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Abstract

The interaction of guided Shear Horizontal (SH) waves with the beveled free end of a
semi-infinite plate is analytically and numerically investigated. The material of the plate is
assumed to be elastic, homogenous, and isotropic. The plate with edge defect is modeled as a
combination of a semi-infinite region with traction free surfaces and a bounded wedged
region, separated by a common boundary. The analytical solution of the vertical free end case
for the two regions is derived and used in verifying the numerical implementation. In this
study, two single incident modes SHy and SH; were used individually in order to analyze the
corresponding reflected modes from the free end. The numerical solution is determined for a
wide range of frequencies and bevel angles. Specifically, the elastic energy carried by the
reflected modes is reported for selected beveled angles and incident frequencies. The validity
and accuracy of the results are checked by satisfaction of the energy conservation principle
with a tight error tolerance less than 0.001 percent. The analytical approach proposed in this
thesis contribute to the understanding of the interaction of guided SH waves with defects and

shows that this method can be an efficient guidelines for non-destructive testing of plates.

Keywords: Bevel end; Edge defect; Elastic plate; SH waves; Wave function



Résumeé

L'interaction des ondes de cisaillement horizontales (SH) guidées avec I'extrémité libre
biseautée d'une plaque semi-infini est analytiquement et numériquement examinée. Le
matériau de la plaque est supposé élastique, homogéne et isotrope. La plaque présentant un
défaut de bord est modélisée comme une combinaison d’une région semi-infinie avec des
contraintes nulles en surfaces et d’une région sectorielle bornée, délimitées par une frontiere
commune. La solution analytique du cas d'extrémité libre verticale pour les deux régions est
démontrée et utilisée pour Vérifier I’implémentation numérique. Dans cette étude, deux modes
incidents distincts SHy et SH; ont été utilisés individuellement afin d'analyser les modes
réfléchis correspondants de I'extrémité libre. La solution numérique est déterminée pour une
large gamme de fréquences et d'angles de biseau. Spécifiquement, 1’énergie élastique
transportée par les modes réfléchis est représentée pour une sélection d’angles biseautés et
fréquences incidentes. La validité et la précision des résultats sont vérifiées par la satisfaction
du principe de conservation de I’énergie avec une tolérance d’erreur étroite inférieure a
0,001%. L’approche analytique proposée dans cette thése contribue a la compréhension de
I’interaction des ondes SH guidées avec les défauts et montre que cette méthode peut

constituer une ligne de conduite efficace pour le controle non destructif des plaques.

Mots clés: Extrémité biseautée; Défaut de bord; Plaque élastique; Ondes SH; Fonction d’onde.
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Acronyms

EMAT
GWT
NDT
SAFE
SHM
SH
Ao

Ax

A

Jn

So

S1

Se

Yn

Electromagnetic-Acoustic Transducer
Guided Wave Testing

Non destructive testing
Semi-Analytical Finite Element
Structural Health Monitoring
Shear horizontal
Anti-symmetric zeroth SH mode
Anti-symmetric first SH mode
Anti-symmetric second SH mode
Bessel function of the first kind
Symmetric zeroth SH mode
Symmetric first SH mode
Symmetric second SH mode

Bessel function of the second kind
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Nomenclature

Amplitude of the reflected mode,
Amplitude of the sector region,
Shear velocity,

dilatational wave speed,
Amplitude of the incident mode,
Thickness,

Young’s modulus,

Energy flux,

Frequency,

Shear modulus,

Imaginary index,

Bessel function,

Wave numbers,

Number of modes,

Outward normal to surface,
Maximum polar radius,

Polar radius,

Energy flux ratio,

Time,

Stress vector,

Displacement field,
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Nomenclature



Nomenclature

124

Displacement vector,
infinitesimal rotation tensor,
vector rotation

Bevel angle,

Boundary surface,
Kronecker delta,

Relative energy error,

Strain tensor,

permutation symbol,

Polar angle,
Non-dimensional wave number,
Lame’s constant,
wavelength,

Shear modulus,

Poisson’s ratio,

Mass density,

Stress tensor,
Non-dimensional frequency,

Circular frequency,
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Chapter 1
General Introduction

1.1. Motivation

Mechanical structures are widely used and indispensable in modern
industry (pressure vessels, pipelines, storage tanks, ship hulls, aircraft wings,
etc.). These structures are easily affected by the presence of damage mechanisms,
such as corrosion or cracks which change the material properties and geometric
integrity, consequently enfeebling their performance and decreasing their service

life (Figure 1.1).

Figure 1.1: Mechanical structures
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Testing these structures is a significant issue for safety reasons and
environmental impact control. Small defects are admissible as long as they are
limited in size and if no overload occurs. Structural damage can continue to
increase for a long time, but the ultimate failure is generally quick and
unexpected. The consequences can be disastrous (structure collapse, aircraft
crash, storage tank burst) (Figure 1.2). Such disasters can be predicted and
avoiding such events is a good motivation for Structural Health Monitoring
(SHM). This technique is rapidly emerging as a critical tool for continuous
nondestructive inspection. It is used to evaluate material properties, components,

or entire process units.

Figure 1.2: Incident of Aloha Airlines, Flight 243

In a typical SHM process, sensors are permanently installed to enable
periodic assessment of the structure damage state. It provides information for
making decisions about equipment life assessment [Boukabache et al, 2014].

A Structural Health Monitoring system is a kind of imitation of the human
nervous system with integrated sensors and diagnostic capabilities (Figure 1.3).
The analogy between the operation of the human nervous system and structure

SHM is represented as follow, (Table 1.1):
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Table 1.1. Analogy between operation of the human nervous system and structure SHM

Human Nervous system Structural Health Monitoring system
More nerves around critical organs More sensors around critical parts
Pain indication Damage indication
The brain checks the intensity of the pain | The SHM system checks the structure and
and judges when to go to the doctor. evaluate the reexamination actions for
maintenance.

Brain e Processing unit
Spinal cord ——3 I®--------- Communication Bus
Nerve
endings

Smart Sensors

Figure 1.3: Analogy between the operation of the human nervous system and of SHM of a structure
[Boukabache et al, 2014].

To improve the performance of structures monitoring, and reduce the
operational cost at the same time, many researchers explored recently some new

kind of structural health monitoring systems.

One of these SHM techniques is the employment of guided waves which
proved to be useful in locating various types of defects in both plates and tubes.
Guided waves refer to mechanical (or elastic) waves that propagate in a bounded

medium parallel to the plane of its boundary. (Figure 1.4).
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Figure 1.4: Pipeline inspection using guided wave testing (GWT)

The wave is called "guided" when it travels along the medium guided by its
geometric boundaries. For this reason, the geometry has a strong influence on the
behavior of the wave [Redwood, 1960]; [Rose, 1999]. Guided waves have
advantages in their capacity to propagate from a single location over long
distances in plates and tubes (Figure 1.5). They can offer good estimates of
location, severity, and damage type, thus admitting higher efficiency, low in cost
and fast detection of defects in large area of the structures [Staszewski et al,

2004]; [Croxford et al, 2007]; [Annamaria, 2016].

Transmitted wave

Reflected wave

Defect Guided wave probe

Figure 1.5: Guided wave through a plate with defect
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The benefit of guided waves can also include:

e High percentage coverage throughout the thickness of the structure
e Ability of inspection of hidden and inaccessible regions of the structure
e Inspection of underwater structures, coatings, insulation and concrete.

e Avoidance of removal/reinstatement of insulation or coatings.

Guided waves can potentially be used for plate inspection such as airplane
fuselage and wings often made of aluminum sheets. These sheets are assembled
from holes by fasteners, which are sources of stress concentration and crack
formation. The interaction of guided elastic waves with discontinuities in the
structures has been the subject of scientific research of many scholars.
Discontinuities in structures can be either geometrical or due to material

property changes.

The complexity of such physical phenomenon fascinated many scientists
over several years and has not been explained for all possible cases encountered
in real situations [Demma, 2003]. Generally, the solution to such problems
presents a very redoubtable challenge. A correct understanding of the physical
and mathematical principles of the discontinuity effect in the structure is

essential for effective utilization of these guided waves.

An important class of guided waves is the horizontal shear waves known as
SH waves. The particle motion of SH waves is polarized parallel to the plate
surface and perpendicular to the direction of wave propagation. These waves
remain confined inside the walls of the structure and hence can travel over vast

distances without energy loss (Figure 1.6).
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wave propagation x

=

Figure 1.6: SH wave in a plate

On the other hand, the properties of the fundamental wave mode (SHo)
make them very convenient for the inspection of the structure with good
capability to detect defects. For those reasons, SH guided waves have the
potential to be used for Non-Destructive Testing (NDT) and have recently
attracted considerable interest in the structural health monitoring community

[Adams, 2007] ; [Kamal and Giurgiutiu, 2014] ; [Castaings, 2014].

For the purpose of NDT studies, it is essential to model the SH wave
propagation and interaction with defects analytically. This allows prediction of
the repercussions of these defects on wave propagation. The knowledge of SH
wave interaction with specific geometrical features can also help in the selection
of incident modes and frequencies that improve inspection to various
discontinuities. In the simplest case, one-single incident wave mode is used, after
that it can be converted to other reflected modes in order to satisfy boundary
conditions. The determination of reflection and transmission coefficients from
discontinuities of different kinds has been studied by many scholars. Several
approaches were proposed. The first i1s the development of numerical methods
and tools to simulate the phenomena. The second is the development of
appropriate experimental methods and techniques allowing verification and

validation results of numerical simulations.
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For numerical methods, different approaches were investigated as methods
based on wave expansion (mode-matching ) methods [Chen et al, 2015] ; [Ditri,
1996]; [Nakamura et al, 2012]; [Ahmad and Gabbert, 2012]; [Chancellier et al,
2002], finite element methods [Rajagopal and Lowe, 2007]; [Ratassep et al, 2008]
;[Koshiba et al, 1987]; [Lowe and Diligent, 2002]; [Demma et al, 2003]; [Gunawan
and Hirose, 2004], or a combination of finite element formulations with waves
function expansion technique [Annamaria, 2016]. Unfortunately, the study of the
effects of multiple angles representing the direction of discontinuities was not
widely analyzed. For these raisons, a better understanding of the interaction of

guided SH waves with a beveled free end in a plate is needed.

The aim of this thesis is to develop an analytical and numerical model for
SH guided wave propagation in an isotropic plate with a beveled free end.
Applying these proposed procedures, the interaction between the guided waves
and edge defects is well analyzed. [Mohammedi et al, 2019] The background

literature on the different issues is presented in the following section.

1.2. Previous work

Although experimental observations of dynamic edge phenomenon in elastic
waveguides took place over 70 years ago, the reflection of guided waves from the
free end of an elastic layer remains an active area of research. Lawrie et al.
[Lawrie and Kaplunov, 2012] provided a detailed review of the field that covered
the period from 1958 to 2008. Within this context, a follow-up report was made
by Deckers et al. [Deckers et al, 2014] in which they discussed and summarized

research on wave-based methods.

Researchers have made tremendous advancements utilizing mode and
frequency selections to solve many problems; for example, in the testing of pipes,
rails, plates, ship hulls, and aircraft integrity [Giurgiutiu, 2007]; [Pujol, 2003];
[Rose, 2014]. In recent years, the inspection of irregularities and defects such as

cracks have been carried out using horizontally polarized shear (SH) waves
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generated and detected by electromagnetic-acoustic transducers [Rose, 2000];

[Gao and Lopez, 2010]; [Hirao and Ogi, 1999].

The study of scattering problems varies from classical approaches such as
mode matching and variational techniques to numerical techniques such as finite
element and boundary element approaches, or a combination of numerical
formulations with a wave function expansion technique. Among these,
Abduljabbar et al. [Abduljabbar et al, 1983] studied the diffraction of SH waves
in a plate with arbitrary defects by employing a finite element formulation and
wave function expansion technique. Furthermore, Chen et al. [Chen et al, 2015]
studied the SH guided waves propagated in a tapered plate using eigenmode
matching theory and finite element methods. Ditri [Ditri, 1996] dealt with the
scattering of guided elastic SH waves from material and geometric waveguide
discontinuities. Nakamura et al. [Nakamura et al, 2012] studied the mode
conversion behavior of an SH guided wave in a tapered plate. They investigated
the different mode conversion phenomenon for abrupt and gradual thickness

changes.

Many investigations have been made to study the beveled end of plates
using Lamb waves. A semi-analytical finite element method has been used to
simulate Lamb wave reflections at plate edges [Ahmad and Gabbert, 2012]. The
Lamb wave conversion due to the beveled free end of plates has been studied
theoretically as well as numerically, using the finite element method [Chancellier
et al, 2002]; [Mofakhami and Boller, 2008]. Chancellier et al. used a collocation
method on the beveled free end to determine the Lamb wave amplitudes and

edge resonance [Chancellier et al, 2005].

Several experimental works have been published on the reflection of Lamb
waves by the free and beveled edge of a plate [Castaings et al, 2002]; [Morvan et
al, 2003]; [Chancellier et al, 2004]; [Santhanam and Demirli, 2013]. In these
papers, the mode conversions were examined in detail over an extensive
frequency range, and the energy conversion coefficients were obtained both

numerically (finite element method) and experimentally.
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1.3. Scope and objectives

The aim of this thesis is to contribute to the understanding of SH wave
propagation in an elastic plate with edge defects. The method of separation of
variables (also known as the wave function expansion) is used to investigate the
interactions of SH waves with the beveled free end of an elastic plate. The plate
1s divided into two non-overlapping regions with a common interface. Each region
admits a separable solution of the corresponding wave equation. The total
solution is assembled by enforcing continuity conditions at the interface. The
solution preserves the total incident energy to within a small tolerance. The
convergence of the solution is met when the difference between the total incident
energy and reflected energy is less than 0.001% which is a very tight criterion
compared to existing convergence criteria reported in many works available in
the literature [Abduljabbar et al, 1983]; [Ditri, 1996]; [Morvan et al, 2003];
[Chancellier et al, 2005]. The solution provided here is compared with the known
solution for a plate with a vertical end [Giurgiutiu, 2007]; [Rose, 2014].

Finally, very good agreement between the proposed numerical approach and
analytical solution i1s observed. This indicates the effectiveness of the proposed
approach. A wide range of beveled angles and incident frequencies is studied and

reported here [Mohammedi et al, 2019].

1.4. Thesis outline

This thesis is divided into five chapters. The present chapter is intended to
provide a general introduction to the subject, research backgrounds and useful

information.

The second chapter presents a literature review of the theoretical
fundamentals of wave propagation, which gives all the research background and
useful information about this thesis. Guided waves in elastic plates are then

introduced with particular attention on SH waves which are used in this study.

10
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Chapter 3 describes the analysis of SH waves propagating in a beveled free
end plate. A region matching technique is applied to derive a series solution.
Appropriate wave functions are employed to describe the displacement field. The
unknown coefficients are determined by the enforcement of the continuity of
displacements and stresses at the fictitious common boundary. The particular
case of a plate with vertical edge is used in order to test the numerical results

obtained in chapter 4

Chapter 4 deals with the numerical results of the reflecting SH waves in
terms of the ratio between the energy of the m!" reflected mode and the energy of
the ¢'* incident mode. Beveled angles ranging from 20° to 90° with 0.1° increment
and normalized frequencies ranging from 0 to 5.5 are considered. The validity
and accuracy of the results are checked by satisfaction of the energy conservation
principle. The energy ratios are plotted as function of the beveled angles and
normalized frequencies. After all, a comparative study between different

approaches mentioned in the literature is done and shows the novelty of this work

In the last chapter, conclusion is provided on the findings of this thesis and

additional topics that will be the subject of future work are proposed.

11
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Chapter2

Background and literature review

2.1. Introduction

In this chapter, the basic theoretical concepts for waves propagating in
elastic solids on the basis of the continuum theory are described. Continuum
mechanics 1s a classical subject that has been discussed in great generality in
numerous treatises. The theory of continuous media is built upon the basic
concepts of stress, motion, and deformation, upon the laws of conservation of
mass, linear momentum and on the constitutive relations. The governing
equations used in this thesis are for homogeneous, isotropic, linearly elastic
solids. These equations are valid if it may be assumed that the strains are small

and that the stress components are proportional to the strains.

The theory of wave propagation in solids is well developed and dates back to
the early 1800s with the discovery of dynamical equations and waves in solids by
Cauchy [Cauchy, 1822], Poisson [Poisson, 1829] and Lamé [Lamé, 1852]. During
that time, these studies were merely an extension of the theory of elasticity.
Poisson was the first to recognize that elastic disturbance was in general
composed of two types of fundamental waves (dilatational and equivoluminal

ones).

The linear theory of elasticity is based upon a linear approximation
(geometrical and physical). Although it does not give an exact description of
dynamics, it does provide a handy solution that is applicable as long as the
assumptions are valid. This linear theory is the subject of many classic texts. A
famous work entitled Mathematical Theory of Elasticity by A. E. H. Love [Love,
1906] was published in 1892 and has been reprinted many times until 1944.
Numerous objects, such as an elastic 3D medium, a half space, waveguides, etc.

were being studied. A wide range of waves was described, and particular

13
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mathematical methods for analysis were derived. In recent years several books
have appeared specifically dealing with wave propagation in linearly elastic
solids. We mention the books presented by Kolsky [Kolsky, 1963], Achenbach
[Achenbach, 1973], Whitham [Whitham, 1974], Graff [Graff, 1991], and
Miklowitz [Miklowitz, 1980]. These books have summaries of the relevant
elastodynamic theory. This theory is essential to the development of the method

of wave propagation in plates developed in later sections.

2.2. Fundamental equations of elastodynamics

The theory to be introduced in this section attempts to deal with problems
from a more fundamental basis (The dynamic theory of elasticity, called
elastodynamics). The significant aspects of the theory needed for a basic

understanding are presented to pursue the study in the upcoming chapters.

2.2.1. Tensor notation

Elastodynamics deals with physical quantities which are independent of any
particular coordinate system that may be used to describe them. At the same
time, these physical quantities are very often specified most conveniently by
referring to an appropriate system of coordinates. Mathematically, such
quantities are represented by Tensor. Tensor notation permits a compact
expression to be written for the equations of mathematical physics that also
indicates the form natural laws should take. Both indicial notation and vector
notation are used in this thesis. In a Cartesian coordinate system with

coordinates denoted by x;, the vector u(x,t) is presented by
U=U6 +UE, +UE; (2.1)

Where, ¢ (i=1,2,3) are a set of orthonormal base vectors. Since summations of

the type (2.1) occur frequently, it is convenient to introduce the summation
convention, whereby a repeated index means summation over all values of that

index. Thus, the three-term expression (2.1) can be simply written as

14
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U=Ug; (2.2)

The repeated index is called a dummy index because it can be replaced by any
othersymbol that has not already been used in that expression. Thus, the

expression in equation (2.2) can also be written as

U=Uug =U;e; =U,¢g (2.3)

m=<m

Similarly we may have a set of nine quantities such as a; (i, j =1,2,3). Use will be

made of Kronecker delta defined as

1 for i=j,
S. = (2.4)

ij
0 for i=j,

Permutationsymbol is defined as follows:
1, ifi, j,k areaneven permutationofl, 2,3,

&y =1—1 1fi, j,k areanodd permutationof1,2,3, (2.5)

0, otherwise.

The following notation is used for the field variables:

= Position vector x (coordinates x;)
» Displacement vector u (components u,)
= Strain tensor E (components &)

= Stress tensor o (components o)

It may generally be assumed that the functions u.(x,t) are differentiable. A

shorthand notation for the nine partial derivatives is

o, _

i 2.6
X, i (26)
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where the comma denotes partial differentiation with respect to the Cartesian

coordinates x i

It can be shown that the u, ; are the components of a second order tensor. A time

derivative is often indicated by a dot over the quantity, i.e., % =U

2.2.2. Displacement

Displacement characterizes vibrations, is a distance of a particle from its

position of equilibrium. The field defining the displacement at position x at time

t is denoted by the displacement vector u(x,t)

u(x,t) =u,(x,t)e +U, (X, t)e, +Us(X,t)e; =u; (X, t)g,

2.2.3. Strain

(2.7)

As a direct implication of the notion of a continuum, the deformation of the

medium can be expressed in terms of the gradients of the displacement vector.

ui()~(+5?,() zui(?,()"'al;x—(zo5Xj zui(?,()+5ui

J

Therefore, in the first order assumption

: . ou; . ou;
5ui:au'—(~x)5xj:1 %_‘__J 6)(]_4.3 %__J 5)(]_
OX; 2 OX; OX 2\ ox;  oX

J J 1

:%(“i,ﬁ ui,i)axi+%(ui,i_ Uj,i)5xj = (& + ©;)0X;

Where the symmetric part of (2.9)
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1s the linear rotation tensors, which contain the spatial derivatives of the

displacement field.

2.2.4. Forces and stress

In general forces on a body may be classified into two categories:

1. Body forces:  Forces acting on all elements of volume of a continuum.
Examples are gravity and inertia forces. These forces are

represented by the symbol p, (force per unit volume)

2. Surface forces: Forces acting on the surface of a body, resulting from

physical contact with another body.

Applied external loads induce internal forces and stresses inside a body. In three-

dimensions, the stress is defined by

Ojj=| 9% Op Oy |’ (2.12)

which 1s a second order tensor, and the first subscript indicates the surface

applied and the second the direction (Figure 2.1).

012

Figure 2.1: Cartesian stress components.
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Thus if a surface element has a unit outward normal n the surface traction t

(stress vector) is introduced, defining a force per unit area. The surface tractions

generally depend on the orientation of n as well as the location x .

o (2.13)

Equation (2.13) is the Cauchy stress formula.

2.2.5. Equations of motion

According to the principle of balance of linear momentum, the instantaneous
rate of change of the linear momentum of the body is equal to the resultant
external force acting on the body at a particular instant of time. In the linear

theory, this leads to the equations.

oy + P = pu; (2.14)

where p 1s the mass density per unit volume.

Equations (2.14) are known as Cauchy equations of motion. For the linearized

theory, the balance of moment of momentum yields the result o, =o, 1.e., the

i’

stress tensor is symmetric.

2.2.6. Stress-strain relation

Assuming that the material is linearly elastic and that only small
deformations are present in the domain, the linear relation between the

components of the stress tensor and the components of the strain tensor is

T = CijnEin (2.15)

which 1s known as the generalized Hooke’s law.

In (2.15) Cy,, 1s a fourth-order tensor containing 81 elastic constants or matrix

components that define the elastic properties of the material in the anisotropic
medium. However, due to the symmetry of both the stress and strain tensors,

there are at most 36 distinct elastic constants. Through strain energy

18
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considerations, it follows that C. =C so that even in the case of anisotropy

ijkm kmij ?
the number of constants can be reduced to 21. The assumption of isotropy
reduces the number of independent elastic constants to just 2. In summary for an
1sotropic, continuous medium, the elastic constant tensor can be reduced to the

following:

Cim = A6 O + 1(5y Oy + 6,1.653) (2.16)

im* jk

Equation (2.16) contains two elastic constants 4 and u, which are known as
Lamé’s elastic constants, which are related to the Young’s modulus E and the
Poisson ratio v as

vE E

Ay M aae 21D

Since the material is homogeneous, 4 and x are independent of X. The Lamé
constant u is also identified as the shear modulus, which is often denoted G.

The stress-strain relationship (2.15) simplifies to

Oy = AS; &y + 218 (2.18)

which is known as the Hook’s law for isotropic elastic behavior.

2.2.7. Navier equations

The system of equations governing the motion of a homogeneous, isotropic,
linearly elastic solid consists of Cauchy equations of motion, Hooke’s law and the
strain-displacement relations [Rose, 2014]; [Achenbach, 1973]. The strain-
displacement relations (2.10) may be substituted into Hooke’s law (2.18) and the
result in turn substituted into the stress equation of motion (2.14) to produce the

governing equations

HU; i +(/1+/l)uj,ji +p; = P4 (2.19)

19
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Motion equations (2.19) containing only particle displacements (displacement

vector u.) are displacement-type partial differential equations known as Navier

equations and represent three equations in Cartesian notation

o’u, d°u, du, o (éu, ou, ou o%u,
7, ottt —— [+ (A +u)— + +—=1+p,=p
OX oy oz ox\ ox oy oz

o°u, &%, o4 ou o°u
P A B +(l+,u)i ou, L5y ou, +p,=p y (2.20)
OX oy oz oy\ ox oy oz

azuerazuerazuZ fs )g 6uX+0Uy+8uZ tp = o%u,
o "oy o Walox "oy oz ) P

In vector notation equation of motion (2.19) becomes

HVU+(A+u)VV-u+p=pl (2.21)

2.3. Elastic waves in unbounded media

Elastic waves are mechanical waves propagating in an elastic medium as an
effect of forces associated with volume deformation (compression and extension)
and shape deformation (shear) of medium elements [Pujol, 2003]. The solution of
the equation of motion for an elastic medium results in the existence of elastic
waves in its interior. The wave phenomenon is a way of transporting energy
without transport of matter. The propagation of energy is, then, an essential

aspect of wave propagation.

2.3.1. Dilatational and rotational wave equations

Elastic homogeneous medium is considered so that the elastic moduli are
constant throughout the body. In this context, the body forces are to be neglected.

Navier’s equations in the absence of body forces are

HU; i +(/1+/u)uj,ji = pU; (2-22)

Taking the divergence of equation (2.22) yield the scalar equation

’uuixiji +(l+ﬂ)uj’jii :pUi,i
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which after substitution and reordering of terms involving repeated indices yields
LU+ (A + 1)U, 6 = pl , OF (A+21)A, = pA
with the cubic dilatation A=u,,, this equation is rewritten as

1 .. O°A 1 0%A
A.=—pA OF = 2.23
ez’ ox,0x;,  C2 ot (2.23)

i 2
p

2
p

where

, = /’“ 2u (2.24)
yo,

is the speed of propagation of such dilatational waves, known as the

dilatational wave speed. From (2.23), the cubic dilatation A satisfies the wave
equation, known as the dilatational wave equation. The Dilatational waves are
frequently called longitudinal waves, or irrotational waves, or in seismology, P-

waves (where P stands for pressure).

Navier equations (2.22) admit another wave-type solution. Taking the rotational

of equation (2.22) yields the three equations

HEg Uy + (A + )5 Uy g = peyly (2.25)

Here & 1s the permutation symbol defined in (2.5). The term u,, 1is
symmetric in the indices j and k, whereas the permutation symbol &, 1s

antisymmetric. Hence, the second term appearing in equation (2.25) vanishes.

Making use of this result, equation (2.25) reduces to

2 2
w, == or IW _10W (2.26)
C; oX;0x; ¢ ot
where
c,= £ (2.27)
Yo,
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1s the shear speed. Equation (2.26) is the three-dimensional wave equation known

as transverse waves, or shear waves, or S-waves. The quantity w, is the vector

rotation of the displacement field

1 1 1
W= Gl = 5 Mg Wy =2 (U —U;;) (2.28)

Here W; 1s the skew-symmetric part of the displacement gradient u, ;

known as the infinitesimal rotation tensor.

2.3.2. Helmholtz representation

The results presented in the previous section can also be found in an

alternative way known as Helmholtz decomposition. The vector field u, can be
expressed as the sum of the gradient of a scalar field v, and the curl of a vector

field (divergence-free) w.

U =V, +W, =g +g; H,, or u=Vg+VxH (2.28)
and
H=0 or V-H=0 (2.29)

Direct calculation show that u;; =0 and ¢V, ; =0. In other words, u; has been

decomposed into the sum of an irrotational vector v, and a solenoidal vector w; .

The case where u, is solenoidal (v, =0) and u, =w., Navier’s equations (2.25)

reduce to

1,]] !

u . =2 (2.30)
7
which 1s the wave equation governing shear waves or equivoluminal waves. The

case where the displacement is irrotational (w, =0) and u, =v,, can be found by

rewriting (2.25) in the equivalent form
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Lo .
A 2u ! (2:31)
which is the dilatational wave equation. Consequently, an arbitrary displacement
can be regarded as the sum of equivoluminal and dilatational waves. Equations
(2.30) and (2.31) are independent of each other, which mean that the longitudinal

and shear waves propagate without interaction in unbounded media.

2.4. Guided waves

In comparison, a bulk wave travels in an infinite media, for which
boundaries do not influence wave propagation. Hence they travel in the bulk of
the material. Guided waves are waves that propagate within the boundaries of a
structure. The boundaries not only influence the propagation but they guide the
wave along the structure. Bulk and guided waves are governed by the same set of
partial differential equations. The difference in mathematical solution is that
guided waves must satisfy some additional boundary conditions [Giurgiutiu,
2007]. The difficulty in the application of guided waves arises from the
complexity of the solution. Guided waves are characterized by an infinite number
of modes associated with a given partial differential equation solution. The basic
principles of guided waves are very well known, and several textbooks discuss the

topics [Giurgiutiu, 2007]; [Graff, 1991]; [Brekhovskikh, 1980].

In this thesis, the guided waves propagation in plates will be considered.

2.4.1. Guided waves in plates

The elastic wave propagation theory in plates has been built-up over one
hundred years. The propagation of waves in isotropic plates with free boundary
conditions was first studied by Lamb [Lamb, 1917] after whom the guided waves
in free plates are named. His study analyzed symmetric and anti-symmetric
modes separately. In 1945 Rayleigh and Lindsay investigated the wave
propagation in isotropic plates with free boundary conditions [Rayleigh and
Lindsay, 1945]. In their works, the Rayleigh-Lamb equations were developed,

which identified the relationship between wave frequency and wave number
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under certain conditions. A comprehensive analysis and contribution to the
understanding of guided waves in plates were given by Victorov [Victorov, 1970],
Achenbach [Achenbach, 1973], Graff [Graff, 1991], Rose [Rose, 2014] and Royer
and Dieulesaint [Royer and Dieulesaint, 2000]. Some examples of guided wave
problems that have been solved and whose solution has inherited the name of the
investigator are Rayleigh waves, Lamb waves, Love waves, and Shear horizontal

waves. A brief description is listed as follows:

2.4.1.1 Rayleigh waves

Rayleigh waves, as the most straightforward wave, propagate on the free
surface of a semi-infinite solid [Ostachowicz et al, 2011]. In these waves, the
particle motion is composed of elliptical movements in the X y vertical plane and
of motion parallel to the direction of propagation X (as shown in Figure 2.2). The
motion amplitude decreases rapidly with depth y starting from the wave crest.
The Rayleigh waves are very sensitive to surface defects with very little
penetration in the depth of the solid [Hirao and Ogi, 1999]. For this reason, they

can be used to inspect the surface properties for a structure.
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Figure 2.2: Rayleigh wave [Ostachowicz et al, 2011].

2.4.1.2 Lamb waves

Lamb waves are waves that are guided between two parallel free surfaces,

such as the upper and lower surfaces of a plate (Figure 2.3). These waves can
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only be generated in thin-walled structures so that the motion amplitude remains
the same on both top and bottom surfaces only. Therefore Lamb waves are of two
basic varieties, symmetric Lamb-waves modes and antisymmetric Lamb-wave
modes [Hirao and Ogi, 1999]; [Ostachowicz et al, 2011]. Unlike the Rayleigh
waves, the Lamb waves are highly dispersive, and their speed is related to their

frequency and plate thickness.
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Figure 2.3: Lamb wave [Ostachowicz et al, 2011].

2.4.1.3 Love waves

Love waves are another kind of surface waves applied for surface inspection.
These waves were firstly found by Love in 1911 and verified by many

researchers. Their particle motion is horizontal (in the xz plane) and

perpendicular to the direction of propagation X. As in the case of Rayleigh

waves, their wave amplitude decreases rapidly with depth (Figure 2.4).
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Figure 2.4: Love wave [Ostachowicz et al, 2011].
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2.4.1.4 Shear horizontal waves

Shear horizontal (SH) waves are characterized by particle motion

maintained in the Xz horizontal plane, as their name explained. The direction of

the particle motion is perpendicular to the direction of wave propagation x
(Figure 2.5). The SH waves can be symmetric and antisymmetric. Except for the
very fundamental mode, the SH wave modes are all dispersive. The advantage of
applied SH waves on structural health monitoring is summarized by Petcher et

al. [Petcher et al, 2013].

Figure 2.5: Horizontal shear wave [Ostachowicz et al, 2011].

2.4.2. Shear horizontal wave in plate

Shear horizontal waves have a particle motion contained in a plane parallel

to the surface of the plate (x z). The axes definition is shown in Figure 2.6. The X

axis 1s placed along the direction of wave propagation, whereas the Z axis is

perpendicular to it. [Giurgiutiu, 2007]

26



Chapter 2 Background and literature review

wave front

horizontal
plane x0z

o, (x~-d.r)=0

Figure 2.6: Particle motion and coordinate definition for SH plate waves [Giurgiutiu, 2007].

2.4.2.1 General equation

The SH mode can be considered as the superposition of waves reflecting

from the upper and lower surfaces of the plate, polarized horizontally (in the Z

axis direction). The problem is assumed to be z-invariant, i.e.,?:o. Particle
z

motion has only a U, component and if U, is independent of Z, then equation

(2.26) reduces to:

: (2.32)

where U, =w,

It is assumed that the particle motion has the form

U, (x,y,t)=f(y)e'™ (2.33)

This form of the solution i1s chosen because it represents a wave motion
propagating in the X direction (due to the exponential term ™) and has a

fixed distribution in the y direction (standing waves across the thickness d).

Notice that U, is independent of Z so that the problem is assumed Z -invariant.
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Substitution of equation (2.33) into equation (2.32) and division of both sides by

ei(kx—(ut

) yields

Zf a)z )
aéx(zy){cz i jf(y)zo (2.34)

S

The solution of equation (2.34) has the general form

f (y)=Asin(ny)+Bcos(ny) (2.35)

Where 7 is defined as

2
n = %—kz (2.36)

S

and A,B are arbitrary constants. The general form of the displacement field is

therefore
U, (x, y.t)=[ Asin(ny)+Bcos(ny) Je“ (2.37)

The boundary conditions state that the upper and lower plate surfaces are

traction free

Uyz(X,id,t)=,u Z(X,id,t)=0 (2.38)

Without going into details [Giurgiutiu, 2007], Boundary conditions (2.38) lead to
the dispersion equations characterized by the system of linear homogeneous

equations with the determinant

sin(nd)cos(nd)=0 (2.39)

Equation (2.39) is the characteristic equation of SH wave modes and is zero when

either:
sin(nd)=0 (2.40)

which corresponds to symmetric modes (S-modes) of the SH waves, or:
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cos(nd)=0 (2.41)

which corresponds to antisymmetric modes (A-modes) of the SH waves. By virtue
of the simplicity of the solution, explicit solutions of equations (2.40) and (2.41)

are

n*d=nz, n=0,1 2,..
(2.42)

nd =”7”, n=135,..

The values 7n°d and n*d given by equations (2.42) are the Eigenvalues for

symmetric and antisymmetric motions. The solutions to equations (2.40) and

(2.41) can be written as
nd =— (2.43)

where ne{0,2,4,...} for symmetric SH modes and ne{l,3,5,...} for antisymmetric

SH modes. After substitutions, the general solution (2.33) becomes
U;(x,y,t)=B cos;—;Z ye!(ket) (2.44)

for symmetric SH waves (S-modes), and

U2A(x y,t)=Asin 2—;[ ye'(et) (2.45)

For antisymmetric SH waves (A-modes).

A sketch of the symmetric SH modes (So, S1, S2) and antisymmetric SH modes
(Ao, A1, A) are illustrated in Figure 2.7.

29



Chapter 2 Background and literature review

Figure 2.7: SH waves, (a) symmetric modes, (b) Anti-symmetric modes. [Giurgiutiu, 2007].

2.4.2.2 Dispersion of SH waves

By using the definition of the wave number

k=2 (2.46)

Cp

where ¢, is the mode phase velocity

The dispersion equation (2.36) can be written as

o o z(n_ﬁjz (2.47)

Equation (2.47) can be solved for the phase velocity ¢, in terms of the frequency

thickness product 2fd (where w=27f)

cp:ZCS{\/( fz;f' : 2} (2.48)
4(2 —n°c;

It should be noted that when n=0, corresponding to the first symmetric mode

SHo , the phase velocity c, is equal to c,, so the SHo wave mode is not dispersive
and propagates at the shear wave speed c,. For all other SH modes (n>0) the

phase velocity is varying with the frequency-thickness product. This phenomenon

is called dispersion, and results in the distortion of the shape of the wave packet
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containing multiple frequencies that propagates for long distances. The first five
SH modes of the phase velocity dispersion curves over a frequency thickness
range of 0-14 MHz-mm, are plotted in Figure 2.8. The solid and dashed curves

represent the symmetric and antisymmetric modes respectively.

The cutoff frequencies of the SH modes which correspond to infinite phase
velocities can be found by setting the denominator in equation (2.48) equal to

zero. The nth cutoff frequency is given by

ne (2.49)

(2fd)

n

It should be noted that , even integer n represents symmetric modes and odd

integer n represents antisymmetric modes.

Figure 2.8 also indicates the asymptotic behavior of the phase velocity. All the SH

modes converge to c, as the frequency thickness product becomes large. In this

example ¢, =3.1mm/ us for aluminum plate.

The phase velocity represents the velocity at which a mode at a given frequency
1s traveling in a medium. If this mode is dispersive, then the group velocity is

associated with the propagation velocity of a group of waves of similar frequency.
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Figure 2.8: Phase velocity dispersion curves for SH modes.

The group velocity corresponds to the velocity at which the energy of a multi

frequency wave packet is traveling.
Solving the dispersion equation for the quantity z—i) =, (by definition, the group

velocity ), it can be shown [Rose, 1999], that the group SH wave velocities can be

expressed as :

(2.50)
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Figure 2.9: Group velocity dispersion curves for SH modes.

Notice that at cutoff frequencies given by equation (2.49), the group velocity of
any mode is zero. As fd approaches infinity for any mode, the group velocity

approaches the shear wave c,. Plots of SH mode group velocity curves are

1llustrated in Figure 2.9.

2.5. Wave equation in cylindrical and polar coordinates

While Cartesian coordinates are attractive because of their simplicity, there
are many problems in mechanics fruitfully analyzed when they are modeled as
having particular geometry and various symmetries, such as cylindrical
symmetry. When looking for waves with some chosen geometry, it 1is
advantageous to get at the solutions to the wave equation directly in these

coordinates.

2.5.1. Transforming the wave equation

The coordinate independent wave equation
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Viu=—" (2.51)

can take on different forms, depending upon the coordinate system in use. In

Cartesian coordinates, the Laplacian V? is expressed as

o> o* ¢

oy 252)

V2=

To express (2.52) in cylindrical coordinates (r,6,z), a point with Cartesian

coordinates (x,y,z) as shown in Figure 2.10 is given by

r=x*+y?
X (2.53)
0 =tan™ [—j

(0, ry2)

<V

Figure 2.10: Illustration of cylindrical coordinates.

After manipulations given in several mathematical books, the Laplacian in

cylindrical coordinates is given by

P10, 10 7
or?

10 o 2.54
ror r’o0* oz° (254)

Thus, in cylindrical coordinates the wave equation becomes
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2 2 2
16(8u)+18u ou 1 0% (2.55)

. __ — + [
ror\ or) r*o06° o0z° c* ot?

2.5.2. Separation of variables in cylindrical coordinates

The method of separation of variables can be used to obtain the solution of

equation (2.55). Assuming that

u(r,0,z,t) =R(r) ®(0) Z(2) T (t) (2.56)

and substituting this trial solution into the wave equation, and then dividing the

resulting equation by U to find

1(R)" 1
2 Z c

2 1
r R r 2

oz 1T (2.57)
o T

The separation of variables is seen from this equation: the right hand side is a

function of t only while the left hand side is a function of (r,8,z). Thus both sides

must equal a constant (—k?). The resulting equation for T can be solved

T KT (2.58)
through
T = Ae'™ (2.59)

where the complex form for the solution is used and, as usual, the real part of the

solution will be taken into account.

Equation (2.57) is reduced to the form

(RY 1" 2 2" (2.60)
R r- o Z

S|

which equates a function of I and @ with a function of Z . The left and right hand

sides must therefore equal to a constant (—a?)

", .,
B ¢ 2.61
Z ( )
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The solution to (2.61) is of the form
7 = BeV (2.62)

The remaining equation is then

r—(rR ) rarr =2 (2.63)
R ()

Both sides of this equation must equal a constant (b?*)

O"+b*Dd=0 (2.64)

With the harmonic solution of 27 period that forces b to be an integer n

®(0) =csin(n @) +d cos(nH) (2.65)

Finally (2.63) must be solved for R

2

R"+%R'+[a2—%jR=0 (2.66)

This equation 1s known as Bessel's equation. Its two linearly independent

solutions are known as Bessel functions J, (r) and Y, (r) of the first and second

kind, respectively (Figure 2.11 and Figure 2.12). The subscript n is known as the
order of the Bessel function. As Bessel functions of the second kind exhibit a

singularity in the origin r =0, this branch of solutions is discarded.

Ju(X)
1 a
076 —
05 |-

026 |-

025 :—

osL

Figure 2.11: Bessel functions of the first kind
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Figure 2.12: Bessel functions of the second kind

2.6. Summary

This chapter presented a review of the fundamental concepts of elastic wave
propagation in elastic media. The general equations of 3-D wave propagation in
unbounded solid media were developed. Two types of wave in unbounded media
were identified and discussed: Pressure wave and shear wave. Both Navier and
Helmholtz methods were used to determine the dilatational and rotational wave
equations. The chapter ended with a description of guided waves in plates. The
simple case of SH waves in plate has been considered. The concept of dispersion
and basic information on guided SH wave have been reported. The use of polar
and cylindrical coordinates to model the beveled plate showed the suitability for

the investigation purpose.
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Chapter 3

Formulation of SH waves in beveled free end plate

3.1. Introduction

In the present chapter the problem of Horizontally Shear wave propagation
in a beveled free end plate is considered. The plate is assumed to be linearly
elastic, homogeneous and isotropic. Based on the application of the method of
separation of variables (also known as the wave function expansion technique), a
series solution is derived. The analyzed plate is divided into two regions by
introducing a semi-circular fictitious common boundary. In each region, the
displacement field can be expressed as an infinite sum of appropriate wave
functions satisfying partial boundary conditions, respectively. The total solution
is assembled by enforcing the continuity conditions at the common interface. The
solution technique proposed realizes a great reduction in the computational

achievement [Mohammedi et al, 2019].

3.2. Geometry model of the problem

The wave guide problem to be investigated is shown in Figure 3.1. It is
shown a portion of a structure which represents a plate of uniform thickness d
having a bevel angle « . The plate is bounded on the three sides by traction-free

surfaces denoted I'), I, and [, and is assumed to be made of homogeneous,

elastic, and isotropic material.
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U-r(?f
a —_—

Y

Figure 3.1: The plate structure geometry showing incident and reflected waves

Since this work deals with horizontal shear SH guided waves, the only material

properties which are taken into account are the plate shear modulus # and the
density p . The coordinate systems, the extent of regions I and II, and their

common artificial boundary I', are all depicted in Figure 3.2.

yl\

Region [

8

Figure 3.2: Partitioned wedge-plate regions and common fictitious boundary.

A Cartesian coordinate system, for region I, is constructed where its origin is
located at the tip of the beveled end, the positive X -axis is aligned with the lower

surface, and the Yy-axis increases upwards. The origin of the Cartesian
coordinates also serves as the origin of the polar coordinates system for region II.
The polar angle ¢ increases counterclockwise starting at the positive x-axis and

ending at the beveled edge T';.
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The radius of the polar coordinates r as shown in Figure 3.3 has a maximum

value :
R= Si:a (1)
y A

Figure 3.3: Maximum value of radius r.

3.3. Formulation of reflected waves from a beveled free end

The waves studied here are assumed to be time harmonic SH waves
propagating in the x -direction of Figure 3.1. It is to be noted that for such type of
waves, no dependence on Z occurs. In the domain of the plate, the displacement

field which is the only non-vanishing component is given by U, . As illustrated in

Figure 3.1, an incident SH wave travelling in the negative X -direction impinges

on the beveled free end of the plate and reflects back in the positive X -direction.

The corresponding displacement field U, in the plate is made of incident U;nc and

the reflected Uzref displacements fields,

U= U+ U (32)

3.3.1. Equations of motion

The geometry of the plate admits an equivalent formulation whereby the

plate is divided into two regions as shown in Figure 3.2, and the incident SH
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wave travelling in Region I impinges on the artificial boundary T',, reflects and

sets up a standing wave in the bounded Region II. The solutions for the out-of-

plane, time-dependent particle displacement fields U! and U!', in regions I and

IT respectively, are governed by the following wave equations, which are derived

from the Navier equations in Cartesian coordinates by (2.30)

o°u! +azuz' 10,

o e N vl (3:3)
and, in cylindrical coordinates by (2.55)
where
c, = H (3.5)
Yo,

1s the shear velocity as defined by equation (2.27), while t denotes time.

3.3.2. Continuity conditions
The interface continuity of displacement and stress conditions on the fictitious

boundary I', are given by

U!=U!" ; r=R, x=Rcosd, y=Rsing (3.6)

ol =c! ; r=R, x=Rcos#d, y=Rsind (3.7)

nz = “rz

o is the shear stress at the boundary region I and is given by the Cauchy stress

formula (2.13)

T 1) N R I
O, =137 = 03N =05 +03,N, (3.8)
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Where n, and n, are the direction cosine of the outward unit normal vector n

along the boundary I,

For convenience the expression (3.8) can be rewritten in (X, Y, Z) notation as

oy, =0,,C0s0+0y,sin0 (3.9)
o) is the shear stress in region II (Figure 3.4) given by the strain- stress
relationship
" aull
Oy ::u_z (310)
or

3.3.3. Boundary conditions

The traction-free boundary conditions on traction free sides of the plate are

given by:
o) =0, y=0,d (3.11)
oy =0 0=0«a (3.12)

Where o, is the out-of-plane shear stress acting on the two boundaries, I', and
I, of region I, while o, is the out-of-plane shear stress acting on the two

boundaries, I';and I'; of region II (Figure 3.4).

Figure 3.4: Stresses in polar coordinates in region Il
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3.3.4. Helmholtz equations
The SH waves are assumed to be time harmonic, and hence the out-of-plane

Z -displacement fields in regions I and II are given by,

U, =u;(x y)e'* (3.13)
U, =u) (r,0)e" (3.14)

where U, is the particle displacement, @ 1s the applied frequency and iZ=-1.

Substituting equation (3.13) and equation (3.14) into equations (3.3) and (3.4),
respectively, results to the steady state form of the governing equations in each

region

2,1 2.1 2
ou, O, _ @ (3.15)
OX oy C;

N __o 3.16
o’ r or  r? 06 cz ! (3.16)

" 1au" 1 oM o’ |
4 +_ 4 _2 zZ

Equation (3.15) and equation (3.16) are also known as the Helmholtz equations in
rectangular and cylindrical coordinates, respectively. The geometry of the regions

renders the solutions of these equations as separable.

3.3.5. Solution to Helmholtz equations

The solution to the Helmholtz equations represents the reflected waves

which can be expressed as an infinite sum of wave functions.
0™ () = 3 Ao Ty | (3.17)
m=0

The total solution in region I is expressed in terms of a single incident mode of

order q and all the reflected modes expressed as an infinite sum of wave

functions represented by equation (3.17)

uy (x,y) =C, cos(%—ﬂ yj ey i A cos [% yj g (3.18)
m=0
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where C, 1s the amplitude of the q" incident mode and A_ is the amplitude of the

m" reflected mode. Note, each term of the series solution in equation (3.18)

satisfies the traction free boundary condition in equation (3.11) along I', and T,

Because only displacements according to z are considered in the shear problem,
the displacement field does not depend on z. The first two symmetric wave

modes =0,2 (solid curves) and antisymmetric wave modes =1,3 (dashed
curves) with respect to the mid surface y=% of the displacement field are

displayed in Figure 3.5.

O

Figure 3.5: The y-variation of displacement for the first two symmetric and antisymmetric SH modes.

The wave numbers k, and k, are defined by equation (2.47) as,

602 m27Z'2

k = g (3.19)
2 2 _2

k= |2 _97 (3.20)
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Similarly, the separable solution of equation (3.16) is represented as an infinite

Bessel-Fourier sum,

W' (r.)=38, cos(n—ﬁ ej 3 (k) (3.21)
n=0 24 o

Each term of the Fourier series in equation (3.21) satisfies the traction free

boundary conditions (3.12) along I', and I',. B, denotes the n" amplitude of the
standing wave in region II, J _is the Bessel function of the first kind of order n—ﬁ,
- a

and k; is defined as

k, =2 (3.22)
CS

The stress field in region I is given by,

| ) 0 )
ol =u o, = u| —ik C cos(q—ﬂ y}e_'k‘*X7LZikrn,6\n cos(M yj gl (3.23)
oX 4 d —~ d
and
, au! ar . . (CVT jikx = mrz, (mﬂ j o
= Ll=pul——Csin| —yle "+ ) ———A sinf —y|e™ 3.24

It must be remarked that, as shear waves involve only displacements along z -

direction, the stress components are only o,, and &,

The stress field along the boundary I', represented by equation (3.9) is given by

ol = ;{—ichq cos (qd—ﬂ yje‘iqu +> ik, A, cos(% yj e‘kmx}cos 0+
m=0

y[—qd—ﬁcq sin(qd—” yje‘ikqx + i—%% sin(% yj e“‘mx}sine

m=0

(3.25)

Additionally, the stress field in region II is given by
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ad,,

I o nz
o :u(ﬁgrz j:ﬂzko B, COS(%G] - (kor) (3.26)
n=0

Substituting the series solutions (3.18), (3.21), (3.25) and (3.26) into the
continuity equations (3.6), (3.7), and transposing the known incident terms to the
right hand side, the displacement and stress continuity conditions are now
expressed as,

M . N i
cos| ™2y le** 3B cos| 9|3 (k,R)=-C,cos| Yy |e (3.27)
An d n nz \70 q d

m=0 (24 a

M .
> A, {ikm cos(% yjcose—%sin (% yjsin 6’}e'kmX
m=0

d
N o, q q q (3.28)
~>'B k cos| £ |—a(k R)=C_|ik cos| 2~ cosH+—”sin(—” jsin@ g X
§”° (a o (k) {“ (dyj d a’

It should be noted that when dealing with numerical procedures it is necessary to
limit the infinite sums of the series to a finite number of terms M and N. The
number of terms, which will be taken into consideration, depends only on the

accuracy requirement.

The two matching equations (3.27) and (3.28) are now projected onto C0S (E 6’}
a

as shown below,

(s A, cos —6? Ccos —y e “*dg — (s B, cos —0 cos| o J.. (k,R)d&
2613, (kR)
ome on-e “ (3.29)
-—C jcos(p e)cos(q—ﬂ je'kqxde
d
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a M
_[z A, cos(p— j[ikm cos(% yjcose—%sin(m yjsin e}e‘kmxde
J a d d d

m=0
a N 5Jnl (3.30)
~[> Bk, cos(—@jcos(—@) « (k,R)d@
0 n=0 a a or
= Cq_fcos(M Hj[ikq cos[q—7r yj cos 0+ Y sin (q—” yjsin 9} e "*dg
) d d d
where
x=Rcosé (331)
y=Rsiné :

3.3.6. Block matrix representation

After limiting the infinite series properly, this leads to a set of algebraic

equations in which the unknown coefficients A, and B, may be solved,
respectively, after setting C, to be one. At this stage, the system of equations

(3.29) and (3.30) can be expressed by a block matrix representation. For this

purpose the terms containing the coefficients A , B, and C, in (3.29), for displacement,

are denoted by:

cos [p—ejcos( 5 yj e**de = AD
N
- Zcos(mejcos(n—ﬂejJM (k,R)d6=B> (3.32)
o nz
- cos[ﬂe)cos(%[ y)eik‘*deZCﬁq

and in (3.30), for the stresses, are denoted by:
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a M
IZCOS(MHMikm cos[% y] cos@—%sin(% yjsin 9} e*n*dg = Af,m
0

m=0 124
AR
o pr nz - s
—J.ZkO cos(—@jcos(—@j « (k,R)do = B, (3.33)
0 n=0 a (04 or
J'cos m6?j{ikq cos(q—” yj cos 6+ X sin (q—” yjsin 9} e "o = Cf,q
5 a d d d

In these expressions, the superscripts D and S denote the displacement and
stress respectively. Now the system of equations (3.29) and (3.30) can be

represented by

A% BLlra_| Cx
A elakcr o

Notice that the indices m and n are dummy indices which imply the summation

over the ranges M and N (m=0,,2..M ; n=0,12..,N)

To illustrate the global matrix representation of the system of equations, it would

be helpful to consider the following particular cases

o Casel

m=0 ; n=0 ; g=0 ; p=0

For this case, the system of equations (3.34) is given by:

[Aooo BoDoHﬂ{Cﬂc 39)
A5, Byl Gy

(3.35) represents two equations with two unknowns.

o (Case?
m=012 ; n=012 ; gq=0 ; p=012

The system of equations (3.34) is then given by

49



Chapter 3 Formulation of SH waves in beveled free end plate

As Ax Ab B Bo Bl [Co
Ac A A B B; Bp Cy
AL AL AL By Bl Bhjia|_|Chll (3.36)
A, AL A, By B B i

A, A A, B, B, B;
A, Ay A; B; B Bt

R
T
O
B(I)
L

(3.36) represents six equations with six unknowns.

e (Case3

m=0,4,2,..,M ; n=01.,2..,N ; gq=0 ; p=012..P
For this general case the system of equations (3.34) is then given by

AL AL AL - AL By Bl B

BY |-, 4 |Ca

o

b=

— -
Ay Ar Ap - Ay B B By o Bl |C

Ay As Ay » A By By By o By |al| |Co

2 \ R A \ N 2 \

A, An Az o Az Bp By B o Bia| [ChlL @an
A, AL AL > A, By By B, - BB |Cyl

A, A A, 5 A, By B, B, - B||®||C

Ay Ay A, > A, By By B, o B | |G

2 2 R A 3 N N N 3

—

A AL AL - AL B B B oL BT G

The solution of equations (3.29) and (3.30) is obtained by choosing
N =M and setting P=0,...,M . The resulting algebraic system of equations
(3.37), of size (M+1)+(N+1), is subsequently solved to determine the

amplitudes A, and B, .
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3.4. Energy balance

Based on the principle of conservation of energy which states that,

. M
Er=>E (3.38)
m=0

Where E;* is the energy flux carried by the specified incident mode while Er
represents the energy flux of m"™ reflected mode through the cross section of the

plate.

E(;”C and E™ are defined below [Abduljabbar et al, 1983].

%ya)kmmnr, m=0
Eref — (339)

9;ua)km|An|2’ m=0
2
Einc — (340)

In equation (3.39), | A,| represents the absolute value of the amplitude of the

mode transporting the energy flux.

The approach taken in this work involves a wave function expansion and uses of
truncated Fourier series in expressing the solution in the regions of the plate. To
evaluate the accuracy of the technique, the error involved in the analysis can be

estimated by the derivation from equation (3.38). This leads to the expression:

M
inc z ref
(Eq j 0 Em j
= m= 3.41
= (3.41)

Where & denotes the relative error in the computational procedure. The value of M 1is
increased iteratively until the relative energy error ¢, shown in equation (3.41),

satisfies a desired tolerance.
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It will be convenient to introduce the symbol R to denote the ratio of the elastic

energy flux contained in reflected mode m to the elastic energy flux supplied by

incident mode q

R m (3.42)

mq = Einc
q

Substituting equation (3.42) into equation (3.41) results in the following

expression for the relative error in the elastic energy flux,

e=1->" R (3.43)

In this work, the series solutions (3.18) and (3.21) are considered to be convergent

when the corresponding relative error & does not exceed 1x107°.

3.5. Plate with vertical edge (beveled angle = 90°)
The limiting case for « =% , as shown in Figure 3.6, corresponds physically

to a waveguide of a semi-infinite plate with a vertical edge.

y ‘
FZ
Ui-nc ‘
-
I3 d
U”jf
—_— =
£r
Y -
I

Figure 3.6: Plate structure with normal free end

In this special case, the stress-free boundary conditions on I',is expressed in

rectangular coordinates as:

ol =0, x=0 (3.44)
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Substitution of the stress expression given in equation (3.23) into equation (3.44)

above, results in the following relationship between incident and reflected modes,

i A, {ikm coS (% yj} —C, {—ikq cos (qd_” yﬂ (3.45)

m=0

Using the orthogonality of modes, equation (3.45), has the following analytical

solution for the amplitude of the reflected modes,

A, =G, (3.46)
A,=0 m=012..M m=q

The above result is obtained by:

a) Multiplying both sides of equation (3.45) by cos[rlj—ﬁ y)

b) Integrating the resulting equation over y from O to d

c¢) Making use of the orthogonality of the trigonometric functions over I',

d) Taking the corresponding incident q" mode (q=0,1)

Equation (3.46) manifests the well-known fact that an incident mode reflects

from the vertical free end of waveguide are totally reflected back.

The same solution to the vertical free end can be found by dividing the domain

into two regions as shown in Figure 3.7.

y b
1ﬁ2
T~ ~ U?ch A
_ N~ T 4 -
RegionIl \ Region I
I's d
\ U-nﬂf
R=d \ S—
\ X
| Y -
I

Figure 3.7: Partitioned wedge-plate regions and common fictitious boundary.
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Substitution of equation (3.46) into the continuity condition at the artificial

interface described in equations (3.6) and (3.7) yields

C, cos (qd—” yj(e_ikqx +eikqx) = ZN: B, cos(2n8) J,,, (k,R) (3.47)

n=0

At the interface X=Rc0sé and for the zeroth incident mode =0, equation

(3.47) reduces to:

N
Cy2¢0s(k,Rcos ) =B,J, (k,R)+ D B, cos(2n8) J,, (k,R) (3.48)
n=1
The well-known Jacobi-Anger expansion is:
cos(zcos@)=J, (z)+2§:(—1)”\]2n (z)cos(2no) (3.49)
=1

With z replaced by k,R , equation (3.49) becomes:

cos(k,Rcos8) = J, (k,R)+ zi(—l)”J2n (k,R)cos(2n0) (3.50)

n=1

Comparing equations (3.48) and (3.50), while setting C,=1, the unknown

coefficients can be found.

(3.51)

The results B, in equation (3.51) are used to verify the accuracy of truncated

series solution proposed above.
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3.6. Summary

An analytical approach is presented for the propagation of SH waves in a
beveled free end plate. A region matching technique is applied to derive a series
solution. Appropriate wave functions are employed to describe the displacement
field of the SH wave. The enforcement of the continuity of displacements and
stresses at the fictitious common boundary leads to the determination of the
unknown coefficients. Finally, the particular case of a plate with vertical edge
(beveled angle = 90°) was used to determine a simple analytical results that will
be used in a limiting case sense, to test the numerical results obtained in the next

chapter.
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Chapter 4

Numerical results and discussion

4.1. Introduction

In this chapter the numerical results of Horizontally Shear wave
propagation in a beveled free end plate are presented in terms of the ratio
between the energy of the m! reflected mode and the energy of the ¢! incident
mode. Two cases are considered; the zeroth (symmetric) and the first
(antisymmetric) modes of incident waves. Beveled angles ranging from 20° to 90°
with 0.1° increment and normalized frequencies ranging from 0 to 5.5 are
considered. Selected beveled angles are reported here, namely 30°, 45° and 60°
for the whole range of the normalized frequency. Also, three selected frequencies
are considered, namely 1.5, 3.5 and 5.5, for the variation of the beveled angle
from 0° to 90°.The energy ratios are plotted as function of the beveled angles and

normalized frequencies.

4.2. Non-dimensional frequency and wave number

For this kind of studies, it is very convenient to define the non-dimensional
frequency (normalized frequency) and the non-dimensional wave number. A non-
dimensional form of Equations (3.19) and (3.20) is adopted and used in reporting

numerical results found in this thesis. Rewriting Equations (3.19) as

o mr7* 71 | @’d?
o “n
or
k, d w*d?
= [ﬁzczj—m2 4.2)
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where

. . d .
K :k”‘d 1s The non-dimensional wave number and Q:a)— 1s the non-

m /4 7C

S

dimensional frequency. With this notation, Equations (3.19) and (3.20) become:

(4.4)

K, =+Q?—m?
K, = -7 (4.5)

. . . d kd 2d :
According to this definition, Q= ol 2 A , (Where 1= 2r 1s the wavelength),
e, w A k
61: 0
5
y
y
4
4 p
y
/
Y,
/
3 7/
/
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/
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. /
1.
_ ”
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0

Re Km
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Figure 4.1: Frequency spectrum for SH waves in a plate. Solid line are the symmetric modes, dashed lines are
the antisymmetric modes

Examination of Equations (4.4) and (4.5), show that for m=0 (q=0) gives that
Kpng =€, or in dimensional form, @ = k c, . Thus it is seen that the zeroth-mode is

m

non-dispersive, whereas all other modes propagate dispersively (Figure 4.1).
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For Q>m,q , K__ 1is real and the spectrum consists of a family of hyperbolas

m,q

(mQg=123,..). At Kmq =0, Q=m,q which represents the cutoff frequencies for

the various modes. For Q<m,q , K is imaginary which correspond to a non-

m.q
propagating waves. Once again, in Figure 4.1, the solid lines correspond to the

symmetric modes (M,q=0,2,), the dashed lines are the antisymmetric modes

(m,g=13).

If the non-dimensional frequency Q is small which corresponds to the case of a
low frequency, it means that the dimension of the thickness of the plate is small

compared to the wavelength and conversely.

4.3. Energy variation with normalized frequency at selected beveled angles

When a single known propagating incident mode impinges on the beveled
end of a semi-infinite plate, it induces a collection of both propagating and non-
propagating reflected modes. The elastic energy of the reflected propagating
modes 1s reported in this section for both SHo and SH: known incident modes, for
a wide range of corresponding beveled angles and frequencies. The energy is
reported as the ratio between the energy of the m reflected mode and the energy

of the ¢ incident mode.

The proper number of terms in the series solution given in Equations (3.18)
and (3.21), M (in region I) and N (in region II), are chosen by numerically testing
for their convergence. Based on a sequence of numerical experiments, the
maximum convergence is achieved at N=18 wave function modes in the region of
the beveled end, and M=18 wave function modes in the plate region. In this work

the largest non-dimensional frequency was set to 5.5 and the error tolerance &,

defined in Equation (3.44), does not exceed 1x107.
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4.3.1. Energy variation for the SHy incident mode

Figure 4.2 through Figure 4.4 show the R, distribution due to SHo incident

mode. The variations of R, versus (, due to the SH, incident mode, which correspond to

a=30°

, 45°, and 60°, respectively are displayed in these Figures.

0.8

0.6

mO0

0.4

0.2

43.1.1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5

Q
Figure 4.2: R versus normalized frequency for selected beveled edge o =30°

Mode dominance of SH,

When the beveled angle 1s 30° (Figure 4.2) or 45° (Figure 4.3) R, is strictly

larger

thanR , (m#0) over the entire frequency range. For a« =30" (Figure 4.2),

the minimum value of R, is 0.523 which is attained when Q=1.13.
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Figure 4.3: Ry, versus normalized frequency for selected beveled edge « =45°
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While when a=45° (Figure 4.3) the minimum value of R, is 0.634 and 1is
attained when Q=1.07. For the a=60° (Figure 4.4) R, loses its dominance and

vanishes at the following frequencies: 1.155, 2.309, 3.464, and 4.619. These

values are illustrated in table 4.1.

Table 4.1. Calculated results of Rmo for particular frequencies and beveled edge o =60°

Q a Roo R1o R20 R3o Rao | Rso Error
1.155 60° 2.06E-13 1 1.00E-08
2.309 60° 1.03E-13 | 1.93E-07 1 1.00E-08
3.464 60° 2.29E-16 | 5.76E-09 | 1.24E-08 | 0.999971 1.00E-08
4,619 60° 2.80E-15 | 1.94E-08 | 2.28E-08 | 3.99E-08 1 1.00E-08

4.3.1.2 Total reflection of SH,

Total reflection of SHo is reached when Ry, =1. This occurs at certain

beveled angle and frequency values. At beveled angle a=30°and 60° the total

reflection occurs when Q=2 (which is also a cut-off frequency). When «a =45°

Ry, =1 at all cutoff frequencies (1,2,3,4,5) and when QQ=1.414.

5 5.5

Figure 4.4: R, versus normalized frequency for selected beveled edge « =60°
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4.3.1.3 Mode conversion of SHy

As shown in table 4.1, when «=60° and for Q=1.155, SH; is the only
reflected mode, similarly when Q=2.309, 3.464 and 4.619 the SHs, SHs and SH4

are the corresponding total reflected modes, respectively. (Figure 4.4).

4.3.2. Energy variation for the SH; incident mode

Figure 4.5 through Figure 4.7 show the R, distribution due to SHi incident
mode. The variations of R, versus (2, due to the SH; incident mode, which correspond to

a=30", 45°, and 60°, respectively are displayed in these Figures.

4.3.2.1 Mode dominance of SH;
Unlike the dominance of the SHo mode over the entire frequency range, the

SH: mode shows partial dominance as shown in Figures 4.5 and 4.6.

1 T
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€
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 55
Q

Figure 4.5: R,,; versus normalized frequency for selected beveled edge « =30°

4.2.2.2 Total reflection of SH;

At a beveled angle « =30°, the total reflection is attained when Q=1 and
Q=2. For the case of a=45°, total reflection of the incident SH; mode 1is
obtained when Q =1, Q=1412, and Q=2. At the beveled angle a=60", the total

reflection 1s attained when Q =1, Q=2, and Q2=2.309.
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0.8

06

m1

0.2

Figure 4.6: R,,; versus normalized frequency for selected beveled edge « =45°

4.3.2.3 Mode conversion of SH;

Table 4.2 demonstrates when o =60"and for Q=1.155, 3.055, 4.163, and

5.292, SH1 disappears (R, =0) giving way to other modes to carry the reflected

energy.

Table 4.2. Calculated results of Rm1 for particular frequencies and beveled edge o =60°

Q (04 R01 R11 R21 R31 R41 R51 Error
1.155 60° 1 2.06E-13 1.00E-08
2.309 60° 1.93E-07 1 1.93E-07 1.00E-08
3.055 60° 8.00E-09 | 8.07E-16 | 0.799976 | 0.200024 1.00E-08
4,163 60° 6.33E-08 | 1.49E-13 | 1.13E-07 | 0.71398 | 0.28602 1.00E-08
5.292 60° 6.61E-08 | 2.94E-13 | 1.00E-07 | 3.28E-07 | 0.667146 | 0.332853 | 1.00E-08
1 T
0.8
- 06
mE
0.4
0.2
0 I
0 0.5 2.5

Q

Figure 4.7: R.,; versus normalized frequency for selected beveled edge « =60°
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The abrupt variations at the cutoff frequencies in Figures 4.3, 4.4, 4.6 and
4.7 are due to the inception of new propagating modes, which cause a sudden
change in the distribution of energy in the spectra of the reflected and
transmitted waves. Remarkably, the variation in the energy ratios is more

abrupt when the beveled angle is increased (see Figures 4.3 and 4.6).

4.4.Energy variation with beveled angles and selected frequencies

In subsection 4.2, the variation of the normalized frequency Q versus three
beveled angles, namely a=30°, ¢ =45° and «a=60°was reported. However, in
this subsection, the variation of the beveled angle 20°<a<90° for selected
frequencies2=1.5, 3.5, and 5.5, is investigated to determine the interaction of SH

waves with a range of beveled angles.

7/ —
/ \ - __-R

Figure 4.8: Ry, versus beveled edge angle for normalized frequency QQ=1.5

In Figures 4.8, 4.9 and 4.10, R, versus beveled edge angle at three selected

normalized frequencies, namely 1.5, 3.5, and 5.5, is reported. These frequencies

are selected to be halfway between the cutoff frequencies.
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Figure 4.9: R, versus beveled edge angle for normalized frequency Q=3.5

In Figure 4.8, SHo gradually decreases until it diminishes, R, =0, after

which it increases and reaches total reflection, R,, =1, when o =20.019°, 28.67°

and 46.60° (Table 4.3).

Table 4.3. Calculated results of Rmo for particular angles and normalized frequency 2=1.5

Q o Roo R1io Ryo R3o Ra0 Rso Error

1.5 20.019 | 1.00E+00 | 1.23E-13 1.00E-08
1.5 28.6691 | 1.00E+00 | 1.24E-14 1.00E-08
1.5 46.597 | 1.00E+00 | 1.21E-11 1.00E-08
1.5 63.51 4.53E-03 | 9.95E-01 1.00E-08

Figures 4.9 and 4.10 show the region where SHy is very small compared to

the other propagating modes. This region is centered around o« =63°.
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Figure 4.10: R, versus beveled edge angle for normalized frequency QQ=5.5

Similarly, in Figures 4.11, 4.12 and 4.13, R ,versus beveled edge angle at

the three selected normalized frequencies is displayed.

-—-Ry
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m1
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Figure 4.11: R.,; versus beveled edge angle for normalized frequency Q=1.5

SH: gradually decreases until it diminishes, R, =0, after which it increases and

reaches total reflection, R, =1, when 2=1.5, ¢ =28.67°, and 46.60° (Table 4.4).
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Table 4.4. Calculated results of Rm1 for particular angles and normalized frequency Q2=1.5

Q a Ro1 Ris Ra1 Ras Ra1 Rs1 Error
1,5 28,67 1,29E-09 1 1,00E-08
1,5 46,6 3,51E-08 1 1,00E-08
1,5 63,51 [0,995468909 |0,004531 1,00E-08
The region of vanishing R,, is not as extreme as in the case of R,.
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Figure 4.12: R,,; versus beveled edge angle for normalized frequency Q=3.5
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Figure 4.13: R,,; versus beveled edge angle for normalized frequency Q=5.5
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4.5. Comparison with other approaches

Facing recent approaches, this study deals with wave function expansion for
the beveled end instead of a spatial discretization. As illustrated in (Table 4.5), this
technique offers the advantages of allowing stable analysis of a vast selection of
beveled angles, satisfaction of the boundary conditions, accuracy of the results

and fast analysis time.
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Table 4.5. Comparison with other approaches
[Chancellier et al, [Chancellier et al, [Mofakhami and | [Nakamura [Ahmad and .
2002] 2005] Boller, 2008] et al, 2012] | Gabbert, 2012] | [Mohammedi et al, 2019]
Studied guided Lamb Studied guided Lamb Studied guided Studied SH Studied guided Studied the propagation of
Wave type . . Lamb waves Lamb waves ) .
waves propagation waves propagation . waves . SH waves in a waveguide
propagation propagation
Used collocation Used a collocation
. method on the beveled Used time . Used frequency domain
methods and confirmed ) . . . Used time . .
. . . . . .. |free end to determine the | Used time domain |domain . . analytical wave functions
Approximation | their results using finite . C .. domain semi- .
. Lamb wave amplitudes. Finite element Finite . .. method, to determine the
method elements method with — . . analytical finite ) .
45 wave function N=800 collection p01n‘Fs method element element method SH wave amphtu.des with
and M=45 wave function method N=18 wave function modes.
modes.
modes.
Enforced
.. Enforced Continuity Approximated a no Used artificial Continuity Enforced continuity of
Continuity

condition at
the boundary

conditions at the
interface nodes of the
finite elements.

tractions boundary
condition at the beveled
end.

internal boundary
to model the semi-
infinite section.

conditions at the
interface nodes
of the finite
elements.

displacements and
tractions at an artificial
internal boundary,

Used specific

Used specific

Used specific

Used non-dimensional

Materials Used specific materials | Used specific materials — materials — materials — materials — wantities that apply to
— stainless steel plates | stainless steel plates . Aluminum Aluminum qu PPy
Aluminum. plates plates wide range of materials.
. Di .
Solutions converge for reldorrl‘SEn the Did not report
angle values between . Did not report on °p on the semi- .
S o Achieved an accuracy of finite . . Achieved an accuracy of
Accuracy 70° and 90°. For smaller 1% the accuracy of clement analytical finite 0.001%
angles, the precision is o their results results element results ’ ’
less. accuracy.
accuracy
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[Chancellier et al,
2002]

[Chancellier et al,
2005]

[Mofakhami and
Boller, 2008]

[Nakamura
et al, 2012]

[Ahmad and
Gabbert, 2012]

[Mohammedi et al, 2019]

Bevel angles

reported only
inclination angles
between 70° and 90°
with increments of 5°

Considered beveled
angles between 85° and
90°

Considered a wide
range of angles
from 25° and up to
90° with an
increment of 5°.

Used beveled
angles 60°,
85°, 90°
specimen in
their
experimental
setting and
1° inclination
for numerical

Report shows
results for a 45°
inclination angle

used bevel angles as low as
20° and up to 90° with an
increment of 0.1°

simulation
Considered low gzniljr?;zi 1%‘}}:(3
Considered low . frequencies. The Used low 4 )
. Considered low frequency
frequencies. frequencies for a specific frequency reported |frequency reported was 2
The frequency reported : . was 400 MHz and |0.546 MHz in p )
material (stainless steel, ) ! and 5 MHz-mm. | This study reports non-
was 3.15 MHz-mm _ thickness of 3mm |a 2 mm thick . . .
L . Ct =3150 m/s). L. . The equivalent | dimensional frequency
Frequency which is equivalent to which is equivalent | plate. The .
. . The frequency reported . . . to non- between O - 5.0, which
Range the non-dimensional to no-dimensional |equivalent . . . .
was between 1 to 4 MHz- dimensional places this work in the low
frequency of about 0.4. ) frequency of about | no- :
S . mm. The equivalent no- e . . frequency range |to high-frequency range
This is considered to be ; . 0.2. This is dimensional LS
: dimensional frequency : . . 10.2-0.5. This is
in the low-frequency . considered to be in | frequency is .
range is between 0.1 - 0.4 considered to be
range. the low-frequency |about 0.1. .
in the low-
range
frequency range.
Meshing is
Used Finite . needed for each This approach uses global
. Used spatial |beveled angle. .
. . . Meshing is needed for . elements to . . . wave functions and does
Discretization Used collocation method . . discretization | This also leads . .
each beveled angle discretize the method to mesh not require spatial

domains

dependency of
results.

discretization.
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4.6. Summary

Numerical results are presented for the propagation of SH waves in a beveled
free end plate. In this study, single incident SHo and SH; modes were used, and
reflected SH modes are examined. Two cases are considered; in the first, the zeroth
mode (SHo symmetric mode) is incident on the edge at selected frequencies and in
the other, the first mode (SH; anti-symmetric mode) is incident on the edge at the
same range of frequencies. The results are presented in term of the ratio between the
energy of the reflected mode and the energy of the incident mode for a wide range of
beveled angles and frequencies. The validity and accuracy of the results are checked

by satisfaction of the energy conservation principle.

Finally, a comparative study between different approaches mentioned in the
literature shows the novelty of this work and indicates that the approach used is

easy to deal with in a very wide range of angles and frequencies with great accuracy.
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Chapter 5

Conclusions

5.1. Summary of findings

In this thesis, a wave function expansion method is used to analyze the
diffraction of SH waves by the beveled free end of a semi-infinite plate
(waveguide). The plate with edge defect 1s modeled as a semi-infinite elastic plate
with traction free surfaces and beveled free end. The solution of the problem uses
the separability property of the Helmholtz equations, for both rectangular and
cylindrical coordinates, and the continuity condition across an artificial boundary
separating the two regions. This strategic selection of the regions leads to an

efficient separable solution for the unknown coefficients.

In this study, only two single incident modes SHo and SH: (monochromatic)
were used, and a range of frequencies was considered. Continuity conditions at
the common boundary between the two regions combined with the orthogonal
functions expansion led to a set of algebraic equations to derive the amplitude of

the reflected waves.

The numerical solution of these algebraic equations is determined for a
wide range of frequencies and bevel angles with a relative energy error that does
not exceed 1x10°. For the limiting case, the computed results for a plate with
vertical edge (beveled angle = 90°) are in good agreement with those from the
exact series solution of a single vertical edge plate. These evidences have
reinforced the validity of the whole framework of present formulations. This
study has also shown the existence of critical bevel angles where an incident
mode is either “totally” reflected or “totally” absorbed at a specific incident

frequency.

In contrast to recent approaches to beveled waveguides, [Chancellier et al,

2002], [Chancellier et al, 2005], [Mofakhami and Boller, 2008], [Nakamura et al,
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2012], [Ahmad and Gabbert, 2012], this work did not spatially discretize the
beveled end of the waveguide. Moreover, a richer family of orthogonal wave
function expansion for the beveled end is used, and consequently, the particular
class of bases functions with compact supports, such as those used in SAFE or
collocation approaches, has been avoided. The wave function expansion comes
with the advantages of allowing the stable analysis of a wider range of beveled
angles, the exact satisfaction of plate surfaces boundary conditions, high accuracy

for near and far fields responses, and fast analysis turnaround time.

Also, the technique used in this work demonstrated the ability to handle low
to high-frequency excitation (the largest non-dimensional frequency was set to
5.5 and an extremely tight error tolerance less than 0.001 percent). Additionally,
the existence of total mode conversion and total mode reflection for some non-
dimensional frequencies was demonstrated. Likewise there are some critical
beveled angles in which the incident mode (symmetric or anti-symmetric) is
totally reflected in an inversely manner. Particularly, an incident SHo mode
reflected into an SH; mode and conversely. Results at angles as low as 20° and
nondimensional frequencies as high as 5.0 have been reported, where such

results are not available in the literature.

Consequently, these results illustrate the interaction of guided waves with
edge defects and demonstrate a simple way to calculate reflecting coefficients.
Such results can lead to the development of novel applications of guided waves to
defect sizing instead of simple detection. The analytical methods presented in
this thesis are very promising tools for further NDT applications, since they are
much faster than classical finite element models, so they can serve as a model for
numerical methods, in particular for those at much higher frequencies. Also, the
adopted approach resolves some numerical instabilities that appear in other

approaches available in the literature.
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5.2. Recommendation for future work

Future enhancement of this work may include investigation of SH wave
excitation in plates with irregular geometry resembling natural fracture lines.
The study also needs to be extended to the case of plates with constrained

boundary conditions.

It will be important to apply the region-matching technique to the modeling
of SH wave diffraction by cracks present in a multilayer plate made of anisotropic
materials. These extensions of the model allow considering many applications in

the nondestructive control, particularly in the composite materials area.

Experimental validations, extended to the 3D case could be further

investigated.
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Abstract

The interaction of guided SH-waves with the beveled free end of a semi-infinite plate is analytically and numerically investigated. The
material of the plate is assumed to be elastic, homogenous, and isotropic. The plate is modeled as a combination of a semi-infinite region
and bounded wedged region separated by a common boundary. The analytical solution of the vertical free end case for the two regions is
derived and used in verifying the numerical implementation. In this study, the SH, and the SH; first two incident modes are individually
applied to analyze the corresponding reflected modes from the free end. Specifically, the elastic energy carried by the reflected modes is

reported for a wide range of beveled angles and incident frequencies.

Keywords: Bevel end; Edge defects; Elastic plate; SH waves; Wave function

1. Introduction

Although experimental observations of dynamic edge phe-
nomenon in elastic waveguides took place over 70 years ago,
the reflection of guided waves from the free end of an elastic
layer remains an active area of research. Lawrie et al. [1] pro-
vided a detailed review of the field that covered the period
from 1958 to 2008. Within this context, a follow-up review
was done by Deckers et al. [2] in which they discussed and
summarized research on wave-based methods.

Researchers have made tremendous advancements utilizing
mode and frequency selections to solve many problems; for
example, in the testing of pipes, rails, plates, ship hulls, and
aircraft integrity [3-5]. In recent years, the inspection of ir-
regularities and defects such as cracks have been carried out
using horizontally polarized shear (SH) waves generated and
detected by electromagnetic-acoustic transducers [6-8].

The study of scattering problems varies from classical ap-
proaches such as mode matching and variational techniques to
numerical techniques such as finite element and boundary
element approaches, or a combination of numerical formula-
tions with a wave function expansion technique. Among these,
Abduljabbar et al. [9] studied the diffraction of SH waves in a
plate with arbitrary defects by employing a finite element
formulation and wave function expansion technique. Further-
"“Corresponding author. Tel.: +1 217 244 9481, Fax.: +1 217 333 2022

E-mail address: sobh@illinois.edu

TRecommended by Associate Editor Junhong Park
© KSME & Springer 2019

more, Chen et al. [10] studied the SH guided waves propa-
gated in a tapered plate using eigenmode matching theory and
finite element methods. Ditri [11] dealt with the scattering of
guided elastic SH waves from material and geometric wave-
guide discontinuities. Nurmalia et al. [12] studied the mode
conversion behavior of an SH guided wave in a tapered plate.
They investigated the different mode conversion phenomenon
for abrupt and gradual thickness changes.

Many investigations have been made to study the beveled
end of plates using Lamb waves. A semi-analytical finite ele-
ment method has been used to simulate Lamb wave reflec-
tions at plate edges [13]. The Lamb wave conversion due to
the beveled free end of plates has been studied theoretically as
well as numerically, using the finite element method [14, 15].

Chancellier et al. used a collocation method on the beveled
free end to determine the Lamb wave amplitudes and edge
resonance [16]. Several experimental works have been pub-
lished on the reflection of Lamb waves by the free and bev-
eled edge of a plate [17-20]. In these papers, the mode conver-
sions were examined in detail over a large frequency range,
and the energy conversion coefficients were obtained both
numerically (finite element method) and experimentally.

In this paper, a wave function expansion is used to investi-
gate the interactions of SH waves with the beveled free end of
an elastic plate. The plate is divided into two non-overlapping
regions with a common interface. Each region admits a sepa-
rable solution of the corresponding wave equation. The total
solution is assembled by enforcing continuity conditions at the
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interface. The solution preserves the total incident energy to
within a small tolerance. The convergence of the solution is
met when the difference between the total incident energy and
reflected energy is less than 0.001 % which is a very tight
criterion compared to existing convergence criteria reported in
many works available in the Refs. [9, 11, 18, 19]. The solution
provided here is compared with the known solution for a plate
with a vertical end [3, 5]. Very good agreement between the
proposed numerical approach and analytical solution is
observed. This indicates the effectiveness of the proposed
approach. A wide range of beveled angles and incident fre-
quencies are studied and reported here.

The main contribution of this work is in the identification of
critical bevel-angles/frequencies pairs, where incident waves
are totally reflected or totally converted into a different mode.
These findings were made possible by the highly accurate and
fast solutions that swept through an extensive range of bevel
angles and incident frequencies.

2. Formulation of reflected waves from a beveled free
end

The waveguide studied in this paper is shown in Fig. 1(a). It
represents a plate of uniform thickness d having a bevel
angle « . The plate is bounded on the three sides by traction-
free surfaces denoted I',,I',and T,, and it is assumed to be
elastic, homogeneous, and isotropic with shear modulus u
and the density p . The coordinate systems, the extent of
regions I and II, and their common artificial boundary I', are
all depicted in Fig. 1(b). A Cartesian coordinate system, for
region I, is constructed where its origin is located at the tip of
the beveled end, the positive x-axis is aligned with the lower
surface, and the y-axis increases upwards. The origin of the
Cartesian coordinates also serves as the origin of the polar
coordinates system for region II. The polar angle 6 increases
counterclockwise starting at the positive x-axis and ending at
the beveled edge T',. The radius of the polar coordinates »
has a maximum value of R=d /sinc .

As illustrated in Fig. 1(a), an incident SH wave traveling in
the negative x-direction impinges on the beveled free end of
the plate and reflects back in the positive x-direction. The cor-
responding displacement field U in the plate is made of the
incident U™ and the reflected U™ displacements fields,

U=U™+U". (1)

The geometry of the plate admits an equivalent formulation
whereby the plate is divided into two regions as shown in Fig.
1(b). The incident SH wave traveling in region I impinges on
the artificial boundary T',, reflects and sets up a standing
wave in the bounded region I

The solutions for the out-of-plane, time-dependent particle
displacement fields U/ and U!, in regions I and II respec-
tively, are governed by the following wave equations,

prine
d
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1
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u
I,
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&
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Fig. 1. (a) Geometry of the plate structure showing incident and re-
flected waves; (b) partitioned wedge-plate regions and common ficti-
tious boundary.
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where c¢=(u/p)"” is the shear velocity, while ¢ denotes

time. The interface continuity of displacement and stress con-
ditions at ", are given by

ul=u" “4)

0. =0 ®)
ol is the shear stress in region I and is given by

0, =0, cosf+ac, sinf (6)

n;

while ¢ is the shear stress in region II. Finally, the traction-
free boundary conditions on traction free sides of the plate are

given by:

0.=0 ; y=0d @)
op=0 ; 0=0,a €))

where o, is the out-of-plane shear stress acting on the two
boundaries, T', and T, ofregion [, while o) is the out-of-
plane shear stress acting on the two boundaries, I' and T,
of region II.

The SH waves are assumed to be time harmonic, and hence
the out-of-plane z-displacement fields in regions I and II are
given by,

Ul =ul(x,y)e” ©)
Ul =u(r,0)e” (10)

where @ is the applied frequency and i* =-1. u! and u”

represent the steady state displacements fields in the regions I
and II, respectively. Substituting Eqs. (9) and (10) into Egs.
(2) and (3), respectively, results in the steady-state form of
the governing equations in each region
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Egs. (11) and (12) are also known as the Helmholtz equa-
tions in rectangular and cylindrical coordinates, respectively.
The geometry of the regions renders the solutions of Egs. (11)
and (12) as separable. In other words, the solutions to the
Helmholtz equations can be expressed as an infinite sum of
wave functions.

The separable series solution for Eq. (11) is given by

W5 = C () + X AL (59) (3)

with:
h,(x,y) = COS[%yje’“"’“ s L (ny)= COS(%yJe‘*’”‘ :

Note, each term of the series solution in Eq. (13) satisfies
the traction-free boundary condition in Eq. (7) along I', and
I,. C, isthe amplitude of the ¢" incident mode, 4, is the
amplitude of the m” reflected mode, and the wave numbers
k, and k, are defined as,

m

[0 m-w

N (14)
2 2_2
o qr

ko= (15)

Similarly, the separable solution of Eq. (12) is represented
as an infinite Bessel-Fourier sum,

n=0

u (r,0) = ZB cos[—HJ J (k1. (16)

Each term of the Fourier series in Eq. (16) satisfies the
traction free boundary conditions Eq. (8) along I', and T,.
B, denotes the n" amplitude of the standing wave in region
I, J,,is the Bessel function of the first kind of order
nr/a and k, isdefinedas k,=w/c.

The stress field in region I is given by,

I
ol =u u, _ — ik, (x, ) + yszmAmzm(x, y)
' Ox m=0 (17)

ﬁu[
- =u?c P gL
s ud h,(x, ) ﬂmz; A ()

with

h,(x,y) =sin (%y)e”'k“x 5 L, (xy)=sin (%yje’*‘"".

Additionally, the stress field in region Il is given by

p ou” ul nr )\ oJ
"o 2~ 3y B, cos| 226 | s (i 18
) Y () TR

Substituting the series solutions Egs. (13), (16), (17), (18)
in the continuity Egs. (4) and (5), and after limiting the infinite
sums to a finite number of terms, M and N, and transposing the
known incident terms to the right-hand side, the displacement
and stress continuity conditions are now expressed as,

zf,,,(x WA, - Zcos[—é’J Ju(k,R)B, =

m=0

(19)
—h,(x,»)C,

M p
> fu(.0)e' 4, -
m=0 (20)

uf nr \0J o
k, cos| —@ e (k,R)B, = ,0)e”" K
2k [a]@r() =g,(y.0)e "'C,

where

(y,0) =ik, cos ﬂy cosf-"sin my sin@
m p p p

g,(»,0)= {ikq cos[%y}cos@ + %sin(%y}sm 0} .

Egs. (19) and (20) are now projected onto cos(pz8/ @)
as shown below,

f 34, cos(—@]cos( y je‘*’""d&—

0 m=0

IZB cos(—@jco ( Zﬁj J oo (K,R)dO = (21

0 n=0

pr qr —ik,x
_qucos(79jcos(7yje do

TiAm cos(—é’j £,(3,0)"d6 ~
TZV:Bnk cos(—@jco ( e ej agm (kR)dO=  (22)
o a

r

n

0
qucos(—@j g,(v,0)e""do
0

where
x=Rcosl 23)
y=Rsinf.

The solution of Egs. (21) and (22) is obtained by choosing
N = M and setting p = 0,..., M. The resulting algebraic system
of equations, of size 2M x2M , is subsequently solved to
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determine the amplitudes 4, and B,. The value of M is
increased iteratively until the relative energy error ¢, shown
in Eq. (24), satisfies the desired tolerance.

M
(E;m' B Z() E:’:f ]
g=n~ 0 J 24
= 4)

where E is the energy flux carried by the specified inci-
dent mode while E’Y represents the energy flux of m" re-
flected mode. E)* and E” are defined below [9].

d 2

y :ya)kmlAml , m#0

g =it 25)
E,ua)km |Am|Z , m=0

mq

the ratio of the elastic energy flux contained in reflected mode
m to the elastic energy flux supplied by incident mode ¢

—uawk, |C|, g=0

E" = 2 (26)
—uok |C|, q=0

where | | denotes the absolute value. R is used to denote

ref
By @7)

mq = E;nc

Substituting Eq. (27) in Eq. (24) results in the following
expression for the relative error in the elastic energy flux,

e=1-Y"R . 29)
0

In this paper, the series solutions Egs. (13) and (16) are con-
sidered to be convergent when the corresponding relative error
& does notexceed 1x107°.

3. A plate with a vertical edge (beveled angle = 90°)

The case of ¢ =x/2, as shown in Fig. 2, corresponds
physically to a waveguide of a semi-infinite plate with a verti-
cal edge. In this special case, the stress-free boundary condi-
tions at I', are expressed in rectangular coordinates as

ol =0. (29)

Substitution of the stress expression given in Eq. (17) into
Eq. (29) results in the following relationship between inci-
dent and reflected modes,

iAm {ikm cos(m?ﬂyﬂz -C, {ikq cos[%yﬂ. 30)

y A
Iy
e )
j
L7 d
= @ e
lI'1
y A
l':
R prine A
0 o ——
r Region Il + Region 1
3 . '\ ref d
R=d —
L ‘1 y (b) &

ry

Fig. 2. (a) Plate structure with vertical free end; (b) partitioned wedge-
plate regions and common fictitious boundary.

Using the orthogonality of modes, Eq. (30) has the follow-
ing analytical solution for the amplitude of the reflected
modes,

A =C
q q (31)
A =0 ; m=0,1,2,...M m#gq.

The above result is obtained by (a) multiplying both sides of
Eq. (30) by cos(nzy/d), (b) integrating the resulting Equa-
tion over y from 0 to d, (c) making use of the orthogonality
of the trigonometric functions over T',, (d) taking the corre-
sponding incident ¢” mode (g =0,1). Eq. (31) manifests
the well-known fact that an incident mode reflects from the
vertical free end of the waveguide are totally reflected back.

The same solution to the vertical free end can be found by
dividing the domain into two regions as shown in Fig. 2(b).
Substitution of Eq. (31) into the continuity condition at the
artificial interface described in Eqs. (4) and (5) yields

qr —ikgx  ikyx
chos(Yy](e e ):

ZV:B,, cos(2n0) J,, (k,R).

n=0

(32)

At the interface x = Rcos@ and for the zeroth incident
mode ¢ =0, Eq. (32) reduces to

C, 2cos(k0R cos 9) =

¥ (33)
B,J,(k,R)+ B, cos(2n0) J,, (k,R).
n=l
The well-known Jacobi-Anger expansion is
cos(koRcos 19) =
- (34

Jo(k,R)+2D(<1)'J,, (k,R)cos(2n6) .

n=1

Comparing Egs. (33) and (34), while setting C, =1, the
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unknown coefficients can be found

B, =2

35

B, =4(-1)" n=12,.N. ¢

B, in Eq. (35) are used in verifying the accuracy of the
truncated series solution proposed above.

4. Results and discussions

A non-dimensional form of Eqgs. (14) and (15) is adopted
and used in reporting numerical results found in this study.
The non-dimensional wave number K, =k,d/z and the
non-dimensional frequency Q=wd / zc are substituted into
Egs. (14) and (15) to arrive at the following non-
dimensional frequency relationships,

K, =\ —m’ (36)
K, =\ -¢. @7

When an incident guided wave impinges on the beveled end
of a semi-infinite plate, it induces a collection of both propa-
gating and non-propagating reflected modes. The elastic en-
ergy of the reflected propagating modes is reported in this
section for both SHy and SH; incident modes for a wide range
of corresponding beveled angles and frequencies. The energy
is reported as the ratio between the energy of the reflected m"
mode and the energy of the ¢” incident mode. This ratio is
denoted by R . Specifically, R, denotes the ratio of elastic

-
energy content in the m" reflected mode relative to SH,
corresponds to the

incident mode (g = 0). Similarly, R,
ratio of elastic energy content in m" reflected mode relative

to the SH, incident mode (¢ = 7). The number of terms in the
series solution given in Egs. (13) and (16), M (in region I)
and N (in region II), are chosen to guarantee that the energy
error ¢ , defined in Eq. (28), does not exceed 1x107° .

4.1 Energy variation with normalized frequency at selected
beveled angles

and R

ml

Figs. 3-6 show the R, distribution due to SH,
and SH, incident modes. The variation of R , versus Q,
due to the SH, incident mode, is displayed in Figs. 3(a)-(c)
which correspond to @ =30°, 45° and 60°, respectively.

* Mode Dominance of SHy,: When the beveled angle is 30°
(Fig. 3(a)) or 45°(Fig. 3(b)), R,, is strictly larger than R ,
(m=0) over the entire frequency range. For « =30° (Fig.
3(a)), the minimum value of R, is 0.523 which is attained
when Q=1.13. While when «=45° (Fig. 3(b)) the mini-
mum value of R, is 0.634 and is attained when Q=1.07.
For a=60° (Fig. 3(c)), R, loses its dominance and van-
ishes at the following frequencies: 1.155, 2.309, 3.464 and
4.6109.

* Total Reflection of SHy: In Fig. 3, R, =1 at certain bev-
eled angle and frequency values, which corresponds to total

Fig. 3. R , versus normalized frequency for the selected beveled
edges: (a) a=30°;(b) a=45°;(c) a=60°.

reflection of the incident mode SH,. At the beveled angles
a=30° and 60°, the total reflection occurs when Q=2
(which is also a cut-off frequency). When « =45°, Ry =1 at
all cutoff frequencies (1, 2, 3,4, 5) and when Q=1.414.

* Mode conversion of SH;: When «=60° and for,
Q=1.155 SH, is the only reflected mode, similarly when
0 =2.309, 3.464 and 4.619 the SH,, SH; and SH, are the
corresponding total reflected modes, respectively.

* Mode Dominance SH;: Unlike the dominance of the SH,
mode over the entire frequency range, the SH; mode shows
partial dominance as shown in Figs. 4(a) and (b).

* Total Reflection SH;: At the beveled angle « =30°, the
total reflection is attained when Q=1 and Q=2. For the
case of a =45°, total reflection of the incident SH, mode is
obtained when Q=1, Q=1412 and Q=2. At the bev-
eled angle a=60°, the total reflection is attained when
Q=1, Q=2 and Q=2.309.

* Mode conversion of SH;: When «=60° and for
Q=1.155, 3.055, 4.163 and 5.292, SH, disappears (R, =0)
giving way to other modes to carry the reflected energy.

The abrupt variations at the cutoff frequencies in Figs. 3 and
4 are due to the inception of new propagating modes, which
cause a sudden change in the distribution of energy in the
spectra of the reflected and transmitted waves. Remarkably,
the variation in the energy ratios is more abrupt when the bev-
eled angle is increased (see Figs. 3 and 4).

4.2 Energy variation with beveled angle and selected fre-
quencies

In Subsec. 4.1, the variation of the normalized frequency
Q versus three beveled angles, namely « =30°, a =45°
and « =60° was reported. However, in this subsection, the
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Fig. 4. R versus normalized frequency for the selected beveled

edges: (a) a@=30°;(b) a=45°;(c) a=60°.

Fig. 5. R, versus beveled edge angle for selected normalized fre-
quencies: (a) Q=1.5;(b) Q=35;(c) Q=55.

variation of the beveled angle 20°<a <90° for selected
frequencies Q=1.5, 3.5 and 5.5, is investigated to determine
the interaction of SH waves with a range of beveled angles.

In Fig. 5, R, versus beveled edge angle at three selected
normalized frequencies, namely 1.5, 3.5 and 5.5, is reported.
These frequencies are selected to be halfway between the cut-
off frequencies. In Fig. 5(a), SH, gradually decreases until it

Fig. 6. R,,; versus beveled edge angle for selected normalized frequen-
cies: (a) Q=1.5;(b) Q=35;(c) Q=55.

diminishes, Ry, =0, after which it increases and reaches total
reflection, R, =1, when Q=1.5 and «=20.019°, 28.67°,
46.60°. Figs. 5(b) and (c) show the region where SH, is very
small compared to the other propagating modes. This region is
centered around « =63°.

Similarly, in Fig. 6 R versus beveled edge angle at the
three selected normalized frequencies is displayed. SH; gradu-
ally decreases until it diminishes, R, =0, after which it in-
creases and reaches total reflection, R, =1, when Q=1.5,
a =28.67° and 46.60°. The region of vanishing R, is not
as extreme as in the case of R, .

5. Conclusion

The diffraction of SH waves by the beveled free end of a
semi-infinite plate is examined, and its numerical solution is
determined for a wide range of frequencies and bevel angles.
The solution uses the separability property of the Helmholtz
equations, for both rectangular and cylindrical coordinates,
and the continuity condition across an artificial boundary. This
strategic selection of the regions leads to an efficient separable
solution for the unknown coefficients. In this study, single
incident modes were used, and a range of frequencies was
considered. Continuity conditions at the common boundary
between the two regions led to a set of algebraic equations.
The solution of these algebraic equations has a relative energy
error that does not exceed 1x107° . This study has shown the
existence of critical bevel angles where an incident mode is
either “totally” reflected or “totally” absorbed at a specific
incident frequency.
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Nomenclature

c : Shear velocity

d : Thickness

J.... - Besselfunction
k,,k, :Wave numbers

U : Displacement field
a : Bevel angle

£ : Relative energy error
0 : Polar angle

U : Shear modulus

P : Density

o : Stress

w : Frequency
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Abstract

The interaction of guided Shear Horizontal (SH) waves with the beveled free end of a semi-infinite plate is
analytically and numerically investigated. The material of the plate is assumed to be elastic, homogenous, and isotropic. The
plate with edge defect is modeled as a combination of a semi-infinite region with traction free surfaces and a bounded
wedged region, separated by a common boundary. The analytical solution of the vertical free end case for the two regions is
derived and used in verifying the numerical implementation. In this study, two single incident modes SH, and SH; were used
individually in order to analyze the corresponding reflected modes from the free end. The numerical solution is determined
for a wide range of frequencies and bevel angles. Specifically, the elastic energy carried by the reflected modes is reported
for selected beveled angles and incident frequencies. The validity and accuracy of the results are checked by satisfaction of
the energy conservation principle with a tight error tolerance less than 0.001 percent. The analytical approach proposed in
this thesis contribute to the understanding of the interaction of guided SH waves with defects and shows that this method can

be an efficient guidelines for non-destructive testing of plates.

Keywords: Bevel end; Edge defect; Elastic plate; SH waves; Wave function

Résumé

L'interaction des ondes de cisaillement horizontales (SH) guidées avec I'extrémité libre biseautée d'une plaque
semi-infini est analytiquement et numériquement examinée. Le matériau de la plaque est supposé élastique, homogéne et
isotrope. La plaque présentant un défaut de bord est modélisée comme une combinaison d’une région semi-infinie avec des
contraintes nulles en surfaces et d’une région sectorielle bornée, délimitées par une frontiére commune. La solution
analytique du cas d'extrémité libre verticale pour les deux régions est démontrée et utilisée pour vérifier I’implémentation
numérique. Dans cette étude, deux modes incidents distincts SH, et SH; ont été utilisés individuellement afin d'analyser les
modes réfléchis correspondants de I'extrémité libre. La solution numérique est déterminée pour une large gamme de
fréquences et d'angles de biseau. Spécifiquement, 1’énergie élastique transportée par les modes réfléchis est représentée pour
une sélection d’angles biseautés et fréquences incidentes. La validité et la précision des résultats sont vérifiées par la
satisfaction du principe de conservation de 1’énergie avec une tolérance d’erreur étroite inférieure a 0,001%. L’approche
analytique proposée dans cette thése contribue a la compréhension de I’interaction des ondes SH guidées avec les défauts et

montre que cette méthode peut constituer une ligne de conduite efficace pour le contréle non destructif des plaques.

Mots clés: Extrémité biseautée; Défaut de bord; Plaque élastique; Ondes SH; Fonction d’onde.



