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 ملخص

 

الوْجِت هع ًِاٌت دشة هٌذْحت  SH القص الافقٍت الخفاعل بٍي هْجاثحن فذص 

فٍذت شض هادة الصًصف لاًِائٍت  بالطشٌقخٍي الخذلٍلٍت ّالشقوٍت. ّقذ حن إعخواد  ف لصفٍذت

خشٍْ على الذافت كخشكٍبت لوٌطقخٍي الراث  فٍذتالص ج ًوزجتحو كوا .هشًت ّهخباٌٌت الوٌادً

ٍي هٌطقت شبَ لاًِائٍت هع اجِاداث هٌعذهت على السطْح ّهٌطقت قطاعٍت هذذدة ، الوٌطقخ :

حن الزي الذل الخذلٍلً لذالت الٌِاٌت الذشة العوْدٌت ّ حذذُوا دذّد هشخشكت. حوج بشٌُت

ام ًوطٍي هخخلفٍي حن اسخخذفً ُزٍ الذساست  . اهج الوٌجضًجاعت البشًاسخخذاهَ للخذقق هي 

ًواط الوٌعكست ّالوشحبطت بالٌِاٌت الذشة بِذف حذلٍل الأ كل على دذٍ  SH0 ّSH1 ٌي ّاسد

كوا حن حوثٍل   .الوشطْفتضّاٌا الالخشدداث ّ حن إٌجاد دل سقوً فً دالت هجوْعت ّاسعت هي .

ّ  صّاٌا هشطْفتباخخٍاس  ّ رلك بْاسطت الاًواط الوٌعكست ًت الوٌقْلتّطاقت الوشخصْصا 

ًسبت ّ حقبل  الطاقت هصًٍْت هبذأ باعخواد صذت ّدقت الٌخائج  حن الخأكذ هي  .ّحشدداث ّاسدة

خذلٍلً الوقخشح فً ُزٍ الأطشّدت ٌساُن الوٌِج ال .% 001. 0 خطأ على الذقت لا حخجاّص

ت ّ عٍْب الوْاد ٌّبٍي اى ُزٍ الطشٌقت ٌوكي اى الوْجِ SHوْجاث بٍي الخفاعل الفِن  فً

 . للصفائخهذهشة حشكل قاعذة إسشادٌت للوشاقبت الغٍش

 

 ,دالت الوْجتSH : ًِاٌت هٌذْحت, حشٍْ الذافت, صفٍذت هشًت, هْجاثكلواث هفخادٍت
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Abstract 

 

The interaction of guided Shear Horizontal (SH) waves with the beveled free end of a 

semi-infinite plate is analytically and numerically investigated. The material of the plate is 

assumed to be elastic, homogenous, and isotropic. The plate with edge defect is modeled as a 

combination of a semi-infinite region with traction free surfaces and a bounded wedged 

region, separated by a common boundary. The analytical solution of the vertical free end case 

for the two regions is derived and used in verifying the numerical implementation. In this 

study, two single incident modes SH0 and SH1 were used individually in order to analyze the 

corresponding reflected modes from the free end. The numerical solution is determined for a 

wide range of frequencies and bevel angles. Specifically, the elastic energy carried by the 

reflected modes is reported for selected beveled angles and incident frequencies. The validity 

and accuracy of the results are checked by satisfaction of the energy conservation principle 

with a tight error tolerance less than 0.001 percent. The analytical approach proposed in this 

thesis contribute to the understanding of the interaction of guided SH waves with defects and 

shows that this method can be an efficient guidelines for non-destructive testing of plates. 

 

Keywords: Bevel end; Edge defect; Elastic plate; SH waves; Wave function 
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Résumé 

 

L'interaction des ondes de cisaillement horizontales (SH) guidées avec l'extrémité libre 

biseautée d'une plaque semi-infini est analytiquement et numériquement examinée. Le 

matériau de la plaque est supposé élastique, homogène et isotrope. La plaque présentant un 

défaut de bord est modélisée comme une combinaison d’une région semi-infinie avec des 

contraintes nulles en surfaces et d’une région sectorielle bornée, délimitées par une frontière 

commune. La solution analytique du cas d'extrémité libre verticale pour les deux régions est 

démontrée et utilisée pour vérifier l’implémentation numérique. Dans cette étude, deux modes 

incidents distincts SH0 et SH1 ont été utilisés individuellement afin d'analyser les modes 

réfléchis correspondants de l'extrémité libre. La solution numérique est déterminée pour une 

large gamme de fréquences et d'angles de biseau. Spécifiquement, l’énergie élastique 

transportée par les modes réfléchis est représentée pour une sélection d’angles biseautés et 

fréquences incidentes. La validité et la précision des résultats sont vérifiées par la satisfaction 

du principe de conservation de l’énergie avec une tolérance d’erreur étroite inférieure à 

0,001%. L’approche analytique proposée dans cette thèse contribue à la compréhension de 

l’interaction des ondes SH guidées avec les défauts et montre que cette méthode peut 

constituer une ligne de conduite efficace pour le contrôle non destructif des plaques. 

 

Mots clés: Extrémité biseautée; Défaut de bord; Plaque élastique; Ondes SH; Fonction d’onde. 
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Acronyms 

EMAT Electromagnetic-Acoustic Transducer 

GWT Guided Wave Testing 

NDT Non destructive testing 

SAFE Semi-Analytical Finite Element 

SHM Structural Health Monitoring 

SH Shear horizontal 

A0 Anti-symmetric zeroth SH mode 

A1 Anti-symmetric first SH mode 

A2 Anti-symmetric second SH mode 

Jn Bessel function of the first kind 

S0 Symmetric zeroth SH mode 

S1 Symmetric first SH mode 

S2 Symmetric second SH mode 

Yn Bessel function of the second kind 
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Nomenclature 

mA  Amplitude of the reflected mode, 

nB  
Amplitude of the sector region, 

sc  Shear velocity, 

pc  dilatational wave speed, 

qC  Amplitude of the incident mode, 

d  Thickness, 

E  Young’s modulus, 

,m qE E  Energy flux, 

f  Frequency, 

G  Shear modulus, 

i  Imaginary index, 

/ nJ  Bessel function, 

,m qk k  Wave numbers, 

m
 

Number of modes, 

n  Outward normal to surface, 

R  Maximum polar radius, 

r  Polar radius, 

mqR  Energy flux ratio, 

t
 

Time, 

t  Stress vector, 

U  Displacement field, 



Nomenclature 
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u  Displacement vector, 

ijW  infinitesimal rotation tensor, 

iw
 

vector rotation 

 Bevel angle, 

 Boundary surface, 

ij  Kronecker delta, 

 Relative energy error, 

ij  Strain tensor, 

ijk  permutation symbol, 

 Polar angle, 

K  
Non-dimensional wave number, 

 Lame’s constant, 

  wavelength, 

 Shear modulus, 

 Poisson’s ratio, 

 Mass density, 

ij  Stress tensor, 

 Non-dimensional frequency, 

 Circular frequency, 
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Chapter 1 

General Introduction 

1.1. Motivation 

Mechanical structures are widely used and indispensable in modern 

industry (pressure vessels, pipelines, storage tanks, ship hulls, aircraft wings, 

etc.). These structures are easily affected by the presence of damage mechanisms, 

such as corrosion or cracks which change the material properties and geometric 

integrity, consequently enfeebling their performance and decreasing their service 

life (Figure 1.1). 

 

 

 
 

Figure 1.1: Mechanical structures 
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Testing these structures is a significant issue for safety reasons and 

environmental impact control. Small defects are admissible as long as they are 

limited in size and if no overload occurs. Structural damage can continue to 

increase for a long time, but the ultimate failure is generally quick and 

unexpected. The consequences can be disastrous (structure collapse, aircraft 

crash, storage tank burst) (Figure 1.2). Such disasters can be predicted and 

avoiding such events is a good motivation for Structural Health Monitoring 

(SHM). This technique is rapidly emerging as a critical tool for continuous 

nondestructive inspection. It is used to evaluate material properties, components, 

or entire process units.  

 

Figure 1.2: Incident of Aloha Airlines, Flight 243 

 

In a typical SHM process, sensors are permanently installed to enable 

periodic assessment of the structure damage state. It provides information for 

making decisions about equipment life assessment [Boukabache et al, 2014]. 

A Structural Health Monitoring system is a kind of imitation of the human 

nervous system with integrated sensors and diagnostic capabilities (Figure 1.3). 

The analogy between the operation of the human nervous system and structure 

SHM is represented as follow, (Table 1.1): 
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Table 1.1. Analogy between operation of the human nervous system and structure SHM 

Human Nervous system Structural Health Monitoring system 

More nerves  around  critical organs More sensors around  critical parts 

Pain indication Damage indication 

The brain checks the intensity of the pain 

and judges when to go to the doctor.  

The SHM system checks the structure and 

evaluate the reexamination actions for 

maintenance. 

 

Figure 1.3: Analogy between the operation of the human nervous system and of SHM of a structure 

[Boukabache et al, 2014]. 

To improve the performance of structures monitoring, and reduce the 

operational cost at the same time, many researchers explored recently some new 

kind of structural health monitoring systems. 

One of these SHM techniques is the employment of guided waves which 

proved to be useful in locating various types of defects in both plates and tubes. 

Guided waves refer to mechanical (or elastic) waves that propagate in a bounded 

medium parallel to the plane of its boundary. (Figure 1.4). 
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Figure 1.4: Pipeline inspection using guided wave testing (GWT) 

 

 The wave is called "guided" when it travels along the medium guided by its 

geometric boundaries. For this reason, the geometry has a strong influence on the 

behavior of the wave [Redwood, 1960]; [Rose, 1999]. Guided waves have 

advantages in their capacity to propagate from a single location over long 

distances in plates and tubes (Figure 1.5). They can offer good estimates of 

location, severity, and damage type, thus admitting higher efficiency, low in cost 

and fast detection of defects in large area of the structures [Staszewski et al, 

2004]; [Croxford et al, 2007]; [Annamaria, 2016]. 

 

Figure 1.5: Guided wave through a plate with defect 
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 The benefit of guided waves can also include: 

 High percentage coverage throughout the thickness of the structure 

 Ability of inspection of hidden and inaccessible regions of the structure 

 Inspection of underwater structures, coatings, insulation and concrete. 

 Avoidance of removal/reinstatement of insulation or coatings. 

Guided waves can potentially be used for plate inspection such as airplane 

fuselage and wings often made of aluminum sheets. These sheets are assembled 

from holes by fasteners, which are sources of stress concentration and crack 

formation. The interaction of guided elastic waves with discontinuities in the 

structures has been the subject of scientific research of many scholars. 

Discontinuities in structures can be either geometrical or due to material 

property changes. 

The complexity of such physical phenomenon fascinated many scientists 

over several years and has not been explained for all possible cases encountered 

in real situations [Demma, 2003]. Generally, the solution to such problems 

presents a very redoubtable challenge. A correct understanding of the physical 

and mathematical principles of the discontinuity effect in the structure is 

essential for effective utilization of these guided waves.  

An important class of guided waves is the horizontal shear waves known as 

SH waves. The particle motion of SH waves is polarized parallel to the plate 

surface and perpendicular to the direction of wave propagation. These waves 

remain confined inside the walls of the structure and hence can travel over vast 

distances without energy loss (Figure 1.6). 
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Figure 1.6: SH wave in a plate 

 On the other hand, the properties of the fundamental wave mode (SH0) 

make them very convenient for the inspection of the structure with good 

capability to detect defects. For those reasons, SH guided waves have the 

potential to be used for Non-Destructive Testing (NDT) and have recently 

attracted considerable interest in the structural health monitoring community 

[Adams, 2007] ; [Kamal and Giurgiutiu, 2014] ; [Castaings, 2014]. 

For the purpose of NDT studies, it is essential to model the SH wave 

propagation and interaction with defects analytically. This allows prediction of 

the repercussions of these defects on wave propagation. The knowledge of SH 

wave interaction with specific geometrical features can also help in the selection 

of incident modes and frequencies that improve inspection to various 

discontinuities. In the simplest case, one-single incident wave mode is used, after 

that it can be converted to other reflected modes in order to satisfy boundary 

conditions. The determination of reflection and transmission coefficients from 

discontinuities of different kinds has been studied by many scholars. Several 

approaches were proposed. The first is the development of numerical methods 

and tools to simulate the phenomena. The second is the development of 

appropriate experimental methods and techniques allowing verification and 

validation results of numerical simulations. 
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For numerical methods, different approaches were investigated as methods 

based on wave expansion (mode-matching ) methods [Chen et al, 2015] ; [Ditri, 

1996]; [Nakamura et al, 2012]; [Ahmad and Gabbert, 2012]; [Chancellier et al, 

2002], finite element methods [Rajagopal and Lowe, 2007]; [Ratassep et al, 2008] 

;[Koshiba et al, 1987]; [Lowe and Diligent, 2002]; [Demma et al, 2003]; [Gunawan 

and Hirose, 2004], or  a combination of  finite element formulations with waves 

function expansion technique [Annamaria, 2016]. Unfortunately, the study of the 

effects of multiple angles representing the direction of discontinuities was not 

widely analyzed. For these raisons, a better understanding of the interaction of 

guided SH waves with a beveled free end in a plate is needed. 

The aim of this thesis is to develop an analytical and numerical model for 

SH guided wave propagation in an isotropic plate with a beveled free end. 

Applying these proposed procedures, the interaction between the guided waves 

and edge defects is well analyzed. [Mohammedi et al, 2019] The background 

literature on the different issues is presented in the following section. 

 

1.2. Previous work 

Although experimental observations of dynamic edge phenomenon in elastic 

waveguides took place over 70 years ago, the reflection of guided waves from the 

free end of an elastic layer remains an active area of research. Lawrie et al. 

[Lawrie and Kaplunov, 2012] provided a detailed review of the field that covered 

the period from 1958 to 2008. Within this context, a follow-up report was made 

by Deckers et al. [Deckers et al, 2014] in which they discussed and summarized 

research on wave-based methods. 

Researchers have made tremendous advancements utilizing mode and 

frequency selections to solve many problems; for example, in the testing of pipes, 

rails, plates, ship hulls, and aircraft integrity [Giurgiutiu, 2007]; [Pujol, 2003]; 

[Rose, 2014]. In recent years, the inspection of irregularities and defects such as 

cracks have been carried out using horizontally polarized shear (SH) waves 
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generated and detected by electromagnetic-acoustic transducers [Rose, 2000]; 

[Gao and Lopez, 2010]; [Hirao and Ogi, 1999].  

The study of scattering problems varies from classical approaches such as 

mode matching and variational techniques to numerical techniques such as finite 

element and boundary element approaches, or a combination of numerical 

formulations with a wave function expansion technique. Among these, 

Abduljabbar et al. [Abduljabbar et al, 1983] studied the diffraction of SH waves 

in a plate with arbitrary defects by employing a finite element formulation and 

wave function expansion technique. Furthermore, Chen et al. [Chen et al, 2015] 

studied the SH guided waves propagated in a tapered plate using eigenmode 

matching theory and finite element methods. Ditri [Ditri, 1996] dealt with the 

scattering of guided elastic SH waves from material and geometric waveguide 

discontinuities. Nakamura et al. [Nakamura et al, 2012] studied the mode 

conversion behavior of an SH guided wave in a tapered plate. They investigated 

the different mode conversion phenomenon for abrupt and gradual thickness 

changes. 

Many investigations have been made to study the beveled end of plates 

using Lamb waves. A semi-analytical finite element method has been used to 

simulate Lamb wave reflections at plate edges [Ahmad and Gabbert, 2012]. The 

Lamb wave conversion due to the beveled free end of plates has been studied 

theoretically as well as numerically, using the finite element method [Chancellier 

et al, 2002]; [Mofakhami and Boller, 2008]. Chancellier et al. used a collocation 

method on the beveled free end to determine the Lamb wave amplitudes and 

edge resonance [Chancellier et al, 2005]. 

Several experimental works have been published on the reflection of Lamb 

waves by the free and beveled edge of a plate [Castaings et al, 2002]; [Morvan et 

al, 2003]; [Chancellier et al, 2004]; [Santhanam and Demirli, 2013]. In these 

papers, the mode conversions were examined in detail over an extensive 

frequency range, and the energy conversion coefficients were obtained both 

numerically (finite element method) and experimentally. 
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1.3. Scope and objectives 

The aim of this thesis is to contribute to the understanding of SH wave 

propagation in an elastic plate with edge defects. The method of separation of 

variables (also known as the wave function expansion) is used to investigate the 

interactions of SH waves with the beveled free end of an elastic plate. The plate 

is divided into two non-overlapping regions with a common interface. Each region 

admits a separable solution of the corresponding wave equation. The total 

solution is assembled by enforcing continuity conditions at the interface. The 

solution preserves the total incident energy to within a small tolerance. The 

convergence of the solution is met when the difference between the total incident 

energy and reflected energy is less than 0.001% which is a very tight criterion 

compared to existing convergence criteria reported in many works available in 

the literature [Abduljabbar et al, 1983]; [Ditri, 1996]; [Morvan et al, 2003]; 

[Chancellier et al, 2005]. The solution provided here is compared with the known 

solution for a plate with a vertical end [Giurgiutiu, 2007]; [Rose, 2014]. 

Finally, very good agreement between the proposed numerical approach and 

analytical solution is observed. This indicates the effectiveness of the proposed 

approach. A wide range of beveled angles and incident frequencies is studied and 

reported here [Mohammedi et al, 2019]. 

1.4. Thesis outline 

This thesis is divided into five chapters. The present chapter is intended to 

provide a general introduction to the subject, research backgrounds and useful 

information. 

The second chapter presents a literature review of the theoretical 

fundamentals of wave propagation, which gives all the research background and 

useful information about this thesis. Guided waves in elastic plates are then 

introduced with particular attention on SH waves which are used in this study. 
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Chapter 3 describes the analysis of SH waves propagating in a beveled free 

end plate. A region matching technique is applied to derive a series solution. 

Appropriate wave functions are employed to describe the displacement field. The 

unknown coefficients are determined by the enforcement of the continuity of 

displacements and stresses at the fictitious common boundary. The particular 

case of a plate with vertical edge is used in order to test the numerical results 

obtained in chapter 4 

Chapter 4 deals with the numerical results of the reflecting SH waves in 

terms of the ratio between the energy of the mth reflected mode and the energy of 

the qth incident mode. Beveled angles ranging from 20° to 90° with 0.1° increment 

and normalized frequencies ranging from 0 to 5.5 are considered. The validity 

and accuracy of the results are checked by satisfaction of the energy conservation 

principle. The energy ratios are plotted as function of the beveled angles and 

normalized frequencies. After all, a comparative study between different 

approaches mentioned in the literature is done and  shows the novelty of this work  

In the last chapter, conclusion is provided on the findings of this thesis and 

additional topics that will be the subject of future work are proposed. 



Chapter 2 

Background and literature review 
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Chapter2 

Background and literature review 

2.1. Introduction 

In this chapter, the basic theoretical concepts for waves propagating in 

elastic solids on the basis of the continuum theory are described. Continuum 

mechanics is a classical subject that has been discussed in great generality in 

numerous treatises. The theory of continuous media is built upon the basic 

concepts of stress, motion, and deformation, upon the laws of conservation of 

mass, linear momentum and on the constitutive relations. The governing 

equations used in this thesis are for homogeneous, isotropic, linearly elastic 

solids. These equations are valid if it may be assumed that the strains are small 

and that the stress components are proportional to the strains. 

The theory of wave propagation in solids is well developed and dates back to 

the early 1800s with the discovery of dynamical equations and waves in solids by 

Cauchy [Cauchy, 1822], Poisson [Poisson, 1829] and Lamé [Lamé, 1852]. During 

that time, these studies were merely an extension of the theory of elasticity. 

Poisson was the first to recognize that elastic disturbance was in general 

composed of two types of fundamental waves (dilatational and equivoluminal 

ones). 

The linear theory of elasticity is based upon a linear approximation 

(geometrical and physical). Although it does not give an exact description of 

dynamics, it does provide a handy solution that is applicable as long as the 

assumptions are valid. This linear theory is the subject of many classic texts. A 

famous work entitled Mathematical Theory of Elasticity by A. E. H. Love [Love, 

1906] was published in 1892 and has been reprinted many times until 1944. 

Numerous objects, such as an elastic 3D medium, a half space, waveguides, etc. 

were being studied. A wide range of waves was described, and particular 
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mathematical methods for analysis were derived. In recent years several books 

have appeared specifically dealing with wave propagation in linearly elastic 

solids. We mention the books presented by Kolsky [Kolsky, 1963], Achenbach 

[Achenbach, 1973], Whitham [Whitham, 1974], Graff [Graff, 1991], and 

Miklowitz [Miklowitz, 1980]. These books have summaries of the relevant 

elastodynamic theory. This theory is essential to the development of the method 

of wave propagation in plates developed in later sections.  

2.2. Fundamental equations of elastodynamics 

The theory to be introduced in this section attempts to deal with problems 

from a more fundamental basis (The dynamic theory of elasticity, called 

elastodynamics). The significant aspects of the theory needed for a basic 

understanding are presented to pursue the study in the upcoming chapters. 

2.2.1. Tensor notation 

Elastodynamics deals with physical quantities which are independent of any 

particular coordinate system that may be used to describe them. At the same 

time, these physical quantities are very often specified most conveniently by 

referring to an appropriate system of coordinates. Mathematically, such 

quantities are represented by Tensor. Tensor notation permits a compact 

expression to be written for the equations of mathematical physics that also 

indicates the form natural laws should take. Both indicial notation and vector 

notation are used in this thesis. In a Cartesian coordinate system with 

coordinates denoted by 
ix , the vector ( , )u x t  is presented by  

1 1 2 2 3 3u u e u e u e    (2.1) 

Where, ( 1,2,3)ie i 
 
are a set of orthonormal base vectors. Since summations of 

the type (2.1) occur frequently, it is convenient to introduce the summation 

convention, whereby a repeated index means summation over all values of that 

index. Thus, the three-term expression (2.1) can be simply written as 
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i iu u e  (2.2) 

The repeated index is called a dummy index because it can be replaced by any 

othersymbol that has not already been used in that expression. Thus, the 

expression in equation (2.2) can also be written as 

i i j j m mu u e u e u e    (2.3) 

Similarly we may have a set of nine quantities such as ( , 1,2,3)ija i j  . Use will be 

made of Kronecker delta defined as 

1 for ,

0 for ,

ij

i j

i j






 
 

 (2.4) 

Permutationsymbol is defined as follows: 

1, , , 1,2,3,

1, , , 1,2,3,

0,

ijk

i j k

i j k





 






if areaneven permutationof

if areanodd permutationof

otherwise.

 (2.5) 

The following notation is used for the field variables: 

 Position vector x   (coordinates  
ix ) 

 Displacement vector u  (components  
iu ) 

 Strain tensor E   (components  
ij ) 

 Stress tensor     (components  
ij ) 

It may generally be assumed that the functions ( , )i iu x t  are differentiable. A 

shorthand notation for the nine partial derivatives is 

,
i

i j

j

u
u

x





 (2.6) 
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where the comma denotes partial differentiation with respect to the Cartesian 

coordinates 
jx . 

It can be shown that the 
,i ju  are the components of a second order tensor. A time 

derivative is often indicated by a dot over the quantity, i.e., i
i

u
u

t





 

2.2.2. Displacement 

Displacement characterizes vibrations, is a distance of a particle from its 

position of equilibrium. The field defining the displacement at position x  at time 

t is denoted by the displacement vector ( , )u x t  

1 1 2 2 3 3( , ) ( , ) ( , ) ( , ) ( , )i iu x t u x t e u x t e u x t e u x t e     (2.7) 

2.2.3. Strain 

As a direct implication of the notion of a continuum, the deformation of the 

medium can be expressed in terms of the gradients of the displacement vector. 

( )
( ) ( ) ( )i

i i j i i

j

u x
u x x u x x u x u

x
  


    


 (2.8) 

Therefore, in the first order assumption 

   , , , ,

( ) 1 1

2 2

1 1
( )

2 2

j ji i i
i j j j

j j i j i

i j j i j i j j i j ij ij j

u uu x u u
u x x x

x x x x x

u u x u u x x

   

    

      
       

          

     

 (2.9) 

Where the symmetric part of (2.9) 

 , ,

1

2
ij i j j iu u    (2.10) 

is the linear strain tensor and the skew symmetric part 

 , ,

1

2
ij i j j iu u    (2.11) 
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is the linear rotation tensors, which contain the spatial derivatives of the 

displacement field. 

2.2.4. Forces and stress 

In general forces on a body may be classified into two categories: 

1. Body forces: Forces acting on all elements of volume of a continuum. 

Examples are gravity and inertia forces. These forces are 

represented by the symbol 
ip  (force per unit volume) 

2. Surface forces: Forces acting on the surface of a body, resulting from 

physical contact with another body. 

Applied external loads induce internal forces and stresses inside a body. In three-

dimensions, the stress is defined by 

11 12 13

21 22 23

31 32 33

ij

  

   

  

 
 
 
 
 
 
  

, (2.12) 

which is a second order tensor, and the first subscript indicates the surface 

applied and the second the direction (Figure 2.1). 

 

Figure 2.1: Cartesian stress components. 
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Thus if a surface element has a unit outward normal n  the surface traction t

(stress vector) is introduced, defining a force per unit area. The surface tractions 

generally depend on the orientation of n  as well as the location x . 

n

i ij jt n  (2.13) 

Equation (2.13) is the Cauchy stress formula. 

2.2.5. Equations of motion 

According to the principle of balance of linear momentum, the instantaneous 

rate of change of the linear momentum of the body is equal to the resultant 

external force acting on the body at a particular instant of time. In the linear 

theory, this leads to the equations. 

,ij j i ip u    (2.14) 

where   is the mass density per unit volume. 

Equations (2.14) are known as Cauchy equations of motion. For the linearized 

theory, the balance of moment of momentum yields the result 
ij ji  , i.e., the 

stress tensor is symmetric. 

2.2.6. Stress-strain relation 

Assuming that the material is linearly elastic and that only small 

deformations are present in the domain, the linear relation between the 

components of the stress tensor and the components of the strain tensor is 

ij ijkm kmC   (2.15) 

which is known as the generalized Hooke’s law.  

In (2.15) 
ijkmC  is a fourth-order tensor containing 81 elastic constants or matrix 

components that define the elastic properties of the material in the anisotropic 

medium. However, due to the symmetry of both the stress and strain tensors, 

there are at most 36 distinct elastic constants. Through strain energy 
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considerations, it follows that 
ijkm kmijC C , so that even in the case of anisotropy 

the number of constants can be reduced to 21. The assumption of isotropy 

reduces the number of independent elastic constants to just 2. In summary for an 

isotropic, continuous medium, the elastic constant tensor can be reduced to the 

following: 

( )ijkm ij km ik jm im jkc           (2.16) 

Equation (2.16) contains two elastic constants   and  , which are known as 

Lamé’s elastic constants, which are related to the Young’s modulus E  and the 

Poisson ratio   as 

,
(1 )(1 2 ) 2(1 )

E E
 

  
 

  
 (2.17) 

Since the material is homogeneous,   and   are independent of x . The Lamé 

constant   is also identified as the shear modulus, which is often denoted G . 

The stress-strain relationship (2.15) simplifies to 

2ij ij kk ij      (2.18) 

which is known as the Hook’s law for isotropic elastic behavior. 

2.2.7. Navier equations 

The system of equations governing the motion of a homogeneous, isotropic, 

linearly elastic solid consists of Cauchy equations of motion, Hooke’s law and the 

strain-displacement relations [Rose, 2014]; [Achenbach, 1973]. The strain-

displacement relations (2.10) may be substituted into Hooke’s law (2.18) and the 

result in turn substituted into the stress equation of motion (2.14) to produce the 

governing equations 

, ,( )i jj j ji i iu u p u        (2.19) 
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Motion equations (2.19) containing only particle displacements (displacement 

vector 
iu ) are displacement-type partial differential equations known as Navier 

equations and  represent three equations in Cartesian notation 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2

( )

( )

( )

yx x x x xz
x

y y y y yx z
y

yxz z z

uu u u u uu
p

x y z x x y z t

u u u u uu u
p

x y z y x y z t

uuu u u

x y z z x y

   

   

  

       
          

         

       
                    

     
     

      

2

2

z z
z

u u
p

z t


  
   
  

 (2.20) 

In vector notation equation of motion (2.19) becomes 

2 ( )u u p u          (2.21) 

2.3. Elastic waves in unbounded media  

Elastic waves are mechanical waves propagating in an elastic medium as an 

effect of forces associated with volume deformation (compression and extension) 

and shape deformation (shear) of medium elements [Pujol, 2003]. The solution of 

the equation of motion for an elastic medium results in the existence of elastic 

waves in its interior. The wave phenomenon is a way of transporting energy 

without transport of matter. The propagation of energy is, then, an essential 

aspect of wave propagation. 

2.3.1. Dilatational and rotational wave equations 

Elastic homogeneous medium is considered so that the elastic moduli are 

constant throughout the body. In this context, the body forces are to be neglected. 

Navier’s equations in the absence of body forces are 

, ,( )i jj j ji iu u u       (2.22) 

Taking the divergence of equation (2.22) yield the scalar equation 

, , ,( )i jji j jii i iu u u       
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which after substitution and reordering of terms involving repeated indices yields 

, , ,( )k iik k kii k ku u u       or 
,( 2 ) ii       

with the cubic dilatation ,k ku  , this equation is rewritten as 

, 2

1
ii

pc
      or   

2 2

2 2

1

i i px x c t

   


  
 (2.23) 

where 

2
pc

 




  (2.24) 

is the speed of propagation of such dilatational waves, known as the 

dilatational wave speed. From (2.23), the cubic dilatation   satisfies the wave 

equation, known as the dilatational wave equation. The Dilatational waves are 

frequently called longitudinal waves, or irrotational waves, or in seismology, P-

waves (where P stands for pressure). 

Navier equations (2.22) admit another wave-type solution. Taking the rotational 

of equation (2.22) yields the three equations 

, , ,( )ijk k llj ijk l lkj ijk k ju u u        (2.25) 

Here ijk  is the permutation symbol defined in (2.5). The term ,l lkju  is 

symmetric in the indices j and k, whereas the permutation symbol ijk  is 

antisymmetric. Hence, the second term appearing in equation (2.25) vanishes. 

Making use of this result, equation (2.25) reduces to 

, 2

1
i jj i

s

w w
c

   or  
2 2

2 2

1i i

j j s

w w

x x c t

 


  
 (2.26) 

where 

sc



  (2.27) 
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is the shear speed. Equation (2.26) is the three-dimensional wave equation known 

as transverse waves, or shear waves, or S-waves. The quantity 
iw  is the vector 

rotation of the displacement field 

,

1 1

2 2
i ijk k j ijk kjw u W     ,  

, ,

1
( )

2
ij i j j iW u u   (2.28) 

Here ijW  is the skew-symmetric part of the displacement gradient ,k ju  

known as the   infinitesimal rotation tensor. 

2.3.2. Helmholtz representation 

The results presented in the previous section can also be found in an 

alternative way known as Helmholtz decomposition. The vector field 
iu  can be 

expressed as the sum of the gradient of a scalar field 
iv  and the curl of a vector 

field (divergence-free) 
iw  

, ,i i i i ijk k ju v w H       or  u H   (2.28) 

and 

, 0k kH    or  0H   (2.29) 

Direct calculation show that , 0i iu   and , 0ijk k jv  . In other words, 
iu  has been 

decomposed into the sum of an irrotational vector 
iv  and a solenoidal vector 

iw . 

The case where 
iu
 
is solenoidal ( 0iv  ) and  

i iu w , Navier’s equations (2.25) 

reduce to 

,i jj iu u



  (2.30) 

which is the wave equation governing shear waves or equivoluminal waves. The 

case where the displacement is irrotational ( 0iw  ) and  
i iu v , can be found by 

rewriting (2.25) in the equivalent form 
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,
2

i jj iu u


 



 (2.31) 

which is the dilatational wave equation. Consequently, an arbitrary displacement 

can be regarded as the sum of equivoluminal and dilatational waves. Equations 

(2.30) and (2.31) are independent of each other, which mean that the longitudinal 

and shear waves propagate without interaction in unbounded media. 

2.4. Guided waves 

In comparison, a bulk wave travels in an infinite media, for which 

boundaries do not influence wave propagation. Hence they travel in the bulk of 

the material. Guided waves are waves that propagate within the boundaries of a 

structure. The boundaries not only influence the propagation but they guide the 

wave along the structure. Bulk and guided waves are governed by the same set of 

partial differential equations. The difference in mathematical solution is that 

guided waves must satisfy some additional boundary conditions [Giurgiutiu, 

2007]. The difficulty in the application of guided waves arises from the 

complexity of the solution. Guided waves are characterized by an infinite number 

of modes associated with a given partial differential equation solution. The basic 

principles of guided waves are very well known, and several textbooks discuss the 

topics [Giurgiutiu, 2007]; [Graff, 1991]; [Brekhovskikh, 1980].  

In this thesis, the guided waves propagation in plates will be considered. 

2.4.1. Guided waves in plates  

The elastic wave propagation theory in plates has been built-up over one 

hundred years. The propagation of waves in isotropic plates with free boundary 

conditions was first studied by Lamb [Lamb, 1917] after whom the guided waves 

in free plates are named. His study analyzed symmetric and anti-symmetric 

modes separately. In 1945 Rayleigh and Lindsay investigated the wave 

propagation in isotropic plates with free boundary conditions [Rayleigh and 

Lindsay, 1945]. In their works, the Rayleigh-Lamb equations were developed, 

which identified the relationship between wave frequency and wave number 
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under certain conditions. A comprehensive analysis and contribution to the 

understanding of guided waves in plates were given by Victorov [Victorov, 1970], 

Achenbach [Achenbach, 1973], Graff [Graff, 1991], Rose [Rose, 2014] and Royer 

and Dieulesaint [Royer and Dieulesaint, 2000]. Some examples of guided wave 

problems that have been solved and whose solution has inherited the name of the 

investigator are Rayleigh waves, Lamb waves, Love waves, and Shear horizontal 

waves. A brief description is listed as follows: 

2.4.1.1  Rayleigh waves 

Rayleigh waves, as the most straightforward wave, propagate on the free 

surface of a semi-infinite solid [Ostachowicz et al, 2011]. In these waves, the 

particle motion is composed of elliptical movements in the x y  vertical plane and 

of motion parallel to the direction of propagation x (as shown in Figure 2.2). The 

motion amplitude decreases rapidly with depth y  starting from the wave crest. 

The Rayleigh waves are very sensitive to surface defects with very little 

penetration in the depth of the solid [Hirao and Ogi, 1999]. For this reason, they 

can be used to inspect the surface properties for a structure. 

 

Figure 2.2: Rayleigh wave [Ostachowicz et al, 2011]. 

2.4.1.2  Lamb waves 

Lamb waves are waves that are guided between two parallel free surfaces, 

such as the upper and lower surfaces of a plate (Figure 2.3). These waves can 
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only be generated in thin-walled structures so that the motion amplitude remains 

the same on both top and bottom surfaces only. Therefore Lamb waves are of two 

basic varieties, symmetric Lamb-waves modes and antisymmetric Lamb-wave 

modes [Hirao and Ogi, 1999]; [Ostachowicz et al, 2011]. Unlike the Rayleigh 

waves, the Lamb waves are highly dispersive, and their speed is related to their 

frequency and plate thickness. 

 

Figure 2.3: Lamb wave [Ostachowicz et al, 2011]. 

2.4.1.3  Love waves 

Love waves are another kind of surface waves applied for surface inspection. 

These waves were firstly found by Love in 1911 and verified by many 

researchers. Their particle motion is horizontal (in the x z  plane) and 

perpendicular to the direction of propagation x . As in the case of Rayleigh 

waves, their wave amplitude decreases rapidly with depth (Figure 2.4). 

 

Figure 2.4: Love wave [Ostachowicz et al, 2011]. 
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2.4.1.4  Shear horizontal waves 

Shear horizontal (SH) waves are characterized by particle motion 

maintained in the x z  horizontal plane, as their name explained. The direction of 

the particle motion is perpendicular to the direction of wave propagation x 

(Figure 2.5). The SH waves can be symmetric and antisymmetric. Except for the 

very fundamental mode, the SH wave modes are all dispersive. The advantage of 

applied SH waves on structural health monitoring is summarized by Petcher et 

al. [Petcher et al, 2013]. 

 

Figure 2.5: Horizontal shear wave [Ostachowicz et al, 2011]. 

2.4.2. Shear horizontal wave in plate  

Shear horizontal waves have a particle motion contained in a plane parallel 

to the surface of the plate ( x z ). The axes definition is shown in Figure 2.6. The x  

axis is placed along the direction of wave propagation, whereas the z axis is 

perpendicular to it. [Giurgiutiu, 2007] 
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Figure 2.6: Particle motion and coordinate definition for SH plate waves [Giurgiutiu, 2007]. 

 

2.4.2.1 General equation 

The SH mode can be considered as the superposition of waves reflecting 

from the upper and lower surfaces of the plate, polarized horizontally (in the z  

axis direction). The problem is assumed to be z-invariant, i.e.,
( )

0
z





. Particle 

motion has only a 
zU  component and if 

zU  is independent of z , then equation 

(2.26) reduces to: 

2

2

1
z z

s

U U
c

    or  
2 2 2

2 2 2 2

1z z z

s

U U U

x y c t

  
 

  
 (2.32) 

where 
3zU w  

It is assumed that the particle motion has the form 

     
, ,

i kx t

zU x y t f y e


  (2.33) 

This form of the solution is chosen because it represents a wave motion 

propagating in the x  direction (due to the exponential term  i kx t
e

 ) and has a 

fixed distribution in the y  direction (standing waves across the thickness d ). 

Notice that zU  is independent of z , so that the problem is assumed z -invariant. 
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Substitution of equation (2.33) into equation (2.32) and division of both sides by  

 i kx t
e

  yields 

 
 

2 2
2

2 2
0

s

f y
k f y

x c

  
   

  

 (2.34) 

The solution of equation (2.34) has the general form 

     sin cosf y A y B y    (2.35) 

Where    is defined as 

2
2 2

2

s

k
c


    (2.36) 

and A , B  are arbitrary constants. The general form of the displacement field is 

therefore 

       , , sin cos
i kx t

zU x y t A y B y e


 


     (2.37) 

The boundary conditions state that the upper and lower plate surfaces are 

traction free 

   , , , , 0z
yz

U
x d t x d t

y
 


   


 (2.38) 

Without going into details [Giurgiutiu, 2007], Boundary conditions (2.38) lead to 

the dispersion equations characterized by the system of linear homogeneous 

equations with the determinant  

   sin cos 0d d    (2.39) 

Equation (2.39) is the characteristic equation of SH wave modes and is zero when 

either: 

 sin 0d   (2.40) 

which corresponds to symmetric modes (S-modes) of the SH waves, or: 
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 cos 0d   (2.41) 

which corresponds to antisymmetric modes (A-modes) of the SH waves. By virtue 

of the simplicity of the solution, explicit solutions of equations (2.40) and (2.41) 

are 

, 0, 1, 2,...

, 1, 3, 5,...
2

S

A

d n n

n
d n

 




 

 
 (2.42) 

The values S d  and Ad  given by equations (2.42) are the Eigenvalues for 

symmetric and antisymmetric motions. The solutions to equations (2.40) and 

(2.41) can be written as 

2

n
d


   (2.43) 

where  0, 2, 4, ...n  for symmetric SH modes and  1, 3, 5, ...n for antisymmetric 

SH modes. After substitutions, the general solution (2.33) becomes 

   
, , cos

2

i kx tS

z

n
U x y t B ye

d

 
  (2.44) 

for symmetric SH waves (S-modes), and 

   
, , sin

2

i kx tA

z

n
U x y t A ye

d

 
  (2.45) 

For antisymmetric SH waves (A-modes). 

A sketch of the symmetric SH modes (S0, S1, S2) and antisymmetric SH modes 

(A0, A1, A2) are illustrated in Figure 2.7. 
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Figure 2.7: SH waves, (a) symmetric modes, (b) Anti-symmetric modes. [Giurgiutiu, 2007]. 

2.4.2.2 Dispersion of SH waves 

By using the definition of the wave number  

p

k
c


  (2.46) 

where pc  is the mode phase velocity 

The dispersion equation (2.36) can be written as 

22 2

2 2 2s p

n

c c d

   
   

 
 (2.47) 

Equation (2.47) can be solved for the phase velocity pc  in terms of the frequency 

thickness product 2 fd  (where 2 f  ) 

2 2 2

2
2

4(2 )
p s

s

fd
c c

fd n c

  
  

  

 (2.48) 

It should be noted that when 0n  , corresponding to the first symmetric mode 

SH0 , the phase velocity 
pc  is equal to 

sc , so the SH0  wave mode is not dispersive 

and propagates at the shear wave speed 
sc . For all other SH modes ( 0n  ) the 

phase velocity is varying with the frequency-thickness product. This phenomenon 

is called dispersion, and results in the distortion of the shape of the wave packet 

(a) (b) 
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containing multiple frequencies that propagates for long distances. The first five 

SH modes of the phase velocity dispersion curves over a frequency thickness 

range of 0-14 MHz-mm, are plotted in Figure 2.8. The solid and dashed curves 

represent the symmetric and antisymmetric modes respectively. 

The cutoff frequencies of the SH modes which correspond to infinite phase 

velocities can be found by setting the denominator in equation (2.48) equal to 

zero. The nth cutoff frequency is given by  

 2
2

s

n

nc
fd   (2.49) 

It should be noted that , even integer n  represents symmetric modes and odd 

integer n  represents antisymmetric modes. 

Figure 2.8 also indicates the asymptotic behavior of the phase velocity. All the SH 

modes converge to 
sc  as the frequency thickness product becomes large. In this 

example 3.1 /sc mm s   for aluminum plate. 

The phase velocity represents the velocity at which a mode at a given frequency 

is traveling in a medium. If this mode is dispersive, then the group velocity is 

associated with the propagation velocity of a group of waves of similar frequency.  
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Figure 2.8: Phase velocity dispersion curves for  SH modes. 

The group velocity corresponds to the velocity at which the energy of a multi 

frequency wave packet is traveling. 

Solving the dispersion equation for the quantity 
g

d
c

dk


 (by definition, the group 

velocity ), it can be shown [Rose, 1999], that the group SH wave velocities can be 

expressed as : 

2

2

2
1

2
g s

s

n

c c
fd

c

 
 
  
 
 
 

 (2.50) 
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Figure 2.9: Group velocity dispersion curves for  SH modes. 

Notice that at cutoff frequencies given by equation (2.49), the group velocity of 

any mode is zero. As fd approaches infinity for any mode, the group velocity 

approaches the shear wave 
sc . Plots of SH mode group velocity curves are 

illustrated in Figure 2.9. 

2.5. Wave equation in cylindrical and polar coordinates 

While Cartesian coordinates are attractive because of their simplicity, there 

are many problems in mechanics fruitfully analyzed when they are modeled as 

having particular geometry and various symmetries, such as cylindrical 

symmetry. When looking for waves with some chosen geometry, it is 

advantageous to get at the solutions to the wave equation directly in these 

coordinates. 

2.5.1. Transforming the wave equation 

The coordinate independent wave equation 
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2
2

2 2

1 u
u

c t


 


 (2.51) 

can take on different forms, depending upon the coordinate system in use. In 

Cartesian coordinates, the Laplacian 2  is expressed as 

2 2 2
2

2 2 2x y z

  
   

  
 (2.52) 

To express (2.52) in cylindrical coordinates  , , zr  , a point with Cartesian 

coordinates  , ,x y z   as shown in Figure 2.10  is given by  

2 2

1tan

r x y

x

y
 

 

 
  

 

 (2.53) 

 

Figure 2.10: Illustration of cylindrical coordinates. 

After manipulations given in several mathematical books, the Laplacian in 

cylindrical coordinates is given by 

2 2 2
2

2 2 2 2

1 1

r r r r z

   
    

   
 (2.54) 

Thus, in cylindrical coordinates the wave equation becomes 
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2 2 2

2 2 2 2 2

1 1 1u u u u
r

r r r r z c t

     
   

     
 (2.55) 

2.5.2. Separation of variables in cylindrical coordinates  

The method of separation of variables can be used to obtain the solution of 

equation (2.55). Assuming that 

( , , , ) ( ) ( ) ( ) ( )u r z t R r Z z T t    (2.56) 

and substituting this trial solution into the wave equation, and then dividing the 

resulting equation by u to find 

2 2

1 ( ') ' 1 " " 1 "rR Z T

r R r Z c T


  


 (2.57) 

The separation of variables is seen from this equation: the right hand side is a 

function of t  only while the left hand side is a function of ( , ,r z ). Thus both sides 

must equal a constant ( 2k ). The resulting equation for T  can be solved 

2 2"T c k T   (2.58) 

through 

icktT Ae  (2.59) 

where the complex form for the solution is used and, as usual, the real part of the 

solution will be taken into account. 

Equation (2.57) is reduced to the form 

2

2

1 ( ') ' 1 " "rR Z
k

r R r Z


   


 (2.60) 

which equates a function of r and   with a function of z . The left and right hand 

sides must therefore equal to a constant ( 2a ) 

2 2"Z
a k

Z
   (2.61) 
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The solution to (2.61) is of the form 

2 2i a k zZ Be   (2.62) 

The remaining equation is then 

2 2( ') ' "rR
r a r

R


  


 (2.63) 

Both sides of this equation must equal a constant ( 2b ) 

2" 0b     (2.64) 

With the harmonic solution of 2 period that forces b to be an integer n  

( ) sin(n ) cos(n )c d      (2.65) 

Finally (2.63) must be solved for R  

2
2

2

1
" ' 0

n
R R a R

r r

 
    

 

 (2.66) 

This equation is known as Bessel's equation. Its two linearly independent 

solutions are known as Bessel functions ( )nJ r  and ( )nY r  of the first and second 

kind, respectively (Figure 2.11 and Figure 2.12). The subscript n  is known as the 

order of the Bessel function. As Bessel functions of the second kind exhibit a 

singularity in the origin 0r  , this branch of solutions is discarded. 

  

Figure 2.11: Bessel functions of the first kind 
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Figure 2.12: Bessel functions of the second kind 

 

2.6. Summary 

This chapter presented a review of the fundamental concepts of elastic wave 

propagation in elastic media. The general equations of 3-D wave propagation in 

unbounded solid media were developed. Two types of wave in unbounded media 

were identified and discussed: Pressure wave and shear wave. Both Navier and 

Helmholtz methods were used to determine the dilatational and rotational wave 

equations. The chapter ended with a description of guided waves in plates. The 

simple case of SH waves in plate has been considered. The concept of dispersion 

and basic information on guided SH wave have been reported. The use of polar 

and cylindrical coordinates to model the beveled plate showed the suitability for 

the investigation purpose. 



Chapter 3 

Formulation of SH waves in beveled 
free end plate 
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Chapter 3 

Formulation of SH waves in beveled free end plate 

3.1. Introduction 

In the present chapter the problem of Horizontally Shear wave propagation 

in a beveled free end plate is considered. The plate is assumed to be linearly 

elastic, homogeneous and isotropic. Based on the application of the method of 

separation of variables (also known as the wave function expansion technique), a 

series solution is derived. The analyzed plate is divided into two regions by 

introducing a semi-circular fictitious common boundary. In each region, the 

displacement field can be expressed as an infinite sum of appropriate wave 

functions satisfying partial boundary conditions, respectively. The total solution 

is assembled by enforcing the continuity conditions at the common interface. The 

solution technique proposed realizes a great reduction in the computational 

achievement [Mohammedi et al, 2019]. 

3.2. Geometry model of the problem 

The wave guide problem to be investigated is shown in Figure 3.1. It is 

shown a portion of a structure which represents a plate of uniform thickness d  

having a bevel angle  . The plate is bounded on the three sides by traction-free 

surfaces denoted 1 , 2  and 3 , and is assumed to be made of homogeneous, 

elastic, and isotropic material. 
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Figure 3.1: The plate structure geometry showing incident and reflected waves 

Since this work deals with horizontal shear SH guided waves, the only material 

properties which are taken into account are the plate shear modulus   and the 

density  . The coordinate systems, the extent of regions I and II, and their 

common artificial boundary 4  are all depicted in Figure 3.2. 

 

Figure 3.2: Partitioned wedge-plate regions and common fictitious boundary. 

A Cartesian coordinate system, for region I, is constructed where its origin is 

located at the tip of the beveled end, the positive x -axis is aligned with the lower 

surface, and the y -axis increases upwards. The origin of the Cartesian 

coordinates also serves as the origin of the polar coordinates system for region II. 

The polar angle   increases counterclockwise starting at the positive x -axis and 

ending at the beveled edge 3 . 
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The radius of the polar coordinates r  as shown in Figure 3.3 has a maximum 

value : 

sin

d
R


  (3.1) 

 

 

Figure 3.3: Maximum value of radius r. 

3.3. Formulation of reflected waves from a beveled free end 

The waves studied here are assumed to be time harmonic SH waves 

propagating in the x -direction of Figure 3.1. It is to be noted that for such type of 

waves, no dependence on z  occurs. In the domain of the plate, the displacement 

field which is the only non-vanishing component is given by zU . As illustrated in 

Figure 3.1, an incident SH wave travelling in the negative x -direction impinges 

on the beveled free end of the plate and reflects back in the positive x -direction. 

The corresponding displacement field zU  in the plate is made of incident 
inc

zU and 

the reflected 
ref

zU  displacements fields, 

inc ref

z z zU U U   (3.2) 

3.3.1. Equations of motion 

The geometry of the plate admits an equivalent formulation whereby the 

plate is divided into two regions as shown in Figure 3.2, and the incident SH 
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wave travelling in Region I impinges on the artificial boundary 4 , reflects and 

sets up a standing wave in the bounded Region II. The solutions for the out-of-

plane, time-dependent particle displacement fields I

zU  and II

zU , in regions I and 

II respectively, are governed by the following wave equations, which are derived 

from the Navier equations in Cartesian coordinates by (2.30) 

2 2 2

2 2 2 2

1I I I

z z z

s

U U U

x y c t

  
 

  
 (3.3) 

and, in cylindrical coordinates by (2.55) 

2 2 2

2 2 2 2 2

1 1 1II II II II

z z z z

s

U U U U

r r r r c t

   
  

   
 (3.4) 

where 

sc



  (3.5) 

is the shear velocity as defined by equation (2.27), while t  denotes time. 

3.3.2. Continuity conditions 

The interface continuity of displacement and stress conditions on the fictitious 

boundary 4  are given by 

; , cos , sinI II

z zU U r R x R y R      (3.6) 

; , cos , sinI II

nz rz r R x R y R        (3.7) 

I

nz is the shear stress at the boundary region I and is given by the Cauchy stress 

formula (2.13) 

( )

3 3 31 1 32 2

I I n I I I

nz j jt n n n        (3.8) 
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Where 1n  and 2n  are the direction cosine of the outward unit normal vector n

along the boundary 4  

For convenience the expression (3.8) can be rewritten in  , ,x y z  notation as 

cos sinI I I

nz xz yz       (3.9) 

II

rz is the shear stress in region II (Figure 3.4) given by the strain- stress 

relationship  

II
II z
rz

u

r
 





 (3.10) 

3.3.3. Boundary conditions 

The traction-free boundary conditions on traction free sides of the plate are 

given by: 

0, 0,I

yz y d    (3.11) 

0, 0,II

z     (3.12) 

Where I

yz  is the out-of-plane shear stress acting on the two boundaries, 1  and 

2  of region I, while II

z  is the out-of-plane shear stress acting on the two 

boundaries, 1 and 3  of region II (Figure 3.4). 

 

Figure 3.4: Stresses in polar coordinates in region II 
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3.3.4. Helmholtz equations 

The SH waves are assumed to be time harmonic, and hence the out-of-plane 

z -displacement fields in regions I and II are given by,  

( , )I I i t

z zU u x y e   (3.13) 

( , )II II i t

z zU u r e   (3.14) 

where zu  is the particle displacement,   is the applied frequency and 
2 1i   . 

Substituting equation (3.13) and equation (3.14) into equations (3.3) and (3.4), 

respectively, results to the steady state form of the governing equations in each 

region 

2 2 2

2 2 2

I I
Iz z
z

s

u u
u

x y c

 
  

 
 (3.15) 

2 2 2

2 2 2 2

1 1II II II
IIz z z
z

s

u u u
u

r r r r c





  
   

  
 (3.16) 

Equation (3.15) and equation (3.16) are also known as the Helmholtz equations in 

rectangular and cylindrical coordinates, respectively. The geometry of the regions 

renders the solutions of these equations as separable. 

3.3.5. Solution to Helmholtz equations 

The solution to the Helmholtz equations represents the reflected waves 

which can be expressed as an infinite sum of wave functions. 

0

( , ) cos mik xI ref

z m

m

m
u x y A y e

d





 
  

 
  (3.17) 

The total solution in region I is expressed in terms of a single incident mode of 

order q  and all the reflected modes expressed as an infinite sum of wave 

functions represented by equation (3.17) 

0

( , ) cos cosq m
ik x ik xI

z q m

m

q m
u x y C y e A y e

d d

 




   
    

   
  (3.18) 
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where 
qC  is the amplitude of the thq incident mode and mA  is the amplitude of the 

thm reflected mode. Note, each term of the series solution in equation (3.18) 

satisfies the traction free boundary condition in equation (3.11) along 1  and 2

Because only displacements according to z  are considered in the shear problem, 

the displacement field does not depend on z . The first two symmetric wave 

modes 0,2q   (solid curves) and antisymmetric wave modes 1,3q   (dashed 

curves) with respect to the mid surface 
2

d
y   of the displacement field are 

displayed in Figure 3.5. 

 

 

Figure 3.5: The y-variation of displacement for the first two symmetric and antisymmetric SH modes. 

The wave numbers mk  and 
qk  are defined by equation (2.47) as,  

2 2 2

2 2m

s

m
k

c d

 
   (3.19) 

2 2 2

2 2

s

q

q
k

c d

 
   (3.20) 
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Similarly, the separable solution of equation (3.16) is represented as an infinite 

Bessel-Fourier sum,  

0

0

( , ) cos ( )II

z n n

n

n
u r B J k r




 







 
  

 
  (3.21) 

Each term of the Fourier series in equation (3.21) satisfies the traction free 

boundary conditions (3.12) along 1  and 3 . nB  denotes the 
thn amplitude of the 

standing wave in region II, 
nJ 



is the Bessel function of the first kind of order 
n


, 

and 0k  is defined as  

0

s

k
c


  (3.22) 

The stress field in region I is given by, 

0
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I
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  (3.23) 

and 

0
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  (3.24) 

It must be remarked that, as shear waves involve only displacements along z -

direction, the stress components are only xz  and 
yz  

The stress field along the boundary  4  represented by equation (3.9) is given by 

0
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 (3.25) 

Additionally, the stress field in region II is given by 
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  (3.26) 

Substituting the series solutions (3.18), (3.21), (3.25) and (3.26) into the 

continuity equations (3.6), (3.7), and transposing the known incident terms to the 

right hand side, the displacement and stress continuity conditions are now 

expressed as, 
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 (3.28) 

It should be noted that when dealing with numerical procedures it is necessary to 

limit the infinite sums of the series to a finite number of terms M and N. The 

number of terms, which will be taken into consideration, depends only on the 

accuracy requirement. 

The two matching equations (3.27) and (3.28) are now projected onto cos
p




 
 
 

 

as shown below, 
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 (3.29) 
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 (3.30) 

where 

cos

sin

x R

y R








 (3.31) 

3.3.6. Block matrix representation 

After limiting the infinite series properly, this leads to a set of algebraic 

equations in which the unknown coefficients mA  and nB  may be solved, 

respectively, after setting qC  to be one. At this stage, the system of equations 

(3.29) and (3.30) can be expressed by a block matrix representation. For this 

purpose the terms containing the coefficients mA , nB  and qC  in (3.29), for displacement, 

are denoted by: 
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 (3.32) 

and in (3.30), for the stresses, are denoted by: 
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 (3.33) 

In these expressions, the superscripts D  and S  denote the displacement and 

stress respectively. Now the system of equations (3.29) and (3.30) can be 

represented by 

A B C

A B C

D D D

pm pn pqm

qS S S
npm pn pq

A
C

B

    
    
       

 (3.34) 

Notice that the indices m  and n  are dummy indices which imply the summation 

over the ranges M and N ( 0,1,2..., ; 0,1,2...,m M n N  ) 

To illustrate the global matrix representation of the system of equations, it would 

be helpful to consider the following particular cases 

 Case 1 

0 ; 0 ; 0 ; 0m n q p     

For this case, the system of equations (3.34) is given by: 

00 00 0 00

0

0
00 00 00

A B C

A B C

D D D

S S S

A
C

B

    
    

       

 (3.35) 

(3.35) represents two equations with two unknowns. 

 Case 2 

0,1,2 ; 0,1,2 ; 0 ; 0,1,2m n q p     

The system of equations (3.34) is then given by 
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(3.36)  represents six equations with six unknowns. 

 Case 3 

0,1,2,..., ; 0,1,2,..., ; 0 ; 0,1,2,...,m M n N q p P     

For this general case the system of equations (3.34) is then given by 
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 (3.37) 

The solution of equations (3.29) and (3.30) is obtained by choosing 

N M  and setting 0,...,p M . The resulting algebraic system of equations 

(3.37), of size ( 1) ( 1)M N   , is subsequently solved to determine the 

amplitudes mA  and nB . 
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3.4. Energy balance  

Based on the principle of conservation of energy which states that, 

0

M
inc ref

q m

m

E E


  (3.38) 

Where inc

qE  is the energy flux carried by the specified incident mode while ref

mE  

represents the energy flux of thm  reflected mode through the cross section of the 

plate. 

inc

qE  and ref

mE  are defined below [Abduljabbar et al, 1983].  
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 (3.40) 

In equation (3.39), | |mA  represents the absolute value of the amplitude of the 

mode transporting the energy flux. 

The approach taken in this work involves a wave function expansion and uses of 

truncated Fourier series in expressing the solution in the regions of the plate. To 

evaluate the accuracy of the technique, the error involved in the analysis can be 

estimated by the derivation from equation (3.38). This leads to the expression: 

0

M
inc ref

q m

m

inc

q

E E

E
 

 
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 


 (3.41) 

Where   denotes the relative error in the computational procedure. The value of M  is 

increased iteratively until the relative energy error  , shown in equation (3.41), 

satisfies a desired tolerance. 
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It will be convenient to introduce the symbol 
mqR  to denote the ratio of the elastic 

energy flux contained in reflected mode m  to the elastic energy flux supplied by 

incident mode q  

ref

m
mq inc

q

E
R

E
  (3.42) 

Substituting equation (3.42) into equation (3.41) results in the following 

expression for the relative error in the elastic energy flux, 

0

1
M

mq

m

R


   (3.43) 

In this work, the series solutions (3.18) and (3.21) are considered to be convergent 

when the corresponding relative error   does not exceed 
51 10 . 

3.5. Plate with vertical edge (beveled angle = 90°) 

The limiting case for 
2


   , as shown in Figure 3.6, corresponds physically 

to a waveguide of a semi-infinite plate with a vertical edge. 

 

Figure 3.6: Plate structure with normal free end 

In this special case, the stress-free boundary conditions on 3 is expressed in 

rectangular coordinates as: 

0, 0I

xz x    (3.44) 



Chapter 3 Formulation of SH waves in beveled free end plate 

53 

 

Substitution of the stress expression given in equation (3.23) into equation (3.44) 

above, results in the following relationship between incident and reflected modes,  

0

cos cos
M

m m q q

m

m q
A ik y C ik y

d d

 



      
        

      
  (3.45) 

Using the orthogonality of modes, equation (3.45), has the following analytical 

solution for the amplitude of the reflected modes, 

0 0,1,2,...,

q q

m

A C

A m M m q



  
 (3.46) 

The above result is obtained by: 

a) Multiplying both sides of equation (3.45) by cos
n

y
d

 
 
 

 

b) Integrating the resulting equation over y  from 0 to d  

c) Making use of the orthogonality of the trigonometric functions over 3  

d) Taking the corresponding incident thq  mode ( 0,1q  ) 

Equation (3.46) manifests the well-known fact that an incident mode reflects 

from the vertical free end of waveguide are totally reflected back. 

The same solution to the vertical free end can be found by dividing the domain 

into two regions as shown in Figure 3.7. 

 

Figure 3.7: Partitioned wedge-plate regions and common fictitious boundary. 
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Substitution of equation (3.46) into the continuity condition at the artificial 

interface described in equations (3.6) and (3.7) yields 

     0

0
2cos cos 2

N
q q

q n

n
n
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d


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  

 
  (3.47) 

At the interface cosx R   and for the zeroth incident mode 0q  , equation 

(3.47) reduces to: 

       0 0 0 0 0 2 0

1

2cos cos cos 2
N

n n

n
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   (3.48) 

The well-known Jacobi-Anger expansion is: 
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cos cos 2 1 cos 2
n

n

n

z J z J z n 




    (3.49) 

With z  replaced by 0k R  , equation (3.49) becomes: 

         0 0 0 2 0

1

cos cos 2 1 cos 2
n

n

n

k R J k R J k R n 




    (3.50) 

Comparing equations (3.48) and (3.50), while setting 0 1C  , the unknown 

coefficients can be found. 

 

0 2

4 1 1,2,...,
n

n

B

B n N



  
 (3.51) 

The results nB  in equation (3.51) are used to verify the accuracy of truncated 

series solution proposed above. 
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3.6. Summary 

An analytical approach is presented for the propagation of SH waves in a 

beveled free end plate. A region matching technique is applied to derive a series 

solution. Appropriate wave functions are employed to describe the displacement 

field of the SH wave. The enforcement of the continuity of displacements and 

stresses at the fictitious common boundary leads to the determination of the 

unknown coefficients. Finally, the particular case of a plate with vertical edge 

(beveled angle = 90°) was used to determine a simple analytical results that will 

be used in a limiting case sense, to test the numerical results obtained in the next 

chapter. 



Chapter 4 

Numerical results and discussion 
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Chapter 4 

Numerical results and discussion 

4.1. Introduction 

In this chapter the numerical results of Horizontally Shear wave 

propagation in a beveled free end plate are presented in terms of the ratio 

between the energy of the mth reflected mode and the energy of the qth incident 

mode. Two cases are considered; the zeroth (symmetric) and the first 

(antisymmetric) modes of incident waves. Beveled angles ranging from 20° to 90° 

with 0.1° increment and normalized frequencies ranging from 0 to 5.5 are 

considered. Selected beveled angles are reported here, namely 30°, 45° and 60° 

for the whole range of the normalized frequency. Also, three selected frequencies 

are considered, namely 1.5, 3.5 and 5.5, for the variation of the beveled angle 

from 0° to 90°.The energy ratios are plotted as function of the beveled angles and 

normalized frequencies. 

4.2. Non-dimensional frequency and wave number 

For this kind of studies, it is very convenient to define the non-dimensional 

frequency (normalized frequency) and the non-dimensional wave number. A non-

dimensional form of Equations (3.19) and (3.20) is adopted and used in reporting 

numerical results found in this thesis. Rewriting Equations (3.19) as 

2 2 2 2 2
2

2 2 2 2m

s s

m d
k m

c d d c

   



 
    

 
 (4.1) 

or 

2 2
2

2 2

m

s

k d d
m

c



 

 
  

 
 (4.2) 
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where 

m
m

k d
K


 is The non-dimensional wave number and 

s

d

c




   is the non-

dimensional frequency. With this notation, Equations (3.19) and (3.20) become: 

2 2

mK m    (4.4) 

2 2

qK q    (4.5) 

According to this definition,
2

s

d kd d

c
   



  
, (where 

2

k



 is the wavelength),  

 

Figure 4.1: Frequency spectrum for SH waves in a plate. Solid line are the symmetric modes, dashed lines are 

the antisymmetric modes  

Examination of Equations (4.4) and (4.5), show that for 0m   ( 0q  ) gives that 

,m qK  , or in dimensional form, sk c   . Thus it is seen that the zeroth-mode is 

non-dispersive, whereas all other modes propagate dispersively (Figure 4.1). 
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For ,m q  , ,m qK  is real and the spectrum consists of a family of hyperbolas 

( , 1,2,3,...)m q  . At , 0m qK   , ,m q  which represents the cutoff frequencies for 

the various modes. For ,m q  , ,m qK  is imaginary which correspond to a non-

propagating waves. Once again, in Figure 4.1, the solid lines correspond to the 

symmetric modes ( , 0,2,)m q  , the dashed lines are the antisymmetric modes 

( , 1,3)m q  .  

If the non-dimensional frequency   is small which corresponds to the case of a 

low frequency, it means that the dimension of the thickness of the plate is small 

compared to the wavelength and conversely. 

 

4.3. Energy variation with normalized frequency at selected beveled angles 

When a single known propagating incident mode impinges on the beveled 

end of a semi-infinite plate, it induces a collection of both propagating and non-

propagating reflected modes. The elastic energy of the reflected propagating 

modes is reported in this section for both SH0 and SH1 known incident modes, for 

a wide range of corresponding beveled angles and frequencies. The energy is 

reported as the ratio between the energy of the mth reflected mode and the energy 

of the qth incident mode. 

The proper number of terms in the series solution given in Equations (3.18) 

and (3.21), M (in region I) and N (in region II), are chosen by numerically testing 

for their convergence. Based on a sequence of numerical experiments, the 

maximum convergence is achieved at N=18 wave function modes in the region of 

the beveled end, and M=18 wave function modes in the plate region. In this work 

the largest non-dimensional frequency was set to 5.5 and the error tolerance  , 

defined in Equation (3.44), does not exceed 
51 10 .  
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4.3.1. Energy variation for the SH0 incident mode 

Figure 4.2 through Figure 4.4 show the 0mR  distribution due to SH0 incident 

mode. The variations of 0mR  versus  , due to the SH0 incident mode, which correspond to 

30  , 45°, and 60°, respectively are displayed in these Figures. 

 

Figure 4.2: 
0m

R versus normalized frequency for selected beveled edge 30    

4.3.1.1 Mode dominance of SH0 

When the beveled angle is 30° (Figure 4.2) or 45° (Figure 4.3) 00R  is strictly 

larger than 0mR  ( 0m  ) over the entire frequency range. For 30   (Figure 4.2), 

the minimum value of 00R  is 0.523 which is attained when 1.13 . 

 

Figure 4.3: 0mR  versus normalized frequency for selected beveled edge 45    
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While when 45   (Figure 4.3) the minimum value of 00R
 
is 0.634 and is 

attained when 1.07 . For the 60    (Figure 4.4) 00R  loses its dominance and 

vanishes at the following frequencies: 1.155, 2.309, 3.464, and 4.619. These 

values are illustrated in table 4.1. 

Table 4.1. Calculated results of Rmo for particular frequencies and beveled edge 60    

    R00 R10 R20 R30 R40 R50 Error 

1.155 60° 2.06E-13 1         1.00E-08 

2.309 60° 1.03E-13 1.93E-07 1       1.00E-08 

3.464 60° 2.29E-16 5.76E-09 1.24E-08 0.999971 
 

  1.00E-08 

4.619 60° 2.80E-15 1.94E-08 2.28E-08 3.99E-08 1   1.00E-08 

 

4.3.1.2 Total reflection of SH0 

Total reflection of SH0 is reached when 00 1R  . This occurs at certain 

beveled angle and frequency values. At beveled angle 30  and 60° the total 

reflection occurs when 2  (which is also a cut-off frequency). When 45  

00 1R   at all cutoff frequencies (1,2,3,4,5) and when 1.414 . 

 

Figure 4.4: 0mR  versus normalized frequency for selected beveled edge 60    
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4.3.1.3 Mode conversion of SH0 

As shown in table 4.1, when  =60° and for 1.155 , SH1 is the only 

reflected mode, similarly when 2.309 ,  3.464 and 4.619 the SH2, SH3 and SH4 

are the corresponding total reflected modes, respectively. (Figure 4.4). 

4.3.2. Energy variation for the SH1 incident mode 

Figure 4.5 through Figure 4.7 show the 1mR  distribution due to SH1 incident 

mode. The variations of 1mR  versus  , due to the SH1 incident mode, which correspond to 

30  , 45°, and 60°, respectively are displayed in these Figures. 

4.3.2.1 Mode dominance of SH1 

Unlike the dominance of the SH0 mode over the entire frequency range, the 

SH1 mode shows partial dominance as shown in Figures 4.5 and 4.6. 

 

Figure 4.5: 1mR  versus normalized frequency for selected beveled edge 30    

4.2.2.2 Total reflection of SH1 

At a beveled angle 30   , the total reflection is attained when 1  and 

2 . For the case of 45   , total reflection of the incident SH1 mode is 

obtained when 1 , 1.412 , and 2 . At the beveled angle 60  , the total 

reflection is attained when  1 , 2 , and 2.309 . 
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Figure 4.6: 1mR  versus normalized frequency for selected beveled edge 45    

4.3.2.3 Mode conversion of SH1 

Table 4.2 demonstrates when 60  and for 1.155 , 3.055, 4.163, and 

5.292, SH1 disappears ( 11 0R  ) giving way to other modes to carry the reflected 

energy. 

Table 4.2. Calculated results of Rm1 for particular frequencies and beveled edge 60    

    R01 R11 R21 R31 R41 R51 Error 

1.155 60° 1 2.06E-13         1.00E-08 

2.309 60° 1.93E-07 1 1.93E-07       1.00E-08 

3.055 60° 8.00E-09 8.07E-16 0.799976 0.200024     1.00E-08 

4.163 60° 6.33E-08 1.49E-13 1.13E-07 0.71398 0.28602   1.00E-08 

5.292 60° 6.61E-08 2.94E-13 1.00E-07 3.28E-07 0.667146 0.332853 1.00E-08 

 

Figure 4.7: 1mR  versus normalized frequency for selected beveled edge 60     
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The abrupt variations at the cutoff frequencies in Figures 4.3, 4.4, 4.6 and 

4.7 are due to the inception of new propagating modes, which cause a sudden 

change in the distribution of energy in the spectra of the reflected and 

transmitted waves. Remarkably, the variation in the energy ratios is more 

abrupt when the beveled angle is increased (see Figures 4.3 and 4.6). 

 

 

4.4.Energy variation with beveled angles and selected frequencies 

In subsection 4.2, the variation of the normalized frequency   versus three 

beveled angles, namely 30   , 45    and 60  was reported. However, in 

this subsection, the variation of the beveled angle 20 90    for selected 

frequencies 1.5 , 3.5, and 5.5, is investigated to determine the interaction of SH 

waves with a range of beveled angles. 

 

Figure 4.8: 0mR  versus beveled edge angle for normalized frequency 1.5   

In Figures 4.8, 4.9 and 4.10, 0mR  versus beveled edge angle at three selected 

normalized frequencies, namely 1.5, 3.5, and 5.5, is reported. These frequencies 

are selected to be halfway between the cutoff frequencies.  
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Figure 4.9: 0mR  versus beveled edge angle for normalized frequency 3.5   

In Figure 4.8, SH0 gradually decreases until it diminishes, 00 0R  , after 

which it increases and reaches total reflection, 00 1R  , when 20.019   , 28.67° 

and  46.60° (Table 4.3). 

Table 4.3. Calculated results of Rm0 for particular angles and normalized frequency 1.5   

    R00 R10 R20 R30 R40 R50 Error 

1.5 20.019 1.00E+00 1.23E-13         1.00E-08 

1.5 28.6691 1.00E+00 1.24E-14         1.00E-08 

1.5 46.597 1.00E+00 1.21E-11         1.00E-08 

1.5 63.51 4.53E-03 9.95E-01         1.00E-08 

 

 Figures 4.9 and 4.10 show the region where SH0 is very small compared to 

the other propagating modes. This region is centered around 63   . 
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Figure 4.10: 0mR  versus beveled edge angle for normalized frequency 5.5   

Similarly, in Figures 4.11, 4.12 and 4.13, 1mR versus beveled edge angle at 

the three selected normalized frequencies is displayed.  

 

Figure 4.11: 1mR  versus beveled edge angle for normalized frequency 1.5   

SH1 gradually decreases until it diminishes, 00 0R  , after which it increases and 

reaches total reflection, 11 1R  , when 1.5 , 28.67  ,  and 46.60° (Table 4.4). 
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Table 4.4. Calculated results of Rm1 for particular angles and normalized frequency 1.5   

    R01 R11 R21 R31 R41 R51 Error 

1,5 28,67 1,29E-09 1         1,00E-08 

1,5 46,6 3,51E-08 1         1,00E-08 

1,5 63,51 0,995468909 0,004531         1,00E-08 

 

 The region of vanishing 11R  is not as extreme as in the case of 00R . 

 

Figure 4.12: 1mR  versus beveled edge angle for normalized frequency 3.5   

 

Figure 4.13: 1mR  versus beveled edge angle for normalized frequency 5.5   
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4.5. Comparison with other approaches  

Facing recent approaches, this study deals with wave function expansion for 

the beveled end instead of a spatial discretization. As illustrated in (Table 4.5), this 

technique offers the advantages of allowing stable analysis of a vast selection of 

beveled angles, satisfaction of the boundary conditions, accuracy of the results 

and fast analysis time. 
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Table 4.5. Comparison with other approaches 

 
[Chancellier et al, 

2002] 

[Chancellier et al, 

2005] 

[Mofakhami and 

Boller,  2008] 

[Nakamura 

et al, 2012] 

[Ahmad and 

Gabbert, 2012] 
[Mohammedi et al, 2019] 

Wave type 
Studied guided Lamb 

waves propagation 

Studied guided Lamb 

waves propagation 

Studied guided 

Lamb waves 

propagation 

Studied SH 

waves 

Studied guided 

Lamb waves 

propagation 

Studied the propagation of 

SH waves in a waveguide 

Approximation 

method 

Used collocation 

methods and confirmed 

their results using finite 

elements method with 

45 wave function 

modes. 

Used a collocation 

method on the beveled 

free end to determine the 

Lamb wave amplitudes. 

N=800 collection points 

and M=45 wave function 

modes. 

Used time domain 

Finite element 

method 

Used time 

domain 

Finite 

element 

method 

Used time 

domain semi-

analytical finite 

element method 

Used frequency domain 

analytical wave functions 

method, to determine the 

SH wave amplitudes with   

N=18 wave function modes. 

Continuity 

condition at 

the boundary 

Enforced Continuity 

conditions at the 

interface nodes of the 

finite elements. 

Approximated a no 

tractions boundary 

condition at the beveled 

end. 

Used artificial 

internal boundary 

to model the semi-

infinite section. 

  

Enforced 

Continuity 

conditions at the 

interface nodes 

of the finite 

elements. 

Enforced continuity of 

displacements and 

tractions at an artificial 

internal boundary, 

Materials 
Used specific materials 

– stainless steel plates 

Used specific materials – 

stainless steel plates 

Used specific 

materials – 

Aluminum. 

Used specific 

materials – 

Aluminum 

plates. 

Used specific 

materials – 

Aluminum 

plates. 

Used non-dimensional 

quantities that apply to 

wide range of materials. 

Accuracy 

Solutions converge for 

angle values between 

70° and 90°. For smaller 

angles, the precision is 

less. 

Achieved an accuracy of 

1%. 

Did not report on 

the accuracy of 

their results 

Did not 

report on the 

finite 

element 

results 

accuracy 

Did not report 

on the semi-

analytical finite 

element results 

accuracy. 

Achieved an accuracy of 

0.001% 
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[Chancellier et al, 

2002] 

[Chancellier et al, 

2005] 

[Mofakhami and 

Boller,  2008] 

[Nakamura 

et al, 2012] 

[Ahmad and 

Gabbert, 2012] 
[Mohammedi et al, 2019] 

Bevel angles 

reported only 

inclination angles 

between 70° and 90° 

with increments of 5° 

Considered beveled 

angles between 85° and 

90° 

Considered a wide 

range of angles 

from 25° and up to 

90° with an 

increment of 5°. 

Used beveled 

angles 60°, 

85°, 90° 

specimen in 

their 

experimental 

setting and 

1° inclination 

for numerical 

simulation 

Report shows 

results for a 45° 
inclination angle 

used bevel angles as low as 

20° and up to 90° with an 

increment of 0.1° 

Frequency 

Range 

Considered low 

frequencies.  

The frequency reported 

was 3.15 MHz-mm 

which is equivalent to 

the non-dimensional 

frequency of about 0.4. 

This is considered to be 

in the low-frequency 

range. 

Considered low 

frequencies for a specific 

material (stainless steel, 
cT =3150 m/s).  

The frequency reported 

was between 1 to 4 MHz-

mm. The equivalent no-

dimensional frequency 

range is between 0.1 - 0.4 

Considered low 

frequencies. The 

frequency reported 

was 400 MHz and 

thickness of 3 mm 

which is equivalent 

to no-dimensional 

frequency of about 

0.2. This is 

considered to be in 

the low-frequency 

range 

Used low 

frequency 

0.546 MHz in 

a 2 mm thick 

plate. The 

equivalent 

no-

dimensional 

frequency is 

about 0.1. 

Considered low 

frequencies. The 

frequency 

reported was 2 

and 5 MHz-mm. 

The equivalent 

to non-

dimensional 

frequency range 

0.2 - 0.5. This is 

considered to be 

in the low-

frequency range. 

This study reports non-

dimensional frequency 

between 0 - 5.0, which 

places this work in the low 

to high-frequency range 

Discretization 
Meshing is needed for 

each beveled angle 
 Used collocation method 

Used Finite 

elements to 

discretize the 

domains 

Used spatial 

discretization 

method 

Meshing is 

needed for each 

beveled angle. 

This also leads 

to mesh-

dependency of 

results. 

This approach uses global 

wave functions and does 

not require spatial 

discretization. 
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4.6. Summary 

Numerical results are presented for the propagation of SH waves in a beveled 

free end plate. In this study, single incident SH0 and SH1 modes were used, and 

reflected  SH modes are examined. Two cases are considered; in the first, the zeroth 

mode (SH0 symmetric mode) is incident on the edge at selected frequencies and in 

the other, the first mode (SH1 anti-symmetric mode) is incident  on the edge at the 

same range of frequencies. The results are presented in term of the ratio between the 

energy of the reflected mode and the energy of the incident mode for a wide range of 

beveled angles and frequencies. The validity and accuracy of the results are checked 

by satisfaction of the energy conservation principle. 

Finally, a comparative study between different approaches mentioned in the 

literature shows the novelty of this work and indicates that the approach used is 

easy to deal with in a very wide range of angles and frequencies with great accuracy.  
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Chapter 5 

Conclusions 

5.1. Summary of findings 

In this thesis, a wave function expansion method is used to analyze the 

diffraction of SH waves by the beveled free end of a semi-infinite plate 

(waveguide). The plate with edge defect is modeled as a semi-infinite elastic plate 

with traction free surfaces and beveled free end. The solution of the problem uses 

the separability property of the Helmholtz equations, for both rectangular and 

cylindrical coordinates, and the continuity condition across an artificial boundary 

separating the two regions. This strategic selection of the regions leads to an 

efficient separable solution for the unknown coefficients. 

 In this study, only two single incident modes SH0 and SH1 (monochromatic) 

were used, and a range of frequencies was considered. Continuity conditions at 

the common boundary between the two regions combined with the orthogonal 

functions expansion led to a set of algebraic equations to derive the amplitude of 

the reflected waves. 

 The numerical solution of these algebraic equations is determined for a 

wide range of frequencies and bevel angles with a relative energy error that does 

not exceed 51 10 . For the limiting case, the computed results for a plate with 

vertical edge (beveled angle = 90°) are in good agreement with those from the 

exact series solution of a single vertical edge plate. These evidences have 

reinforced the validity of the whole framework of present formulations. This 

study has also shown the existence of critical bevel angles where an incident 

mode is either “totally” reflected or “totally” absorbed at a specific incident 

frequency. 

In contrast to recent approaches to beveled waveguides, [Chancellier et al, 

2002], [Chancellier et al, 2005], [Mofakhami and Boller, 2008], [Nakamura et al, 
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2012], [Ahmad and Gabbert, 2012], this work did not spatially discretize the 

beveled end of the waveguide. Moreover, a richer family of orthogonal wave 

function expansion for the beveled end is used, and consequently, the particular 

class of bases functions with compact supports, such as those used in SAFE or 

collocation approaches, has been avoided. The wave function expansion comes 

with the advantages of allowing the stable analysis of a wider range of beveled 

angles, the exact satisfaction of plate surfaces boundary conditions, high accuracy 

for near and far fields responses, and fast analysis turnaround time.  

Also, the technique used in this work demonstrated the ability to handle low 

to high-frequency excitation (the largest non-dimensional frequency was set to 

5.5 and an extremely tight error tolerance less than 0.001 percent). Additionally, 

the existence of total mode conversion and total mode reflection for some non-

dimensional frequencies was demonstrated. Likewise there are some critical 

beveled angles in which the incident mode (symmetric or anti-symmetric) is 

totally reflected in an inversely manner. Particularly, an incident SH0 mode 

reflected into an SH1 mode and conversely. Results at angles as low as 20o and 

nondimensional frequencies as high as 5.0 have been reported, where such 

results are not available in the literature. 

Consequently, these results illustrate the interaction of guided waves with 

edge defects and demonstrate a simple way to calculate reflecting coefficients. 

Such results can lead to the development of novel applications of guided waves to 

defect sizing instead of simple detection. The analytical methods presented in 

this thesis are very promising tools for further NDT applications, since they are 

much faster than classical finite element models, so they can serve as a model for 

numerical methods, in particular for those at much higher frequencies. Also, the 

adopted approach resolves some numerical instabilities that appear in other 

approaches available in the literature.  
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5.2. Recommendation for future work 

Future enhancement of this work may include investigation of SH wave 

excitation in plates with irregular geometry resembling natural fracture lines. 

The study also needs to be extended to the case of plates with constrained 

boundary conditions. 

It will be important to apply the region-matching technique to the modeling 

of SH wave diffraction by cracks present in a multilayer plate made of anisotropic 

materials. These extensions of the model allow considering many applications in 

the nondestructive control, particularly in the composite materials area. 

Experimental validations, extended to the 3D case could be further 

investigated. 
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Abstract 
 
The interaction of guided SH-waves with the beveled free end of a semi-infinite plate is analytically and numerically investigated. The 

material of the plate is assumed to be elastic, homogenous, and isotropic. The plate is modeled as a combination of a semi-infinite region 
and bounded wedged region separated by a common boundary. The analytical solution of the vertical free end case for the two regions is 
derived and used in verifying the numerical implementation. In this study, the SH0 and the SH1 first two incident modes are individually 
applied to analyze the corresponding reflected modes from the free end. Specifically, the elastic energy carried by the reflected modes is 
reported for a wide range of beveled angles and incident frequencies.  

 
Keywords: Bevel end; Edge defects; Elastic plate; SH waves; Wave function  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

Although experimental observations of dynamic edge phe-
nomenon in elastic waveguides took place over 70 years ago, 
the reflection of guided waves from the free end of an elastic 
layer remains an active area of research. Lawrie et al. [1] pro-
vided a detailed review of the field that covered the period 
from 1958 to 2008. Within this context, a follow-up review 
was done by Deckers et al. [2] in which they discussed and 
summarized research on wave-based methods. 

Researchers have made tremendous advancements utilizing 
mode and frequency selections to solve many problems; for 
example, in the testing of pipes, rails, plates, ship hulls, and 
aircraft integrity [3-5]. In recent years, the inspection of ir-
regularities and defects such as cracks have been carried out 
using horizontally polarized shear (SH) waves generated and 
detected by electromagnetic-acoustic transducers [6-8].  

The study of scattering problems varies from classical ap-
proaches such as mode matching and variational techniques to 
numerical techniques such as finite element and boundary 
element approaches, or a combination of numerical formula-
tions with a wave function expansion technique. Among these, 
Abduljabbar et al. [9] studied the diffraction of SH waves in a 
plate with arbitrary defects by employing a finite element 
formulation and wave function expansion technique. Further-

more, Chen et al. [10] studied the SH guided waves propa-
gated in a tapered plate using eigenmode matching theory and 
finite element methods. Ditri [11] dealt with the scattering of 
guided elastic SH waves from material and geometric wave-
guide discontinuities. Nurmalia et al. [12] studied the mode 
conversion behavior of an SH guided wave in a tapered plate. 
They investigated the different mode conversion phenomenon 
for abrupt and gradual thickness changes. 

Many investigations have been made to study the beveled 
end of plates using Lamb waves. A semi-analytical finite ele-
ment method has been used to simulate Lamb wave reflec-
tions at plate edges [13]. The Lamb wave conversion due to 
the beveled free end of plates has been studied theoretically as 
well as numerically, using the finite element method [14, 15]. 

Chancellier et al. used a collocation method on the beveled 
free end to determine the Lamb wave amplitudes and edge 
resonance [16]. Several experimental works have been pub-
lished on the reflection of Lamb waves by the free and bev-
eled edge of a plate [17-20]. In these papers, the mode conver-
sions were examined in detail over a large frequency range, 
and the energy conversion coefficients were obtained both 
numerically (finite element method) and experimentally.  

In this paper, a wave function expansion is used to investi-
gate the interactions of SH waves with the beveled free end of 
an elastic plate. The plate is divided into two non-overlapping 
regions with a common interface. Each region admits a sepa-
rable solution of the corresponding wave equation. The total 
solution is assembled by enforcing continuity conditions at the 
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interface. The solution preserves the total incident energy to 
within a small tolerance. The convergence of the solution is 
met when the difference between the total incident energy and 
reflected energy is less than 0.001 % which is a very tight 
criterion compared to existing convergence criteria reported in 
many works available in the Refs. [9, 11, 18, 19]. The solution 
provided here is compared with the known solution for a plate 
with a vertical end [3, 5]. Very good agreement between the 
proposed numerical approach and analytical solution is 
observed. This indicates the effectiveness of the proposed 
approach. A wide range of beveled angles and incident fre-
quencies are studied and reported here. 

The main contribution of this work is in the identification of 
critical bevel-angles/frequencies pairs, where incident waves 
are totally reflected or totally converted into a different mode. 
These findings were made possible by the highly accurate and 
fast solutions that swept through an extensive range of bevel 
angles and incident frequencies. 

 
2. Formulation of reflected waves from a beveled free 

end 

The waveguide studied in this paper is shown in Fig. 1(a). It 
represents a plate of uniform thickness d  having a bevel 
angle a . The plate is bounded on the three sides by traction-
free surfaces denoted 1G , 2G and 3G , and it is assumed to be 
elastic, homogeneous, and isotropic with shear modulus m  
and the density r . The coordinate systems, the extent of 
regions I and II, and their common artificial boundary 4G  are 
all depicted in Fig. 1(b). A Cartesian coordinate system, for 
region I, is constructed where its origin is located at the tip of 
the beveled end, the positive x-axis is aligned with the lower 
surface, and the y-axis increases upwards. The origin of the 
Cartesian coordinates also serves as the origin of the polar 
coordinates system for region II. The polar angle q  increases 
counterclockwise starting at the positive x-axis and ending at 
the beveled edge 3G . The radius of the polar coordinates r 
has a maximum value of / sinR d a= . 

As illustrated in Fig. 1(a), an incident SH wave traveling in 
the negative x-direction impinges on the beveled free end of 
the plate and reflects back in the positive x-direction. The cor-
responding displacement field U  in the plate is made of the 
incident incU  and the reflected refU  displacements fields, 

 
.inc refU U U= +  (1) 

 
The geometry of the plate admits an equivalent formulation 

whereby the plate is divided into two regions as shown in Fig. 
1(b). The incident SH wave traveling in region I impinges on 
the artificial boundary 4G , reflects and sets up a standing 
wave in the bounded region II. 

The solutions for the out-of-plane, time-dependent particle 
displacement fields I

zU  and II
zU , in regions I and II respec-

tively, are governed by the following wave equations,  

2 2 2

2 2 2 2

1I I I
z z zU U U

x y c t
¶ ¶ ¶

+ =
¶ ¶ ¶

 (2) 

2 2 2

2 2 2 2 2

1 1 1II II II II
z z z zU U U U

r r r r c tq
¶ ¶ ¶ ¶

+ + =
¶ ¶ ¶ ¶

 (3) 

 
where 1/2( / )c m r=  is the shear velocity, while t denotes 
time. The interface continuity of displacement and stress con-
ditions at 4G  are given by 

 
I II
z zU U=  (4) 

.I II
nz rzs s=  (5) 

 
I
nzs is the shear stress in region I and is given by 

 
cos sinI I I

nz xz yzs s q s q= +  (6) 
 

while II
rzs  is the shear stress in region II. Finally, the traction-

free boundary conditions on traction free sides of the plate are 
given by: 

 
0 ; 0,I

yz y ds = =  (7) 

0 ; 0,II
zqs q a= =  (8) 

 
where I

yzs  is the out-of-plane shear stress acting on the two 
boundaries, 1G  and 2G  of region I, while II

zqs  is the out-of-
plane shear stress acting on the two boundaries, 1G and 3G  
of region II. 

The SH waves are assumed to be time harmonic, and hence 
the out-of-plane z-displacement fields in regions I and II are 
given by,  

 
( , )I I i t

z zU u x y e w=  (9) 
( , )II II i t

z zU u r e wq=  (10) 

 
where w  is the applied frequency and 2 1i = - . I

zu  and II
zu  

represent the steady state displacements fields in the regions I 
and II, respectively. Substituting Eqs. (9) and (10) into Eqs. 
(2) and (3), respectively, results in the steady-state form of 
the governing equations in each region 

 
 
Fig. 1. (a) Geometry of the plate structure showing incident and re-
flected waves; (b) partitioned wedge-plate regions and common ficti-
tious boundary. 
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2 2 2

2 2 2

I I
Iz z
z

u u u
x y c

w¶ ¶ -
+ =

¶ ¶
 (11) 

2 2 2

2 2 2 2

1 1 .
II II II

IIz z z
z

u u u u
r r r r c

w
q

¶ ¶ ¶ -
+ + =

¶ ¶ ¶
 (12) 

 
Eqs. (11) and (12) are also known as the Helmholtz equa-

tions in rectangular and cylindrical coordinates, respectively. 
The geometry of the regions renders the solutions of Eqs. (11) 
and (12) as separable. In other words, the solutions to the 
Helmholtz equations can be expressed as an infinite sum of 
wave functions.  

The separable series solution for Eq. (11) is given by 
 

0

( , ) ( , ) ( , )I
z q q m m

m

u x y C h x y A x y
¥

=

= +å l  (13) 

 
with: 

( , ) cos qik x
q

qh x y y e
d
p -æ ö= ç ÷

è ø
; ( , ) cos .mik x

m

mx y y e
d
pæ ö= ç ÷

è ø
l  

Note, each term of the series solution in Eq. (13) satisfies 
the traction-free boundary condition in Eq. (7) along 1G  and 

2G . qC  is the amplitude of the thq incident mode, mA  is the 
amplitude of the thm reflected mode, and the wave numbers 

mk  and qk  are defined as,  
 

2 2 2

2 2m

mk
c d
w p

= -  (14) 

2 2 2

2 2 .q

qk
c d
w p

= -   (15) 

 
Similarly, the separable solution of Eq. (12) is represented 

as an infinite Bessel-Fourier sum,  
 

/ 0
0

( , ) cos ( ) .II
z n n

n

nu r B J k rp a

pq q
a

¥

=

æ ö= ç ÷
è ø

å  (16) 

 
Each term of the Fourier series in Eq. (16) satisfies the 

traction free boundary conditions Eq. (8) along 1G  and 3G . 
nB  denotes the thn amplitude of the standing wave in region 

II, /nJ p a is the Bessel function of the first kind of order 
/np a  and 0k  is defined as 0 /k cw= . 

The stress field in region I is given by, 
 

0

0

( , ) ( , )

( , ) ( , )

I M
I z
xz q q m m m

m

I M
I z
yz q q m m

m

uµ ik h x y ik A x y
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y d d

s m m

p ps m

=

=

¶
= = - +
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¶ -

= = - +
¶

å

å

l
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 (17) 

 
with 

( , ) sin qik x
q

qh x y y e
d
p -æ ö= ç ÷

è ø
%  ; ( , ) sin .mik x

m

mx y y e
d
pæ ö= ç ÷

è ø
%l  

Additionally, the stress field in region II is given by 
 

( )/
0 0

0

cos .
II N

II z n
rz n

n

u n Jk B k r
r r

p aps m m q
a=

¶ ¶æ ö= = ç ÷¶ ¶è ø
å  (18) 

 
Substituting the series solutions Eqs. (13), (16), (17), (18) 

in the continuity Eqs. (4) and (5), and after limiting the infinite 
sums to a finite number of terms, M and N, and transposing the 
known incident terms to the right-hand side, the displacement 
and stress continuity conditions are now expressed as, 

 

( )/ 0
0 0

( , ) cos

( , )

M N
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m n
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where 
 

( , ) cos cos sin sinm m
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Eqs. (19) and (20) are now projected onto cos( / )ppq a  

as shown below,  
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where 

 
cos
sin .

x R
y R

q
q

=
=

 (23) 

 
The solution of Eqs. (21) and (22) is obtained by choosing 

N = M and setting p = 0,…, M. The resulting algebraic system 
of equations, of size 2 2M M´ , is subsequently solved to 
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determine the amplitudes mA  and nB . The value of M is 
increased iteratively until the relative energy error e , shown 
in Eq. (24), satisfies the desired tolerance.  

 

0

M
inc ref
q m

m
inc
q

E E

E
e =

æ ö-ç ÷
è ø=

å
 (24) 

 
where inc

qE  is the energy flux carried by the specified inci-
dent mode while ref

mE  represents the energy flux of thm re-
flected mode. inc

qE  and ref
mE  are defined below [9].  
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where  denotes the absolute value. mqR  is used to denote 
the ratio of the elastic energy flux contained in reflected mode 
m to the elastic energy flux supplied by incident mode q  

 

.
ref
m

mq inc
q

ER
E

=  (27) 

 
Substituting Eq. (27) in Eq. (24) results in the following 

expression for the relative error in the elastic energy flux, 
 

0

1 .
M

mq
m

Re
=

= -å  (28) 

 
In this paper, the series solutions Eqs. (13) and (16) are con-

sidered to be convergent when the corresponding relative error 
e  does not exceed 51 10-´ . 

 
3. A plate with a vertical edge (beveled angle = 90°) 

The case of / 2a p= , as shown in Fig. 2, corresponds 
physically to a waveguide of a semi-infinite plate with a verti-
cal edge. In this special case, the stress-free boundary condi-
tions at 3G  are expressed in rectangular coordinates as 

 
0.I

xzs =  (29) 

 
Substitution of the stress expression given in Eq. (17) into 

Eq. (29) results in the following relationship between inci-
dent and reflected modes,  

 

0

cos y cos y .
M

m m q q
m

m qA ik C ik
d d
p p

=
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å  (30) 

Using the orthogonality of modes, Eq. (30) has the follow-
ing analytical solution for the amplitude of the reflected 
modes, 

 

0 ; 0,1,2,..., .
q q

m

A C
A m M m q

=

= = ¹
 (31) 

 
The above result is obtained by (a) multiplying both sides of 

Eq. (30) by cos( / )n y dp , (b) integrating the resulting Equa-
tion over y  from 0 to d, (c) making use of the orthogonality 
of the trigonometric functions over 3G , (d) taking the corre-
sponding incident thq  mode ( 0,1q = ). Eq. (31) manifests 
the well-known fact that an incident mode reflects from the 
vertical free end of the waveguide are totally reflected back. 

The same solution to the vertical free end can be found by 
dividing the domain into two regions as shown in Fig. 2(b). 
Substitution of Eq. (31) into the continuity condition at the 
artificial interface described in Eqs. (4) and (5) yields 
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At the interface cosx R q= and for the zeroth incident 

mode 0q = , Eq. (32) reduces to 
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The well-known Jacobi-Anger expansion is 
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Comparing Eqs. (33) and (34), while setting 0 1C = , the 

 
 
Fig. 2. (a) Plate structure with vertical free end; (b) partitioned wedge-
plate regions and common fictitious boundary. 
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unknown coefficients can be found 
 

( )
0 2

4 1 1,2,..., .n

n

B

B n N

=

= - =
 (35) 

 
nB  in Eq. (35) are used in verifying the accuracy of the 

truncated series solution proposed above. 
 

4. Results and discussions 

A non-dimensional form of Eqs. (14) and (15) is adopted 
and used in reporting numerical results found in this study. 
The non-dimensional wave number /m mK k d p=  and the 
non-dimensional frequency /d cw pW =  are substituted into 
Eqs. (14) and (15) to arrive at the following non-
dimensional frequency relationships,  

 
2 2

mK m= W -  (36) 
2 2 .qK q= W -  (37) 

 
When an incident guided wave impinges on the beveled end 

of a semi-infinite plate, it induces a collection of both propa-
gating and non-propagating reflected modes. The elastic en-
ergy of the reflected propagating modes is reported in this 
section for both SH0 and SH1 incident modes for a wide range 
of corresponding beveled angles and frequencies. The energy 
is reported as the ratio between the energy of the reflected mth 
mode and the energy of the qth incident mode. This ratio is 
denoted by mqR . Specifically, 0mR  denotes the ratio of elastic 
energy content in the thm  reflected mode relative to SH0 
incident mode (q = 0). Similarly, 1mR  corresponds to the 
ratio of elastic energy content in thm  reflected mode relative 
to the SH1 incident mode (q = 1). The number of terms in the 
series solution given in Eqs. (13) and (16), M (in region I) 
and N (in region II), are chosen to guarantee that the energy 
error e , defined in Eq. (28), does not exceed 51 10-´ . 

 
4.1 Energy variation with normalized frequency at selected 

beveled angles 

Figs. 3-6 show the 0mR  and 1mR  distribution due to SH0 
and SH1 incident modes. The variation of 0mR  versus W , 
due to the SH0 incident mode, is displayed in Figs. 3(a)-(c) 
which correspond to 30a = ° , 45°  and 60° , respectively. 
·Mode Dominance of SH0: When the beveled angle is 30°  
(Fig. 3(a)) or 45° (Fig. 3(b)), 00R  is strictly larger than 0mR  
( 0m ¹ ) over the entire frequency range. For 30a = °  (Fig. 
3(a)), the minimum value of 00R  is 0.523 which is attained 
when 1.13W = . While when 45a = °  (Fig. 3(b)) the mini-
mum value of 00R  is 0.634 and is attained when 1.07W = . 
For 60a = °  (Fig. 3(c)), 00R  loses its dominance and van-
ishes at the following frequencies: 1.155, 2.309, 3.464 and 
4.619. 
·Total Reflection of SH0: In Fig. 3, 00 1R =  at certain bev-
eled angle and frequency values, which corresponds to total 

reflection of the incident mode SH0. At the beveled angles 
30a = °  and 60° , the total reflection occurs when 2W =  

(which is also a cut-off frequency). When 45a = ° , R00 = 1 at 
all cutoff frequencies (1, 2, 3, 4, 5) and when 1.414W = . 
·Mode conversion of SH0: When 60a = °  and for, 

1.155W =  SH1 is the only reflected mode, similarly when 
2.309W = , 3.464 and 4.619 the SH2, SH3 and SH4 are the 

corresponding total reflected modes, respectively.  
·Mode Dominance SH1: Unlike the dominance of the SH0 
mode over the entire frequency range, the SH1 mode shows 
partial dominance as shown in Figs. 4(a) and (b). 
·Total Reflection SH1: At the beveled angle 30a = ° , the 
total reflection is attained when 1W =  and 2W = . For the 
case of 45a = ° , total reflection of the incident SH1 mode is 
obtained when 1W = , 1.412W =  and 2W = . At the bev-
eled angle 60a = ° , the total reflection is attained when 

1W = , 2W =  and 2.309W = . 
·Mode conversion of SH1: When 60a = °  and for 

1.155W = , 3.055, 4.163 and 5.292, SH1 disappears ( 11 0R = ) 
giving way to other modes to carry the reflected energy. 

The abrupt variations at the cutoff frequencies in Figs. 3 and 
4 are due to the inception of new propagating modes, which 
cause a sudden change in the distribution of energy in the 
spectra of the reflected and transmitted waves. Remarkably, 
the variation in the energy ratios is more abrupt when the bev-
eled angle is increased (see Figs. 3 and 4). 

 
4.2 Energy variation with beveled angle and selected fre-

quencies 

In Subsec. 4.1, the variation of the normalized frequency 
W  versus three beveled angles, namely 30a = ° , 45a = °  
and 60a = °  was reported. However, in this subsection, the 

 
 
Fig. 3. 0mR versus normalized frequency for the selected beveled 
edges: (a) 30a = ° ; (b) 45a = ° ; (c) 60a = ° . 
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variation of the beveled angle 20 90a£ £° °  for selected 
frequencies 1.5W = , 3.5 and 5.5, is investigated to determine 
the interaction of SH waves with a range of beveled angles. 

In Fig. 5, 0mR  versus beveled edge angle at three selected 
normalized frequencies, namely 1.5, 3.5 and 5.5, is reported. 
These frequencies are selected to be halfway between the cut-
off frequencies. In Fig. 5(a), SH0 gradually decreases until it 

diminishes, 00 0R = , after which it increases and reaches total 
reflection, 00 1R = , when 1.5W =  and 20.019a = ° , 28.67°, 
46.60°. Figs. 5(b) and (c) show the region where SH0 is very 
small compared to the other propagating modes. This region is 
centered around 63a = ° . 

Similarly, in Fig. 6 1mR versus beveled edge angle at the 
three selected normalized frequencies is displayed. SH1 gradu-
ally decreases until it diminishes, 11 0R = , after which it in-
creases and reaches total reflection, 11 1R = , when 1.5W = , 

28.67a = °  and 46.60°. The region of vanishing 11R  is not 
as extreme as in the case of 00R . 

 
5. Conclusion 

The diffraction of SH waves by the beveled free end of a 
semi-infinite plate is examined, and its numerical solution is 
determined for a wide range of frequencies and bevel angles. 
The solution uses the separability property of the Helmholtz 
equations, for both rectangular and cylindrical coordinates, 
and the continuity condition across an artificial boundary. This 
strategic selection of the regions leads to an efficient separable 
solution for the unknown coefficients. In this study, single 
incident modes were used, and a range of frequencies was 
considered. Continuity conditions at the common boundary 
between the two regions led to a set of algebraic equations. 
The solution of these algebraic equations has a relative energy 
error that does not exceed 51 10-´ . This study has shown the 
existence of critical bevel angles where an incident mode is 
either “totally” reflected or “totally” absorbed at a specific 
incident frequency. 

 
 
Fig. 4. 1mR versus normalized frequency for the selected beveled 
edges: (a) 30a = ° ; (b) 45a = ° ; (c) 60a = ° . 

 
 

 
 
Fig. 5. 0mR versus beveled edge angle for selected normalized fre-
quencies: (a) 1.5W = ; (b) 3.5W = ; (c) 5.5W = . 

 

 
 
Fig. 6. Rm1 versus beveled edge angle for selected normalized frequen-
cies: (a) 1.5W = ; (b) 3.5W = ; (c) 5.5W = . 
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Nomenclature------------------------------------------------------------------------ 

c  : Shear velocity 
d     : Thickness 

/nJ p a  : Bessel function 
,m qk k  : Wave numbers 

U    : Displacement field 
a   : Bevel angle 
e  : Relative energy error 
q   : Polar angle 
µ  : Shear modulus 
r   : Density 
s   : Stress 
w  : Frequency 
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 ملخص

طشٌقخٍي اللاًِائٍت  ب ًصف لصفٍذتالوْجِت هع ًِاٌت دشة هٌذْحت  SH القص الافقٍت الخفاعل بٍي هْجاثحن فذص 

خشٍْ على الذافت الراث الصفٍذت  ج ًوزجتحو كوا .هشًت ّهخباٌٌت الوٌادًفٍذت شض هادة الصعخواد  فإشقوٍت. ّقذ حن الخذلٍلٍت ّال

 .ٍي حذذُوا دذّد هشخشكتهٌطقت شبَ لاًِائٍت هع اجِاداث هٌعذهت على السطْح ّهٌطقت قطاعٍت هذذدة ، الوٌطقخ خشكٍبت لوٌطقخٍي :ك

حن فً ُزٍ الذساست  . الوٌجضالبشًاهج ًجاعت حن اسخخذاهَ للخذقق هي الزي الذل الخذلٍلً لذالت الٌِاٌت الذشة العوْدٌت ّ حوج بشٌُت

حن إٌجاد دل  ًواط الوٌعكست ّالوشحبطت بالٌِاٌت الذشة .حذلٍل الأبِذف  كل على دذٍ  SH0 ّSH1 ٌي هخخلفٍي ّاسدٍي ًوطام اسخخذ

الاًواط ًت الوٌقْلت بْاسطت ّطاقت الوشخصْصا  حوثٍل كوا حن  .الوشطْفتضّاٌا الالخشدداث ّ هجوْعت ّاسعت هيفً دالت سقوً 

ًسبت ّ حقبل  الطاقت هصًٍْت هبذأ باعخواد صذت ّدقت الٌخائج  حن الخأكذ هي  .ةّحشدداث ّاسدصّاٌا هشطْفت ّ  باخخٍاس ّ رلك الوٌعكست

الوْجِت  SHوْجاث بٍي الخفاعل الفِن  خذلٍلً الوقخشح فً ُزٍ الأطشّدت ٌساُن فًالوٌِج ال .% 001. 0 خطأ على الذقت لا حخجاّص

 . للصفائخهذهشة اى ُزٍ الطشٌقت ٌوكي اى حشكل قاعذة إسشادٌت للوشاقبت الغٍش بٍيالوْاد ٌّ ّ عٍْب

 ,دالت الوْجتSH ًِاٌت هٌذْحت, حشٍْ الذافت, صفٍذت هشًت, هْجاث :كلواث هفخادٍت

Abstract 

The interaction of guided Shear Horizontal (SH) waves with the beveled free end of a semi-infinite plate is 

analytically and numerically investigated. The material of the plate is assumed to be elastic, homogenous, and isotropic. The 

plate with edge defect is modeled as a combination of a semi-infinite region with traction free surfaces and a bounded 

wedged region, separated by a common boundary. The analytical solution of the vertical free end case for the two regions is 

derived and used in verifying the numerical implementation. In this study, two single incident modes SH0 and SH1 were used 

individually in order to analyze the corresponding reflected modes from the free end. The numerical solution is determined 

for a wide range of frequencies and bevel angles. Specifically, the elastic energy carried by the reflected modes is reported 

for selected beveled angles and incident frequencies. The validity and accuracy of the results are checked by satisfaction of 

the energy conservation principle with a tight error tolerance less than 0.001 percent. The analytical approach proposed in 

this thesis contribute to the understanding of the interaction of guided SH waves with defects and shows that this method can 

be an efficient guidelines for non-destructive testing of plates. 

Keywords: Bevel end; Edge defect; Elastic plate; SH waves; Wave function 

Résumé 

L'interaction des ondes de cisaillement horizontales (SH) guidées avec l'extrémité libre biseautée d'une plaque 

semi-infini est analytiquement et numériquement examinée. Le matériau de la plaque est supposé élastique, homogène et 

isotrope. La plaque présentant un défaut de bord est modélisée comme une combinaison d’une région semi-infinie avec des 

contraintes nulles en surfaces et d’une région sectorielle bornée, délimitées par une frontière commune. La solution 

analytique du cas d'extrémité libre verticale pour les deux régions est démontrée et utilisée pour vérifier l’implémentation 

numérique. Dans cette étude, deux modes incidents distincts SH0 et SH1 ont été utilisés individuellement afin d'analyser les 

modes réfléchis correspondants de l'extrémité libre. La solution numérique est déterminée pour une large gamme de 

fréquences et d'angles de biseau. Spécifiquement, l’énergie élastique transportée par les modes réfléchis est représentée pour 

une sélection d’angles biseautés et fréquences incidentes. La validité et la précision des résultats sont vérifiées par la 

satisfaction du principe de conservation de l’énergie avec une tolérance d’erreur étroite inférieure à 0,001%. L’approche 

analytique proposée dans cette thèse contribue à la compréhension de l’interaction des ondes SH guidées avec les défauts et 

montre que cette méthode peut constituer une ligne de conduite efficace pour le contrôle non destructif des plaques. 

Mots clés: Extrémité biseautée; Défaut de bord; Plaque élastique; Ondes SH; Fonction d’onde. 


