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MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE
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Title: Stabilization of some evolution systems with time delays

Abstract:

In this thesis, we study stability problems for some evolution equations (wave equation, Schrödinger

equation) with delay terms in the (linear or nonlinear) boundary or internal feedbacks. Under some

assumptions, uniform decay rates for the solutions are established. Some of these results are obtained

by introducing appropriate energies and by proving observability like inequalities, whereas the others

are deduced from estimates for suitable Lyapunov functionals.
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Introduction

The delay is defined as the time between instant of application of action on the system and the mo-

ment of its reaction.

Time delay appears in various systems such as biological, chemical, engineering and physical systems

(see [31], [10], [58], [2], [3], [73], [4], [81], [5], [6], [1],[76]).

The most classic example of time delay systems is the shower presented in Figure 1 (see [85]), where

the water temperature results for mixing between cold and hot water. The user wishes to obtain the

desired temperature as quickly as possible, while taking into account the time produced by transport

through the tap to the shower head. This time is a delay which depends on the water pressure and

the length of the pipe.

Figure 1. Sketch of a shower system

The stability analysis of control systems governed by ordinary differential equation subjected to con-

stant or time-varying delay has been one of the main interests for many researchers in systems theory

(see [37], [67], [72], [29], [82]). Two methods were proposed to derive delay dependent or delay in-

dependent stability conditions; one is based on Lyapunov-Razumikhin functionals whereas the other

uses Lyapunov-Krasovskii functionals.

Stability problems for PDE systems with time delays have also been the subject of extensive studies

and this since the pioneering work of Datko et al [24] on the effect of time delays in feedback stabiliza-

tion of the wave equation. Below, we review some of the most relevant publications regarding stability

problems for specific delayed partial differential equations, namely wave equation and Schrödinger

i



INTRODUCTION ii

equation. In [24] the authors considered the following system
utt(x, t)− uxx(x, t) + 2aut(x, t) + au(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kut(1, t− τ), t > 0,

(1)

with a, k are positive constants. They proved that, if k satisfies

k <
e2a + 1

e2a + 1

the system (1) is stable for all sufficiently small delays. However, if

k >
e2a + 1

e2a + 1

they constructed a set D such that for each τ ∈ D system (1) admits an exponentially increasing

solution.

Similar results were obtained in Datko [23] for the two-dimensional wave equation with damping

introduced through Neumann-type boundary conditions on one edge of a square boundary and the

Euler Bernoulli beam equation in one dimension with damping introduced through a specific set of

boundary conditions on the right end point.

Xu et al [83] studied the stability of the one-dimensional wave equation with a constant time delay

term in the boundary feedback

utt − uxx = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kµut − k(1− µ)ut(1, t− τ), t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1

ut(1, t− τ) = f(t− τ), t ∈ (0, τ).

(2)

where k > 0. They proved by adopting a spectral analysis approach that the system (2) is exponentially

stable when µ > 1
2 and unstable if µ < 1

2 . For the case µ = 1
2 they showed that the system (2) is

asymptotically stable for some delays.

Nicaise and Pignotti [62] extended this result to a multidimensional wave equation with a delay term in

the boundary or internal feedbacks. Under appropriate assumptions they established the exponential

stability of the solution by introducing a suitable energy function and by using an observability

inequality deduced from Carleman estimates for the wave equation [48]. On the contrary if one

of the assumptions is not satisfied they proved the existence of a sequence of delays for which the

corresponding solution is not stable.

Ammari et al [7] considered the boundary stabilization problem for the wave equation with interior

delay. Under Lions geometric condition, they showed an exponential stability result provided that the

delay coefficient is small enough.

Nicaise et al ([66], [64]) derived, by introducing an appropriate Lyapunov functional, necessary and

explicit conditions that guarantee the exponential stability of the solution of the wave equation with
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a time-varying delay term in the boundary feedback.

The asymptotic bahaviour of the solution of the wave equation with a nonlinear time-varying delay

term in the nonlinear boundary or internal feedbacks has been investigated in [13], [64] and [52].

In [70], the authors considered compactly coupled wave equations with a delay term in the internal

or boundary feedbacks. Using Carleman estimates for coupled wave equations due to Lasiecka and

Triggiani [46], they established stability results in appropriate energy space.

In all the works mentioned above, it is assumed that the delay is concentrated at a fixed time. The

case of the wave equation with distributed delay has been studied in [63] where stabilization results

are given.

For the Schrödinger equation with time delay several studies have been done, see for example [30],

[20], [18] and [65]. We state in particular, the reference [65] where stability and instability results

were established for the multi-dimensional Schrödinger equation with a delay term in the boundary

or internal feedbacks.

The aim of this thesis is to provide further results on stability of the wave and the Schrödinger

equations with time delays. The main body of this work consists of six chapters. In the first chapter,

we gather the main tools used throughout this thesis. We recall some basic features of semigroups of

linear and nonlinear operators and their applications to abstract Cauchy problems in Hilbert spaces.

We also define the stability concepts for abstract Cauchy problems we are interested in and give some

of their characterizations.

In the second chapter, we study the stability of the wave equation with a delay term in the nonlinear

boundary or internal feedbacks. Under suitable assumptions, global existence and uniform decay

rates for the solutions are established. The proof of existence of solutions relies on a construction of

suitable approximating problem for which the existence of solution will be established using nonlinear

semigroup theory and then passage to the limit gives the existence of solutions to the original problem.

The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the

energy function and by establishing a comparison theorem which relates the asymptotic behaviour of

the energy and of the solutions to an appropriate dissipative ordinary differential equation.

Chapters three, four and five are devoted to the Schrödinger equation defined on an open bounded

domain Ω of Rn with a delay term and subject to a dissipative feedback. In chapter three, we consider

the case of the equation with a delay term in the nonlinear internal or boundary feedbacks. We show

that it is well-posed in L2(Ω) by adopting a nonlinear semigroup theory approach. Moreover, we

prove that it is stable in L2(Ω) with uniform decay rates described, as in chapter two, by a dissipative

ordinary differential equation.

Chapter four analyzes the case of the equation with interior delay and a boundary feedback acting

on the Neumann boundary condition while homogeneous boundary condition of Dirichlet type are

imposed on the complementary part. Under Lions geometric assumption, exponential stability of the

solution in the energy space H1
Γ1

(Ω) is established on condition that the delay coefficient is sufficiently

small. The proof uses multipliers technique and a suitable Lyapunov functional.

Chapter five deals with the case where the boundary or the internal feedback contains a delay term of

distributed type. If some hypothesis are satisfied, it is proved that the solution decays exponentially

in appropriate energy spaces. These results are obtained by showing some observability estimates.
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In Chapter six, we consider a system of compactly coupled wave equations with distributed delay terms

in the boundary or internal feedbacks. In both cases, we establish that the semigroup generating

the dynamics of the closed-loop system is exponentially stable. The approach we adopt combines

Carleman estimates for coupled non-conservative hyperbolic systems due to Lasiecka and Triggiani

[46] and compactness-uniqueness argument.



Notation

:= is the equal by definition

→ designates the convergence

↪→ continuous and dense injection

∇ stands for the gradient operator

∆ is the Laplace operator

div is the divergence operator

N set of the positive integers

R set of the real numbers

C set of the complex numbers

Ω open bounded domain of Rn

Γ the sufficiently smooth boundary of Ω

C∞(Ω) the space of infinitely differentiable functions in Ω

D(Ω) the space of C∞(Ω) functions with compact support in Ω

D′(Ω) the distributions space on Ω

D(A) domain of the operator A

X ′ dual space of X

1



2

〈., .〉 inner product

|.| the absolute value for the real number

or modulus for the complex number

‖.‖ the norm

L(X) bounded linear operators from X to X

Re real part

Im imaginary part

z complex conjugate number

Lp(Ω) class of Lebesgue measurable complex (or real)

-valued functions with
∫

Ω |u(x)|p dx <∞; 1 ≤ p <∞

L∞(Ω) class of bounded measurable functions from Ω

to C or R with |u(x)| ≤ C a.e in Ω

L2
loc([0,∞);X) class of functions which are in L2((a, b);X)

for all a, b ∈ [0,∞)

W k,p(Ω) Sobolev space of order k

C([0,∞);X) class of continuous functions from [0,∞) to X

C1([0,∞);X) class of continuously differentiable functions from

[0,∞) to X



Chapter 1

Preliminaries

In this chapter, we recall for later use some well know results from the theory of semigroups of linear

and nonlinear operators and existence results for abstract Cauchy problems in Hilbert spaces. We

also define the stability concepts for abstract evolution equations in Hilbert spaces we are interested

in and provide some of its characterizations.

1.1 Semigroups of continuous linear operators

Let X be a Hilbert space.

Definition 1.1. A one-parameter family S(t) for 0 ≤ t <∞ of L(X) is a C0−(or strongly continu-

ous) semigroup on X if

(a) S(t+ s) = S(t)S(s) for every t, s ≥ 0.

(b) S(0) = I, (I is the identity operator in X).

(c) limt→0 ‖S(t)x− x‖ = 0 for all x ∈ X.

Definition 1.2. Let S(t) be a C0−semigroup defined on X. The infinitesimal generator A of S(t) is

the linear operator defined by

Ax = lim
h→0

(S(h)x− x)/h, for x ∈ D(A)

where D(A) = {x ∈ X; limh→0(S(h)x− x)/h exists in X}.

Theorem 1.1. (Engel and Nagel [26]) Let S(t) be a semigroup. There exist constants ω ∈ R and

M ≥ 1 such that the following holds:

‖S(t)‖ ≤Meωt.

If ω = 0 and M = 1, then S(t) is called a C0−semigroup of contraction.

3
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Theorem 1.2. (Lumer-Phillips) (Pazy [69]) A linear operator A : D(A) ⊂ X → X generates a

strongly continuous semigroup of contractions (S(t))t≥0 on X if and only if A is m-dissipative, i.e.,

it satisfies

� Re 〈Ax, x〉X ≤ 0, ∀x ∈ D(A),

� λI −A is onto for some (hence all) λ > 0.

Proposition 1.3. ( Curtain and Zwart [22]). Sufficient conditions for a closed, densely defined

operator on X to be the infinitesimal generator of a C0-semigroup satisfying ‖S(t)‖ ≤ eωt are:

Re 〈Ax, x〉 ≤ ω‖x‖2 for x ∈ D(A);

Re 〈A∗x, x〉 ≤ ω‖x‖2 for x ∈ D(A∗).

1.2 Nonlinear operators

Definition 1.3. The operator A : D(A) ⊂ X → X is called

� monotone (dissipative) if

Re 〈Ax1 −Ax2, x1 − x2〉 ≥ (≤)0, for all x1, x2 ∈ D(A)

� strongly monotone if there is C > 0 for which

Re 〈Ax1 −Ax2, x1 − x2〉 ≥ C‖x1 − x2‖2, for some C > 0 and all x1, x2 ∈ D(A).

Definition 1.4. A monotone operator A : D(A) ⊂ X → X is said to be maximal monotone if the

graph of A

G(A) = {(x,Ax) : x ∈ D(A)} ,

is not properly contained in the graph of any other monotone operator in X.

Proposition 1.4. (Brezis [14]) Let A : D(A) ⊂ X → X be an operator in X. The following two

assertions are equivalent.

� A is maximal monotone.

� A is monotone and Range(I +A) = X.

Definition 1.5. Let A be an operator from X to X such that D(A) = X. A is said to be hemi-

continuous on X if the function R 3 t 7→ 〈A(x1 + tx2), w〉 is continuous for all x1, x2 and w in

X.

Theorem 1.5. (Barbu [11]). Let B be a monotone, everywhere defined and hemicontinuous operator

from X to X. Then B is maximal monotone. If in addition B is coercive, then Range(B) = X.

Proposition 1.6. (Barbu [11]) Let B be a monotone, hemicontinuous operator from X to X. Let

A be a maximal monotone operator from X to X. Then A + B is maximal monotone in X × X.

Moreover, if A+B is coercive then Range(A+B) = X.
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1.3 Semigroups of nonlinear operators

Definition 1.6. Let G be a closed subset of X. A continuous semigroup of nonlinear contractions on

G is a family of operators S(t), 0 ≤ t <∞, from G to G, satisfying the following conditions:

(1) S(t+ s)x = S(t)S(s)x, ∀x ∈ G, ∀ t, s ≥ 0,

(2) S(0)x = x, ∀x ∈ G,

(3) limt→0 ‖S(t)x− x‖ = 0, ∀x ∈ G,

(4) ‖S(t)x− S(t)y| ≤ ‖x− y‖, ∀x, y ∈ G, ∀t > 0.

Definition 1.7. Let S(t) be a semigroup on G. The infinitesimal generator A0 of S(t) is defined by

A0x = lim
h→0

(S(h)x− x)/h, x ∈ D(A0)

where

D(A0) = {x ∈ G; limh→0(S(h)x− x)/h exists in X } .

Theorem 1.7. (Barbu [11]) Let S(t) be a semigroup of nonlinear contractions defined on a closed

convex subset G of X. Then the generator A0 of S(t) is densely defined on G.

Theorem 1.8. (Barbu [11], Kōmura [42]) Let A be a densely defined, maximal dissipative operator

in X, then it generates a nonlinear contractions semigroup S(t) on X.

1.4 Abstract Cauchy problems

Let X be a Hilbert space and let A : D(A) ⊂ X → X be an operator. Consider the homogeneous

Cauchy problem 
du
dt (t) = Au(t), t ≥ 0,

u(0) = x.

(1.1)

where x ∈ X.

To define solution concepts for (1.1) and to present results pertaining their existence, we distinguish

two cases depending on whether the operator A is linear or nonlinear.

Case I. A is linear

Definition 1.8. A function u : [0, T ]→ X is a strong solution of (1.1) on [0, T ] if u is continuously

differentiable on [0, T ] and for all t ∈ [0, T ] u(t) ∈ D(A) and satisfies (1.1).

Theorem 1.9. (Curtain and Zwart [22]) If A is the infinitesimal generator of a C0−semigroup S(t)

on X, then for all x ∈ D(A) the abstract Cauchy problem (1.1) has a unique strong solution given by

u(t) = S(t)x. (1.2)
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Definition 1.9. A function u ∈ C([0, T ];X) is a weak solution of (1.1) on [0, T ] if for every y ∈ D(A∗)
where A∗ is the adjoint of A, the function (u(t), y) is absolutely continuous on [0, T ] and

d

dt
〈u(t), y〉 = 〈u(t),A∗y〉 a.e. on [0, T ].

Theorem 1.10. (Curtain and Zwart [22]) If A is the infinitesimal generator of a C0−semigroup S(t)

on X, then for every x ∈ X, the problem (1.1) has unique weak solution given by (1.2).

Case II. A is nonlinear.

Definition 1.10. A function u ∈ C([0, T ];X) is a weak solution for (1.1) if there exist sequences

(un) ⊂W 1,∞(0, T ;X) such that:

�
dun
dt (t) = Aun(t), for a.e. t ≥ 0, n = 1, 2...

� un → u ∈ C([0, T ];X)

� u(0) = x.

Definition 1.11. The function u ∈ C([0, T ];X) is called a strong solution of (1.1) if:

� u is absolutely continuous on each compact subinterval of ]0, T [.

� u(t) ∈ D(A) for almost every t ≥ 0.

� u(0) = x and u satisfies du
dt (t) = Au(t), a.e. t ≥ 0.

Theorem 1.11. (Djafari Rouhani and Khatibzadeh [25]) Suppose that A : D(A) ⊂ X → X is

maximal dissipative and x ∈ D(A). Then there exists a unique weak solution of (1.1).

Theorem 1.12. (Djafari Rouhani and Khatibzadeh [25]) Suppose that A : D(A) ⊂ X → X is maxi-

mal dissipative and x ∈ D(A), then the problem (1.1) has a unique strong solution u ∈W 1,∞(0, T ;X).

1.5 Stability concepts

Consider in a Hilbert space X, the differential equation

du

dt
(t) = Au(t), t ≥ 0, (1.3)

where A is an operator from D(A) ⊂ X into X. We assume that (1.3) has a unique solution subject

to the condition u(0) = x, which we denote by u(., x). We also assume that 0 is an equilibrium point

for (1.3).

Many concepts of stability have been defined for systems described by (1.3), and we are interested

in the following:
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Definition 1.12. The equilibrium of (1.3) said to be

� uniformly exponentially stable, if there exist constants δ > 0, M > 0 and ε > 0 such that if

‖x‖ < ε, then

‖u(t, x)‖ ≤Me−δt‖x‖, ∀ t ≥ 0,

� polynomial stable if there exist constants α > 0, M > 0 and ε > 0 such that if ‖x‖ < ε, then

‖u(t, x)‖ ≤ M

tα
‖x‖, ∀ t > 0.

Remark 1.1. The previous definition is local since it shows how the state evolves after starting near

the equilibrium point. If uniform exponential or polynomial stability holds for any initial state x, then

the equilibrium is said to be globally uniformly exponentially or polynomially stable.

In the case where A is a closed linear operator generating a C0-semigroup S(t) then

u(t, x) = S(t)x

and we have the following results

Proposition 1.13. (Engel and Nagel [26]) The system (1.3) is:

� uniformly exponentially stable if and only if there exist constants δ > 0, M ≥ 1 such that

‖S(t)‖ ≤Me−δt, for all t ≥ 0,

� polynomially stable if and only if there exist constants α > 0, M ≥ 1 such that

‖S(t)‖ ≤Mt−α, for all t > 0.

Proposition 1.14. (Engel and Nagel [26]) For a linear C0-semigroup (S(t))t≥0, the following asser-

tions are equivalent.

� (S(t))t≥0 is uniformly exponentially stable.

� There exists t0 such that ‖S(t0)‖ < 1.

1.6 Jensen’s inequality

Theorem 1.15. ( Niculescu and Persson [68]) Let (Ω,Σ, µ) be a finite measure space and let g : Ω→
R be a µ−integrable function. If φ is a convex function given on an interval I that includes the image

of g, then
1

µ

∫
Ω
g dµ ∈ I

and

φ

(
1

µ

∫
Ω
g dµ

)
≤ 1

µ

∫
Ω
φ ◦ g dµ.

provided that φ ◦ g is µ-integrable.



Chapter 2

Stability of the wave equation with a

delay term in the nonlinear boundary

or internal feedbacks

2.1 Introduction

In this chapter, we address the problem of stability for a multi-dimensional wave equation with a delay

term in the nonlinear boundary or internal feedbacks.

Let Ω be an open bounded domain of Rn with smooth boundary Γ which consists of two non-empty

parts Γ1 and Γ2 such that, Γ1 ∪ Γ2 = Γ with Γ1 ∩ Γ2 = ∅. Let ν(.) denote the unit normal on Γ

pointing towards the exterior of Ω.

In Ω, we consider the wave equation with a nonlinear delay term in the boundary conditions

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = −α1f(ut(x, t))− α2g(ut(x, t− τ)) on Γ2 × (0,+∞),

ut(x, t− τ) = f0(x, t− τ) on Γ2 × (0, τ),

(2.1)

where

�
∂u
∂ν is the normal derivative and τ > 0 is the time delay.

� α1 and α2 are positive constants.

� u0, u1 and f0 are the initial data which belong to appropriate Hilbert spaces.

� f and g are real-valued functions of class C(R).

In absence of delay, that is α2 = 0, stability problems for (2.1) have received a lot of attention in

the literature, (see for example [17], [86], [43], [40], [16]), and the energy estimates obtained depend

8
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on the nonlinear function f.

Nicaise et al [64] considered the case where the delay τ depends on time and the nonlinear functions

f and g are subject to the following conditions:

� f, g ∈ C(R),

� |f(s)| ≤ c1 |s| for all s ∈ R,

� (f(s1)− f(s2))(s1 − s2) ≥ c2 |s1 − s2|2 for all s1, s2 ∈ R,

� |g(s)| ≤ c3 |s|for all s ∈ R,

� |g(s1)− g(s2)| ≤ c4 |s1 − s2| for all s1, s2 ∈ R,

where ci, i = 1, ..., 4, are positive constants.

Under some regularity assumptions on the delay function τ , they established a well-posedness result

and an exponential stability estimate for problem (2.1). Well-posedness is proved by using nonlinear

semigroup theory whereas the exponential estimate is obtained by introducing suitable energy and

Lyapunov functionals. Li el al [52] investigated the case where the Laplacian is replaced by a second

order differential operator with space variable coefficients, α1, α2 and τ depend on time, and the

functions f and g satisfy the following conditions:

� f, g ∈ C(R),

� sf(s) ≥ |s|2 for s ∈ R,

� |f(s)| ≤ c5 |s| for |s| > 1

� s2 + (f(s))2 ≤ c5(sf(s))1/p for |s| ≤ 1,

� (g(s))2 ≤ sf(s) for s ∈ R,

where c5 and p are positive constants with p ≥ 1. Assuming the well-posedness of the problem (which

is not trivial), they obtained a uniform decay rates for the solutions by adopting a Riemann ge-

ometry methods. One of the main purposes of this chapter is to study the existence and asymptotic

behaviour of the solutions of (2.1) under the following assumptions on the nonlinear functions f and g .

(H1) (i) f is a continuous monotone increasing function on R;

(ii) sf(s) > 0 for s 6= 0;

(iii) sf(s) ≤M1s
2 for |s| ≥ 1, for some M1 > 0;

(H2) (i) g is an odd non-decreasing locally Lipschitz continuous function on R;

(ii) sg(s) > 0 for s 6= 0;

(iii) sg(s) ≤M2s
2 for |s| < 1, for some M2 > 0;

(iv) sg(s) ≥M3s
2 for |s| ≥ 1, for some M3 > 0;
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(v) a1sg(s) ≤ G(s) ≤ a2sf(s), where G(s) =
∫ s

0 g(r)dr, for some positive

constants a1 and a2.

(H3) α1 >
a2α2
a1

.

(H4) There exists x0 ∈ Rn such that, with m(x) = x− x0,

m(x).ν(x) ≤ 0 on Γ1.

Remark 2.1. As an example of functions f and g for which assumptions (H1) and (H2) hold we

have

f(x) = x+
x

1 + x2

and

g(x) = 2x+
2x

(1 + x2)2

We adopt an approach due to Lasiecka and Tataru [43] to establish global existence and uniform

decay rates for the solutions. The proof of existence of solutions relies on a construction of a suitable

approximating problem for which the existence of solution will be established using nonlinear semi-

group theory and then passage to the limit gives the existence of solutions to the original problem.

The uniform decay rates for the solutions are obtained by proving certain integral inequalities for the

energy function and by establishing a comparison theorem which relates the asymptotic behaviour of

the energy and of the solutions to an appropriate dissipative ordinary differential equation.

Remark 2.2. � It follows from the mean value theorem and the monotonicity of g that a1 ≤ 1.

� Assumption (H3) can be considered as a nonlinear version of the assumption (1.8) in [62].

Regarding the existence of the solutions to the system (2.1), we have the following result.

Theorem 2.1. Assume (H1)−(H3). Then, for each (u0, u1, f0) ∈ H1
Γ1

(Ω)×L2(Ω)×L2(Γ2;L2(0, τ)),

problem (2.1) has at least one solution

u ∈ C([0,+∞);H1
Γ1

(Ω)) ∩ C1([0,+∞);L2(Ω)),

such that

ut ∈ L2
loc([0,+∞);L2(Γ2)),

∂u

∂ν
∈ L2

loc([0,+∞);L2(Γ2)). (2.2)

Where

H1
Γ1

(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1}.

In order to state our stability result, we introduce as in [43] a real valued strictly increasing concave

function h(s) defined for s ≥ 0 and satisfying

h(0) = 0; (2.3)

h(sf(s)) ≥ s2 + f2(s) for |s| ≤ N, for some N > 0, (2.4)

and we define the following functions:
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�

h̃(s) = h(
s

mes Σ2
), s ≥ 0,

where Σ2 = Γ2 × (0, T ) and T is a given constant.

�

p(s) = (cI + h̃)−1Ks, (2.5)

where c and K are positive constants. Then p is a positive, continuous, strictly increasing

function with p(0) = 0.

�

q(s) = s− (I + p)−1(s), s > 0 (2.6)

q is also a positive, continuous, strictly increasing function with q(0) = 0.

Let E(t) be the energy function corresponding to the solution of (2.1) defined by

E(t) =
1

2

∫
Ω
{|∇u(x, t)|2 + |ut(x, t)|2} dx+

ξ

2

∫
Γ2

∫ 1

0
G(ut(x, t− ρτ)) dρ dΓ, (2.7)

where the positive constant ξ is such that

2τα2

a1
(1− a1) < ξ <

2τ

a2
(α1 − α2a2). (2.8)

Theorem 2.2. Assume hypotheses (H1)−(H4). Let u be a solution to (2.1) with the properties stated

in Theorem 2.1. Then for some T0 > 0,

E(t) ≤ S(
t

T0
− 1)(E(0)) for t > T0,

where S(t) is the solution of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0). (2.9)

If we additionally assume that the function f(s) is of a polynomial growth at the origin, the

following explicit decay rates are obtained.

Corollary 2.1. Assume in addition to (H1)− (H4) that there exist positive constants b1 and b2 such

that

f(s)s ≤ b1s
2 for all s ∈ R, (2.10)

f(s)s ≥ b2 |s|p+1 for |s| ≤ 1, for some p ≥ 1. (2.11)

Then

E(t) ≤ Me−αt if p = 1, (2.12)

E(t) ≤ Mt
2

1−p if p > 1. (2.13)
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In this chapter, we also study the stability problem for the wave equation with a delay term in the

nonlinear internal feedback. More precisely, we consider the system described by
utt(x, t)−∆u(x, t) + a(x) {α1f(ut(x, t)) + α2g(ut(x, t− τ))} = 0 in Ω× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

ut(x, t− τ) = f0(x, t− τ) on Ω× (0, τ),

(2.14)

where

α1, α2, u0, u1, f0, τ , f and g are as above and a(.) is a function in L∞(Ω) such that

a(x) ≥ 0 a.e. in Ω and a(x) > a0 > 0 a.e. in ω, (2.15)

where ω ⊂ Ω is an open neighbourhood of Γ2.

In the absence of delay (i.e. α2 = 0), this problem has been considered by several authors ( [32],

[33], [34], [35],[38], [39], [61], [59], [12]).

For f and g linear, the problem has been treated in [62]. Benaissa et al [13] considered the case where

the coefficients α1, α2 and the delay τ are time-dependent. Regarding the functions f and g they

assumed the following.

� f is a non-decreasing function of class C(R) and satisfies,

γ1 |s| ≤ γ1 |f(s)| ≤ γ2 |s| for |s| ≤ ε for some ε > 0,

� g is an odd non-decreasing of class C1(R) satisfying∣∣g′(s)∣∣ ≤ γ3,

γ4sg(s) ≤ G(s) ≤ γ5sf(s),

where G(s) =
∫ t

0 g(r)dr, and γi, i = 1, ..., 5, are positive constants.

They proved the global existence and uniqueness of solution by using Faedo-Galerkin procedure.

Moreover, they obtained energy decay estimate of the solution by employing the multiplier method

combined with some integral inequalities.

The second purpose of this chapter is to investigate the stability problems for (2.14) when f and g

are subject to the assumptions (H1)− (H4). We use again the Lasiecka-Tataru approach to establish

existence and uniform decay rates for the solutions.

The following theorem provides a result on existence and regularity of solutions to the problem

(2.14).

Theorem 2.3. Assume (H1)− (H3). Then, for each (u0, u1, f0) ∈ H1
0 (Ω)×L2(Ω)×L2(Ω;L2(0, τ)),

problem (2.14) has at least one solution

u ∈ C([0,+∞);H1
0 (Ω)) ∩ C1([0,+∞);L2(Ω)).
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To state the stability result, we recall the function h introduced after Theorem 2.1 and we define

this time the functions

�

ĥ(s) = h

(
s

mes Q

)
, s ≥ 0,

where Q = Ω× (0, T ) and T is a given constant.

�

p̂(s) = (C ′′I + h̃)−1(K2 s), (2.16)

where C ′′ and K2 are positive constants.

�

q̂(s) = s− (I + p̂)−1(s), s > 0. (2.17)

Obviously p̂ and q̂ have the same properties as the functions p and q given by (2.5) and (2.6)

respectively.

Let F (t) be the energy function corresponding to the solution of (2.14) defined by

F (t) =
1

2

∫
Ω

{
|∇u(x, t)|2 + |ut(x, t)|2

}
dx+

µ

2

∫
Ω
a(x)

∫ 1

0
G(ut(x, t− τρ)) dρ dx, (2.18)

where

2τa−1
1 α2(1− a2) < µ < 2τa−1

2 (α1 − a2α2). (2.19)

The main result can be stated as follows.

Theorem 2.4. Assume hypotheses (H1)–(H4). Let (u, ut) be a solution to (2.14) with the properties

listed in Theorem 2.3. Then for some T0 > 0,

F (t) ≤ S(
t

T0
− 1)(F (0)) for t > T0, (2.20)

where S(t) is the solution of the differential equation

d

dt
S(t) + q̂(S(t)) = 0, S(0) = F (0) (2.21)

and q̂ is given by (2.17).

Corollary 2.2. Assume in addition to (H1)–(H4) that for some positive constants ã, b,

f(s)s ≤ bs2 for each real s, (2.22)

f(s)s ≥ ã | s |p+1 for | s |≤ 1, for some p ≥ 1. (2.23)

Then

F (t) ≤ Ce−βt if p = 1,

F (t) ≤ Ct
2

1−p if p > 1, (2.24)

where C > 0 and β > 0.
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The chapter is organized as follows. Theorem 2.1, Theorem 2.2 and Corollary 2.1 is proved in

Section 2.2 whereas Section 2.3 contains the proof of Theorem 2.3, Theorem 2.4 and Corollary 2.2.

Some results of this chapter have been presented in the conference proceedings paper [27].

2.2 Stabilization of the wave equation with a nonlinear delay term

in the boundary conditions

2.2.1 Proof of Theorem 2.1

In order to be able to manage the boundary condition with the delay term and inspired from [83] and

[62], we introduce the auxiliary variable:

y(x, ρ, t) = ut(x, t− τρ); x ∈ Γ2, ρ ∈ (0, 1), t > 0. (2.25)

Then problem (2.1) is equivalent to

utt(x, t)−∆u(x, t) = 0 in Ω× (0,+∞),

yt(x, ρ, t) + τ−1yρ(x, ρ, t) = 0 on Γ2 × (0, 1)× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u(x,t)
∂ν = −α1f(ut(x, t))− α2g(y(x, 1, t)) on Γ2 × (0,+∞),

y(x, ρ, 0) = f0(x,−τρ) on Γ2 × (0, 1),

y(x, 0, t) = ut(x, t) on Γ2 × (0,+∞).

(2.26)

To prove Theorem 2.1, we adopt the following two step procedure. We first construct an auxiliary

approximating problem for which the existence of the unique solution will be established by the ar-

guments of nonlinear semigroup theory. In the second step, we obtain the solutions of problem (2.1)

as the limits of the approximating equations.

Proposition 2.5. Assume that for the continuous f and g the hypotheses (H1)(iii) and (H2)(v) are

fulfilled. If u ∈ C(0, T ;H1
Γ1

(Ω)) ∩ C1(0, T ;L2(Ω)) is a solution to problem (2.1) such that:

ut |Γ2∈ L2(0, T ;L2(Γ2)), (2.27)

then the following energy identity holds for every t > 0

E(T )− E(0) = −α1

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2 − α2

∫
Σ2

g(ut(x, t− τ))ut(x, t) dΣ2

− τ−1ξ

2

∫
Σ2

[G(ut(x, t− τ))−G(ut(x, t))] dΣ2, (2.28)

and consequently

E(T )− E(0) ≤ −C1

∫
Σ2

ut(x, t)f(ut(x, t)) + y(x, 1, t)g(y(x, 1, t))dΣ2, (2.29)
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where

C1 = min

{
α1 −

τ−1ξ

2
a2 − α2a2,

τ−1ξ

2
a1 + α2(a1 − 1)

}
,

with ξ as in (2.8).

Proof of Proposition 2.5. It follows from (H1)(iii), (H2)(v) and (2.27) that

∂u

∂ν
|Γ2∈ L2(0, T ;L2(Γ2)). (2.30)

Then by virtue of the Lemma 2.2 in [43], it is enough to prove the identity (2.28) for smooth solutions

u ∈ C(0, T ;H2(Ω)) ∩ C1(0, T ;H1
Γ1

(Ω)).

We multiply the first equation in (2.26) by ut and integrate by parts over Ω, we get

1

2

d

dt

∫
Ω

{
|∇u(x, t)|2 + u2

t (x, t)
}
dx = −α1

∫
Γ2

ut(x, t)f(ut(x, t)) dΓ− α2

∫
Γ2

g(y(x, 1, t))ut(x, t) dΓ.

(2.31)

We multiply the second equation in (2.26) by ξ g(y(x, ρ, t)) and integrate over Γ2 × (0, 1), we obtain∫
Γ2

∫ 1

0
{ξyt(x, ρ, t)g(y(x, ρ, t)) + τ−1ξyρ(x, ρ, t)g(y(x, ρ, t))} dρ dΓ = 0.

We have

∂G

∂t
(y(x, ρ, t)) = yt(x, ρ, t).g(y(x, ρ, t)),

∂G

∂ρ
(y(x, ρ, t)) = yρ(x, ρ, t).g(y(x, ρ, t)).

Consequently,

ξ
d

dt

∫
Γ2

∫ 1

0
G(y(x, ρ, t)) dρ dΓ = −τ−1ξ

∫
Γ2

∫ 1

0

d

dρ
G(y(x, ρ, t)) dρ dΓ

= −τ−1ξ

∫
Γ2

[G(y(x, 1, t))−G(y(x, 0, t))] dΓ. (2.32)

From (2.31) and(2.32), we have

1

2

d

dt

∫
Ω

{
|∇u(x, t)|2 + u2

t (x, t)
}
dx+

ξ

2

d

dt

∫
Γ2

∫ 1

0
G(y(x, ρ, t)) dρ dΓ = −α1

∫
Γ2

ut(x, t)f(ut(x, t)) dΓ

− α2

∫
Γ2

g(y(x, 1, t))ut(x, t) dΓ− τ−1ξ

2

∫
Γ2

G(y(x, 1, t)) dΓ +
τ−1ξ

2

∫
Γ2

G(ut(x, t))] dΓ. (2.33)

We integrate both sides of (2.33) over (0, T ), we obtain

E(T )− E(0) = −α1

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2 − α2

∫
Σ2

g(ut(x, t− τ))ut(x, t) dΣ2

− τ−1ξ

2

∫
Σ2

[G(ut(x, t− τ))−G(ut(x, t))] dΣ2. (2.34)
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From (2.25) and assumption (H2)(v), we have

G(ut(x, t)) ≤ a2ut(x, t)f(ut(x, t)),

−G(y(x, 1, t)) ≤ −a1y(x, 1, t)g(y(x, 1, t)).

Hence

E(T )− E(0) ≤ −(α1 −
τ−1ξa2

2
)

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2 − α2

∫
Σ2

g(y(x, 1, t))ut(x, t) dΣ2

−τ−1ξa1

2

∫
Σ2

y(x, 1, t)g(y(x, 1, t)) dΣ2. (2.35)

Let G∗ be the conjugate function of the concave function G

G∗(s) = sup
t∈R+

(st−G(t)).

Then G∗ is the Legendre transform of G, which is given by (Arnold ([8] p. 61-62))

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)] for all s ≥ 0,

and satisfies

s.t ≤ G∗(s) +G(t) for all s, t ≥ 0. (2.36)

But from the definition of G, we have

G∗(s) = sg−1(s)−G[(g−1(s)].

Hence

G∗(|g(y(x, 1, t))|) = g(y(x, 1, t))y(x, 1, t)−G(y(x, 1, t))

≤ (1− a1)y(x, 1, t)g(y(x, 1, t)). (2.37)

Making use of (2.35) and (2.36), we get

E(T )− E(0) ≤ −(α1 −
τ−1ξa2

2
)

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2 −
τ−1ξa1

2

∫
Σ2

y(x, 1, t)g(y(x, 1, t)) dΣ2

+ α2

∫
Σ2

(G(|ut(x, t)|) +G∗(|g(y(x, 1, t))|)) dΣ2.

(2.37) together with assumption (H2)(v) implies

E(T )− E(0) ≤ −(α1 −
τ−1ξa2

2
− a2α2)

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2

− (
τ−1ξa1

2
− α2(1− a1))

∫
Σ2

y(x, 1, t)g(y(x, 1, t)) dΣ2.
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Therefore

E(T )− E(0) ≤ −C1

∫
Σ2

{ut(x, t)f(ut(x, t)) + y(x, 1, t)g(y(x, 1, t))} dΣ2, (2.38)

where

C1 = min

{
(α1 −

τ−1ξa2

2
− α2a2), (

τ−1ξa1

2
+ α2(a1 − 1))

}
.

with ξ as in (2.8).

Theorem 2.6. Assume that:

∗ The function g is Lipschitz continuous on R, with L as a Lipschitz constant. (2.39)

∗ f(s1)− f(s2) ≥ r(s1 − s2) for all s1 − s2 ≥ 0 and fixed r > 0. (2.40)

Then, for each (u0, u1, f0) ∈ H1
Γ1

(Ω)×L2(Ω)×L2(Γ2;L2(0, τ)), problem (2.1) has a unique solution

u ∈ C(0,∞;H1
Γ1

(Ω)) ∩ C1(0,∞;L2(Ω)).

Moreover if the assumptions (H1)(iii), (H2)(ii) and (H2)(v) are fulfilled, then

ut ∈ L2(0,∞;L2(Γ2)),
∂u

∂ν
∈ L2(0,∞;L2(Γ2)). (2.41)

Proof of Theorem 2.6. This follows from nonlinear semigroup theory.

Let A : L2(Ω)→ L2(Ω) be the operator defined by

Aζ = −∆ζ with D(A) =

{
ζ ∈ H2(Ω),

∂ζ

∂ν
= 0 on Γ2, ζ = 0 on Γ1

}
.

Let N : L2(Γ)→ L2(Ω) be the Neumann map

∆Nϕ = 0, Nϕ |Γ1= 0,
∂Nϕ

∂ν
|Γ2= ϕ.

It is well known (see [79]) that

N ∈ L(L2(Γ)→ H
3
2 (Ω) ⊂ H

3
2
−2ε(Ω) ≡ D(A

3
4
−ε)),

and

N∗A∗η = η |Γ2 for η ∈ D(A
1
2 ). (2.42)

Denote by H the Hilbert space

H = H1
Γ1

(Ω)× L2(Ω)× L2(Γ2;L2(0, 1)).

Next define

A : D(A) ⊂ H → H
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A

 ζ

η

θ

 =

 η

A(−ζ − α1Nf(η)− α2Ng(θ(.; 1)))

−τ−1θρ

 , (2.43)

with

D(A) = {ζ ∈ H1
Γ1

(Ω), η ∈ H1
Γ1

(Ω), θ ∈ L2(Γ2;H1(0, 1));−ζ − α1Nf(η)− α2Ng(θ(.; 1)) ∈ D(A)}

Then we can rewrite (2.26) as an abstract Cauchy problem on H
dW

dt
(t) = A(W (t)),

W (0) = W0,

where

W (t) = (u(x, t), ut(x, t), y(x, ρ, t))T , W
′
(t) = (ut(x, t), utt(x, t), yt(x, ρ, t))

T .

We will show that the operator A defined by (2.43) is maximal dissipative on the Hilbert space H
equipped with the inner product

〈 ζ

η

θ

 ,

 ζ̃

η̃

θ̃

〉
H

=

∫
Ω
{A

1
2 ζ(x) . A

1
2 ζ̃(x) + η(x) . η̃(x)} dx+ δ

∫
Γ2

∫ 1

0
θ(x, ρ) . θ̃(x, ρ) dρ dΓ,

with

τα2L < δ < 2τ(α1r −
α2L

2
), (2.44)

L

r
<
α1

α2
. (2.45)

First, we prove that A is dissipative.

Let U = (ζ, η, θ)T , V = (ζ̃, η̃, θ̃)T ∈ D(A). Then

〈AU −AV ;U − V 〉H = −α1

∫
Ω
AN(f(η(x))− f(η̃(x))) (η(x)− η̃(x)) dx

− α2

∫
Ω
AN(g(θ(x, 1))− g(θ̃(x, 1)))(η(x)− η̃(x)) dx

− δτ−1

∫
Γ2

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ))(θ(x, ρ)− θ̃(x, ρ)) dρ dΓ

= −α1

∫
Γ2

(f(η(x))− f(η̃(x)))N∗A∗(η(x)− η̃(x)) dΓ

− α2

∫
Ω

(g(θ(x, 1))− g(θ̃(x, 1)))N∗A∗(η(x)− η̃(x)) dΓ

− δτ−1

2

∫
Γ2

|θ(x, 1)− θ̃(x, 1)|2dΓ +
δτ−1

2

∫
Γ2

|θ(x, 0)− θ̃(x, 0)|2dΓ.
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From (2.42), we have

〈AU −AV ;U − V 〉H =− α1

∫
Γ2

(f(η(x))− f(η̃(x)))(η(x)− η̃(x)) dΓ

− α2

∫
Γ2

(g(θ(x, 1))− g(θ̃(x, 1)))(η(x)− η̃(x)) dΓ

− δτ−1

2

∫
Γ2

(θ(x, 1)− θ̃(x, 1))2dΓ +
δτ−1

2

∫
Γ2

(θ(x, 0)− θ̃(x, 0))2dΓ.

Using assumptions (2.39), (2.40) and the Cauchy-Schwartz’s inequality, we obtain

〈AU −AV ;U − V 〉H ≤ −α1r

∫
Γ2

|η(x)− η̃(x)|2dΓ +
α2L

2

∫
Γ2

|θ(x, 1)− θ̃(x, 1)|2dΓ

+
α2L

2

∫
Γ2

|η(x)− η̃(x)|2dΓ− δτ−1

2

∫
Γ2

|θ(x, 1)− θ̃(x, 1)|2dΓ

+
δτ−1

2

∫
Γ2

|η(x)− η̃(x)|2dΓ.

Therefore

〈AU −AV ;U − V 〉H ≤ −
(
α1r −

α2L

2
− δτ−1

2

)∫
Γ2

|η(x)− η̃(x)|2dΓ

−
(
−α2L

2
+
δτ−1

2

)∫
Γ2

|θ(x, 1)− θ̃(x, 1)|2dΓ.

From (2.44), we conclude that

〈AU −AV ;U − V 〉H ≤ 0.

Thus A is dissipative.

In order to establish maximality, we need to prove the range condition

range(λI −A) = H for a fixed λ > 0.

Let (k, l,m)T ∈ H, we seek w = (ζ, η, θ)T ∈ D(A) solution of

(A− λI)w = (k, l,m)T ,

or equivalently

λ ζ − η = k, (2.46)

λ η −A[−ζ − α1Nf(η|Γ2
)− α2Ng(θ(x, 1))] = l, (2.47)

λ θ + τ−1θρ = m. (2.48)
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Hence

ζ =
1

λ
(η + k). (2.49)

From (2.48) and the last line of (2.26) we have{
θρ(x, ρ) = −τλθ(x, ρ) + τm(x, ρ), ρ ∈ (0, 1),

θ(x, 0) = η(x).

The unique solution for the above initial value problem is given by

θ(x, ρ) = η(x)e−λτρ + τe−λτρ
∫ ρ

0
m(x, σ)eλτσ dσ, x ∈ Γ2, ρ ∈ (0, 1),

and in particular

θ(x, 1) = η(x)e−λτ + Z0, (2.50)

where

Z0 = τe−λτ
∫ 1

0
m(x, σ)eλτσdσ, x ∈ Γ2.

Insertion of (2.49) and (2.50) into (2.47) yields

λη +
1

λ
Aη + α1ANf(η|Γ2

) + α2ANg((η|Γ2
)e−λτ + Z0) = l − 1

λ
Ak.

Set

T η = λη +
1

λ
Aη + α1ANf̂(η) + α2ANĝ(η),

where

f̂(η) = f(η|Γ2
),

and

ĝ(η) = g((η|Γ2
)e−λτ + Z0).

Lemma 2.1. The operator T is surjective from V = D(A
1
2 ) = H1

Γ1
(Ω) onto V ′ = (D(A

1
2 ))′ =

(H1
Γ1

(Ω))′.

Proof of Lemma 2.1. For η ∈ V, let

Bη = α1ANf̂(η) + α2ANĝ(η),

and

Cη = λη +
1

λ
Aη.

Then

T η = Bη + Cη.

According to Barbu [11] (Corollary 1.3, page 48), in order to establish surjectivity of the operator T ,
it is sufficient to prove that B is monotone and hemicontinuous, C is maximal monotone, and B +C

is coercive.
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Monotonicity of B.

Let η, v ∈ V. Then

〈(−B)η − (−B)v, η − v〉V ′×V = −α1〈AN(f̂(η)− f̂(v)), η − v〉V ′×V
− α2〈AN(ĝ(η)− ĝ(v)), η − v〉V ′×V
= −α1〈f̂(η)− f̂(v), N∗A∗(η − v)〉L2(Γ2)

− α2〈ĝ(η)− ĝ(v), N∗A∗(η − v)〉L2(Γ2)

≤ −(α1r − α2Le
−λτ )‖(η|Γ2

)− (v|Γ2
)‖2L2(Γ2).

By (2.45), we conclude that

〈(−B)η − (−B)v, η − v〉V ′×V ≤ 0. (2.51)

Thus (−B) is dissipative, then B is monotone.

Hemicontinuity of B.

Let η, v, w ∈ V. We will prove that the function

t→< B(η + tv), w >V ′×V

is continuous. Indeed, we have

|〈B(η + tv)−B(η + t0v), w〉V ′×V | = |〈α1AN(f̂(η + tv)− f̂(η + t0v)), w〉V ′×V
+ 〈α2AN(ĝ(η + tv)− ĝ(η + t0v)), w〉V ′×V |

≤ |〈α1f̂(η + tv)− f̂(η + t0v), N∗A∗w〉L2(Γ2)|
+ |〈α2ĝ(η + tv)− ĝ(η + t0v), N∗A∗w〉L2(Γ2)|

≤ c‖w‖L2(Γ2){‖f̂(η + tv)− f̂(η + t0v)‖L2(Γ2)

+ ‖ĝ(η + tv)− ĝ(η + t0v)‖L2(Γ2)}.

From assumption (2.39), we have

|〈B(η + tv)−B(η + t0v), w〉V ′×V | ≤ c‖w‖L2(Γ2)

{
‖f̂(η + tv)− f̂(η + t0v)‖L2(Γ2)

+ L‖(t− t0)(v|Γ2
)‖L2(Γ2)

}
.

The continuity of f allows us to deduce that

|〈B(η + tv)−B(η + t0v), w〉V ′×V | < ε̃,

for |t− t0| < δ̃. This proves the continuity of the function t 7−→ 〈B(η + tv), w〉.
Maximal monotonicity of C.

For η, v ∈ V, we have

〈Cη − Cv, η − v〉V ′×V = 〈λη +
1

λ
Aη − λv − 1

λ
Av, η − v〉V ′×V

= λ‖η − v‖2V +
1

λ
〈A(η − v), η − v〉V ′×V ≥ λ‖η − v‖2V . (2.52)
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so that C is maximal monotone. Since we are working with V, V ′ framework and the operator AN :

L2(Γ2)→ V ′ is bounded, the operator C is continuous, then it is maximal monotone.

Coercivity of B + C.

This follows from (2.51) and (2.52).

The operator T is surjective from V onto V ′ . Then η ∈ V and consequently ζ = η+k
λ ∈ V . One

easily shows that (ζ, η, θ) is also in D(A). Indeed from (2.47), we have

A[ζ + α1Nf̂(η) + α2Ng(θ(x, 1))] = l − λη ∈ L2(Ω).

Hence

ζ + α1Nf̂(η) + α2Ng(θ(x, 1)) ∈ D(A).

From nonlinear semigroup theory and the density of D(A) in H, we obtain existence and uniqueness

of the solution

u ∈ C(0, T ;H1
Γ1

(Ω)) ∩ C1(0, T ;L2(Ω)),

for all T > 0.

To obtain (2.41) we first notice that for (ζ0, η0, f0) ∈ D(A), we have

η0 |Γ ∈ H
1
2 (Γ),

and after using assumption (H1)(iii) and (2.39)

∂ζ0

∂ν
∈ L2(Γ2) , f(η0 |Γ2) ∈ L2(Γ2), g(f0 |Γ2) ∈ L2(Γ2).

Let (u, ut, y) denote the solution of problem (2.26) corresponding to the initial datum (ζ0, η0, f0) ∈
D(A). Then, by the semigroup property, we have (u(t), ut(t), y(t)) ∈ D(A) and consequently

ut |Γ2∈ L∞(0, T ;L2(Γ2)),
∂u

∂ν
|Γ2∈ L∞(0, T ;L2(Γ2)).

Thus we are in a position to apply the estimate (2.38) of Proposition 2.5. Hence for all t > 0,

E(t) + C1

∫ t

0

∫
Γ2

(f(ut)ut + g(ut(x, s− τ))ut(x, s− τ)) dΓ ds ≤ E(0). (2.53)

Recalling assumption (2.40), we obtain

E(t) + C1r

∫ t

0

∫
Γ2

|ut|2 dΓ ds+ C1

∫ t

0

∫
Γ2

g(ut(x, s− τ)ut(x, s− τ)) dΓ ds

≤ |∇ζ0|2Ω + |η0|2Ω +

∫ 1

0

∫
Γ2

|f0(x,−τρ)|2 dΓ dρ. (2.54)

Since D(A) is dense in H, the above inequality can be extended to all (ζ0, η0, f0) ∈ H.

The estimate (2.54) together with assumptions (H2)(ii) implies

ut|Γ2 ∈ L2(0,∞;L2(Γ2)).
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Moreover, from hypotheses (H1)(iii) and (2.39), it follows that

f(ut|Γ2) ∈ L2(0,∞;L2(Γ2)), g(ut(., t− τ)|Γ2) ∈ L2(0,∞;L2(Γ2)),

and consequently
∂u

∂ν
∈ L2(0,∞;L2(Γ2)).

Completion of the proof of Theorem 2.1.

We consider next the following approximation of system (2.1) with l −→ +∞ as the parameter of

approximation,

ultt(x, t)−∆ul(x, t) = 0 in Ω× (0,+∞),

ul(x, 0) = u0(x), ult(x, 0) = u1(x) in Ω,

ul(x, t) = 0 on Γ1 × (0,+∞),
∂ul(x,t)
∂ν = −α1fl(ult(x, t))− α2gl(ult(x, t− τ)) on Γ2 × (0,+∞),

ult(x, t− τ) = f0(x, t− τ) on Γ2 × (0, τ),

(2.55)

where

fl(ult(x, t)) = f(ult(x, t)) +
1

l
ult(x, t),

and the functions gl are defined by

gl(s) =


g(s), |s| ≤ l
g(l), s ≥ l
g(−l), s ≤ −l

(2.56)

Notice that for each value of the parameter l, the functions gl and fl satisfy the hypotheses of Theorem

2.6. Thus, there exists a solution (ul, ult) of (2.55) such that

ul ∈ C(0, T ;H1
Γ1

(Ω)) ∩ C1(0, T ;L2(Ω)),

for any finite T > 0 and

ult ∈ L2(0,∞;L2(Γ2)) ,
∂ul
∂ν
∈ L2(0,∞;L2(Γ2)) ,

(2.57)

fl(ult |Γ2) ∈ L2(0,∞;L2(Γ2)), gl(ut(., t− τ) |Γ2) ∈ L2(0,∞;L2(Γ2)).

We prove that we can extract a subsequence from the above sequence of solutions ul that has a limit

which is a solution of the original problem (2.1). To accomplish this we need the following.

Lemma 2.2. Under the assumptions of Theorem 2.1, we have as l −→ +∞ and ult(x, t − τ) −→
ut(x, t− τ) weakly in H1(Ω)

gl(ult(x, t− τ)) −→ g(ut(x, t− τ)) in L2(Γ2). (2.58)
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Proof of Lemma 2.2. We write∫
Γ
|gl(ult(x, t− τ))− g(ult(x, t− τ))|2 dΓ ≤ 2

[∫
Γl

|g(ult(x, t− τ))|2 dΓl +

∫
Γl

|g(l)|2 + |g(−l)|2 dΓl

]
,

(2.59)

where

Γl = {x ∈ Γ : |ult(x, t− τ)| ≥ l}.

Then, by Sobolev’s Embeddings

H1/2(Γ) ⊂ L
2n−2
n−2 (Γ), n > 2, (2.60)

H1/2(Γ) ⊂ Lp(Γ), 1 ≤ p <∞, n = 2. (2.61)

We have for n > 2 (∫
Γl

l
2n−2
n−2

) n−2
2n−2

≤
∫

Γ

(
|(ult(x, t− τ))|

2n−2
n−2

) n−2
2n−2

,

therefore

mesΓl ≤
∫

Γ

(
|(ult(x, t− τ))|

2n−2
n−2

) n−2
2n−2

l
−2n+2
n−2 . (2.62)

Analogously, for n = 2 the above inequality is valid with any exponent for l.

By assumptions (H2)(iii), (H2)(v) and by (2.62),∫
Γl

|g(ult(x, t− τ))|2 dΓl ≤M
∫

Γl

|ult(x, t− τ)|2 dΓl

≤M
[∫

Γl

|ult(x, t− τ)|
2n−2
n−2

]n−2
n−1

(mesΓl)
n−1−n−2

n−1 −→l−→∞ 0, (2.63)

∫
Γl

|g(l)|2 dΓl ≤Ml2mesΓl ≤M
[∫

Γl

|ult(x, t− τ)|
2n−2
n−2

]n−2
n−1

l2−
2(n−1)
n−2 −→l→∞ 0, (2.64)

where

M = max

{
M2

2 , (
a2

a1
M1)2

}
. (2.65)

Combining the results of (2.59),(2.63) and (2.64) gives (2.58).

By using regularity properties (2.57), we are in a position to apply the estimate (2.53) for each

t > 0, to obtain

El(t) + C1

{∫ t

0

∫
Γ2

{(f(ult) +
1

l
ult)ult + ult(x, s− τ)gl(ult(x, s− τ))} dΓ ds

}
≤ El(0), (2.66)

where El(t) is defined by (2.7) with u replaced by ul.

Recalling assumption (H2)(v) together with (H1)(iii), we readily obtain

El(0) ≤ C
(
|u0|H1(Ω), |u1|L2(Ω), |f0|L2(Γ2×(0,τ))

)
, (2.67)
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and from (H1)(ii), combined with (H2)(ii), (2.66) and (2.67), we infer that

|ult|L2(0,T ;L2(Γ2)) ≤ C
(
|u0|H1(Ω), |u1|L2(Ω), |f0|L2(Γ2×(0,τ))

)
, (2.68)

|ul|C(0,T ;H1
Γ1

(Ω)) + |ult|C(0,T ;L2(Ω)) ≤ C. (2.69)

Therefore, on a subsequence we have

ul −→ u weakly inH1(Ω× (0, T )), (2.70)

and by the trace theorem

ul|Γ −→ u|Γ strongly in L∞(0, T ;L2(Γ2)), (2.71)

ult|Γ −→ ut|Γ weakly in L2(0, T ;L2(Γ2)). (2.72)

Hypotheses (H1), (H2) together with the compactness of the embeddings in (2.60)-(2.61) and (2.72)

also give

g(ult(x, t− τ)) −→ g(ut(x, t− τ)) inL2(0, T ;L2(Γ2)), (2.73)

f(ult|Γ) −→ f∗ weakly in L2(0, T ;L2(Γ2)) for some f∗ ∈ L2(0, T ;L2(Γ2)). (2.74)

Let (ul, um) be the solutions of (2.55) corresponding to the parameters l and m. Then

|∇(ul − um)(t)|2L2(Ω) + |(ult − umt)(t)|2L2(Ω) + α1

∫ t

0

∫
Γ2

(f(ult)− f(umt))(ult − umt) dΓ ds

≤ α1(
1

l
+

1

m
)

∫ t

0

∫
Γ2

|ult|2 dΓ dt+ α1(
1

l
+

1

m
)

∫ t

0

∫
Γ2

|umt|2 dΓ ds

+ α2

∫ t

0

∫
Γ2

|gl(ult(x, s− τ))− gm(umt(x, s− τ))| |ult − umt| dΓ ds. (2.75)

The result (2.58) of Lemma 2.2 together with (2.72) and (2.68) implies the convergence to zero (when

l,m→∞) of the last term on the RHS of (2.75).

Similarly, by (2.72) the first two terms on the RHS of (2.75) converge to zero.

Thus, we have obtained

ul −→ u ∈ C(0, T ;H1
Γ1

(Ω)) ∩ C1(0, T ;L2(Ω)), (2.76)

for any finite T > 0 and

lim
l,m→∞

∫
Σ2

(f(ult)− f(umt))(ult − umt) dΣ2 = 0. (2.77)

From (2.72),(2.74) and (2.77) we also get

lim
l→∞

[∫
Σ2

f(ult)ult dΣ2 −
∫

Σ2

f(ult)ut dΣ2 −
∫

Σ2

f∗ult dΣ2

]
+ lim
m→∞

∫
Σ2

f(umt)umt dΣ2 = 0.
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Hence, again using (2.72),(2.74) and changing m to l we obtain

2 lim
l→∞

∫
Σ2

f(ult)ult dΣ2 = 2

∫
Σ2

f∗ut dΣ2. (2.78)

But (2.78) combined with (2.72), (2.74) and the monotonicity of f , by virtue of Lemma 13, p.42 in

[11], yields

f∗ = f(ut|Γ). (2.79)

Passing to the limit in (2.55) and recalling (2.79) together with (2.70)- (2.73), gives

utt(x, t)−∆u(x, t) = 0 in D
′
(Ω× (0,+∞)),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν = −α1f(ut)− α2g(ut(., .− τ)) in L2(0,+∞; Γ2),

ut(x, t− τ) = f0(x, t− τ) on Γ2 × (0, τ),

(2.80)

with the regularity
∂u

∂ν
, ut ∈ L2(0, T ;L2(Γ2)),

for any finite T > 0.

The proof of Theorem 2.1 is thus complete.

2.2.2 Proofs of Theorem 2.2 and Corollary 2.1.

Proof of Theorem 2.2.

Proposition 2.7. Assume the hypotheses (H1) − (H4). Let u be a solution of (2.1) guaranteed by

Theorem 2.1. Then∫ T−α

α

{
|∇u(t)|2L2(Ω) + |ut(t)|2L2(Ω)

}
dt ≤ C

{
|∇u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω))

}
+ C

{∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

}
+ CT ‖u‖2L2[0,T ;H1/2+ε(Ω)]

, (2.81)

where the constant C does not depend on T and α, 0 < ε < 1
2 are small enough arbitrary but fixed.

Proof of Proposition 2.7. As for the proof of Proposition 2.5 it is sufficient to establish (2.81) for

smooth solution u ∈ C(0, T ;H2(Ω)) ∩ C1(0, T ;H1
Γ1

(Ω)).

We multiply the first equation in (2.1) by m.∇u and we integrate by parts over Q = Ω× (0, T ). This

gives: ∫
Q
uttm∇u dQ = [ut(m∇u)]T0 −

1

2

∫
Σ2

m.ν|ut|2 dΣ2 +
n

2

∫
Q
|ut|2 dQ, (2.82)
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∫
Q

∆um∇u dQ =
1

2

∫
Σ1

∣∣∣∣∂u∂ν
∣∣∣∣2m.ν dΣ1 + (

n

2
− 1)

∫
Q
|∇u|2 dQ

+

∫
Σ2

∂u

∂ν
(m.∇u) dΣ2 −

1

2

∫
Σ2

|∇u|2m.ν dΣ2. (2.83)

From (2.82), (2.83) and assumption (H4), we have

n

2

∫
Q
{|ut|2 − |∇u|2} dQ+

∫
Q
|∇u|2 dQ ≤ C

{
|∇u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω))

}
+ C

{∫
Σ2

[
|ut|2 +

∣∣∣∣∂u∂ν
∣∣∣∣2 + |∇u|2

]
dΣ2

}
. (2.84)

Multiplying the first equation in (2.1) by u and integrating by parts, we get∫
Q
{|∇u|2 − |ut|2} dQ ≤ C

{
|u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω)) +

∫
Σ2

[
1

ε

∣∣∣∣∂u∂ν
∣∣∣∣2 + ε|u|2

]
dΣ2

}
, (2.85)

where ε > 0 can be taken arbitrary small. Combining (2.85) with (2.84) and applying trace theory,

yields∫
Q
{|ut|2 + |∇u|2} dQ ≤ C

{
|∇u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω)) +

∫
Σ2

[
|ut|2 +

∣∣∣∣∂u∂ν
∣∣∣∣2 + |∇u|2

]
dΣ2

}
.

(2.86)

But

|∇u|2 =

∣∣∣∣∂u∂ν
∣∣∣∣2 + |∇τu|2, (2.87)

where ∇τu is the tangential gradient of u.

Thus∫
Q
{|ut|2 + |∇u|2} dQ ≤ C

{
|∇u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω)) +

∫
Σ2

[
|ut|2 +

∣∣∣∣∂u∂ν
∣∣∣∣2 + |∇τu|2

]
dΣ2

}
.

(2.88)

From Lemma 7.2, inequality 7.5 in [44], we have∫ T−α

α

∫
Γ2

|∇τu|2 dΓ dt ≤ Cε,α

[∫
Σ2

[
|ut|2 +

∣∣∣∣∂u∂ν
∣∣∣∣2
]
dΣ2 + CT ‖u‖2L2[0,T ;H1/2+ε(Ω)]

]
. (2.89)

Applying (2.88) with (0, T ) replaced by (α, T − α) and using (2.89) yields∫ T−α

α

{
|∇u(t)|2L2(Ω) + |ut(t)|2L2(Ω)

}
dt ≤ C

{
|∇u|2L∞(0,T ;L2(Ω)) + |ut|2L∞(0,T ;L2(Ω))

}
+ C

{∫
Σ2

[
|ut|2 +

∣∣∣∣∂u∂ν
∣∣∣∣2
]
dΣ2

}
+ CT ‖u‖2L2[0,T ;H1/2+ε(Ω)]

. (2.90)
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The sought-after estimate (2.81) follows from (2.90) and the fact that

∂u

∂ν
(x, t) = −α1f(ut(x, t))− α2g(ut(x, t− τ)) on Σ2.

Proposition 2.8. Assume that the hypotheses (H1) − (H4) are fulfilled. Let T > 0 be sufficiently

large. Then

E(T ) ≤ CT
[∫

Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + g(ut(x, t− τ))ut(x, t− τ)} dΣ2

]
. (2.91)

Proof of Proposition 2.8. Set

E(t) = Es(t) + Ed(t),

where

Es(t) =
1

2

∫
Ω

{
|ut(x, t)|2 + |∇u(x, t)|2

}
dx,

and

Ed(t) =
ξ

2

∫
Γ2

∫ 1

0
G(ut(x, t− τρ)) dρ dΓ.

From the mean value theorem, the monotonicity of g and change of variable, we have∫ T

0
Ed(t) dt ≤ C

∫ T

0

∫
Γ2

g(ut(x, t− τ))ut(x, t− τ) dΓ dt. (2.92)

As for Es(t), we deduce from (2.33) and (2.81),∫ T−α

α
Es(t) dt ≤ CT [E(T ) + α1

∫
Σ2

ut(x, t)f(ut(x, t)) dΣ2 + α2

∫
Σ2

g(ut(x, t− τ))ut(x, t) dΣ2

+ τ−1ξ

∫
Σ2

G(ut(x, t− τ)) dΣ2 − τ−1ξ

∫
Σ2

G(ut(x, t)) dΣ2

+

∫
Σ2

{|ut(x, t)|2 +

∣∣∣∣∂u(x, t)

∂ν

∣∣∣∣2} dΣ2 + ‖u‖2
L2[0,T ;H1/2+ε(Ω)]

].

Therefore∫ T−α

α
Es(t) dt ≤ CT [E(T ) +

∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

+

∫
Σ2

G(ut(x, t− τ)) dΣ2 +

∫
Σ2

G(ut(x, t)) dΣ2 + ‖u‖2
L2[0,T ;H1/2+ε(Ω)]

].

On the other hand, for a fixed α∫ α

0
Es(t) dt+

∫ T

T−α
Es(t) dt ≤ 2αE(0)

≤ 2α{E(T ) +

∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

+ τ−1ξ

∫
Σ2

G(ut(x, t− τ)) dΣ2 − τ−1ξ

∫
Σ2

G(ut(x, t)) dΣ2}.
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Thus, ∫ T

0
Es(t) dt ≤ CT [E(T ) +

∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

+

∫
Σ2

G(ut(x, t− τ)) dΣ2 +

∫
Σ2

G(ut(x, t)) dΣ2 + ‖u‖2
L2[0,T ;H1/2+ε(Ω)]

]. (2.93)

Combining (2.93) and (2.92) yields∫ T

0
E(t) dt ≤ CT [E(T ) +

∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

+

∫
Σ2

G(ut(x, t− τ)) dΣ2 +

∫
Σ2

G(ut(x, t)) dΣ2 +

∫
Σ2

g(ut(x, t− τ))ut(x, t− τ) dΣ2

+ ‖u‖2
L2[0,T ;H1/2+ε(Ω)]

]. (2.94)

Then

E(T ) ≤ CT [

∫
Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dΣ2

+

∫
Σ2

G(ut(x, t− τ)) dΣ2 +

∫
Σ2

G(ut(x, t)) dΣ2 +

∫
Σ2

g(ut(x, t− τ))ut(x, t− τ) dΣ2]

+ CT ‖u‖2L2[0,T ;H1/2+ε(Ω)]
.

Again from the mean value theorem and the monotonicity of g, we have

G(ut(x, t− τ)) ≤ g(ut(x, t− τ))ut(x, t− τ). (2.95)

By using assumptions (H2)(iii), (H2)(v) and (2.95), we obtain

E(T ) ≤ CT
{∫

Σ2

{|ut(x, t)|2 + |f(ut(x, t))|2 + g(ut(x, t− τ))ut(x, t− τ)} dΣ2

}
+ CT ‖u‖2L2[0,T ;H1/2+ε(Ω)]

. (2.96)

To get the requested inequality (2.91) from (2.96), we need to absorb the lower order term |u|2
L2[0,T ;H1/2+ε(Ω)]

.

To achieve this, we employ a compactness uniqueness argument. Suppose that (2.91) is not true. Then,

there exists a sequence (un) of solution of problem (2.1) such that

En(T ) > n

[∫
Σ2

{|unt(x, t)|2 + |f(unt(x, t))|2 + g(unt(x, t− τ))unt(x, t− τ)} dΣ2

]
, (2.97)

where En(T ) is the energy corresponding to (un) at the time T .

From (2.96),

En(T ) ≤ CT
[∫

Σ2

{|unt(x, t)|2 + |f(unt(x, t))|2 + g(unt(x, t− τ))unt(x, t− τ)} dΣ2

]
+ CT ‖un‖2L2[0,T ;H1/2+ε(Ω)]

. (2.98)
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(2.98) together with (2.97) implies

n

[∫
Σ2

{|unt(x, t)|2 + |f(unt(x, t))|2 + g(unt(x, t− τ))unt(x, t− τ)} dΣ2

]
< CT

[∫
Σ2

{|unt(x, t)|2 + |f(unt(x, t))|2 + g(unt(x, t− τ))unt(x, t− τ)} dΣ2

]
+ CT ‖un‖2L2[0,T ;H1/2+ε(Ω)]

.

That is [∫
Σ2

{|unt(x, t)|2 + |f(unt(x, t))|2 + g(unt(x, t− τ))unt(x, t− τ)} dΣ2

]
<

CT
(n− CT )

‖un‖2L2[0,T ;H1/2+ε(Ω)]
. (2.99)

Denote

cn = ‖un‖L2(0,T ;H1/2+ε(Ω)) , ûn =
1

cn
un.

Thus

‖ûn‖L2(0,T ;H1/2+ε(Ω)) = 1. (2.100)

Dividing both sides of (2.99) by c2
n and using (2.100), we obtain∫

Σ2

{|ûnt(x, t)|2 +
|f(unt(x, t))|2

c2
n

+
g(unt(x, t− τ))unt(x, t− τ)

c2
n

}dΣ2 <
CT

n− CT
for all n > CT .

(2.101)

Thus, (2.101) implies

lim
n→+∞

∫
Σ2

|ûnt(x, t)|2 dΣ2 = 0, (2.102)

lim
n→+∞

∫
Σ2

|f(unt(x, t))|2

c2
n

dΣ2 = 0, (2.103)

lim
n→+∞

∫
Σ2

g(unt(x, t− τ))unt(x, t− τ)

c2
n

dΣ2 = 0. (2.104)

On the other hand, since each solution satisfies the energy estimate (2.98), we obtain after dividing

both sides of such estimate by c2
n and invoking (2.100)

1

c2
n

En(T ) ≤ CT {
∫

Σ2

{|ûnt(x, t)|2 +
|f(unt(x, t))|2

c2
n

+
g(unt(x, t− τ))unt(x, t− τ)

c2
n

}dΣ2 + 1}. (2.105)

From (2.105), it follows that the sequence (ûn) is bounded in H1(Ω × (0, T )). Since H1(Ω × (0, T ))

is compactly embedded in L2(0, T ;H1/2+ε(Ω)), there exists a subsequence still denoted by (ûn) such

that

ûn → û strongly in L2(0, T ;H1/2+ε(Ω)).
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Then from (2.100)

‖û‖L2(0,T ;H1/2+ε(Ω)) = 1. (2.106)

Moreover, ûn satisfies
ûntt(x, t)−∆ûn(x, t) = 0 in Ω× (0, T ),

ûn(x, t) = 0 on Σ1 = Γ1 × (0, T ),
∂ûn(x,t)
∂ν = −α1

f(unt(x,t))
cn

− α2
g(ûnt(x,t−τ))

cn
on Σ2.

(2.107)

Passing to the limit in (2.107), and invoking (2.102)-(2.104), and assumption (H2)(iii), gives

ût(x, t) = 0 on Σ2,

and 
ûtt(x, t)−∆û(x, t) = 0 in Ω× (0, T ),

û(x, t) = 0 on Σ1,
∂û(x,t)
∂ν = 0 on Σ2.

Thus v = ût ∈ C(0, T ;L2(Ω)) satisfies
vtt(x, t)−∆v(x, t) = 0 in Ω× (0, T ),

v(x, t) = 0 on Σ = Γ× (0, T ),
∂v(x,t)
∂ν = 0 on Σ2.

From Holmogren’s uniqueness Theorem ( [54], Chap. 1, Theorem.8.2), we conclude that

v(x, t) = 0 in Ω× (0, T ).

This implies

û(x, t) = û(x).

Thus u verifies 

−∆û(x) = 0 in Ω,

û(x) = 0 on Γ,

∂û(x)

∂ν
= 0 on Γ2.

The solution of the above problem is û = 0, which contradicts (2.106). Then, the desired inequality

(2.91) is proved.

Proposition 2.9. Assume (H1)− (H4). Then, the energy E(T ) of problem (2.1) satisfies

E(T ) + p(E(T )) ≤ E(0),

where p(.) is defined by (2.5), and T > 0 sufficiently large.
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Proof of Proposition 2.9. Denote

Σ3 = {ut ∈ L2(Σ2) : |ut| ≥ N a.e.},
Σ4 = Σ2 − Σ3.

From assumptions (H1) and (H2), we have∫
Σ3

{u2
t (x, t) + f2(ut(x, t))} dΣ3 ≤ (a−1

1 M−1
3 a2 +M1)

∫
Σ3

f(ut(x, t))ut(x, t) dΣ3. (2.108)

On the other hand, from (2.4)∫
Σ4

{u2
t (x, t) + f2(ut(x, t))} dΣ4 ≤

∫
Σ4

h(f(ut(x, t))ut(x, t)) dΣ4. (2.109)

By Jensen’s inequality,∫
Σ4

h(f(ut(x, t))ut(x, t)) dΣ4 ≤ mesΣ2 h

(
1

mesΣ2

∫
Σ2

f(ut(x, t))ut(x, t) dΣ2

)
= mesΣ2 h̃

(∫
Σ2

f(ut(x, t))ut(x, t) dΣ2

)
. (2.110)

Combining inequalities (2.108), (2.109), (2.110) with the result of Proposition 2.8 gives

E(T ) ≤ CT
{

(a−1
1 M−1

3 a2 +M1)

∫
Σ2

f(ut(x, t))ut(x, t) dΣ2 +

∫
Σ2

ut(x, t− τ)g(ut(x, t− τ)) dΣ2

}
+ CT mesΣ2 h̃

(∫
Σ2

f(ut(x, t))ut(x, t) dΣ2

)
≤ CT

{
(a−1

1 M−1
3 a2 +M1)

∫
Σ2

f(ut(x, t))ut(x, t) dΣ2 +

∫
Σ2

ut(x, t− τ)g(ut(x, t− τ)) dΣ2

}
+ CT mesΣ2 h̃

(∫
Σ2

{f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dΣ2

)
.

Setting

K1 =
1

CT mesΣ2
; C ′ =

a−1
1 M−1

3 a2 +M1

mesΣ2
,

we obtain

E(T ) ≤ C ′

K1

∫
Σ2

f(ut(x, t))ut(x, t) dΣ2 +
1

K1mesΣ2

∫
Σ2

ut(x, t− τ)g(ut(x, t− τ)) dΣ2

+
1

K1
h̃

(∫
Σ2

{f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dΣ2

)
,

or

K1E(T ) ≤ (cI + h̃)

(∫
Σ2

{f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dΣ2

)
,
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where

c = max {C ′, 1

mesΣ2
}.

But from (2.29), we have∫
Σ2

{f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dΣ2 ≤ C−1
1 (E(0)− E(T )).

Therefore

(cI + h̃)−1 (KE(T )) = p(E(T )) ≤ E(0)− E(T ),

with K = C1K1.

Hence

p(E(T )) + E(T ) ≤ E(0).

Completion of the proof of Theorem 2.2. Applying the result of Proposition 2.9 we obtain

for m = 0, 1, 2....

p(E(m(T + 1)) + E(m(T + 1)) ≤ E(mT ).

Thus, we are in a position to apply Lemma 3.3 in [43] with

sm = E(mT ), s0 = E(0).

This yields

E(mT ) ≤ S(m), m = 0, 1, 2, ...

where S(t) is a solution of the differential equation 2.9. Let t = mT + τ and recall the evolution

property, we obtain

E(t) ≤ E(mT ) ≤ S(m) ≤ S( t−τT ) ≤ S( tT − 1) for t > T,

which completes the proof of Theorem 2.2.

Proof of Corollary 2.1. It is sufficient to construct a function h having the property (2.4).

From (2.10) and (2.11), we have∫
Σ4

{u2
t (x, t) + f2(ut(x, t))} dΣ4 ≤ (1 + b21)

∫
Σ4

u2
t (x, t) dΣ4

≤ (1 + b21)

∫
Σ4

(b−1
2 f(ut(x, t))ut(x, t))

2
p+1 dΣ4

≤ (1 + b21)b
−2
p+1

2

∫
Σ4

(f(ut(x, t))ut(x, t))
2
p+1 dΣ4.
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We can take

h(s) = b
−2
p+1

2 (1 + b21)sm, where m =
2

p+ 1
≤ 1.

Then

p(s) = (cI + h̃)−1(Ks);

Therefore

cp+ d(b1, b2)sm = Ks,

where d is a constant that depends on b1 and b2.

Also, recall that

q(s) = s− (I + p)−1(s).

Since asymptotically (for s small) we have, for some constant α > 0 ,

p(s) ∼ αs1/m and therefore q(s) ∼ αs1/m,

by solving equation (2.9), we find

S(t)x =

{
c1(t+ c2x

1−p
2 )

2
1−p if p > 1

e−αtx if p = 1,
(2.111)

where c1 and c2 depend only on α and p.

Finally, the estimates (2.12) and (2.13) follow from Theorem 2.2.
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2.3 Stabilization of the wave equation with a nonlinear delay term

in the internal feedback

2.3.1 Proof of Theorem 2.3

In order to be able to manage the boundary condition with the delay term and inspired from [83] and

[62], we introduce the auxiliary variable:

y(x, ρ, t) = ut(x, t− τρ); x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then, the system (2.14) is equivalent to

utt(x, t)−∆u(x, t) + a(x) {α1f(ut(x, t)) + α2g(y(x, 1, t)))} = 0 in Ω× (0,+∞),

yt(x, ρ, t) + τ−1yρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

y(x, ρ, 0) = f0(x,−τρ) in Ω× (0, 1),

y(x, 0, t) = ut(x, t) in Ω× (0,+∞).

(2.112)

To prove Theorem 2.3, we adopt the same approach as the one used to prove Theorem 2.1.

Proposition 2.10. Assume that for the continuous f and g the hypotheses (H1)(iii) and (H2)(v)

are fulfilled. If u ∈ C(0, T ;H1
0 (Ω))∩C1(0, T ;L2(Ω)) is a solution to problem (2.14), then the following

energy identity holds for every t > 0

F (T )− F (0) = −α1

∫
Q
a(x)ut(x, t)f(ut(x, t)) dQ− α2

∫
Q
a(x)g(ut(x, t− τ))ut(x, t) dQ

− τ−1µ

2

∫
Q
a(x)[G(ut(x, t− τ))−G(ut(x, t))] dQ, (2.113)

and consequently

F (T )− F (0) ≤ −C1

∫
Q
a(x) {ut(x, t)f(ut(x, t)) + y(x, 1, t)g(y(x, 1, t))} dQ, (2.114)

where

C1 = min

{
α1 −

τ−1µ

2
a2 − α2a2,

τ−1µ

2
a1 + α2(a1 − 1)

}
,

with µ as in (2.19).

Proof. By virtue of the Lemma 2.2 in [43], it is enough to prove the identity (2.113) for smooth

solutions

u ∈ C(0, T ;H2(Ω)) ∩ C1(0, T ;H1
0 (Ω)).
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We multiply the first equation in (2.112) by ut and integrate by parts over Ω, we get

1

2

d

dt

∫
Ω
a(x)

{
|∇u(x, t)|2 + u2

t (x, t)
}
dx = −α1

∫
Ω
a(x)ut(x, t)f(ut(x, t)) dx

− α2

∫
Ω
a(x)g(y(x, 1, t))ut(x, t) dx. (2.115)

We multiply the second equation in (2.112) by µa(x) g(y(x, ρ, t)) and integrate over Ω × (0, 1), we

obtain ∫
Ω
a(x)

∫ 1

0
{µ yt(x, ρ, t)g(y(x, ρ, t)) + τ−1µ yρ(x, ρ, t)g(y(x, ρ, t))} dρ dx = 0.

We have

∂G

∂t
(y(x, ρ, t)) = yt(x, ρ, t).g(y(x, ρ, t)),

∂G

∂ρ
(y(x, ρ, t)) = yρ(x, ρ, t).g(y(x, ρ, t)).

Consequently,

µ
d

dt

∫
Ω
a(x)

∫ 1

0
G(y(x, ρ, t)) dρ dx = −τ−1µ

∫
Ω
a(x)

∫ 1

0

d

dρ
G(y(x, ρ, t)) dρ dx

= −τ−1µ

∫
Ω
a(x)[G(y(x, 1, t))−G(y(x, 0, t))] dx. (2.116)

From (2.115) and(2.116) we have

1

2

d

dt

∫
Ω

{
|∇u(x, t)|2 + u2

t (x, t)
}
dx+

µ

2

d

dt

∫
Ω
a(x)

∫ 1

0
G(y(x, ρ, t)) dρ dx

= −α1

∫
Ω
a(x)ut(x, t)f(ut(x, t)) dx− α2

∫
Ω
a(x)g(y(x, 1, t))ut(x, t) dx

− τ−1µ

2

∫
Ω
a(x)G(y(x, 1, t)) dx+

τ−1µ

2

∫
Ω
a(x)G(ut(x, t)) dx. (2.117)

We integrate both sides of (2.117) over (0, T ), we obtain

F (T )− F (0) = −α1

∫
Q
a(x)ut(x, t)f(ut(x, t)) dQ− α2

∫
Q
a(x)g(ut(x, t− τ))ut(x, t) dQ

− τ−1µ

2

∫
Q
a(x)[G(ut(x, t− τ))−G(ut(x, t))] dQ. (2.118)

From 2.25 and assumption (H2)(v), we have

G(ut(x, t)) ≤ a2ut(x, t)f(ut(x, t)),

−G(y(x, 1, t)) ≤ −a1y(x, 1, t)g(y(x, 1, t)).
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Hence

F (T )− F (0) ≤ −(α1 −
τ−1µa2

2
)

∫
Q
a(x)ut(x, t)f(ut(x, t)) dQ− α2

∫
Q
a(x)g(y(x, 1, t))ut(x, t) dQ

−τ−1µa1

2

∫
Q
a(x)y(x, 1, t)g(y(x, 1, t)) dQ. (2.119)

Let G∗ be the conjugate function of the concave function G

G∗(s) = sup
t∈R+

(st−G(t)).

Then G∗ is the Legendre transform of G, which is given by (Arnold ([8] p. 61-62))

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)] for all s ≥ 0.

and satisfies

s.t ≤ G∗(s) +G(t) for all s, t ≥ 0. (2.120)

But from the definition of G, we have

G∗(s) = sg−1(s)−G[(g−1(s)].

Hence

G∗(|g(y(x, 1, t))|) = g(y(x, 1, t))y(x, 1, t)−G(y(x, 1, t))

≤ (1− a1)y(x, 1, t)g(y(x, 1, t)). (2.121)

Making use of (2.119) and (2.120), we get

F (T )− F (0) ≤ −(α1 −
τ−1µa2

2
)

∫
Q
a(x)ut(x, t)f(ut(x, t)) dQ

− τ−1µa1

2

∫
Q
a(x)y(x, 1, t)g(y(x, 1, t)) dQ

+ α2

∫
Q
a(x)(G(|ut(x, t)|) +G∗(|g(y(x, 1, t))|)) dQ.

(2.121) together with assumption (H2)(v) implies

F (T )− F (0) ≤ −(α1 −
τ−1µa2

2
− a2α2)

∫
Q
a(x)ut(x, t)f(ut(x, t)) dQ

− (
τ−1µa1

2
− α2(1− a1))

∫
Q
a(x)y(x, 1, t)g(y(x, 1, t)) dQ.

Therefore

F (T )− F (0) ≤ −C1

∫
Q
{ut(x, t)f(ut(x, t)) + y(x, 1, t)g(y(x, 1, t))} dQ, (2.122)
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where

C1 = min

{
(α1 −

τ−1µa2

2
− α2a2), (

τ−1µa1

2
+ α2(a1 − 1))

}
,

with µ as in (2.19).

Theorem 2.11. Assume that

∗ The function g is Lipschitz continuous on R, with L as a Lipschitz constant. (2.123)

∗ f(s1)− f(s2) ≥ r(s1 − s2) for all s1 − s2 ≥ 0 and fixed r > 0. (2.124)

Then, for each (u0, u1, f0) ∈ H1
0 (Ω)× L2(Ω)× L2(Ω;L2(0, τ)), problem (2.14) has a unique solution

u ∈ C(0,∞;H1
0 (Ω)) ∩ C1(0,∞;L2(Ω)).

Proof of Theorem 2.11. This follows from nonlinear semigroup theory.

Denote by Ĥ the Hilbert space.

Ĥ = H1
0 (Ω)× L2(Ω)× L2(Ω;L2(0, 1)),

where

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}.

Next define

Ã : D(Ã) ⊂ Ĥ → Ĥ,

Ã

 ζ

η

θ

 =

 η

∆ζ − a {α1f(η) + α2g(θ(.; 1))}
−τ−1θρ

 , (2.125)

with

D(Ã) =
{

(ζ, η, θ) ∈ H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω)× L2(Ω;H1(0, 1)); η = θ(x, 0) in Ω
}
.

Then we can rewrite (2.112) as an abstract Cauchy problem on Ĥ
dW

dt
(t) = Ã(W (t)),

W (0) = W0,

(2.126)

where

W (t) = (u(x, t), ut(x, t), y(x, ρ, t))T , W
′
(t) = (ut(x, t), utt(x, t), yt(x, ρ, t))

T ,W0 = (u0, u1, f0)T .



2.3. STABILIZATION OF THE WAVE EQUATION WITH A NONLINEAR DELAY TERM IN
THE INTERNAL FEEDBACK 39

We will show that the operator Ã defined by (2.125) is maximal dissipative on the Hilbert space Ĥ
equipped with the inner product

〈 ζ

η

θ

 ,

 ζ̃

η̃

θ̃

〉
Ĥ

=

∫
Ω

{
∇ζ(x) .∇ζ̃(x) + η(x) . η̃(x)

}
dx+ δ

∫
Ω
a(x)

∫ 1

0
θ(x, ρ) . θ̃(x, ρ) dρ dx,

with

τα2L < δ < 2τ(α1r −
α2L

2
), (2.127)

L

r
<
α1

α2
. (2.128)

First, we prove that Ã is dissipative.

Let U = (ζ, η, θ)T ∈ D(Ã) and V = (ζ̃, η̃, θ̃)T ∈ D(Ã). Then〈
ÃU − ÃV ;U − V

〉
Ĥ

=

∫
Ω
∇(η(x)− η̃(x))∇(ζ(x)− ζ̃(x)) dx

−
∫

Ω
∆(ζ(x)− ζ̃(x)) (η(x)− η̃(x)) dx

− α1

∫
Ω
a(x)(f(η(x))− f(η̃(x))) (η(x)− η̃(x)) dx

− α2

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))(η(x)− η̃(x)) dx

− δτ−1

∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ)(θ(x, ρ)− θ̃(x, ρ)) dρ dx.

From Green’s second theorem, we have〈
ÃU − ÃV ;U − V

〉
Ĥ

= −α1

∫
Ω
a(x)(f(η(x))− f(η̃(x)))(η(x)− η̃(x)) dx

− α2

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))(η(x)− η̃(x)) dx

− δτ−1

∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ)(θ(x, ρ)− θ̃(x, ρ)) dρ dx.

Integrating by parts in ρ, we obtain∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ)(θ(x, ρ)− θ̃(x, ρ)) dρ dx =

1

2

∫
Ω
a(x)(θ(x, 1)− θ̃(x, 1))2 dx

− 1

2

∫
Ω
a(x)(θ(x, 0)− θ̃(x, 0))2 dx.
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Therefore〈
ÃU − ÃV ;U − V

〉
Ĥ

= −α1

∫
Ω
a(x)(f(η(x))− f(η̃(x)))(η(x)− η̃(x)) dx

− α2

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))× (η(x)− η̃(x)) dx

− δτ−1

2

∫
Ω
a(x)(θ(x, 1)− θ̃(x, 1))2 dx+

δτ−1

2

∫
Ω
a(x)(θ(x, 0)− θ̃(x, 0))2 dx.

By using assumptions (2.39), (2.40) and the Cauchy-Schwartz’s inequality, we obtain〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ −α1r

∫
Ω
a(x)|η(x)− η̃(x)|2 dx+

α2L

2

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1)|2 dx

+
α2L

2

∫
Ω
a(x)|η(x)− η̃(x)|2 dx− δτ−1

2

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1)|2 dx

+
δτ−1

2

∫
Ω
a(x)|η(x)− η̃(x)|2 dx.

Therefore 〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ −

(
α1r −

α2L

2
− δτ−1

2

)∫
Ω
a(x)|η(x)− η̃(x)|2 dx

−
(
−α2L

2
+
δτ−1

2

)∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1)|2 dx.

From (2.127), we conclude that 〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ 0.

Thus Ã is dissipative.

In order to establish maximality, we need to prove the range condition

range(λI − Ã) = Ĥ for a fixed λ.

Let (k, l,m)T ∈ Ĥ we seek a w = (ζ, η, θ)T ∈ D(Ã) solution of

(λI − Ã)w = (k, l,m)T ,

or equivalently

λ ζ − η = k, (2.129)

λ η −∆ζ + α1 a f(η) + α2 a g(θ(x, 1)) = l, (2.130)

λ θ + τ−1θρ = m. (2.131)

Hence

ζ =
1

λ
(η + k). (2.132)
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From (2.131) and the last line of (2.112) we have{
θρ(x, ρ) = −τλθ(x, ρ) + τm(x, ρ), ρ ∈ (0, 1)

θ(x, 0) = η(x)

The unique solution for the above initial value problem is given by

θ(x, ρ) = η(x)e−λτρ + τe−λτρ
∫ ρ

0
m(x, σ)eλτσ dσ, x ∈ Ω, ρ ∈ (0, 1),

and in particular

θ(x, 1) = η(x)e−λτ + Z0, (2.133)

where

Z0 = τe−λτ
∫ 1

0
m(x, σ)eλτσdσ, x ∈ Ω.

Insertion (2.132) and (2.133) into problem (2.130) yields

λη − 1

λ
∆η + α1 a f(η) + α2 a g(η e−λτ + Z0) = l +

1

λ
∆k ∈ L2(Ω).

Set

T̃ η = − 1

λ
∆η + α1 a f(η) + α2 a g(η e−λτ + Z0) + λη. (2.134)

Lemma 2.3. The operator T̃ given by (2.134) is surjective from L2(Ω) onto L2(Ω)

Proof. Let

T̃ η = Bη + Cη , η ∈ L2(Ω),

where B : L2(Ω) −→ L2(Ω) defined by

Bη = α1 a f(η) + α2 a g(η e−λτ + Z0),

and C : D(C) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) −→ L2(Ω) defined by

Cη = λη − 1

λ
∆η.

According to Barbu [11] (Corollary 1.3, p.48), in order to establish surjectivity of the operator T̃ , it is

sufficient to prove that B is monotone, hemicontinuous, C is maximal monotone and B+C is coercive.

Monotonicity of B.

Let η, v ∈ L2(Ω). Then

〈(−B)η − (−B)v, η − v〉L2(Ω) = −α1

∫
Ω
a(x)(f(η)− f(v))(η − v) dx

− α2

∫
Ω
a(x)(g(ηe−λτ + Z0)− g(v e−λτ + Z0))(η − v) dx

≤ −α1r

∫
Ω
a(x)|η − v|2 dx+ α2Le

−λτ
∫

Ω
a(x)|η − v|2 dx

≤ −(α1r − α2Le
−λτ )

∫
Ω
a(x)|η − v|2 dx.
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By (2.128), we conclude that

〈(−B)η − (−B)v, η − v〉L2(Ω) ≤ 0.

Thus (−B) is dissipative, then B is monotone.

Hemicontinuity of B.

Let η, v, w ∈ L2(Ω). We will prove that the function

t→< B(η + tv), w >L2(Ω),

is continuous. Indeed, we have

|〈B(η + tv)− B(η + t0v), w〉L2(Ω)|

=

∣∣∣∣α1

∫
Ω
a(x)(f(η + tv)− f(η + t0v))w dx

+ α2

∫
Ω
a(x)(g((η + tv)e−λτ + Z0)− g((η + t0v)e−λτ + Z0))w dx

∣∣∣∣
≤
∣∣∣∣α1

∫
Ω
a(x)(f(η + tv)− f(η + t0v))w dx

∣∣∣∣
+

∣∣∣∣α2

∫
Ω
a(x)(g((η + tv)e−λτ + Z0)− g((η + t0v)e−λτ + Z0))w dx

∣∣∣∣
≤ c‖w‖L2(Ω)‖a‖∞

{
‖f(η + tv)− f(η + t0v)‖L2(Ω)

+ ‖g((η + tv)e−λτ + Z0)− g((η + t0v)e−λτ + Z0)‖L2(Ω)

}
.

From assumption (2.123), we have

|〈B(η + tv)− B(η + t0v), w〉L2(Ω)| ≤ c‖w‖L2(Ω)‖a‖∞
{
‖f(η + tv)− f(η + t0v)‖L2(Ω)

+ L‖(t− t0)v‖L2(Ω)

}
.

The continuity of f allows us to deduce that

|〈B(η + tv)− B(η + t0v), w〉L2(Ω)| < ε̃,

for |t− t0| < δ̃. This proves the continuity of the function t 7−→ 〈B(η + tv), w〉.
Maximal monotonicity of C.
For η, v ∈ V, we have

〈Cη − Cv, η − v〉L2(Ω) = 〈λη − 1

λ
∆η − λv +

1

λ
∆v, η − v〉L2(Ω)

= λ‖η − v‖2L2(Ω) +
1

λ
‖∇(η − v)‖2L2(Ω) ≥ 0. (2.135)
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According to Barbu [11] (Theorem 1.3, p.40), the operator C continuous and monotone then it is

maximal monotone.

Coercivity of B + C.

〈T̃ η, η〉L2(Ω) = 〈λη − 1

λ
∆η + α1 a f(η) + α2 a g(η e−λτ + Z0) η〉L2(Ω)

= λ

∫
Ω
|η|2 dx+

1

λ

∫
Ω
|∇η|2 dx+ α1

∫
Ω
a f(η) η dx+ α2

∫
Ω
a g(η e−λτ + Z0) η dx

≥ λ
∫

Ω
|η|2 dx+

1

cpλ

∫
Ω
|η|2 dx+ α1

∫
Ω
a f(η) η dx+ α2

∫
Ω
a g(η e−λτ + Z0) η dx,

where cp > 0 is called Poincaré constant.

By using (2.123) and (2.124), we obtain

〈T̃ η, η〉L2(Ω) ≥ λ
∫

Ω
|η|2 dx+

1

cpλ

∫
Ω
|η|2 dx+ α1r‖a‖∞

∫
Ω
|η|2 dx

− α2 L

2
‖a‖∞

∫
Ω
|η|2 dx− α2 Lc

2
‖a‖∞

∫
Ω
|η|2 dx

≥
(
λ+

1

cpλ
+ α1r‖a‖∞ −

α2 L

2
‖a‖∞ −

α2 Lc

2
‖a‖∞

)∫
Ω
|η|2 dx,

where ‖Z0‖2L2(Ω) ≤ c.
Therefore

〈T̃ η, η〉L2(Ω) ≥ C‖η‖2L2(Ω),

for some constant C > 0 as long as λ > α2 L
2 ‖a‖∞(1 + c).

The operator T̃ is surjective from L2(Ω) onto L2(Ω). One easily shows that (ζ, η, θ) is also in D(Ã).

Indeed from (2.130), we have

−∆ζ + α1 a f(η) + α2 a g(θ(x, 1)) = l − λ η ∈ L2(Ω).

Thus ∆ζ ∈ L2(Ω). Then ζ ∈ H2(Ω) ∩H1
0 (Ω). By using (2.129) and (2.131), we have η ∈ H1

0 (Ω) and

θ ∈ L2(Ω, H1(0, 1)).

From nonlinear semigroup theory and the density of D(Ã) in Ĥ, we obtain if (u0, u1, f0) ∈ Ĥ unique

existence of the solution

u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)),

for any finite T > 0.

We consider next the following approximation of system (2.14) with l −→ +∞ as the parameter of

approximation,
ultt(x, t)−∆ul(x, t) + a(x) {α1fl(ult(x, t)) + α2gl(ult(x, t− τ))} = 0 in Ω× (0,+∞),

ul(x, 0) = u0(x), ult(x, 0) = u1(x) in Ω,

ul(x, t) = 0 on Γ× (0,+∞),

ult(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

(2.136)
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where

fl(ult(x, t)) = f(ult(x, t)) +
1

l
ult(x, t),

and the gl are defined by

gl(s) =


g(s), |s| ≤ l
g(l), s ≥ l
g(−l), s ≤ −l

(2.137)

Notice that for each value of the parameter l, the functions gl and fl satisfy the hypotheses of Theorem

2.11.

Thus, there exists a solution (ul, ult) of (2.136) such that

ul ∈ C([0,+∞);H1
0 (Ω)) ∩ C1([0,∞);L2(Ω)),

and

ult ∈ L2(0,∞;L2(Ω)) , fl(ult) ∈ L2(0,∞;L2(Ω)) , gl(ult(x, t− τ)) ∈ L2(0,∞;L2(Ω)). (2.138)

We prove that we can extract a subsequence from the above sequence of solutions ul, that has a limit

which is a solution of the original problem (2.14).

To accomplish this we need the following.

Lemma 2.4. Under the assumptions of Theorem 2.3. We have as l −→ +∞ and ult(x, t − τ) −→
ut(x, t− τ) weakly in H1(Ω)

gl(ult(x, t− τ)) −→ g(ut(x, t− τ)) in L2(Ω). (2.139)

Proof. We write∫
Ω
|gl(ult(x, t− τ))− g(ult(x, t− τ))|2 dx ≤ 2

[∫
Ωl

|g(ult(x, t− τ))|2 dΩl +

∫
Ωl

|g(l)|2 + |g(−l)|2 dΩl

]
,

(2.140)

where

Ωl = {x ∈ Ω : |ult(x, t− τ)| ≥ l}.

Then, by Sobolev’s Embeddings

H1(Ω) ⊂ L
2n
n−2 (Ω), n > 2, (2.141)

H1(Ω) ⊂ Lp(Ω), 1 ≤ p <∞, n = 2. (2.142)

We have for n > 2 (∫
Ωl

l
2n
n−2

)n−2
2n

≤
∫

Ω

(
|(ult(x, t− τ))|

2n
n−2

)n−2
2n

,

therefore

mesΩl ≤
∫

Ω

(
|(ult(x, t− τ))|

2n
n−2

)n−2
2n

l
−2n
n−2 . (2.143)
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Analogously, for n = 2 the above inequality is valid with any exponent for l.

By assumptions (H2) (iii), (H2)(v) and by (2.143),∫
Ωl

|g(ult(x, t− τ))|2 dΩl ≤ c
∫

Ωl

|ult(x, t− τ)|2 dΩl

≤ c
[∫

Ωl

|ult(x, t− τ)|
2n
n−2

]n−2
n

(mesΩl)
n−(n−2)

n −→l−→∞ 0, (2.144)

since n− 2 < n.∫
Ωl

|g(l)|2 dΩl ≤ c l2mesΩl ≤ c
[∫

Ωl

|ult(x, t− τ)|
2n
n−2

]n−2
2n

l2−
2n
n−2 −→l→∞ 0. (2.145)

Combining the results of (2.140),(2.144) and (2.145) gives (2.139).

We are in a position to apply energy estimate (2.114) for each t > 0, we obtain

Fl(t) + C

{∫ t

0

∫
Ω
a(x){(f(ult(x, t)) +

1

l
ult(x, t))ult(x, t)) + ult(x, t− τ)gl(ult(x, t− τ))} dx ds

}
≤ Fl(0), (2.146)

where Fl(t) is defined by (2.18) with u (respectively G) replaced by ul (respectively Gl).

Fl(0) ≤ C
(
|u0|H1(Ω), |u1|L2(Ω), |f0|L2(Ω×(0,τ))

)
. (2.147)

From hypotheses (H1), (H2), (2.146) and (2.147), we infer that

|ult|L2(0,T ;L2(Ω)) ≤ C
(
|u0|H1(Ω), |u1|L2(Ω), |f0|L2(Ω×(0,τ))

)
(2.148)

|ul|C(0,T ;H1
0 (Ω)) + |ult|C(0,T ;L2(Ω)) ≤ C. (2.149)

Therefore, on a subsequence we have

ul −→ u weakly inH1(Ω× (0, T )), (2.150)

ult −→ ut weakly inL2(0, T ;L2(Ω)). (2.151)

Hypotheses (H1), (H2) together with compactness of the embeddings (2.141)-(2.142) and (2.151)

together also give.

g(ult(x, t− τ)) −→ g(ut(x, t− τ)) inL2(0, T ;L2(Ω)), (2.152)

f(ult) −→ f∗ ∈ L2(0, T ;L2(Ω)) weakly in L2(0, T ;L2(Ω)) for some f∗ ∈ L2(0, T ;L2(Ω)). (2.153)

Let (ul, um) be the solutions of (2.136) corresponding to the parameter l and m. Then from the energy

identity

|∇(ul − um)(t)|2L2(Ω) + |(ult − umt)(t)|2L2(Ω) + α1

∫ t

0

∫
Ω
a(x)(f(ult)− f(umt))(ult − umt) dx ds

≤ (
1

l
+

1

m
)α1

∫ t

0

∫
Ω
a(x)|ult|2 dx + (

1

l
+

1

m
)α1

∫ t

0

∫
Ω
a(x)|umt|2 dx ds

+ α2

∫ t

0

∫
Ω
a(x)|gl(ult(x, s− τ))− gm(umt(x, s− τ))| |ult − umt| dx ds. (2.154)



2.3. STABILIZATION OF THE WAVE EQUATION WITH A NONLINEAR DELAY TERM IN
THE INTERNAL FEEDBACK 46

The result (2.139) of Lemma 2.4 together with (2.150), (2.151) and (2.148) imply the convergence to

zero (when l,m→∞) of the last two terms on the right hand side (2.154).

Similarly, by (2.151) the first two terms on the right hand side of (2.154) converge to zero.

Thus, we have obtained

ul −→ u ∈ C(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)), (2.155)

and

lim
l,m→∞

∫ T

0

∫
Ω

(f(ult)− f(umt))(ult − umt) dx dt = 0. (2.156)

From (2.151),(2.153) and (2.156) we also obtain

lim
l→∞

[∫ T

0

∫
Ω
f(ult)ult dx dt−

∫ T

0

∫
Ω
f(ult)ut dx dt−

∫ T

0

∫
Ω
f∗ult dx dt

]
+ lim
m→∞

∫ T

0

∫
Ω
f(umt)umt dx dt = 0.

Hence, again using (2.151),(2.153) and changing m to l we obtain

2 lim
l→∞

∫ T

0

∫
Ω
f(ult)ult dx dt = 2

∫ T

0

∫
Ω
f∗ut dx dt. (2.157)

But (2.157) combined with (2.151),(2.153) and monotonicity of f , according to Barbu [11] ( Lemma

13, p. 42), yields

f∗ = f(ut). (2.158)

Passing to the limit in (2.136) and recalling (2.158) together with (2.150)- (2.152) gives
utt(x, t)−∆u(x, t) + a(x) {α1f(ut(x, t)) + α2g(ut(x, t− τ))} = 0 in D

′
(Ω× (0,+∞)),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

(2.159)

The proof of Theorem 2.3 is thus complete.

2.3.2 Proofs of Theorem 2.4 and Corollary 2.2.

Proof of Theorem 2.4.

Proposition 2.12. There exists a time T ∗ such that for all T > T ∗, there exists a positive constant

CT such that

F (T ) ≤ CT
[∫ T

0

∫
Ω
a(x){|ut(x, t)|2 + |f(ut(x, t))|2 + g(ut(x, t− τ))ut(x, t− τ)} dx dt

]
. (2.160)
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Proof. We write the solution u of (2.14) as u = ϕ+ v where ϕ solves
ϕtt(x, t) = ∆ϕ(x, t) in Ω× (0; +∞),

ϕ(x, t) = 0 on Γ× (0,+∞),

ϕ(x, 0) = u0(x), ϕt(x, 0) = u1(x) in Ω,

(2.161)

and v satisfies
vtt(x, t) = ∆v(x, t)− a(x){α1f(ut(x, t))− α2g(ut(x, t− τ))} in Ω× (0; +∞),

v(x, t) = 0 on Γ× (0,+∞),

v(x, 0) = vt(x, 0) = 0 in Ω.

(2.162)

Denote by Fϕ(t) the standard energy of (2.161), that is

Fϕ(t) =
1

2

∫
Ω

{
|ϕt(x, t)|2 + |∇ϕ(x, t)|2

}
dx,

and Fv(t) the standard energy of (2.162),

Fv(t) =
1

2

∫
Ω

{
|vt(x, t)|2 + |∇v(x, t)|2

}
dx.

It is follows from [ [62] Proposition 4.2] that for all T > T0, there exists a positive constant c depending

on T such that

Fϕ(0) ≤ c
∫ T

0

∫
ω
|ϕt(x, t)|2 dx dt.

Using (2.15) we get

Fϕ(0) ≤ c

a0

∫ T

0

∫
Ω
a(x)|ϕt(x, t)|2 dx dt. (2.163)

On the other hand, from the mean value theorem for integrals and monotonicity of g, we have

G(s) =

∫ s

0
g(r) dr ≤ sg(s).

Therefore

µ

2

∫
Ω
a(x)

∫ 1

0
G(ut(x,−τρ)) dρ dx ≤ µ

2

∫
Ω
a(x)

∫ 1

0
a(x)g(ut(x,−τρ))ut(x,−τρ) dρ dx.

By a change of variable, we obtain for T > τ

µ

2

∫
Ω
a(x)

∫ 1

0
G(ut(x,−τρ)) dρ dx ≤ c

∫ T

0

∫
Ω
a(x)g(ut(x, t− τ))ut(x, t− τ) dx dt. (2.164)
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If we take T > T ∗ := max {T0, τ}, since the energy is non-increasing, from (2.163) and (2.164) we

deduce that

F (T ) ≤ F (0) = Fϕ(0) +
µ

2

∫
Ω
a(x)

∫ 1

0
G(ut(x,−τρ)) dρ dx

≤ CT
∫ T

0

∫
Ω
a(x)

{
|ϕt(x, t)|2 + g(ut(x, t− τ))ut(x, t− τ)

}
dx dt

≤ CT
∫ T

0

∫
Ω
a(x)

{
|ut(x, t)|2 + |vt(x, t)|2 + g(ut(x, t− τ))ut(x, t− τ)

}
dx dt

≤ CT
∫ T

0

∫
Ω
a(x)

{
|ut(x, t)|2 + |f(ut(x, t))|2 + g(ut(x, t− τ))ut(x, t− τ)

}
dx dt

+ CT

∫ T

0

∫
Ω
a(x)|vt(x, t)|2 dx dt︸ ︷︷ ︸

:=K

. (2.165)

It remains to estimate the term K.

We differentiate the energy function Fv(t) with respect to t, we obtain

d

dt
Fv(t) = −

∫
Ω
a(x){α1f(ut(x, t))vt(x, t) + α2g(ut(x, t− τ))vt(x, t)} dx,

from which we get after using Cauchy-Schwarz’s inequality

d

dt
Fv(t) ≤ C

∫
Ω
a(x){|f(ut(x, t))|2 + |vt(x, t)|2 + |g(ut(x, t− τ))|2} dx,+

∫
Ω
|vt(x, t)|2 dx.

From the definition of Fv(t), we obtain

d

dt
Fv(t) ≤ Fv(t) + C

∫
Ω
a(x){|f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dx.

Multiplying the last inequality by (e−t) and integrating over (0, t), we get

Fv(t) ≤ Cet
∫ t

0

∫
Ω
a(x){|f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dx dt.

We conclude for t ∈ (0, T ), that is

Fv(t) ≤ C
∫ T

0

∫
Ω
a(x){|f(ut(x, t))|2 + |g(ut(x, t− τ))|2} dx dt,

which gives∫ T

0

∫
Ω
|vt(x, t)|2 dx dt ≤ C

∫ T

0

∫
Ω
a(x){|f(ut(x, t))|2 + |ut(x, t)|2 + |g(ut(x, t− τ))|2} dx dt.

By using assumptions (H2)(iii) and (H2)(v), we have

K :=

∫ T

0

∫
Ω
a(x)|vt(x, t)|2 dx dt

≤ C
∫ T

0

∫
Ω
a(x){|f(ut(x, t))|2 + |ut(x, t)|2 + g(ut(x, t− τ))ut(x, t− τ)} dx dt. (2.166)

Finally, combining (2.166) and (2.165) we obtain the desired estimate given in (2.160).
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Proposition 2.13. Assume (H1) and (H2). Then, the energy F (T ) of problem (2.14) satisfies

F (T ) + p̂(F (T ) ≤ F (0), (2.167)

where p̂(.) is defined by (2.16), and T > 0 sufficiently large.

Proof. Denote

Q1 = {ut ∈ L2(Q) : |ut| ≥ δ a.e.},
Q2 = Q−Q1.

From hypotheses (H1) and (H2), we have∫
Q1

a(x){u2
t (x, t) + f2(ut(x, t))} dQ1 ≤ (a−1

1 M−1
3 a2 +M1)

∫
Q1

a(x)f(ut(x, t))ut(x, t) dQ1. (2.168)

On the other side, from (2.4) and from the fact that h is concave and increasing, having in mind that

a(x) ≤ ‖a‖∞ + 1,

and
a(x)

1 + ‖a‖∞
≤ a(x),

we deduce that∫
Q2

a(x){u2
t (x, t) + f2(ut(x, t))} dQ2 ≤

∫
Q2

a(x)h(f(ut(x, t))ut(x, t)) dQ2

=

∫
Q2

(1 + ‖a‖∞)
a(x)

1 + ‖a‖∞
h(f(ut(x, t))ut(x, t)) dQ2

≤
∫
Q2

(1 + ‖a‖∞)h

(
a(x)

1 + ‖a‖∞
f(ut(x, t))ut(x, t)

)
dQ2

≤
∫
Q2

(1 + ‖a‖∞)h(a(x)f(ut(x, t))ut(x, t)) dQ2. (2.169)

By Jensen’s inequality,

(1 + ‖a‖∞)

∫
Q2

h(a(x)f(ut(x, t))ut(x, t)) dQ2

≤ (1 + ‖a‖∞)mesQh

(
1

mesQ

∫
Q
a(x)f(ut(x, t))ut(x, t) dQ

)
= (1 + ‖a‖∞)mesQ ĥ

(∫
Q
a(x)f(ut(x, t))ut(x, t) dQ

)
. (2.170)
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Combining inequalities (2.168), (2.169) and (2.170) with the result of Proposition 2.12 gives

F (T ) ≤ CT
{

(a−1
1 M−1

3 a2 +M1)

∫
Q
a(x)f(ut(x, t))ut(x, t) dQ+

∫
Q
a(x)ut(x, t− τ)g(ut(x, t− τ)) dQ

}
+ CT (1 + ‖a‖∞)mesQ ĥ

(∫
Q
a(x)f(ut(x, t))ut(x, t) dQ

)
≤ CT

{
(a−1

1 M−1
3 a2 +M1)

∫
Q
a(x)f(ut(x, t))ut(x, t) dQ+

∫
Q
a(x)ut(x, t− τ)g(ut(x, t− τ)) dQ

}
+ CT (1 + ‖a‖∞)mesQ ĥ

(∫
Q
a(x){f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dQ

)
.

(2.171)

Setting

K1 =
1

CT (1 + ‖a‖∞)mesQ
; C ′ =

a−1
1 M−1

3 a2 +M1

(1 + ‖a‖∞)mesQ
,

we obtain

F (T ) ≤ C ′

K1

∫
Q
a(x)f(ut(x, t))ut(x, t) dQ

+
1

K1 (1 + ‖a‖∞)mesQ

∫
Q
a(x)ut(x, t− τ)g(ut(x, t− τ)) dQ

+
1

K1
ĥ

(∫
Q
a(x){f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dQ

)
.

Set

C ′′ = max

{
C ′,

1

(1 + ‖a‖∞)mesQ

}
,

consequently

K1 F (T ) ≤ (C ′′I + ĥ)

(∫
Q
a(x){f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dQ

)
. (2.172)

On the other hand, by using the inequality (2.114), we obtain∫
Q
a(x){f(ut(x, t))ut(x, t) + ut(x, t− τ)g(ut(x, t− τ))} dQ ≤ C−1

1 (F (0)− F (T )). (2.173)

By (2.172) and (2.173), we obtain

(C ′′I + ĥ)−1 (K2 F (T )) = p̂(F (T ) ≤ F (0)− F (T ),

where K2 = C1K1.

Finally,

p̂(F (T )) + F (T ) ≤ F (0).
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Applying the result of Proposition 2.13 we obtain for m = 0, 1, 2....

p̂(F (m(T + 1)) + F (m(T + 1)) ≤ F (mT ).

Thus, we are in a position to apply [[43], Lemma 3.3, p.531] with

sm = F (mT ), s0 = F (0).

This yields

F (mT ) ≤ S(m), m = 0, 1, 2, ...

Let t = mT + τ and recall the evolution property, we obtain

F (t) ≤ F (mT ) ≤ S(m) ≤ S( t−τT ) ≤ S( tT − 1) for t > T,

which completes the proof of Theorem 2.4.

� Proof of Corollary 2.2

It is enough to construct a function h with the property (2.4).

From hypotheses (2.22) and (2.23), we have∫
Q2

a(x){u2
t (x, t) + f2(ut(x, t))} dQ2 ≤ (1 + b2)

∫
Q2

a(x)u2
t (x, t) dQ2

≤ (1 + b2)

∫
Q2

a(x)(ã−1f(ut(x, t))ut(x, t))
2
p+1 dQ2

≤ (1 + b2)ã
−2
p+1

∫
Q2

a(x)(f(ut(x, t))ut(x, t))
2
p+1 dQ2.

We can take

ĥ(s) = ã
−2
p+1 (1 + b2)sm, where m =

2

p+ 1
≤ 1.

Then

p̂(s) = (C ′′I + ĥ)−1(K2s).

Therefore

C ′′p̂+ d(ã, b)sm = K2s

where d is a suitable constant depending on ã, b.

Also, recall that

q̂(s) = s− (I + p̂)−1(s).
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Since asymptotically (for s small) we have, for some constant β > 0 ,

p̂(s) ∼ βs1/m and therefore q̂(s) ∼ βs1/m,

by solving equation (2.21) with q̂ as above, we obtain

S(t)x =

{
c1(t+ c2x

1−p
2 ) 2

1−p if p > 1

e−βtx if p = 1,
(2.174)

where c1, c2 depend only on β and p̂.

Finally, (2.24) follows from Theorem 2.4. The proof of Corollary 2.2 is complete.



Chapter 3

Stability of the Schrödinger equation

with a delay term in the nonlinear

boundary or internal feedbacks

3.1 Introduction

In this chapter, we study stability problems for the Schrödinger equation with a nonlinear delay term

in the boundary or internal feedbacks.

Let Ω be an open bounded domain of Rn with smooth boundary Γ which consists of two non-empty

parts Γ1 and Γ2 such that, Γ1 ∪ Γ2 = Γ with Γ1 ∩ Γ2 = ∅.
In addition to these standard hypothesis, we assume the following.

(A) There exists x0 ∈ Rn such that, with m(x) = x− x0,

m(x).ν(x) ≤ 0 on Γ1, (3.1)

where ν(.) is the unit normal on Γ pointing towards the exterior of Ω.

In Ω, we consider the Schrödinger equation with a delay term in the nonlinear boundary feedback:

ut(x, t)− i∆u(x, t) = 0 in Ω× (0; +∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = iα1f(u(x, t)) + iα2g(u(x, t− τ)) on Γ2 × (0,+∞),

u(x, t− τ) = f0(x, t− τ) on Γ2 × (0, τ),

(3.2)

where

� u0 and f0 are the initial data which belong to suitable spaces.

�
∂
∂ν is the normal derivative.

53
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� τ is the time delay.

� α1 and α2 are positive constants.

� f and g are complex-valued functions of class C(C).

In the absence of delay (i.e. α2 = 0), uniform decay rates have been established for the solutions

of (3.2) in [57] and [51] when f is linear and in [19] and [47] for f nonlinear.

In [65], the authors examined the system (3.2) with f and g linear. They proved under the assumption

α1 > α2

that the solution decays exponentially to zero in the energy space L2(Ω).

In this chapter, we address the uniform stability problem for (3.2) in the case where both f and g

are nonlinear.

To this aim, we need to make the following assumptions.

(H.1) (i) f(s) is continuous complex-valued function with f(0) = 0.

(ii) Re〈f(z)− f(y), z − y〉 ≥ K|z − y|2 for all z, y ∈ C andK > 0.

(iii) Im{f(z)z̄} = 0.

Thus in particular for y = 0, we have from (ii) that Re{f(z)z̄} ≥ K|z|2 which implies in view

of (iii) that Re{f(z)z̄} = f(z)z̄ ≥ K|z|2 and consequently f(z)z̄ = |f(z)z̄|.

(H.2) (i) g is a Lipschitz continuous, complex-valued function; |g(z) − g(y)| ≤ L1|z − y| ∀z, y ∈ C with

g(0) = 0 .

(ii) Im{g(z)z} = 0, ∀z ∈ C.

(H.3) α1 >
α2L1
K .

(H.4) There exist positive constant M > 0, such that
|f(z)| ≤M |z|p, for |z| ≥ 1, ∀z ∈ C;

where p = 5 for n = dim Ω = 2,

p = 3 for n = dim Ω = 3.

(3.3)

Remark 3.1. (i) Particular example of a function f satisfying assumption (H.1) is:

f(z) = |z|rz +Kz, 0 < r < 1,
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(ii) As an example of a function g for which assumption (H.2) holds we have:

g(z) =

{
γ̃(|z|)z, |z| ≤ l
γ̃(l)z, |z| ≥ l

, z ∈ C

where γ̃ is a locally Lipschitz continuous function of a real variable.

In order to state the stability result, we proceed as in the previous chapter. So, let h be the real

valued strictly increasing concave function defined for s ≥ 0 and satisfying

h(0) = 0;

h(f(z)z) ≥ |z|+ |f(z)|2 for |z| ≤ δ; for some δ > 0, z ∈ C (3.4)

and define the following functions:

�

h̃(z) = h(
z

mes Σ2
), z ≥ 0, (3.5)

where Σ2 = Γ2 × (0, T ), T is a given constant.

�

p(z) = (C ′′I + h̃)−1(K3z), (3.6)

where C ′′ and K3 are positive constants.

�

q(z) = z − (I + p)−1(z), z > 0, (3.7)

q is also a positive, continuous, strictly increasing function with q(0) = 0.

Then p and q are positive, continuous, strictly increasing functions with p(0) = q(0) = 0.

We define the energy of a solution of (3.2) by

E(t) =
1

2

∫
Ω
|u(x, t)|2 dx+

µ

2

∫
Γ2

∫ 1

0
|u(x, t− τρ))|2dρ dx, (3.8)

where

τα2L1 < µ < 2τ(Kα1 −
L1α2

2
). (3.9)

We show that if {Ω,Γ1,Γ2} satisfies (A), and the functions f and g verify assumptions (H.1)–(H.4),

then we obtain uniform decay rates of the energy of solutions. The proof of this result is, as in the

previous chapter, based on certain integral inequalities for the energy functional and a comparison

theorem that relates the asymptotic behaviour of the energy and of the solutions to a dissipative

ordinary differential equation. This result is stated in the following theorem.
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Theorem 3.1. Let n = dimΩ = 2, 3. Assume hypotheses (H.1)–(H.4) and (A). Let u be the solution

to (3.2). Then, for some T0 > 0,

E(t) ≤ S(
t

T0
− 1)(E(0)), ∀ t ≥ T0, (3.10)

where S(t) is the solution of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0), (3.11)

where the function q is defined by (3.7).

In this chapter, we will also study the stability problem for the Schrödinger equation with a delay

term in the nonlinear internal feedback. More precisely, we consider the system described by
ut(x, t)− i∆u(x, t) + a(x){α1f(u(x, t))− α2g(u(x, t− τ))} = 0 in Ω× (0; +∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

u(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

(3.12)

where α1, α2, u0, f0, f and g are of as above and a(.) is a function in L∞(Ω)− function such that

a(x) ≥ 0 a.e. in Ω and a(x) > a0 > 0 a.e. inω, (3.13)

where ω is an open neighborhood of Γ2.

Stability problems for the undelayed system corresponding to (3.12) (i.e. α2 = 0) have been treated

for both linear [57] and nonlinear [15] functions f .

Nicaise and Rebiai [65] obtained stability and instability results for the system (3.12) with f and g

linear. In fact, they proved under the assumption

α1 > α2, (3.14)

that the solution decays exponentially to zero in the energy space L2(Ω). On the contrary, if (3.14)

does not hold they constructed a sequence of delays for which the corresponding solution of (3.12) is

unstable.

Here, we consider the case when f and g are nonlinear and satisfy in addition to (H.1), (H.2), (H.3)

and the following,

(H.5) There exists M̃ > 0 such that

|f(z)| ≤ M̃ |z|, for |z| ≥ 1.

Remark 1. (i) Particular examples of a function f satisfying assumptions (H.1), (H.5) are:

f(z) = |z|rz +Kz, for 0 < r < 1 and K > 0; or f(z) = |z|2e−
1
|z|2 z +Kz, for K > 0.
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Remark 2. In [36], regional boundary stabilization of the one-dimensional Schrödinger equation with

a nonlinear delay term of the form

µu(x, t− τ(t))|u(x, t)|2,

and with bounded internal disturbance, is studied by using the backstepping method.

Before stating the stability result for (3.12), we consider the function h introduced by (3.4) and

define as we have done previously, the functions:

�

ĥ(z) = h(
z

mes Q
), z ≥ 0,

where Q = Ω× (0, T ), T is a given constant.

�

p̂(z) = (C ′′I + ĥ)−1(K2z), (3.15)

where C ′′ and K2 are positive constants.

�

q̂(z) = z − (I + p̂)−1(z), z > 0. (3.16)

Then p̂ and q̂ are positive, continuous, strictly increasing function with p̂(0) = q̂(0) = 0.

Let F (t) be the energy of a solution of (3.12) given by

F (t) =
1

2

∫
Ω
|u(x, t)|2 dx+

µ

2

∫
Ω
a(x)

∫ 1

0
|u(x, t− τρ)|2dρ dx, (3.17)

where

τα2L1 < µ < 2τ(Kα1 −
L1α2

2
). (3.18)

We have the following stability result for system (3.12):

Theorem 3.2. Assume hypotheses (H.1)− (H.3), (H.5) and (A). Let u be a solution to (3.12). Then

for some T0 > 0,

F (t) ≤ S(
t

T0
− 1)(F (0)) for t > T0,

where S(t) is the solution of the differential equation

d
dtS(t) + q̃(S(t)) = 0, S(0) = F (0).

where the function q̃ is defined by (3.16).

The chapter is organized as follows. Theorem 3.1 is proved in Section 3.2 whereas Section 3.3

contains the proof of Theorem 3.2. Both sections start with the study of the well-posedness of the

system under consideration.
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3.2 Stability of the Schrödinger equation with a delay term in the

nonlinear boundary feedback

3.2.1 Well-posedness of problem (3.2)

In order to be able to manage the boundary condition with the delay term and inspired from [62] and

[83] we introduce the auxiliary variable:

y(x, ρ, t) = u(x, t− τρ); x ∈ Γ2, ρ ∈ (0, 1), t > 0.

Then, the system (3.2) is equivalent to

ut(x, t)− i∆u(x, t) = 0 in Ω× (0; +∞),

yt(x, ρ, t) + τ−1yρ(x, ρ, t) = 0 on Γ2 × (0, 1)× (0,+∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = iα1f(u(x, t)) + iα2g(y(x, 1, t)) on Γ2 × (0,+∞),

y(x, ρ, 0) = f0(x,−ρτ) on Γ2 × (0, τ),

y(x, 0, t) = u(x, t) on Γ2 × (0,+∞).

(3.19)

Denote by H the Hilbert space.

H = L2(Ω)× L2(Γ2;L2(0, 1)).

We equip H with the inner product:〈(
u1

y1

)
;

(
u2

y2

)〉
H

= Re

∫
Ω
u1(x)u2(x) dx+ µRe

∫
Γ2

∫ 1

0
y1(x, ρ)y2(x, ρ)dρ dΓ2.

Let A : L2(Ω)→ L2(Ω) be the operator defined by

Aζ = −∆ζ with D(A) =

{
ζ ∈ H2(Ω),

∂ζ

∂ν
= 0 on Γ2, ζ = 0 on Γ1

}
.

Let N : L2(Γ)→ L2(Ω) be the Neumann map [45], [79], [49]

χ = Nϕ⇐⇒

{
∆χ = 0 in Ω; χ |Γ1= 0,

∂χ

∂ν

∣∣∣∣
Γ2

= ϕ

}
, Γ1 6= ∅. (3.20)

It is well known that

N : continuous Hs(Γ) −→ Hs+ 3
2 , s ∈ R; (3.21)

N : continuous L2(Γ) −→ H
3
2 (Ω) ⊂ H

3
2
−2ε(Ω) ≡ D(A

3
4
−ε), ∀ε > 0; (3.22)

and

N∗A∗ζ = N∗Aζ =

{
0 on Γ1,

ζ on Γ2,
for ζ ∈ H1

Γ1
(Ω) = D(A

1
2 ). (3.23)

Next define
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A : D(A) ⊂ H → H,

A

(
ζ

θ

)
=

(
A(−iζ − α1Nf(ζ)− α2Ng(θ(.; 1)))

−τ−1θρ

)
, (3.24)

with

D(A) = {ζ ∈ L2(Ω), θ ∈ L2(Γ2;H1(0, 1));−iζ − α1Nf(ζ)− α2Ng(θ(., 1)) ∈ D(A)}. (3.25)

Then we can rewrite (3.19) as an abstract Cauchy problem in H
dU

dt
(t) = A(U(t)),

U(0) = U0,

(3.26)

where

U(t) = (u(x, t), y(x, ρ, t))T , U
′
(t) = (ut(x, t), yt(x, ρ, t))

T , U0 = (u0, f0)T .

Theorem 3.3. Let n = 1, 2.... Assume hypotheses (H.1) − (H.3). Then, the following results hold

true for the problem (3.2):

(a) (Well-posedness) For any initial conditions U0 = (u0, f0)T ∈ H, problem (3.2) defines a unique

(nonlinear contraction semigroup) solution U satisfying

U(.) ∈ C([0,∞);H). (3.27)

The generator A of the corresponding nonlinear semigroup is given explicitly in (3.24) below: it

is maximal dissipative; moreover, D(A) = H.

(b) (Regularity) Let, in particular, U0 = (u0, f0)T ∈ H2(Ω)×L2(Γ2;H1(0, 1)) subject to compatibility

conditions:

U0 ∈ H2(Ω)× L2(Γ2;H1(0, 1)) : u0|Γ1 = 0;
∂u0

∂ν

∣∣∣∣
Γ2

= iα1f(u0) + iα2g(f0), so that U0 ∈ D(A).

(3.28)

Then, the corresponding unique solution U(.) guaranteed by part (a), satisfies [[11], Theorem

1.2, p. 220] (U+
t (.) = right-derivative)

U(.) ∈ C([0,∞);D(A)), D(A) ⊂ D(A
1
2 )× L2(Γ2;H1(0, 1)) = H1

Γ1
(Ω)× L2(Γ2;H1(0, 1))),

U+
t (.) ∈ C([0,∞);H);

U(.)|Γ2 ∈ C([0,∞);H
1
2 (Γ2)× L2(Γ2;H1(0, 1))).

(3.29)
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(c) (Higher regularity) Assume (3.28) on U0 and, moreover,

(c1) if dimΩ = 2, assume assumption (H.4).

(c2) if dimΩ = 3, assume that

|f(z)| ≤ Cr|z|r, z ∈ C, for some r < 3, |z| ≥ 1, (3.30)

(r = 3− ε, ε > 0 arbitrary).

Then, in both cases (c1) and (c2), we have that

D(A) ⊂ H
3
2 (Ω)× L2(Γ2;H1(0, 1)), so that U(.) ∈ C([0,∞);H

3
2 (Ω)× L2(Γ2;H1(0, 1))),

(3.31)

for U0 as in (3.28). In particular ( from (3.29) , (c1) and (c2)):

∂u

∂ν

∣∣∣∣
Γ2

= iα1f(u) + iα2g(u(., .− τ)) ∈ L2(0, T ;L2(Γ1)). (3.32)

Proof of Theorem 3.3

To accomplish this, the following result will be needed.

Lemma 3.1. Under assumption (H.1)(iii), (H.2)(i) and (H.3), we have

D(A) ⊂ D(A
1
2 )× L2(Γ2;H1(0, 1)) = H1

Γ1
(Ω)× L2(Γ2;H1(0, 1)), (3.33)

where

H1
Γ1

(Ω) = {ζ ∈ H1(Ω) : ζ|Γ1 = 0},

so that

(ζ, θ)T ∈ D(A) −→ ζ ∈ H1
Γ1

(Ω), θ ∈ L2(Γ2;H1(0, 1))

−→ ζ|Γ = N∗Aζ ∈ H
1
2 (Γ), θ ∈ L2(Γ2;H1(0, 1)), A(ζ, θ) ∈ H (3.34)

A : D(A
1
2 )× L2(Γ2;H1(0, 1)) ⊃ D(A) −→ H.

Proof. Indeed, if (ζ, θ)T ∈ D(A), we obtain from (3.25)

A(−iζ − α1Nf(ζ)− α2Ng(θ(x, 1))) = L ∈ L2(Ω) =⇒
− i〈Aζ, ζ〉L2(Ω) − α1〈ANf(N∗Aζ), ζ〉L2(Ω) − α2〈ANg(θ(x, 1))), ζ〉L2(Ω) = 〈L, ζ〉L2(Ω), (3.35)

and

−τ−1θρ = R ∈ L2(Γ2, L
2(0, 1)), (3.36)

Indeed, from (3.36) we have

θ(x, 1) = ζ(x) + z0, x ∈ Γ2, (3.37)
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where

z0 = −τ
∫ 1

0
R(x, σ) dσ.

Insertion (3.37) into (3.35) yields

A(−iζ − α1Nf(ζ)− α2Ng(ζ(x) + z0)) = L ∈ L2(Ω) =⇒
− i〈Aζ, ζ〉L2(Ω) − α1〈f(ζ), ζ〉L2(Γ2) − α2〈g(ζ + z0), ζ〉L2(Γ2) = 〈L, ζ〉L2(Ω). (3.38)

Taking the imaginary part of (3.38), where A is positive self-adjoint, and recalling that

Im{f(ζ)ζ} = 0,

we obtain

〈Aζ, ζ〉L2(Ω) = −Im〈L, ζ〉L2(Ω) − α2Im〈g(ζ + z0), ζ〉L2(Γ2),

‖A
1
2 ζ‖2L2(Ω) ≤ ‖A

− 1
2 L‖2L2(Ω)‖A

1
2 ζ‖2L2(Ω) + α2‖g(ζ + z0)‖L2(Γ2)‖ζ‖L2(Γ2).

By using assumption (H.2)(i), we have

‖A
1
2 ζ‖2L2(Ω) ≤ ‖A

− 1
2 L‖L2(Ω)‖A

1
2 ζ‖L2(Ω) + α2L1‖ζ‖2L2(Γ2) + α2L1c‖ζ‖L2(Γ2),

where ‖z0‖L2(Γ2) ≤ c.
By trace theory, we obtain

‖A
1
2 ζ‖2L2(Ω) ≤ ‖A

− 1
2 L‖L2(Ω)‖A

1
2 ζ‖L2(Ω) + α2L1c1‖A

1
2 ζ‖2L2(Ω) + α2L1c2‖A

1
2 ζ‖L2(Ω), (3.39)

where c2 = c c1.

Then, (3.39) yields

‖A
1
2 ζ‖L2(Ω) ≤

1

1− α2L1c1

(
‖L‖L2(Ω) + α2L1c2

)
.

By using assumption (H.3), we have 1− α2L1c1 > 0.

Thus, (3.33) is established. Then, trace theory and (3.23) yields (3.34).

� Proof of well-posedness and regularity.

Proposition 3.4. Assume hypotheses (H.1), (H.2) and (H.3). Then, the operator A in (3.24) is

maximal dissipative on H.

Proof. First, we prove that A is dissipative.
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Let U = (ζ1, θ1)T ∈ D(A) and V = (ζ2, θ2)T ∈ D(A). Then

Re 〈AU −AV ;U − V 〉H = −Re
∫

Ω
A(ζ1(x)− ζ2(x)) (ζ1(x)− ζ2(x)) dx

−Re
∫

Ω
α1AN(f(ζ1(x))− f(ζ2(x))) (ζ1(x)− ζ2(x)) dx

−Re
∫

Ω
α2AN(g(θ1(x, 1))− g(θ2(x, 1)))(ζ1(x)− ζ2(x))) dx

− µτ−1Re

∫
Γ2

∫ 1

0
(θ1ρ(x, ρ)− θ2ρ(x, ρ))(θ1(x, ρ)− θ2(x, ρ)) dρ dΓ2

= −Re
∫

Ω
A

1
2 (ζ1(x)− ζ2(x)) A

1
2 (ζ1(x)− ζ2(x)) dx

−Re
∫

Γ2

α1(f(ζ1(x))− f(ζ2(x))) N∗A(ζ1(x)− ζ2(x)) dΓ2

−Re
∫

Γ2

α2(g(θ1(x, 1))− g(θ2(x, 1)))N∗A(ζ1(x)− ζ2(x)) dx

− µτ−1Re

∫
Γ2

∫ 1

0
(θ1ρ(x, ρ)− θ2ρ(x, ρ))(θ1(x, ρ)− θ2(x, ρ)) dρ dΓ2.

Integrating by parts in ρ, we obtain∫
Γ2

∫ 1

0
(θ1ρ(x, ρ)− θ2ρ(x, ρ))(θ1(x, ρ)− θ2(x, ρ)) dρ dΓ2

= −
∫

Γ2

∫ 1

0
(θ1(x, ρ)− θ2(x, ρ))(θ1ρ(x, ρ)− θ2ρ(x, ρ)) dρ dΓ2

+

∫
Γ2

|θ1(x, 1)− θ2(x, 1))|2 − |θ1(x, 0)− θ2(x, 0))|2 dΓ2,

or equivalently

2Re

∫
Γ2

∫ 1

0
(θ1ρ(x, ρ)− θ2ρ(x, ρ))(θ1(x, ρ)− θ2(x, ρ)) dρ dΓ2

=

∫
Γ2

|θ1(x, 1)− θ2(x, 1))|2 − |θ1(x, 0)− θ2(x, 0))|2 dΓ2.

Therefore

Re 〈AU −AV ;U − V 〉H = −Re
∫

Γ2

α1(f(ζ1(x))− f(ζ2(x))) (ζ1(x)− ζ2(x)) dΓ2

−Re
∫

Γ2

α2(g(θ1(x, 1))− g(θ2(x, 1)))(ζ1(x)− ζ2(x)) dΓ2

− µτ−1

2

∫
Γ2

|θ1(x, 1)− θ2(x, 1))|2 dΓ2 +
µτ−1

2

∫
Γ2

|θ1(x, 0)− θ2(x, 0))|2 dΓ2.
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By using assumptions (H.1)(ii), (H.2)(i) and the Cauchy-Schwartz’s inequality, we have

Re 〈AU −AV ;U − V 〉H ≤ −Kα1

∫
Γ2

|ζ1(x)− ζ2(x)|2 dΓ2 +
α2L1

2

∫
Γ2

|θ1(x, 1)− θ2(x, 1)|2 dΓ2

+
α2L1

2

∫
Γ2

|ζ1(x)− ζ2(x)|2 dΓ2 −
µτ−1

2

∫
Γ2

|θ1(x, 1)− θ2(x, 1))|2 dΓ2

+
µτ−1

2

∫
Γ2

|ζ1(x)− ζ2(x)|2 dΓ2.

Then

Re 〈AU −AV ;U − V 〉H ≤ −
(
Kα1 −

α2L1

2
− µτ−1

2

)∫
Γ2

|ζ1(x)− ζ2(x)|2 dΓ2

−
(
−α2L1

2
+
µτ−1

2

)∫
Γ2

|θ1(x, 1)− θ2(x, 1)|2 dΓ2.

From (3.9), we conclude that

Re 〈AU −AV ;U − V 〉H ≤ 0.

Thus, A is dissipative.

In order to establish maximality, we need to prove the range condition range(I − A) = H. In other

words, given any (L,R)T ∈ H, we need to establish the existence of an element U = (ζ, θ)T ∈ D(A)

such that

(I −A)U = (L,R)T , (3.40)

or equivalently

ζ −A(−iζ −Nα1f(ζ)−Nα2g(θ(x, 1))) = L, (3.41)

θ(x, ρ) + τ−1θρ(x, ρ) = R. (3.42)

Indeed, from (3.42) and the last line of (3.19) we have

θρ(x, ρ) = −τθ(x, ρ) + τR(x, ρ), x ∈ Γ2, ρ ∈ (0, 1),

θ(x, 0) = ζ(x), x ∈ Γ2.

The unique solution of the above initial value problem is given by

θ(x, ρ) = ζ(x)e−τρ + τe−τρ
∫ ρ

0
R(x, σ)eτσ dσ, x ∈ Γ2, ρ ∈ (0, 1),

and in particular

θ(x, 1) = ζ(x)e−τ + Z0, x ∈ Γ2, (3.43)

where
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Z0 = τe−τ
∫ 1

0 R(x, σ)eτσ dσ.

Insertion of (3.43) into problem (3.41) yields

ζ + iAζ +ANα1f(ζ) +ANα2g(ζe−τ + Z0) = L ∈ L2(Ω). (3.44)

Set

T ζ = ζ + iAζ +ANα1f(ζ) +ANα2g(ζe−τ + Z0). (3.45)

Lemma 3.2. The operator T is surjective from V = D(A
1
2 ) = H1

Γ1
(Ω) onto V ′ = (D(A

1
2 ))′ =

(H1
Γ1

(Ω))′.

Proof. We need to prove that given any l ∈ V ′ there exists an element ζ ∈ V such that

T ζ = l. (3.46)

Set

T ζ = Bζ + Cζ, (3.47)

where

Bζ = ANα1f(ζ) +ANα2g(ζe−τ + Z0),

and

Cζ = ζ + iAζ.

We will prove that B+C : V −→ V ′ is maximal monotone. According to Corollary 1.1 in [[11], p.33] it

is sufficient to prove boundedness, hemicontinuity and monotonicity of B and maximal monotonicity

of C.

Since we are working with V, V ′ framework, AN : L2(Γ2) −→ V ′ is bounded.

Monotonicity of B.

Let ζ, v ∈ V . Then

Re〈(−B)ζ − (−B)v, ζ − v〉V ′×V = −α1Re〈AN(f(ζ)− f(v)), ζ − v〉V ′×V
− α2Re〈AN(g(ζe−τ + Z0)− g(ve−τ + Z0)), ζ − v〉V ′×V
= −α1Re〈f(ζ)− f(v), N∗A(ζ − v)〉L2(Γ2)

− α2Re〈g(ζe−τ + Z0)− g(ve−τ + Z0)), N∗A(ζ − v)〉L2(Γ2).

From assumptions (H.1)(ii), (H.2)(i), we have

Re〈(−B)ζ − (−B)v, ζ − v〉V ′×V ≤ −α1K‖ζ − v‖2L2(Γ2) + α2L1e
−τ‖ζ − v‖2L2(Γ2)

≤ −(α1K − α2L1e
−τ )‖ζ − v‖2L2(Γ2).

Using assumption (H.3), we conclude that

Re〈(−B)ζ − (−B)v, ζ − v〉V ′×V ≤ 0.
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Thus (−B) is dissipative, then B is monotone.

Hemicontinuity of B.

Let u, v, w ∈ V . We show that the function t 7−→ 〈B(ζ + tv), w〉 is continuous.

|〈B(ζ + tv)−B(ζ + t0v), w〉V ′×V | = |〈α1AN(f(ζ + tv))− f(ζ + t0v))), w〉V ′×V
+ 〈α2AN(g((ζ + tv)e−τ + Z0))− g((ζ + t0v)e−τ + Z0))), w〉V ′×V |
≤ |〈α1f(ζ + tv))− f(ζ + t0v)), N∗A∗w〉L2(Γ2)|
+ |〈α2g((ζ + tv)e−τ + Z0))− g((ζ + t0v)e−τ + Z0)), N∗A∗w〉L2(Γ2)|
≤ c‖w‖L2(Γ2){‖f(ζ + tv)− f(ζ + t0v)‖L2(Γ2)

+ ‖g((ζ + tv)e−τ )− g((ζ + t0v)e−τ )‖L2(Γ2)}.

From assumption (H.2)(i), we have

|〈B(ζ + tv)−B(ζ + t0v), w〉V ′×V | ≤ c‖w‖L2(Γ2){‖f(ζ + tv)− f(ζ + t0v)‖L2(Γ2) + L1e
−τ‖(t− t0)v‖L2(Γ2)}.

Since f is continuous, we conclude that

|〈B(ζ + tv)−B(ζ + t0v), w〉V ′×V | < ε̃,

for |t− t0| < δ̃. This proves continuity of the function t 7−→ 〈B(ζ + tv), w〉.
Maximal monotonicity of C.

For ζ, v ∈ V , we have

Re〈Cζ − Cv, ζ − v〉V ′×V = Re〈ζ + iAζ − v − iAv, ζ − v〉V ′×V
= ‖ζ − v‖2V ≥ 0.

Thus C is monotone.

The operator C is continuous and monotone then it is maximal monotone.

We have proved that T is maximal monotone V −→ V ′, consequently according to Minty’s Theorem

[[11] Theorem 1.2, p.39] for any λ > 0 the operator

λJ + T is surjective from V onto V ′, (3.48)

where J is the canonical injection V onto V ′, and hence can be taken to be J = A.

In the sequel, to establish the surjectivity result (3.46), we employ an approximation argument using

(3.48) with λ↘ 0.

Approximation argument.

Let λ > 0 and let l ∈ V ′. By the surjectivity property (3.48), there exists ζλ ∈ V such that (with

J = A):

λJζλ + T ζλ = λJζλ + ζλ + iAζλ + α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0) = l ∈ V ′. (3.49)
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Next we take the duality pairing V × V ′ of (3.49), where J = A, with any ψ ∈ V ,

〈λJζλ + T ζλ, ψ〉L2(Ω) = 〈λJζλ + ζλ, ψ〉L2(Ω) + i〈Aζλ, ψ〉L2(Ω) + α1〈ANf(ζλ), ψ〉L2(Ω)

+ α2〈ANg(ζλe
−τ + Z0), ψ〉L2(Ω)

= 〈l, ψ〉L2(Ω), ψ ∈ V. (3.50)

Setting, ψ = ζλ ∈ V , taking the Im part of (3.50), we obtain

〈Aζλ, ζλ〉L2(Ω) = ‖A
1
2 ζλ‖2L2(Ω) = Im〈l, ζλ〉L2(Ω) − α2Im〈ANg(ζλe

−τ + Z0), ζλ〉L2(Ω). (3.51)

Since V = D(A
1
2 ), ‖ζλ‖V = ‖A

1
2 ζλ‖L2(Ω), then

‖ζλ‖2V = Im〈l, ζλ〉L2(Ω) − α2Im〈ANg(ζλe
−τ + Z0), ζλ〉L2(Ω)

≤ ‖l‖V ′‖ζλ‖V + α2‖g(ζλe
−τ + Z0)‖L2(Γ2)‖ζλ‖V .

Using assumption (H.2)(i), we have

‖ζλ‖2V ≤ ‖l‖V ′‖ζλ‖V + α2L1e
−τ‖ζλ‖2V + α2L1c‖ζλ‖V , (3.52)

where ‖Z0‖L2(Γ2) ≤ c.
Then, (3.52) yields


‖ζλ‖V ≤ 1

1−α2L1e−τ
(‖l‖V ′ + α2L1c) , ∀λ > 0, hence

ζλ −→ some ζ ∈ V weakly in V, asλ↘ 0

(3.53)

where 1− α2L1e
−τ > 0 by assumption (H.3). For a subsequence, still denote by ζλ.

Next, take any element α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0) call it ζ∗λ:

ζ∗λ = α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0) ∈ V ′. (3.54)

By (3.45) and (3.48), for such element ζ∗λ in (3.54) we can write

ζ∗λ = −λJζλ − iAζλ − ζλ ∈ V ′,

and hence
‖ζ∗λ‖V ′ = ‖ − λJζλ + iAζλ + ζλ‖V ′ ≤ c1‖ζλ‖V ≤ c1

1−α2L1e−τ
(‖l‖V ′ + α2L1c) , ∀λ > 0, hence

ζ∗λ −→ some ζ∗ ∈ V ′ weakly in V ′, asλ↘ 0

(3.55)

for a subsequence, still denote by ζ∗λ.

The limit process. Using (3.53), we obtain with J = A and ψ ∈ V = D(A
1
2 ), as λ↘ 0

|〈λJζλ, ψ〉L2(Ω)| = |〈λA
1
2 ζλ, A

1
2ψ〉L2(Ω)| ≤ λ‖ζλ‖V ‖ψ‖V

≤ λ 1

1− α2L1e−τ
(‖l‖V ′ + α2L1c) ‖ψ‖V −→ 0; (3.56)
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〈ζλ, ψ〉L2(Ω) + i〈Aζλ, ψ〉L2(Ω) = 〈ζλ, A−1ψ〉V + i〈A
1
2 ζλ, A

1
2ψ〉L2(Ω)

= 〈ζλ, A−1ψ〉V + i〈ζλ, ψ〉V
−→ 〈ζ, ψ〉L2(Ω) + i〈Aζ, ψ〉L2(Ω). (3.57)

Moreover, using (3.54) and the last line of (3.55), we obtain with ψ ∈ V , hence Aψ ∈ V ′, as λ↘ 0:

〈α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0), ψ〉L2(Ω) = 〈ζ∗λ, ψ〉L2(Ω) = 〈ζ∗λ, Aψ〉V ′ −→ 〈ζ∗, ψ〉L2(Ω). (3.58)

Thus, letting λ↘ 0 in (3.50) and invoking (3.56)-(3.58), we obtain

〈Iζ + iAζ, ψ〉L2(Ω) + 〈ζ∗, ψ〉L2(Ω) = 〈l, ψ〉L2(Ω) ∀ψ ∈ V, (3.59)

where ζ ∈ V and ζ∗ ∈ V ′ are defined in (3.53) and (3.55), respectively.

To obtain (3.46) from (3.59), we need to show that the limit ζ∗ ∈ V ′ obtained in (3.55) and the

limit ζ ∈ V obtained in (3.53) are linked to each other by the relationship

ζ∗ = α1ANf(ζ) + α2ANg(ζe−τ + Z0). (3.60)

To establish (3.60), we apply Lemma 1.3 in ([11], p. 42). To this end, it suffices to establish that for

ζλ, ζν ∈ V, ζ∗λ, ζ∗ν ∈ V ′, we have

lim
λ,ν↘0

〈ζλ − ζν , ζ∗λ − ζ∗ν〉L2(Ω) = 0, (3.61)

such that  ζ∗λ = α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0)

ζ∗ν = α1ANf(ζν) + α2ANg(ζνe
−τ + Z0)

(3.62)

after which, then, (3.60) is proved.

Here, by definition of ζλ and ζν , we have

λJζλ + ζλ + iAζλ + α1ANf(ζλ) + α2ANg(ζλe
−τ + Z0) = l ∈ V ′, λ > 0 (3.63)

νJζν + ζν + iAζν + α1ANf(ζν) + α2ANg(ζνe
−τ + Z0) = l ∈ V ′, ν > 0, (3.64)

Subtracting the second relation from the first, taking the duality pairing V × V ′ with (ζλ, ζν) and

finally taking the Re part of the resulting expression yields

〈λJζλ−νJζν , ζλ − ζν〉L2(Ω) + ‖ζλ − ζν‖2L2(Ω) + α1Re〈AN(f(ζλ)− f(ζν)), ζλ − ζν〉L2(Ω)

+ α2Re〈AN(g(ζλe
−τ + Z0)− g(ζνe

−τ + Z0)), ζλ − ζν〉L2(Ω) = 0 (3.65)

Arguing as in (3.56), we obtain from the first line of (3.53),

|〈λJζλ − νJζν , ζλ − ζν〉L2(Ω)| ≤ λ‖A
1
2 (λζλ − νζν)‖L2(Ω) ‖A

1
2 (ζλ − ζν)‖L2(Ω)

≤ (λ‖ζλ‖V + ν‖ζν‖V )(‖ζλ‖V + ‖ζν‖V )

≤ (λ+ ν)
1

1− α2L1e−τ
(‖l‖V ′ + α2L1c)

[
2

1− α2L1e−τ
(‖l‖V ′ + α2L1c)

]
−→ 0;

(3.66)
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as λ, ν ↘ 0.

Thus, returning to (3.65), we obtain

lim
λ,ν↘0

{‖ζλ − ζν‖2L2(Ω) + α1Re〈AN(f(ζλ)− f(ζν)), ζλ − ζν〉L2(Ω)

+ α2Re〈AN(g(ζλe
−τ + Z0)− g(ζνe

−τ + Z0)), ζλ − ζν〉L2(Ω)} = 0.

Therefore

lim
λ,ν↘0

{‖ζλ − ζν‖2L2(Ω) +Re〈Bζλ −Bζν , ζλ − ζν〉L2(Ω)} = 0. (3.67)

But, by monotonicity of the operator B, each term in (3.67) is non-negative and hence each of the

two terms in (3.67) has limit equal to zero.

In particular, we obtain by (H.1)(iii) and (H.2)(ii),

lim
λ,ν↘0

{Im〈α1AN(f(ζλ)− f(ζν)), ζλ − ζν〉L2(Ω)

+ Im〈α2AN(g(ζλe
−τ + Z0)− g(ζνe

−τ + Z0)), ζλ − ζν〉L2(Ω)}
= lim

λ,ν↘0
α1Im〈f(ζλ)− f(ζν), ζλ − ζν〉L2(Γ2) + α2Im〈g(ζλe

−τ + Z0)− g(ζνe
−τ + Z0), ζλ − ζν〉L2(Γ2)

= lim
λ↘0

α1Im〈f(ζλ), ζλ〉L2(Γ2) + lim
ν↘0

α1Im〈f(ζν), ζν〉L2(Γ2)

− lim
λ,ν↘0

α1Im〈f(ζλ), ζν〉L2(Γ2) − lim
λ,ν↘0

α1Im〈f(ζν), ζλ〉L2(Γ2)

+ lim
λ↘0

α2e
τIm〈g(ζλe

−τ + Z0), ζλe
−τ + Z0〉L2(Γ2) + lim

ν↘0
α2e

τIm〈g(ζνe
−τ + Z0), ζνe

−τ + Z0〉L2(Γ2)

− lim
λ,ν↘0

α2e
τIm〈g(ζλe

−τ + Z0), ζνe
−τ + Z0〉L2(Γ2) − lim

λ,ν↘0
α2e

τIm〈g(ζνe
−τ + Z0), ζλe

−τ + Z0〉L2(Γ2)

= 0.

Consequently,

0 = lim
λ,ν↘0

{Re〈α1AN(f(ζλ)− f(ζν)), ζλ − ζν〉L2(Ω)

+Re〈α2AN(g(ζλe
−τ + Z0)− g(ζνe

−τ + Z0)), ζλ − ζν〉L2(Ω)}
= lim

λ,ν↘0
{〈α1AN(f(ζλ)− f(ζν)), ζλ − ζν〉L2(Ω)

+ 〈α2AN(g(ζλe
−τ + Z0)− g(ζνe

−τ + Z0)), ζλ − ζν〉L2(Ω)}
= lim

λ,ν↘0
〈ζ∗λ − ζ∗ν , ζλ − ζν〉L2(Ω), (3.68)

and (3.61) follows from (3.68). Thus, (3.60) is proved.

Inserting (3.60) into (3.59), we obtain

〈Iζ + iAζ, ψ〉L2(Ω) + 〈α1ANf(ζ) + α2ANg(ζe−τ + Z0), ψ〉L2(Ω) = 〈l, ψ〉L2(Ω) ∀ψ ∈ V, (3.69)

and the surjectivity of T in (3.46) is deduced from (3.69).
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Let l ∈ L2(Ω) ⊂ V ′. By Lemma 3.2, there exist ζ ∈ V = D(A
1
2 ) such that (3.46) holds true.

We show that (ζ, θ)T ∈ D(A).

By (3.41), we have

iAζ +ANα1f(ζ) +ANα2g(θ(x, 1))) = A(iζ +Nα1f(ζ) +Nα2g(θ(x, 1))) = l − ζ ∈ L2(Ω). (3.70)

Hence

iζ +Nα1f(ζ) +Nα2g(θ(x, 1)) ∈ D(A), ζ ∈ V ⊂ L2(Ω).

Invoking (3.25), we see that W = (ζ, θ)T ∈ D(A), as desired.

Thus, the surjectivity of (I −A) : D(A) onto H in (3.40) is established.

We have proved that the operator A in (3.24) is maximal dissipative on H. Then, the claims (a)

and (b) of Theorem 3.3 follow from the theory of m-dissipative operators [[11] p.33; p.71].

� Proof of Theorem 3.3 (c) (higher regularity).

We know from Lemma 3.1 that, for any dimension, we have :

(ζ, θ)T ∈ D(A) −→ ζ|Γ ∈ H
1
2 (Γ), θ ∈ L2(Γ2;H1(0, 1)).

By (3.37), we have

θ(x, 1) = ζ + z0 ∈ L2(Γ2).

Using assumption (H.2)(i), we obtain

‖g(θ(., 1))‖L2(Γ2) =

(∫
Γ2

|g(θ(., 1))|2 dΓ2

) 1
2

≤ L1‖θ(., 1)‖L2(Γ2) <∞.

Consequently,

θ(x, 1) ∈ L2(Γ2) −→ g(θ(x, 1)) ∈ L2(Γ2) −→ Ng(θ(x, 1))|Γ2) ∈ H
3
2 (Ω), (3.71)

after recalling the regularity of N in (3.22).

Case (c1): dimΩ = 2, dimΓ2 = 1.

In this case, we have

H
1
2 (Γ2) ⊂ L10(Γ2), (3.72)

as it follows from the usual embedding [ [80], p.206, p.328]

W s,p′ ⊂W t,q, 0 ≤ t ≤ s <∞; 1 < p′ ≤ q <∞,

with s = 1
2 , p
′ = 2, t = 0, q = 10, so that s− n

p′ ≥ t−
n
q , n = 1, as required.

Thus, we have by combining (3.34) and (3.72):

(ζ, θ)T ∈ D(A) −→ ζ|Γ2 ∈ L10(Γ2), θ ∈ L2(Γ2;H1(0, 1)).



3.2. STABILITY OF THE SCHRÖDINGER EQUATION WITH A DELAY TERM IN THE
NONLINEAR BOUNDARY FEEDBACK 70

‖f(ζ)‖2L2(Γ2) =

∫
Γ2

|f(ζ)|2 dΓ2 =

∫
ΓA={Γ2, |ζ|≥1}

|f(ζ)|2 dΓA +

∫
ΓB={Γ2,|ζ|≤1}

|f(ζ)|2 dΓB.

From the continuity of f and assumption (H.4), we have

‖f(ζ)‖2L2(Γ2) ≤M
2

∫
Γ2

|ζ|10 dΓ2 +

∫
Γ2

C2 dΓ2 <∞.

Then,

f(ζ|Γ2) ∈ L2(Γ2), and Nf(ζ|Γ2) ∈ H
3
2 (Ω). (3.73)

Thus, returning to

A(−iζ − α1Nf(ζ)− α2Ng(θ(x, 1)) = L ∈ L2(Ω),

in (3.35) with N∗Aζ = ζ|Γ1 by (3.34), we obtain via (3.71), (3.73) and A−1L ∈ D(A) ⊂ H2(Ω):

− iζ = A−1L+ α1Nf(ζ) + α2Ng(θ(x, 1)) ∈ H
3
2 (Ω), (3.74)

as desired. The sought-after conclusion D(A) ⊂ H
3
2 (Ω)× L2(Γ2;H1(0, 1)) in (3.31) then holds true.

Case (c2): dimΩ = 3, dimΓ2 = 2. We start again with

(ζ, θ)T ∈ D(A) −→ ζ|Γ2 ∈ H
1
2 (Γ2), θ ∈ L2(Γ2;H1(0, 1)).

In this case, we have

H
1
2 (Γ2) ⊂ L4(Γ2), so that ζ|Γ2 ∈ L4(Γ2), (3.75)

which follows from the embedding

W s,p ⊂W t,q, 0 ≤ t ≤ s <∞; 1 < p ≤ q <∞,

with s = 1
2 , p = 2, t = 0, q = 4, so that s− n

p ≥ t−
n
q , with n = 2 as required.

Then, invoking assumption (3.30), we obtain by (3.75),∫
Γ2

|f(ζ|Γ2)|
4
r dΓ2 ≤ Cr

∫
Γ2

|ζ|Γ2 |4 dΓ2 <∞, i.e. f(ζ|Γ2) ∈ L
4
r (Γ2), (3.76)

(3.76) together with (3.21) implies via Lp-elliptic theory [[78], Chapter 3] that

Dirichlet trace of Nf(ζ|Γ2) over Γ2 = [Nf(ζ|Γ2)]Γ2 ∈W 1, 4
r (Γ2). (3.77)

Moreover, since W 1, 4
r (Γ2) ⊂ L

4
r−2 (Γ2) which follows from the embedding

W s,p ⊂W t,q, 0 ≤ t ≤ s <∞; 1 < p ≤ q <∞,

with s = 1, p = 4
r , t = 0, q = 4

r−2 , r = 3− ε, then

[Nf(ζ|Γ2)]Γ2 ∈ L
4
r−2 (Γ2). (3.78)
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Next, with reference to (3.20) and (3.35), we have A−1L ∈ H2(Ω) for L ∈ L2(Ω), hence by trace

theory

[A−1L]Γ2 ∈ H
3
2 (Γ2) ⊂ La(Γ2) for any 2 ≤ a <∞; in particular, [A−1L]Γ2 ⊂ L

4
r−2 (Γ2), (3.79)

from the embedding

W s,p ⊂W t,q, 0 ≤ t ≤ s <∞; 1 < p ≤ q <∞,

with s = 3
2 , p = 2, t = 0, q = a, so that s− n

p ≥ t−
n
q , with n = 2, which is true.

By (3.71), we have Ng(θ(x, 1) ∈ H
3
2 (Ω), hence by trace theory

[Ng(θ(x, 1)|Γ2)]Γ2 ∈ H1(Γ2) ⊂ La(Γ2) for any 2 ≤ a <∞; in particular, [Ng(θ(x, 1)|Γ2)]Γ2 ⊂ L
4
r−2 (Γ2),

(3.80)

again invoking the embedding

W s,p ⊂W t,q, 0 ≤ t ≤ s <∞; 1 < p ≤ q <∞,

with s = 1, p = 2, t = 0, q = a, so that s− n
p ≥ t−

n
q , with n = 2, which is true.

Applying the Dirichlet trace to identity (3.74) and using (3.78), (3.79) and (3.80) in the resulting

identity yields

− iζ|Γ2 = [A−1L]Γ2 + [Nf(ζ|Γ2)]Γ2 + [Ng(θ(x, 1)|Γ2)]Γ2 ∈ L
4
r−2 (Γ2), r = 3− ε. (3.81)

This completes the first step of the bootstrap argument: the original regularity ζ|Γ2 ∈ L4(Γ2) in (3.75)

has been boosted to the new regularity ζ|Γ2 ∈ L
4
r−2 (Γ2), where 4

r−2 > 4 for r = 3− ε.
The regularity f(ζ|Γ2) has also been improved. Indeed, with ζ|Γ2 in (3.81), we invoke assumption

(3.30) with r = 3− ε ( i.e. r < 3) on f and obtain
∫

Γ2
|f(ζ|Γ2)|s dΓ2 ≤ Cr

∫
Γ2
|ζ|Γ2 |sr dΓ2 <∞, with sr = 4

r−2 ,

thus, f(ζ|Γ2) ∈ L
4

r(r−2) (Γ2) $ L
4
r (Γ2).

(3.82)

Finite repetition of the bootstrap. After finitely many steps, the bootstrap argument will lead to

the desired integrability

f(ζ|Γ2) ∈ L2(Γ2) (3.83)

We just quantify the second step . In fact, with f(ζ|Γ2) ∈ Lp′(Γ2) ≡ W 0,p′(Γ2) by (3.82), the same

Lp-elliptic theory , with p′ = 4
r(r−2) now yields via the definition (3.21) for N :

[Nf(ζ|Γ2)]Γ2 ∈W 1,p′(Γ2) ⊂ Lq(Γ2) ⊂ L2(Γ2), 2 < q =
4

r(r − 2)− 2
, (3.84)

for the Neumann-Dirichlet map, with q = 4
r(r−2)−2 > 2 for r = 3− ε.

To obtain (3.84), we have used the embedding:

W s,p ⊂W t,q′ , 0 ≤ t ≤ s <∞; 1 < p ≤ q′ <∞,
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with s = 1, p = p′; t = 0, so that s − n
p ≥ t − n

q′ , n = 2, which is true, as required, for q′ ≤ 4
r(r−2)−2 ,

in particular for q′ = q, hence , from the identity in(2.88), as well as from (3.79) and (3.80) with

a = q > 2, we obtain

− iζ|Γ2 = [A−1L]Γ2 + [Nf(ζ|Γ2)]Γ2 + [Ng(θ(x, 1)|Γ2)]Γ2 ∈ Lq(Γ2), q =
4

r(r − 2)− 2
. (3.85)

Thus, the original regularity of ζ|Γ2 in (3.81) at the beginning of the second step (end of first step)

has been further boosted to the new regularity of ζ|Γ2 in (3.85), as 4
r(r−2)−2 >

4
(r−2) for r = 3− ε.

After finitely many steps, one achieves (3.83). Finally, (3.83) then yields via the L2-elliptic theory

(3.22) that (ζ, θ)T ∈ D(A) implies, since A−1L ∈ H2(Ω) and Ng(θ(x, 1)|Γ2) ∈ H
3
2 (Ω) via (3.71):

Nf(ζ|Γ2) ∈ H
3
2 (Ω), hence − iζ|Γ2 = [A−1L]Γ2 + [Nf(ζ|Γ2)]Γ2 + [Ng(θ(x, 1)|Γ2)]Γ2 ∈ H

3
2 (Ω). (3.86)

The sought-after conclusion D(A) ⊂ H
3
2 (Ω)× L2(Γ2, H

1(0, 1)) in (3.31) then holds true in case (c2).

The proof of Theorem 3.3 is complete.

3.2.2 Proof of Theorem 3.1

� We first show that the energy E(t) of every solution of (3.2) is decreasing.

Proposition 3.5. The energy corresponding to any strong solution of the problem (3.2) is decreasing

and there exists C > 0 such that

d

dt
E(t) ≤ −C

{∫
Γ2

f(u(x, t))u(x, t) dΓ2 +

∫
Γ2

|u(x, t− τ)|2 dΓ2

}
, (3.87)

where

C = min

{
α1 −

α2L1

2K
− µτ−1

2K
,−α2L1

2
+
µτ−1

2

}
.

Proof. We multiply the first equation in problem (3.19) by u(x, t), integrate over Ω, we get

1

2

d

dt

∫
Ω
|u(x, t)|2 dx− i

∫
Γ2

∂u(x, t)

∂ν
u(x, t) dΓ + i

∫
Ω
|∇u(x, t)|2 dx = 0.

We take the real part and insert the boundary conditions of problem (3.19), we get

1

2

d

dt

∫
Ω
|u(x, t)|2 dx = α1Re

∫
Γ2

f(u(x, t))u(x, t) dΓ2 + α2Re

∫
Γ2

g(y(x, 1, t))u(x, t) dΓ2. (3.88)

We multiply the second equation in (3.19) by µ y(x, ρ, t) and integrate over Γ2 × (0, 1), to obtain

µ

∫
Γ2

∫ 1

0
{yt(x, ρ, t)y(x, ρ, t) + τ−1µyρ(x, ρ, t)y(x, ρ, t)} dρ dΓ2 = 0.

Therefore

µ

2

d

dt

∫
Γ2

∫ 1

0
|y(x, ρ, t)|2 dρ dΓ2 = −τ

−1µ

2

∫
Γ2

|y(x, 1, t)|2dΓ2 +
τ−1µ

2

∫
Γ2

|y(x, 0, t)|2 dΓ2. (3.89)
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From (3.88) and (3.89), we get

1

2

d

dt

{∫
Ω
|u(x, t)|2 dx+ µ

∫
Γ2

∫ 1

0
|y(x, ρ, t)|2 dρ dΓ2

}
= Re

∫
Γ2

{α1f(u(x, t))u(x, t) + α2g(y(x, 1, t))u(x, t)} dΓ2

− τ−1µ

2

∫
Γ2

|y(x, 1, t)|2 dΓ2 +
τ−1µ

2

∫
Γ2

|y(x, 0, t)|2 dΓ2. (3.90)

By using assumptions (H.2)(i) and Cauchy-Schwartz’s inequality, we have

d

dt
E(t) ≤ −α1Re

∫
Γ2

f(u(x, t))u(x, t) dΓ2 +
α2L1

2

∫
Γ2

|y(x, 1, t)|2 dΓ2 +
α2L1

2

∫
Γ2

|u(x, t)|2 dΓ2

− τ−1µ

2

∫
Γ2

|y(x, 1, t)|2 dΓ2 +
τ−1µ

2

∫
Γ2

|u(x, t)|2 dΓ2.

By using assumptions (H.1)(ii) and (iii), we have

d

dt
E(t) ≤ −α1K

−1

∫
Γ2

f(u(x, t))u(x, t) dΓ2 +
α2L1

2

∫
Γ2

|y(x, 1, t)|2 dΓ2 +
α2L1K

−1

2

∫
Γ2

f(u(x, t))u(x, t) dΓ2

− τ−1µ

2

∫
Γ2

|y(x, 1, t)|2 dΓ2 +
τ−1µK−1

2

∫
Γ2

f(u(x, t))u(x, t) dΓ2.

Therefore

d

dt
E(t) ≤ −

(
α1K

−1 − α2L1

2K
− τ−1µ

2K

)∫
Γ2

f(u(x, t))u(x, t) dΓ2 −
(
−α2L1

2
+
τ−1µ

2

)∫
Γ2

|y(x, 1, t)|2 dΓ2.

(3.91)

(3.91) can be rewritten as

d

dt
E(t) ≤ −C

{∫
Γ2

f(u(x, t))u(x, t) dΓ2 +

∫
Γ2

|y(x, 1, t)|2 dΓ2

}
, (3.92)

where

C = min

{
α1 −

α2L1

2K
− µτ−1

2K
,−α2L1

2
+
µτ−1

2

}
.

which is positive due to (3.9).

� Next, we establish an observability inequality for problem (3.2).

Theorem 3.6. Let n = 1, 2, .... Assume hypothesis (H.1) on f , (H.2) on g and (A) on {Ω,Γ1,Γ2}
then the solution of problem (3.2) satisfies the following inequality: there exists a constant CT > 0

such that

E(t) ≤ E(0) ≤ CT
{∫

Σ2

|u(x, t)|2 dΣ2 +

∫
Σ2

|u(x, t− τ)|2 dΣ2

+

∫
Σ2

f(u(x, t))u(x, t) dΣ2 + ‖f(u)‖2
H−1
a (Σ2)

}
. (3.93)
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Proof. Set

E(t) = Es(t) + Ed(t),

where

Es(t) =
1

2

∫
Ω
|u(x, t)|2 dx,

and

Ed(t) =
µ

2

∫
Γ2

∫ 1

0
|u(x, t− τρ)|2 dρ dx.

We have from [[50] and [51]], for T > 0

Es(0) ≤ CT
{
‖u‖2L2(Σ2) +

∫ T

0

∫
Γ2

∣∣∣∣∂u∂ν
∣∣∣∣|u| dΓ2 dt+

∥∥∥∥∂u∂ν
∥∥∥∥2

H−1
a (Σ2)

+ ‖u‖2H−1(Q)

}
, (3.94)

where H−1
a (Σ2) is the dual space of the space H1

a(Σ2) = H
1
2 (0, T ;L2(Γ2)) ∩ L2(0, T ;H1(Γ2)).

We now impose the boundary conditions in (3.2). Then (3.94) becomes

Es(0) ≤ CT
{
‖u‖2L2(Σ2) +

∫ T

0

∫
Γ2

|iα1f(u(x, t)) + iα2g(u(x, t− τ))||u(x, t)| dΓ2 dt

+ ‖iα1f(u) + iα2g(u(., .− τ))‖2
H−1
a (Σ2)

+ ‖u‖2H−1(Q)

}
. (3.95)

Therefore

Es(0) ≤ CT
{
‖u‖2L2(Σ2) +

∫ T

0

∫
Γ2

[|f(u(x, t))||u(x, t)|+ |g(u(x, t− τ))||u(x, t)|] dΓ2 dt

+ ‖f(u)‖2
H−1
a (Σ2)

+ ‖g(u(., .− τ))‖2
H−1
a (Σ2)

+ ‖u‖2H−1(Q)

}
. (3.96)

Ed(t) can be rewritten, via a change of variable, as follows

Ed(t) =
µ

2τ

∫
Γ2

∫ t

t−τ
|u(x, s)|2 ds dΓ2.

Hence

Ed(0) ≤ µ

2τ

∫
Γ2

∫ 0

−τ
|u(x, s)|2 ds dΓ2. (3.97)

By another change of variable in (3.97), we have for T ≥ τ

Ed(0) ≤ CT
∫ T

0

∫
Γ2

|u(x, t− τ)|2 dΓ2 dt. (3.98)

Combining (3.96) and (3.98) we obtain for any T ≥ τ

E(0) ≤ CT
{
‖u‖2L2(Σ2) +

∫ T

0

∫
Γ2

[|f(u(x, t))||u(x, t)|+ |g(u(x, t− τ))||u(x, t)|] dΓ2 dt

+ ‖f(u)‖2
H−1
a (Σ2)

+ ‖g(u(., .− τ))‖2
H−1
a (Σ2)

+ ‖u(., .− τ)‖2L2(Σ2) + ‖u‖2H−1(Q)

}
. (3.99)
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By using assumptions (H.1), (H.2)(i) and Cauchy-Schwartz’s inequality, we obtain

E(0) ≤ CT
{
‖u‖2L2(Σ2) + ‖u(., .− τ)‖2L2(Σ2) +

∫ T

0

∫
Γ2

f(u(x, t))ū(x, t) dΓ2 dt

+ ‖f(u)‖2
H−1
a (Σ2)

+ ‖u‖2H−1(Q)

}
.

From Proposition 3.5, we deduce

E(t) ≤ E(0) ≤ CT
{
‖u‖2L2(Σ2) + ‖u(., .− τ)‖2L2(Σ2) +

∫ T

0

∫
Γ2

f(u(x, t))ū(x, t) dΓ2 dt

+ ‖f(u)‖2
H−1
a (Σ2)

+ ‖u‖2H−1(Q)

}
. (3.100)

The next step is to further clean estimate (3.100) by absorbing the term ‖u‖2H−1(Q), via a nonlinear,

compactness-uniqueness argument.

Lemma 3.3. There exists a constant CT (dependent on E(0)), such that the solution of problem (3.2)

satisfies:

‖u‖2H−1(Q) ≤ CT (E(0))

{
‖u‖2L2(Σ2) + ‖u(., .− τ)‖2L2(Σ2) +

∫ T

0

∫
Γ2

f(u(x, t))u(x, t) dΓ2 dt

+ ‖f(u)‖2
H−1
a (Σ2)

}
. (3.101)

Proof. It is based, on a compactness-uniqueness argument.

Step 1. Let (un) be a sequence of solutions to problem (3.2). Then

En(t) + C

{∫ t

0

∫
Γ2

f(un(x, s))un(x, s) dΓ2 ds+

∫ t

0

∫
Γ2

|un(x, s− τ)|2 dΓ2 ds

}
≤ En(0), 0 ≤ t ≤ T,

(3.102)

where En(0) the energy of the initial data (u0
n, f

0
n), it remains uniformly (in n) bounded by say,

En(0) ≤M .

Hence, by (3.102),

En(t) ≤M, 0 ≤ t ≤ T, (3.103)

We assume that (un) is such that (3.101) is violated; that is

lim
n−→∞

‖un‖2H−1(Q)

‖un‖2L2(Σ2)
+ ‖un(.,−τ)‖2

L2(Σ2)
+
∫ T

0

∫
Γ2
f(un)un dΓ2 dt+ ‖f(un)‖2

H−1
a (Σ2)

=∞. (3.104)

It follows from (3.103) that

un −→ some u, weak star in L∞(0, T ;L2(Ω)), (3.105)

unt −→ some ut, weak star in L∞(0, T ;H−2(Ω)), (3.106)

un −→ u, weakly in L2(0, T ;L2(Ω)), (3.107)

un −→ u, strongly in H−1(Q), (3.108)
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and hence

‖un‖2L∞(0,T ;L2(Ω)) + ‖unt‖2L∞(0,T ;H−2(Ω)) ≤ Const for all n ∈ N. (3.109)

The passage from (3.105) to (3.108) invokes a well-known compactness (in time and space).

Since the injection L2(Ω) ↪→ H−1(Ω) is compact, (3.109) implies (see [9] and [75]) that for 0 < T < +∞
the injection

Z ↪→ L∞(0, T ;H−1(Ω)),

is also compact, where Z is the Banach space equipped with the norm on the left-hand side of (3.109),

is also compact. As a consequence there is a subsequence still denoted by (un) such that

un −→ u ∈ L∞(0, T ;H−1(Ω)) strongly.

Thus

un −→ u, strongly in H−1(Q), (3.110)

is proved.

Because of (3.108), the numerator in (3.104) is uniformly bounded. This implies that each (positive)

term in the denominator in (3.104) must tend to zero, as n→∞:

‖un‖L2(Σ2) → 0; ‖un(., .− τ)‖L2(Σ2) → 0;

∫ T

0

∫
Γ2

f(un)un dΓ2 dt→ 0; ‖f(un)‖H−1
a (Σ2) → 0.

(3.111)

To continue, we need the following lemma.

Lemma 3.4. Let (un) be a sequence of solution of problem (3.2) such that, as n→ 0,

un → 0 in L2(Σ2);

∫
Σ2

f(un)un dΣ2 → 0, (3.112)

as asserted in (3.111). Then ∫
Σ2

f(un)φdΣ2 → 0, ∀φ ∈ C∞(Σ2). (3.113)

Proof of (3.113). To prove (3.113) as a consequence of (3.112), given un(x, t) and δ > 0, we divide Σ2

accordingly as follows:

ΣA(δ, n) ≡ {(x, t) ∈ Σ2 : |un(x, t)| ≤ δ}; ΣB(δ, n) ≡ {(x, t) ∈ Σ2 : |un(x, t)| ≥ δ}, (3.114)

with δ > 0 to be selected below. Then, for φ ∈ C∞(Σ2):∫
Σ2

f(un)φdΣ2 =

∫
ΣA(δ,n)

f(un)φdΣA +

∫
ΣB(δ,n)

f(un)φdΣB. (3.115)
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Since f is continuous and f(0) = 0 by (H.1), then given ε > 0, there is δ0 = δ0(ε) > 0 such that

|f(un(x, t))| < ε, for (x, t) ∈ ΣA(δ0, n).

Thus, ∣∣∣∣ ∫
ΣA(δ0,n)

f(un)φdΣA

∣∣∣∣ ≤ ε‖φ‖L∞(Σ2). (3.116)

Moreover, from the definition of ΣB(δ0, n) and the assumption (H.1):∣∣∣∣ ∫
ΣB(δ0,n)

f(un)φdΣB

∣∣∣∣ =

∣∣∣∣ ∫
ΣB(δ0,n)

f(un)
un
un
φdΣB

∣∣∣∣
≤
‖φ‖L∞(Σ2)

δ0

∫
ΣB(δ0,n)

f(un)un dΣB

≤
‖φ‖L∞(Σ2)

δ0

∫
Σ2(δ0,n)

f(un)un dΣ2 → 0, as n→∞. (3.117)

by (3.112). Thus, given ε > 0, δ0 > 0, there exists N = Nε,δ0 , such that for all n > N we have the

integral in (3.117) is less than (δ0ε), and hence∣∣∣∣ ∫
ΣB(δ0,n)

f(un)φdΣB

∣∣∣∣ ≤ ε‖φ‖L∞(Σ2), n > Nε,δ0 . (3.118)

Combining (3.116) and (3.118) in (3.115) yields (3.113), as desired.

Next, we specialize to φ ∈ C∞(Σ2) such that φ |t=0 = φ |t=T = 0 and φ = 0 on Σ1. Integrating by

parts (second Green Theorem) and using problem (3.2) for un yields:

0 = 〈i(un)t + ∆un, φ〉L2(Q) = −i
∫ T

0

∫
Ω
unφt dx dt+ i

∫
Σ2

α1f(un)φdΣ2 + i

∫
Σ2

α2g(un(x, t− τ))φdΣ2

−
∫ T

0

∫
Γ2

un
∂φ

∂ν
dΣ2 +

∫ T

0

∫
Ω
un∆φdx dt. (3.119)

On the RHS of (3.119), we invoke the weak convergence (3.107) on its first and last integral terms; as

well as the convergence to zero of its second integral term by (3.113), (H.2) and the second statement

of (3.111) on its third integral and the firsts statement of (3.111) on its penultimate integral term.

The final result is

−i
∫ T

0

∫
Ω
uφt dx dt+

∫ T

0

∫
Ω
u∆φdx dt = 0 (3.120)

for u = 0 on Σ and ∂u
∂ν = 0 on Σ2 ( the first claim follows from un = 0 on Σ0 and un → 0 on L2(Σ2);

the second by ∂un
∂ν = iα1f(un) + iα2g(un(x, t− τ))→ 0 ( by using the last statement of (3.111) for f

and (H.2) and the second statement of (3.111) for g )).

Thus specializing further φ ∈ D(Q), we see that (3.120) is the weak formulation of the following

problem 
iut + ∆u = 0 in Q,

u = 0 on Σ,
∂u

∂ν
= 0 on Σ2.

(3.121)
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By Holmogren’s uniqueness Theorem ( [54], Chap. 1, Theorem.8.2), we conclude that (3.121) implies

then that u = 0 in Q. Thus, all convergences in (3.105), (3.107), (3.108) are to the limit u = 0.

Step 2. Denote

cn = ‖un‖H−1(Q), ûn =
1

cn
un.

Thus

‖ûn‖2H−1(Q) = 1. (3.122)

Dividing the numerator and the denominator of the fraction in (3.104) by c2
n, and using (3.122), we

obtain

lim
n−→∞

1

‖ûn‖2L2(Σ2)
+
‖un(.,−τ)‖2

L2(Σ2)

c2n
+

∫ T
0

∫
Γ2
f(un)un dΓ2 dt

c2n
+
‖f(un)‖2

H−1
a (Σ2)

c2n

=∞. (3.123)

Thus, (3.123) implies

‖ûn‖2L2(Σ2) → 0;

∫ T
0

∫
Γ2
f(un)un dΓ2 dt

c2
n

→ 0;
‖f(un)‖2

H−1
a (Σ2)

c2
n

→ 0. (3.124)

On the other hand, since each solution satisfies the energy estimate (3.100), we obtain after dividing

both sides of such estimate by c2
n and invoking (3.122)

1

c2
n

En(t) ≤ CT
{
‖ûn‖2L2(Σ2) +

‖un(., .− τ)‖2L2(Σ2)

c2
n

+

∫ T

0

∫
Γ2
f(un(x, t))un(x, t)

c2
n

dΣ2

+
‖f(un)‖2

H−1
a (Σ2)

c2
n

+ 1

}
, (3.125)

as f(un)un = |f(un)| |un| by (H.1). Invoking on the RHS of (3.125) the convergence statements in

(3.124), we then arrive at

‖ûn(t)‖L2(Ω) ≤ Const, 0 ≤ t ≤ T, n = 1, 2, ... (3.126)

Hence, as in (3.105), (3.106), (3.107) and (3.108), we deduce from (3.126) that

ûn −→ some û, weak star in L∞(0, T ;L2(Ω)), (3.127)

ûnt −→ some ût, weak star in L∞(0, T ;H−2(Ω)), (3.128)

ûn −→ û, weakly in L2(0, T ;L2(Ω)), (3.129)

ûn −→ û, strongly in H−1(Q) so that ‖û‖H−1(Q) = 1, (3.130)

by (3.122).

Next, we divide problem (3.2) for un by cn, thus obtaining
(ûn)t − i∆ûn = 0 in Q,

ûn = 0 on Σ1,
∂ûn
∂ν

= iα1
f(un)
cn

+ iα2
g(un(x,t−τ))

cn
on Σ2.

(3.131)
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Proceeding as in Step 1. from (3.111) to (3.121) we then arrive at the following conclusion that

the limit function û satisfies the following problem:
ût − i∆û = 0 in Q,

û = 0 on Σ,
∂û

∂ν
= 0 on Σ2.

(3.132)

Via Holmogren’s uniqueness Theorem, problem (3.132) implies then that û = 0 in Q and this

contradicts ‖û‖H−1(Q) = 1 in (3.130). Thus, the contradiction hypothesis (3.104) is false. Hence

(3.101).

As a corollary, using (3.101) in the RHS of estimate (3.100), we obtain (3.93).

� Estimate of the term f(u) in H−1
a (Σ2).

Because of assumption (H.1), whereby f(z)z = |f(z)z|, we set

ΛΣ2(u) =

∫ T

0

∫
Γ2

f(u)u dΓ2 dt =

∫ T

0

∫
Γ2

|f(u)u| dΓ2 dt = |f(u)u|L1(Σ2), (3.133)

where L1(Σ2) = L1(0, T ;L1(Γ2)).

Denote

Σ1A ≡ {(x, t) ∈ Σ2 : |u(x, t)| ≥ 1}; Σ1B ≡ {(x, t) ∈ Σ2 : |u(x, t)| < 1}. (3.134)

Proposition 3.7. Let n = dimΩ = 2, 3. Assume hypotheses (H.1) , (H.2) and (H.4). Let u be the

solution of (3.2) guaranteed by Theorem 3.3. Then there exists a positive constant Cp (depending on

p in (H.4)) such that the following estimate holds true for problem (3.2):

‖f(u)‖2
H−1
a (Σ2)

≤ C̃p(E(0))
p−1
p+1 (ΛΣ2(u)) + 2‖f(u)‖2L2(Σ1B), (3.135)

where: p = 5 for dim Ω = 2; p = 3 for dim Ω = 3, as in assumption (H.4); E(0) and ΛΣ2(u) are

defined by (3.8) and (3.133), respectively. Moreover, C̃p = Cp(
1
C )

p−1
p+1 . with M defined by (H.4).

Proof. We need the following result.

Lemma 3.5. (Lasiecka and Triggiani [47])

Let dim Ω = 2, 3. Under assumptions (H.1) and (H.4), the following estimate holds true, where M

is defined in (H.4):

‖f(u)‖H−1
a (Σ2) ≤ ‖f(u)‖L2(Σ1B) + cpM

1
p+1 ‖f(u)u‖

p
p+1

H−1
a (Σ2)

, (3.136)

with p as specified below (3.135), cp the constant defined in [[47] p. 518].
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Recalling ΛΣ2(u) from (3.133), we rewrite inequality (3.136) as follows, after squaring both sides:

‖f(u)‖2
H−1
a (Σ2)

≤ 2‖f(u)‖2L2(Σ1B) + Cp‖f(u)u‖
2p
p+1

H−1
a (Σ2)

(3.137)

= 2‖f(u)‖2L2(Σ1B) + Cp[ΛΣ2(u)]
p−1
p+1 [ΛΣ2(u)], (3.138)

where Cp = 2(cpM
1
p+1 )2.

Next, we have from Proposition 3.5 in the notation of (3.133) for ΛΣ2(u) as

E(T ) + C

{
ΛΣ2(u) +

∫ T

0

∫
Γ2

|u(x, t− τ)|2 dΓ2 dt

}
≤ E(0), thus ΛΣ2(u) ≤ 1

C
E(0). (3.139)

Using the inequality of (3.139) in (3.137) yields:

‖f(u)‖2
H−1
a (Σ2)

≤ 2‖f(u)‖2L2(Σ1B) + C̃p(E(0))
p−1
p+1 [ΛΣ2(u)], (3.140)

where C̃p = Cp(
1
C )

p−1
p+1 , and (3.140) proves (3.135), as desired. Proposition 3.7 is established.

� Estimates of u ∈ L2(Σ2) and f(u)u ∈ L2(Σ2).

Lemma 3.6. Assume (H.1) and recall (3.133). Then, the solution of problem (3.2) guaranteed by

Theorem 3.3 satisfies:∫
Σ1A

|u(x, t)|2 dΣ1A ≤ K−1

∫
Σ1A

f(u(x, t))u(x, t) dΣ1A ≤ K−1ΛΣ2(u), (3.141)

and ∫
Σ1B

|u(x, t)|2 dΣ1B +

∫
Σ1B

|f(u(x, t))|2 dΣ1B ≤ (mesΣ2)h̃

(∫
Σ2

f(u(x, t))u(x, t) dΣ2

)
= (mesΣ2)h̃(ΛΣ2(u)), (3.142)

where h̃ is the concave strictly increasing function defined in (3.5).

Proof. Inequality (3.141) is an application of assumption (H.1) in the notation of (3.133).

We invoke the property (3.4) for h where the constant δ can be taken to be δ = 1 and by using

assumption (H.1), we have∫
Σ1B

|u(x, t)|2 dΣ1B +

∫
Σ1B

|f(u(x, t))|2 dΣ1B ≤
∫

Σ1B

h(f(u(x, t))u(x, t)) dΣ1B ≤
∫

Σ2

h(f(u(x, t))u(x, t)) dΣ2.

(3.143)

By Jensen’s inequality [[53], p. 38],∫
Σ2

h(f(u(x, t))u(x, t)) dΣ2 ≤ (mesΣ2)h

(
1

mesΣ2

∫
Σ2

f(u(x, t))u(x, t) dΣ2

)
(3.144)

≤ (mesΣ2)h̃(ΛΣ2(u)) = (mesΣ2)h̃(ΛΣ2(u)), (3.145)

where h̃ is defined in (3.5) and ΛΣ2(u) is defined in (3.133). Then, (3.145) establishes (3.142).
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� Completion of the Proof of Theorem 3.1

Lemma 3.7. Assume assumptions (H.1) and (H.4). Then the problem (3.2) satisfies:∫
Σ1B

|u(x, t)|2 dΣ1B + ‖f(u)‖2
H−1
a (Σ2)

≤
(
K−1 + C̃p(E(0))

p−1
p+1

)
ΛΣ2(u) + 2(mesΣ2)h̃(ΛΣ2(u)).

(3.146)

Proof.∫
Σ1B

|u(x, t)|2 dΣ1B + ‖f(u)‖2
H−1
a (Σ2)

=

∫
Σ1A

|u(x, t)|2 dΣ1A +

∫
Σ1B

|u(x, t)|2 dΣ1B + ‖f(u)‖2
H−1
a (Σ2)

.

By (3.135), we have∫
Σ1B

|u(x, t)|2 dΣ1B + ‖f(u)‖2
H−1
a (Σ2)

≤
∫

Σ1A

|u(x, t)|2 dΣ1A +

∫
Σ1B

|u(x, t)|2 dΣ1B + 2

∫
Σ1B

|f(u(x, t)|2 dΣ1B

+ C̃p(E(0))
p−1
p+1 (ΛΣ2(u)).

By (3.141) and (3.142), we obtain∫
Σ1B

|u(x, t)|2 dΣ1B + ‖f(u)‖2
H−1
a (Σ2)

≤ K−1ΛΣ2(u) + 2(mesΣ2)h̃(ΛΣ2(u))

+ C̃p(E(0))
p−1
p+1 (ΛΣ2(u)). (3.147)

Then, (3.147) establishes (3.146).

Lemma 3.8. Assume (H.1) and (H.4). Then, the energy E(T ) of problem (3.2) satisfies the inequality

E(T ) + p(E(T )) ≤ E(0), (3.148)

where p(.) defined by (3.6).

Proof. Returning to (3.93), recalling (3.133), and using (3.146), we have

E(t) ≤ E(0) ≤ CT
[
K−1 + 1 + C̃p(E(0))

p−1
p+1

]
ΛΣ2(u) + CT

∫
Σ2

|u(x, t− τ)|2 dΣ2

+ 2CT (mesΣ2)h̃(ΛΣ2(u)).

Since h(.), hence h̃(.), is strictly increasing, where we have

E(t) ≤ E(0) ≤ CT
[
K−1 + 1 + C̃p(E(0))

p−1
p+1

]
ΛΣ2(u) + CT

∫
Σ2

|u(x, t− τ)|2 dΣ2

+ 2CT (mesΣ2)h̃

(
ΛΣ2(u) +

∫
Σ2

|u(x, t− τ)|2 dΣ2

)
. (3.149)
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Setting

K1 =
1

2CTmesΣ2
, K2 =

K−1 + 1 + C̃p(E(0))
p−1
p+1

2mesΣ2
. (3.150)

Consequently, for t = T

E(T ) ≤ K2

K1
ΛΣ2(u) +

1

2K1mesΣ2

∫
Σ2

|u(x, t− τ)|2 dΣ2

+
1

K1
h̃

(
ΛΣ2(u) +

∫
Σ2

|u(x, t− τ)|2 dΣ2

)
. (3.151)

Set

C ′′ = max{K2,
1

2mesΣ2
}.

Therefore

K1E(T ) ≤ (C ′′I + h̃)

(
ΛΣ2(u) +

∫
Σ2

|u(x, t− τ)|2 dΣ2

)
. (3.152)

On the other hand, integrate the inequality (3.87) over (0, T ), we obtain

ΛΣ2(u) +

∫
Σ2

|u(x, t− τ)|2 dΣ2 ≤ C−1(E(0)− E(T )). (3.153)

By (3.152) and (3.153), we have

(C ′′I + h̃)−1(K3E(T )) = p(E(T )) ≤ E(0)− E(T ), (3.154)

where K3 = CK1.

Finally,

p(E(T )) + E(T ) ≤ E(0) (3.155)

and Lemma 3.8 is established.

Applying the result of Proposition 3.8 we obtain for m = 0, 1, 2....

p(E(m(T + 1)) + E(m(T + 1)) ≤ E(mT ).

Thus, we are in a position to apply [[43], Lemma 3.3, p.531] with

sm = E(mT ), s0 = E(0).

This yields

E(mT ) ≤ S(m), m = 0, 1, 2, ...

Let t = mT + τ and recall the evolution property, we obtain

E(t) ≤ E(mT ) ≤ S(m) ≤ S( t−τT ) ≤ S( tT − 1) for t > T,

which completes the proof of Theorem 3.1.
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3.3 Stability of the Schrödinger equation with a delay term in the

nonlinear internal feedback

3.3.1 Well-posedness of problem (3.12)

Inspired from [62], we introduce the auxiliary variable:

y(x, ρ, t) = u(x, t− τρ); x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then, problem (3.12) is equivalent to

ut(x, t) = i∆u(x, t)− a(x){α1f(u(x, t))− α2g(y(x, 1, t))} in Ω× (0; +∞),

yt(x, ρ, t) + τ−1yρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

y(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),

y(x, 0, t) = u(x, t) in Ω× (0,∞).

(3.156)

Let Ĥ denote the Hilbert space.

Ĥ = L2(Ω)× L2(Ω;L2(0, 1)),

equipped with the inner product:〈(
u1

y1

)
;

(
u2

y2

)〉
Ĥ

= Re

∫
Ω
u1(x)u1(x) dx+ µRe

∫
Ω
a(x)

∫ 1

0
y1(x, ρ)y2(x, ρ) dρ dx.

Set

U(t) = (u, y)T , U0 = (u0, f0)T .

Then problem (3.156) can be formulated as an abstract Cauchy problem in Ĥ
dU

dt
(t) = Ã(U(t)),

U(0) = U0,

(3.157)

where the operator Ã is defined by

Ã

(
u

y

)
=

(
i∆u− aα1f(u)− aα2g(y(., 1))

−τ−1yρ

)
, (3.158)

with

D(Ã) ={(u, y) ∈ H2(Ω) ∩H1
0 (Ω))× L2(Ω;H1(0, 1)), u = y(., 0) in Ω}. (3.159)
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Theorem 3.8. Assume (H.1)− (H.3) and (H.5). Then, For every U0 ∈ Ĥ, the problem (3.157) has

a unique (nonlinear contraction semigroup) solution U whose regularity depends on the initial datum

U0 as follows:

U(.) ∈ C([0,+∞); Ĥ) if U0 ∈ Ĥ,
U(.) ∈ C1([0,+∞); Ĥ) ∩ C([0,+∞);D(Ã)) if U0 ∈ D(Ã).

Proof. According to nonlinear semigroup theory, we need only to show that Ã defined by (3.158) and

(3.159) is maximal dissipative on Ĥ.

Let U = (ζ, θ)T ∈ D(Ã);V = (ζ̃, θ̃)T ∈ D(Ã).

Then

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ

= Re

∫
Ω
i(∇ζ(x)−∇ζ̃(x))(ζ(x)− ζ̃(x)) dx− α1Re

∫
Ω
a(x)(f(ζ(x))− f(ζ̃(x)))

(ζ(x)− ζ̃(x)) dx− α2Re

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))(ζ(x)− ζ̃(x)) dx

− µτ−1Re

∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ))(θ(x, ρ)− θ̃(x, ρ)) dρ dx.

Applying Green’s theorem, we get

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ

=Re

∫
Γ

∂(ζ(x)− ζ̃(x))

∂ν
(ζ(x)− ζ̃(x)) dx−Re i

∫
Ω
∇(ζ(x)− ˜ζ(x)∇(ζ(x)− ζ̃(x)) dx

− α1Re

∫
Ω
a(x)(f(ζ(x))− f(ζ̃(x)))(ζ(x)− ζ̃(x)) dx

− α2Re

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))(ζ(x)− ζ̃(x)) dx

− µτ−1Re

∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ))(θ(x, ρ)− θ̃(x, ρ)) dρ dx.

(3.160)

Integrating by parts in ρ the last term on the right-hand side of (3.160), we obtain∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ))(θ(x, ρ)− θ̃(x, ρ)) dρ dx

= −
∫

Ω
a(x)

∫ 1

0
(θ(x, ρ)− θ̃(x, ρ))(θ(x, ρ)ρ − θ̃ρ(x, ρ)) dρ dx

+

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1))|2 dx−

∫
Ω
a(x)|θ(x, 0)− θ̃(x, 0))|2 dx,

or equivalently

2Re

∫
Ω
a(x)

∫ 1

0
(θρ(x, ρ)− θ̃ρ(x, ρ))(θ(x, ρ)− θ̃(x, ρ)) dρ dx

=

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1))|2 dx−

∫
Ω
a(x)|θ(x, 0)− θ̃(x, 0))|2 dx.
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Therefore

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ

= −α1Re

∫
Ω
a(x)(f(ζ(x))− f(ζ̃(x)))(ζ(x)− ζ̃(x)) dx

− α2Re

∫
Ω
a(x)(g(θ(x, 1))− g(θ̃(x, 1)))(ζ(x)− ζ̃(x)) dx

− µτ−1

2

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1))|2 dx+

µτ−1

2

∫
Ω
a(x)|θ(x, 0)− θ̃(x, 0))|2 dx.

From assumptions (H.1)(ii), (H.2) and the Cauchy-Schwartz’s inequality, we have

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ −Kα1

∫
Ω
a(x)|ζ(x)− ζ̃(x)|2 dx+

α2L1

2

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1)|2 dx

+
α2L1

2

∫
Ω
a(x)|ζ(x)− ζ̃(x)|2 dx− µτ−1

2

∫
Ω
a(x)|θ(x, 1)− θ̃(x, 1))|2 dx

+
µτ−1

2

∫
Ω
a(x)|ζ(x)− ζ̃(x)|2 dx.

Then

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ −(Kα1 −

α2L1

2
− µτ−1

2
)

∫
Ω
a(x)|ζ(x)− ζ̃(x)|2 dx

− (−α2L1

2
+
µτ−1

2
)

∫
Ω
a(x)|ζ(x)− ζ̃(x)|2 dx.

Recalling (3.18), we conclude that

Re
〈
ÃU − ÃV ;U − V

〉
Ĥ
≤ 0.

This shows the dissipativity of Ã.

In order to establish maximality, we need to prove the range condition: range(I − Ã) = Ĥ. In other

words, given any (l,m)T ∈ Ĥ, we need to establish the existence of an element W = (ζ, θ)T ∈ D(Ã)

such that

(I − Ã)W = (l,m)T ,

or equivalently

ζ − i∆ζ + a(.)α1f(ζ) + a(.)α2g(θ(., 1)) = l, (3.161)

θ(x, ρ) + τ−1θρ(., ρ) = m. (3.162)

From (3.162) and the last line of (3.156) we have

θρ(x, ρ) = −τθ(x, ρ) + τm, x ∈ Ω, ρ ∈ (0, 1),

θ(x, 0) = ζ(x), x ∈ Ω.
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The unique solution of the above initial value problem is given by

θ(x, ρ) = ζ(x)e−τρ + τe−τρ
∫ ρ

0
m(x, σ)eτσ dσ, x ∈ Ω, ρ ∈ (0, 1),

and in particular

θ(x, 1) = ζ(x)e−τ + Z0, x ∈ Ω, (3.163)

where

Z0 = τe−τ
∫ 1

0 m(x, σ)eτσ dσ.

Insertion of (2.64) into problem (3.161) results in the equation

ζ − i∆ζ + a(.)α1f(ζ) + a(.)α2g(ζe−τ + Z0) = l,

which we rewrite as

T̃ ζ = l,

where

T̃ ζ = ζ + T̃1ζ,

and

T̃1ζ = −i∆ζ + a(.)α1f(ζ) + a(.)α2g(ζe−τ + Z0). (3.164)

Lemma 3.9. The operator T̃1 defined by (3.164) with D(T̃1) = H2(Ω)∩H1
0 (Ω), is maximal monotone

on L2(Ω).

Proof. Set

T̃1ζ = Bζ + Cζ,

where

B : L2(Ω) −→ L2(Ω) defined by Bζ = a(.)α1f(ζ) + a(.)α2g(ζe−τ + Z0),

C : D(C) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) −→ L2(Ω) defined by Cζ(x) = −i∆ζ(x).

Clearly, C is maximal monotone on L2(Ω). Then according to Corollary 1.1 in [11], it is sufficient

to prove boundedness, hemicontinuity and monotonicity of B. To this end, let ζ ∈ L2(Ω). We have

∫
Ω
|a(x)

{
α1f(ζ(x)) + α2g(ζ(x)e−τ + Z0)|2

}
dx

≤ ‖a‖2L∞(Ω)cst

{∫
Ω
|f(ζ(x))|2 dx+

∫
Ω
|g(ζ(x)e−τ + Z0)|2 dx

}
. (3.165)
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Since f is continuous; |f(ζ(x))|2 ≤ K2
1 for |ζ(x)| ≤ 1, and for |ζ(x)| ≥ 1, assumption (H.5) implies

|f(ζ(x))|2 ≤ M̃2|ζ(x)|2. Consequently

|f(ζ(x))|2 ≤ K2
1 + M̃2|ζ(x)|2, ∀x ∈ Ω. (3.166)

From assumption (H.2), we have

|g(ζ(x)e−τ + Z0(x))|2 ≤ L2
1|ζ(x)e−τ + Z0(x))|2. (3.167)

Substituting (3.166) and (3.167) in (3.165), we obtain∫
Ω
|a(x)

{
α1f(ζ(x)) + α2g(ζ(x)e−τ + Z0(x)

}
|2 dx

≤ ‖a‖2L∞(Ω)c

{∫
Ω
|f(ζ(x))|2 dx+

∫
Ω
|g(ζ(x)e−τ + Z0(x)|2 dx

}
≤ ‖a‖2L∞(Ω)c

{∫
Ω
K2

1 dx+ C2‖ζ‖2L2(Ω) + L2
1

∫
Ω
|ζ(x)e−τ + Z0(x)|2 dx

}
≤ ‖a‖2L∞(Ω)c

{∫
Ω
K2

1 dx+ C2‖ζ‖2L2(Ω) + L2
1e
−2τ‖ζ‖2L2(Ω) + L2

1‖Z0‖2L2(Ω)

}
≤ ‖a‖2L∞(Ω)c

{∫
Ω
K2

1 dx+ (C2 + L2
1e
−2τ )‖ζ‖2L2(Ω) + L2

1‖Z0‖2L2(Ω)

}
<∞.

Therefore B is well defined and bounded.

To prove that B is hemicontinuous, we need to prove that for all u, v, w ∈ L2(Ω)

lim
t→0
〈B(u+ xnv), w〉L2(Ω) = 〈Bu,w〉L2(Ω),

or equivalently

lim
n>∞
〈B(u+ xnv), w〉L2(Ω) = 〈Bu,w〉L2(Ω), (3.168)

for every sequence (xn)n ⊂ R such that xn −→ 0 when n −→∞.

Let Fn = aα1f(u+ xnv) + aα2g((u+ xnv)e−τ + Z0)w, n ∈ N, thus (Fn)n ⊂ L1(Ω). In fact,

|Fn(x)| = |a(x)α1f(u(x) + xnv(x)) + a(x)α2g((u(x) + xnv(x))e−τ + Z0(x))||w(x)|

≤ |a(x)|
[
α1K1 + (α1M̃ + α2L1e

−τ )|u(x) + xnv(x)|+ α2L1‖Z0‖2L2(Ω)

]
|w(x)|

≤ α1K1|a(x)| |w(x)|+ (α1M̃ + α2L1e
−τ )|a(x)| |u(x)| |w(x)|

+ (α1M̃ + α2L1e
−τ )|a(x)| |xn| |v(x)| |w(x)|+ α2L1‖Z0‖2L2(Ω)|a(x)| |w(x)|,

a.e. in Ω.

Since a ∈ L∞(Ω) and |xn| ≤ N, for all n ∈ N, then Fn ∈ L1(Ω), for all n ∈ N.

Moreover, if

R(x) = α1K1|a(x)| |w(x)|+ (α1M̃ + α2L1e
−τ )|a(x)| |u(x)| |w(x)|

+M1|a(x)| |v(x)| |w(x)|+ α2L1‖Z0‖2L2(Ω)|a(x)| |w(x)|,
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where M1 = N(α1M̃ + α2L1e
−τ ), then R ∈ L1(Ω) and |Fn(x)| ≤ R(x) a.e. in Ω.

From the continuity of f and g, we have

lim
n→∞

a(x)
{
α1f(u(x) + xnv(x)) + α2g((u(x) + xnv(x))e−τ + Z0(x)

}
w(x)

= a(x)
{
α1f(u(x)) + α2g((u(x)e−τ + Z0(x))

}
w(x),

a.e. in Ω.

Recalling Lebesgue’s dominated convergence theorem we deduce that∫
Ω
|a(x)

{
α1f(u(x) + xnv(x)) + α2g((u(x) + xnv(x))e−τ + Z0(x)

}
w(x)

− a(x)
{
α1f(u(x)) + α2g((u(x)e−τ + Z0(x)

}
w(x)| dx −→ 0.

Thus, ∣∣∣∣ ∫
Ω

[a(x)
{
α1f(u(x) + xnv(x)) + α2g((u(x) + xnv(x))e−τ + Z0(x))

}
w(x)

− a(x)
{
α1f(u(x)) + α2g((u(x)e−τ + Z0(x))

}
w(x)] dx

∣∣∣∣ −→ 0,

and consequently,

Re

∫
Ω

[a(x)
{
α1f(u(x) + xnv(x)) + α2g((u(x) + xnv(x))e−τ + Z0(x))

}
w(x)] dx

−→ Re

∫
Ω
a(x)

{
α1f(u(x)) + α2g((u(x)e−τ + Z0(x))

}
w(x) dx,

which proves (3.168).

Now, we show that B is monotone (−B is dissipative). Indeed, for u, v ∈ L2(Ω), we have

Re〈(−B)u− (−B)v, u− v〉L2(Ω)×L2(Ω) = Re

∫
Ω
−α1a(x)(f(u)− f(v))(u− v) dx

+Re

∫
Ω
−α2a(x)(g(ue−τ + Z0(x))− g(ve−τ + Z0(x)))(u− v) dx

≤ −α1K

∫
Ω
a(x)|u− v|2 dx+ α2

∫
Ω
a(x)|g(ue−τ + Z0(x))− g(ve−τ + Z0(x))| |u− v| dx

≤ −α1K

∫
Ω
a(x)|u− v|2 dx+ α2e

−τL1

∫
Ω
a(x)|u− v|2 dx

≤ −(α1K − α2e
−τL1)

∫
Ω
a(x)|u− v|2 dx,

and the desired conclusion follows from assumption (H.3).

The operator T̃1 with is maximal monotone on L2(Ω) and consequently T̃ is surjective. Therefore

range(I − Ã) = Ĥ. This completes the proof of the maximal dissipativity of Ã.
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3.3.2 Proof of Theorem 3.2

We first show that the energy F (t) of every solution of (3.12) is decreasing.

Proposition 3.9. The energy corresponding to any strong solution of the problem (3.12) is decreasing

and there exists C̃ > 0 such that

d

dt
F (t) ≤ −C̃

∫
Ω

{
a(x)f(u(x, t))u(x, t) + a(x)|u(x, t− τ)|2

}
dx, (3.169)

where

C̃ = min

{
α1 −

α2L1

2K
− µτ−1

2K
,−α2L1

2
+
µτ−1

2

}
.

Proof. Differentiating F (t) defined by (3.17) in time, we obtain

d

dt
F (t) = Re

∫
Ω
ut(x, t)u(x, t) dx+ µRe

∫
Ω

∫ 1

0
a(x)ut(x, t− τρ)u(x, t− τρ) dρ dx

= Re

∫
Ω

(i∆u(x, t))u(x, t) dx−Re
∫

Ω
a(x)α1f(u(x, t))u(x, t) dx−Re

∫
Ω
a(x)α2g(u(x, t− τ))u(x, t) dx

+ µRe

∫
Ω

∫ 1

0
a(x)ut(x, t− τρ)u(x, t− τρ) dρ dx.

Applying Green’s second theorem, we get

d

dt
F (t) = −α1Re

∫
Ω
a(x)f(u(x, t))u(x, t) dx− α2Re

∫
Ω
a(x)g(u(x, t− τ))u(x, t) dx

+ µRe

∫
Ω

∫ 1

0
a(x)ut(x, t− τρ)u(x, t− τρ) dρ dx. (3.170)

Now observe that

ut(x, t− τρ) = −τ−1uρ(x, t− τρ),

and
d

dρ
|u(x, t− τρ)|2 = 2Re(uρ(x, t− τρ)u(x, t− τρ)). (3.171)

Inserting (3.171) into (3.170), we obtain

d

dt
F (t) = −α1Re

∫
Ω
a(x)f(u(x, t))u(x, t) dx− α2Re

∫
Ω
a(x)g(u(x, t− τ))u(x, t) dx

− µτ−1

2

∫
Ω

∫ 1

0
a(x)

d

dρ
|u(x, t− τρ)|2 dρ dx

= −α1Re

∫
Ω
a(x)f(u(x, t))u(x, t) dx− α2Re

∫
Ω
a(x)g(u(x, t− τ))u(x, t) dx

− µτ−1

2

∫
Ω
a(x)(|u(x, t− τ)|2 − |u(x, t)|2 dx.



3.3. STABILITY OF THE SCHRÖDINGER EQUATION WITH A DELAY TERM IN THE
NONLINEAR INTERNAL FEEDBACK 90

By using assumption (H.2) and Cauchy-Schwartz’s inequality, we have

d

dt
F (t) ≤ −α1Re

∫
Ω
a(x)f(u(x, t))u(x, t) dx+

α2L1

2

∫
Ω
a(x)|u(x, t− τ)|2 dx+

α2L1

2

∫
Ω
a(x)|u(x, t)|2 dx

− µτ−1

2

∫
Ω
a(x)|u(x, t− τ)|2 dx+

µτ−1

2

∫
Ω
a(x)|u(x, t)|2 dx. (3.172)

Recalling assumption (H.1)(ii) and (H.1)(iii), we rewrite (3.172) as

d

dt
F (t) ≤ −α1

∫
Ω
a(x)f(u(x, t))u(x, t) dx+

α2L1

2

∫
Ω
a(x)|u(x, t− τ)|2 dx+

α2L1

2K

∫
Ω
a(x)f(u(x, t))u(x, t) dx

− µτ−1

2

∫
Ω
a(x)|u(x, t− τ)|2 dx+

µτ−1

2K

∫
Ω
a(x)f(u(x, t))u(x, t) dx.

Therefore

d

dt
F (t) ≤ −(α1 −

α2L1

2K
− µτ−1

2K
)

∫
Ω
a(x)f(u(x, t))u(x, t) dx− (−α2L1

2
+
µτ−1

2
)

∫
Ω
a(x)|u(x, t− τ)|2 dx,

this last inequality can be written

d

dt
F (t) ≤ −C̃

∫
Ω

{
a(x)f(u(x, t))u(x, t) + a(x)|u(x, t− τ)|2

}
dx,

where

C̃ = min

{
α1 −

α2L1

2K
− µτ−1

2K
,−α2L1

2
+
µτ−1

2

}
,

which is positive due to the (3.18).

Next, we establish an observability inequality for problem (3.12).

Proposition 3.10. Let T > 0 be sufficiently large. Then there exists a positive constant C(T )

depending on T such that

F (T ) ≤ C(T )

∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 + |f(u(x, t))|2 + |u(x, t− τ)|2

}
dx dt. (3.173)

Proof. We write the solution u of (3.12) as u = ϕ+ v where ϕ solves
ϕt(x, t) = i∆ϕ(x, t) in Ω× (0; +∞),

ϕ(x, t) = 0 on Γ× (0,+∞),

ϕ(x, 0) = u0(x) in Ω,

(3.174)

and v satisfies
vt(x, t) = i∆v(x, t)− a(x){α1f(u(x, t))− α2g(u(x, t− τ))} in Ω× (0; +∞),

v(x, t) = 0 on Γ× (0,+∞),

v(x, 0) = 0 in Ω.

(3.175)
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Denote by

Fϕ(t) =

∫
Ω
|ϕ(x, t)|2 dx,

the energy corresponding to the solution of (3.174). Then, it follows from [[57] Proposition 3.1] that

for all T > 0, there exists a positive constant c depending on T such that

Fϕ(0) = ‖u0‖2L2(Ω) ≤ c
∫ T

0

∫
ω
|ϕ(x, t)|2 dx dt.

Here and throughout the rest of the section, c is a positive constant different at different occurences.

Using (3.13), we get

‖u0‖2L2(Ω) ≤
c

a0

∫ T

0

∫
Ω
a(x)|ϕ(x, t)|2 dx dt. (3.176)

On the other hand, we have for T > τ

µ

2

∫
Ω
a(x)

∫ 1

0
|u(x,−τρ)|2 dρ dx ≤ c

∫ T

0

∫
Ω
a(x)|u(x, t− τ)|2 dx dt. (3.177)

Since the energy is non-increasing, we deduce from (3.176) and (3.177) that

F (T ) ≤ F (0) =
1

2
‖u0‖2L2(Ω) +

µ

2

∫
Ω
a(x)

∫ 1

0
|u(x,−τρ)|2 dρ dx

≤ c
∫ T

0

∫
Ω
a(x)

{
|ϕ(x, t)|2 + |u(x, t− τ)|2

}
dx dt

≤ c
∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 + |v(x, t)|2 + |u(x, t− τ)|2

}
dx dt

≤ c
∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 + |f(u(x, t))|2 + |u(x, t− τ)|2

}
dx dt+ c

∫ T

0

∫
Ω
a(x)|v(x, t)|2 dx dt.

(3.178)

We will now estimate the last integral on the right-hand side of (3.178). For this purpose, we define

the linear map

M : L2(Ω)× L1(0, T ;L2(Ω)) −→ L∞(0, T ;L2(Ω)),

(z0, f̃) 7−→M(z0, f̃) = z,

where z is the solution of the problem
izt(x, t) + ∆z(x, t) = f̃ in Ω× (0; +∞),

z(x, t) = 0 on Γ× (0,+∞),

z(x, 0) = z0(x) in Ω,

(3.179)

M is continuous. Indeed, since z is solution of (3.179), then

z(t) = S(t)z0 +

∫ t

0
S(t− s)f̃(s) ds.
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where S(t) is the contraction semigroup generated by the maximal monotone operator C. Thus,

‖z(t)‖2L2(Ω) = ‖S(t)z0 +

∫ t

0
S(t− s)f̃(s)ds‖2L2(Ω)

≤ c‖S(t)z0‖2L2(Ω) + c‖
∫ t

0
S(t− s)f̃(s)ds‖2L2(Ω)

≤ c1‖z0‖2L2(Ω) + c2

(∫ t

0
‖f̃(s)‖2L2(Ω)ds

)
≤
{
‖z0‖2L2(Ω) + ‖f̃(s)‖L1(0,T ;L2(Ω))

}
= C‖(z0, f̃)‖2L2(Ω)×L1(0,T ;L2(Ω)).

We rewrite the above estimate for the v-problem (3.175) with f̃(t) = a(x){α1f(u(x, t))+α2g(u(x, t−
τ))}, and z0 = 0. We obtain after using Hölder inequality and the continuity of M∫ T

0

∫
Ω
a(x)|v(x, t)|2 dx dt ≤ ‖a‖L∞(Ω)‖v(x, t)‖2L2(0,T ;L2(Ω))

≤ ‖a‖L∞(Ω)‖v(x, t)‖2L∞(0,T ;L2(Ω))

≤ ‖a‖L∞(Ω)‖a(x){α1f(u(x, t)) + α2g(u(x, t− τ))}‖2L1(0,T ;L2(Ω))

≤ c

(∫ T

0

[∫
Ω
a(x)|α1f(u(x, t)) + α2g(u(x, t− τ))|2 dx

] 1
2

dt

)2

≤ T 2c

∫ T

0

∫
Ω
a(x)|α1f(u(x, t)) + α2g(u(x, t− τ))|2 dx dt

≤ T 2c

∫ T

0

∫
Ω

[
a(x)|f(u(x, t))|2 + a(x)|g(u(x, t− τ))|2

]
dx dt

≤ c6(T )

∫ T

0

∫
Ω
a(x)

[
|f(u(x, t))|2 + |u(x, t)|2 + |u(x, t− τ)|2

]
dx dt.

(3.180)

Inserting (3.180) into (3.178) we obtain the desired estimate (3.173).

In the next step, we prove an estimate for a nonlinear function of the energy F (T ).

Lemma 3.10. The energy F (t) of problem (3.12) satisfies

F (T ) + p̂(F (T )) ≤ F (0), (3.181)

where p̂(.) is defined by (3.15), and T > 0 is sufficiently large.

Proof. Denote

Q1 = {u ∈ L2(Q) : |u| ≥ δ a.e.},
Q2 = Q−Q1.
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From hypotheses (H.1) and (H.5), we have∫
Q1

a(x){|u(x, t)|2 + |f(u(x, t))|2} dQ1 ≤ (K−1 + M̃)

∫
Q1

a(x)f(u(x, t))u(x, t) dQ1, (3.182)

on the other side, from (3.4) and from the fact that h is concave and increasing, having in mind that

a(x) ≤ ‖a‖∞ + 1,

and
a(x)

1 + ‖a‖∞
≤ a(x),

we deduce that∫
Q2

a(x){|u(x, t)|2 + |f(u(x, t))|2} dQ2 ≤
∫
Q2

a(x)h(f(u(x, t))u(x, t)) dQ2

=

∫
Q2

(1 + ‖a‖∞)
a(x)

1 + ‖a‖∞
h(f(u(x, t))u(x, t)) dQ2

≤
∫
Q2

(1 + ‖a‖∞)h

(
a(x)

1 + ‖a‖∞
f(u(x, t))u(x, t)

)
dQ2

≤
∫
Q2

(1 + ‖a‖∞)h(a(x)f(u(x, t))u(x, t)) dQ2. (3.183)

By Jensen’s inequality,

(1 + ‖a‖∞)

∫
Q2

h(a(x)f(u(x, t))u(x, t)) dQ2 ≤ (1 + ‖a‖∞)mesQh

(
1

mesQ

∫
Q
a(x)f(u(x, t))u(x, t) dQ

)
= (1 + ‖a‖∞)mesQ ĥ

(∫
Q
a(x)f(u(x, t))u(x, t) dQ

)
.

(3.184)

Combining inequalities (3.182), (3.183), and (3.184) with the result of Proposition 3.10 gives

F (T ) ≤ C(T )

{
(K−1 + M̃)

∫
Q
a(x)f(u(x, t))u(x, t) dQ+

∫
Q
a(x)|u(x, t− τ)|2 dQ

}
+ C(T )(1 + ‖a‖∞)mesQ ĥ

(∫
Q
a(x)f(u(x, t))u(x, t) dQ

)
≤ C(T )

{
(K−1 + M̃)

∫
Q
a(x)f(u(x, t))u(x, t) dQ+

∫
Q
a(x)|u(x, t− τ)|2 dQ

}
+ C(T )(1 + ‖a‖∞)mesQ ĥ

(∫
Q
{a(x)f(u(x, t))u(x, t) + a(x)|u(x, t− τ)|2} dQ

)
. (3.185)

Setting

K1 =
1

C(T )(1 + ‖a‖∞)mesQ
; C ′ =

K−1 + M̃

(1 + ‖a‖∞)mesQ
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C ′′ = max {C ′, 1

(1 + ‖a‖∞)mesQ
}.

We obtain from (3.185)

K1 F (T ) ≤ (C ′′I + ĥ)

(∫
Q
a(x){f(u(x, t))u(x, t) + |u(x, t− τ)|2} dQ

)
.

But ∫
Q
a(x){f(u(x, t))u(x, t) + |u(x, t− τ)|2} dQ ≤ C̃−1(F (0)− F (T )).

Hence

(C ′′I + ĥ)−1 (K2 F (T )) = p̂(F (T )) ≤ F (0)− F (T ),

where K2 = C̃K1.

Therefore

p̂(F (T )) + F (T ) ≤ F (0).

The sought-after stability result follows now, as in [43], from inequality (3.181) and Lemma 3.3 in

([43], p.531).

This completes the proof of Theorem 3.2.



Chapter 4

Boundary stabilization of the

Schrödinger equation with interior

delay

4.1 Introduction

In this chapter, we study stability problem for the Schrödinger equation with interior delay term and

boundary feedback. To this end, let Ω be an open bounded domain of Rn, n ≥ 2 with boundary Γ of

class C2 which consists of two non-empty parts Γ1 and Γ2 such that, Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅.
In addition to these standard hypothesis, we assume the following.

(A) There exists x0 ∈ Rn such that, with m(x) = x− x0,

m(x).v(x) ≤ 0, x ∈ Γ1, (4.1)

m(x).v(x) ≥ δ > 0, x ∈ Γ2, (4.2)

where ν(.) is the unit normal on Γ pointing towards the exterior of Ω.

In Ω, we consider the following Schrödinger equation with interior delay term and dissipative

boundary feedback:

ut(x, t)− i∆u(x, t) + αu(x, t− τ) = 0 in Ω× (0; +∞), (4.3)

u(x, 0) = u0(x) in Ω, (4.4)

u(x, t) = 0 on Γ1 × (0,+∞), (4.5)

∂u

∂ν
(x, t) = −βut(x, t) on Γ2 × (0,+∞), (4.6)

u(x, t− τ) = f0(x, t− τ) in Ω× (0, τ2), (4.7)

95
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where

� u0 and f0 are the initial data which belong to a suitable spaces.

�
∂
∂ν is the normal derivative.

� τ > 0 is the time delay.

� α and β are a positive constants.

Boundary stabilization of the Schrödinger equation is the subject of the papers [57] and [51]. In

[57], the authors proved that the solution of (4.3)-(4.7) wih α = 0 decays exponentially in the energy

space H1
Γ1

(Ω) by adopting the classical multipliers method. Lasiecka et al [51] used L2(Ω)- Carleman

estimates for the general linear Schrödinger equation to provide a uniform stabilization result for (4.3)

wih α = 0 in the energy space L2(Ω) by means of a feedback control ∂u
∂ν (x, t) = −u(x, t).

Nicaise and Rebiai [65] established stability and instability results for the Schrödinger equation with

a delay term in the boundary or internal feedbacks. In this chapter, we study the stability of the

Schrödinger equation with interior delay and a dissipative boundary feedback as described in (4.3)-

(4.7). For the wave equation, this problem has been investigated by Ammari et al [7]. We use

multipliers technique and a suitable Lyapunov functional to prove that the solution of (4.3)-(4.7)

decays exponentially in the energy space H1
Γ1

(Ω).

We define the energy associated to problem (4.3)-(4.7) by

E(t) =
1

2

∫
Ω
|∇u(x, t)|2 dx+

ξτ

2

∫
Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx, (4.8)

where ξ is a strictly positive constant.

The main result of this chapter can be stated as follows.

Theorem 4.1. For any β > 0 there exist positive constants α0,M,C such that

E(t) ≤Me−CtE(0), (4.9)

for any regular solution of problem (4.3)-(4.7) with 0 ≤ α < α0. The constants α0,M and C are

independent of the initial data but they depend on β and on the geometry of Ω.

Theorem 4.1 is proved in section 4.3. In section 4.2, we will study the well-posedness of system the

(4.3)− (4.7) by using semigroup theory.

4.2 Well-posedness

We introduce the auxiliary variable:

z(x, ρ, t) = u(x, t− τρ); x ∈ Ω, ρ ∈ (0, 1), t > 0.
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Then, the system (4.3)-(4.7) is equivalent to

ut(x, t)− i∆u(x, t) + αz(x, 1, t) = 0 in Ω× (0; +∞), (4.10)

zt(x, ρ, t) + τ−1zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞) (4.11)

u(x, 0) = u0(x) in Ω, (4.12)

z(x, 0, t) = u(x, t) in Ω× (0,+∞), (4.13)

u(x, t) = 0 on Γ1 × (0,+∞), (4.14)

∂u

∂ν
(x, t) = −βut(x, t) on Γ2 × (0,+∞), (4.15)

z(x, ρ, 0) = f0(x,−τρ) in Ω× (0, 1). (4.16)

Denote by H the Hilbert space.

H = H1
Γ1

(Ω)× L2((0, 1);H1
Γ1

(Ω)).

We equip H with the inner product:〈(
u1

z1

)
;

(
u2

z2

)〉
H

= Re

∫
Ω
∇u1(x)∇u2(x) dx+ ξτRe

∫
Ω

∫ 1

0
∇z1(x, ρ)∇z2(x, ρ) dρ dx.

Define in H the linear operator A by

A(u, y)T = (i∆u− αz(., 1),−τ−1zρ)
T , (4.17)

with domain D(A) defined by

D(A) ={(u, z) ∈ H1
Γ1

(Ω)×H1((0, 1);H1
Γ1

(Ω)) : i∆u(x)− αz(x, 1) ∈ H1
Γ1

(Ω),

∂u

∂ν
(x) = −iβ∆u(x) + αβz(x, 1) on Γ2, u(x) = z(x, 0) in Ω}. (4.18)

Then we can rewrite (4.10)-(4.16) as an abstract Cauchy problem in H
dU

dt
(t) = AU(t),

U(0) = U0,

(4.19)

where

U(t) = (u(., t), z(., ., t))T , U
′
(t) = (ut(., t), zt(., ., t))

T , U0 = (u0, f0)T .

Theorem 4.2. For every U0 ∈ H, the problem (4.19) has a unique solution U whose regularity depends

on the initial datum U0 as follows:

U(.) ∈ C([0,+∞);H) if U0 ∈ H,
U(.) ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A)) if U0 ∈ D(A).
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Proof. The well-posedness of the problem (4.10)-(4.16) or its abstract version (4.19) follows via Lumer

Phillips Theorem (see for instance Theorem I.4.3 of [69]).

We show that there exists a positive constant c such that A− cI is dissipative.

Let (u, z)T ∈ D(A), then

Re〈AU,U〉H = Re

∫
Ω
∇(i∆u(x)− αz(x, 1))∇u(x) dx− ξRe

∫
Ω

∫ 1

0
∇zρ(x, ρ)∇z(x, ρ) dρ dx.

Applying Green’s Theorem, we obtain

Re〈AU,U〉 = Re

∫
Γ2

(i∆u(x)− αz(x, 1))
∂u(x)

∂ν
dΓ−Re

∫
Ω

(i∆u(x)− αz(x, 1))∆u(x) dx

− ξRe
∫

Ω

∫ 1

0
∇zρ(x, ρ)∇z(x, ρ) dρ dx.

Integrating par parts in ρ, we obtain∫
Ω

∫ 1

0
∇zρ(x, ρ)∇z(x, ρ) dρ dx = −

∫
Ω

∫ 1

0
∇z(x, ρ)∇zρ(x, ρ) dρ dx+

∫
Ω
|∇z(x, 1)|2 dx−

∫
Ω
|∇z(x, 0)|2 dx,

or equivalently

2Re

∫
Ω

∫ 1

0
∇zρ(x, ρ)∇z(x, ρ) dρ dx =

∫
Ω
|∇z(x, 1)|2 dx−

∫
Ω
|∇z(x, 0)|2 dx. (4.20)

Therefore

Re〈AU,U〉 = Re

∫
Γ2

(i∆u(x)− αz(x, 1))
∂u(x)

∂ν
dΓ−Re

∫
Ω

(i∆u(x)− αz(x, 1))(∆u(x)) dx

− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇z(x, 0)|2 dx. (4.21)

Recalling (4.18), (4.21) can be rewritten as follows yields

Re〈AU,U〉 = −β
∫

Γ2

|∆u(x)|2 dΓ + αβ

∫
Γ2

i∆u(x)z(x, 1) dΓ− αβRe
∫

Γ2

iz(x, 1)∆u(x) dΓ

− α2β

∫
Γ2

|z(x, 1)|2 dΓ−Re
∫

Ω
i|∆u(x)|2 dx+ αRe

∫
Ω
z(x, 1))∆u(x) dx

− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇u(x)|2 dx.

Applying Green’s Theorem, we obtain

Re〈AU,U〉 = −β
∫

Γ2

|∆u(x)|2 dΓ + αβRe

∫
Γ2

i∆u(x)z(x, 1) dΓ− αβRe
∫

Γ2

iz(x, 1)∆u(x) dΓ

− α2β

∫
Γ2

|z(x, 1)|2 dΓ + αRe

∫
Γ2

z(x, 1)
∂u(x)

∂ν
dΓ− αRe

∫
Ω
∇z(x, 1)∇u(x) dx

− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇u(x)|2 dx, (4.22)
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which together (4.18) implies

Re〈AU,U〉 = −β
∫

Γ2

|∆u(x)|2 dΓ + αβRe

∫
Γ2

i∆u(x)z(x, 1) dΓ− αRe
∫

Ω
∇z(x, 1)∇u(x) dx

− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇u(x)|2 dx.

Using Cauchy-Schwartz’s inequality, we obtain

Re〈AU,U〉 ≤ −β
∫

Γ2

|∆u(x)|2 dΓ +
β2

2ε

∫
Γ2

|∆u(x)|2 dΓ +
α2ε

2

∫
Γ2

|z(x, 1)|2 dΓ +
α

2

∫
Ω
|∇z(x, 1)|2 dx

+
α

2

∫
Ω
|∇u(x)|2 dx− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇u(x)|2 dx,

where ε > 0.

From the trace Theorem, we have

Re〈AU,U〉 ≤ −β
∫

Γ2

|∆u(x)|2 dΓ +
β2

2ε

∫
Γ2

|∆u(x)|2 dΓ +
α2εC0

2

∫
Ω
|∇z(x, 1)|2 dx+

α

2

∫
Ω
|∇z(x, 1)|2 dx

+
α

2

∫
Ω
|∇u(x)|2 dx− ξ

2

∫
Ω
|∇z(x, 1)|2 dx+

ξ

2

∫
Ω
|∇u(x)|2 dx,

where C0 is such that ∫
Γ2

|u|2 dΓ ≤ C0

∫
Ω
|∇u|2 dx.

Therefore

Re〈AU,U〉 ≤
(
− β +

β2

2ε

)∫
Γ2

|∆u(x)|2 dΓ +

(
α2εC0

2
+
α

2
− ξ

2

)∫
Ω
|∇z(x, 1)|2 dx

+

(
α

2
+
ξ

2

)∫
Ω
|∇u(x)|2 dx.

Choose

ε ≥ β

2
. (4.23)

Then, we have from (4.62)

Re〈AU,U〉 ≤
(
α

2
+
ξ

2

)∫
Ω
|∇u(x)|2 dx,

from which we deduce that there exists c ≥ α
2 + ξ

2 such that

Re〈AU − cU, U〉 ≤ 0.

This shows that A− cI is dissipative.

Next, we show that (λI −A) is surjective for some λ > 0.
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Given a vector

(
f

g

)
∈ H, we need

(
u

z

)
∈ D(A) such that

(λI −A)

(
u

z

)
=

(
f

g

)
,

this is equivalent to

λu(x)− i∆u(x) + αz(x, 1) = f(x), (4.24)

λz(x, ρ) + τ−1zρ(x, ρ) = g(x, ρ). (4.25)

Indeed, from (4.25) and (4.13), we have

zρ(x, ρ) = −λτz(x, ρ) + τg(x, ρ), x ∈ Ω, ρ ∈ (0, 1),

z(x, 0) = u(x), x ∈ Ω.

The unique solution of the above initial value problem is given by

z(x, ρ) = u(x)e−λτρ + τe−λτρ
∫ ρ

0
g(x, σ)eλτσ dσ, x ∈ Ω, ρ ∈ (0, 1),

and in particular

z(x, 1) = u(x)e−λτ + τe−λτ
∫ 1

0
g(x, σ)eλτσ dσ, x ∈ Ω. (4.26)

Inserting (4.26) into (4.24), we obtain

λu(x)− i∆u(x) + αu(x)e−λτ = f(x)− ατe−λτ
∫ 1

0
g(x, σ)eλτσ dσ. (4.27)

The problem (4.27) can be reformulated as follows〈
λu(x)− i∆u(x) + αu(x)e−λτ , v

〉
=

〈
f(x)− ατe−λτ

∫ 1

0
g(x, σ)eλτσ dσ, v

〉
, ∀v ∈ H1

Γ1
(Ω),

(4.28)

or equivalently

λ

∫
Ω
∇u(x)∇v(x) dx−i

∫
Ω
∇(∆u(x))∇v(x) dx+ αe−λτ

∫
Ω
∇u(x)∇v(x) dx

=

∫
Ω
∇f(x)∇v(x) dx− ατe−λτ

∫
Ω

∫ 1

0
∇g(x, σ)eλτσ dσ∇v(x) dx, ∀v ∈ H1

Γ1
(Ω).

Integrating by parts, we get

(λ+ αe−λτ )

∫
Ω
∇u(x)∇v(x) dx+ i

∫
Ω

∆u(x)∆v(x) dx− i
∫

Γ2

∆u(x)
∂v(x)

∂ν
dΓ

=

∫
Ω
∇f(x)∇v(x) dx− ατe−λτ

∫
Ω

∫ 1

0
∇g(x, σ)eλτσ dσ∇v(x) dx, ∀v ∈ H1

Γ1
(Ω).

(4.29)
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From (4.18) and (4.26), we have

−i∆u(x) =
1

β

∂u(x)

∂ν
− α

(
u(x)e−λτ + τe−λτ

∫ 1

0
g(x, σ)eλτσ dσ

)
, on Γ2. (4.30)

Inserting (4.30) in (4.29), we obtain

(λ+ αe−λτ )

∫
Ω
∇u(x)∇v(x) dx+ i

∫
Ω

∆u(x)∆v(x) dx+

∫
Γ2

∂u(x)

∂ν

∂v(x)

∂ν
dΓ

− αe−λτ
∫

Γ2

u(x)
∂v(x)

∂ν
dΓ = ατe−λτ

∫ 1

0
g(x, σ)eλτσ dσ

∂v(x)

∂ν
dΓ +

∫
Ω
∇f(x)∇v(x) dx

− ατe−λτ
∫

Ω

∫ 1

0
∇g(x, σ)eλτσ dσ∇v(x) dx, ∀v ∈ H1

Γ1
(Ω),

or equivalently

a(u, v) = 〈k, v〉 , ∀v ∈ H1
Γ1

(Ω), (4.31)

where

a(u, v) = (λ+ αe−λτ ) 〈u, v〉H1
Γ1

(Ω) + i 〈∆u,∆v〉L2(Ω) +
1

β

〈
∂u

∂ν
,
∂v

∂ν

〉
L2(Γ2)

− αe−λτ
〈
u,
∂v

∂ν

〉
L2(Γ2)

,

(4.32)

and

〈k, v〉 = ατe−λτ
〈∫ 1

0
g(., σ)eλτσ dσ,

∂v

∂ν

〉
L2(Γ2)

+ 〈f, v〉H1
Γ1

(Ω) − ατe
−λτ

〈∫ 1

0
g(., σ)eλτσ dσ, v

〉
H1

Γ1
(Ω)

.

The form a(u, v) is not continuous on H1
Γ1

(Ω).

We introduce the space

Z =

{
u ∈ H1

Γ1
(Ω) |∆u ∈ L2(Ω),

∂u

∂ν
∈ L2(Γ2)

}
,

equipped with the norm

‖u‖2Z = ‖u‖2H1
Γ1

(Ω) + ‖∆u‖2L2(Ω) +

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

.

We use the complex version of Lax Millgram Theorem applied on the Banach space Z (see [77], p.344).

We show that for any fixed k ∈ H1
Γ1

(Ω) ⊂ Z ′, there exists a unique u ∈ Z satisfying

a(u, v) = k(v), ∀v ∈ Z,

with a(u, v) given by (4.32). So we need to prove that a(u, v) is continuous and coercive on Z.

Observe that

a(u, v) = (λ+ αe−λτ ) 〈u, v〉H1
Γ1

(Ω) + i 〈∆u,∆v〉L2(Ω) +
1

β

〈
∂u

∂ν
,
∂v

∂ν

〉
L2(Γ2)

− αe−λτ
〈
u,
∂v

∂ν

〉
L2(Γ2)

.
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By the triangle inequality,

|a(u, v)| ≤ |(λ+ αe−λτ ) 〈u, v〉H1
Γ1

(Ω) |+ | 〈∆u,∆v〉L2(Ω) |+
∣∣∣∣ 1β
〈
∂u

∂ν
,
∂v

∂ν

〉
L2(Γ2)

∣∣∣∣+

∣∣∣∣αe−λτ 〈u, ∂v∂ν
〉
L2(Γ2)

∣∣∣∣.
Applying Cauchy-Schwarz’s inequality to each inner product on the right-hand side of the previous

estimate, we obtain

|a(u, v)| ≤ (λ+ αe−λτ )‖u‖H1
Γ1

(Ω)‖v‖H1
Γ1

(Ω) + ‖∆u‖L2(Ω)‖∆v‖L2(Ω) +
1

β

∥∥∥∥∂u∂ν
∥∥∥∥
L2(Γ2)

∥∥∥∥∂v∂ν
∥∥∥∥
L2(Γ2)

+ αe−λτ‖u‖L2(Γ2)

∥∥∥∥∂v∂ν
∥∥∥∥
L2(Γ2)

.

From the trace theorem, we have

|a(u, v)| ≤ (λ+ αe−λτ )‖u‖H1
Γ1

(Ω)‖v‖H1
Γ1

(Ω) + ‖∆u‖L2(Ω)‖∆v‖L2(Ω) +
1

β

∥∥∥∥∂u∂ν
∥∥∥∥
L2(Γ2)

∥∥∥∥∂v∂ν
∥∥∥∥
L2(Γ2)

+ αe−λτC0‖u‖H1
Γ1

(Ω)

∥∥∥∥∂v∂ν
∥∥∥∥
L2(Γ2)

, (4.33)

(4.33) implies that

|a(u, v)| ≤ Const ‖u‖Z‖v‖Z .

Thus, a(u, v) is continuous on Z.

For the coercivity of a(u, v), observe that

a(u, u) = (λ+ αe−λτ )‖u‖2H1
Γ1

(Ω) + i‖∆u‖2L2(Ω) +
1

β

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

− αe−λτ
〈
u,
∂u

∂ν

〉
L2(Γ2)

.

Recalling the inequality |z| ≥ 1
2 |x|+

1
2 |y| for any complex z = x+ iy, we obtain

|a(u, u)| ≥ 1

2

∣∣∣∣(λ+ αe−λτ )‖u‖2H1
Γ1

(Ω) +
1

β

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

− αe−λτRe
〈
u,
∂u

∂ν

〉
L2(Γ2)

∣∣∣∣
+

1

2

∣∣∣∣‖∆u‖2L2(Ω) − αe
−λτIm

〈
u,
∂u

∂ν

〉
L2(Γ2)

∣∣∣∣.
Therefore

|a(u, u)| ≥ 1

2

[
(λ+ αe−λτ )‖u‖2H1

Γ1
(Ω) +

1

β

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

− αe−λτ
∣∣∣∣Re〈u, ∂u∂ν

〉
L2(Γ2)

∣∣∣∣
]

+
1

2

[
‖∆u‖2L2(Ω) − αe

−λτ
∣∣∣∣Im〈u, ∂u∂ν

〉
L2(Γ2)

∣∣∣∣
]
.
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Applying Cauchy-Schwarz’s inequality, we get

|a(u, u)| ≥ 1

2

[
(λ+ αe−λτ )‖u‖2H1

Γ1
(Ω) +

1

β

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

− α2ε‖u‖2L2(Γ2) −
1

4ε

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

]

+
1

2

[
‖∆u‖2L2(Ω) − α

2ε‖u‖2L2(Γ2) −
1

4ε

∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

]
,

and consequently,

|a(u, u)| ≥ 1

2

[(
λ+ αe−λτ − 2α2C0ε

)
‖u‖2H1

Γ1
(Ω) +

(
1

β
− 1

2ε

)∥∥∥∥∂u∂ν
∥∥∥∥2

L2(Γ2)

+ ‖∆u‖2L2(Ω)

]
.

Therefore

|a(u, u)| ≥ C‖u‖2Z ,

for some constant C > 0 as long as λ > 2α2C0ε.

We conclude from the complex version of the Bowder-Minty’s Theorem (see [71], p.364, Theorem

10.49) that, for all k ∈ Z ′ where Z ′ denotes the dual space of Z, there is a solution u ∈ Z to

a(u, v) = k(v).

Moreover we observe that

D(A) ⊂ Z ×H1((0, 1), H1
Γ1

(Ω)) ⊂ H1
Γ1

(Ω)× L2((0, 1), H1
Γ1

(Ω)) ⊂ Z ′ × (H1((0, 1), H1
Γ1

(Ω)))′,

and hence for all k ∈ H1
Γ1

(Ω), the functional defined by 〈k, v〉H1
Γ1

(Ω) belongs to Z ′.
Hence, there is a unique solution u ∈ Z ⊂ H1

Γ1
(Ω) to a variational form a(u, v) = 〈k, v〉H1

Γ1
(Ω) for all

v ∈ Z.

Furthermore, from the above variational form, by restricting to function v with zero Neuman data,

one recovers the equation

λu− i∆u+ αue−λτ = f − ατe−λτ
∫ 1

0
g(x, σ)eλτσ dσ. (4.34)

Since f − ατe−λτ
∫ 1

0 g(x, σ)eλτσ dσ ∈ H1
Γ1

(Ω) and u ∈ H1
Γ1

(Ω), we obtain ∆u ∈ H1
Γ1

(Ω).

With the above regularity, we go back to variational form after integration by parts:

(λ+ αe−λτ ) 〈u, v〉H1
Γ1

(Ω) − i 〈∇(∆u),∇v〉L2(Ω) + i

〈
∆u,

∂v

∂ν

〉
L2(Γ2)

+
1

β

〈
∂u

∂ν
,
∂v

∂ν

〉
L2(Γ2)

− αe−λτ
〈
u,
∂v

∂ν

〉
L2(Γ2)

= 〈k, v〉H1
Γ1

(Ω) ,

which combined with (4.34) gives

i

〈
∆u,

∂v

∂ν

〉
L2(Γ2)

+
1

β

〈
∂u

∂ν
,
∂v

∂ν

〉
L2(Γ2)

− αe−λτ
〈
u,
∂v

∂ν

〉
L2(Γ2)

− ατe−λτ
〈∫ 1

0
g(x, σ)eλσ dσ,

∂v

∂ν

〉
L2(Γ2)

= 0, v ∈ Z.
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The above identity implies that

i∆u+
1

β

∂u

∂ν
− αe−λτu− ατe−λτ

∫ 1

0
g(x, σ)eλσ dσ = 0, on Γ2,

therefore

∂u

∂ν
= −β(i∆u− αz(x, 1)), on Γ2.

Moreover, ∆u ∈ H1
Γ1

(Ω) implies that

∆u|Γ2 ∈ H1/2(Γ2),

and z(x, 1) ∈ H1
Γ1

(Ω) implies that

z(x, 1)|Γ2 ∈ H1/2(Γ2),

and thus
∂u

∂ν
∈ H1/2(Γ2),

as well.

Trace theory tells us that (u, z) ∈ H2(Ω)×H1((0, 1), H1
Γ1

(Ω)), and so we know that the regularity of

D(A) is at least H2(Ω)×H1((0, 1), H1
Γ1

(Ω)).

So we have found (u, z) ∈ D(A) which satisfies (4.24) and (4.25). Consequently, (λI−A) is surjective

and therefore (λI − (A − cI)) is also surjective. Finally, the Lumer-Phillips leads to the fact that

A− cI generates a strongly continuous semigroup of contraction in H, hence A generates a strongly

continuous semigroup on H.

4.3 Proof of Theorem 4.1

We prove Theorem 4.1 for smooth initial data. The general case follows by a density argument.

Proposition 4.3. For any solution of problem (4.3)−(4.7) and for every ε > 0, the following estimate

holds:

d

dt
E(t) ≤

(
−β +

β2

2ε

)∫
Γ2

|ut(x, t)|2 +

(
α2εC0

2
+
α

2
− ξ

2

)∫
Ω
|∇u(x, t− τ)|2 dx

+

(
α

2
+
ξ

2

)∫
Ω
|∇u(x)|2 dx. (4.35)

Proof. Differentiating E(t) defined by (4.8), we obtain

d

dt
E(t) = Re

∫
Ω
∇ut(x, t)∇u(x, t) dx+ ξτRe

∫
Ω

∫ 1

0
∇ut(x, t− τρ)∇u(x, t− τρ) dρ dx.
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Applying Green’s Theorem and recalling the boundary conditions in (4.3)− (4.7), we obtain

d

dt
E(t) = −β

∫
Γ2

|ut(x, t)|2 dΓ−Re
∫

Ω
(i∆u(x, t)− αu(x, t− τ))∆u(x, t) dx

+ ξτRe

∫
Ω

∫ 1

0
∇ut(x, t− τρ)∇u(x, t− τρ) dρ dx. (4.36)

Now observe that

∇ut(x, t− τρ) = −τ∇uρ(x, t− τρ), (4.37)

and

d

dρ
|∇u(x, t− τρ)|2 = 2Re∇uρ(x, t− τρ)∇u(x, t− τρ). (4.38)

Insertion of (4.38) into (4.36) yields

d

dt
E(t) = −β

∫
Γ2

|ut(x, t)|2 dΓ + αRe

∫
Ω
u(x, t− τ))∆u(x, t) dx− ξ

2

∫
Ω

∫ 1

0

d

dρ
|∇u(x, t− τρ)|2 dρ dx

= −β
∫

Γ2

|ut(x, t)|2 dΓ + αRe

∫
Ω
u(x, t− τ))∆u(x, t) dx− ξ

2

∫
Ω
|∇u(x, t− τ)|2 dx

+
ξ

2

∫
Ω
|∇u(x, t)|2 dx.

Applying Green’s Theorem and recalling the boundary conditions in problem (4.3)− (4.7), we have

d

dt
E(t) ≤ −β

∫
Γ2

|ut(x, t)|2 dΓ + αβRe

∫
Γ2

u(x, t− τ)ut(x, t) dΓ− αRe
∫

Ω
∇u(x, t− τ)∇u(x, t) dx

− ξ

2

∫
Ω
|∇u(x, t− τ)|2 dx+

ξ

2

∫
Ω
|∇u(x, t)|2 dx.

From Cauchy-Schwarz’s inequality, we have

d

dt
E(t) ≤ −β

∫
Γ2

|ut(x, t)|2 dΓ +
α2ε

2

∫
Γ2

|u(x, t− τ)|2 dΓ +
β2

2ε

∫
Γ2

|ut(x, t)|2 dΓ +
α

2

∫
Ω
|∇u(x, t− τ)|2 dx

+
α

2

∫
Ω
|∇u(x, t)|2 dx− ξ

2

∫
Ω
|∇u(x, t− τ)|2 dx+

ξ

2

∫
Ω
|∇u(x, t)|2 dx.

From the trace theorem, we obtain

d

dt
E(t) ≤

(
−β +

β2

2ε

)∫
Γ2

|ut(x, t)|2 dΓ +

(
α2C0ε

2
+
α

2
− ξ

2

)∫
Ω
|∇u(x, t− τ)|2 dx

+

(
α

2
+
ξ

2

)∫
Ω
|∇u(x, t)|2 dx.
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Let us introduce the Lyapunov functional

E(t) = E(t) + γ1E2(t) + γ2S(t), (4.39)

with

E2(t) = Im

∫
Ω
u(x, t)m(x).∇u(x, t) dx, (4.40)

and

S(t) = τ

∫
Ω

∫ 1

0
e−τρ|∇u(x, t− τρ)|2 dρ dx, (4.41)

where γ1 and γ2 are suitable positive small constants that will be precised later.

Lemma 4.1. For γ1 small enough, there exist positive constants C1, a1 and a2 such that

a1E(t) ≤ E(t) ≤ a2E(t), ∀ 0 < γ1, γ2 ≤ C1. (4.42)

Proof. From the definition of E2(t), we have

γ1E2(t) ≤ γ1

∣∣∣∣ ∫
Ω
um.∇u dx

∣∣∣∣,
Applying Cauchy-Schwarz and Poincaré’s inequalities, we obtain

E(t) ≤ a2E(t), (4.43)

for suitable positive constant a2 = max
{

1 + γ1R(Cp + 1), 1 + 2γ2
ξ

}
, where R = ‖m‖∞ and Cp is the

Poincaré’s constant.

On the other hand, we also have from Cauchy-Schwarz and Poincaré’s inequalities

E2(t) ≥ −γ1

R(Cp + 1)

2

∫
Ω
|∇u|2 dx.

From the definition of S(t), we deduce

γ2S(t) ≥ γ2τe
−τ
∫

Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx.

Therefore

E(t) ≥ E(t)− γ1

R(Cp + 1)

2

∫
Ω
|∇u|2 dx+ γ2τe

−τ
∫

Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx.

Consequently

E(t) ≥ (1− γ1R(1 + Cp))
1

2

∫
Ω
|∇u|2 dx+

(
1 +

2γ2e
−τ

ξ

)
ξτ

2

∫
Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx,
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and for

γ1 ≤
1

R(1 + Cp)
, (4.44)

we obtain

E(t) ≥ a1E(t), (4.45)

for suitable positive constant a1. By (4.43) and (4.45) we have (4.42).

Proposition 4.4. For any solution of problem (4.3)− (4.7) and for every ε > 0, we have

d

dt
E2(t) ≤

(
−3

2
+R2α+

n2αCp
2

)∫
Ω
|∇u|2 dx+

(
β2R2

δ
+
C0(R2 + n2β2)

2

)∫
Γ2

|ut|2 dΓ

+
3αCp

2

∫
Ω
|∇u(x, t− τ)|2 dx. (4.46)

Proof. Differentiating E2(t) in (4.40) we obtain

d

dt
E2(t) = Im

∫
Ω
ut (m.∇u) dx+ Im

∫
Ω
u (m.∇ut) dx. (4.47)

Using Green’s Theorem, we get

Im

∫
Ω
u (m.∇ut) dx = Im

∫
Γ
(m.ν)uut dΓ− Im

∫
Ω

(m.∇u)ut dx− div mIm

∫
Ω
uut dx

= Im

∫
Γ2

(m.ν)uut dΓ + Im

∫
Ω

(m.∇u)ut dx− n Im
∫

Ω
uut dx. (4.48)

On the other hand, from (4.3)-(4.7), we get after another use of Green’s Theorem

Im

∫
Ω
uut dx = −Re

∫
Ω

∆uu dx− α Im
∫

Ω
uu(x, t− τ) dx

= −Re
∫

Γ

∂u

∂ν
u dΓ +

∫
Ω
|∇u|2 dx− α Im

∫
Ω
uu(x, t− τ) dx

= β

∫
Γ2

ut u dΓ +

∫
Ω
|∇u|2 dx− α Im

∫
Ω
uu(x, t− τ) dx,

and

Im

∫
Ω

(m.∇u)ut dx = −Re
∫

Ω
∆u(m.∇u) dx− α Im

∫
Ω

(m.∇u)u(x, t− τ) dx.

Thus

d

dt
E2(t) = 2Re

∫
Ω

∆u(m.∇u) dx− n
∫

Ω
|∇u|2 dx−Re

∫
Γ2

(im.ν + nβ)uut dΓ

+ nα Im

∫
Ω
uu(x, t− τ) dx− 2α Im

∫
Ω

(m.∇u)u(x, t− τ) dx. (4.49)
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Applying Green’s Theorem to the first term on the right-hand side of (4.49), we obtain

Re

∫
Ω

∆u(m.∇u) dx = Re

∫
Γ

∂u

∂ν
(m.∇u) dΓ−Re

∫
Ω
∇(m.∇u)∇u dx.

Therefore

Re

∫
Ω

∆u(m.∇u) dx = Re

∫
Γ

∂u

∂ν
(m.∇u) dΓ−

∫
Ω
|∇u|2 dx− 1

2

∫
Γ
|∇u|2(m.ν) dΓ +

n

2

∫
Ω
|∇u|2 dx.

(4.50)

Combining (4.49) and (4.50) together with (4.1) and (4.2), we get

d

dt
E2(t) = −2

∫
Ω
|∇u|2 dx+ 2Re

∫
Γ

∂u

∂ν
(m.∇u) dΓ−

∫
Γ
|∇u|2(m.ν) dΓ−Re

∫
Γ2

(im.ν + nβ)uut dΓ

+ nα Im

∫
Ω
uu(x, t− τ) dx− 2α Im

∫
Ω

(m.∇u)u(x, t− τ) dx

= −2

∫
Ω
|∇u|2 dx+Re

∫
Γ1

(m.ν)

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ− 2βRe

∫
Γ2

ut (m.∇u) dΓ−
∫

Γ2

|∇u|2(m.ν) dΓ

−Re
∫

Γ2

(im.ν + nβ)uut dΓ + nα Im

∫
Ω
uu(x, t− τ) dx− 2α Im

∫
Ω

(m.∇u)u(x, t− τ) dx

≤ −2

∫
Ω
|∇u|2 dx− 2βRe

∫
Γ2

ut (m.∇u) dΓ− δ
∫

Γ2

|∇u|2 dΓ−Re
∫

Γ2

(im.ν + nβ)uut dΓ

+ nα Im

∫
Ω
uu(x, t− τ) dx− 2α Im

∫
Ω

(m.∇u)u(x, t− τ) dx. (4.51)

From the trace theorem, we have∣∣∣∣ ∫
Γ2

(im.ν + nβ)uut dΓ

∣∣∣∣ ≤ C0
(R2 + n2β2)

2

∫
Γ2

|ut|2 dΓ +
1

2C0

∫
Γ2

|u|2 dΓ

≤ C0
(R2 + n2β2)

2

∫
Γ2

|ut|2 dΓ +
1

2

∫
Ω
|∇u|2 dx. (4.52)

We also have ∣∣∣∣2βut (m.∇u)

∣∣∣∣ ≤ 2β2R2

δ
|ut|2 +

δ

2
|∇u|2, on Γ2 × (0,∞). (4.53)

Combining (4.51)-(4.53), we conclude that

d

dt
E2(t) ≤ −2

∫
Ω
|∇u|2 dx+

2β2R2

δ

∫
Γ2

|ut|2 dΓ + C0
(R2 + n2β2)

2

∫
Γ2

|ut|2 dΓ +
1

2

∫
Ω2

|∇u|2 dx

+ nα Im

∫
Ω
uu(x, t− τ) dx− 2α Im

∫
Ω

(m.∇u)u(x, t− τ) dx.

Applying Cauchy-Schwarz and Poincaré’s inequalities, we obtain

d

dt
E2(t) ≤ −2

∫
Ω
|∇u|2 dx+

2β2R2

δ

∫
Γ2

|ut|2 dΓ + C0
(R2 + n2β2)

2

∫
Γ2

|ut|2 dΓ +
1

2

∫
Ω2

|∇u|2 dx

+
n2αCp

2

∫
Ω
|∇u|2 dx+

αCp
2

∫
Ω
|∇u(x, t− τ)|2 dx+R2α

∫
Ω
|∇u|2 dx+ αCp

∫
Ω
|∇u(x, t− τ)|2 dx.

(4.54)
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The estimate (4.46) is therefore proved.

Proposition 4.5. For any solution of problem (4.3)-(4.7), the following estimate holds:

d

dt
S(t) ≤ −e−τ

∫
Ω
|∇u(x, t− τ)|2 dx+

∫
Ω
|∇u|2 dx− τe−τ

∫
Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx. (4.55)

Proof. Differentiating S(t) defined by (4.41), we obtain

d

dt
S(t) = 2τRe

∫
Ω

∫ 1

0
e−τρ∇ut(x, t− τρ)∇u(x, t− τρ) dρ dx.

Using (4.37) and (4.38), we obtain

d

dt
S(t) = −

∫
Ω

∫ 1

0
e−τρ

d

dρ
|∇u(x, t− τρ)|2 dρ dx.

Integrating by parts in ρ, yields

d

dt
S(t) = −e−τ

∫
Ω
|∇u(x, t− τ)|2 dx+

∫
Ω
|∇u|2 dx− τ

∫
Ω

∫ 1

0
e−τρ|∇u(x, t− τρ)|2 dρ dx

≤ −e−τ
∫

Ω
|∇u(x, t− τ)|2 dx+

∫
Ω
|∇u|2 dx− τe−τ

∫
Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx.

The estimate (4.55) is proved.

Now, we can deduce an estimate for the Lyapunov functional E(t).

Proposition 4.6. For any β > 0 there exist α0,m and c such that for any solution of problem

(4.3)-(4.7) with 0 ≤ α < α0 we have

E(t) ≤ me−ctE(0), t > 0. (4.56)

The constants α0,m and c are independent of the initial data but they depend on β and the geometry

of Ω.

Proof. Differentiating the Lyapunov functional E and using Proposition 4.3, Proposition 4.4 and

Proposition 4.5, we obtain

d

dt
E(t) ≤

{
−β +

β2

2ε
+ γ1

(
2β2R2

δ
+
C0(R2 + n2β2)

2

)}∫
Γ2

|u(x, t)|2 dΓ

+

{
α

2
+
ξ

2
+ γ1

(
−3

2
+R2α+

n2αCp
2

)
+ γ2

}∫
Ω
|∇u(x, t)|2 dx

+

{
α2εC0

2
+
α

2
− ξ

2
+ γ1

3αCp
2
− γ2e

−τ
}∫

Ω
|∇u(x, t− τ)|2 dx

− γ2τe
−τ
∫

Ω

∫ 1

0
|∇u(x, t− τρ)|2 dρ dx. (4.57)
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For a fixed β we want to choose γ1, γ2 < C1 and a sufficiently small in order to obtain

d

dt
E(t) ≤ −CE(t), (4.58)

from which follows (4.56).

To deduce (4.58) from (4.57), we need

− β +
β2

2ε
+ γ1

(
2β2R2

δ
+
C0(R2 + n2β2)

2

)
≤ 0 (4.59)

α

2
+
ξ

2
+ γ1

(
−3

2
+R2α+

n2αCp
2

)
+ γ2 < 0 (4.60)

α2εC0

2
+
α

2
− ξ

2
+ γ1

3αCp
2
− γ2e

−τ ≤ 0. (4.61)

A sufficient condition for the last inequality is

α2εC0

2
+
α

2
− ξ

2
+ γ1

3αCp
2
≤ 0. (4.62)

This conditions (4.59), (4.60) and (4.62) are equivalent to

γ1

[
β2

(
2R2

δ
+
C0n

2

2

)
+
C0R

2

2

]
≤ β − β2

2ε
(4.63)

α

(
1

2
+ γ1R

2 + γ1

n2Cp
2

)

)
+
ξ

2
<

3

2
γ1 − γ2 (4.64)

α

(
α εC0

2
+

1

2
+ γ1

3Cp
2

)
− ξ

2
≤ 0. (4.65)

By the assumption

0 < β < 2ε, (4.66)

(4.63) is satisfied for

γ1 ≤
(
β − β2

2ε

)(
β2

(
2R2

δ
+
C0n

2

2

)
+
C0R

2

2

)−1

. (4.67)

A necessary condition (4.64) is
2

3
γ2 < γ1. (4.68)

Then we now fix γ1 and γ2 fulfilling the above requirements and look at (4.64) and (4.65) as

conditions on α and ξ. An analysis shows that the set of pairs (α, ξ) fulfilling this constraints is not

empty (see Figure 2.).

It can be seen from this figure that for α and ξ small enough, (4.64) and (4.65) are valid. Note

further that due to (4.63) if β goes to ∞ or to 0, then γ1 must tend to zero, and therefore γ2 as well

and the maximal value α0 of α goes to zero.
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Figure 2.

From Proposition 4.6 and the energy equivalence (4.42) we deduce estimate (4.9).

Remark 4.1. We can make explicit the relation between β and α0 by choosing the constants ξ, γ1

and γ2 in the definitions (4.8) and (4.39) of the energy function E(.) and of the Lyapunov functional

E(.) in such a way that the conditions (4.63)-(4.65) are satisfied.

For instance, we fix

ξ = 2α

Now, choose

γ1 = min

{
1

3Cp + ε0
,

1

R(1 + Cp)
,

(
β − β2

2ε

)(
β2

(
2R2

δ
+
C0n

2

2

)
+
C0R

2

2

)−1
}
,

and

γ2 =
γ1

2
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The above choices of γ1 and γ2 conditions (4.63)-(4.65) are satisfied for any α > 0.

The remaining conditions are satisfied for all

0 ≤ α < α0,

with

α0 = min

{
1− 3Cpγ1

C0ε
,

2γ1

3 + γ1(2R2 + n2Cp)

}
,

that is

α0 = min

{
K1,K2,K3,K4,K5,K6

}
,

where

K1 = 1
C0(3Cp+ε0) , K2 =

1− 3Cp
R(1+Cp)

C0ε
, K3 =

1−3Cp

(
β−β

2

2ε

)(
β2

(
2R2

δ
+
C0n

2

2

)
+
C0R

2

2

)−1

C0ε
,

K4 = 2
3(3Cp+ε0)+2R2+n2Cp

, K5 = 2
3R(1+Cp)+2R2+n2Cp

, K6 =
2

(
β−β

2

2ε

)(
β2

(
2R2

δ
+
C0n

2

2

)
+
C0R

2

2

)−1

3+
(
β−β2

2ε

)(
β2
(

2R2

δ
+
C0n

2

2

)
+
C0R

2

2

)−1
(2R2+n2Cp)

Observe that α0 → 0 if β → 0 and also, if β → +∞.



Chapter 5

Stabilization of the Schrödinger

equation with boundary or internal

distributed time delay

5.1 Introduction

In this chapter, we study stability problems for the Schrödinger equation with a distributed delay

term in the boundary or internal feedbacks.

Let Ω be an open bounded domain of Rn with smooth boundary Γ which consists of two non-empty

parts Γ1 and Γ2 such that, Γ1 ∪ Γ2 = Γ with Γ1 ∩ Γ2 = ∅.
In addition to these standard hypothesis, we assume the following.

(A) There exists x0 ∈ Rn such that, with m(x) = x− x0,

m(x).ν(x) ≤ 0 on Γ1, (5.1)

where ν(.) is the unit normal to Γ pointing towards the exterior of Ω.

In Ω, we consider the following system described by the Schrödinger equation with distributed

delay term in the boundary feedback:

ut(x, t)− i∆u(x, t) = 0 in Ω× (0; +∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = iα0u(x, t) + i

∫ τ2

τ1
α(s)u(x, t− s) ds on Γ2 × (0,+∞),

u(x,−t) = f0(x,−t) on Γ2 × (0, τ2),

(5.2)

where

� u0 and f0 are the initial data which belong to suitable spaces.

�
∂
∂ν is the normal derivative.

113
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� τ1 and τ2 are two real numbers with 0 ≤ τ1 < τ2.

� α0 is a positive constant.

� α : [τ1, τ2]→ R is an L∞ function, α ≥ 0 almost everywhere.

In the absence of delay (i.e. α = 0), Lasiecka et al [47] have shown that the solution of decays

exponentially to zero in the energy space L2(Ω). In the presence of delay concentrated at a time τ

that is the boundary condition on Γ2 in (5.2) is replaced by

∂u

∂ν
(x, t) = iα0u(x, t) + iα1u(x, t− τ), on Γ2 × (0,+∞),

where τ is the time delay, Nicaise and Rebiai [65] have shown that the solution decays exponentially

in an appropriate energy space provided that

α0 > α1 (5.3)

On the contrary, if (5.3) does not hold they constructed a sequence of delays for which the corre-

sponding solution of (5.2) is unstable. In [21], the authors developed an observer-predictor scheme to

stabilize the 1-d Schrödinger equation with distributed input time delay.

One of the purposes of this chapter is to investigate the stability of system (5.2). To this aim, assume

as in [63]

α0 >

∫ τ2

τ1

α(s) ds, (5.4)

which guarantees the existence of a positive constant c0 such that

α0 −
∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1) > 0, (5.5)

and define the energy of a solution of system (5.2) by

E(t) =
1

2

∫
Ω
|u(x, t)|2dx+

1

2

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
|u(x, t− ρs)|2 dρ ds dΓ. (5.6)

Then we have the following stability result for system (5.2).

Theorem 5.1. Assume (A) and (5.4). Then, there exist constants M ≥ 1 and δ > 0 such that

E(t) ≤Me−δtE(0).

The proof of this result is based on an energy estimate at the L2(Ω) level for a fully Schrödinger

equation with gradient and potential terms stated in [50], Theorem 2.6.1 and established in [51],

Section 10. This result can be summarized as follows: Assume that the hypothesis (A) holds and let

u be a smooth solution of the partial differential equation in (5.2) satisfying

u(x, t) = 0 on Γ1 × (0, T )
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Then there exists a constant c > 0 depending on T such that∫
Ω
|u(x, 0)|2 dx ≤ c

{
‖u‖2L2(0,T ;L2(Γ2)) +

∫ T

0

∫
Γ2

∣∣∣∣∂u(x, t)

∂ν

∣∣∣∣|u(x, t)| dΓ dt

+

∥∥∥∥∂u∂ν
∥∥∥∥2

H−1
a ((0,T )×Γ2)

+ ‖u‖2H−1((0,T )×Ω)

}
. (5.7)

In (5.7), H−1
a ((0, T )× Γ2) is the dual space of the space

H1
a((0, T )× Γ2) = H

1
2 (0, T ;L2(Γ2)) ∩ L2(0, T ;H1(Γ2)), (5.8)

with respect to the pivot space L2((0, T )× Γ2).

Remark 3. Theorem 5.1 remains true if m is replaced by a real-valued vector field m ∈ (C2(Ω))n

such that m is coercive in Ω, that is there exists β > 0 such that the Jacobian matrix J of m satisfies

Re(J(x)v.v) ≥ β|v|2, ∀x ∈ Ω, v ∈ Cn.

In this chapter, we also study the stability problem for the Schrödinger equation with distributed

delay in the internal feedback. More precisely, we consider the system described by


ut(x, t)− i∆u(x, t) + a(x)

{
α0 u(x, t) +

∫ τ2

τ1
α(s)u(x, t− s) ds

}
= 0 in Ω× (0; +∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on Γ× (0,+∞),

u(x,−t) = f0(x,−t) on Ω× (0, τ2).

(5.9)

In (5.9), a(.) is an L∞(Ω)-function that satisfies

a(x) ≥ 0 a.e. in Ω and a(x) > a0 > 0 a.e. in ω, (5.10)

where ω ⊂ Ω is an open neighborhood of Γ2.

In the absence of delay (i.e. α = 0), Machtyngier and Zuazua [57] have shown that the L2(Ω)-energy of

the solution decays exponentially to zero. Their proof relies on an observability inequality established

previously by the first author in [56]. If the delay is concentrated at time τ , i.e. if instead of the

partial differential equation in (5.9) we have

ut(x, t)− i∆u(x, t) + a(x) {α0 u(x, t) + α1 u(x, t− s) ds} = 0 in Ω× (0; +∞), (5.11)

then system (5.9) is exponentially stable in the case α0 > α1 and may be unstable otherwise (Nicaise

and Rebiai [65]).

The second purpose of this chapter is to investigate the stability of system (5.9). To this aim, assume

as in [63]

α0 >

∫ τ2

τ1

α(s) ds, (5.12)
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which imply that there exist a positive constant c1 such that

α0 −
∫ τ2

τ1

α(s) ds− c1

2
(τ2 − τ1) > 0, (5.13)

then the energy of a solution of system (5.9) defined by

F (t) =
1

2

∫
Ω
|u(x, t)|2 dx+

1

2

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
|u(x, t− ρs)|2 dρ ds dx, (5.14)

decays exponentially to zero.

Our stability result concerning system (5.9) can be stated as follows.

Theorem 5.2. Assume (A) and (5.12). Then, there exist constants M1 ≥ 1 and δ1 > 0 such that

F (t) ≤M1e
−δ1tF (0).

The chapter is organized as follows. Theorem 5.1 is proved in Section 5.2 whereas Section 5.3

contains the proof of Theorem 5.2. Both sections start with the study of the well-posedness of the

system under consideration.

5.2 Stability of the Schrödinger equation with distributed delay in

the boundary feedback

5.2.1 Well-posedness of system (5.2)

In this subsection, we will establish the well-posedness of system (2.1) using linear semigroup theory.

In order to be able to manage the boundary condition with the delay term and inspired from [62],

[63], [83], we introduce the auxiliary variable:

y(x, ρ, t, s) = u(x, t− ρs); x ∈ Γ2, ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

Then, system (5.2) is equivalent to

ut(x, t)− i∆u(x, t) = 0 in Ω× (0; +∞),

yt(x, ρ, t, s) + s−1yρ(x, ρ, t, s) = 0 on Γ2 × (0, 1)× (0,+∞)× (τ1, τ2),

u(x, 0) = u0(x) in Ω,

y(x, 0, t, s) = u(x, t) on Γ2 × (0,+∞)× (τ1, τ2),

u(x, t) = 0 on Γ1 × (0,+∞),
∂u
∂ν (x, t) = iα0u(x, t) + i

∫ τ2

τ1
α(s)y(x, 1, t, s) ds on Γ2 × (0,+∞),

y(x, ρ, 0, s) = f0(x, ρ, s) on Γ2 × (0, 1)× (0, τ2).

(5.15)

Denote by H the Hilbert space.

H = L2(Ω)× L2(Γ2 × (0, 1)× (τ1, τ2)),
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equipped H with the inner product:〈(
u1

y1

)
;

(
u2

y2

)〉
H

= Re

∫
Ω
u1(x)u2(x) dx+Re

∫
Γ2

∫ τ2

τ1

sα(s)

∫ 1

0
y1(x, ρ, s)y2(x, ρ, s) dρ ds dΓ.

Define in H the linear operator A by

A(u, y)T = (i∆u,−s−1yρ)
T , (5.16)

with

D(A) ={(u, y) ∈ H3/2(Ω) ∩H1
Γ1

(Ω)× L2(Γ2 × (τ1, τ2);H1(0, 1)) : ∆u ∈ L2(Ω),

∂u

∂ν
(x) = iα0u(x) + i

∫ τ2

τ1

α(s)y(x, 1, s) ds on Γ2, u(x) = y(x, 0, s) on Γ2}. (5.17)

Then we can rewrite (5.15) as an abstract Cauchy problem in H
dU

dt
(t) = AU(t),

U(0) = U0,

(5.18)

where

U(t) = (u(., t), y(., ., t, .))T , U
′
(t) = (ut(., t), yt(., ., t, .))

T , U0 = (u0, f0)T .

Theorem 5.3. Assume that

α0 ≥
∫ τ2

τ1

α(s) ds. (5.19)

Then, for every U0 ∈ H, system (5.18) has a unique solution U whose regularity depends on the initial

datum U0 as follows:

U(.) ∈ C([0,+∞);H) if U0 ∈ H,
U(.) ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A)) if U0 ∈ D(A).

Proof. Clearly A is closed and densely defined. We show that A is dissipative.

Let U = (u, y)T ∈ D(A). Then

Re〈AU,U〉 = Re

∫
Ω
i∆u(x)u(x) dx−Re

∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
yρ(x, ρ, s)y(x, ρ, s) dρ ds dΓ.

Applying Green’s Theorem, we obtain

Re〈AU,U〉 = Re

∫
Γ2

i
∂u(x)

∂ν
u(x) dΓ−Re

∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
yρ(x, ρ, s)y(x, ρ, s) dρ ds dΓ. (5.20)
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For the last term on the right-hand side of (5.20), we have after, integrating by parts in ρ,∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
yρ(x, ρ, s)y(x, ρ, s) dρ ds dΓ = −

∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
y(x, ρ, s)yρ(x, ρ, s) dρ ds dΓ

+

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 1, s)|2 ds dΓ−
∫

Γ2

∫ τ2

τ1

α(s)|y(x, 0, s)|2 ds dΓ,

or equivalently

2Re

∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
yρ(x, ρ, s)y(x, ρ, s) dρ ds dΓ =

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 1, s)|2 ds dΓ

−
∫

Γ2

∫ τ2

τ1

α(s)|y(x, 0, s)|2 ds dΓ.

Therefore

Re〈AU,U〉 = Re

∫
Γ2

i
∂u(x)

∂ν
u(x) dΓ− 1

2

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 1, s)|2 ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 0, s)|2 ds dΓ.

(5.21)

Insertion of the boundary conditions on Γ2 in (5.15) into (5.21) yields

Re〈AU,U〉 = −α0

∫
Γ2

|u(x)|2 dΓ−Re
∫

Γ2

∫ τ2

τ1

α(s)y(x, 1, s) ds u(x) dΓ− 1

2

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 1, s)|2 ds dΓ

+
1

2

∫
Γ2

∫ τ2

τ1

α(s)|u(x)|2 ds dΓ. (5.22)

For the second term on the right-hand side of (5.22), we have via the Cauchy-Schwartz’s inequality,∣∣∣∣ ∫
Γ2

∫ τ2

τ1

α(s)y(x, 1, s) ds u(x) dΓ

∣∣∣∣ ≤ 1

2

∫
Γ2

∫ τ2

τ1

α(s)|y(x, 1, s)|2 ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

α(s) ds |u(x)|2 dΓ.

(5.23)

Combining (5.22) with (5.23), we obtain

Re〈AU,U〉 ≤
(
− α0 +

∫ τ2

τ1

α(s) ds

)∫
Γ2

|u(x)|2 dΓ. (5.24)

(5.24) together with assumption (5.19) implies that A is dissipative.

Now we show that for a fixed λ > 0 and (g, h) ∈ H, there exists U = (u, y) ∈ D(A) such that

(λI −A)

(
u

y

)
=

(
g

h

)
,

or equivalently

λu− i∆u = g, (5.25)

λy + s−1yρ = h. (5.26)
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Suppose that we have found u with the appropriate regularity, then we can determine y. Indeed from

(5.26) and the last line of (5.15), we have{
yρ(x, ρ, s) = −λsy(x, ρ, s) + sh(x, ρ, s), for x ∈ Γ2, ρ ∈ (0, 1), s ∈ (τ1, τ2),

y(x, 0, s) = u(x).

The unique solution of the above initial value problem is given by

y(x, ρ, s) = u(x)e−λρsu(x) + se−λρs
∫ ρ

0
h(x, σ, s)eλσsdσ, x ∈ Γ2, ρ ∈ (0, 1), s ∈ (τ1, τ2),

and in particular

y(x, 1, s) = u(x)e−λs + y0(x, s), x ∈ Γ2, s ∈ (τ1, τ2), (5.27)

where y0 ∈ L2(Γ2 × (τ1, τ2)) is defined by

y0(x, s) = se−λs
∫ 1

0
h(x, σ, s)eλσsdσ.

Problem (5.25) can be reformulated as∫
Ω

(λu− i∆u)w dx =

∫
Ω
gw dx, for all w ∈ H1

Γ1
(Ω). (5.28)

Integrating by parts, we obtain∫
Ω

(λu− i∆u)w dx =

∫
Ω

(λuw + i∇u∇w) dx− i

∫
Γ2

∂u

∂ν
w dΓ

=

∫
Ω

(λuw + i∇u∇w) dx+

∫
Γ2

(α0uw + (

∫ τ2

τ1

α(s)y(x, 1, s) ds)w) dΓ

=

∫
Ω

(λuw + i∇u∇w) dx+

∫
Γ2

(α0uw + (

∫ τ2

τ1

α(s)(u(x)e−λs + y0(x, s)) ds)w) dΓ,

where we have used (5.27). Therefore (5.28) can be rewritten as∫
Ω

(λuw + i∇u∇w) dx+

∫
Γ2

α0uw dΓ +

∫
Γ2

(

∫ τ2

τ1

α(s)e−λs ds)uw dΓ

=

∫
Ω
gw dx−

∫
Γ2

(

∫ τ2

τ1

α(s)y0(x, s) ds)w dΓ, for all w ∈ H1
Γ1

(Ω).

Multiplying both sides of this equation by 1− i, we get

(1− i)

∫
Ω

(λuw + i∇u∇w) dx+ (1− i)

∫
Γ2

α0uw dΓ + (1− i)

∫
Γ2

(

∫ τ2

τ1

α(s)e−λs ds)uw dΓ

= (1− i)

∫
Ω
gw dx− (1− i)

∫
Γ2

(

∫ τ2

τ1

α(s)y0(x, s) ds)w dΓ, for all w ∈ H1
Γ1

(Ω). (5.29)

As the left-hand side of (5.29) is coercive on H1
Γ1

(Ω) (in the sense that if we denote the left-hand

side by b(u,w), then Re b(u, u) ≥ Const ‖u‖2H1
Γ1

(Ω) for all u ∈ H1
Γ1

(Ω), and since the right-hand side
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defines a continuous linear form on H1
Γ1

(Ω) because (g, h) ∈ H, the Lax-Milgram Theorem guarantees

the existence and uniqueness of a solution u ∈ H1
Γ1

(Ω) of (5.29).

If we consider w ∈ D(Ω) in (5.29), then u solves

λu− i∆u = g, (5.30)

in D′(Ω) and thus ∆u ∈ L2(Ω). Using Green’s Theorem and recalling (5.30), we obtain

i

∫
Γ2

∂u

∂ν
w dΓ+

∫
Γ2

α0uw dΓ+

∫
Γ2

(

∫ τ2

τ1

α(s)e−λs ds)uw dΓ =

∫
Γ2

(

∫ τ2

τ1

α(s)y0(x, s) ds)w dΓ, for all w ∈ H1
Γ1

(Ω),

from which it follows that

i
∂u

∂ν
+ α0u+ (

∫ τ2

τ1

α(s)e−λs ds)u =

∫ τ2

τ1

α(s)y0(x, s) ds.

Hence
∂u

∂ν
= iα0u+ i

∫ τ2

τ1

α(s)y(., 1, s) ds on Γ1,

and this implies that ∂u
∂ν ∈ L

2(Γ2), and by [55] Theorem 2.7.4, we deduce that u ∈ H3/2(Ω). So we

have found (u, y) ∈ D(A) which satisfies (5.25) and (5.26). By the Lumer-Phillips Theorem, A is the

generator of a C0−semigroup of contractions on H.

5.2.2 Proof of Theorem 5.1

We prove the Theorem 5.1 for smooth initial data. The general case follows by a density argument.

First, we show that the energy function E(t) defined by (5.6) is decreasing.

Proposition 5.4. The energy corresponding to any regular solution of problem (5.2), is decreasing

and there exists a positive constant K such that

d

dt
E(t) ≤ −K

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ, (5.31)

where

K = min

{
α0 −

∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1),

c0

2

}
.

Proof. Differentiating E(t) defined by (5.6) with respect to time, we obtain

d

dt
E(t) = Re

∫
Ω
ut(x, t)u(x, t) dx+Re

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dΓ

= Re

∫
Ω

(i∆u(x, t))u(x, t) dx+Re

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dΓ.
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Applying Green’s Theorem, we get

d

dt
E(t) = Re

∫
Γ2

i
∂u

∂ν
u dΓ +Re

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dΓ. (5.32)

Now, we have

−sut(x, t− ρs) = uρ(x, t− ρs).

Therefore

Re

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dΓ

= −Re
∫

Γ2

∫ τ2

τ1

(α(s) + c0)

∫ 1

0
uρ(x, t− ρs)u(x, t− ρs) dρ ds dΓ

= −
∫

Γ2

∫ τ2

τ1

(α(s) + c0)

∫ 1

0

d

dρ
|u(x, t− ρs)|2 dρ ds dΓ,

from which follows, after integration by parts in ρ

Re

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dΓ

= −1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)|u(x, t− s)|2 ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)|u(x, t)|2 ds dΓ. (5.33)

Inserting (5.33) and the boundary conditions on Γ2 in (5.2) into (5.32), we obtain

d

dt
E(t) = −α0

∫
Γ2

|u(x, t)|2 dΓ−Re
∫

Γ2

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dΓ

− 1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)|u(x, t− s)|2 ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)|u(x, t)|2 ds dΓ. (5.34)

For the second integral on the right-hand side of (5.34), we have from the Cauchy-Schwartz’s inequality,∣∣∣∣ ∫
Γ2

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dΓ

∣∣∣∣
≤
∫

Γ2

∫ τ2

τ1

α(s) | u(x, t− s) | ds | u(x, t) | dΓ

≤
∫

Γ2

(∫ τ2

τ1

α(s)|u(x, t− s)|2 ds
) 1

2
(∫ τ2

τ1

α(s) ds

) 1
2

| u(x, t) | dΓ

≤ 1

2

∫
Γ2

∫ τ2

τ1

α(s)|u(x, t− s)|2 ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

α(s)|u(x, t)|2 ds dΓ. (5.35)

So, from (5.34) and (5.35), we obtain

d

dt
E(t) ≤

(
−α0 +

∫ τ2

τ1

α(s) ds+
c0

2
(τ2 − τ1)

)∫
Γ2

|u(x, t)|2 dΓ− c0

2

∫
Γ2

∫ τ2

τ1

|u(x, t− s)|2 ds dΓ,
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which implies
d

dt
E(t) ≤ −K

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ,

where

K = min

{
α0 −

∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1),

c0

2

}
,

which is positive due to the assumption (5.5).

Now we give an observability inequality which we will use to prove the exponential decay of the

energy E(t).

Proposition 5.5. For any regular solution of problem (5.2), there exists a positive constant C de-

pending on T such that for all T > τ2

E(0) ≤ C
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt. (5.36)

Proof. We rewrite

E(t) = Es(t) + Ed(t),

where

Es(t) =
1

2

∫
Ω
|u(x, t)|2 dx,

and

Ed(t) =
1

2

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
|u(x, t− ρs)|2 dρ ds dΓ.

In particular,

Ed(0) =
1

2

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
|u(x,−ρs)|2 dρ ds dΓ. (5.37)

By a change of variable in (5.37) we obtain, for T ≥ τ2,

Ed(0) =
1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)

∫ s

0
|u(x, t− s)|2 dt ds dΓ

≤ 1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)

∫ T

0
|u(x, t− s)|2 dt ds dΓ

≤ C
∫ T

0

∫
Γ2

∫ τ2

τ1

|u(x, t− s)|2 ds dΓ dt. (5.38)

Here and throughout the rest of this chapter C is some positive constant different at different occur-

rences.

From Theorem 2.6.1 of [50], we have the following estimate

Es(0) ≤ C
{
‖u‖2L2(0,T ;L2(Γ2)) +

∫ T

0

∫
Γ2

∣∣∣∣∂u(x, t)

∂ν

∣∣∣∣|u(x, t)| dΓ dt

+

∥∥∥∥∂u∂ν
∥∥∥∥2

H−1
a ((0,T )×Γ2)

+ ‖u‖2H−1((0,T )×Ω)

}
,
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for T > 0 and for a suitable constant C depending on T .

Inserting the boundary conditions on Γ2 in (5.2) into the above estimate, we obtain

Es(0) ≤ C
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt+ C‖u‖2H−1((0,T )×Ω), (5.39)

since the H−1
a ((0, T )× Γ2)-norm is dominated by the L2((0, T )× Γ2)-norm.

Combining (5.38) with (5.39), we obtain for any T > τ2

E(0) ≤ C
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt+ C‖u‖2H−1((0,T )×Ω), (5.40)

for a suitable constant C depending on T . Naturally, (5.40) implies a fortiori

E(0) ≤ C
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt+ C‖u‖2L∞((0,T );H−1(Ω)). (5.41)

To obtain the desired estimate (5.36) we need to absorb the lower order terms ‖u‖2L∞((0,T );H−1(Ω)) on

the right-hand side of (5.41). To achieve this, we employ as in Nicaise and Pignotti [62] and Nicaise

and Rebiai [65] a compactness-uniqueness argument.

Suppose that (5.36) is not true. Then, there exists a sequence un of solution of problem (5.2) with

un(x, 0) = u0
n(x), un(x,−t) = f0

n(x,−t),

such that

En(0) > n

∫ T

0

∫
Γ2

{
|un(x, t)|2 +

∫ τ2

τ1

|un(x, t− s)|2 ds
}
dΓ dt, (5.42)

where En(0) is the energy corresponding to un at the time t = 0.

From (5.41), we have

En(0) ≤ C
∫ T

0

∫
Γ2

{
|un(x, t)|2 +

∫ τ2

τ1

|un(x, t− s)|2 ds
}
dΓ dt+ C‖un‖2L∞((0,T );H−1(Ω)). (5.43)

(5.42) together with (5.43), yields

n

∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt

< C

∫ T

0

∫
Γ2

{
|un(x, t)|2 +

∫ τ2

τ1

|un(x, t− s)|2 ds
}
dΓ dt+ C‖un‖2L∞((0,T );H−1(Ω)).

That is

(n− C)

∫ T

0

∫
Γ2

{
|un(x, t)|2 +

∫ τ2

τ1

|un(x, t− s)|2 ds
}
dΓ dt < C‖un‖2L∞((0,T );H−1(Ω)).
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Renormalizing, we obtain a sequence un of solution of problem (5.2) verifying

‖un‖2L∞((0,T );H−1(Ω)) = 1, (5.44)

and ∫ T

0

∫
Γ2

{
|un(x, t)|2 +

∫ τ2

τ1

|un(x, t− s)|2 ds
}
dΓ dt <

C

n− C
∀n > C. (5.45)

From (5.43), (5.44), and (5.45), it follows that the sequence (u0
n, f

0
n) is bounded in H. Then there is a

subsequence still denote by (u0
n, f

0
n) that converges weakly to (u0, f0) ∈ H. Let ψ be the solution of

problem (5.2) with initial condition (u0, f0).

We have

ψ ∈ C(0, T );L2(Ω)),

from Theorem 5.3 and ∫ T

0

∫
Γ2

|ψ(x, t)|2 dΓ dt+

∫ T

0

∫
Γ2

∣∣∣∣∂ψ(x, t)

∂ν

∣∣∣∣2 dΓ dt ≤ C,

from Proposition 5.4 for some C > 0. It then follows that

un −→ ψ in L∞(0, T ;L2(Ω)) weak star,

unt −→ ψt in L∞(0, T ;H−2(Ω)) weak star,

and hence

‖un‖2L∞(0,T ;L2(Ω)) + ‖unt‖2L∞(0,T ;H−2(Ω)) ≤ C ∀n ∈ N. (5.46)

Since the injection L2(Ω) ↪→ H−1(Ω) is compact, (5.46) implies (see [9] and [75]) that for 0 < T < +∞
the injection

Z ↪→ L∞(0, T ;H−1(Ω))

is also compact, where Z is the Banach space equipped with the norm on the left hand side of (5.46).

As a consequence there is a subsequence still denoted by un such that

un −→ ψ in L∞(0, T ;H−1(Ω)) strongly. (5.47)

Hence by (5.44) we obtain

‖u‖2L∞((0,T );H−1(Ω)) = 1. (5.48)

On the other hand, we have from (5.45) and (5.47),

ψ(x, t) = 0 on Γ2 × (0, T ).
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Thus ψ satisfies 

ψt(x, t)− i∆ψ(x, t) = 0 in Ω× (0, T ),

ψ(x, t) = 0 on Γ× (0, T ),

∂ψ(x, t)

∂ν
= 0 on Γ2 × (0, T ).

Therefore, from Holmgren’s uniqueness Theorem (see [54], Chap.1, Thm. 8.2), we conclude that

ψ(x, t) = 0 in Ω× (0, T ),

which contradicts (5.48). Then, the desired inequality (5.36) is proved.

Completion of the proof of Theorem 5.1

From (5.31), we have

E(T )− E(0) ≤ −K
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt,

and the observability inequality (5.36) leads to

E(T ) ≤ E(0) ≤ C
∫ T

0

∫
Γ2

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dΓ dt.

≤ CK−1(E(0)− E(T )),

so

E(T ) ≤ C

K + C
E(0). (5.49)

Since we 0 < C/(K + C) < 1, the desired conclusion follows now from (5.49).
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5.3 Stability of the Schrödinger equation with distributed delay

term in the internal feedback

5.3.1 Well-posedness of system (5.9)

We introduce the auxiliary variable:

y(x, ρ, t, s) = u(x, t− ρs); x ∈ Ω, ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

Then, system (5.9) is equivalent to

ut(x, t)− i∆u(x, t) + a(x)
{
α0 u(x, t) +

∫ τ2

τ1
α(s) y(x, 1, t, s) ds

}
= 0 in Ω× (0; +∞),

yt(x, ρ, t, s) + s−1yρ(x, ρ, t, s) = 0 in Ω× (0, 1)× (0,+∞)× (τ1, τ2),

u(x, 0) = u0(x) in Ω,

y(x, 0, t, s) = u(x, t) in Ω× (0,+∞)× (τ1, τ2),

u(x, t) = 0 on Γ× (0,+∞),

y(x, ρ, 0, s) = f0(x, ρ, s) in Ω× (0, 1)× (0, τ2).

(5.50)

Denote by Ĥ the Hilbert space

Ĥ = L2(Ω)× L2(Ω× (0, 1)× (τ1, τ2)),

equipped with the inner product:〈(
u1

y1

)
;

(
u2

y2

)〉
Ĥ

= Re

∫
Ω
u1(x)u2(x) dx+Re

∫
Ω
a(x)

∫ τ2

τ1

sα(s)

∫ 1

0
y1(x, ρ, s)y2(x, ρ, s) dρ ds dx.

Define in Ĥ the linear operator Ã by

Ã(u, y)T = (i∆u− aα0 u− a
∫ τ2

τ1

α(s) y(., 1, s) ds,−s−1yρ)
T ,

with

D(Ã) ={(u, y) ∈ H2(Ω) ∩H1
0 (Ω)× L2(Ω× (τ1, τ2);H1(0, 1)) : u(x) = y(x, 0, s) in Ω},

Then we can rewrite (5.50) as an abstract Cauchy problem in Ĥ
dU

dt
(t) = ÃU(t),

U(0) = U0,

(5.51)

where

U(t) = (u(., t), y(., ., t, .))T , U
′
(t) = (ut(., t), yt(., ., t, .))

T , U0 = (u0, f0)T .
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Clearly Ã is closed and densely defined. Proceeding as in Subsection 5.2.1, we prove that if

α0 ≥
∫ τ2

τ1

α(s) ds (5.52)

then Ã is maximal dissipative. Therefore Ã generates a strongly continuous semigroup of contractions

on Ĥ and consequently we have the following well-posedness result for system (5.51).

Theorem 5.6. Assume (5.52). Then for every U0 ∈ Ĥ, system (5.51) has a unique solution U whose

regularity depends on the initial datum U0 as follows:

U(.) ∈ C([0,+∞); Ĥ) if U0 ∈ Ĥ,
U(.) ∈ C1([0,+∞); Ĥ) ∩ C([0,+∞);D(Ã)) if U0 ∈ D(Ã).

5.3.2 Proof of Theorem 5.2

We prove Theorem 5.2 for smooth initial data. The general case follows by a density argument.

First, we show that the energy function F (t) defined by (5.14) is decreasing.

Proposition 5.7. The energy corresponding to any regular solution of problem (5.9), is decreasing

and there exists a positive constant K1 such that,

d

dt
F (t) ≤ −K1

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx, (5.53)

where

K1 = min

{
α0 −

∫ τ2

τ1

α(s) ds− c1

2
(τ2 − τ1),

c1

2

}
.

Proof. Differentiating F (t) defined by (5.14) with respect to time, we obtain

d

dt
F (t) = Re

∫
Ω
ut(x, t)u(x, t) dx+Re

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dx

= Re

∫
Ω

(i∆u(x, t))u(x, t) dx− α0

∫
Ω
a(x)|u(x, t)|2 dx−Re

∫
Ω
a(x)

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dx

+Re

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dx.

Applying Green’s Theorem, we get

d

dt
F (t) = Re

∫
Γ
i
∂u

∂ν
(x, t)u(x, t) dΓ− α0

∫
Ω
a(x)|u(x, t)|2 dx−Re

∫
Ω
a(x)

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dx

+Re

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dx. (5.54)

Now, we have

−sut(x, t− ρs) = uρ(x, t− ρs),
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Therefore

Re

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dx

= −Re
∫

Ω
a(x)

∫ τ2

τ1

(α(s) + c1)

∫ 1

0
uρ(x, t− ρs)u(x, t− ρs) dρ ds dx

= −
∫

Ω
a(x)

∫ τ2

τ1

(α(s) + c1)

∫ 1

0

d

dρ
|u(x, t− ρs)|2 dρ ds dx,

from which follows, after integration by parts in ρ

Re

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
ut(x, t− ρs)u(x, t− ρs) dρ ds dx

= −1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + c1)|u(x, t− s)|2 ds dx+
1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + c1)|u(x, t)|2 ds dx. (5.55)

Inserting (5.55) and the boundary condition on Γ2 in (5.9) into (5.54), we find

d

dt
F (t) = −α0

∫
Ω
a(x)|u(x, t)|2 dx−Re

∫
Ω
a(x)

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dx

− 1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + c1)|u(x, t− s)|2 ds dx+
1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + c1)|u(x, t)|2 ds dx.

(5.56)

For the second integral on the right-hand side of (5.56), we have the following estimate deduced from

the Cauchy-Schwartz’s inequality,∣∣∣∣ ∫
Ω
a(x)

∫ τ2

τ1

α(s)u(x, t− s) ds u(x, t) dx

∣∣∣∣
≤
∫

Ω
a(x)

∫ τ2

τ1

α(s) | u(x, t− s) | ds | u(x, t) | dx

≤
∫

Ω
a(x)

(∫ τ2

τ1

α(s)|u(x, t− s)|2 ds
) 1

2
(∫ τ2

τ1

α(s) ds

) 1
2

| u(x, t) | dx

≤ 1

2

∫
Ω
a(x)

∫ τ2

τ1

α(s)|u(x, t− s)|2 ds dx+
1

2

∫
Ω
a(x)

∫ τ2

τ1

α(s)|u(x, t)|2 ds dx. (5.57)

(5.56) together with (5.57) gives

d

dt
F (t) ≤

(
−α0 +

∫ τ2

τ1

α(s) ds+
c1

2
(τ2 − τ1)

)∫
Ω
a(x)|u(x, t)|2 dx− c1

2

∫
Ω
a(x)

∫ τ2

τ1

|u(x, t− s)|2 ds dx,

which in turn implies

d

dt
F (t) ≤ −K1

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2ds
}
dx,
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where

K1 = min

{
α0 −

∫ τ2

τ1

α(s) ds− c1

2
(τ2 − τ1),

c1

2

}
,

K1 is positive because of the assumption (5.13).

Now we give an observability inequality that will be used to establish the exponential decay of the

energy function F (t).

Proposition 5.8. For any regular solution of problem (5.9), there exists a positive constant C0 de-

pending on T such that for all T > τ2

F (0) ≤ C0

∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt. (5.58)

Proof. Following [57], we write the solution u of (5.9) as u = z + v where z solves
zt(x, t)− i∆z(x, t) = 0 in Ω× (0; +∞),

z(x, t) = 0 on Γ× (0,+∞),

z(x, 0) = u0(x) in Ω,

(5.59)

and v satisfies
vt(x, t) = i∆v(x, t)− a(x)

{
α0 u(x, t) +

∫ τ2

τ1
α(s)u(x, t− s) ds

}
= 0 in Ω× (0; +∞),

v(x, t) = 0 on Γ× (0,+∞),

v(x, 0) = 0 in Ω.

Let us denote by

Ez(t) =
1

2

∫
Ω
|z(x, t)|2 dx,

the energy corresponding to the solution of (5.59). Then, it follows from [57] (Proposition 3.1) that

for all T > 0, there exists a positive constant c depending on T such that

Ez(0) ≤ c
∫ T

0

∫
ω
|z(x, t)|2 dx dt.

Using (5.10) we get

Ez(0) ≤ c

a0

∫ T

0

∫
Ω
a(x)|z(x, t)|2 dx dt.

On the other hand we have for T ≥ τ2

1

2

∫
Ω
a(x)

∫ τ2

τ1

s(α(s)+c1)

∫ 1

0
|u(x,−ρs)|2 dρ ds dx ≤ c

∫ T

0

∫
Ω
a(x)

∫ τ2

τ1

(α(s)+c1)|u(x, t−s)|2 ds dx dt.
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Hence for T ≥ τ2

F (0) = Ez(0) +
1

2

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + c1)

∫ 1

0
|u(x,−ρs)|2 dρ ds dx

≤ c
∫ T

0

∫
Ω
a(x)

{
|z(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt

≤ c
∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 + |v(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt. (5.60)

By classical energy estimates on the Schrödinger equation we have

‖v‖2L∞((0,T );L2(Ω)) ≤ c
∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt. (5.61)

Combining (5.60) and (5.61), we obtain (5.58).

Completion of the proof of Theorem 5.2

From (5.53), we have

F (T )− F (0) ≤ −K1

∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt.

and the observability inequality (5.58) leads to

F (T ) ≤ F (0) ≤ C0

∫ T

0

∫
Ω
a(x)

{
|u(x, t)|2 +

∫ τ2

τ1

|u(x, t− s)|2 ds
}
dx dt.

≤ C0K
−1
1 (F (0)− F (T )),

so

F (T ) ≤ C0

K1 + C0
F (0). (5.62)

Since we have 0 < C0/(K1 + C0) < 1, the desired conclusion follows now from (5.62).



Chapter 6

Stabilization of coupled wave equations

with boundary or internal distributed

delay

6.1 Introduction

In this chapter, we study stability problems for compactly coupled wave equations with distributed

delay terms in the boundary or internal feedbacks. To this end, let Ω be an open bounded domain

of Rn with boundary Γ of class C2 which consists of two non-empty parts Γ1 and Γ2 such that,

Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅.
Furthermore we assume that there exists a scalar function Φ ∈ C2(Ω̄) such that

(H.1) Φ is strictly convex in Ω; that is, there exists λ > 0 such that

H(x)Θ.Θ ≥ λ |Θ(x)|2 ∀x ∈ Ω, Θ ∈ Rn,

where H is the Hessian matrix of Φ.

(H.2) h(x).ν(x) ≤ 0 on Γ1, where h(x) = ∇Φ(x) and ν is the unit normal on Γ pointing towards

the exterior of Ω.

In Ω, we consider the following coupled system of two wave equations with distributed delay terms in

the boundary conditions:

utt(x, t)−∆u(x, t) + l(u(x, t)− v(x, t)) = 0 in Ω× (0; +∞), (6.1)

vtt(x, t)−∆v(x, t) + l(v(x, t)− u(x, t) = 0 in Ω× (0; +∞), (6.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (6.3)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω, (6.4)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (6.5)

131
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∂u

∂ν
(x, t) = −

∫ τ2

τ1

α(s)ut(x, t− s) ds− α0ut(x, t) on Γ2 × (0,+∞), (6.6)

∂v

∂ν
(x, t) = −

∫ τ2

τ1

β(s)vt(x, t− s) ds− β0vt(x, t) on Γ2 × (0,+∞), (6.7)

ut(x,−t) = f0(x,−t) on Γ2 × (0, τ), (6.8)

vt(x,−t) = g0(x,−t) on Γ2 × (0, τ), (6.9)

where

� l, α0 and β0 are positive constants,

� u0, u1, v0, v1, f0 and g0 are the initial data,

�
∂
∂ν is the normal derivative,

� τ1 and τ2 are two real numbers with 0 ≤ τ1 < τ2,

� α, β : [τ1, τ2]→ (R) are nonnegative almost everywhere functions of class L∞.

For the case of one-dimensional spatial domain Ω, u and v may represent the displacements of two

vibrating objects measured from their equilibrium positions, the coupling terms ±l(u − v) are the

distributed springs linking the two vibrating objects [60].

It is well known that if α = β = 0, i.e. in the absence of delay, then the solution (u, v) of (6.1)-(6.9)

decays exponentially in the energy space H1
Γ1

(Ω)× L2(Ω)× H1
Γ1

(Ω)× L2(Ω) ([60], [41]).

In the presence of delay concentrated at a time τ that is the boundary conditions (6.6) and (6.7)

are replaced by

∂u

∂ν
(x, t) = −α1ut(x, t− τ) ds− α0ut(x, t) on Γ2 × (0,+∞), (6.10)

∂v

∂ν
(x, t) = −β1vt(x, t− τ) ds− β0vt(x, t) on Γ2 × (0,+∞), (6.11)

the solution of (6.1)−(6.5), (6.10), (6.11), (6.8) and (6.9) decays exponentially in an appropriate energy

space provided that α0 > α1 and β0 > β1 [70]. One of the purposes of this chapter is to investigate

the uniform exponential stability of the system (6.1− (6.9). To this aim, assume as in [63]

α0 >

∫ τ2

τ1

α(s) ds, (6.12)

and

β0 >

∫ τ2

τ1

β(s) ds. (6.13)
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and define the energy of a solution of (6.1)-(6.9) by

E(t) =
1

2

∫
Ω

[
| ∇u(x, t) |2 +u2

t (x, t)+ | ∇v(x, t) |2 +v2
t (x, t) + l(u(x, t)− v(x, t))2

]
dx

+
1

2

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
u2
t (x, t− ρs) dρ ds dΓ

+
1

2

∫
Γ2

∫ τ2

τ1

s(β(s) + c1)

∫ 1

0
v2
t (x, t− ρs) dρ ds dΓ. (6.14)

In (6.14), c0 and c1 are positive constants such that

α0 −
∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1) > 0, (6.15)

and

β0 −
∫ τ2

τ1

β(s) ds− c1

2
(τ2 − τ1) > 0. (6.16)

Then we have the following stability result for system (6.1)− (6.9)

Theorem 6.1. Assume (H.1), (H.2), (6.12) and (6.13). Then the coupled wave equations system

(6.1)− (6.9) is uniformly exponentially stable, i.e., there exist constants M ≥ 1 and ω > 0 such that

E(t) ≤Me−ωtE(0).

The proof of this result is based on Carleman estimates (see Appendix 6.4) for a system of coupled

non-conservative hyperbolic systems established by Lasiecka and Triggiani [46] and will be given in

Section 6.2.

In this chapter, we also study the stability problem for a system of two coupled wave equations with

distributed delay in the internal feedback. More precisely, we consider the system described by

utt −∆u+ l(u− v) + a(x)(α0ut +

∫ τ2

τ1

α(s)ut(x, t− s) ds) = 0 in Ω× (0; +∞), (6.17)

vtt −∆v + l(v − u) + b(x)(β0vt +

∫ τ2

τ1

β(s)vt(x, t− s) ds) = 0 in Ω× (0; +∞), (6.18)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (6.19)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω, (6.20)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (6.21)

∂u

∂ν
(x, t) =

∂v

∂ν
(x, t) = 0 on Γ2 × (0,+∞), (6.22)

ut(x,−t) = f0(x,−t) in Ω× (0, τ2), (6.23)

vt(x,−t) = g0(x,−t) in Ω× (0, τ2). (6.24)

In (6.17)− (6.24), a(.) and b(.) are two L∞(Ω) functions which satisfy

a(x) ≥ 0 a.e in Ω, a(x) > a0 > 0 a.e in ω1,
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and

b(x) ≥ 0 a.e in Ω, b(x) > b0 > 0 a.e in ω2,

where ω1 ⊂ ω2 ⊂ Ω are open neighbourhoods of Γ2.

If the delay is concentrated at time τ , i.e. if instead of (6.17)− (6.18) we have

utt −∆u+ l(u− v) + a(x)(α0ut + α1ut(x, t− s)) = 0 in Ω× (0,+∞) , (6.25)

vtt −∆v + l(v − u) + b(x)(β0vt + β1vt(x, t− s)) = 0 in Ω× (0,+∞) , (6.26)

then system (6.25), (6.26), (6.19)− (6.24) is exponentially stable in the case α0 > α1 and β0 > β1 and

may be unstable otherwise [74].

The second purpose of this chapter is to investigate the uniform exponential stability of the system

(6.17− (6.24). To this aim, assume as in [63]

α0 >

∫ τ2

τ1

α(s) ds and β0 >

∫ τ2

τ1

β(s) ds, (6.27)

then the energy of system (6.17)− (6.24) defined by

F (t) =
1

2

∫
Ω

{
| ∇u(x, t) |2 +u2

t (x, t)+ | ∇v(x, t) |2 +v2
t (x, t) + l(u(x, t)− v(x, t))2

}
dx

+
1

2

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + α̃0)

∫ 1

0
u2
t (x, t− ρs) dρ ds dx

+
1

2

∫
Ω
b(x)

∫ τ2

τ1

s(β(s) + β̃0)

∫ 1

0
v2
t (x, t− ρs) dρ ds dx, (6.28)

decays exponentially to zero. In (6.28), α̃0 and β̃0 are positive constants such that

α0 −
∫ τ2

τ1

α(s) ds− α̃0

2
(τ2 − τ1) > 0, (6.29)

and

β0 −
∫ τ2

τ1

β(s) ds− β̃0

2
(τ2 − τ1) > 0. (6.30)

Our stability result concerning system (6.17)− (6.24) can be stated as follows.

Theorem 6.2. Assume (H.1), (H.2) and (6.27). Then there exist constants M ≥ 1 and δ > 0 such

that

F (t) ≤Me−δtF (0), (6.31)

for all solutions of (6.17)− (6.24).

The proof of Theorem 6.2 is given in Section 6.3.

This chapter was published in [28]
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6.2 Exponential stability of coupled wave equations with distributed

delay terms in the boundary feedbacks

6.2.1 Well-posedness of system (6.1)− (6.9)

Adapting an idea of [62], we introduce new variables by setting

y(x, ρ, t, s) = ut(x, t− ρs), x ∈ Γ2, ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0,

z(x, ρ, t, s) = vt(x, t− ρs), x ∈ Γ2, ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

Then system (6.1)− (6.9) is equivalent to

utt(x, t)−∆u(x, t) + l(u(x, t)− v(x, t)) = 0 in Ω× (0; +∞), (6.32)

yt(x, ρ, t, s) + s−1yρ(x, ρ, t, s) = 0 on Γ2 × (0, 1)× (0,+∞)× (τ1, τ2), (6.33)

vtt(x, t)−∆v(x, t) + l(v(x, t)− u(x, t) = 0 in Ω× (0; +∞), (6.34)

zt(x, ρ, t, s) + s−1zρ(x, ρ, t, s) = 0 on Γ2 × (0, 1)× (0,+∞)× (τ1, τ2) (6.35)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (6.36)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω, (6.37)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (6.38)

∂u

∂ν
(x, t) = −

∫ τ2

τ1

α(s)y(x, 1, t, s) ds− α0ut(x, t) on Γ2 × (0,+∞), (6.39)

∂v

∂ν
(x, t) = −

∫ τ2

τ1

β(s)z(x, 1, t, s) ds− β0vt(x, t) on Γ2 × (0,+∞), (6.40)

y(x, 0, t, s) = ut(x, t) on Γ2 × (0,+∞)× (τ1, τ2), (6.41)

z(x, 0, t, s) = vt(x, t) on Γ2 × (0,+∞)× (τ1, τ2), (6.42)

y(x, ρ, 0, s) = f0(x, ρ, s), z(x, ρ, 0, s) = g0(x, ρ, s) on Γ2 × (0, 1)× (0, τ2). (6.43)

Denote by

U = (u, ut, y, v, vt, z)
T .

Then system (6.43) can be formulated as an abstract Cauchy problem{
U ′(t) = AU(t),

U(0) = (u0, u1, g, v0, v1, h)T ,
(6.44)

in the Hilbert space

H = (H1
Γ1

(Ω)× L2(Ω)× L2(Γ2 × (0, 1)× (τ1, τ2)))2.
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with the inner product

〈


ζ

η

θ

φ

χ

ψ


;



ζ̃

η̃

θ̃

φ̃

χ̃

ψ̃


〉

=

∫
Ω

(∇ζ(x).∇ζ̃(x) + η(x)η̃(x)) dx+

∫
Γ2

∫ τ2

τ1

sα(s)

∫ 1

0
θ(x, ρ, s)θ̃(x, ρ, s) dρ ds dΓ

+

∫
Ω

(∇ϕ(x).∇ϕ̃(x) + χ(x)χ̃(x)) dx+

∫
Γ2

∫ τ2

τ1

sβ(s)

∫ 1

0
ψ(x, ρ, s)ψ̃(x, ρ, s) dρ ds dΓ

+ l

∫
Ω

(ζ(x)− ϕ(x))(ζ̃(x)− ϕ̃(x)) dx.

The linear operator A is defined by

A(ζ, η, θ, φ, χ, ψ)T = (η,∆ζ + l(ζ − φ),−s−1θρ, χ,∆φ+ l(φ− ζ),−s−1ψρ)
T , (6.45)

and

D(A) =

{
(ζ, η, θ, φ, χ, ψ) ∈ ((E(∆, L2(Ω))) ∩H1

Γ1
(Ω)×H1

Γ1
(Ω)× L2(Γ2 × (τ1, τ2);H1(0, 1)))2 :

∂ζ(x)

∂ν
= −α0η(x)−

∫ τ2

τ1

α(s)θ(x, 1, s) ds, η(x) = θ(x, 0, s) on Γ2,

∂φ(x)

∂ν
= −β0χ(x)−

∫ τ2

τ1

β(s)ψ(x, 1, s) ds, χ(x) = ψ(x, 0, s) on Γ2

}
,

(6.46)

where

E(∆, L2(Ω)) = {u ∈ H1(Ω); ∆u ∈ L2(Ω)}.

Clearly A is closed and densely defined. Its adjoint A∗ which is given by

A∗(f, g, h, k, L,m)T = (−g,−∆f + l(f − k), s−1hρ,−L,−∆k + l(k − f), s−1mρ)
T , (6.47)

with domain

D(A∗) =

{
(ζ, η, θ, ϕ, χ, ψ) ∈ (E(∆, L2(Ω)) ∩H1

Γ1
(Ω))×H1

Γ1
(Ω)× L2(Γ2 ×H1(0, 1)× (τ1, τ2))

× (E(∆, L2(Ω)) ∩H1
Γ1

(Ω))×H1
Γ1

(Ω)× L2(Γ2 ×H1(0, 1)× (τ1, τ2));

∂ζ(x)

∂ν
= α0η(x)−

∫ τ2

τ1

α(s)θ(x, 0, s) ds, η(x) = −θ(x, 1, s) on Γ2;

∂ϕ(x)

∂ν
= β0χ(x)−

∫ τ2

τ1

β(s)ψ(x, 0, s) ds, χ(x) = −ψ(x, 1, s) on Γ2

}
. (6.48)

Proposition 6.3. The operator A and A∗ defined by (6.45), (6.46) and (6.47), (6.48) respectively are

dissipative.
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Proof. We first show that A is dissipative.

Let U = (ζ, η, θ, ϕ, χ, ψ)T ∈ D(A). Then

〈AU,U〉 =
〈(
η,∆ζ − l(ζ − ϕ),−s−1θρ, χ,∆ϕ− l(ϕ− ζ),−s−1ψρ

)T
, U
〉

=

∫
Ω
∇ζ(x)∇η(x) dx+

∫
Ω
η(x)∆ζ(x) dx− l

∫
Ω
η(x)(ζ(x)− ϕ(x)) dx

−
∫

Γ2

∫ τ2

τ1

sα(s)

∫ 1

0
θ(x, ρ, s)s−1θρ(x, ρ, s) dρ ds dΓ +

∫
Ω
∇ϕ(x)∇χ(x) dx+

∫
Ω
χ(x)∆ϕ(x) dx

− l
∫

Ω
χ(x)(ϕ(x)− ζ(x)) dx−

∫
Γ2

∫ τ2

τ1

sβ(s)

∫ 1

0
ψ(x, ρ, s)s−1ψρ(x, ρ, s) dρ ds dΓ

+ l

∫
Ω

(ζ(x)− ϕ(x))(η(x)− χ(x)) dx.

From Green’s Theorem, we obtain

〈AU,U〉 =

∫
Γ2

η(x)
∂ζ(x)

∂ν
dΓ−

∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
θ(x, ρ, s)θρ(x, ρ, s) dρ ds dΓ

+

∫
Γ2

χ(x)
∂ϕ(x)

∂ν
dΓ−

∫
Γ2

∫ τ2

τ1

β(s)

∫ 1

0
ψ(x, ρ, s)ψρ(x, ρ, s) dρ ds dΓ. (6.49)

Integrating by parts in ρ, the second qnd fourth terms on the right-hand side of (6.49), we obtain∫
Γ2

∫ τ2

τ1

α(s)

∫ 1

0
θ(x, ρ, s)θρ(x, ρ, s) dρ ds dΓ =

1

2

∫
Γ2

∫ τ2

τ1

α(s){θ2(x, 1, s)− θ2(x, 0, s)} ds dΓ

(6.50)∫
Γ2

∫ τ2

τ1

β(s)

∫ 1

0
ψ(x, ρ, s)ψρ(x, ρ, s) dρ ds dΓ =

1

2

∫
Γ2

∫ τ2

τ1

β(s){ψ2(x, 1, s)− ψ2(x, 0, s)} ds dΓ.

(6.51)

Recalling (6.46), we have after inserting (6.50) and (6.51) into (6.49),

〈AU,U〉 =

∫
Γ2

η(x)[−α0η(x)−
∫ τ2

τ1

α(s)θ(x, 1, s) ds] dΓ− 1

2

∫
Γ2

∫ τ2

τ1

α(s)[θ2(x, 1, s)− θ2(x, 0, s)] ds dΓ

+

∫
Γ2

χ(x)[−β0χ(x)−
∫ τ2

τ1

β(s)ψ(x, 1, s) ds] dΓ− 1

2

∫
Γ2

∫ τ2

τ1

β(s)[ψ2(x, 1, s)− ψ2(x, 0, s)] ds dΓ.

= −α0

∫
Γ2

η2(x) dΓ−
∫

Γ2

η(x)

∫ τ2

τ1

α(s)θ(x, 1, s) ds dΓ− 1

2

∫
Γ2

∫ τ2

τ1

α(s)θ2(x, 1, s) ds dΓ

+
1

2

∫
Γ2

∫ τ2

τ1

α(s)η2(x) ds dΓ− β0

∫
Γ2

χ2(x) dΓ−
∫

Γ2

χ(x)

∫ τ2

τ1

β(s)ψ(x, 1, s) ds dΓ

− 1

2

∫
Γ2

∫ τ2

τ1

β(s)ψ2(x, 1, s) ds dΓ +
1

2

∫
Γ2

∫ τ2

τ1

β(s)χ2(x) ds dΓ.

Using Cauchy-Schwarz’s inequality, we get∣∣∣∣∫
Γ2

η(x)

∫ τ2

τ1

α(s)θ(x, 1, s) ds dΓ

∣∣∣∣ ≤ 1

2

∫
Γ2

η2(x)

(∫ τ2

τ1

α(s) ds

)
dΓ +

1

2

∫
Γ2

∫ τ2

τ1

α(s)θ2(x, 1, s) ds dΓ,
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and∣∣∣∣∫
Γ2

χ(x)

∫ τ2

τ1

β(s)ψ(x, 1, s) ds dΓ

∣∣∣∣ ≤ 1

2

∫
Γ2

χ2(x)

(∫ τ2

τ1

β(s) ds

)
dΓ +

1

2

∫
Γ2

∫ τ2

τ1

β(s)ψ2(x, 1, s) ds dΓ,

then

〈AU,U〉 ≤
(
−α0 +

∫ τ2

τ1

α(s) ds

)∫
Γ2

η2(x) dΓ +

(
−β0 +

∫ τ2

τ1

β(s) ds

)∫
Γ2

χ2(x) dΓ.

From (6.12) and (6.13), we conclude that Re〈AU,U〉 ≤ 0, thus A is dissipative.

The dissipativity of A∗ is proved in a similar manner.

Therefore A generates a strongly continuous semigroup on H (see [26], p.15, Corollary 4.4), and

consequently we have the following well-posedness result.

Theorem 6.4. For every U0 ∈ H, the problem (6.44) has a unique solution U such that:

U(.) ∈ C([0,+∞);H).

In addition, if we assume U0 ∈ D(A), then we have

U(.) ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A)).

6.2.2 Proof of Theorem 1.1

We prove Theorem 6.1 for regular initial data, the general case follows by a density argument. We

proceed in several steps.

Step 1. We prove that the energy function E(t) defined by (6.14) is decreasing.

Proposition 6.5. The energy corresponding to any regular solution of system (6.1) − (6.9), is de-

creasing and there exists a positive constant K such that,

d

dt
E(t) ≤ −K

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ, (6.52)

where

K = min

{
α0 −

∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1),

c0

2
, β0 −

∫ τ2

τ1

β(s) ds− c1

2
(τ2 − τ1),

c1

2

}
.

Proof. Differentiating E(t) with respect to time, we obtain

d

dt
E(t) =

∫
Ω
{∇u.∇ut + uttut +∇v.∇vt + vttvt + l(u− v)(ut − vt)} dx

+

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dΓ

+

∫
Γ2

∫ τ2

τ1

s(β(s) + c1)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dΓ.
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Applying Green’s Theorem, we get

d

dt
E(t) =

∫
Γ2

∂u

∂ν
(x, t)ut(x, t) dΓ +

∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dΓ

+

∫
Γ2

∂v

∂ν
(x, t)vt(x, t)dΓ +

∫
Γ2

∫ τ2

τ1

s(β(s) + c1)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dΓ. (6.53)

Now, we have

−sut(x, t− ρs) = uρ(x, t− ρs),

−svt(x, t− ρs) = vρ(x, t− ρs),

which lead to

s2utt(x, t− ρs) = uρρ(x, t− ρs),

s2vtt(x, t− ρs) = vρρ(x, t− ρs).

Therefore ∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dΓ

+

∫
Γ2

∫ τ2

τ1

s(β(s) + c1)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dΓ

=

∫
Γ2

∫ τ2

τ1

(−s)−3s(α(s) + c0)

∫ 1

0
uρ(x, t− ρs)uρρ(x, t− ρs) dρ ds dΓ

+

∫
Γ2

∫ τ2

τ1

(−s)−3s(β(s) + c1)vρ(x, t− ρs)vρρ(x, t− ρs) dρ ds dΓ.

Integrating by parts in ρ, we get∫
Γ2

∫ τ2

τ1

s(α(s) + c0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dΓ

+

∫
Γ2

∫ τ2

τ1

s(β(s) + c1)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dΓ

=
1

2

∫
Γ2

∫ τ2

τ1

{(α(s) + c0)(u2
t (x, t)− u2

t (x, t− s)) + (β(s) + c1)(v2
t (x, t)− v2

t (x, t− s))} ds dΓ. (6.54)

Inserting (6.54) and the boundary conditions (6.6) and (6.7) into (6.53), we obtain

d

dt
E(t) = −α0

∫
Γ2

u2
t (x, t) dΓ−

∫
Γ2

ut(x, t)

∫ τ2

τ1

α(s)ut(x, t− s) ds dΓ

− β0

∫
Γ2

v2
t (x, t) dΓ−

∫
Γ2

vt(x, t)

∫ τ2

τ1

β(s)vt(x, t− s) ds dΓ

− 1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)u2
t (x, t− s) ds dΓ +

1

2

∫
Γ2

∫ τ2

τ1

(α(s) + c0)u2
t (x, t) ds dΓ

− 1

2

∫
Γ2

∫ τ2

τ1

(β(s) + c1)v2
t (x, t− s) ds dΓ +

1

2

∫
Γ2

∫ τ2

τ1

(β(s) + c1)v2
t (x, t) ds dΓ. (6.55)
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From Cauchy-Schwarz’s inequality, we have∣∣∣∣ ∫
Γ2

ut(x, t)

∫ τ2

τ1

α(s)ut(x, t− s) ds dΓ

∣∣∣∣ ≤ ∫
Γ2

| ut(x, t) |
∫ τ2

τ1

α(s) | ut(x, t− s) | ds dΓ

≤
∫

Γ2

| ut(x, t) |
(∫ τ2

τ1

α(s) ds

) 1
2
(∫ τ2

τ1

α(s)u2
t (x, t− s) ds

) 1
2

dΓ

≤ 1

2

∫
Γ2

u2
t (x, t)

(∫ τ2

τ1

α(s) ds

)
dΓ +

1

2

∫
Γ2

∫ τ2

τ1

α(s)u2
t (x, t− s) ds dΓ, (6.56)

and ∣∣∣∣ ∫
Γ2

vt(x, t)

∫ τ2

τ1

β(s)vt(x, t− s) ds dΓ

∣∣∣∣ ≤ 1

2

∫
Γ2

v2
t (x, t)

(∫ τ2

τ1

β(s) ds

)
dΓ

+
1

2

∫
Γ2

∫ τ2

τ1

β(s)v2
t (x, t− s) ds dΓ. (6.57)

Combining (6.55) together with (6.56) and (6.57), we obtain

d

dt
E(t) ≤

(
−α0 +

∫ τ2

τ1

α(s) ds+
c0

2
(τ2 − τ1)

)∫
Γ2

u2
t (x, t) dΓ− c0

2

∫
Γ2

∫ τ2

τ1

u2
t (x, t− s) ds dΓ

+

(
−β0 +

∫ τ2

τ1

β(s) ds+
c1

2
(τ2 − τ1)

)∫
Γ2

v2
t (x, t)dΓ− c1

2

∫
Γ2

∫ τ2

τ1

v2
t (x, t− s) ds dΓ,

which implies

d

dt
E(t) ≤ −K

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ,

where K is a positive constant defined by,

K = min

{
α0 −

∫ τ2

τ1

α(s) ds− c0

2
(τ2 − τ1),

c0

2
, β0 −

∫ τ2

τ1

β(s) ds− c1

2
(τ2 − τ1),

c1

2

}
.

Step 2. Now, we establish an observability estimate for the problem (6.1)− (6.9) that will be used

to prove the exponential decay of the energy E(t).

Proposition 6.6. For any regular solution of system (6.1)− (6.9), there exists a positive constant C

depending on T such that

E(0) ≤ C
∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt. (6.58)

Proof. We rewrite

E(t) = Es(t) + Ed(t),
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where

Es(t) =
1

2

∫
Ω

{
|∇u(x, t)|2 + u2

t (x, t) + |∇v(x, t)|2 + v2
t (x, t) + l(u(x, t)− v(x, t))2

}
dx,

and

Ed(t) =
1

2

∫
Γ2

∫ τ2

τ1

[s(α(s) + c0)

∫ 1

0
u2
t (x, t− ρs) dρ+ s(β(s) + c1)

∫ 1

0
v2
t (x, t− ρs) dρ] ds dΓ.

In particular,

Ed(0) =
1

2

∫
Γ2

∫ τ2

τ1

[
s(α(s) + c0)

∫ 1

0
u2
t (x,−ρs) dρ+ s(β(s) + c1)

∫ 1

0
v2
t (x,−ρs) dρ

]
ds dΓ,

Ed(0) can be rewritten via a change of variable as,

Ed(0) =
1

2

∫
Γ2

∫ τ2

τ1

[
(α(s) + c0)

∫ s

0
u2
t (x, t− s)dt+ (β(s) + c1)

∫ s

0
v2
t (x, t− s) dt

]
ds dΓ.

From the above equality, we obtain

Ed(0) ≤ C
∫ T

0

∫
Γ2

{∫ τ2

τ1

u2
t (x, t− s) ds+

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt, (6.59)

for T ≥ τ2. Here and throughout the rest of the chapter C is some positive constant different at

different occurrences.

From Proposition 3.5 of [46], we have for T sufficiently large and for any ε > 0,

Es(0) ≤ C
∫ T

0

∫
Γ2

{∣∣∣∣∂u∂ν (x, t)

∣∣∣∣2 + u2
t (x, t) +

∣∣∣∣∂v∂ν (x, t)

∣∣∣∣2 + v2
t (x, t)

}
dΓ dt

+ C
{
‖u‖2L2(0,T ;H1/2+ε(Ω)) + ‖v‖2L2(0,T ;H1/2+ε(Ω))

}
.

Inserting the boundary conditions (6.6) and (6.7) into the above inequality, we get

Es(0) ≤C
∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt

+ C
{
‖u‖2L2(0,T ;H1/2+ε(Ω)) + ‖v‖2L2(0,T ;H1/2+ε(Ω))

}
. (6.60)

Combining (6.59) with (6.60), we obtain

E(0) ≤C
∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt

+ C
{
‖u‖2L2(0,T ;H1/2+ε(Ω)) + ‖v‖2L2(0,T ;H1/2+ε(Ω))

}
. (6.61)

To obtain the desired estimate (6.58) we need to absorb the lower order terms ‖u‖2L2(0,T ;H1/2+ε(Ω))

and ‖v‖2L2(0,T ;H1/2+ε(Ω)) on the right-hand side of (6.61). We do this by a compactness-uniqueness
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argument.

Suppose that (6.58) is not true. Then, there exists a sequence (un, vn) of solution of problem (6.1)-(6.9)

with,

un(x, 0) = u0
n(x), unt(x, 0) = u1

n(x), un(x,−t) = f0
n(x,−t),

vn(x, 0) = v0
n(x), vnt(x, 0) = v1

n(x), vn(x,−t) = g0
n(x,−t),

such that

En(0) > n

∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt, (6.62)

where En(0) is the energy corresponding to (u0
n, u

1
n, v

0
n, v

1
n).

From (6.61), we have

En(0) ≤C
∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt

+ C
{
‖un‖2L2(0,T ;H1/2+ε(Ω)) + ‖vn‖2L2(0,T ;H1/2+ε(Ω))

}
. (6.63)

(6.62) together with (6.63), implies

n

∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt

< C

∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt

+ C
{
‖un‖2L2(0,T ;H1/2+ε(Ω)) + ‖vn‖2L2(0,T ;H1/2+ε(Ω))

}
,

that is

(n− C)

∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt

< C
{
‖un‖2L2(0,T ;H1/2+ε(Ω)) + ‖vn‖2L2(0,T ;H1/2+ε(Ω))

}
. (6.64)

Renormalizing, we obtain a sequence (un, vn) of solution of problem (6.1)− (6.9) satisfying

‖un‖2L2(0,T ;H1/2+ε(Ω))
+ ‖vn‖2L2(0,T ;H1/2+ε(Ω))

= 1, (6.65)

and ∫ T

0

∫
Γ2

{
u2
nt(x, t) +

∫ τ2

τ1

u2
nt(x, t− s) ds+ v2

nt(x, t) +

∫ τ2

τ1

v2
nt(x, t− s) ds

}
dΓ dt

<
C

n− C
for all n > C. (6.66)

From (6.63), (6.65), and (6.66), it follows that the sequence (u0
n, u

1
n, f

0
n, v

0
n, v

1
n, g

0
n) is bounded in

H. Then there is a subsequence still denoted by (u0
n, u

1
n, f

0
n, v

0
n, v

1
n, g

0
n) that converges weakly to

(u0, u1, f0, v0, v1, g0) ∈ H. Let (u, v) be the solution of problem (6.1)-(6.9) with initial condition

(u0, u1
n, f

0, v0, v1, g0). We have from Theorem 6.1
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(u, v) ∈ C([0,+∞);H1
Γ1

(Ω))× C([0,+∞);H1
Γ1

(Ω)).

Then

(un, vn) −→ (u, v) weakly in L2(0, T ;H1
Γ1

(Ω))× L2(0, T ;H1
Γ1

(Ω)).

Since H1
Γ1

(Ω) is compactly embedded in H1/2+ε(Ω), there exists a subsequence, still denoted by

(un, vn) such that,

(un, vn) −→ (u, v) strongly in L2(0, T ;H1/2+ε(Ω))× L2(0, T ;H1/2+ε(Ω)).

So, (6.65) leads to

‖u‖2
L2(0,T ;H1/2+ε(Ω))

+ ‖v‖2
L2(0,T ;H1/2+ε(Ω))

= 1. (6.67)

Moreover, by (6.64)∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt = 0.

Then

ut(x, t) = vt(x, t) = 0 on Γ2 × (0, T ),

and
∂u(x, t)

∂ν
=
∂v(x, t)

∂ν
= 0 on Γ2 × (0, T ).

Set ϕ := ut, ψ := vt. Therefore (ϕ,ψ) satisfies

ϕtt(x, t)−∆ϕ(x, t) + l(ϕ(x, t)− ψ(x, t)) = 0 in Ω× (0, T ),

ψtt(x, t)−∆ψ(x, t) + l(ψ(x, t)− ϕ(x, t)) = 0 in Ω× (0, T ),

ϕ(x, t) = ψ(x, t) = 0 on Γ× (0, T ),

∂ϕ(x, t)

∂ν
=
∂ψ(x, t)

∂ν
= 0 on Γ2 × (0, T ).

(6.68)

(6.68) implies 

(ϕ+ ψ)tt(x, t)−∆(ϕ+ ψ)(x, t) = 0 in Ω× (0, T ),

(ϕ+ ψ)(x, t) = 0 on Γ× (0, T ),

∂(ϕ+ ψ)(x, t)

∂ν
= 0 on Γ2 × (0, T ).

From Holmgren’s uniqueness Theorem (see [54], p.92 Chap.I, Thm.8.2), we conclude that

ϕ(x, t) + ψ(x, t) = 0,



6.2. EXPONENTIAL STABILITY OF COUPLED WAVE EQUATIONS WITH DISTRIBUTED
DELAY TERMS IN THE BOUNDARY FEEDBACKS 144

and the problem (6.68) can be rewritten as

ϕtt(x, t)−∆ϕ(x, t) + 2lϕ(x, t) = 0 in Ω× (0, T ),

ϕ(x, t) = 0 on Γ× (0, T ),

∂ϕ(x, t)

∂ν
= 0 on Γ2 × (0, T ).

Invoking Theorem 3.1 of [84], we readily obtain for T large enough

ϕ(x, t) = ψ(x, t) = 0 in Ω× (0, T ).

This implies

u(x, t) = u(x), v(x, t) = v(x).

Thus (u, v) verifies 

−∆u(x) + l(u(x)− v(x)) = 0 in Ω,

−∆v(x) + l(v(x)− u(x)) = 0 in Ω,

u(x) = v(x) = 0 on Γ,

∂u(x)

∂ν
=
∂v(x)

∂ν
= 0 on Γ2.

The unique solution of the above problem is (u, v) = (0, 0) in Ω, a contradiction to (6.67). The proof

of Proposition 6.6 is complete.

Step 3.

From (6.53), we have

E(T )− E(0) ≤ −K
∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt,

which combined with the observability inequality (6.58) gives

E(T ) ≤ E(0) ≤ C
∫ T

0

∫
Γ2

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds+ v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

}
dΓ dt

≤ CK−1(E(0)− E(T )),

so

E(T ) ≤ C

K + C
E(0). (6.69)

Since 0 < C/(K+C) < 1, the desired conclusion follows now from (6.69). (see [26], p. 299, Proposition

1.7).



6.3. EXPONENTIAL STABILITY OF COUPLED WAVE EQUATIONS WITH DISTRIBUTED
DELAY TERMS IN THE INTERNAL FEEDBACKS 145

6.3 Exponential stability of coupled wave equations with distributed

delay terms in the internal feedbacks

6.3.1 Well-posedness of system (6.17)− (6.24)

As we have done previously, let us define:

y(x, ρ, t, s) = ut(x, t− ρs); z(x, ρ, t, s) = vt(x, t− ρs); x ∈ Ω, ρ ∈ (0, 1), s ∈ (τ1, τ2), t > 0.

Then, the system (6.17)-(6.24) is equivalent to

utt −∆u+ l(u− v) + a(x)(α0ut(x, t) +

∫ τ2

τ1

α(s)y(x, 1, t, s) ds) = 0 in Ω× (0; +∞), (6.70)

vtt −∆v + l(v − u) + b(x)(β0vt(x, t) +

∫ τ2

τ1

β(s)z(x, 1, t, s) ds) = 0 in Ω× (0; +∞), (6.71)

yt(x, ρ, t, s) + s−1yρ(x, ρ, t, s) = 0 in Ω× (0, 1)× (0,+∞)× (τ1, τ2), (6.72)

zt(x, ρ, t, s) + s−1zρ(x, ρ, t, s) = 0 in Ω× (0, 1)× (0,+∞)× (τ1, τ2), (6.73)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (6.74)

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω, (6.75)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (6.76)

∂u

∂ν
(x, t) =

∂v

∂ν
(x, t) = 0 on Γ2 × (0,+∞), (6.77)

y(x, 0, t, s) = ut(x, t) in Ω× (0,+∞)× (τ1, τ2), (6.78)

z(x, 0, t, s) = vt(x, t) in Ω× (0,+∞)× (τ1, τ2), (6.79)

y(x, ρ, 0, s) = f0(x, ρ, t), z(x, ρ, 0, s) = g0(x, ρ, t) in Ω× (0, 1)× (0, τ2). (6.80)

Denote by Ĥ the Hilbert space

Ĥ = (H1
Γ1

(Ω)× L2(Ω)× L2(Ω× (0, 1)× (τ1, τ2)))2,

endowed with the inner product:

〈


ζ

η

θ

ϕ

χ

ψ


;



ζ̃

η̃

θ̃

ϕ̃

χ̃

ψ̃


〉

=

∫
Ω

(∇ζ(x).∇ζ̃(x) + η(x)η̃(x)) dx+

∫
Ω
a(x)

∫ τ2

τ1

sα(s)

∫ 1

0
θ(x, ρ, s)θ̃(x, ρ, s) dρ ds dx

+

∫
Ω

(∇ϕ(x).∇ϕ̃(x) + χ(x)χ̃(x)) dx+

∫
Ω
b(x)

∫ τ2

τ1

sβ(s)

∫ 1

0
ψ(x, ρ, s)ψ̃(x, ρ, s) dρ ds dx

+ l

∫
Ω

(ζ(x)− ϕ(x))(ζ̃(x)− ϕ̃(x)) dx.
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The system (6.70)-(6.80) can be rewritten as as an abstract Cauchy problem in Ĥ
dU

dt
(t) = ÃU(t),

U(0) = U0,

(6.81)

where

U(t) = (u(x, t), ut(x, t), y(x, ρ, t), v(x, t), vt(x, t), z(x, ρ, t))
T ,

U0 = (u0, u1, f0, v0, v1, g0)T .

and

Ã(ζ, η, θ, φ, χ, ψ)T =(η,∆ζ − l(ζ − ϕ)− a(x)(α0η +

∫ τ2

τ1

α(s)θ(., 1, ., s) ds),−s−1θρ,

χ,∆ϕ− l(ϕ− ζ)− b(x)(β0χ+

∫ τ2

τ1

β(s)ψ(., 1, ., s) ds),−s−1ψρ)
T , (6.82)

with domain

D(Ã) =

{
(ζ, η, θ, ϕ, χ, ψ) ∈ ((H2(Ω) ∩H1

Γ1
(Ω))×H1

Γ1
(Ω)× L2(Ω× (τ1, τ2);H1(0, 1)))2

∂ζ

∂ν
(x) = 0 on Γ2, η(x) = θ(x, 0, s) in Ω;

∂ϕ

∂ν
(x) = 0 on Γ2, χ(x) = ψ(x, 0, s) in Ω

}
.

Arguing as in Subsection 6.2.1, we can show that Ã generates a strongly continuous semigroup on

Ĥ. Hence, the following well-posedness result.

Theorem 6.7. For every U0 ∈ Ĥ, the problem (6.81) has a unique solution U whose regularity de-

pends on the initial datum U0 as follows:

U(.) ∈ C([0,+∞); Ĥ) if U0 ∈ Ĥ,
U(.) ∈ C1([0,+∞); Ĥ) ∩ C([0,+∞);D(Ã)) if U0 ∈ D(Ã).

6.3.2 Proof of Theorem 6.2

We prove Theorem 6.2 for regular initial data, and the general case follows by a density argument.

We proceed in three steps.

Step 1. We prove that the energy function F (t) is decreasing.

Proposition 6.8. The energy corresponding to any regular solution of system (6.17) − (6.24), is

decreasing and there exists a positive constant L such that,

d

dt
F (t) ≤ −L

∫
Ω

{
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds}+ b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds}

}
dx,

(6.83)
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where

L = min

{
α0 −

∫ τ2

τ1

α(s) ds− α̃0

2
(τ2 − τ1),

α̃0

2
, β0 −

∫ τ2

τ1

β(s) ds− β̃0

2
(τ2 − τ1),

β̃0

2

}
.

Proof. Differentiating F (t) with respect to time, applying Green’s Theorem, we obtain

d

dt
F (t) =

∫
Γ2

∂u

∂ν
(x, t)ut(x, t) dΓ− α0

∫
Ω
a(x)u2

t (x, t) dx−
∫

Ω
a(x)

∫ τ2

τ1

α(s)ut(x, t)ut(x, t− s) ds dx

+

∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + α̃0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dx+

∫
Γ2

∂v

∂ν
(x, t)vt(x, t) dΓ

− β0

∫
Ω
b(x)v2

t (x, t) dx−
∫

Ω
b(x)

∫ τ2

τ1

β(s)vt(x, t)vt(x, t− s) ds dx+

∫
Ω
b(x)

∫ τ2

τ1

s(β(s) + β̃0)∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dx. (6.84)

Now, we observe that

−sut(x, t− ρs) = uρ(x, t− ρs),

−svt(x, t− ρs) = vρ(x, t− ρs),

s2utt(x, t− ρs) = uρρ(x, t− ρs),

s2vtt(x, t− ρs) = vρρ(x, t− ρs).

Therefore ∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + α̃0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dx

+

∫
Ω
b(x)

∫ τ2

τ1

s(β(s) + β̃0)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dx

=

∫
Ω
a(x)

∫ τ2

τ1

(−s)−3s(α(s) + α̃0)

∫ 1

0
uρ(x, t− ρs)uρρ(x, t− ρs) dρ ds dx

+

∫
Ω

∫ τ2

τ1

(−s)−3s(β(s) + β̃0)vρ(x, t− ρs)vρρ(x, t− ρs) dρ ds dx,

from which follows, after integration by parts in ρ∫
Ω
a(x)

∫ τ2

τ1

s(α(s) + α̃0)

∫ 1

0
ut(x, t− ρs)utt(x, t− ρs) dρ ds dx

+

∫
Ω
b(x)

∫ τ2

τ1

s(β(s) + β̃0)

∫ 1

0
vt(x, t− ρs)vtt(x, t− ρs) dρ ds dx

=
1

2

∫
Ω

∫ τ2

τ1

{
a(x)(α(s) + α̃0)(u2

t (x, t)− u2
t (x, t− s))

+ b(x)(β(s) + β̃0)(v2
t (x, t)− v2

t (x, t− s))
}
ds dx. (6.85)
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Inserting (6.85) and the boundary conditions (6.76) and (6.77) into (6.84), we obtain

d

dt
F (t) = −α0

∫
Ω
a(x)u2

t (x, t) dx−
∫

Ω
a(x)ut(x, t)

∫ τ2

τ1

α(s)ut(x, t− s) ds dx

− β0

∫
Ω
b(x)v2

t (x, t) dx−
∫

Ω
b(x)vt(x, t)

∫ τ2

τ1

β(s)vt(x, t− s) ds dx

− 1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + α̃0)u2
t (x, t− s) ds dx+

1

2

∫
Ω
a(x)

∫ τ2

τ1

(α(s) + α̃0)u2
t (x, t) ds dx

− 1

2

∫
Ω
b(x)

∫ τ2

τ1

(β(s) + β̃0)v2
t (x, t− s) ds dx+

1

2

∫
Ω
b(x)

∫ τ2

τ1

(β(s) + β̃0)v2
t (x, t) ds dx. (6.86)

From Cauchy-Schwarz’s inequality, we have∣∣∣∣ ∫
Ω
a(x)ut(x, t)

∫ τ2

τ1

α(s)ut(x, t− s) ds dx
∣∣∣∣ ≤ ∫

Ω
a(x) | ut(x, t) |

∫ τ2

τ1

α(s) | ut(x, t− s) | ds dx

≤
∫

Ω
a(x) | ut(x, t) |

(∫ τ2

τ1

α(s) ds

) 1
2
(∫ τ2

τ1

α(s)u2
t (x, t− s) ds

) 1
2

dx

≤ 1

2

∫
Ω
a(x)u2

t (x, t)

(∫ τ2

τ1

α(s) ds

)
dx+

1

2

∫
Ω
a(x)

∫ τ2

τ1

α(s)u2
t (x, t− s) ds dx, (6.87)

and ∣∣∣∣ ∫
Ω
b(x)vt(x, t)

∫ τ2

τ1

β(s)vt(x, t− s) ds dx
∣∣∣∣ ≤ 1

2

∫
Ω
b(x)v2

t (x, t)

(∫ τ2

τ1

β(s) ds

)
dx

+
1

2

∫
Ω
b(x)

∫ τ2

τ1

β(s)v2
t (x, t− s) ds dx. (6.88)

Combining (6.86) with (6.87) and (6.88), we obtain

d

dt
F (t) ≤

(
−α0 +

∫ τ2

τ1

α(s) ds+
α̃0

2
(τ2 − τ1)

)∫
Ω
a(x)u2

t (x, t) dx−
α̃0

2

∫
Ω
a(x)

∫ τ2

τ1

u2
t (x, t− s) ds dx

+

(
−β0 +

∫ τ2

τ1

β(s) ds+
β̃0

2
(τ2 − τ1)

)∫
Ω
b(x)v2

t (x, t)dx−
β̃0

2

∫
Ω
b(x)

∫ τ2

τ1

v2
t (x, t− s) ds dx,

which implies

d

dt
F (t) ≤ −L

∫
Ω

{
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds}+ b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds}

}
dx,

where L is given by

L = min

{
α0 −

∫ τ2

τ1

α(s) ds− α̃0

2
(τ2 − τ1),

α̃0

2
, β0 −

∫ τ2

τ1

β(s) ds− β̃0

2
(τ2 − τ1),

β̃0

2

}
.
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Step 2. To obtain the exponential decay result for the energy function F (0), we need the following

obsevability estimate for system (6.17)− (6.24).

Proposition 6.9. There exists a time T ∗ such that for all T > T ∗, there exists a positive constant

C1 (depending on T ) such that

F (0) ≤ C1

∫ T

0

∫
Ω

(
a(x)

{
u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds

}
+ b(x)

{
v2
t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds

})
dx dt.

(6.89)

For any regular solution of system (6.17)-(6.24).

Proof. We rewrite

F (t) = Fs(t) + Fd(t),

where

Fs(t) =
1

2

∫
Ω

{
|∇u(x, t)|2 + u2

t (x, t)+ | ∇v(x, t) |2 +v2
t (x, t) + l(u(x, t)− v(x, t))2

}
dx,

and

Fd(t) =
1

2

∫
Ω

∫ τ2

τ1

[a(x)s(α(s) + c0)

∫ 1

0
u2
t (x, t− ρs) dρ+ b(x)s(β(s) + β̃0)

∫ 1

0
v2
t (x, t− ρs) dρ] ds dx.

We decompose the solution (u, v) of (6.17)− (6.24) as follows

u = ϕ+ ϕ̂, v = ψ + ψ̂,

where (ϕ,ψ) solves

ϕtt(x, t)−∆ϕ(x, t) + l(ϕ(x, t)− ψ(x, t)) = 0 in Ω× (0,+∞),

ψtt(x, t)−∆ψ(x, t) + l(ψ(x, t)− ϕ(x, t)) = 0 in Ω× (0,+∞),

ϕ(x, 0) = u0(x, t);ϕt(x, 0) = u1(x) in Ω,

ψ(x, 0) = v0(x, t);ψt(x, 0) = v1(x) in Ω,

∂ϕ
∂ν (x, t) = ∂ψ

∂ν (x, t) = 0 on Γ2 × (0,+∞),

ϕ(x, t) = ψ(x, t) = 0 on Γ1 × (0,+∞),

(6.90)
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and (ϕ̂, ψ̂) is the solution of:

ϕ̂tt −∆ϕ̂+ l(ϕ̂− ψ̂) + a(x)(α0ut(x, t) +
∫ τ2

τ1
α(s)ut(x, t− s) ds) = 0 in Ω× (0,+∞),

ψ̂tt −∆ψ̂ + l(ψ̂ − ϕ̂) + b(x)(β0vt +
∫ τ2

τ1
β(s)vt(x, t− s) ds) = 0 in Ω× (0,+∞),

ϕ̂(x, 0) = ϕ̂t(x, 0) = 0 in Ω

ψ̂(x, 0) = ψ̂t(x, 0) = 0 in Ω,

∂ϕ̂
∂ν (x, t) = ∂ψ̂

∂ν (x, t) = 0 on Γ2 × (0,+∞),

ϕ̂(x, t) = ψ̂(x, t) = 0 on Γ1 × (0,+∞).

(6.91)

Denote by Λ(t) the standard energy of (6.90), that is

Λ(t) =
1

2

∫
Ω

{
ϕ2
t (x, t) + |∇ϕ(x, t)|2 + ψ2

t (x, t) + |∇ψ(x, t)|2 + l(ϕ(x, t)− ψ(x, t))2

}
dx,

and by Λ̃(t) the standard energy of (6.91),

Λ̃(t) =
1

2

∫
Ω

{
ϕ̂2
t (x, t) + |∇ϕ̂(x, t)|2 + ψ̂

2

t (x, t) + |∇ψ̂(x, t)|2 + l(ϕ̂(x, t)− ψ̂(x, t))2

}
dx,

then

F (0) = Λ(0) + Fd(0). (6.92)

But for system (6.90), we have the following obsevability estimate that can be deduced from Propo-

sition 2.2.1 of [46].

Λ(0) ≤ C1

∫ T

0

∫
ω

{
ϕ2
t (x, t) + ψ2

t (x, t)

}
dx dt,

for all times T > T0.

Therefore

Λ(0) ≤ C1

∫ T

0

{∫
ω1

ϕ2
t (x, t) dx+

∫
ω2

ψ2
t (x, t) dx

}
dt

≤ C1

∫ T

0

∫
ω2

{
ϕ2
t (x, t) dx+ ψ2

t (x, t)

}
dx dt

≤ C1

∫ T

0

∫
Ω

{
a(x)ϕ2

t (x, t) + b(x)ψ2
t (x, t)

}
dx dt, (6.93)

since a(x) > a0 in ω1 and b(x) > b0 in ω2 and ω1 ⊂ ω2 ⊂ Ω.

On the other hand, by a change of variable, we have for T > τ2

Fd(0) ≤ C
∫

Ω

{
a(x)

∫ τ2

τ1

∫ T

0
u2
t (x, t− s) dt ds+ b(x)

∫ τ2

τ1

∫ T

0
v2
t (x, t− s) dt ds

}
dx. (6.94)
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If we take T > T ∗ := max{T0, τ2}, we get from (6.93) and (6.94)

F (0) ≤ C1

∫ T

0

∫
Ω

{
a(x)ϕ2

t (x, t) + b(x)ψ2
t (x, t) + a(x)

∫ τ2

τ1

u2
t (x, t− s) ds

+ b(x)

∫ τ2

τ1

v2
t (x, t− s) ds

}
dx dt

≤ C1

∫ T

0

∫
Ω

{
a(x)(ϕ̂2

t (x, t) + u2
t (x, t)) + b(x)(ψ̂

2

t (x, t) + v2
t (x, t)) + a(x)

∫ τ2

τ1

u2
t (x, t− s) ds

+ b(x)

∫ τ2

τ1

v2
t (x, t− s) ds

}
dx dt.

It remains to estimate the term∫ T

0

∫
Ω

{
a(x)ϕ̂2

t (x, t) + b(x)ψ̂
2

t (x, t)
}
dx dt.

We differentiate the energy function Λ̃(t) with respect to t, we obtain

d

dt
Λ̃(t) = −

∫
Ω
a(x)

{
α0ϕ̂t(x, t)ut(x, t) +

∫ τ2

τ1

α(s)ϕ̂t(x, t)ut(x, t− s) ds
}
dx

−
∫

Ω
b(x)

{
α1ψ̂t(x, t)vt(x, t) +

∫ τ2

τ1

β(s)ψ̂t(x, t)vt(x, t− s) ds
}
dx,

from which we get after using Cauchy-Schwartz’s inequality

d

dt
Λ̃(t) ≤ C

(∫
Ω
a(x){ϕ̂2

t (x, t) + u2
t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds} dx+

∫
Ω
b(x){ψ̂

2

t (x, t) + v2
t (x, t)

+

∫ τ2

τ1

v2
t (x, t− s) ds} dx

)
+

∫
Ω
{ϕ̂2

t (x, t) + ψ̂
2

t (x, t)} dx.

From the definition of Λ̃(t), we obtain

d

dt
Λ̃(t) ≤ Λ̃(t) + C

(∫
Ω
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds} dx

+

∫
Ω
b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds} dx

)
.

Multiplying the last inequality by (e−t) and integrating over (0, t), we get

Λ̃(t) ≤ Cet
(∫ t

0

∫
Ω
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds} dx dt

+

∫ t

0

∫
Ω
b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds} dx dt

)
.
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We conclude for t ∈ (0, T ), that is

Λ̃(t) ≤ C
(∫ T

0

∫
Ω
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds} dx dt

+

∫ T

0

∫
Ω
b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds} dx dt

)
,

which gives∫ T

0

∫
Ω
{ϕ̂2

t (x, t) + ψ̂
2

t (x, t)} dx dt ≤ C
(∫ T

0

∫
Ω
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds} dx dt

+

∫ T

0

∫
Ω
b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds} dx dt

)
.

Consequently, we have

F (0) ≤ C1

∫ T

0

∫
Ω

{
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds}+ b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds}

}
dx dt.

(6.95)

Step 3. From (6.83)

F (t)− F (0) ≤ −L
∫ T

0

∫
Ω

{
a(x){u2

t (x, t) +

∫ τ2

τ1

u2
t (x, t− s) ds}+ b(x){v2

t (x, t) +

∫ τ2

τ1

v2
t (x, t− s) ds}

}
dx dt,

which together with (6.95) leads to

F (t) ≤ C1L
−1

1 + C1L−1
E(0). (6.96)

Since 0 < C1L−1

1+C1L−1 < 1, then the energy of solutions of system (6.17)− (6.24) decays exponentially.

6.4 Appendix

Carleman estimates for coupled non-conservative hyperbolic equations

Let Ω be an open bounded domain of Rn with boundary Γ of class C2 which consists of two non-empty

parts Γ1 and Γ2 such that, Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅.
Let φ : Ω× R→ R be the function defined by

φ(x, t) ≡ |x− x0|2 − c|t−
T

2
|2,

where x0 ∈ Rn, T > 0, 0 < c < 1, are selected so that the following two properties are achieved:

(i)

cT > 2 max
y∈Ω
|y − x0|;
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(ii) there exists a subinterval [t0, t1] ⊂ (0, T ) such that

φ(x, t) > 1 for t ∈ [t0, t1];x ∈ Ω;

φ(x, 0) < −δ < 0; φ(x, T ) < −δ < 0 uniformly in x ∈ Ω,

for a suitable constant δ > 0.

Consider the following coupled system of two second-order hyperbolic equations in the unknowns

w(t, x) and z(t, x): {
wtt = ∆w + F1(w) + P1(z) in (0, T ]× Ω ≡ Q,
ztt = ∆z + F2(z) + P2(w) in Q,

defined on a bounded domain Ω ∈ Rn with smooth boundary Γ, where F1, F2, P1, P2 are (linear)

differential operators of order one in all variables t, x1, ..., xn, with L∞(Q)- coefficients, thus satisfying

the point wise bounds

|F1(w)|2 + |P2(w)|2 ≤ cT
[
w2
t + |∇w|2 + w2

]
∀ t, x ∈ Q,

|F2(z)|2 + |P1(z)|2 ≤ cT
[
w2
t + |∇z|2 + w2

]
∀ t, x ∈ Q.

Proposition 6.10. (Lasiecka and Triggiani [46]) Let w and z be solutions of the above problem in

the following class {
w, z ∈ H1(Q) = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))

wt,
∂w
∂ν , zt,

∂z
∂ν ∈ L

2(0, T ;L2(Γ)).

then the following inequality holds true for τ sufficiently large:

� there exists a positive constant kφ,τ > 0 such that

kφ,τE(0) ≤
∫ T

0

∫
Γ

[(
∂w

∂ν

)2

+ w2
t +

(
∂z

∂ν

)2

+ z2
t

]
dΓ dt

+ constT,τ ,ε0

{
‖w‖2

H
1
2 +ε0 (Q)

+ ‖z‖2
H

1
2 +ε0 (Q)

}
,

or equivalently,

kφ,τ [E(0) + E(T )] ≤
∫ T

0

∫
Γ

[(
∂w

∂ν

)2

+ w2
t +

(
∂z

∂ν

)2

+ z2
t

]
dΓ dt

+ constT,τ ,ε0

{
‖w‖2

H
1
2 +ε0 (Q)

+ ‖z‖2
H

1
2 +ε0 (Q)

}
,

� If, moreover, w and/or z satisfy the boundary condition

w|Σ1 ≡ 0, and / or, respectively, z|Σ1 ≡ 0, Σ1 = (0, T ]× Γ1,
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where Γ1 is defined by

Γ1 = {x ∈ Γ : ∇φ.ν(x) ≤ 0} ;

then the corresponding integral term for w and/or for z replaces Γ with Γ2.



Conclusion

In this thesis we have proved some uniform stabilization results for two types of partial differential

equations: wave and Schrödinger equations with time delay.

In Chapter two, we established global existence and uniform decay rates for the solutions of the mul-

tidimensional wave equations with a delay term in the nonlinear boundary or internal feedbacks. The

proof of existence of solutions relies on a construction of a suitable approximating problem for which

the existence of solution will be established using nonlinear semigroup theory and then passage to the

limit gives the existence of solutions to the original problem. The uniform decay rates for the solu-

tions are obtained by proving certain integral inequalities for the energy function and by establishing

a comparison theorem which relates the asymptotic behaviour of the energy and of the solutions to

an appropriate dissipative ordinary differential equation.

Chapters three, four and five are devoted to the Schrödinger equation defined on an open bounded

domain Ω of Rn with a delay term and subject to a dissipative feedback. In Chapter three, we

considered the case where the equation contains a delay term in the nonlinear internal or boundary

feedbacks. We proved that it is L2(Ω)-wellposed and L2(Ω)-stable with uniform decay rates described,

as in chapter two, by a dissipative ordinary differential equation. In Chapter four, we analyzed the

case of the equation with interior delay and a boundary feedback. Using multipliers technique and

a suitable Lyapunov functional, we proved exponential stability of the solution in the energy space

H1
Γ1

(Ω) on condition that the delay coefficient is sufficiently small.

In Chapter five we dealt with the case where the boundary or the internal feedback contains a delay

term of distributed type. By introducing suitable energy functionals and by using some observability

estimates, we showed that the solution decays exponentially in appropriate energy space.

In Chapter six, we considered a system of compactly coupled wave equations with distributed delay

terms in the boundary or internal feedbacks. In both cases, we established that the semigroup generat-

ing the dynamics of the closed-loop system is exponentially stable. The approach we adopted combines

Carleman estimates for coupled non-conservative hyperbolic systems and compactness-uniqueness ar-

gument.

There are several extensions of the results obtained in this thesis. For example the following

questions can be considered for future work:

� Nonlinear boundary stabilization of the wave equation with nonlinear interior delay.

� Nonlinear boundary stabilization of the Schrödinger equation with nonlinear interior delay.

155
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� Internal stabilization of the wave equation with a delay term in the boundary conditions.
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Titre: Stabilisation de quelques systèmes d’évolution avec  retards  

Résumé: 

Dans cette thèse, nous avons étudié le problème de stabilité pour quelques équations 

d’évolution (équation d’onde, équation de Schrödinger) avec des termes de retards 

dans les feedbacks (linéaire ou non linéaire) frontière ou interne. Sous certaines 

hypothèses, les taux de décroissance uniformes pour les solutions sont établis.  

Certaines de ces résultats sont obtenues en introduisant des fonctions d’énergies 

appropriées et en prouvant des inégalités d’observabilité,  tandis que les autres sont 

déduits à partir d’estimations des fonctions de Lyapunov appropriées. 

 

Mots Clés: 

Equation d’onde,  équation de Schrödinger,  stabilisation,  feedback frontière, 

feedback interne,  retard  de temps. 

 

 بوجود تأخر زمنياستقرار بعض أنظمة التطور  :العنوان

  

 الملخص:

 

مع حدوث شرودنجر(   لة، معادةالموج معادلات التطور )معادلةبعض  راستقراة تتضمن هذه الأطروحة دراس

معدلات  نحقق ،بعض الفرضيات و بوضع. ةيأو الداخل ةيالحد خطية أو غير الخطية(ل)ا تأخر في ردود الأفعال

 اتمتراجح بعض إثباتبو  الملائمةالطاقة بإدراج النتائج  ذهه . و نتحصل على بعضللحلول المنتظمة التضاؤل

 .ملائمةالليابونوف  وظائف تقديرات من هااستنتاج يتم الآخر البعض بينما، الملاحظة

 

 الكلمات المفتاحية:

 . زمنيتأخر ، رد فعل الحدي، رد فعل الداخلي،الاستقرار إعادة ،معادلة شرودنجر ،الموجة لةمعاد
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