C"I + )" (Kaz), (3.15)
where O and K are positive constants.
o
G2)=2—I+p)Lz2), z>0. (3.16)

Then p and ¢ are positive, continuous, strictly increasing function with p(0) = ¢(0) = 0.
Let F(t) be the energy of a solution of (3.12]) given by

1
Ft) = ;/Q|u(x,t)]2dx—|—g/ﬂa(x)/0 u(z, t — 7p)|2dp da, (3.17)

where
Liao

Tagly < p < 27(Kag — 5

). (3.18)
We have the following stability result for system (3.12]):

Theorem 3.2. Assume hypotheses (H.1)— (H.3), (H.5) and (A). Let u be a solution to (3.13). Then

for some Ty > 0,

F(t) < S(:ﬁo —1)(F(0)) for t > Ty,

where S(t) is the solution of the differential equation
&5 +4(S(t)) =0, S(0) = F(0).
where the function q is defined by .

The chapter is organized as follows. Theorem is proved in Section whereas Section [3.3
contains the proof of Theorem Both sections start with the study of the well-posedness of the
system under consideration.
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3.2 Stability of the Schrodinger equation with a delay term in the
nonlinear boundary feedback

3.2.1 Well-posedness of problem (3.2

In order to be able to manage the boundary condition with the delay term and inspired from [62] and
[83] we introduce the auxiliary variable:

y(z, p,t) = u(x,t —7p); €T pe(0,1),t>0.
Then, the system (3.2) is equivalent to

ug(x,t) —iAu(x,t) =0 in Q x (0; +00),

ye(z, p,t) + 7 Ly (x, p, t) = 0 on I'y x (0,1) x (0,400),

u(z,0) = up(z) in Q,

u(x,t) =0 on I'y x (0,+00), (3.19)
%(m,t) =idoq f(u(z,t)) +iaag(y(x, 1,t)) on I'y x (0, 4+00),

y(x, p,0) = fo(x, —p7) on I'y x (0,7),

y(z,0,t) = u(x,t) on I's x (0, 4+00).

Denote by H the Hilbert space.

H = L?(Q) x L*(I'y; L*(0,1)).
We equip H with the inner product:

1
<< Zi ),< Z; )>H ZRe/Qu1(:E)U2(SU)d:U+uRe/F2/O yl(x’p)mddeQ.

Let A: L?(2) — L?(Q) be the operator defined by
A¢ = —A¢ with D(A) = {g € H*(Q), gC =0onTy (=0 onfl} :
v

Let N : L*(T) — L*(Q2) be the Neumann map [45], [79], [49)]

XzNgo(z){szOinQ;x|p1:0,g>V<F:<p}, Iy # 0. (3.20)
2
It is well known that
N : continuous H*(T') — H*2 s € R; (3.21)
N : continuous L*(I") — Hg(Q) C H%_QG(Q) = D(A%_E), Ve > 0; (3.22)
and
N*A*C = N*A¢ = { 2 o E for ¢ € H}, () = D(A}). (3.23)

Next define
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A:D(A) CH = H,

A( g ) _ ( AiC = NSO - aNol0(: D) ) | (3.24)
with
D(A) = {¢ € L3(®),0 € LA(Ta H'(0,1)); i — N f(C) — a2Ng(6(,1)) € D(A)}.  (3.25)

Then we can rewrite (3.19)) as an abstract Cauchy problem in H

daUu
—(t) = A(U(®)),
() = AU ) -

U(0) = U,
where
U(t) = (u(:v,t),y(x,p, t))Tv Ul(t) = (ut(x>t)ayt($>p? t))Tv Uop = (u0>fO)T'

Theorem 3.3. Let n = 1,2.... Assume hypotheses (H.1) — (H.3). Then, the following results hold
true for the problem :

(a) (Well-posedness) For any initial conditions Uy = (ug, fo)* € H, problem defines a unique
(nonlinear contraction semigroup) solution U satisfying

U(.) € C([0, 00); H). (3.27)

The generator A of the corresponding nonlinear semigroup is given explicitly in below: it

is mazximal dissipative; moreover, D(A) = H.
(b) (Regularity) Let, in particular, Uy = (uq, fo)* € H?()x L?(T'y; H'(0,1)) subject to compatibility
conditions:

uo

Uy € H*(Q) x L*(Ty; H'(0,1)) : uo|r, = 0;
v Ty

= iaq f(ug) + iaag(fo), so that Uy € D(A).
(3.28)

Then, the corresponding unique solution U(.) guaranteed by part (a), satisfies [[11], Theorem
1.2, p. 220] (U (.) = right-derivative)

U(.) € C(10,00); D(A)), D(A) C D(AZ) x L*(Tp; HY(0, 1)) = H} () x L*(Tp; H'(0, 1)),
U () € C([0, 00); H);

U()|r, € C([0,00); HZ(T2) x L*(Ta; H'(0,1))).
(3.29)
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(¢) (Higher regularity) Assume on Uy and, moreover,

(c1) if dimQ =2, assume assumption (H.4).

(c2) if dimQ = 3, assume that
lf(2)] < Crlz|", z€C, for somer <3, |z| >1, (3.30)
(r=3—¢, € >0 arbitrary).
Then, in both cases (c1) and (c2), we have that

D(A) € H2(Q) x L2(To; HY(0,1)),  so that U(.) € C([0,00); H3 (Q) x L*(T'y; H'(0,1))),

for Uy as in (3.28). In particular ( from , (c1) and (¢2)): -
gz L iy f(u) +icag(u(.,. — 7)) € L*(0,T; L*(Ty)). (3.32)
Proof of Theorem [3.3]
To accomplish this, the following result will be needed.
Lemma 3.1. Under assumption (H.1)(iii), (H.2)(i) and (H.3), we have
D(A) C D(AZ) x LX(T9; H'(0,1)) = H} (Q) x L*(T'y; H'(0,1)), (3.33)
where
Hp, () = {¢ € H'(Q) : (|r, = 0},
so that
(¢,0)" € D(A) — ¢ € HE (), 0 € L*(Ty; H(0,1))
— (|r = N*AC € H3(T), 0 € L*(Ta; H'(0,1)), A(C,0) € H (3.34)

A D(A2) x LA(T; H(0,1)) D D(A) — H.
Proof. Indeed, if (¢,0)T € D(A), we obtain from (3.25))

A(—i¢ — a1 Nf(¢) — aaNg(0(x,1))) = L € L*(Q) =
—i{AC Q2 — (AN F(NTACQ), () r2(0) — a2(ANg(0(x,1))), () r2(0) = (L, Q) 22(0) (3.35)

and
—7719, = R € L*(T'y, L*(0,1)), (3.36)
Indeed, from ([3.36)) we have

0(z,1) = ((z) + =0, x € T, (3.37)
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where

1
20 = —T/ R(z,0)do.
0
Insertion into ( - 3.35)) yields

A(=i¢ — a1 N f(¢) — aaNg({(z) + 20)) = L € L*(Q) =
—i{AC, Q) r2(q) — @1(f(€), ) r2(ry) — @2(9(C + 20), Q) r2(ry) = (L, () 12()- (3.38)

Taking the imaginary part of (3.38]), where A is positive self-adjoint, and recalling that

Im{f(¢)¢} =0,

we obtain

(AC, Q) 2y = —Im(L, () 2y — a2Im{g(C + 20), C) L2(1y).

1 _1
142 ¢l 720y < 1472 Llf72(q HA2 ¢l T2y + azllg(C + 20)ll L2y ISl 22 (r,)-

By using assumption (H.2)(7), we have
1 _1
14211320y < 1477 Ll 2|42 Clliaq) + 2Ll (ry) + a2 LuclCllzr,),

where | zol[z2(r,) < c.
By trace theory, we obtain

1
1421720 <||A2L||L2(Q |42 ¢l 2o +O‘2L161HA2<HL2 +CV2L102||A2CHL2 ) (3.39)

where ¢y = ccy.

Then, (3.39) yields

1 1
A2 S
142 ¢l L2 () = 17— ool

<”LHL2 + 042L102>

By using assumption (H.3), we have 1 — aa L1 > 0.

Thus, (3.33) is established. Then, trace theory and (3.23) yields (3.34]). O

e Proof of well-posedness and regularity.

Proposition 3.4. Assume hypotheses (H.1), (H.2) and (H.3). Then, the operator A in is
maximal dissipative on H.

Proof. First, we prove that A is dissipative.
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Let U = (¢4,01)T € D(A) and V = ((y,02)T € D(A). Then

Re (AU — AV3U — V), = —Re /Q A () - () (@) - @) de

- Re/QalAN(f(Q(JU)) — [(¢a(@))) (C1(@) — (o)) dae

~ Re / 2 AN (g(81(2,1)) — g(02(2, 1)) (1 () — Co(@)) da
Q

1
' Re /F /0 (Brp(x p) — O3y, 0))(Br(z, p) — Bl p)) dp dT

— —Re /Q A (4 (2) - Go(@)) AH @) - G@) de
~ Re /F a1 (f(C1 (@) = F(Calw))) N* ARG, (@) — Co)) T

" Re /F as(g(01(, 1)) — g(Ba(2, 1)) N* AC, (@) — Co(@)) do

1
—ur ' Re / /0 (0122 p) — O3, (. 0)) @1 (x p) — Bl p)) dp dT.

Integrating by parts in p, we obtain

1
/F /0 (01p(z2 p) — O3, (. 0)) @, p) — Bl ) dp T

1
= [ ] Ot (w0 3, ) ~ o) dp

+ g 101 (2, 1) — Oo(x,1))[* — |01 (x,0) — Oa(x,0))|>dl,

or equivalently

1
2re [ 2 | @10 = 020 ) @10z ) — Bl ) dps
— /F 101 (2, 1) — Oa(, 1))[2 — 61z, 0) — Ba(z, 0)) |2 dTs.

Therefore

Re (AU — AV, U = V)y = —Re/ ar(f(C1(x)) = f(Ca())) (Ci(x) = Cax)) dT2

I'>

= Re [ aalg(®r(1)) = g(6a(e. 1) ) ~ Co@))

1 71
K 101(, 1) — fa (2, 1))|2 dTo + ©

5 101 (x,0) — Oa(x,0))|* dl's.
FQ I“2
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By using assumptions (H.1)(i7), (H.2)(i) and the Cauchy-Schwartz’s inequality, we have

L
Re (AU — AV;U —= V), < Koy | [¢1(x) = Co(@)2dly + “22 [ 104(2,1) — Oa(x, 1)[? dT'
T'o 1)
L —1
+ 22 / 1 () — (o) dTy — EE 101, 1) — B, 1))|* dT'5
2 Ty 2 To
-1
-
+ 55— [ l6@) = G @) drs.
1)
Then
aslq ,m'_l 9
Re (AU — AV;U = V), < — | Kag — 5~ 5 |¢1(z) = Co(a)|* dl'y
s
—1
—<—”h+”r> 101(z,1) — fa(z, 1)|? dl.
2 2 ) Jn,

From (3.9), we conclude that
Re (AU — AV;U —V),, <0.

Thus, A is dissipative.

In order to establish maximality, we need to prove the range condition range(I —.A) = H. In other
words, given any (L, R)T € H, we need to establish the existence of an element U = (¢,0)T € D(A)
such that

(I— AU = (L,R)T, (3.40)

or equivalently
¢ —A(=i = Na1f(¢) = Nazg(0(z,1))) = L, (3.41)
0(x,p) + 7 10,(z,p) = R. (3.42)

Indeed, from ([3.42) and the last line of (3.19) we have

Op(x,p) = =70(z, p) + TR(2,p), x€T2p€(0,1),
9(1‘,0) = C(x)v xz el

The unique solution of the above initial value problem is given by
O(x,p) =C(x)e” ™ +1e7° /Op R(z,0)e™ do, xe€T9,pe(0,1),
and in particular
0(x,1) =((x)e " + Zy, x € T, (3.43)

where
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Zo=T1e " fol R(z,0)e™ do.
Insertion of (3.43)) into problem (3.41)) yields
C+iAC+ ANay f(¢) + ANasg(Ce™™ + Zo) = L € L*(Q). (3.44)

Set

T¢C=C+i1A(+ ANai1f(() + ANagg(Ce™ ™ + Zy). (3.45)
Lemma 3.2. The operator T is surjective from V = D(A%) = Hlll(ﬂ) onto V' = (D(A%))’ =
(Hp, ()"

Proof. We need to prove that given any [ € V' there exists an element ¢ € V such that

TC=1. (3.46)
Set
T¢ = B¢+ CC, (3.47)
where
BC = ANoi f(¢) + ANagg(Ce™™ + Zo),
and

CC = ¢ +iAC.

We will prove that B4+C': V — V' is maximal monotone. According to Corollary 1.1 in [|11], p.33] it
is sufficient to prove boundedness, hemicontinuity and monotonicity of B and maximal monotonicity
of C.

Since we are working with V, V' framework, AN : L?(T'y) — V" is bounded.

Monotonicity of B.

Let (,v € V. Then

Re((=B)¢ — (=B)v,¢ —v)vixy = —arRe(AN(f(C) — f(v)), ¢ = v)vrxv
— aaRe(AN(g(Ce™" + Zo) — g(ve™ ™ + Z0)), ¢ — v)vixv
= —anRe(f(¢) — f(v), N"A(C — v)) r2(ry)
—agRe(g(Ce™ + Zo) — g(ve™ " + Zp)), N"A(C — v)) r2(ry)-

From assumptions (H.1)(ii), (H.2)(i), we have

Re{(—=B)¢ = (=B)v, ¢ = v)yixv < =1 K|[[¢ = vl|72p, + a2lie”T[[¢ = vl 22 (p,)
< (a1 K — OszleiT)HC - 'U”%Q(Fz)'

Using assumption (H.3), we conclude that

Re((—B)¢ — (—B)v,¢ —v)yrxy <0.
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Thus (—B) is dissipative, then B is monotone.
Hemicontinuity of B.
Let u,v,w € V. We show that the function t — (B({ + tv), w) is continuous.

[(B(¢ +tv) = B(¢ + tov), whvxv| = (e AN (f(C + tv)) — f(C + tov))), w)vixv
+ (AN (g((C +tv)e™™ + 20)) — g((( +tov)e™ ™ + 20))), w)vrxv |
< a1 f(C+1tv)) = f(C+tov)), N*A"w) r2(1,)]
+ [{a2g((¢ +tv)e™™ + 20)) — g((C +tov)e ™ + 20)), N*A*w) p2(r,)|
< cl|wl 2@ LI F(C +tv) — f(C + tov) |l 2(ry)
+ l9((C +tv)e™™) = g((¢ + tov)e™ ) r2(ry) }-

From assumption (H.2)(i), we have
(B(C +tv) — B(C + tov), w)yvrxv| < cllwll g2y {1 F (€ + tv) = F(C + tov) L2y + Lie” T|[(t — to)vllz2ry) }-
Since f is continuous, we conclude that

[(B(C + tv) = B(C + tov), w)vixv| <&

for |t — to| < 8. This proves continuity of the function ¢ —s (B(C + tv), w).
Mazimal monotonicity of C.
For (,v € V, we have

Re(CC¢ — Cv, ¢ —v)yixy = Re(C +iAC — v — iAv, { — v)yixy
=|[¢ —v|Z > 0.

Thus C' is monotone.

The operator C' is continuous and monotone then it is maximal monotone.

We have proved that 7 is maximal monotone V' — V', consequently according to Minty’s Theorem
[[11] Theorem 1.2, p.39] for any A > 0 the operator

A + T is surjective from V onto V', (3.48)

where J is the canonical injection V onto V', and hence can be taken to be J = A.
In the sequel, to establish the surjectivity result (3.46)), we employ an approximation argument using
(3.48) with A N\ 0.

Approximation argument.
Let A > 0 and let [ € V'. By the surjectivity property (3.48)), there exists ¢, € V such that (with
J=A):

MGy + Ty =AM\ + () +iAG, + a1 ANF(C)) + aaANg(Cre™ ™ + Zo) =1l e V. (3.49)
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Next we take the duality pairing V' x V' of (3.49)), where J = A, with any ¢ € V,

AT+ T ¥ 2() = AT\ + O ¥) 2y + 1A ¥) p2(0) + (AN (G, ¥) 120
+ 042<ANg(C)\677 + Z), w>L2(Q)

= <l71l}>L2(Q)a ¢ ev. (350)
Setting, ¥ = (, € V, taking the Im part of (3.50)), we obtain
1 —
(AC O e = 142122y = Imdl G 2 () — a2lm{ANg(Cre™ + Z0),C) 2 () (3.51)

Since V = D(A%% ICxllv = HA%C/\HLQ(Q)’ then

1Al = Im{l,¢\) r2(0) — a2 Im{ANg(Cae™™ + Zo), (o) r2 ()
< 1l lICallv + az2llg(Cae™ + Zo)l L2y [ICallv-
Using assumption (H.2)(7), we have
Al < v lICallv + azLieTlICAlI + a2 Licli¢y v, (3.52)

where || Zo[z2(r,) < c.

Then, (3.52) yields

<Al < W (Il1]lv + e L1c), VA >0, hence

(3.53)
¢, — some ¢ € V weakly in V,as A\, 0
where 1 — agL1e™™ > 0 by assumption (H.3). For a subsequence, still denote by (.
Next, take any element ag AN f(Cy) + a2ANg(¢ e ™ + Zp) call it (}:
C; = OélANf(C)\) + (mANg(CAe_T + Zo) eV’ (3.54)
By (3.45)) and (3.48]), for such element (3 in (3.54)) we can write
A=A\ —iAG, — ¢ eV,
and hence
[y = 1| = AT 4+ iAC + Gillve < adllChllv < 77 (llllv: + a2Lic), VA >0, hence
¢y — some (" € V' weakly in V', as A\, 0
(3.55)

for a subsequence, still denote by (3.
The limit process. Using l) we obtain with J =A and ¢y € V = D(A%), as A\, 0

(TG ) 20y = [(AAZ G AZ9) 20| < MGl 1¢]lv

1
< A———F—— (||l L 0; 3.56
A (v + aala) [y — 05 (3.50)
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(O ) r2(0) + (AN V) 2(0) = (O AT )y + i<A%</\aA%¢>L2(Q)
= (AT )y + (G )y
— () p2(q) + H{AC V) L2(q)- (3.57)

Moreover, using and the last line of , we obtain with ¢ € V', hence Ay € V' as A\, 0:
(AN f(C) + a2 ANg(Cre™ + Z0), ¥) r2(0) = (O3 V) 12(0) = (G AV )y — (LY 2y (3.58)
Thus, letting A \ 0 in and invoking —, we obtain
(IC+1AC ) 2) + (L)) = (L)) YV EV, (3.59)

where ¢ € V and ¢* € V' are defined in (3.53) and (3.55)), respectively.
To obtain (3.46) from (3.59), we need to show that the limit (* € V’ obtained in (3.55|) and the
limit ¢ € V obtained in (3.53|) are linked to each other by the relationship

" =a1ANf(C) + aaANg(Ce™ ™ + Zy). (3.60)

To establish (3.60)), we apply Lemma 1.3 in (|11], p. 42). To this end, it suffices to establish that for
C)\v Cu € ‘/a Ci’ C:; € Vlv we have

A}}}{i&(x — (O — ) =0, (3.61)
such that
O = AN f(Cy) + a2 ANg(Cre™™ + Zo)
(3.62)
Czt = alANf(Cu) + QQANg(Cue_T + ZO)
after which, then, (3.60)) is proved.
Here, by definition of ¢, and (,, we have
AN\ + G +HiAC + a1 ANF(C) + e ANg(Ce ™ ™+ Zg) =1V, A>0 (3.63)
vJ¢, + ¢, +iAC, + a1 ANF(C,) + aeANg((,e ™+ Zo) =1 V', v >0, (3.64)

Subtracting the second relation from the first, taking the duality pairing V' x V' with ({,,¢,) and
finally taking the Re part of the resulting expression yields

NG =1TCy Gy = Gz + 160 = Coll2aq) + 01 ReCAN(F(C)) = F(G)): O = Gy
+ agRe(AN(g(Cre ™ + Zo) — 9(Ce™ ™ + 20)), Cx — Cu)r2() =0 (3.65)
Arguing as in , we obtain from the first line of ,
[(AJC\ = vJCy, Cx — Cu) 2ol < /\HA%()\C,\ —v(, ) 2@ HA%(C)\ AIIZI)
< (Alallv +wlIC v ) IS llv +1I¢,1Tv)

2
< (A — (|ll||y L
<(A+v) T = (IZ[lvr + a2 Lyc)

(3.66)

T —oaplie " (v + agLic)
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as A, v\ 0.
Thus, returning to (3.65]), we obtain

Jim {165 = Cullzz(a) + e Re(AN(£(6) = F(6): Gx = Cohrze
+ aaRe(AN(g(Cre™ ™ + Zo) — g9(Ce™ ™ + Z0)), Cx — G2y} = 0.

Therefore

Jim {16y = G lEea) + Re(By =BG Gy = oz} = 0 (3.67)

But, by monotonicity of the operator B, each term in (3.67)) is non-negative and hence each of the
two terms in (3.67)) has limit equal to zero.
In particular, we obtain by (H.1)(ii7) and (H.2)(it),

h%o{.[m<a1AN(f(C/\) - f(Cl/))? C)\ - CI/>L2(Q)

A

+ Im<a2AN(g(C)\eiT + ZO) - g(CyeiT + ZO)): C)\ - CV>L2(Q)}
= Alli}{l(o arIm(f(Cx) — F(Cu)s Cx — ol re(ry) + @2Im(g(Cne™ ™ + Zo) — g(Ce™ ™ + Zo), Cx — Cu) 2(my)

= /1\1{_‘% arIm(f(Cy), a2y + il{_‘% arIm(f(C,): C)r2(ry)
- }}}{ioalfm<f(CA)aCu>L2(r2) - A}ifgo arIm(f(C,), () p2(ry)
+ ;lg}) aze"Im(g(Cre™ " + Zo), Cxe™ " + Zo)r2(ry) + Kﬁ% aze”Im(g(Ce™" + Zo), (e + Zo) 2(ry)
- E}{io age”Im(g(Cre™ " + Zo), Cpe™ " + Zo)r2(ry) — A}ifio age” Im(g(C e™" + Zo),(ae™ " + Zo) r2(ry)
=0.
Consequently,

0= A}i%{RdO”AN(f(CA) = f(C),Cx — Gl 2o

+ Re(aa AN (g(Cre™ ™ + Zo) — 9(Ce™™ + Z0)),Cx — Cur2) )

= )\111}{1(0{<O‘1AN(]((<)\) - f(CI/))’ C)\ - CV>L2(Q)
+ (AN (g(Cre™ + Zo) — 9(Ce™™ + Z0)),Cx — ez}
= )\llljr{l‘0<C§ - Cza C)\ - <V>L2(Q)7 (368)

and (3.61)) follows from (3.68). Thus, (3.60]) is proved.
Inserting (3.60]) into (3.59)), we obtain

(IC+iAGY) r2() + (@ AN f(C) + aaANg(Ce™ ™ + Z0), ) o) = (L) 2) Y €V, (3.69)

and the surjectivity of 7" in (3.46)) is deduced from (3.69)). O
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Let I € L?(Q) € V'. By Lemma there exist ( € V = D(A%) such that |D holds true.
We show that (¢,0)7 € D(A).

By , we have
JAC+ ANay f(C) + ANagg(0(x,1))) = A(iC + Nay f(¢) + Nagg(0(z,1))) = 1 — ¢ € L*(Q).  (3.70)

Hence
i¢ + Naif(¢) + Nagg(6(x,1)) € D(4), ¢ e€V CL*Q).

Invoking (3.25)), we see that W = (¢,0)T € D(A), as desired.
Thus, the surjectivity of (I — .A): D(A) onto H in (3.40) is established.

O]

We have proved that the operator A in (3.24) is maximal dissipative on H. Then, the claims (a)
and (b) of Theorem follow from the theory of m-dissipative operators [|11] p.33; p.71].

e Proof of Theorem (c) (higher regularity).
We know from Lemma that, for any dimension, we have :

(¢,0)T € D(A) — (|r € H2(T), 6 € L2(Ty; H'(0,1)).

By (3.37), we have

O(x,1)=C(+ 20 € LQ(FQ).

Using assumption (H.2)(7), we obtain

1
19060 D)l ey ( / 19(6 |2dr2> < Li)l0( 1)l 2y < oo
Consequently,
0(z,1) € L*(I'y) — g(0(x,1)) € L*(T2) — Ng((z,1))|r,) € H%(Q), (3.71)

after recalling the regularity of N in ([3.22)).
Case (c1): dim§Q =2, dimI'y = 1.
In this case, we have

H2(Ty) € L'(Ty), (3.72)
as it follows from the usual embedding [ [80], p.206, p.328]
Ws’p,CWt7q, 0<t<s<ool<p <q< oo,

WithSZ%,pIZQ,tZO,qzlo, SO thats—I%Zt—f n = 1, as required.

q7
Thus, we have by combining (3.34]) and (3.72]):
(¢,0)" € D(A) — (|, € LY™(Ty), 0 € L*(T9; H'(0,1)).
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15Oy = [ 17O = [ FOP s+ [ FORdrp.
Iy Fa={T2,[¢|21} I'p={T2,[¢|<1}
From the continuity of f and assumption (H.4), we have
Oy < M2 [ 1¢10drs 4 [ C2ary < oo
Then,
3
f(¢lr,) € L*(Ta), and Nf(¢[r,) € H2(9). (3.73)
Thus, returning to
A(=i¢ = aaN f(¢) = aaNg(6(x,1)) = L € L*(),
in (3.35) with N*AC = C|r, by (3.34)), we obtain via (3.71)), (3.73) and A='L € D(A) c H?(Q):
—iC=AT'L+ N f(Q) + asNg(0(z, 1)) € H2(R), (3.74)

as desired. The sought-after conclusion D(A) C H %(Q) x La(T9; HY(0,1)) in 1} then holds true.

Case (c2): dimQ = 3, dimT's = 2. We start again with
(¢,0)T € D(A) —> (|r, € H2(T), 0 € L2(Ts; HY(0, 1)).

In this case, we have
1
Hz(Ty) C L*(Ty), so that ([r, € L*(T'y),

which follows from the embedding
WP CcWh, 0<t<s<oo;1<p<q< oo,

with s = %,p: 2,t=0,q9 =4, so that s — % >t— %, with n = 2 as required.
Then, invoking assumption (3.30]), we obtain by (3.75]),

()| dr < C, / (Clral*dTs < o0, L. f(Clry) € L (Ty),

Iy
together with implies via LP-elliptic theory [[78], Chapter 3] that
Dirichlet trace of N f({|r,) over 'y = [N f({|r,)]r, € Wl’%(Fg).
Moreover, since Wl’%(Fg) C Lr%?(l“g) which follows from the embedding
WP cWh, 0<t<s<oo;1<p<q< oo,

withs:l,p:%,t:O,q:i r =3 —¢, then

[Nf(Clr)Ir, € L7 (Ty).

(3.75)

(3.76)

(3.77)

(3.78)
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Next, with reference to (3.20) and (3.35)), we have A='L € H?(Q) for L € L*(Q), hence by trace
theory

[A' L), € H%(Fg) C La(Ty) for any 2 < a < oo; in particular, [A~'L]p, C Lé(Fg), (3.79)

from the embedding

WP cWhi, 0<t<s<oo;1<p<q< oo,
with s = %,p: 2,t =0,q9 = a, so that s — % >t— %, with n = 2, which is true.
By 1 , we have Ng(0(x,1) € H%(Q), hence by trace theory

[Ng(0(z,1)|r,)]r, € H'(T'3) C La(T2) for any 2 < a < oo; in particular, [Ng(6(z,1)|r,)]r, C Lé(l—‘g),
(3.80)
again invoking the embedding

WP CcWh, 0<t<s<oo;1<p<qg< oo,

with s=1,p=2,t=0,g =a, so ‘chats—%Zt—@,vvithn:Q7 which is true.

q
Applying the Dirichlet trace to identity (3.74]) and using (3.78), (3.79) and (3.80) in the resulting

identity yields
—iClr, = [A7 Llr, + [N F(CIr,)Irs + [Ng(0(z, Dlr,)lr, € L2 (T2), r=3—e. (3.81)

This completes the first step of the bootstrap argument: the original regularity (|, € L*(I's) in
has been boosted to the new regularity (|, € Lé(Fg), where % >4 forr=3—ce.

The regularity f(¢|r,) has also been improved. Indeed, with ¢|p, in (3.81)), we invoke assumption
(3.30) with r =3 —€e( i.e. r < 3) on f and obtain

fFZ ]f((\p2)]3d1“2 < C, fF2 ‘C‘F2‘ST dl'y < 00, with sr = %,
) ) (3.82)
thus, f(C‘Fg) € Lr(r=2) (FQ) ; L?<F2).

Finite repetition of the bootstrap. After finitely many steps, the bootstrap argument will lead to
the desired integrability

f(¢lr,) € L*(Ts) (3.83)

We just quantify the second step . In fact, with f((|r,) € L¥ (I'y) = WO (T'y) by (3.82), the same

L,-elliptic theory , with p’ = T(im now yields via the definition 1' for IV:

INF(Clr)les € W (D) € L) € IA(T2), 2 < g = —— (3.84)

(r—2)—2’
for the Neumann-Dirichlet map, with ¢ = m >2forr=3—¢.

To obtain (3.84)), we have used the embedding:

WP C W 0<t<s<ool<p<q <o,
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withs=1,p=p;t=0, sothats—g >t—?,n—2 which is true, as required, for ¢ < m,
in particular for ¢ = ¢, hence , from the identity in(2.88), as well as from (3.79) and (3.80) with
a = q > 2, we obtain

4

- iC|F2 = [A_IL]FQ + [Nf(<|F2)]F2 + [Ng(@(x, 1)|F2)]F2 € Lq(r2)v q= m (385)

Thus, the original regularity of |r, in (3.81) at the beginning of the second step (end of first step)
has been further boosted to the new regularity of ¢|r, in (3.85)), as e 42) 5> =) forr=3—¢e.
After finitely many steps, one achieves (3.83)). Finally, (3.83) then yields via the Lo-elliptic theory

that (¢,0)" € D(A) implies, since AL € H?(Q) and Ng(8(x,1)|r,) € H%(Q) via :
Nf(Clr,) € H?(9), hence —iClr, = [A™ Llr, + [N f(CIry)]r, + [Ng(6(z, Dr,)]r, € H?(R). (3.86)

The sought-after conclusion D(A) C H%(Q) x Lo(T9, H'(0,1)) in } then holds true in case (c2).
The proof of Theorem is complete.

3.2.2 Proof of Theorem [3.1]

e We first show that the energy E(t) of every solution of (3.2)) is decreasing.

Proposition 3.5. The energy corresponding to any strong solution of the problem 1s decreasing
and there exists C' > 0 such that

d —E(t) < { A fu(z, t))u(z,t)dls + lu(zx,t — 7)|? dI‘g} , (3.87)

dt -

where . .
. agly  pr™t agly | opTT
C = - - - .
e {0‘1 oK 2K 2 | 2 }

Proof. We multiply the first equation in problem (3.19) by w(x,t), integrate over 2, we get
2dt/]uazt dx — / 8uéxt) u(x, )dF+z/|Vu($,t)|2d:U:O.

14

We take the real part and insert the boundary conditions of problem (3.19)), we get

th/ lua, t))” dz = o Re 2f(u(x,t))u(m,t)dfz+a2Re/FQ (@, 1,0)) iz, ) dls.  (3.88)

We multiply the second equation in (3.19) by uy(z, p,t) and integrate over I's x (0,1), to obtain

1
” /F /0 {wele, o, 0T (@, p,0) + 7 gy, p, O (s o £)} dp T = 0.
2
Therefore

1 -1
pd T
o | [ o dpdrs =5 [ e P
I'; JO s

(3.89)
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From (3.88]) and (3.89)), we get

th{/luwt d:vﬂé//lywp, ol ddez}

= Re g {ay f(u(z,t)) u(x,t) + asg(y(z, 1,t)) u(x, t)} dly

-1
~ B a1, )2 dr, +

drs. (3.90)
2 ),

By using assumptions (H.2)(i) and Cauchy-Schwartz’s inequality, we have

d
dt

ool ol

L ey < —alRe/ Fula, ) a(x, ¢) dTs + [ 1oar + [u(z, £)[2 dT'y

I'y 2 T2

-1
B g1, 0)2dry +

dls.
2 Jp,

By using assumptions (H.1)(ii) and (iii), we have

d L LiK!
LB < —ar KV | fluz, ) a(a,t) dls + 270 [ |y(a, 1,8)2d0s + 222 | fu(a, £) (. t) dTs
dt Iy 2 Jn, 2 Ty
-1 -1 K—l
- F / lya, L) 2dls + 22— [ f(u(a, 1) U, 1) dTs.
2 T 2 Iy
Therefore
d _ aolq T_l _ ool T_llu 2
—Et) < — (g Kt = - t)dly — [ — 1,t)|* dTs.
20 < = (e = 2 =T [ttt ateyivs = (<252 + T8 [yt par,
(3.91)
(3.91)) can be rewritten as
d
—E(t) < —C{/ f(u(z, )z, t) dTe + yy(x,1,t)\2dr2}, (3.92)
dt s s
where . ) . )
o T O L 2 7 e
C’—mm{al Ve i 5 + 5 }
which is positive due to (3.9)). O

e Next, we establish an observability inequality for problem ([3.2)).

Theorem 3.6. Let n = 1,2,.... Assume hypothesis (H.1) on f, (H.2) on g and (A) on {Q,T1,T2}
then the solution of problem satisfies the following inequality: there exists a constant Cp > 0
such that

E(t) < E(0) < C’T{ lu(x, t)|? dXg + lu(z,t —7)|> dy
22 Z2

+ [ S yut 0 dS+ 1)l 22)} (3.93)
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Proof. Set
E(t) = Es(t) + Eq(t),

1
AR
2 Ja
4 1
—/ / lu(z,t — 7p)|> dp du.
2 Jr, Jo

We have from [[50] and [51]], for "> 0

E,(0) < CT{H“HL2(E2 / /Fz

where H; !(X2) is the dual space of the space H.(Xz) = H%(O,T; L?(T)) N L2(0,T; HY(T2)).
We now impose the boundary conditions in (3.2)). Then (3.94) becomes

where

and

|u| Ty dt + ‘

n HuH%l(Q)}, (3.94)
a (22)

T
Eq(0) < CT{HU/H%Q(E2) + /0 /F lice f (u(x, b)) +icog(u(x, t — 7)) ||u(x, t)| dT2 dt

+ lin f(u) + deerg (u(.,. — T3, + ||u|r%{_1@)}- (3.95)

Therefore
T
Es<o>§cT{r|u||%2@2)+ /0 [ s uta)lhuta )] + lgtute,t = )0 drads

LI g+ T = Py + Tl - (3.96)

E;(t) can be rewritten, via a change of variable, as follows

/ / u(z,s)|* ds dls.
27' Iy
0
<“// lu(z, )[2 ds dT. (3.97)
27 Iy J—7

By another change of variable in (3.97)), we have for T > 7

Hence

T
Fa(0) < Cr / lu(z, t — 7)|2 Ty dt. (3.98)
0 o

Combining (3.96|) and (3.98)) we obtain for any 7' > 7

T
E(0) < CT{HuHiz(zz) +/0 /F [1f Cu, ) [ule, )] + [g(u(@, t = 7))l[u(z, )] dUy dt

172 ) + 10 = DIy + e = T2y + uuﬁq_l@)}. (3.99)
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By using assumptions (H.1), (H.2)(i) and Cauchy-Schwartz’s inequality, we obtain

5O < Or{ lullsy + luto: = Dl //f (2, 6)) (1) T di
IOy + By -

From Proposition [3.5] we deduce
B0 < B(O) < Cr{ sy + e~ Moy + [ [ flutepitet) drea

Iy + By - (3.100)

The next step is to further clean estimate (3.100)) by absorbing the term HuH%{_l(Q), via a nonlinear,
compactness-uniqueness argument.
Lemma 3.3. There exists a constant C (dependent on E(0)), such that the solution of problem

satisfies:

T
lul%-10) scT<E<o>>{||u||%a(z2>+||u<.,.—r>||%2@2>+ /0 [ futa.tyyata. ) drsat
2

IO (3.101)

Proof. Tt is based, on a compactness-uniqueness argument.

Step 1. Let (uy) be a sequence of solutions to problem (3.2)). Then

t t
E.(t)+C {/ fun(z,s))un(z,s)dls ds + / [ (2,5 — 7)|[*dly ds} <En0), 0<t<T,
0 FQ 0 F2

(3.102)
where E,(0) the energy of the initial data (u), f), it remains uniformly (in n) bounded by say,
E,(0) < M.

Hence, by (3.102),

E,(t) <M, 0<t<T, (3.103)
We assume that (uy) is such that (3.101)) is violated; that is
lunll—
lim . MHTHQ) — o0, (3.104)
nTee H“n||L2(22) + [Jun(., — L2 (Z2) + fo fF (un)un dl's dt + ||f(un)|| ()

It follows from (3.103)) that

w, — some u, weak star in L>(0,T; L*(Q)), (3.105)
Upy — some ug, weak star in L>(0,T; H2(Q)), (3.106)
u, — u, weakly in L*(0,T;L*(Q)), (3.107)
u, — u, strongly in H1(Q), (3.108)
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and hence
||un||%°°(0,T;L2(Q)) + HuntH%w(o’T;Hfg(Q)) § COnSt fOI" all n e N (3109)

The passage from ([3.105)) to (3.108]) invokes a well-known compactness (in time and space).
Since the injection L?(Q) — H~1(Q) is compact, (3.109) implies (see [9] and [75]) that for 0 < T' < +o0
the injection

Z < L>=(0,T; H (),

is also compact, where Z is the Banach space equipped with the norm on the left-hand side of ((3.109)),
is also compact. As a consequence there is a subsequence still denoted by (uy) such that

Uy, — u € L®(0,T; H1(Q))  strongly.

Thus
U, — u, strongly in H~1(Q), (3.110)

is proved.
Because of (3.108)), the numerator in (3.104]) is uniformly bounded. This implies that each (positive)
term in the denominator in (3.104]) must tend to zero, as n — oo:

T
lunllzass) = 05 tnCs = 7)llz2css) = 0 /0 [ ) dadt = 0510 s,y — 0
2

(3.111)
To continue, we need the following lemma.
Lemma 3.4. Let (uy) be a sequence of solution of problem such that, as n — 0,
u, — 0 in L?(D9); . f (), dSe — 0, (3.112)
2
as asserted in . Then
flup)pdSy — 0, Vo € C(Xq). (3.113)

PP}

Proof of . To prove (3.113)) as a consequence of (3.112)), given u,(x,t) and 6 > 0, we divide 3o

accordingly as follows:
Ya(0,n) ={(x,t) € Xg : Jup(x,t)| <6}; Ep(d,n) ={(z,t) € Xa: |up(z,t)] > d}, (3.114)

with 0 > 0 to be selected below. Then, for ¢ € C*(3):

F(n) 45 = /

EA((S,R)

fun)odSat [ fun)sdss, (3.115)

E2 EB (6777‘)
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Since f is continuous and f(0) = 0 by (H.1), then given € > 0, there is dg = Jp(€) > 0 such that
|f(un(z,t))| < e for (z,t) € X a(dg,n).
Thus,

< elllloesy)- (3.116)

‘ / F(un)bdS s
EA((So,n)

Moreover, from the definition of ¥ (dp,n) and the assumption (H.1):

/ f(un)édSp / F(un) s
3 p(do,n) Y p(do,n)

Un

00 =5 (S0,n)

< H(pHL“’(E?)/ f(un)tp dXe — 0, as n — oo. (3.117)
90 2 (80,m)

by (3.112)). Thus, given € > 0, dg > 0, there exists N = N5, , such that for all n > N we have the
integral in (3.117)) is less than (dpe), and hence

/ flun)pdXp| < €@l (s,), n > Ne s, - (3.118)
Ep(do,n)
Combining (3.116)) and (3.118)) in (3.115]) yields (3.113]), as desired. O

Next, we specialize to ¢ € C°°(X2) such that ¢ |;—o= ¢ ;=7 =0 and ¢ = 0 on X;. Integrating by
parts (second Green Theorem) and using problem ({3.2)) for w,, yields:

T
0 = (i(un)t + Auy, ¢>L2(Q) = —i/o /Qun(ﬁt dx dt + Z/E aq f(up)pdSy + Z/E aog(up(z,t — 7))p dXe

T a¢ T
—/ / undEg—i-/ /unA¢dxdt. (3.119)
0 JIy v 0o Ja

On the RHS of (3.119)), we invoke the weak convergence (3.107) on its first and last integral terms; as
well as the convergence to zero of its second integral term by (3.113), (H.2) and the second statement
of (3.111)) on its third integral and the firsts statement of (3.111)) on its penultimate integral term.

The final result is
T T
—i/ / up, dx dt + / / uApdrdt =0 (3.120)
0o Ja 0o Jao

for u =0 on X and % =0 on ¥y ( the first claim follows from u, = 0 on ¥y and u, — 0 on L?(X5);
the second by %L; = daq f(up) + iagg(un(z,t — 7)) — 0 ( by using the last statement of for f
and (H.2) and the second statement of for g )).

Thus specializing further ¢ € D(Q), we see that is the weak formulation of the following
problem

g+ Au=0 in Q,
u=~0 on E, (3121)
ou

5—0 on Xo.
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By Holmogren’s uniqueness Theorem ( [54], Chap. 1, Theorem.8.2), we conclude that (3.121)) implies
then that w =0 in (. Thus, all convergences in (3.105)), (3.107)), (3.108)) are to the limit u = 0.

Step 2. Denote
N 1
cn = [unllmp—1(Q),  Un = —un.
Cn
Thus
@l -1y = 1- (3.122)

Dividing the numerator and the denominator of the fraction in m ) by ¢2, and using (3.122)), we
obtain

1
lim 5 = 00. (3.123)
n—s o0 Han”%2(2 )+ [l (., — )||L2(E2) fo fr u; Y, dT2 dt N [|f(un )H2 L)
2 2 o}
Thus, (3.123)) implies
(Un )Ty dT dt 1 (un) 12—
Unl|72(s,) = 0 2 S0 Ho'(%) 3194
% (%2) 0 fO fF

2 2
Ch Ch

On the other hand, since each solution satisfies the energy estimate (3.100]), we obtain after dividing
both sides of such estimate by ¢2 and invoking (3.122))

2

1 ~ ||Un( ”L2 b f un Z, t un(x,t)
chn(t) < CT{HUHH%Q(ZQ) + (%2) / Ly d

||f(un)H —1(22) i 1}

62

(3.125)

as f(up)tn = |f(un)||un| by (H.1). Invoking on the RHS of (3.125) the convergence statements in
(3.124), we then arrive at

[@n ()l L2) < Const, 0<t<T,n=12,.. (3.126)

Hence, as in (3.105)), (3.106)), (3.107) and (3.108)), we deduce from (3.126|) that

W, — some 1, weak star in L>(0,T; L*()), (3.127)
Ty — some Uy, weak star in L*(0,T; H2(Q)), (3.128)
U, — 1, weakly in L?(0,T; L*(Q)), (3.129)
@, — 4, strongly in H~1(Q) so that lull -1y = 1, (3.130)
by (3.122).
Next, we divide problem (3.2)) for u,, by ¢,, thus obtaining
(Un)t — AU, =0 in @,
ﬂ@\: 0 on El, (3131)
O _ o, $u) | o, olun(at=r)

on Xo.

ov Cn Cn
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Proceeding as in Step 1. from (3.111]) to (3.121)) we then arrive at the following conclusion that

the limit function u satisfies the following problem:

@t —iAu=0 in Q,

u=0 on X, (3.132)
% =0 on X

o z

Via Holmogren’s uniqueness Theorem, problem (3.132]) implies then that @ = 0 in @ and this
contradicts [|ul|g-1(gy = 1 in (3.130). Thus, the contradiction hypothesis (3.104) is false. Hence

(3-101). 0
As a corollary, using (3.101)) in the RHS of estimate ([3.100)), we obtain (3.93]). O

e Estimate of the term f(u) in H, '(3s).

Because of assumption (H.1), whereby f(z)z = |f(2)Zz|, we set

T T
As, (u) = /0 | (wpmdryde = /0 1Sl drade = | ()l sy, (3.133)

where L'(33) = L1(0,T; L}(T2)).
Denote

Yia={(z,t) € Xot |u(z,t)| > 1}, Tip ={(z,t) € Lo : |u(z,t)| < 1}. (3.134)

Proposition 3.7. Let n = dimQ = 2,3. Assume hypotheses (H.1) , (H.2) and (H.4). Let u be the
solution of guaranteed by Theorem . Then there exists a positive constant C), (depending on
p in (H.4)) such that the following estimate holds true for problem (3.9):

)12 ) < ColBO) T (Assy () + 207 () s, - (3.135)

where: p =5 for dim Q = 2; p = 3 for dim Q = 3, as in assumption (H.4); E(0) and As,(u) are
~ —1
defined by and (3.135), respectively. Moreover, Cp = C/p(%)%. with M defined by (H.4).

Proof. We need the following result.

Lemma 3.5. (Lasiecka and Triggiani [47])
Let dim Q2 = 2,3. Under assumptions (H.1) and (H.4), the following estimate holds true, where M
is defined in (H.4):

1 B _p_
1F @ g2 ) < I @lz2(m,p) + M P @75 s (3.136)

with p as specified below , ¢p the constant defined in [[47] p. 518].
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Recalling Ay, (u) from (3.133]), we rewrite inequality (3.136]) as follows, after squaring both sides:

2p

1@ 5y < 2@, + Collf a2 s, (3.137)
— 2 f(W)las, ) + CplAs, ()] 571 [Ax, (w), (3.138)

where C), = 2(cpMﬁ)2.
Next, we have from Proposition in the notation of (3.133) for Ay, (u) as

T
1
E(T)+ C’{Ag2 (u) + / lu(x,t — 7)|* dTy dt} < E(0), thus Ay, (u) < 5E(O) (3.139)
0 Jr,
Using the inequality of (3.139) in (3.137)) yields:
~ p-1
LIy < 2Py + ColB(0)77 [Asy ()], (3.140)
~ p=1
where C), = Cp(%) +1and (3.140|) proves (3.135)), as desired. Proposition is established. ]

e Estimates of u € L?(X3) and f(u)u € L*(32).

Lemma 3.6. Assume (H.1) and recall . Then, the solution of problem guaranteed by
Theorem satisfies:

/ (e, ) 2dSa < K1 [ Fu(e,))a(e, ) dSia < K~ As, (u), (3.141)
214

Y14

and

/ lu(z,t)[>dS1p + / |f(u(z,1))|? dS1p < (mes Eg)ﬁ( flu(z, t))u(x,t) ng)
1B Yim 2o

= (mes X2)h(As,(u)), (3.142)
where h is the concave strictly increasing function defined in .

Proof. Inequality (3.141)) is an application of assumption (H.1) in the notation of (3.133]).
We invoke the property (3.4) for A where the constant § can be taken to be 6 = 1 and by using

assumption (H.1), we have

/z:w |u(x,t)|2d213+/213 |f(u(1:,t))|2d213§/ h(f(u(x,t))u(a:,t))di]lgg/ B (u(z, £) (e, 1)) dSs.

YiB X2
(3.143)
By Jensen’s inequality [[53], p. 38],
/ h(f(u(z,t))u(z,t)) d3e < (mes Zg)h( ! = flu(z,t))u(x,t) ng) (3.144)
PN mes 2o Jy,
< (mes Xo)h(As, (1)) = (mes Xo)h(As, (u)), (3.145)

where £ is defined in 1} and Ay, (u) is defined in (3.133). Then, (3.145|) establishes (3.142). O
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e Completion of the Proof of Theorem

Lemma 3.7. Assume assumptions (H.1) and (H.4). Then the problem satisfies:

L e 0 azus + 10y < (K74 CUEODF ) 1)+ 2mes 2, )
(3.146)

Proof.

| e 0B a1 sy = [ fule 0P aSiat [ e 0F a1,
1B

1A ¥1B

By (3.135)), we have
L e 0P a4 15y < [ s |
1

Y14 1B

e O dSip +2 [ |fulz, ) dEan
Y1B
~ p—1
+ Cp(E(0)) P71 (As, (u)).
By (3.141)) and (3.142]), we obtain

[ 0P a2 + 70 s,y < B s (1) + 2mes E2)h(As (1)
1B
+ Co(B(0))77 (A (). (3.147)

Then, establishes . O
Lemma 3.8. Assume (H.1) and (H.4). Then, the energy E(T') of problem satisfies the inequality

E(T)+ p(E(T)) < E(0), (3.148)
where p(.) defined by (3.6)).
Proof. Returning to , recalling , and using , we have

E(t) < E(0) <Cr {K_l +1+ CN'p(E(O))zﬁ} As,(u) + Cr . lu(z,t —7)|% dXs

+ 2C7(mes o) h(Asx, (u)).

Since h(.), hence h(.), is strictly increasing, where we have

E(t) < E(0) < O [Kl + 1+C~'p(E(O))§+ﬂA22(u) +0r | lu(z,t — 7)[% dS,

+ 2C7(mes ¥a)h (Ag2 (u) + lu(z,t — )2 ng). (3.149)

P
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Setting
1 K141+ Cp(E(0))rt
Ki=—— Ky= P ) 3.150
L 90 mes Xy 2 2mes Yo ( )

Consequently, for t =T

1

K,
E(T) < =—=A _
( ) - K EQ(U) + 2K1mes X o

lu(x,t — T)|2 dXs

1 -
+ —h| As,(u) + lu(z, t — )2 dy ). (3.151)
K o
Set 1
1!
= Ky, ——1.
¢ = maz{Ky, 2mes Eg}
O
Therefore
K\E(T) < (C"I +h) (AEQ (u) + lu(z,t — )| d22>. (3.152)
P

On the other hand, integrate the inequality (3.87) over (0,7"), we obtain

Ay, (u) + g lu(z,t —7)[2dSy < C7HE(0) — E(T)). (3.153)

By and , we have
(C"I 4+ h)"YK3E(T)) = p(E(T)) < E(0) — E(T), (3.154)

where K3 = CKj.
Finally,
p(E(T)) + E(T) < E(0) (3.155)

and Lemma [3.8] is established.
Applying the result of Proposition [3.8) we obtain for m = 0,1, 2....

p(E(m(T+1))+ Em(T+1)) < E(mT).
Thus, we are in a position to apply [|43], Lemma 3.3, p.531] with
sm = E(mT), so = E(0).
This yields
E(mT) < S(m), m=0,1,2,...
Let t = mT + 7 and recall the evolution property, we obtain
E(t) < E(mT) < S(m) < S(YFF) < S(p —1) fort > T,

which completes the proof of Theorem
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3.3 Stability of the Schrodinger equation with a delay term in the
nonlinear internal feedback

3.3.1 Well-posedness of problem ([3.12))
Inspired from [62], we introduce the auxiliary variable:
y(z, p,t) = u(x,t —7p); x€Q, pe(0,1),t>0.

Then, problem ({3.12) is equivalent to

ug(x,t) = ilu(z, t) — a(z){on f(u(z, 1)) — aag(y(z, 1,1))} in € % (0; 4-00),

yi(z, p,t) + 7 Ly (x, p,t) =0 in Q x (0,1) x (0, 400),

u(z,0) = up(x) in Q,

u(z,t) =0 on I' x (0, 4+00), (3-156)
y(z, p,0) = fo(x,—pT) in Q x (0,1),

y(x,0,t) = u(z,t) in Q x (0,00).

Let H denote the Hilbert space.
H = L*(Q) x L*(; L*(0,1)),
equipped with the inner product:

1
<< Zi >,< Z; >>A:Re/ﬂu1($)u1($)d:€+uRe/Qa(x)/o y1($,p)mdpdx.

H

Set
U(t) = (uvy)Ta UO = (u(]’f(])T'

Then problem ({3.156)) can be formulated as an abstract Cauchy problem in H

dUu ~
C ) = AU W),
(3.157)
U(0) = Uy,
where the operator A is defined by
Yy -7 "Yp

with

D(A) ={(u,y) € H*(Q) N H3()) x L*( H'(0,1)),u = y(.,0) in Q}. (3.159)
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Theorem 3.8. Assume (H.1) — (H.3) and (H.5). Then, For every Uy € H, the problem has
a unique (nonlinear contraction semigroup) solution U whose reqularity depends on the initial datum
Uy as follows:

UL) € C(0,+00);H) if Uy € H,
UL € CY[0,400);H) N C([0,+00): D(A)) if Uy € D(A).

Proof. According to nonlinear semigroup theory, we need only to show that A defined by and
is maximal dissipative on H.

Let U = (¢,0) € D(A);V = (¢,0)T € D(A).

Then

Re <AU —-AV;U — V>ﬁ = Re/Qi(VC(fE) = V¢(@))(¢() = () dz — alRe/ a(x)(f(¢(x)) = f(C(=)))

Q

(¢(z) = {(x)) dz — aRe /Q a(x)(9(8(z,1)) — g(B(z,1)))(¢(2) — C(2)) da

1 ~ =
— ' Re /Q a(x) /0 (6,(2,p) — By ) (B(z, p) — Bz, p)) dpda.

Applying Green’s theorem, we get

e (Av - Aviv v =re [ SO ENG@ ZE@) o Rei | Vo) - @ ViEE) - (o)) da

14

- a1R€/Qa(93)(f(C(fC)) — F(C@))(¢(2) — C(x) da
— azRe /Q a(x)(9(8(x,1)) — g(B(z, 1)) (¢(2) — C(2)) da

1 ~ ~
— e [ a(w) [ 0,0 0) =Byl ) OCop) = 0a.p) dp
(3.160)
Integrating by parts in p the last term on the right-hand side of (3.160]), we obtain

1 ~ ~
[ a@) [ 002 p) = B0 ) O, p) — Do) dp
Q 0

1 ~ "~
—~ [ al@) [ 0(a.p) = Bla,p)) Ol )y ~ Oyl ) dpdo
Q 0
0 2 7 2
+ /Q a(2)|8(z. 1) — Bz, 1)) dz — /Q a(2))0(x,0) — B(x, 0))[? da,

or equivalently

1
27 [ a(w) [ 0,0 0) =By ) O(e.p) = 0e.p)) dp da
— [ al)lb(e. 1) = b D) do ~ [ a@)lb(z,0) - Bla,0)f da.
Q Q
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Therefore
Re (AU - AV;U - V) _ = ~aiRe / a(@)(F(¢() ~ £C) (o)~ C(a) da
~aske [ ala)(gl0(z,1) - 9(6(2. 1) (@) ~ S(2) de
Q

-1

2

71

/a )6(x,1) — 0(z, 1))|2d:c+ /a(x)|0(x,0) — 0(x,0))| dz.
Q Q

From assumptions (H.1)(7i), (H.2) and the Cauchy-Schwartz’s inequality, we have

aoln

Re (AU - AV;U - V) < Kal/a(;p)|¢(x)—5(x)|2da;+

N ~ T—l ~
[ @@ @ e = E [ awip 1)~ 1)) e
—1

+ = [ @) - o)l da.

/ a(2)|0(z, 1) — Bz, 1)[2 da
Q

_l’_

Then

- ~ o 1 5
Re (AU = AviU = V) < ~(Kay = 32 - 100 [ a@)ioto) - L) P o

Recalling ((3.18)), we conclude that
Re<flU—ftV;U—V>A <0
H

This shows the dissipativity of A.

In order to establish maximality, we need to prove the range condition: range(l — /I) = H. In other
words, given any (I,m)T € H, we need to establish the existence of an element W = (¢,0)T € D(A)
such that

(I =AW = (l,m)T,
or equivalently

¢ —iAC+ a()ar f(€) + a(.)azg(6(., 1) =1, (3.161)
0(z,p) +7710,(., p) = m. (3.162)

From ([3.162)) and the last line of (3.156]) we have

0p(x,p) = —10(x,p) +1™m, x€Q,pe(0,1),
0(z,0) = ((z), x €.
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The unique solution of the above initial value problem is given by
P
O(x,p) =C((x)e ™" + Te_”’/ m(z,0)e™ do, xeQ,pe(0,1),
0
and in particular
O(x,1) =((z)e” " + Zo, x € Q, (3.163)
where
Zy=Te T fol m(z,0)e™ do.
Insertion of (2.64)) into problem (3.161]) results in the equation
¢ —iAC+a()on f(C) + al)azg(Ce™ + Zo) = 1,

which we rewrite as

T¢=1,
where
T¢=¢+Ti¢,
and
Ti¢ = —iAC + a()ar f(C) + a(-)azg(Ce™™ + Zo). (3.164)

Lemma 3.9. The operator T; defined by (3.164) with D(T;) = H*(Q)NHJ (), is mazimal monotone
on L*(9).

Proof. Set
Ti¢ = B¢ +C¢,

where

B: L*(Q) — L*(Q) defined by B¢ = a(.)aq £(¢) + a(.)azg(Ce™™ + Zy),
C:D(C)=H*(Q)NHQ) C L*(Q) — L*(Q) defined by C((z) = —iA((x).

Clearly, C is maximal monotone on L?(f2). Then according to Corollary 1.1 in [11], it is sufficient
to prove boundedness, hemicontinuity and monotonicity of B. To this end, let ¢ € L?(2). We have

[ lao) {16t + aag(CCa)e ™™ + Z0)P} do
<Nl et { [ 156ceNP e+ [ e + P as) (3.165)
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Since f is continuous; |f(¢(x))[? < K? for |¢(x)| < 1, and for |((z)| > 1, assumption (H.5) implies
IF(C(x))|> < M?|((x)|?. Consequently

[F(C(2)? < KE + MP|¢(2)], Yz € Q. (3.166)

From assumption (H.2), we have

19(C(@)e™™ + Zo(@))I? < LIC()e™ + Zo(a)) 2 (3.167)
Substituting (3.166]) and (3.167)) in (3.165]), we obtain

[ 1) {1160 + aag(¢le)e ™ + Zafa))} P e

< ol mgye{ [ GNP+ [l + Zatoy?ae

<lallwiqyed [ K2 do+ Gl + 1 [ K@e™ + Zo(o) o
{

< llall7eg) /Kl dz + C*|[C|| 220y + Lie € Z20) + Lill Zoll72(q }

ﬂwmm%/meuﬁ + e )¢ +mwmm}<m

Therefore B is well defined and bounded.
To prove that B is hemicontinuous, we need to prove that for all u,v,w € L?*()

%i_r)r(l)([)’(u + znv), w)r2(0) = (Bu, w) 20,

or equivalently
lim (B(u + xpv), w) 12(q) = (Bu, w) r2(0), (3.168)

n>oo
for every sequence (), C R such that x,, — 0 when n — oo.
Let Fy, = aoq f(u + 2,v) + acsg((u + w,0)e™ ™ + Zo)w, n € N, thus (F,), C L1(Q). In fact,
[Fn(2)| = la(@)on f(u(z) + znv(2)) + a(@)azg((u(z) + zpv(z))e”" + Zo(x))|[w(2)|
< la(z)| |01 K1 + (1M + azLye ™) |u(x) + zov(x)| + a2l || Zol[32(q) | [@(2))]
< o Kila()| [@(x)] + (01 M + asLie ™) a(z)| u(z)| [w(x)|
+ (M + azLie™7)|a(@)| [za| [o(@)| [@(2)] + a2 L1 Zo]| 72y lale)| @ ()],
a.e. in €.
Since a € L*°(Q) and |z,| < N, for all n € N, then F,, € L'(Q), for alln € N.
Moreover, if
R(z) = a1 Ki|a(z)| [0(z)| + (a1 M + aaLye”)|a(z)
+ Mila(z)| [o()| [@(2)] + a2 L] Zol| 72 la(@)| [@(2)],

=
—
8

=
&l
—~
=5
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where M; = N(oq]\?—l— asLi1eT), then R € L'(Q2) and |F,(z)| < R(z) a.e. in (.
From the continuity of f and g, we have

lim a(x {alf 2) + o)) + asg((ule) + zv(@))e + Zo(x)} w(x)

z) {ar f(u(@)) + azg((u(@)e ™ + Zo(z)) } w(

a.e. in 2.
Recalling Lebesgue’s dominated convergence theorem we deduce that

/Q la(z) {1 fu(z) + znv(2)) + azg((u(@) + zpv(@))e™ + Zo(x) } w(z)
z) {on f(u(z)) + azg((u(z)e™™ + Zo(z) } w(z)| dz — 0.
Thus,
'/Q ) {arf(u(z) + zpv(2)) + a2g((u(@) + znv(z))e™™ + Zo(z)) } w(x)
) {arf(u(x)) + azg((u(z)e™™ + Zo(2)) } w(x)] dz| — 0,
and consequently,
Re/Q z) {on f(u(z) + znv(2)) + aog((u(z) + zpv())e™ ™ + Zo(z)) } w(z)] do
— Re | afa) {arf(u(e) + asg((u(w)e ™ + Zo(2)} (o) d,
Q
which proves .

Now, we show that B is monotone (—B is dissipative). Indeed, for u,v € L?(£2), we have

Rel(~BJu— (~BJo.u = 1) aaysszie = Re | —ena(o)(f(w) ~ J(0)a = 01 da
+ Re/ —aga(x)(g(ue™™ 4+ Zp(x)) — g(ve™™ + Zp(x)))(u — v) dx
Q
< alK/Qa@Hu —v)?dz 4 oy /Q a(x)|gue™" + Zp(x)) — glve™ ™ + Zp(x))| |u — v| dz
< —a K /Q a(x)u —v|* dz + aze "Ly /Q a(x)u —v|* dx
—(a1 K —age™ ™ a(z)|u — v dx
< ~(@K 0y L) [ ala)fu—of da,

and the desired conclusion follows from assumption (H.3). O

The operator 77 with is maximal monotone on L?(2) and consequently T is surjective. Therefore
range(I — /1) — 7{. This completes the proof of the maximal dissipativity of A. O
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3.3.2 Proof of Theorem [3.2]

We first show that the energy F'(t) of every solution of (3.12)) is decreasing.

Proposition 3.9. The energy corresponding to any strong solution of the problem 1s decreasing
and there exists C > 0 such that

iF t) < —é’/ {a(z) f(u(z,t))u(z,t) + a(z)|u(z,t — 7)|*} dz, (3.169)
Q
where I . I .
= . T O L <2 o e
C_mm{o‘l oK 2K 2 T 2 }

Proof. Differentiating F'(t) defined by (3.17)) in time, we obtain

cclit (t) = Re/ut(x t)u(zx,t) dm—i—,uRe// z)ur(x,t — p)u(x,t — 7p) dpdx
= Re/(zAu(az t))a(z,t) de — Re/ a(x)oq f(u(z, t))u(z, t) de —Re/ a(x)aog(u(z,t — 7))u(x,t) dx

Q Q

+,uRe// x)up(x,t — Tp)u(z,t — 7p) dp d.

Applying Green’s second theorem, we get

d

th( ) = —alRe/ a(z) f(u(z,t))u(x,t) de — agRe/ a(x)g(u(z,t —7))u(z,t) dx

Q

+ ,uRe/ / x,t — tp)u(z,t —7p)dpdx. (3.170)

Now observe that

Ut(l’, t— Tp) = _T_luﬂ($> t— Tp)a

and

d
d—p|u(x,t —7p)|2 = 2Re(up(z,t — Tp)u(x,t — 7p)). (3.171)
Inserting (3.171)) into (3.170)), we obtain

d

th( ) = —alRe/ a(x) f(u(z,t))u(z,t) de — agRe/ a(z)g(u(z,t — 7))u(z, t) de

Q
1
// —|uwt—7'p)]2dpdx

= —alRe/Qa(Jc)f( (z,t))u(z,t)de — agRe/Q a(x)g(u(z,t — 7))u(z,t) dx

-1

iy a(z)(|u(z, t — 7)1 — |u(z, t)]? dz.
5 | a@)utat =) = futa. )
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By using assumption (H.2) and Cauchy-Schwartz’s inequality, we have

;tF( t) < —olee/Qa(x)f( w(z, )iz, t) do + 0‘22L1 /Qa(:c)|u(:v,t—7')|2dx+ 0‘22L1 /Qa(x)|u(x,t)|2d:c
- '1”21 /Q (z)|u(z,t —7)|? dz + 2 / o) |u(z, t)|? d. (3.172)

Recalling assumption (H.1)(ii) and (H.1)(iii), we rewrite (3.172) as

d
dt

ang

/Qa(x)\u(x,t—T)\2dx+ Ve Qa(ac)f( u(z,t))u(x, t) de

a2L1

F()<—a1/ga(m)f( (2, )i, ) da +
1 -1

_uT e T
5 /Q a(z)|u(x,t —7)] dx+ Ve

a(x) f(u(z,t))u(z,t) dz.

Q

Therefore

d aglq ,Uﬂ'_1 asly /“_—1

GFO <~ = 22 =100 [ atyrtateoyate. o = (25 + 1) [ a@luta,t =P da

this last inequality can be written

Lpwy < —é/Q {a(@)f (u(z, )z, ) +a(@)|u(z,t — 7)) de,

where

~ ) aoLly  prt agLy oprt
C= _ _ _
e {al oK 2K 2 2 f

which is positive due to the (3.18).

Next, we establish an observability inequality for problem (3.12)).

Proposition 3.10. Let T' > 0 be sufficiently large. Then there exists a positive constant C(T)
depending on T such that

T
’ 2 - T 2 X at. .
T)/O /Qa(m) {lu(z, 0)]* + | f(u(z, )] + |u(z,t — 7)]*} dxdt (3.173)

Proof. We write the solution u of (3.12) as u = ¢ + v where ¢ solves

oi(x,t) = iAp(z,t) in 2 x (0; +00),
o(x,t) =0 on I' x (0, 400), (3.174)
o(x,0) = up(x) in €,
and v satisfies
vz, t) = iAv(z, t) — a(z){a1 f(u(z,t)) — aeg(u(z,t — 7))} in 2 x (0;+00),
v(x,t) =0 on I' x (0, 4+00), (3.175)

v(x,0) =0 in Q.
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Denote by

— / (e, ) de,
Q

the energy corresponding to the solution of (3.174]). Then, it follows from [|57] Proposition 3.1] that
for all T' > 0, there exists a positive constant ¢ depending on 7" such that

T
F,(0) = ||U0H%2(Q) < C/o / lo(x,t)|? da dt.

Here and throughout the rest of the section, ¢ is a positive constant different at different occurences.

Using (3.13)), we get
HuoH%z < / / x)|o(z,t |2 dx dt. (3.176)

On the other hand, we have for T' > 7

/ / lu(z, —7p)|* dpd:n<c/ / z)|u(z,t — 7)) dz dt. (3.177)

Since the energy is non-increasing, we deduce from ([3.176)) and (3.177) that

1 1
F(T) < FO) = 5lunla + 5 [ a@) [ e ~ro) dpds

T
< C/o /Qa(:z) {\go(x,t)|2 + |u(x,t—7')|2} dz dt

T
<c ; /Qa(x) {\u(m,t)|2 + |v(a:,t)|2 + |u(z,t — 7')|2} dz dt

T

2 2 2
<c/O / ) {Julz, t)]° + | f(u (:Ut))|+|uxt—7|}dasdt+c/ / z)|v(z,t)|” dz dt.
(3.178)

We will now estimate the last integral on the right-hand side of (3.178)). For this purpose, we define
the linear map

M L2(Q) x LY(0,T;L3(Q)) — L°°(0,T; L*(Q)),
(Zo,f) — M(ZO,JZ‘) =z,

where z is the solution of the problem

ize(x,t) + Az, t) = f in Q x (0; +00),
z(xz,t) =0 on I' x (0, 400), (3.179)
z(x,0) = zo(x) in ©,

M is continuous. Indeed, since z is solution of (3.179)), then

(t)zo + /0 S(t—s)f(s)ds
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where S(t) is the contraction semigroup generated by the maximal monotone operator C. Thus,
2 ! 7 2
I2(0) sy = 15020+ [ Stt =) F(s)asl ey

t ~
dewVﬂémﬁmyAS@—sMQMﬂ@@

t ~
Scmam;“n+cz<érv@n&%mmﬁ

< {HZOH%?(Q) + Hf(3>HL1(0,T;L2(Q))} = C/|(20, f)H%%Q)xLl(o,T;H(Q))-

We rewrite the above estimate for the v-problem (3.175) with f(t) = a(z){on f(u(z,t)) + aog(u(z, t —
7))}, and zp = 0. We obtain after using Holder inequality and the continuity of M

/(/ Do, )2 de dt < Jlall g oy 100, D2 0.102(0)
< lall oo @ llv (@, )1 200 (0 72202
< lall ooy la(@){on f (w(x, £)) + aag(ul, t — T) 10 1.02(0)

§C</T [/ a(z)]ay f(u(x t))+a29(u($at—7))|2dm]; dt>2

< T2 / / 2l f(ulz, 1)) + asg(u(m, t — 7))|2 da dt
ST%/“/fuwuww¢nﬁ+awmwm¢—rmﬂdmﬁ
< ¢o(T / / w(e, )2+ Jule, )2 + Ju(z, t — )] dedt.
(3.180)
Inserting (3.180)) into (3.178)) we obtain the desired estimate (3.173|). O

In the next step, we prove an estimate for a nonlinear function of the energy F(T).
Lemma 3.10. The energy F(t) of problem satisfies
F(T)+p(F(T)) < F(0), (3.181)
where p(.) is defined by (3.15)), and T > 0 is sufficiently large.
Proof. Denote

Qi={ucIL?Q):|u>6 ael},
Q2=Q — Q1.
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From hypotheses (H.1) and (H.5), we have
/Q a(@){Ju(z, t)* + | f(u(z, 1))} dQ < (K~ +J\7)/ a(x) f(u(z, t))u(z,t) dQu, (3.182)
1 1
on the other side, from and from the fact that h is concave and increasing, having in mind that
a(z) < lafleo + 1,
and

a(x)

—— <a(x),
T+ Jla = @

we deduce that

/ a(fﬁ){IU(x,t)l2+If(U(fL‘,t))lz}szS/ a(x)h(f (u(z, t))u(z, t)) dQ2

2 2

- /Q 1+ o) — 2 e, )y, 1)) d Qs

1+ [lalleo

a(x) _
< [ 0 lallon (oSt 0yt ) dos

< / (1+ llalloo)h(a(@) f(ule, )z, 1) dQz.  (3.183)
Q2

By Jensen’s inequality,

(1+Ha!oo)/Q h(a(z) f (u(z, t))u(z, 1)) dQ2 < (1 + [|allo )m€SQh< u(z, t))u(z,t) dQ)

mes@Q Jg

— (14 [lalloo)mes QT ( /Q a() f (ule, 1))l ) dQ)
(3.184)

Combining inequalities (3.182)), (3.183)), and (3.184)) with the result of Proposition gives
P(1) < ) {7+ ) | o(o)f(u(o. (o, )dQ + | atwiu(o.t =) d )

+ C(T)(1 + ||al|so) mes QT /Qa Yu(x, t)dQ)
A u\x a a\xT)|u\xr — T 2
SC(T){(K +M)/ a(z) f(u(z,t))u( t)dQJr/Q (z)|u(z,t —7)| dQ}
C(TY(1 + ||a]|oe meth(/ {az iz ,t)+a(x)|u(x,t7-)]2}dQ>. (3.185)
Setting -
K — 1 , K14+ M

C(T)(1+ [[alloc) mes Q° “= (1 + [alloc)mes Q@
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1
(1 + [lalloc)mes @

C" = max {C’, }.

We obtain from (3.185))

K1 F(T) < (C"I +h) (/ a(x){f(u(z,t))u(z,t) + |u(z,t — T)]Z}dQ> .
Q
But
/Qa(fﬂ){f(U(fﬁvt))U(%t) +[u(z,t —7)[?}dQ < CH(F(0) - F(T)).
Hence
(C"T+h)™" (K F(T)) = p(F(T)) < F(0) — F(T),

where Ky = C’Kl.
Therefore

p(F(T)) + F(T) < F(0).
O

The sought-after stability result follows now, as in [43], from inequality (3.181]) and Lemma 3.3 in
([43], p.531).
This completes the proof of Theorem



Chapter 4

Boundary stabilization of the
Schrodinger equation with interior
delay

4.1 Introduction

In this chapter, we study stability problem for the Schrodinger equation with interior delay term and
boundary feedback. To this end, let 2 be an open bounded domain of R™,n > 2 with boundary I' of
class C? which consists of two non-empty parts I'; and I'y such that, I' = T'y UTy with Ty N Ty = 0.
In addition to these standard hypothesis, we assume the following.

(A) There exists zg € R™ such that, with m(z) = = — o,

m(x).v(x) <0, x eIy, (4.1)
m(x).v(x) > >0, x €Ty, (4.2)

where v(.) is the unit normal on I' pointing towards the exterior of (2.

In Q, we consider the following Schrédinger equation with interior delay term and dissipative
boundary feedback:

up(x,t) —iAu(x,t) + au(x,t —7) =0 in Q x (0; +00), (4.3)
u(z,0) = up(z) in Q, (4.4)
u(z,t) =0 on I'y x (0, 4+00), (4.5)
%(x,t) = —Puy(x,t) on I'y x (0, +00), (4.6)
u(z,t —71) = folx,t —7) in Q x (0,72), (4.7)

95
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where

e ug and fy are the initial data which belong to a suitable spaces.

° 8% is the normal derivative.

e 7 > ( is the time delay.
e « and [ are a positive constants.

Boundary stabilization of the Schrédinger equation is the subject of the papers [57] and [51]. In
[57], the authors proved that the solution of — wih o = 0 decays exponentially in the energy
space Hf\ (Q2) by adopting the classical multipliers method. Lasiecka et al [51] used L?(Q)- Carleman
estimates for the general linear Schrodinger equation to provide a uniform stabilization result for
wih o = 0 in the energy space L?(Q2) by means of a feedback control %(x, t) = —u(x,t).

Nicaise and Rebiai [65] established stability and instability results for the Schrodinger equation with
a delay term in the boundary or internal feedbacks. In this chapter, we study the stability of the
Schrodinger equation with interior delay and a dissipative boundary feedback as described in —
(4.7). For the wave equation, this problem has been investigated by Ammari et al [7]. We use
multipliers technique and a suitable Lyapunov functional to prove that the solution of -
decays exponentially in the energy space H%l (Q).

We define the energy associated to problem — by

1

1
E(t) = 2/Q\Vu(x,t)|2dx+£27—/g/0 \Vu(z,t —7p)|* dpdz, (4.8)

where £ is a strictly positive constant.
The main result of this chapter can be stated as follows.

Theorem 4.1. For any 3 > 0 there exist positive constants ag, M,C such that
E(t) < Me~“'E(0), (4.9)

for any regular solution of problem - with 0 < o < ag. The constants ag, M and C' are
independent of the initial data but they depend on B and on the geometry of Q.

Theorem [4.1] is proved in section In section we will study the well-posedness of system the
(4.3) — (4.7)) by using semigroup theory.

4.2 Well-posedness

We introduce the auxiliary variable:

z(x,p,t) =u(z, t —7p); €, pe(0,1),t>0.
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Then, the system (4.3))-(4.7) is equivalent to

ug(x,t) — iAu(z,t) + az(z,1,t) =0 in  x (0;+00), (4.10)
2z, p,t) + 7 2y(x, pyt) = 0 in Q x (0,1) x (0, +00) (4.11)
u(z,0) = up(z) in Q, (4.12)
z(x,0,t) = u(z,t) in 2 x (0, +00), (4.13)
u(z,t) =0 on I'y x (0, 4+00), (4.14)
gZ(m,t) = —fug(x,t) on I's x (0,400), (4.15)
z(x, p,0) = fo(z,—7p) in Q x (0,1). (4.16)
Denote by H the Hilbert space.
H = HL () x L2((0, 1); H) (9)).
We equip H with the inner product:
- 1
<( “ ) ; ( 2 >> = Re/ Vui(x)Vus(x) dax+£7‘Re/ / Vzi(x, p)Vze(x, p)dpde.
21 z92 ) Q QJ0
Define in H the linear operator A by
A(u,y)" = (iAu — az(., 1), -7 12,)7T, (4.17)
with domain D(.A) defined by
D(A) ={(u, z) € Hp, () x H'((0,1); Hy, (Q)) : iAu(z) — az(z,1) € Hp, (),
glyt(x) = —ifAu(x) + afz(x,1) on I'y, u(x) = z(x,0) in Q}. (4.18)
Then we can rewrite (4.10)-(4.16]) as an abstract Cauchy problem in H
au
() = AU (0),
t (4.19)
U(0) = Uy,

where

U(t) = (u('vt)a Z('v '7t))Ta U,(t) = (ut(-7t)7zt('a '7t))T7 Up = (u()a fO)T'

Theorem 4.2. For every Uy € H, the problem has a unique solution U whose regularity depends
on the initial datum Uy as follows:

UL) € C(0,+00);H) if Uy € H,
U() € CY[0,400);H)NC(]0,400); D(A)) if Uy € D(A).
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Proof. The well-posedness of the problem - or its abstract version follows via Lumer
Phillips Theorem (see for instance Theorem 1.4.3 of [69]).

We show that there exists a positive constant ¢ such that A — ¢I is dissipative.

Let (u,2)T € D(A), then

Re(AU,U)y = Re/ﬂV(iAu(x) —az(z,1))Vu(z) dx — fRe/Q/O Vzy(z, p)Vz(z, p)dpde.

Applying Green’s Theorem, we obtain

Re(AU,U) = Re/ (iAu(z) — az(z, 1))8u<m)

I v dl’ — Re /Q(ZAU(‘FE) —az(z,1))Au(z) dx

1
—fRe/Q/O Vzy(x,p)Va(x,p)dpdx.

Integrating par parts in p, we obtain

1 o 1 o
// Vzy(x,p)Vz(z,p) dpdx:—// Vz(x, p)Vz,(x,p) dpdac—i—/ |Vz(x, 1)\2dx—/ |V2(x,0)|* de,
QJOo QJOo Q Q

or equivalently

1 —
2Re// Vzp(w,p)Vz(x,p)dpdx—/ |Vz(z, 1)]2daf—/ |V2(x,0)|* d. (4.20)
QJo Q Q

Therefore

Re(AU,U) = Re / (iAu(z) — ax(z, 1) 24

5 5 dr — Re/Q(iAu(ac) —az(z,1))(Au(x)) dx

- §/ |Vz(z,1)|? dz + éh/ |V 2(x,0)|* d. (4.21)
2 Jao 2 Jo
Recalling (4.18)), (4.21]) can be rewritten as follows yields
Re(AU,U) = =B | |Au(z)]*dl' +aB | iAu(x)z(z,1)dl — aﬁRe/ iz(z,1)Au(x) dl’
Ty Ty Iy

—a?B [ |2(x, 1)|2dI‘—Re/i|Au(a:)\2dac+aRe/ z(x,1))Au(x) dx
Ty Q Q

g/Q|Vz(x,1)|2d:L"+g/Q|Vu(x)|2dm.

Applying Green’s Theorem, we obtain

Re(AU,U) = -8 | |Au(x)]*dT + aﬁRe/ iAu(x)z(z,1)dl" — aﬂRe/ iz(z,1)Au(x) dl
Iy T2 Ty

ou(x)
ov

—a?B [ |z(x, 1)|2dF—|—aRe/ z(z,1)
I

dar — aRe/ Vz(z,1)Vu(z) dx
Iy Q

—§/§2|Vz(:v,1)|2dx+§/§l|Vu(x)]2da:, (4.22)
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which together (4.18]) implies
Re(AU,U) = -3 [ |Au(z)*dl + ozBRe/ iAu(x)z(x,1)dl — aRe/ Vz(x,1)Vu(z) dr
Iy 1) Q

-5 [ oot [ Vuo)Pa.

Using Cauchy-Schwartz’s inequality, we obtain

2
Re(AU,U) < -8 Au(:z:)\z‘dr+ﬁe/ |Au(z)|?dl + 26 / |z(z,1)|>dl 4+ = /|Vz(a; 1) dx
Iy
—l-(;/\Vu dx—/]szl]zdx—i-é/]Vu )|? d,
Q

where € > 0.
From the trace Theorem, we have

Re(AU,U) < -8 |Au(:r)]2dF+/ | Au(z)|?dl + & 6CO/ \Vz(x,1))? doz + = /\Vz z, 1) > dx
1)

+Z/Q|Vu(:c)|2d:1:—§/ﬂ\v,z(x, 1)|2dx+§/Q|Vu(:L‘)|2dm,

where (Y is such that
/ lu? dT" < C’o/ \Vul|? dz.
T Q
Therefore

2
Re(AU,U) < ( 5+ﬂ> |Au(z )\er+<“0° e )/\vle\%lx

< >/|Vu )|? d. 2

Choose
(4.23)

| ™

Then, we have from (4.62)

Re(AU,U) < < >/|Vu )| de,

from which we deduce that there exists ¢ > % + % such that
Re(AU — cU,U) <0.

This shows that A — ¢l is dissipative.
Next, we show that (A — A) is surjective for some A > 0.
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Given a vector < ! ) € H, we need ( “ ) € D(A) such that
g z

eaf2)-(2)

Au(z) — iAu(x) + az(z,1) = f(x), (4.24)
Ae(@, p) + 77 2w, p) = g(a, p). (4.25)
Indeed, from (4.25)) and (4.13]), we have

Zp(xvp) = —)\TZ(.CL‘,p) +7—g($7p)a r €, pE (07 1)7
z(x,0) = u(x), x €.

this is equivalent to

The unique solution of the above initial value problem is given by
p
2(z, p) = u(z)e NP + Te)‘Tp/ g(x,0)e’N do, z e, pe(0,1),
0

and in particular

1

2(z,1) = u(z)e ™ + Te’\T/ g(x,0)e’ do, x € Q. (4.26)
0
Inserting (4.26]) into (4.24)), we obtain
1
u(x) — iAu(z) + au(x)e ™ = fz) — ozTe_)‘T/ g(z,0)e do. (4.27)
0

The problem (4.27)) can be reformulated as follows

<)\u(:v) —iAu(x) + au(x)e_/\T,v> = <f(;1:) —are™ /01 g(x,0)er™ da,v> , Yo € H%l(Q),
(4.28)

or equivalently
- ' - . -
)\/QVu(x)Vv(m) d:v—z/QV(Au(m))Vv(x)dx—kae /QVu(x)Vv(x) dx

1
:/Vf(a:)VU(x) d:L’O[TB_AT// Vy(z,0)e’ doVo(z) dz, VvEH%l(Q).
Q QJo

Integrating by parts, we get

dar

—AT . Ao () — ulz 8U($)
(A + ae )/QVu(w)Vv(m) da?+z/QAu(x)Av(x)dx FQA (x) 5

= / Vf(z)Vu(z)dx — 047'6_”/ /1 Vg(x,0)e’ doVu(z) dz, Vv € H%I(Q)
Q aJo
(4.29)
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From (4.18]) and (4.26)), we have

1 0u(x)
N B ov

Inserting (4.30]) in (4.29)), we obtain

—iAu(z)

o S , Ju(z) dv(z)
A+ ae )/QVu(x)Vv(a:) dx + z/gAu@)Av(x) dx + /1“2 dr

1
- ae_’\T/ u(x)av(:c) dl' = aTe_M/ 9(z,0)eM doM ar +/ Vf(x)Vo(z) dz
- v 0 v Q

1 S ——
—aTe)‘T// Vy(z,0)e’ doVo(z)de, Yo GH%l(Q),
QJo

or equivalently

a(u,v) = (k,o), Yo e H(Q), (4:31)
where
N AT : l @ @ — —AT @
a(u,v) = (A + ae™ ") (u, U>H111(Q) + i (Au, Av) 2 ) + 5\ ) o ae U5 Ly
(4.32)
and

1 1
(k,v) = are™" </ g(.,0)e’N do, gv> + <f,v>H% @ — are T </ g(.,0)eN° da,v> .
0 VI L2(1y) ! 0 HE (Q)

The form a(u,v) is not continuous on H{ ().
We introduce the space

du

Z= {u € Hf ()| Au e L*(Q), 5 € LQ(F2)} ;

equipped with the norm

oul|?

ov

ol =l o + 180l + | -
1 L2(Ty)

We use the complex version of Lax Millgram Theorem applied on the Banach space Z (see [77], p.344).
We show that for any fixed k € H%l (Q) C 2, there exists a unique u € Z satisfying

a(u,v) = k(v), Yv e Z,
with a(u,v) given by (4.32)). So we need to prove that a(u,v) is continuous and coercive on Z.
Observe that

1 /8u dv I
b - A + _AT ) + ) A ’ A + 3 o’ v B _)\T < ’ > '
a(u U) ( ae ) <u v)Hllﬂ1 () 7’< u U>L2(Q) I} <8V 8V>L2(F ) e ! ov L2(T'2)
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By the triangle inequality,

M\t < 8’U>
e Uy, — .
aV LQ(FQ)

Applying Cauchy-Schwarz’s inequality to each inner product on the right-hand side of the previous

ou Ov
< guw ov
‘a(uﬂ))‘_\()\—kae ) (u, ’U>H1 (Q)H‘HAU Av) L2 ’g<8y’au>L2(p2)‘+

estimate, we obtain

U ov
) < A+ ae T +A A + =5 o
olu0) £ O+ ae™ fulg 1l o1+ 1Al Aol + 5 3 2019l 2y
T ae M full ey 2|
al/ LQ(FQ)
From the trace theorem, we have
ou ov
) < A+ ae™ + A A + =5 —
la(w, v)l < (A+ae™ ) ullgy @ Ivllay (@ + 1Al 2@ llAv] L2 q) ﬁ‘au 2ol Nl L2 (ry)
ov
+ae™ Collull g , (4.33)
(w2,
(4.33]) implies that

la(u, v)| < Const [lu]| z[|v] =

Thus, a(u,v) is continuous on Z.
For the coercivity of a(u,v), observe that

_)\T< 8u>
— ae U, — .
L2(T) O [ 12(ry)

Recalling the inequality |z| > %|m| + %|y[ for any complex z = x + iy, we obtain

ATR@ < au>
2rs) OV [ pary)

1 ou
+ 2| Au|25 oy — e T <> .
2‘” ull2iq) —ae m{ U, 5 e

ov

(00 = (-t 0l oy + iluley + 5 2

3V

o)) 5|0+ ae )l o +

Therefore

_ ae—)ﬂ'

L2(T)

lau, u)| >

|

‘ Re <u, 0u>
plo O [ 120

O+ aeljulldy @+

l\D\H

1 ou
L a2 *T‘Im <u>
2 L2(Q) ov L2(Ts)
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Applying Cauchy-Schwarz’s inequality, we get

ou||?
7 Slove 2 2 2 _ L ||ou
)] 2 % | (A 0e ™)l o ﬁ' - Celiloey = 55 e,
1 oul?
+g |1l ol ~ g 5 | J’
2
and consequently,
AT 2 2 2
> 5 | (e~ 2020 by o+ (55 ) [ 5] . +uAuHL2(m]-
Therefore

la(u, w)| > Clull%,

for some constant C' > 0 as long as A > 2a2Cye.
We conclude from the complex version of the Bowder-Minty’s Theorem (see [71], p.364, Theorem
10.49) that, for all k¥ € Z’ where Z’ denotes the dual space of Z, there is a solution u € Z to

a(u,v) = k(v).

Moreover we observe that
D(A) € 2 x H'((0,1), Hy, () € Hr, () x L*((0,1), Hp, () € 2" > (H'((0,1), Hy, (2)))',
and hence for all k € Hlll (€2), the functional defined by (k, v>H% () belongs to Z'.
1

Hence, there is a unique solution u € Z C H} (Q) to a variational form a(u,v) = (k,v>H% (¢ for all
1

vEZ.
Furthermore, from the above variational form, by restricting to function v with zero Neuman data,

one recovers the equation
1
M — iAu+ oue ™ = f — ozTe_AT/ g(x,0)eM do. (4.34)
0

Since f — are™ fol g(z,0)e’ do € H{ (Q) and u € H} (), we obtain Au € HE ().
With the above regularity, we go back to variational form after integration by parts:

ov 1 /0u Ov
—AT — 4 —\ = =
(A + ae )<u,v)H%1(Q) i (V(Au), V) 120y + <Au 8u> ) + 3 <81/’ 8V>L2(F2)

ov

—A\T

— = = (k

oe <u, 8V>L2(F2) ( ,U>H}1(Q),

which combined with (4.34)) gives

(), 52
87/ LQ(F2) B 81/’ 8U LQ(F2)

1
— e M <u, 81}> —are </ g(x,0)eM do, (9v> =0, vEZ.
v L2(T9) 0 W/ s (T'2)
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The above identity implies that

. 1 du —AT AT ! Ao
iAu + Gov ae Tu — ate g(x,0)e™ do =0, on I'y,
0
therefore
gz = —B(iAu — az(z, 1)), on I's.

Moreover, Au € H{. (Q2) implies that
Aulp, € H'*(Ty),

and z(z,1) € Hf (Q) implies that
Z(:L’, 1)|F2 € HI/Q(FQ)v

and thus 5

u

= e HY2(T

5, € H"(T2),
as well.
Trace theory tells us that (u, z) € H2(2) x H((0,1), Hlll (2)), and so we know that the regularity of
D(A) is at least H*(Q) x H'((0,1), H} ().
So we have found (u, z) € D(.A) which satisfies (4.24]) and (4.25)). Consequently, (AI —.A) is surjective
and therefore (A — (A — ¢I)) is also surjective. Finally, the Lumer-Phillips leads to the fact that

A — ¢l generates a strongly continuous semigroup of contraction in H, hence A generates a strongly

continuous semigroup on H.
O

4.3 Proof of Theorem 4.1

We prove Theorem for smooth initial data. The general case follows by a density argument.

Proposition 4.3. For any solution of problem (4.3) — (4.7) and for every e > 0, the following estimate
holds:

2 2
Gr0 < (<o) [ utor+ (5045 -5) [1vuta- P

+ <3 + g) /Q\Vu(x)\zdac. (4.35)

Proof. Differentiating F(t) defined by (4.8), we obtain

d ! -
—E(t) = Re/ Vue(x,t)Vu(z,t) de + fTRe/ / Vui(z,t — p)Vu(z,t — 7p) dpdz.
Q QJo

dt
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Applying Green’s Theorem and recalling the boundary conditions in (4.3)) — (4.7, we obtain

d .
—E(t)=-p ]ut(az,t)|2 dl — Re/ (iAu(z,t) — au(z,t — 7)) Au(z, t) dr
dt Ty Q
1 e —
+ fTRe/ / Vue(z,t — p)Vu(z,t — 7p) dp du. (4.36)
aJo
Now observe that
Vu(z,t —1p) = —7Vu,(z, t — 7p), (4.37)
and
d ) -
%|Vu(x, t —7p)|° = 2ReVu,(x,t — 7p)Vu(x,t — 7p). (4.38)

Insertion of (4.38) into (4.36|) yields

d
th():—B gz, t)]? dI‘—I—aRe/uxt—T NAu(z,t) da:—// —\Vuxt—7p)|2d,od:v
Iy Q

=B [ |ug(z,t)]? dF—i—aRe/uzt—T YAu(z,t)de — 2 /\Vuxt—T)Ide
I Q

+§/Q|Vu(a:,t)]2dx.

Applying Green’s Theorem and recalling the boundary conditions in problem (4.3) — (4.7)), we have

%E(t) < —B [ |ug(z,t)|?dl + aﬁRe/ u(z,t — 7)ug(z,t) dl’ — aRe/ Vu(z,t — 7)Vu(z,t)de
Iy Iy Q

—g/Q]Vu(x,t—T)lzda:—kg/ﬂ\Vu(x,t)|2dx.

From Cauchy-Schwarz’s inequality, we have

d 2 a’e 2 52 2 — 2
—E(t)< -5 lug(x, )" dl + — |u(z,t —7)]7dl + — lug(z, t)|*dl + = | |Vu(z,t —7)|*dx
dt s 2 Ts 26 s 2 0

+3/|Vu(:vt2dw—/|Vuxt—7\2dx+§/|Vuxt]2

From the trace theorem, we obtain

2
th() ( 5+6 >/ ’Ut$t|2dr+<a Coc 3§>/Q|VU($atT)|2dx

+ <2 + 2) /Q Vu(z, 1) de.
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Let us introduce the Lyapunov functional

E(t) = E(t) + 71 &a(t) +725(1), (4.39)
with
£:(t) = Im /Q w(w, ym(z) V(e 1) de, (4.40)
and 1
S(t) =~ /Q /0 |\ Vu(z,t — 7p)2 dp d, (4.41)

where v; and 7, are suitable positive small constants that will be precised later.

Lemma 4.1. For v, small enough, there exist positive constants C1,a1 and ay such that
a1 E(t) < E(t) < a2E(t), VO < yy,7 <. (4.42)

Proof. From the definition of & (t), we have

11&2(t) < 71p

9

/ um.YVudzx
Q

Applying Cauchy-Schwarz and Poincaré’s inequalities, we obtain

E(t) < asE(t), (4.43)

for suitable positive constant as = max {1 +7R(Cp+1),1+ 2%}, where R = ||m||s and Cj, is the
Poincaré’s constant.
On the other hand, we also have from Cauchy-Schwarz and Poincaré’s inequalities

R(C,+1
E(t) > —71(]32) /Q \Vu|? dz.

From the definition of S(t), we deduce
1
128(0) 2 vre ™ [ VGt = o) dpda,
QJo
Therefore

R(C,+1

1
Et) > E(t)—v, 5 )/Q|Vu\2d:v+727'e_7/ﬂ/0 |Vu(z,t —7p)|? dpd.

Consequently

1 275e"T !
E(t) > (1 -7 R(1+ Cp))Q/Q Vul? dz + (1 - 72; ) 527/9/0 \Vu(z,t — 7p)|* dp dz,
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and for .
NS ROy (4.44)
we obtain
E(t) > a1 E(t), (4.45)
for suitable positive constant a;. By ({.43)) and (4.45) we have (4.42). O

Proposition 4.4. For any solution of problem (4.3) — (4.7)) and for every e > 0, we have

2 2 p2 2 212
Lty < (=2 4 R4 0% /|Vu]2dx+ R QB+ F)N [ 2dr
dt 2 2 ) ), 5 2 -

3aC),
2

/Q \Vu(z,t —7)|* de. (4.46)
Proof. Differentiating £(t) in we obtain
%Eg(t) = Im/ﬂut (m.Vu)dx + Im/ﬂu (m.Vuy) d. (4.47)
Using Green’s Theorem, we get
Im/ﬂu(mVut) dr = Im/r(m.u)uutdf —Im/ﬂ(m.Vu)utdx —divm[m/ﬂuutda;

=1Im (m.u)uutdI‘—i—Im/(m.Vu)utdx—nIm/uutdx. (4.48)
T Q Q

On the other hand, from -, we get after another use of Green’s Theorem
Im/ utg de = —Re/ Auudr — alm/ vu(z,t —7)dx
Q Q Q
ou _ 9 —_—
=—Re | —udl'+ [ |Vul*de —alIm | vu(z,t—7)dzx
r Ov Q Q

_ 3 utudf+/ |Vu|2dx—a]m/uu(x,t—7-)dg;7
I'o Q Q

and
Im/ (m.Vu)u de = —Re/ Au(m.Vu)dx — aIm/(m.Vu)u(x,t —7)dx.
Q Q Q

Thus
d

—&(t) = 2Re/ Au(m.Vu) dz — n/ |Vu|? dz — Re/ (im.v 4+ nf)uug dT
dt Q Q I}

+ no Im/ vu(z,t —7)dr — 2o Im/ (m.Vu)u(z,t — 1) dz. (4.49)
Q Q
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Applying Green’s Theorem to the first term on the right-hand side of -, we obtain

ou

Re | Au(m.Vu)dx =R
e/Q u(m.Vu) dx e oy

(m.Vu)dl' — Re/ V(m.Vu)Vudz.

Therefore

Re/ Au(m.Vu)dr = Re gu (m.Vu)dl' — / \Vu|* dx — = /|Vu| (m.v)dl + - / |Vul|® d.
Q

(4.50)

Combining (4.49) and (4.50) together with (4.1]) and (4.2)), we get

152( = —2/ ]Vu\Qdm+2Re/ a—“(m.ﬁ) dr—/yvu\Q(m.y) dF—Re/ (i m.v 4 nB)ut; dl
dt Q T 61/ T s

+nalm/uu(z,t—T)dx—2aIm/(m.Vu)u(a:,t—T)dac
Q Q

= —2/ |Vu\2da:+Re/ (m.v)
Q I'h
—Re/ (im.u+nﬁ)umd1‘+nalm/ vu(x,t—7) d$—2alm/(m.Vu)u(x,t—T) dx

s Q Q

%2
ov

dl’ — QﬁRe/ ut (m.Vu) dl — |Vu|*(m.v) dl
FQ FZ

< —2/ |Vul|? dx — 25Re/ ug (m.Vu)dl' — 6 | |Vul>dl — Re/ (im.v+npB)un;dl
Q Ty

I'2 T's
+ na Im/ vu(x,t —7)dr — 2« Im/ (m.Vu)u(z,t — 1) dz. (4.51)
Q Q
From the trace theorem, we have
R2 2132
/ (im.v+nB)ut dl| < C’OM || ? dT + — |u\2dF
Ty 2 Ty 2Cy
R2 2132
<o) [ par + / |Vu|2d,x. (4.52)
2 Iy 2 Jo
We also have
o 2 2 p2 5
‘26% (m.Vu)| < /BéR |ug|? + §\Vu]2, on I'y x (0, 00). (4.53)
Combining (4.51))-(4.53)), we conclude that
d 28%R* R? 4+ n?p? 1
Let) < 2/ Va2 dz+ 2 g2 dr + co FE 8 ]ut|2dF+/ Vu|? da
dt Q o Iy 2 Iy 2 Ja,

+na[m/uu(x,t—T)dx—2aIm/(m.Vu)u(:L‘,t—T)d:U.
Q Q

Applying Cauchy-Schwarz and Poincaré’s inequalities, we obtain

d 9 2R2 R2 212 1
—&(t) < 2/ \Vul|? da + b |ut2dF+Cg(+W/ \ut|2dF+2/ |Vu|? de
Q 1) Qg

di 5 ), 2
20.C
+ 22 p/\vUFdx
2 0

(x,t—7)|2dx+R2a/ |Vu|2dzn+a0p/ \Vu(z,t — 1) da.
Q Q
(4.54)
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The estimate (4.46|) is therefore proved. O

Proposition 4.5. For any solution of problem —, the following estimate holds:

jtS /|Vu T, t—T) |2d£L'—|—/ |Vu|? de — Te™ // \Vu(z,t —7p)|* dpdz. (4.55)

Proof. Differentiating S(t) defined by (4.41]), we obtain

d

1 _
—S(t) = 27’R6/ / e "PVui(x,t —1p)Vu(x,t —7p)dpdx.
dt aJo

Using (4.37)) and (4.38]), we obtain

// \Vux t —7p)|* dpd.

Integrating by parts in p, yields

d 1
Ls(t) = / ]Vu(:v,t—T)Ide—i—/ \Vu|2dx—7'// TP Vula, t — 1) dpda
dt Q Q alo
1
—6_7/ |Vu(:v,t—7)|2dx+/ \Vu|2dx—Te_T// \Vu(z,t —7p)|? dp da.
Q Q o Jo
The estimate (4.55)) is proved. O

Now, we can deduce an estimate for the Lyapunov functional £().

Proposition 4.6. For any 8 > 0 there exist ag,m and ¢ such that for any solution of problem

- with 0 < a < ag we have

E(t) <me E(0), t > 0. (4.56)

The constants ag, m and c are independent of the initial data but they depend on B and the geometry
of 2.

Proof. Differentiating the Lyapunov functional & and using Proposition Proposition [4.4] and
Proposition we obtain

2 2 p2 2 2132
e < {4 o (B QLN [ e ar

2aC
+{a+§+~yl (—3+R2a+n§ p)+72}/WU(%t)!2d$
Q

1
— yoTE T / / \Vu(z,t —7p)|* dpda. (4.57)
QJo
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For a fixed 8 we want to choose v, 7y < C; and a sufficiently small in order to obtain
d
() < ~CE(), (4.58)
from which follows (4.56).
To deduce (4.58)) from (4.57]), we need
BZ 252R2 CO(R2+n2ﬁ2)
_ [l < 4.
B+2€+’yl 5 + 5 <0 (4.59)
a £ 3 2 n?aC,
4> _Z 4.
2+2+’Yl( 2+RC¥+ 5 + 79 <0 (60)
a?eCy a & 3aC)y
-2 — ype”T < 0. .
5 Ta gty e T =0 (4.61)
A sufficient condition for the last inequality is
a?eCy  a ¢ 3aC),
25 <0. :
5 + 5 3 Y1 5 = 0 (4.62)
This conditions (4.59)), (4.60) and (4.62]) are equivalent to
2R?  Cyn? CoR? 52
2 0 0
<pB—-= 4.
vl[ﬂ<5+2)+2}6 o (4.63)
1 n’C & 3
o <2 + 7R+ 5 p)> T <3N (4.64)
aeCy 1 30, '3
Sy 2P}~ 2 <o .
a( > +2+712 2_O (4.65)
By the assumption
0< B < 2e, (4.66)
(4.63) is satisfied for
-1
52 2 2R2 C(]ﬂz C0R2
- — 4.
ne(o-5) (2 (Cr+ S )+ % (4.67)
A necessary condition (4.64)) is
2

Then we now fix «; and =, fulfilling the above requirements and look at (4.64)) and (4.65) as
conditions on « and £. An analysis shows that the set of pairs (a, &) fulfilling this constraints is not

empty (see Figure 2.).

It can be seen from this figure that for @ and £ small enough, (4.64) and (4.65) are valid. Note
further that due to (4.63)) if 8 goes to oo or to 0, then v, must tend to zero, and therefore v, as well

and the maximal value g of o goes to zero.

O
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/
\ Acceptable couples (o, f)
In—1Ix
| e
b ' >
={E3ni,+ 1 —{3n L+ 1) g —1lr
[+ T it TeIFy = On
—Eni s
=
Figure 2.

From Proposition and the energy equivalence (4.42)) we deduce estimate (|4.9)).

Remark 4.1. We can make explicit the relation between 5 and ag by choosing the constants &,
and 7y in the definitions @ and of the energy function E(.) and of the Lyapunov functional

E(.) in such a way that the conditions ({4.63)-({.65) are satisfied.

For instance, we fix

Now, choose

Y1 = mm{

and

1

& =2

CoR?

1 52 2 2R2 C()ﬂz
() (555

3Cp —i—EO’ R(l —i—Cp)’

2

)}
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The above choices of v, and 7y conditions - are satisfied for any o > 0.

The remaining conditions are satisfied for all

0 <a< ),
with
Qg = min 1-3Cm 27
Coe '3+ 7(2R?2+n2C)) |’
that is
ap = min{Kl, KQ, Kg, K4, K5, K6},
where 1
2 2 7L2 2 -
V= ety K2 = o Ko = o ,
82 o282 Con?\) , cor?\

K 2 K 2 K 2(’3_?) (5 (T*T)JFT )

1= ’ 5= ’ 6 — —

3(3Cp+eo)+2R*+nCy 3R(1+Cyp)+2R>+12Cy 3+(8-22) (52(¥+7C%"2)+—002R2) 2R 4n2Cy)

Observe that ag — 0 if B — 0 and also, if B — +oo.



Chapter 5

Stabilization of the Schrodinger
equation with boundary or internal
distributed time delay

5.1 Introduction

In this chapter, we study stability problems for the Schrédinger equation with a distributed delay
term in the boundary or internal feedbacks.

Let Q be an open bounded domain of R™ with smooth boundary I' which consists of two non-empty
parts I'; and I'y such that, I'y UTy =T with Ty N Ty = 0.

In addition to these standard hypothesis, we assume the following.

(A) There exists zg € R™ such that, with m(z) = = — o,
m(z).v(x) <0only, (5.1)
where v(.) is the unit normal to I' pointing towards the exterior of .

In Q, we consider the following system described by the Schrodinger equation with distributed
delay term in the boundary feedback:

ug(x,t) —iAu(z,t) =0 in Q x (0; +00),

u(x,0) = ug(x) in Q,

u(z,t) =0 on I'y x (0, +00), (5.2)
%(m,t) = iagu(z,t) + 1 f:f a(s)u(z,t — s)ds on I'y x (0, 4+00),

u(z, —t) = fo(x,—t) on I'y x (0,72),

where
e ug and fy are the initial data which belong to suitable spaces.

° a% is the normal derivative.

113
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e 71 and 79 are two real numbers with 0 < 71 < 79.
® ( is a positive constant.
e «:[r1,72) = Ris an L™ function, o > 0 almost everywhere.

In the absence of delay (i.e. @ = 0), Lasiecka et al [47] have shown that the solution of decays
exponentially to zero in the energy space L?(Q2). In the presence of delay concentrated at a time 7
that is the boundary condition on I's in (5.2)) is replaced by

gu(x, t) = iagu(x,t) + icu(x, t — 1), on I'y x (0, +00),
v

where 7 is the time delay, Nicaise and Rebiai |65] have shown that the solution decays exponentially
in an appropriate energy space provided that

ap > g (5.3)

On the contrary, if (5.3) does not hold they constructed a sequence of delays for which the corre-
sponding solution of (5.2)) is unstable. In [21], the authors developed an observer-predictor scheme to
stabilize the 1-d Schrodinger equation with distributed input time delay.
One of the purposes of this chapter is to investigate the stability of system (/5.2)). To this aim, assume
as in [63]
T2
ap > / a(s) ds, (5.4)
T1

which guarantees the existence of a positive constant ¢y such that

T2 co
ap — / a(s)ds — 5(7’2 —71) >0, (5.5)
T1

and define the energy of a solution of system (5.2)) by

1 1 T2 1
E(t) = / lu(x, t)|?dx + / / s(a(s) + co)/ |u(z,t — ps)|* dpdsdr. (5.6)
2 Q 2 Ty J1q 0
Then we have the following stability result for system (5.2]).
Theorem 5.1. Assume (A) and (5.4). Then, there exist constants M > 1 and § > 0 such that
E(t) < Me ' E(0).

The proof of this result is based on an energy estimate at the L?(£2) level for a fully Schrédinger
equation with gradient and potential terms stated in [50], Theorem 2.6.1 and established in [51],
Section 10. This result can be summarized as follows: Assume that the hypothesis (A) holds and let
u be a smooth solution of the partial differential equation in ([5.2)) satisfying

u(z,t) =0 on I'y x (0,7)
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Then there exists a constant ¢ > 0 depending on 1" such that

T
ou(z,t)
u(z,0 degc{UQ . —i—// : ‘ux,t dr dt
| tuta.0) oo + [ [ |F o 1)

oul?

+ ’ - + ||ul|3- } (5.7)
v ||y 0.7y ¢ H=1((0,T)xQ)

In (5.7), H;1((0,T) x I') is the dual space of the space
HL((0,T) x Ty) = H2(0,T; L*(T'9)) N L*(0, T; H'(T'3)), (5.8)

with respect to the pivot space L%((0,T) x I'y).

Remark 3. Theorem remains true if m is replaced by a real-valued vector field m € (C?(Q))"
such that m is coercive in Q, that is there exists 3 > 0 such that the Jacobian matriz J of m satisfies

Re(J(z)v.0) > BJv|?, Yz € Q, v e C.

In this chapter, we also study the stability problem for the Schrédinger equation with distributed
delay in the internal feedback. More precisely, we consider the system described by

ur(z,t) — iAu(z, t) + a(x) {ao u(z,t) + [[2a(s)u(z,t — s) ds} =0 in Q x (0; +00),

u(x,0) = ug(x) in &, (5.9)
u(z,t) =0 on I' x (0, 400),

u(z, —t) = fo(x,—t) on Q x (0,72).

In (5.9), a(.) is an L*°(Q)-function that satisfies
a(z) >0 a.e. in Q and a(x) > ag > 0 a.e. in w, (5.10)

where w C €2 is an open neighborhood of T'y.
In the absence of delay (i.e. o = 0), Machtyngier and Zuazua [57] have shown that the L?(Q)-energy of
the solution decays exponentially to zero. Their proof relies on an observability inequality established
previously by the first author in [56]. If the delay is concentrated at time 7, i.e. if instead of the
partial differential equation in we have

ug(x,t) — iAu(z, t) + a(x) {ap u(x,t) + oy u(z,t —s)ds} =0 in  x (0;+00), (5.11)

then system ([5.9)) is exponentially stable in the case ag > 1 and may be unstable otherwise (Nicaise
and Rebiai [65]).
The second purpose of this chapter is to investigate the stability of system ([5.9). To this aim, assume
as in [63]
T2
oy > / a(s) ds, (5.12)

T1
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which imply that there exist a positive constant ¢; such that

T2
ap — / a(s)ds — 6—21(7'2 —71) >0, (5.13)
1

then the energy of a solution of system ((5.9)) defined by

T2 1
F(t) = ;/ﬂ]u(aj,t)F d:z—i—;/ (x)/ s(a(s)+cl)/0 lu(z,t — ps)|*dpds dz, (5.14)

a
Q

decays exponentially to zero.

Our stability result concerning system (/5.9)) can be stated as follows.

Theorem 5.2. Assume (A) and (5.12)). Then, there exist constants My > 1 and 61 > 0 such that
F(t) < Myie 1 F(0).

The chapter is organized as follows. Theorem is proved in Section [5.2| whereas Section [5.3
contains the proof of Theorem Both sections start with the study of the well-posedness of the
system under consideration.

5.2 Stability of the Schrodinger equation with distributed delay in
the boundary feedback

5.2.1 Well-posedness of system ([5.2])

In this subsection, we will establish the well-posedness of system ([2.1)) using linear semigroup theory.
In order to be able to manage the boundary condition with the delay term and inspired from [62],
[63], [83], we introduce the auxiliary variable:

y(x,p,t,s) =u(x,t —ps); x €Ty pe(0,1),s€ (r1,72),t > 0.

Then, system (5.2)) is equivalent to

ug(x,t) — iAu(z,t) =0 in 2 x (0;+00),

yi(z, p,t, s) + s ty,(z, p,t,s) =0 on I'y x (0,1) x (0,400) X (71, 72),

u(x,0) = up(x) in Q,

y(x,0,t,s) = u(x,t) on I'y x (0,400) X (71, 7T2), (5.15)
u(z,t) =0 on I'y x (0, 4+00),

%(x,t) = iapu(z,t) —|—7jf:12 a(s)y(z,1,t,s)ds on I'y x (0, +00),

y(x, p,0,5) = folz,p,s) on I'y x (0,1) x (0,72).

Denote by H the Hilbert space.

H = L*(Q) x L*(Ty x (0,1) x (11,72)),
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equipped H with the inner product:

up \ [ u2 - —_— T2 1 .
<( ” >,( s >>H —Re/Qul(iU)UQ(ZU) d:L‘+Re/F2 /Tl sa(s)/o y1(z, p, 8)y2(x, p,s)dpdsdr.

Define in H the linear operator A by
Alu, y)T = (1Au, —s_lyp)T, (5.16)
with
D(A) ={(u,y) € H**(Q) N Hp, (Q) x L*(Ta x (71,72); H'(0,1)) : Au € L*(Q),

%(m) = iapu(z) + 1 /nT2 a(s)y(z,1,s)ds on T'a, u(x) = y(x,0,s) on I'y}. (5.17)

Then we can rewrite (5.15]) as an abstract Cauchy problem in H

aU

—(t) = AU(t),

o (@) (t) _—
U(0) = U,

where

U(t) = (u('at)7y('7 '7t7'))T7 U (t) - ( ( t) yt( )) Up = (u(J:fO) .

Theorem 5.3. Assume that

ag > /T2 a(s)ds. (5.19)

T1
Then, for every Uy € H, system has a unique solution U whose regularity depends on the initial
datum Uy as follows:

U() € C([0,+00);H) if Uy € H,
U() € CY[0,400);H) NC(]0,400); D(A)) if Uy € D(A).

Proof. Clearly A is closed and densely defined. We show that A is dissipative.
Let U = (u,y)T € D(A). Then

Re(AU,U) :Re/ iAu(z) dw—Re/ / / Yp(z, p,s)y(x, p,s)dpdsdl.
I's J7q 0

Applying Green’s Theorem, we obtain

Re(AU,U) = Re/ 815( u(z)dl — Re/ / / Yp(z, p,s)y(x, p,s)dpdsdl. (5.20)
Ly J71
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For the last term on the right-hand side of (5.20)), we have after, integrating by parts in p,

e — 1 e —
/ / / Yo(z, p,8)y(x, p,8) dpdsdl’ = — / / / y(z, p, 8)Yp(x, p, 8) dpds dl’
Iy J1 0 Iy Jr
+/ / s)|y(x, 1, s)|? dsdl’ — / / s)|y(x, 0, s)|* ds dT,
I Ty J71
- T2
i [ [ al / e p )z g dpdsdr = [ [ a(s)ly(e o) P dsdr
Ty J7y e Jr1
T2
—/ / als)|y(z,0,s)* dsdr.
Iy Jm

or equivalently

Therefore

- T2
Re(AU,U) = Re 8u( u(z) —/ / s)|y(z,1,)|* dsdl + 1/ / a(s)|y(z,0,s)[* ds dT.
Fz o Py vm 2 Jry Jry
(5.21)

Insertion of the boundary conditions on I's in into (5.21)) yields

N 1 2
Re(AU,U) = —ag | |u(z)>dl — Re/ / y(x,1,s)dsu(z)dl’ — / / afs)|y(z,1,5)|* ds dT
Iz Iy Jm1 2Jry Jry

/ / (z)*dsdr. (5.22)
I'y Jrq

For the second term on the right-hand side of (5.22)), we have via the Cauchy-Schwartz’s inequality,

’// y(z,1,s) dsu(z) dl“)_ // (8)|y(x,1,8)|*dsdl’ + = // s)ds |u(x)|* dT.
Iy Jm 2 Iy Jm Ty Jr1

(5.23)

Combining (5.22)) with -, we obtain
T2
Re(AU,U) < ( — o + / a(s) ds) |u(z)|* dr. (5.24)
T

T1

(5.24]) together with assumption (5.19)) implies that A is dissipative.
Now we show that for a fixed A > 0 and (g, h) € H, there exists U = (u,y) € D(A) such that

an)-()

Au—iAu = g, (5.25)
Ny +sty, = h (5.26)

or equivalently
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Suppose that we have found u with the appropriate regularity, then we can determine y. Indeed from

(5.26) and the last line of ((5.15)), we have

yp(xapv 3) = _Asy('x?p? S) + Sh(l’,p, 8)7 for z € F27p € (07 1)a s € (7—177—2)1
y(x707 3) = u(m)

The unique solution of the above initial value problem is given by
P
y(x, p,s) = u(x)e Pu(z) + se_’\ps/ h(z,0,5)e* do, x €T, pe(0,1),s€ (11,72),
0

and in particular
y(ajy 178) = u(w)e_AS + yO(IEVS)a T e F273 € (7_177_2)7 (527)

where yo € L?(T'y x (71,72)) is defined by
1
yo(x,s) = se_)‘s/ h(z,0,s)e do.

0

Problem (5.25)) can be reformulated as
/()\u —iAuv)wdr = / gwdz, for all w € Hf (). (5.28)
Q Q

Integrating by parts, we obtain

/()\U—iAu)wdx = /()\uw—i—iVqu) dx—i/ @Edf
“ Q r, ov

= /Q()\uw +iVuVw) dx + /Fz(aouw + (/T:2 a(s)y(x,1,s)ds)w)dl’
— /Q()\uw—i— iVuVw) dx + /FQ(aouw—i- (/T1 a(s)(u(x)e ™ + yo(z, s)) ds)w) dT,

where we have used (5.27)). Therefore (5.28]) can be rewritten as

T2
aoude‘—l—/ (/ afs)e™* ds)uw dT

Iy J711

/ (Auw + iVuVw) dx + /
Q

1)

T2
= / gfwdx—/ (/ a(s)yo(z,s)ds)wdl, for all w € Hf (Q).
Q

Ty Jr1

Multiplying both sides of this equation by 1 — i, we get

aguw dl + (1 — 1) /
r

(1— i)/Q(/\uw—l— iVuVw) de + (1 — i)/F 2(/:2 a(s)e™* ds)uw dT

2 1

—(1-1) /ngd:c - i)/F (/TQ a(s)yo(x, s) dsywdT, for all w € H}, (). (5.29)

1

As the left-hand side of (5.29) is coercive on Hlll(Q) (in the sense that if we denote the left-hand
side by b(u,w), then Reb(u,u) > Const ||uH12LI% () for all u € H%l(Q), and since the right-hand side
1
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defines a continuous linear form on Hlll (Q) because (g, h) € H, the Lax-Milgram Theorem guarantees
the existence and uniqueness of a solution u € H%l (Q) of 1}
If we consider w € D(Q2) in (5.29)), then u solves

Au — iAu = g, (5.30)

in D'(Q) and thus Au € L?(9). Using Green’s Theorem and recalling (5.30), we obtain

2 2
—w dF+/ aguwdf+/ (/ a(s)e™* ds)uw dT :/ (/ a(s)yo(x, s)ds)wdl’, for all w e H%l(Q),
r, 0 Iy Iy Jr 2

T1
from which it follows that
Ou T2 2
i— +aou+ (/ as)e ™ ds)u = / a(s)yo(x, s) ds.
v 1 1

Hence

ou . L7
— =liapu +1i a(s)y(.,1,s)ds on T}y,
v -

and this implies that g—g € L*(I'y), and by [55] Theorem 2.7.4, we deduce that u € H3/2(Q). So we
have found (u,y) € D(A) which satisfies (5.25)) and (5.26]). By the Lumer-Phillips Theorem, A is the
generator of a Cp—semigroup of contractions on H.

O

5.2.2 Proof of Theorem [5.1]

We prove the Theorem for smooth initial data. The general case follows by a density argument.
First, we show that the energy function E(t) defined by (5.6)) is decreasing.

Proposition 5.4. The energy corresponding to any regular solution of problem (5.2)), is decreasing
and there exists a positive constant K such that

%E(t) <K {]u(x,t)|2+/72 |u(x,t—s)\2ds} dr, (5.31)

T1

T2
i =minfao— [ at)ds - Lira-r). 2},

1

where

Proof. Differentiating F(t) defined by (/5.6)) with respect to time, we obtain
d 1 —_—
th( ) = Re /ut(x tyu(z,t) d$+Re/ / s) + ¢o) / ug(x,t — ps)u(x,t — ps)dpds dl’
Q 0
1
= Re/(zAu(w t))u(z,t) dx—i—Re/ / s) + ¢o / ur(x,t — ps)u(z,t — ps) dpdsdl.
Q 0
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Applying Green’s Theorem, we get

1 S —
Re/ zudF+Re// s)+ co) / ug(x,t — ps)u(x,t — ps)dpdsdl’.  (5.32)
Ty I's J7q 0

Now, we have
—sug(x,t — ps) = up(x,t — ps).
Therefore

1 —
Re/ / )+ co / ut(x, t — ps)u(x,t — ps)dpdsdl’
Iy J7q 0

1 e —
/ / )+ co / up(x,t — ps)u(x,t — ps)dpdsdl’

Iy Jrq 0

L d

/ / s) + co) / — |u(z,t — ps)|* dpds dr,
ry Jr o dp
from which follows, after integration by parts in p
1
/ / )+ co / ug(x,t — ps)u(x,t — ps)dpds dl’
Ty J7q 0

_ _/ / §) + co)|u(e, t — )2 ds dl + = / / )+ collulz, )P dsdl.  (5.33)
'y J7q I'y J11

Inserting (5.33)) and the boundary conditions on I's in (5.2)) into ([5.32)), we obtain
d -
%E( ) =—ap |u(1: t)[2dl — Re/ / (x,t —s)dsu(x,t)dl’
T1

- / / s) + co)|u(z, t — s)[*dsdl’ + = / / )+ co)|u(z, t)|>dsdl.  (5.34)
Ly Jr1 Ty Jr

For the second integral on the right-hand side of (5.34}), we have from the Cauchy-Schwartz’s inequality,

‘/FQ/T1 z,t —s)dsu(z, t)dF'

/F/T z,t —s) | ds | u(z,t) | dT
</ </ ()|U(mt—8)|2ds>§</72 ()ds>é| u(z,t) | dT
_2/&/71 (s)|u(z,t — s)[*dsdl + = /rQ/n (s)|u(z,t)*dsdr. (5.35)

So, from and ( -, we obtain

T2
dE() (—ao—i—/ a(S)dS+C()(T2—T1)> lu(z, t)] dI‘—/ / u(x,t —s |2dde
dt T 2 1) Iy J71

1
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which implies

d T2
—FE(t) <-K {]u(az,t)|2 +/ lu(x,t — s)|? ds} dr,
dt Ty T1
where -
K:min{ao—/ a(s)ds—CO(Tz—Tl),co},
- 2 2
which is positive due to the assumption ([5.5)). ]

Now we give an observability inequality which we will use to prove the exponential decay of the
energy E(t).

Proposition 5.5. For any reqular solution of problem , there exists a positive constant C de-
pending on T such that for all T > T4

0) < C/OT /FQ {\u(m,t)|2 +/: lu(z, t — 5)|2d5} dT dt. (5.36)

E(t) = Es(t) + Ea(t),

1
-3 / ju(z, ) do.
2 Ja
// s) + ¢o) / lu(z,t — ps)|>dpdsdT.
T2
// 5) + ¢p) / |u(z, —ps)|> dp ds dT. (5.37)
s

By a change of variable in we obtain, for T" > 79,

T2 S
:1// (a(s)+co)/ lu(z,t — s)|* dt ds dT
I's J1q
T
< // +c0/ lu(x,t — s)|* dt ds dT’
2 Iy J71
<C/// lu(x,t — s)|? ds dl dt. (5.38)
1)

Here and throughout the rest of this chapter C' is some positive constant different at different occur-

Proof. We rewrite

where

and

In particular,

rences.
From Theorem 2.6.1 of [50], we have the following estimate

E,(0) < C{\UIILz (0,T;L3(T2) / /rz

@
ov

‘ )| dr dt

a

Tl }
H;l((07T)><I‘2) H— (0 T)XQ)
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for T' > 0 and for a suitable constant C' depending on T'.
Inserting the boundary conditions on I'y in ([5.2)) into the above estimate, we obtain

T T2
p@ <0 [ [ {neops [Cu-opis)dvac clugona, 639
0 o T1

since the H, 1((0,T) x I'y)-norm is dominated by the L?((0,T) x I'y)-norm.
Combining ([5.38) with (5.39), we obtain for any T > 79

T T2
0 FQ T1

for a suitable constant C' depending on 7. Naturally, (5.40) implies a fortiori

T T2
B(0)<C / / {|u<x,t>12+ / \u(x,t—s>r2ds}drdt+cuuuim<(ow1(9))- (5.41)
0 FQ T1

To obtain the desired estimate 1’ we need to absorb the lower order terms ||u||%oo((0’T); H-1(0)) On
the right-hand side of . To achieve this, we employ as in Nicaise and Pignotti |[62] and Nicaise
and Rebiai [65] a compactness-uniqueness argument.

Suppose that is not true. Then, there exists a sequence u,, of solution of problem with

Un(xvo) = ug(aj)? un(x7 _t) = fv?(x’ —t),

such that

E"(0) >n/OT/F2 {\un(x,t)]2+/nm \un(a:,t—s)FdS} dr dt, (5.42)

where E™(0) is the energy corresponding to u, at the time ¢t = 0.

From (5.41)), we have
T T2
En(0) < c/ / {\un(x,t)\2+/ |un(x,t—s)|2ds} A0 dt + Cllunl 2o rys-ray (543)
0 I T1
(5.42)) together with (5.43)), yields
T T2
n/ / {|u(337t)|2 —l—/ lu(x,t — s)]st} dr dt
0 To T1

T T2
0 F2 T1

That is

T T2
(n—C)/O /F {|un(aj7t)|2+/ﬂ |un(x,t—s)|2ds} AT dt < Cllunl e (0.1
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Renormalizing, we obtain a sequence u,, of solution of problem (|5.2)) verifying

sl oe 0,21 () = 1 (5.44)

and

T T2
/ / {]un(:c,t)|2 +/ |t (x,t — S)\st} ar dt < ¢ Vn>C. (5.45)
0 JIs - n—C

From , , and ((5.45)), it follows that the sequence (u, f°) is bounded in H. Then there is a
subsequence still denote by (u, f0) that converges weakly to (u’, f°) € H. Let 1 be the solution of
problem with initial condition (u, f9).
We have

b € C(0,T); LX),

from Theorem and

/OT A |¢(x,t)y2drdt+/0T/F2

from Proposition for some C' > 0. It then follows that

2
W@ D g <
12

0

U, — 9 in L>(0,T; L*(Q)) weak star,
Upy — b, in L0, T; H2(Q)) weak star,

and hence
[unlZoe 0.7 22¢)) + NtntllZoe o -2y <€ ¥n€N. (5.46)

Since the injection L?(Q) < H~1(£2) is compact, (5.46) implies (see [9] and |75]) that for 0 < T' < +o0
the injection
Z < L>(0,T; H1(Q))

is also compact, where Z is the Banach space equipped with the norm on the left hand side of ([5.46]).
As a consequence there is a subsequence still denoted by w,, such that

U, — 1 in L0, T; H1(Q)) strongly. (5.47)

Hence by (5.44]) we obtain
lallZoe ozytr-2(2) = 1- (5.48)

On the other hand, we have from ([5.45)) and (5.47]),

P(z,t) =0 on Iy x(0,T).
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Thus v satisfies

(), (x,t) — iAY(x,t) =0 in Qx(0,7),
Y(x,t) =0 on I'x(0,7),
M&gi’ b _y on T x (0,7).

Therefore, from Holmgren’s uniqueness Theorem (see [54], Chap.1, Thm. 8.2), we conclude that
P(x,t)=0 in Qx(0,7),
which contradicts (5.48). Then, the desired inequality (5.36]) is proved. O

Completion of the proof of Theorem

From ([5.31]), we have

E(T) — E(0) < —K/OT/F2 {|u(:c,t)]2+/T1T2 yu(a;,t—s)|2ds} dr dt,

and the observability inequality (5.36)) leads to

2
E(T) < E(0 <C/ / {|umt!2 / |u(m,t—s)|2ds}df‘dt.
Fz

< CK~Y(E(0) - B(T)),

SO

C
K+C

Since we 0 < C/(K + C) < 1, the desired conclusion follows now from (5.49).

E(T) < E(0). (5.49)
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5.3 Stability of the Schrodinger equation with distributed delay
term in the internal feedback

5.3.1 Well-posedness of system (|5.9))

We introduce the auxiliary variable:

Then, system (/5.9) is equivalent to

ug(x,t) — iAu(z, t) + a(x) {ao u(z,t) + fTTlZ a(s)y(x,1,t,s) ds} =0 in  x (0;+00),
ye(x, p,t, )+ s~ yp(a:,p,t, s)=0 in Q x (0,1) x (0,400) x (T1,72),
u(z,0) = uo(z) in Q,
y(x,0,t 5)—u($,t) in  x (0, 4+00) x (71, T2),
u(z,t) = on I' x (0, 400),
y(z, p, 0, 5) folz, p, s) in Q x (0,1) x (0,72).
(5.50)

Denote by H the Hilbert space

H = L) x L*(Q x (0,1) x (11,72)),
equipped with the inner product:
1 Us - T2 1 -
; — e [ w@ua(@ e+ Re [ aw) [ sa() [ n(epsinleps) dpdsde
Y Y2 i Q Q T1 0

Define in H the linear operator A by

~ T2
A(u, )T = (iAu — acgu — a/ a(s)y(.,1,5)ds, —s1y,)T,

™1
with
D(A) ={(u,y) € H*(Q) N HY(Q) x L*(Q x (11,72); H(0,1)) : u(z) = y(z,0,s) in Q},
Then we can rewrite as an abstract Cauchy problem in H
du =

—(t) = AU(t),
dt() (t) (5.5

U(0) = Uy,
where

U(t) = (u(.,t),y(., '7t7'))T7 U (t) = (Ut(-,t),yt(., -t '))Ta Up = (u(]:f())T'
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Clearly A is closed and densely defined. Proceeding as in Subsection we prove that if

ap > /72 a(s)ds (5.52)

1

then A is maximal dissipative. Therefore A generates a strongly continuous semigroup of contractions
on H and consequently we have the following well-posedness result for system 1D

Theorem 5.6. Assume . Then for every Uy € 7—7, system has a unique solution U whose
reqularity depends on the initial datum Uy as follows:

U) € C(0,+00);H) if Uy € H,
UL) € CY[0,400);H) N C([0,+00): D(A)) if Uy € D(A).
5.3.2 Proof of Theorem [5.2]

We prove Theorem for smooth initial data. The general case follows by a density argument.
First, we show that the energy function F'(¢) defined by ([5.14) is decreasing.

Proposition 5.7. The energy corresponding to any regular solution of problem (5.9), is decreasing
and there exists a positive constant K1 such that,

jtF( t) < —Kl/Qa(x){\u(x,t)|2+/: ]u(:ﬁ,t—s)|2ds} dr, (5.53)

T2
= min fao = ["ads - Sra - B}

1

where

Proof. Differentiating F'(t) defined by (5.14]) with respect to time, we obtain

d T2 1
th() Re/ﬂut(:z tu(z, t)da:—l—Re/Q a(x )/7-1 s(a(s)—i—cl)/o ut(x,t — ps)u(x,t — ps) dpds dx

= ) — a\x)|lu\x 2113— (& a\xr TzOéSUQZ’ — S Su\xr T
—Re/QuAu(x,t))u(x,t)dx O/Q<>r<,t>|d R/Qm/ (s)u(z t — s) dsu(x, 1) d

™1
T2 1
+ Re/ a(x)/ s(a(s) + 01)/ ut(x,t — ps)u(z,t — ps) dpds dx.
Q T1 0

Applying Green’s Theorem, we get

/z (z,t) u(z,t) dFozo/Qa(x)|u(x,t)|2d:ERe/Qa(x) / a(s)u(z,t — s)ds u(z, 1) do

) 1
+ Re/Q (x)/ s(a(s) + 01)/0 ut(z,t — ps)u(x,t — ps) dpdsdz. (5.54)

Now, we have
—sug(x,t — ps) = up(x,t — ps),



5.3. STABILITY OF THE SCHRODINGER EQUATION WITH DISTRIBUTED DELAY TERM
IN THE INTERNAL FEEDBACK 128

Therefore

Re/ﬂa(m) /Tzs(oz(s)+01)/1ut(x,t—ps)u(x,t—ps)dpdsd:v

T1 0

= —Re/@a(w) /TITQ(a(s) +Cl)/01up( — ps)u(z,t — ps) dpds dx

:_/Qa(:n) /TQ(a(s)—l—cl)/Oljo|u(:x,t—ps)|2dpdsd:n,

T1
from which follows, after integration by parts in p

RB/Q(Z(:L‘) /:2 s(a(s) +c1) /01 ug(z,t — ps)u(z,t — ps)dpds da

1

_—1 a\x TQCYS C1)|ulx —SQS(E 1 a\x T2Oé$ C1)|ulx 23x
=5 [ o) [ @)+ enlutat =) Pdsde+ 5 [ atw) [ o)+ enlute 0P dsda. - (5.59)

T1 T1

Inserting ([5.55)) and the boundary condition on I'y in ([5.9) into (5.54)), we find
d T2 -
%F(t) = —ao/ a(x)|u(z,t)|* de — Re/ a(x)/ a(s)u(xz,t — s)dsu(x,t)dx
Q Q T

1

1 T2 1 72
/Qa(x)/T (a(s)+cl)|u(:p,ts)|2d5dx+2/Qa(x)/ (a(s) + c1)|u(z, t)|? ds dz.

2 1 T1
(5.56)

For the second integral on the right-hand side of ([5.56)), we have the following estimate deduced from
the Cauchy-Schwartz’s inequality,

a(a:) /T2 a(s)u(z,t — s)dsu(z,t) dz

/ afs) |u(x, t —s) | ds| u(z,t) | de

([ o) ([ r4) e

/ (:U)/ a(s)|u(z,t - S)Pdsdw—i— a(z / a(s)|u(z, t)|? ds dz. (5.57)
Q
(5.56)) together with (5.57)) gives

jtF() (—ao+/TT2a(s)ds+621(72—T1)> /Qa(x)|u(:z:,t)|2d:n—021/ﬂa(x) / lulz, ¢ — 5) |2 ds da,

1 T1

which in turn implies

jtF( t) < Kl/Qa(w){lu(:c,t)m/: \u(m,t5)|2d5} dz,
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where

T2
K = min{ao —/ a(s)ds — %1(7'2 —7'1),01}»

1

K is positive because of the assumption (5.13)). O

Now we give an observability inequality that will be used to establish the exponential decay of the
energy function F'(t).

Proposition 5.8. For any reqular solution of problem (@), there exists a positive constant Cy de-
pending on T such that for all T > 7o

) < co/ / {\u 2,1) y2+/ u(m,t—s)|2ds} da dt. (5.58)

Proof. Following [57], we write the solution u of (5.9) as u = z + v where z solves

zi(z,t) —iAz(z,t) =0 in 2 x (0;+00),
z(x,t) =0 on I' x (0, 400), (5.59)
2(x,0) = up(x) in Q,
and v satisfies
ve(z,t) = iAv(z,t) — a(x) {ao u(z,t) + f:f a(s)u(z,t —s) ds} =0 in  x (0;+00),
v(z,t) =0 on I' x (0, 4+00),
v(z,0) =0 in Q.

Let us denote by

1
=/umwﬁm,
2 Jo

the energy corresponding to the solution of (5.59)). Then, it follows from [57] (Proposition 3.1) that
for all T' > 0, there exists a positive constant ¢ depending on 7" such that

T
O)<c/ /z(:v,t)|2da:dt.
0 w
< / / 2(z,t)|? d dt.

On the other hand we have for T' > 79

1
2/ a(x)/ s)+c1 / lu(x, —ps)|> dpds dx <c/ / / (5)+e1)|u(z, t—s)|* ds dz dt.
Q T1

Using (5.10) we get
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Hence for T' > 75

T2 1
F(0) :5Z(O)+;/Qa(a:)/ 5(a(5)+01)/0 |u(x, —ps)|* dp ds dx

1

<c / / {|za;t]2+/T1Tz\u(x,t—s)|2ds} dx dt
< c/ / {|u 2,02+ o(z, ) + / u(z, b — s)|2ds} da dt. (5.60)

By classical energy estimates on the Schrédinger equation we have

T2
||UHLOo (0,7):L2(02)) / / {|u z,t)|? —l—/ |u(z,t — s)]zds} dx dt. (5.61)
T1

Combining (5.60) and (5.61]), we obtain (5.58]). O

Completion of the proof of Theorem
From (5.53)), we have

F(T) — F(0) < Kl/ / {u 2,1) |2+/: |u(x,t—s)\2ds} da dt.

and the observability inequality (5.58)) leads to

F(T) < F(0 <C’0/ / {\u:z: t) |2+/ ]u(:z:,t—s)|2ds} dx dt.

< CoKi! - F(T)),

F(T) < o

<% o Fo (5.62)

Since we have 0 < Cy /(K7 + Cp) < 1, the desired conclusion follows now from ([5.62]).



Chapter 6

Stabilization of coupled wave equations
with boundary or internal distributed
delay

6.1 Introduction

In this chapter, we study stability problems for compactly coupled wave equations with distributed
delay terms in the boundary or internal feedbacks. To this end, let €2 be an open bounded domain
of R with boundary I' of class C? which consists of two non-empty parts 'y and I'y such that,
I'=T1uUTly Wlthﬁﬁﬁgzw

Furthermore we assume that there exists a scalar function ® € C?(Q2) such that

(H.1) ® is strictly convex in §; that is, there exists A > 0 such that

H(x)0.0 > \|0(z)? VzeQ, O cR,

where H is the Hessian matrix of ®.

(H.2) h(z).wv(x) <0 on Ty, where h(z) = V®(z) and v is the unit normal on I' pointing towards
the exterior of (2.

In ©, we consider the following coupled system of two wave equations with distributed delay terms in
the boundary conditions:

u(z,t) — Au(x, t) + l(u(x,t) — v(z,t)) =0 in 2 x (0;+00), (6.1)
v (z,t) — Av(z,t) + l(v(x,t) —u(x,t) =0 in  x (0;+00), (6.2)
u(z,0) = ug(x), ue(z,0) = ui (x) in ©, (6.3)
v(x,0) = vo(x), ve(x,0) = vi(x) in €, (6.4)
u(z,t) =v(x,t) =0 on I't x (0, +00), (6.5)

131
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%(m,t) =— /T2 a(s)ug(z,t — s)ds — aguy(x, t) on I'y x (0, +00), (6.6)
g;)(a:,t) = — /TT B(s)vi(x,t — s)ds — Bov(z,t) on I'y x (0, 4+00), (6.7)
u(x, —t) = fo(z, —t) on I'y x (0,7),
ve(x, —t) = go(z, —t) on I'y x (0,7),

where
e [, o and 3 are positive constants,

e ug, U1, v, V1, fo and go are the initial data,

. 6% is the normal derivative,

e 71 and 79 are two real numbers with 0 < 71 < 79,

e «,f:[r1,72] = (R) are nonnegative almost everywhere functions of class L>.

For the case of one-dimensional spatial domain €2, v and v may represent the displacements of two
vibrating objects measured from their equilibrium positions, the coupling terms +l(u — v) are the
distributed springs linking the two vibrating objects [60].

It is well known that if & = f = 0, i.e. in the absence of delay, then the solution (u,v) of —
decays exponentially in the energy space Hlll(Q) x L?(Q)x H%I(Q) x L2(2) ([60], [41]).

In the presence of delay concentrated at a time 7 that is the boundary conditions and
are replaced by

gu(a:,t) = —aqw(x,t — 1) ds — apuy(z, t) on I'y x (0,+00), (6.10)
v
g:j(x,t) = —pv(z,t — 1) ds — Byve(z, t) on I'y x (0, +00), (6.11)

the solution of (6.1)) — (6.5)), (6.10)), (6.11), and decays exponentially in an appropriate energy

space provided that oy > aq and By > 5; [70]. One of the purposes of this chapter is to investigate
the uniform exponential stability of the system — . To this aim, assume as in [63]

T2
a0>/ a(s)ds, (6.12)
T1

and

By > / " B(s) ds. (6.13)
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and define the energy of a solution of 1) by

E(t) = 1/ [| Vu(z,t) ]2 +ut (x,t)+ | Vo(z,t) |2 +vt (x,t) + l(u(x,t) — v(x,t))2] dzx

1
// 5) + co) / u?(z,t — ps)dpds dl’
Iy Jrq 0
1
—i—// s)+ / vi(x,t — ps)dpdsdr. (6.14)
2 Jr, 0

In (6.14), co and ¢; are positive constants such that

T2 co
ap — / a(s)ds — 5(72 —71) >0, (6.15)
T1
and .
- / Bls)ds — Lry 1) > 0. (6.16)

Then we have the following stability result for system (6.1]) —

Theorem 6.1. Assume (H.1), (H.2), (6.12) and (6.13). Then the coupled wave equations system
(6.1) — is uniformly exponentially stable, i.e., there exist constants M > 1 and w > 0 such that

E(t) < Me “'E(0).

The proof of this result is based on Carleman estimates (see Appendix for a system of coupled
non-conservative hyperbolic systems established by Lasiecka and Triggiani [46] and will be given in
Section
In this chapter, we also study the stability problem for a system of two coupled wave equations with
distributed delay in the internal feedback. More precisely, we consider the system described by

uy — Au+ l(u —v) + a(x) (aous + /72 a(s)ug(xz,t —s)ds) =0 in Q x (0;400), (6.17)
vy — Av + (v — u) + b(z)(Byve + b B(s)vi(x,t —s)ds) =0  in Q x (0;4+00), (6.18)
u(z,0) = up(z), ut(x,0) = uy () in Q, (6.19)
v(z,0) = vo(x),ve(x,0) = vy () in Q, (6.20)
u(z,t) =v(z,t) =0 on I'y x (0,4+00), (6.21)
%(x,t) = %(w,t) =0 on I'y x (0, 4+00), (6.22)
ug(x, —t) = fo(z, —t) in Q2 x (0,72), (6.23)
ve(z, —t) = go(x, —1) in Q x (0,72). (6.24)

In (6.17) — (6.24), a(.) and b(.) are two L>°(Q2) functions which satisfy

a(x) >0 a.ein Q, a(x) > ap > 0 a.e in wiy,
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and
b(x) > 0a.ein Q, b(x) > by >0 a.e in wa,

where w1 C wy C €2 are open neighbourhoods of I's.

If the delay is concentrated at time 7, i.e. if instead of (6.17) — (6.18) we have

uy — Au+ l(u —v) + a(z)(aour + arug(z,t —s)) =0 in Qx (0,+00) , (6.25)
vy — Av 4+ (v — u) + b(x)(Bovr + Brve(z,t —s)) =0 in Qx (0,400) , (6.26)

then system (6.25)), (6.26]), (6.19]) — (6.24) is exponentially stable in the case ag > 3 and S, > 5, and
may be unstable otherwise .
The second purpose of this chapter is to investigate the uniform exponential stability of the system

(6.17|— (6.24). To this aim, assume as in [63]
T2 T2
ag > / a(s)ds and By > / B(s) ds, (6.27)
T T1

1

then the energy of system (6.17)) — (6.24) defined by

F(t) = ;/ﬂ{\ Vu(z,t) [* 4ui(z, t)+ | Vo(z,t) |2 +oi(z, t) + H(u(z,t) — v(x,t))2} dx

+ % /Q a(x) /:2 s(a(s) + ap) /01 ul(z,t — ps)dpds dx

1

1 T2 ~ 1
+ 2/ b(x)/ s(B(s) —G—BO)/ v (x,t — ps)dpdsdz, (6.28)
Q T1 0
decays exponentially to zero. In 1' oo and Bo are positive constants such that
T2 ao
ap — / a(s)ds — 7(72 —71) >0, (6.29)
T1
and
T2 BO
Bo — B(s)ds — ?(72 —71) > 0. (6.30)
T1

Our stability result concerning system (6.17)) — (6.24) can be stated as follows.

Theorem 6.2. Assume (H.1), (H.2) and (6.27)). Then there exist constants M > 1 and § > 0 such
that
F(t) < Me %t F(0), (6.31)

for all solutions of (6.17)) — (6.24)).

The proof of Theorem [6.2] is given in Section [6.3]
This chapter was published in [28]
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6.2 Exponential stability of coupled wave equations with distributed
delay terms in the boundary feedbacks

6.2.1 Well-posedness of system (6.1)) —

Adapting an idea of [62], we introduce new variables by setting

y(xapata 3) = Ut(lE,t - p8)7 S F2> pEe (07 1)7 s € (7—177—2)7t > 07
z(z, p,t,8) =vi(x,t — ps), x€Tq, pe(0,1),s€ (11,72),t>0.

Then system (6.1)) — is equivalent to

up(z,t) — Au(x,t) + l(u(x,t) —v(z,t)) =0 in  x (0;+00), (6.32)
Z/t(-’IJ, P, ta 3) + S_Iyp(wa P, ta S) =0 on F2 X (Oa 1) X (07 +OO) X (7—17 7—2)7 (633)
v (z,t) — Av(z,t) + l(v(x,t) —u(x,t) =0 in  x (0; +00), (6.34)
zi(x, p,t,8) + s 2,(2,pyt,8) =0 on Ty x (0,1) x (0,+00) x (11, 72) (6.35)
u(z,0) = ugp(x), ue(z,0) = ui () in Q, (6.36)
v(x,0) = vo(x),ve(z,0) = vi(z) in €, (6.37)
u(z,t) =v(x,t) =0 on I'y x (0, +00), (6.38)
2
g:j (x,t) = —/ a(s)y(x,1,t,s)ds — apus(z, t) on I'y x (0, +00), (6.39)
™1
ov 2
5 (x,t) = — B(s)z(x,1,t,58)ds — Byve(x,t) on I'y x (0,400), (6.40)
T1
y(z,0,t,5) = ug(z,t) on I'y x (0,+00) X (11,72), (6.41)
2(z,0,t,s) = v(x,t) on I'y x (0,400) X (71, 7T2), (6.42)
y(x, p,0,s) = folx,p,s), z(x,p,0,s) = go(x,p,s) on Iy x(0,1)x (0,72). (6.43)
Denote by
U= (U, Uty Y, Uy Vg, Z)T
Then system (6.43) can be formulated as an abstract Cauchy problem
1(p) —
U(O) = (u07u1797v077)17h) )

in the Hilbert space

H = (H} (Q) x L2(Q) x L*(T x (0,1) x (11,72)))*.
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with the inner product

¢

>:/Q(VC(x).VZ(x) x)n(x d:c+/F2 /T1 / 0(x, p,s)0(z, p,s)dpdsdl’

—
< X S 3
el DI

—l—/g(Vgo(a:).V@(m) dx+/r2 /n / Y(x, p,s)Y(x, p,s)dpdsdl’
+1 [ (6la) = 9l Ew) ~ plo) o

The linear operator A is defined by

A(C7 7, 07 (Z)v X5 w)T = (777 AC + Z(C - qb)? _5_19p7 X Ad) + l(qb - C)v _S_lwp)Ta (645)

and

D(A) = {(C,nﬁ,é,X,W € ((B(A, L*(Q)) N HE, () x Hy, () x L*(Ty x (11, 72); H'(0,1)))? :

T2

XD () - / o()0(a,1,5) ds, n(z) = 0(z,0,5) on T,

&gij) = —Box(x / B(s)(xz,1,s)ds, x(z) = ¥(z,0,s) on Fg},
(6.46)

where
E(AL2(Q)) = {u € H'(Q); Au € L?(Q)}.
Clearly A is closed and densely defined. Its adjoint A* which is given by

A*(fvgahakaLam)T: (_97_Af+l(f_k)7si h L Ak+l(k f) p)T7 (647)

with domain
D(A*) =3 (¢, 0,0, x,%) € (E(A, L*(2)) N Hp, (Q)) x Hp, () x L*(Ty x H'(0,1) x (11,72))

x (B(A,L*(Q)) N Hp () x HE () x L*(Ty x H'(0,1) x (71,72));

—

ag(yx) = aon(r) - /72 a(s)0(z,0,s)ds, n(z) = —0(z,1,s) only;
asgy = Box(z / B(s)(x,0,s)ds, x(x) = w(x,l,s)onf‘g}. (6.48)

Proposition 6.3. The operator A and A* defined by (6.45)), (6.46) and (6.47)), (6.48) respectively are

dissipative.
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Proof. We first show that A is dissipative.
Let U = (¢,7,0,¢,x,%)" € D(A). Then

(AU,U) = (08¢ = UC = @), =50, x: A = Ulp = O, =s7'0,) " U )

- /Q V() Vi(z) di + /Q n(2)AC(z) da — 1 /Q n(@)(C(x) — p(x)) da

[ “sats) | 00, p,5)5 0y (s pr5) dp s T+ | Ve@xia) o+ [ x@apla)da

T2 1
1 [ x@)ote) oo [ [T 5p6) [ vt 0yl dpdsar
+1 [ (¢@) = ¢ () = (@) do.

From Green’s Theorem, we obtain

<AU,U>:/F2n(x)8f9(yf”)dr—/F2/: / 0(x. p. 5)0,(x. p. 3) dp ds dT’
+/F2 X(x)ag](f) dF—/FZ / 5(5)/0 bz, py )b, (z.p.5) dpdsdD.  (6.49)

Integrating by parts in p, the second gnd fourth terms on the right-hand side of (6.49)), we obtain

T2 1
/ / a(s)/ 0(x, p,5)0,(x,p,s)dpdsdl’ = = / / $){0%(z,1,s) — 0*(x,0,5)} dsdl
Iy J71 0 Iy J7y

(6.50)
/112 /T12 / P(z, p, s ¢p($ p,8)dpdsdl’ = = /F2 5 {1/12($,1,s) 1/12(95,0,8)}d5df‘.
(6.51)

Recalling ((6.46)), we have after inserting (6.50) and ( into
(AU, T) :/ n(:c)[—aon(a:)—/T a()0(z, 1, 5) ds] dF—/ / [0, 1, 5) — 6%(x, 0, 5)] ds dT
Ty 7-1 Iy 7’1
+ [ @t - [ sewta s astar =5 [ [ e - v 0.5)] s,
:—ao/ 2(z)dl — /F217(;U)/Tj a(s)f(xz, 1, s) dde—/FQ/T1 62(z,1,5s)dsdl’
/F2 /T1 x)dsdl' — f3 /FQX () dl" — /F2 x(z) 5 B(s)w(x,l,s) dsdl’

_2/F2/ V2.1, 5) ds dT + - /F i * B(s)x2(x) ds dT.

Using Cauchy-Schwarz’s inequality, we get

/F2n(x)/:a(s)e(x,1,s)dsdr‘ < ;/m”?(‘”) (/ ) ar+ L /F / 62(2,1, 5) ds dT,
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x,l,s)dsdl“‘ / (/ B(s )dr+;/rz szﬁ(s)¢2(x,1,s)dsdl“,
(AU,U) < <—a0+/: os) ds> /F2 n*(x) dl + (—50+/T:2ﬁ(s) ds> /F2 x2(x)dr.

From (/6.12)) and (6.13)), we conclude that Re(AU,U) < 0, thus A is dissipative.
The dissipativity of A* is proved in a similar manner.

then

O

Therefore A generates a strongly continuous semigroup on H (see |26], p.15, Corollary 4.4), and
consequently we have the following well-posedness result.

Theorem 6.4. For every Uy € H, the problem has a unique solution U such that:
U(.) € C(]0,400); H).
In addition, if we assume Uy € D(A), then we have

U() € CY[0,400);H) N C(]0,+00); D(A)).

6.2.2 Proof of Theorem 1.1

We prove Theorem for regular initial data, the general case follows by a density argument. We
proceed in several steps.
Step 1. We prove that the energy function E(t) defined by ([6.14) is decreasing.

Proposition 6.5. The energy corresponding to any regular solution of system (6.1)) — , s de-
creasing and there exists a positive constant K such that,

d 2
—E(t) < -K {u?(x,t) +/ ul(z,t — s)ds 4+ v2(z,t) —I—/
dt 'y T1

T1

T2

v?(z,t — 5) ds} dr, (6.52)

where
T2 T2
szin{ao—/ Oé(S)dS—CO(m—n),CO,Bo—/ ﬂ(s)ds—clm—m,cl}.
o 2 2 o 2 2

Proof. Differentiating F(t) with respect to time, we obtain

d

th( ) = /{Vu.Vut + upur + Vo.Vuy + ooy + 1w — v) (ug — vp) } da

1
/ / )+ co / ug(x,t — ps)uy(x,t — ps) dpds dl’
I's J11 0
1
+/ / )+ / vi(z,t — ps)vy(x,t — ps)dpdsdl.
Ty 0
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Applying Green’s Theorem, we get
d ou 2 !
—E(t) = —(z, )ug(x, t) dl" + s(a(s) +co) | w(x,t — ps)uy(x,t — ps)dpdsdl’
dt Ty ov Ty 0

v T2 1
+ ey —(z, t)ve(x, t)dl 4+ / s(B(s) + 01)/ vi(x,t — ps)vg(x,t — ps)dpdsdl. (6.53)
Ty r 0

Now, we have
—sug(x,t — ps) = up(x,t — ps),
—Svt(.%',t - pS) = Up(.’IJ,t - PS),
which lead to

sup(z,t — ps) = upy(x,t — ps),

s2vi(x,t — ps) = v,p(x,t — ps).

Therefore
T2 1
[ stal) +e0) [ wilet = psyuntant - ps) dpds dr
'y Jr 0
’ T2 1
/ s(B(s) + 1) / ve(z,t — ps)vy(z,t — ps)dpdsdl’
0
T2 1
= / / (—s)3s(a(s) + co)/ up(x,t — ps)uyy(z,t — ps) dpdsdl’
'y J7q 0
T2
+ / / (=) 73s(B(5) + c1)vp(w, t — ps)vpp(x,t — ps) dpdsdl.
Iy Jr
Integrating by parts in p, we get
1
/ / ) + co / ug(xz,t — ps)uy(x,t — ps) dpdsdl’
Iy Jrq 0
1
/ / )+ / ve(x, t — ps)vy(x,t — ps)dpdsdl
'y J7q 0
/ { )+ co)(u(z,t) —u(z,t — ) + (B(s) + 1) (vi(z,t) — vi(x,t — 5))}dsdl. (6.54)
IR
Inserting (6.54) and the boundary conditions and into ( , we obtain
d 2
—E(t) = —ag/ u?(z,t) dl —/ ut(x,t)/ a(s)ug(z,t — s)dsdl’
dt I, I, T

1

_50/ vf(x,t)df—/r ve(z,t) TQB() ¢(z,t — 5)dsdl

1
—/ / 8) + co)ui(x,t — s)dsdl + = / / 8) + co)u?(x,t) ds dl’
I's J11 Iy J1

_ 2/ / )+ c1)vi(z,t — s)dsdl + - / / s) + c1)vi(z,t) dsdr. (6.55)
T2 T2
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From Cauchy-Schwarz’s inequality, we have

’/mut(x,t)/;rza( Yug(z, t—s)dsdf' /F2\uta:t |/ s) | ug(z,t — s) | dsdl

< /F ez, ) | (/:a(s) ds)é (/wa(s)u?(x L= 8) ds)% dr
S;/mu?(x,t) (/ﬂ a(s) ds> dr+ + /F2/T1 i—s)dsdl,  (6.56)

‘/F2 iz, 1) /: B(s)ve(w, t — s) dde’ < ;/FQ v2(z, 1) </712 B(s) dS) T

1 T2
+ = / B(s)vi(z,t — s)dsdl. (6.57)
2 Iy Jm

and

Combining (6.55]) together with (6.56) and (6.57]), we obtain

T2
dE( t) < <—ao—|—/ a(s)d5—|—co(72—71)>/ Ut x,t) df—/ / ut2 s)dsdl’
dt - 2 Iy 2 Jr, Jny

T2
+<—/30+ B(S)ds‘i‘q(ﬁ—ﬁ))/ Utl‘t F—// 2 x,t—s)dsdl,
T1 2 I's 2 Ty

which implies

T2

th( t) < —K 5 {uf(m,t)+/T

where K is a positive constant defined by,

T2
u?(az,t—s)ds—l—v?(:n,t)—l—/ U?(ax,t—s)ds} dr,

1 T1

T2 T2
K = min ao—/ a(s)ds—“(m—n),c",ﬁo—/ B(s)ds — L(ry— 1), 21
; 2 2 " 2 2

1

O]

Step 2. Now, we establish an observability estimate for the problem (6.1]) — that will be used
to prove the exponential decay of the energy F(t).

Proposition 6.6. For any regular solution of system (6.1)) — , there exists a positive constant C
depending on T such that

T T2 T2
0) < C/ / {u?(m,t) + / ul(z,t — s)ds + v2(z, 1) —I—/ v (z,t — 5) ds} di°dt.  (6.58)
0 I T1 T

1

Proof. We rewrite

B(t) = Ey(t) + Eu(t),
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1
B.(0) =5 [ {IVule.OF + wb(a,t) + Vol 0 + oF,t) + lue.t) - v(a, 1))} da,
Q
and

1 1
2 9 B
/F2 /7'1 s) + o) /0 ug (z, ps)dp—i—s(ﬁ(s)—i-cl)/o vi(x,t — ps)dp)dsdT.

/1“2 /n [ s) + co) /Olu?(fﬂ, —ps) dp+8(5(s)+cl)/01 v (z, —ps) d,o] ds dr,

E;(0) can be rewritten via a change of variable as,

/1“2 /T1 [ s) + o) /Osuf(tc,t—S)dt—k(ﬁ(s)—kcl)/osvf(a:,t—s)dt} dsdr.

From the above equality, we obtain

T2
) < C’/ / {/ ul(x t—s)ds+/ v?(w,t—s)ds} dr dt, (6.59)
Iy T1 T1

for T > 75. Here and throughout the rest of the chapter C is some positive constant different at

In particular,

different occurrences.
From Proposition 3.5 of [46], we have for T" sufficiently large and for any € > 0,

ro<c [ /FQ{

+C {HUHL2(O’T;H1/2+€(Q)) + H’UH%Z((LT;HI/Q-‘FE(Q))} .

2
a;t

+ ul(z,t) + ‘gz(a:,t)

+ v (z, t)} dT dt

Inserting the boundary conditions and (6.7) into the above inequality, we get

T T2 T2
0) SC/ / {u?(az,t)—i—/ u?(:z:,t—s)ds—kvf(x,t)—i—/ vf(m,t—s)ds} dr dt
0 I T1 T1

+ C{Huuiz(o,T;Hl/%e(Q)) + HUH%2(O,T;H1/2+€(Q))} . (6.60)
Combining (6.59) with (6.60]), we obtain
T T2 T2
0) SC/ / {u?(:c,t) —l—/ uf(z,t — s)ds + vi (z,t) —i—/ v (z,t — 5) ds} dr dt
0 I T1 T1
+C { |’uHi2(0,T;H1/2+e(Q)) + HUHiZ(o’T;Hl/He(Q))} . (6-61)

To obtain the desired estimate |D we need to absorb the lower order terms ||u||2L2(07T; H1/2+e())
and Hv||%2(0 T;H1/2+¢(q)) O the right-hand side of 1' We do this by a compactness-uniqueness
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argument.
Suppose that (6.58) is not true. Then, there exists a sequence (uy, v,) of solution of problem (6.1)-(6.9)
with,

Un(x’o) = u?z(x) unt(l‘ 0) u}@(l’) un(x 7t> = f'r(z)(xa —t),
0a(@,0) = 12(@), vat(, 0) = v1(), vala, —t) = g8, 1),
such that

T T2 T2
"(0) > n/ / {uit(x,t) —i—/ uZ, (v, t — s)ds +v2,(x,t) —I—/ v2, (2, — 5) ds} dr' dt, (6.62)
0 I'y T1 T1

where E™(0) is the energy corresponding to (ul,ul, vy, vl).

n 'n’ *n’ -n
From (6.61)), we have

T T2 T
"(0) SC/ / {u%t(x,t) +/ uZ,(z,t — s)ds +v2,(2,1) +/ v2,(z,t — 5) ds} dr dt
0 ' T1 T1

+C {||un||%2(07T;H1/2+E(Q)) + ||’U’)’LH%2(O7T;H1/2+5(Q))} . (6.63)

(6.62)) together with (6.63)), implies
T T2 T2
n/ / {uit(x,t) + / ul,(z,t — s)ds +v2,(x,t) + / V2 (x,t — 5) ds} dr dt
0 I T1 T1
T T2 T2
< C/ / {uit(x,t)+/ uZ,(z,t — ) ds+v,21t(x,t)+/ v2,(z,t — 5) ds} dr’ dt
0 I T1 T1

2 2
+C {HUWHLQ(O,T;Hl/QJrG(Q)) + HUnHLz(&T;Hl/z-&-s(Q))} )

that is

T To T
(n—C)/ / {uit(x,t)+/ uit(x,t—s)dstv,%t(x,t)—i—/ v2,(z,t — s) ds} dr dt
0 T2 T1 T1

<C {||un||i2(o,T;H1/2+e(Q)) + ||vn||%2(07T;H1/2+6(Q))} . (6.64)

Renormalizing, we obtain a sequence (uy,, vy,) of solution of problem (6.1)) — satisfying

lunll 720 751 /242 52y + 10nl T2 sprisere(ay) = 1 (6.65)
and
/ /1“2{ 2z, t) / it(x,t—s)ds+v,21t(:1:,t)+/T:2vflt(x,t—s)ds} dr dt
— forall n>C. (6.66)
From , , and (6.66)), it follows that the sequence (ul,ul, Y v® vl ¢%) is bounded in

H. Then there is a subsequence still denoted by (ul, ul, fg,vn,vn,gn) that converges weakly to
(ul,ut, f9,0% v, g%) € H. Let (u,v) be the solution of problem 1) with initial condition
(ul, ul, 0,0% vt g%). We have from Theorem
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(u,v) € C([0,+00); H, () x C([0, +00); Hy, ().
Then
(tn, vn) — (u,v) weakly in L*(0,T; HE () x L*(0,T; H (€2)).

Since H%I(Q) is compactly embedded in H'/2%4(Q), there exists a subsequence, still denoted by

(tp, vp) such that,

(U, vn) — (u,v) strongly in L2(0,T; H'/?+2(Q)) x L*(0,T; H/**¢(Q)).

So, (6.65)) leads to

Hu||%2(07T;H1/2+S(Q)) + HUH%Q(O,T;Hl/Q-FS(Q)) =1 (6-67)

Moreover, by ([6.64))
T T2 T2
/ / {u?(m,t)+/ uf(az,ts)dervf(m,t)Jr/ vf(aj,ts)ds} dl’ dt = 0.
0 T'o T1 T1

ug(x,t) = v(z,t) =0 on Ty x (0,T),

Then

and du(x,t) vz, 1)
u(r,t)  Ov(z,t)
5%~ oy =0 on Iy x(0,7).

Set ¢ := ut, 1) := v;. Therefore (¢, 1)) satisfies

( (Ptt(x?t) - A@(xat) + l((tp(x7t> - ¢(x7t)) =0 in Qx (O,T),

Yu(z,t) = Ap(z,t) + 1(p(x, 1) — (2, 1)) =0 in Qx(0,T),

p(x,t) = p(2,t) =0 on I x(0,T), (6.68)
asoéi’ b_ ang b _ 0 on Iy x(0,7).
implies
(p+V)u(z,t) = Alp+¢)(z,t) =0 in Qx(0,T),
(p+¢)(z,t) =0 on I x(0,T),
W:o on Ty x (0,T).

\

From Holmgren’s uniqueness Theorem (see [54], p.92 Chap.I, Thm.8.2), we conclude that

gp(x,t) + 1/1(33775) =0,
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and the problem ([6.68)) can be rewritten as

pre(2,t) — Ap(a,t) + 2lp(z,t) =0 in Qx(0,7),

o(x,t) =0 on I'x (0,7),
Op(z,t
("éi ) _o on Ty x (0,T).

\
Invoking Theorem 3.1 of [84], we readily obtain for T" large enough
o(x,t) =¢(z,t) =0 in Qx(0,7).
This implies
u(z,t) = u(zx),v(z,t) = v(x).
Thus (u,v) verifies
( —Au(x) + l(u(z) —v(z)) =0 in £,

—Av(z) +l(v(z) —u(z)) =0 in Q,

= =0 on I's.

The unique solution of the above problem is (u,v) = (0,0) in 2, a contradiction to (6.67). The proof
of Proposition [6.6] is complete. O

Step 3.

From (/6.53]), we have

T T2 T2
E(T) - E(0) < —K/O /F {uf(x,t)—i—/ u?(w,t—s)ds%—vtz(x,t)%-/ vf(x,t—s)ds} dr dt,
2 T1 T1

which combined with the observability inequality (6.58) gives
T2
E(T) < E(0 <C/ / {utxt / u?(w,t—s)ds—l—vf(m,t)—i—/ vf(w,t—s)ds} dr dt
FQ T1 T1
<CK! — E(T)),

SO

C
K+C

Since 0 < C/(K+C) < 1, the desired conclusion follows now from (6.69)). (see [26], p. 299, Proposition
1.7).

E(T) < E(0). (6.69)
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6.3 Exponential stability of coupled wave equations with distributed
delay terms in the internal feedbacks

6.3.1 Well-posedness of system ([6.17) — (6.24])

As we have done previously, let us define:
y(z, p,t,s) = u(x, t — ps);  z(x,p,t,s) =v(x,t —ps); x€Q, pe(0,1),s€ (r1,72), t>0.

Then, the system (6.17))-(6.24) is equivalent to

uy — Au+ l(u — v) + a(x) (aoue(z, t) + /72 a(s)y(x,1,t,s)ds) =0 in Q x (0; 4+00), (6.70)
vy — Av 4+ 1(v — u) + b(z)(Bove(z, t) + ” B(s)z(xz,1,t,5)ds) =0 in  x (0; +00), (6.71)
yt(x7p7tvs) +5_lyp(3’3»/077575) =0 in © x (O> 1) X (0’_'—00) X (7_177_2)7 (672)
z(z, p,t,8) + 5 1252, pt,8) =0 in Q x (0,1) x (0,400) x (11, 72), (6.73)
u(x,0) = ugp(z), ug(z,0) = uyg(x) in Q, (6.74)
v(z,0) = vo(x), ve(z,0) = vi(2) in €, (6.75)
u(z,t) =v(z,t) =0 on I'y x (0, +00), (6.76)
gz(x,t) = g:j(a:,t) =0 on I'y x (0, +00), (6.77)
y(z,0,t,8) = u(z, t) in Q x (0,+00) X (11,72), (6.78)
2(x,0,t,s) = ve(x, t) in  x (0, +00) x (11, 72), (6.79)
y(,p,0,8) = fo(z, p,1), 2(x, p, 0,5) = go(, p,t) i 2 (0,1) x (0, 72). (6.80)

Denote by H the Hilbert space

H = (HE, () x LA(Q) x L*(Q x (0,1) x (11,72)))?,

endowed with the inner product:

! N o 1 ~
1! >= | (96@)-¥E(a@) + n@ite) do+ [ alo) / sa(s) [ 0lap.5)0tap.5) dpds do

—
X DI
Gl

T2 1 N
+ /Q (Veo(2). V() + x(2)7()) de + /Q b(z) / $B(s) / (2, p, $)P(z, p, ) dp ds de
1 /Q (C(2) — () E(x) — p()) de.
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The system l){i can be rewritten as as an abstract Cauchy problem in H

(6.81)
U(0) = Uy,
where
U(t) = (u(x,t),ut(x,t),y(x,p,t),v(a:,t),vt(x,t),z(x,p,t))T,
Uo = (uo, u1, fo, vo,v1,90)7 .
and

A(Ca m, 97 Qb, X ¢)T :(777 AC - Z(C - (70) - a(x)(aon + / 2 OZ(S)Q(., 17 ) 5) dS), _8_10[)7

7'1

Xs Ap — U(p — ) — b(z)(Box + B( W(.,1,.,8)ds), —s ",)",  (6.82)

T1

with domain

D(A) ={(Cﬂ779,90,x,¢) € ((H*(Q) N Hp, (Q)) x Hy, () x L*(Q x (11,72); H'(0,1)))?

gi(az) =0on I'y, n(z) =0(x,0,s) in ; gf(a:) =0onI'y, x(z) =¢(z,0,s)in Q}

Arguing as in Subsection we can show that A generates a strongly continuous semigroup on
‘H. Hence, the following well-posedness result.

Theorem 6.7. For every Uy € 7:[\, the problem has a unique solution U whose reqularity de-
pends on the initial datum Uy as follows:

UL) € C(0,+00);H) if Uy € H,
U() € CY([0,+00);H) N C([0, +00); D(A)) if Uy € D(A).

6.3.2 Proof of Theorem [6.2

We prove Theorem for regular initial data, and the general case follows by a density argument.
We proceed in three steps.
Step 1. We prove that the energy function F'(¢) is decreasing.

Proposition 6.8. The energy corresponding to any regular solution of system (6.17) — (6.24), is
decreasing and there exists a positive constant L such that,

jtF( t) < —L/Q {a(az){u?(m,t) + /T2 ul(z,t — s)ds} + b(z){vi(z,t) + /T2 v (x,t — 5) ds}} dx
(6.83)
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where
T2 ~ ~ T2 P po
L=minfan— [ a(s)ds = Plra= ). 580~ [ s ds = 2ra ). 24
. 2 2 . 2 2
Proof. Differentiating F'(t) with respect to time, applying Green’s Theorem, we obtain

Dpwy= [ 2% tyug(o, £) dr — a /

Iy ov Q

a(x)u?(x,t) dr — /

Qa(x)/T as)u(z, t)u(x, t — s)dsdx

1

T2 1
+ / a(x)/ s(a(s) + &) / ug(x,t — ps)uy(x,t — ps) dpds dx + / @(az, t)ve(z,t) dl’
Q T1 0 o ov

~ 8, /Q byl (x, 1) dz — /Q b() / B(s)ou(w, )vr(z,t — 5) ds d + /Q b() / " S(B(s) + Bo)

1
1
/ ve(x,t — ps)vy(x,t — ps)dpdsdz. (6.84)
0

Now, we observe that
—sug(x,t — ps) = up(x,t — ps

);
—sv(x,t — ps) = v,(x,t — ps),
sPur(w,t = ps) = upy(2,t — ps),
s2vi(x,t — ps) = vyp(x,t — ps).
Therefore

/Qa(x) /:2 s(a(s) + ao) /01 ur(z,t — ps)uy(z,t — ps) dpdsdx

1

+/Qb(a;) /723(5(3)+Bo) /lvt(l‘,t—ps)vtt(m,t—ps)dpdsdx

T1 0

T2 1
= /Qa(ac) /71 (—s)3s(afs) + 540)/0 up(z,t — ps)upp(x,t — ps)dpdsdx

+ /Q 2(_5)735(5(3) + Bo)vp(ﬂf, t — ps)vpp(x,t — ps)dpdsdx,

from which follows, after integration by parts in p

/Qa(m) /: s(a(s) + &) /01 ut(z,t — ps)u(z,t — ps) dpdsdx
+ /Q b(z) /;2 s(B(s) + BO) /01 ve(x,t — ps)vy(z,t — ps)dpdsdx
:;AAf&@mmwﬂmﬁww—ﬁmWw»

+b(z)(B(s) + Bo) (Wi (x,t) — v (x, t — 5))} ds dz. (6.85)
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Inserting (6.85)) and the boundary conditions (6.76]) and (6.77)) into (6.84)), we obtain

d

th( ) = —ag/Qa(:U)uf(:v,t) dx — /Qa(:v)ut(;r,t) /T2 a(s)u(z,t — s)dsdz

—50/917(@“752(96,& dw—/gb(a:)vt(:c,t) /T:ZTﬁl(s)vt(:c,t—s) ds dz
1 /Q o) / " (s) + ao)i(z, t — 5) dsde + /Q o(2) / " (s) + do)u(a, £) ds da

2 - T1

" 38,2 1 " 3,2
—2/91)(:5)/ (B(s) + Bo)vi (x,t — s) dsdm+2/ﬂb(a:)/ (B(s) + Bo)v; (z,t)dsdz. (6.86)

T1 T1

From Cauchy-Schwarz’s inequality, we have

/Qa(m)ut(m, t) /72 a(s)u(x,t — s)dsdx

i g/ \ut:rt\/ §) |zt —s) | dsda
S/Qa(:v)\ut(sv,tﬂ (/ a(s)ds>2 (/ a(s)u(z, t—s)ds)é dx

< ;/Qa(:p)u?(sc,t) </Tj2 a(s) ds) dr + % /Q a(x) /:2 a(s)ul(z,t — s)dsdz, (6.87)

;/ (z)v?(z, 1) ([: B(s) ds) dx
+3 /Q b(z) / :QB(s)vf(x,ts) ds du. (6.88)

Combining (6.86)) with (6.87)) and (6.88]), we obtain

jtF() (—ao+/T:2a(s)ds+6‘2“(72—710/9@( 2)ul(x, t)dx—% [ ala) / W2(z, 1 — 5) ds da

+ (—60 + /T2 B(s)ds + %(72 - Tl)) /Qb(x)vtz(x,t)dx - % /Q b(x) /T2 vi(x,t — s)dsde,

which implies

and

/Qb( vtxt/ B(s)v(x,t — s)dsdx| <

;iF() —L/Q{a(:c){u?(x,t)+/:2 U?(.’L‘,t—s)ds}+b(x){v?(g;’t)+/7-2 02 (z, t )ds}}

1 T1

where L is given by

L:min{ozo—/T2 a(s)ds—%(m ),ao,ﬁo / B(s ds—@(m—ﬂ) ﬁ;}.
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Step 2. To obtain the exponential decay result for the energy function F(0), we need the following
obsevability estimate for system (6.17) — (6.24)).

Proposition 6.9. There exists a time T such that for all T > T*, there exists a positive constant
Cy (depending on T') such that

<01/ / ( {ut T t)+LjQu§(x,t—s)ds}+b(x) {v,?(:c,t)+/:v§(;c,t—s)ds}> dz dt.

(6.89)
For any regqular solution of system —.
Proof. We rewrite
F(t) = Fis(t) + Fa(t),
where
1
Rt = 5 [ {1900 + o0+ Dolat) P +od(et) + Uuta,t) - oo, )2} da,
Q
and
1 B 1
=5 [ [ a@stats) + @) [ adant = ps)dp+ba)s(3(6) + o) [ (ot ps)dolds e
T1
We decompose the solution (u,v) of - as follows
u:g0+<,5,v:1[)+@,

where (¢, 1) solves

eu(z,t) — Ap(z,t) + ez, t) — (1)) =0 in £ x (0, 4-00),

wtt(x7t) - Aw(‘wvt) + l(”‘/’(ﬂ?J) - @(‘Tat)) =0 in 2 x (07 +OO)7

o(x,0) = uo(x, 1); (2, 0) = w1 (2) in €,

(6.90)

¥(z,0) = vo(z, 1); ¥y (2, 0) = vi(x) in €2,

g“"(x t) = %(x,t) =0 on I'y x (0, 4+00),

@(wﬂf) = ¢($,t) =0 on I'y x (0, —i—OO),
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and (@, @) is the solution of:

— AP 1B — ) + alz)(ooue(z,t) + [7* a(s)uy(w, t — s)ds) =0 in Q x (0,
@tt—A@—i—l(@—@)—i—b( Bovt—i—fT (s)vg(x,t —s)ds) =0 in 2 x (0, +00),
@(.%',O)Zat(l',()) =0 in
b(2,0) = ¢y(x,0) = 0 in Q,

g%(%t) gj(x t)=0 on I'y x (0, +00),
Pz, t) = h(z,t) =0 on Ty x (0, +00).
(6.91)
Denote by A(t) the standard energy of , that is
1
MO = 5 [ {20+ Dol 0P + 63(a.0)+ V0. 0P +Lp(e.0) - v, 0) | s
and by A(t) the standard energy of ,
3 1 - . ~2 ~ R ~
A) =5 /Q{so?@:,t) + VR, OF + 0 (@) + [V, ) + UB(, 1) — w<w,t>)2} da,
then
F(0) = A(0) + F4(0). (6.92)

But for system , we have the following obsevability estimate that can be deduced from Propo-

sition 2.2.1 of [46].

ro<a ' [{dt+ i} asa

for all times T > Tj.
Therefore

A0) < O /OT{/M gp%(:c,t)dw—i—/wz wf(m,t)dx} it
<C’l/T/wz{gof(w,t)dw-i-w?(x,t)}d;rdt
<01/ /{ x)p?(z,t) + b(z )wf(x,t)}dxdt,

since a(z) > ap in wy and b(x) > by in we and w; C wy C €.
On the other hand, by a change of variable, we have for T > 79

o)gc/g{ //ut s)dt ds + b(x // dtds}d.

(6.93)

(6.94)
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If we take T' > T™ := max{Ty, 72}, we get from ([6.93) and (6.94)

<Cl/ /{ + b(x)Y3 (z,t) + a(x) /: ul(z,t — s)ds

+ (:c)/ v? (x,t )ds}dxdt

<cl/ /{ D) 412z, 1)) + b(@) (@@, ) + 025, 1)) + alz) / 2(z,t— s)ds

+ b(x) /7'1 v?(z,t — )ds}da:dt. i

It remains to estimate the term

[ [ {swin +owitie.n} war

We differentiate the energy function A(t) with respect to t, we obtain

—A(t) = — /Q a(x) {Ozo@t(x,t)ut(:l:,t) + /T2 a(s)py(x, tyu(z, t — s) ds} dx

T1

/Qb(x){a@t(x,t)ut(x,t)+/: B(8)th,(z, t)ve(z,t — ) ds}dx,

from which we get after using Cauchy-Schwartz’s inequality

T2

%]\(t) gC’(/Qa(az){@tz(x,t)+u?(x,t)+/ (2t — ) ds}dﬁ/ﬂb(m){@f(x,t)+v§(x,t)

T1

T2 A2
[T gasyan) + [ @ + ) de
T1
From the definition of A(t), we obtain

AR < A(t)—kC(/ﬂa(w){u?(x,t)—i—/m W2(x,t — 5) ds) de

dt -

+/Qb(x){vt2(x,t)+/:2 Bzt —s) ds}dm).

1

Multiplying the last inequality by (e~!) and integrating over (0,t), we get

) < Cél <// o) {ul(z,t) +/TT2u§(x,t—s)ds}da:dt
+/0 /Qb(x){v,?(:c,t)+/: 2 (z,t — ) ds}da:dt).
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We conclude for t € (0,7, that is

<C</ / z){ul(x,t) —|—/ uf(z,t —s)ds} de dt

T2
/ / z){v(z, 1) / vf(x,t—s)ds}d:rdt),
T1
which gives

/ /{@t (z,t +¢t(96 t}dxdt<C</ / z){ul(z,t) +/Tj2ut2(x,t—s)ds}dmdt
/ / x) {7 (z,1) /:vf(x,t—s)ds}d:rdt)

<01/ /{ ) {ul(z t)+/:u3(x 5) ds} + b(x){v2(x, t)+/:vg(x,t—s)ds}} c(zz;z;
O

Consequently, we have

Step 3. From
Ft) — F(0) < L/ /{ ) {u2(z t)+/:2 uf(m,t—s)ds}—i—b(x){v?(x,t)—i—/Tz V22,1 )ds}} da dt,

1 T1

which together with (6.95) leads to

ClL_l
F(t) < ———F(0). .
) < TG =rE0) (6.96)
Since 0 < 15&,1: =1 < 1, then the energy of solutions of system (6.17) — (6.24)) decays exponentially.

6.4 Appendix

Carleman estimates for coupled non-conservative hyperbolic equations

Let © be an open bounded domain of R" with boundary I of class C? which consists of two non-empty
parts I'; and I'y such that, ' = I'y UT'y with 'y N Ty = 0.
Let ¢ : 2 x R — R be the function defined by
T
e e

where g € R™, T > 0, 0 < ¢ < 1, are selected so that the following two properties are achieved:

(i)

)

T > 2max |y — zol;
YyEN
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(ii) there exists a subinterval [ty, 1] C (0,7") such that
d(x,t) > 1 for t € [to,t1];2 € Q;
d(x,0) < =6 <0; ¢(x, T) < —6 < 0 uniformly in z € Q,
for a suitable constant § > 0.
Consider the following coupled system of two second-order hyperbolic equations in the unknowns
w(t,x) and z(t, x):
wy = Aw + Fi(w) + Pi(z) in (0,7 xQ=Q,
2z = Az + Fo(2) + P(w)  in Q,

defined on a bounded domain Q € R™ with smooth boundary T', where Fi, Fy, P;, P, are (linear)
differential operators of order one in all variables ¢, x1, ..., z,, with L>°(Q)- coefficients, thus satisfying
the point wise bounds

[F1(w)? + [Po(w)]? < er [wi + Vo’ + 0] Viz €Q,
1By (2) 2+ |PL(2)? < er [wt2—|—|Vz|2+w2] Vi, x € Q.

Proposition 6.10. (Lasiecka and Triggiani [40]) Let w and z be solutions of the above problem in
the following class

w,z € H'(Q) = L*(0,T; H'(Q)) N H'(0,T; L*(2))
wy, W2, % € L2(0,T; L*(I)).

then the following inequality holds true for T sufficiently large:

e there ewists a positive constant kg » > 0 such that

T ow\? 9 9z\*
k‘b’TE(O)S/O /p[<81/> +wt+<8y> + 2

+constiry {0l

dl dt

2
beaogg) T ||Z”H%+‘0(Q>} ’

or equivalently,

T Ow\ 2 92\°
< o : v :
ko [E(0) + BE(T)) _/0 /F [(61/) +wy + (m) +2; | dl'dt
+ constr ¢, {HwHZ%%O(Q) + H2‘|25+50(Q)} ;

e If, moreover, w and/or z satisfy the boundary condition

wly, =0, and / or, respectively, z|s, =0, ¥ =(0,T] x Iy,
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where I'y is defined by
I'={zxel:Vor(z) <0},

then the corresponding integral term for w and/or for z replaces T with T'.



Conclusion

In this thesis we have proved some uniform stabilization results for two types of partial differential
equations: wave and Schrodinger equations with time delay.

In Chapter two, we established global existence and uniform decay rates for the solutions of the mul-
tidimensional wave equations with a delay term in the nonlinear boundary or internal feedbacks. The
proof of existence of solutions relies on a construction of a suitable approximating problem for which
the existence of solution will be established using nonlinear semigroup theory and then passage to the
limit gives the existence of solutions to the original problem. The uniform decay rates for the solu-
tions are obtained by proving certain integral inequalities for the energy function and by establishing
a comparison theorem which relates the asymptotic behaviour of the energy and of the solutions to
an appropriate dissipative ordinary differential equation.

Chapters three, four and five are devoted to the Schrodinger equation defined on an open bounded
domain 2 of R" with a delay term and subject to a dissipative feedback. In Chapter three, we
considered the case where the equation contains a delay term in the nonlinear internal or boundary
feedbacks. We proved that it is L2(Q)-wellposed and L?(f2)-stable with uniform decay rates described,
as in chapter two, by a dissipative ordinary differential equation. In Chapter four, we analyzed the
case of the equation with interior delay and a boundary feedback. Using multipliers technique and
a suitable Lyapunov functional, we proved exponential stability of the solution in the energy space
H%l (©) on condition that the delay coefficient is sufficiently small.

In Chapter five we dealt with the case where the boundary or the internal feedback contains a delay
term of distributed type. By introducing suitable energy functionals and by using some observability
estimates, we showed that the solution decays exponentially in appropriate energy space.

In Chapter six, we considered a system of compactly coupled wave equations with distributed delay
terms in the boundary or internal feedbacks. In both cases, we established that the semigroup generat-
ing the dynamics of the closed-loop system is exponentially stable. The approach we adopted combines
Carleman estimates for coupled non-conservative hyperbolic systems and compactness-uniqueness ar-
gument.

There are several extensions of the results obtained in this thesis. For example the following
questions can be considered for future work:

e Nonlinear boundary stabilization of the wave equation with nonlinear interior delay.

e Nonlinear boundary stabilization of the Schrédinger equation with nonlinear interior delay.

155
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e Internal stabilization of the wave equation with a delay term in the boundary conditions.
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Titre: Stabilisation de quelques systemes d’évolution avec retards

Résumé:

Dans cette thése, nous avons étudié le probléme de stabilité pour quelques équations
d’évolution (équation d’onde, équation de Schrodinger) avec des termes de retards
dans les feedbacks (linéaire ou non linéaire) frontiére ou interne. Sous certaines
hypothéses, les taux de décroissance uniformes pour les solutions sont établis.
Certaines de ces résultats sont obtenues en introduisant des fonctions d’énergies
appropriées et en prouvant des inégalités d’observabilité, tandis que les autres sont
déduits a partir d’estimations des fonctions de Lyapunov appropriées.

Mots Clés:
Equation d’onde, équation de Schrédinger, stabilisation, feedback frontiére,
feedback interne, retard de temps.
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