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LIST OF SYMBOLS

Let B(H) be the C*-algebra of all bounded linear operators acting on a complex Hilbert

space H, and let A€ B(H).

We denote by

o |lxll The norm of x.

o (X, The inner product of x, and y.

« Mt The orthogonal complement of M.

e VoW The direct sum of V, and W.

) @?ZlMi The direct sum of M; forall (i = 1,2,...,n).
e Conv(M) The convex Hull of M.

o || A] The norm of A € B(H).

e AF The adjoint of A € B(H).

e ker(A) The kernel of A € B(H).

* R(A) The range of A€ B(H).

. A% The square root of A€ B(H).

o |A] The absolute value of A € B(H).



CONTENTS

A The Aluthge transform of A € B(H).

e A, tel0,1] The generalized Aluthge transform of A € B(H).
e Re(A) The real part of A € B(H).

e Im(A) The imaginary part of A € B(H).

e g(A) The spectrum of A € B(H).

* Oapp(A) The approximate point spectrum of A € B(H).
* (A The spectral radius of A € B(H).

* [Ajjlnxn An n x n Operator matrix.

& A The diagonal operator matrix.

e W(A) The numerical range of A € B(H).

e w(A) The numerical radius of A € B(H).

e« AT The Moore-Penrose Inverse of A € B(H).
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INTRODUCTION

The motivation behind this thesis is to prove several new numerical radius inequalities for
Hilbert Space Operators.
The numerical radius of bounded linear operator A € B(H) is denoted by w(.) and defined
by

w(A) =supflA|: AeW(A)},

where W (A) is the Numerical Range of A. Thus the numerical radius is the smallest ra-
dius for the circular disc centred at origin which contains W (A). It is well-known that w(.)
defines a norm in H, which is equivalent to the usual operator norm |||, we present this

equivalence as follows, for all A € B(H)
1
EllAll =w(A) =|All. (0.0.1)

These inequalities are sharp. The improvement of the second inequality in (0.0.1) received
much attention from many mathematicians. In (1971), Bouldin [10] has proved that, if
A€ B(H)

1
w(A) = E[cosa:+ (cos® a + 1)%],

where «a is the angle between R(A) and R(A*). In (2003), Kittaneh [31] improved the sec-

ond inequality in (0.0.1) as follows

1 5. 1
w(A)SE[IIAIHIIA l2].
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After that in (2005), Kittaneh [34] found an upper and lower bound for w?(A), he proved

that

1 2 %2 2 1 2 *12

ZIIIAI [ +]AI" "l s 0™ (A) = EIIIAI |+ A7
This inequality was also reformulated and generalized in [14] but in terms of Cartesian
decomposition.

In (2007), Yamazaki [43] used the Aluthge transform which was defined by Aluthge [3] in

(1990) to improve the result of Kittaneh [31], this result says that
1 -
w(A) = E[IIAII +w(A)],

~ 1 1 . . . ]
where A = |A|2U|A|z2, and U is a partial isometry. In (2013) Abu-Omar, and Kittaneh [?]
have used the generalised Aluthge Transform to improve and generalise the result of Ya-
mazaki [43], so that

1 -
w(A) = E[”A” +w(ALl,

where A; = |A|'U|A|'™?, U is a partial isometry, and £ € [0,1].
In (2008) Dragomir [12] used Buzano inequality to refine the second inequality in (0.0.1)
as follows

2 1 2
w"(A) = E[IIAII +w(A%)].

This result has been generalised by M. Sattari, M. S. Moslehian, and T. Yamazaki [41]. They
proved that forall r = 1
1
W (A) < E(w’(Az) + [ AlI*").

This thesis is devided into four chapters.

Chapter one is about prelimanary, it consists of five sections. In section 1.1, we present
some basic and important properties of Hilbert space, also fundamontal properties of
bounded linear operators on Hilbert space are included. We collect some basic notions

as Cartesian, orthogonal, and polar decomposition, spectrum, and operator matrices that

CONTENTS 6
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we used throughout this thesis. Sections 1.2, and 1.3 are about numerical range, and nu-
merical radius respectively, it discusses several important and intersting well-know prop-
erties about them. In Section 1.4 we introduce the notion of Moore-Penrose Inverse, and
we collect some of well-know results about them, that they will be used in the last chap-
ter of this thesis. In Section 1.5, we present some of most important improvements of the
second inequality in (0.0.1).

Numerical radius inequalities for operator matrices is presented in Chapter 2. In (1982)
Halmous [22] created the notion of operator matrices, which played an important role in

operator theory. In (1995) Hou, and Du [29] have proved that

W([Ajjlnxn) = w([”Aij 725 5)-
After that in (2013) Abu-Omar, and Kittaneh improved this inequality as follows

W([Ajjlnxn) = waijlnxn),

where

0 Ay .
aij=w([Aji o ” for i,j=12,.,n.

and

a;i=w(A;;) for i=12,..,n.

Chapter 2 is divided into 2 sections. In Section 2.1 we present a new numerical ra-
dius inequalities for n x n operator matrices. First we give numerical radius inequalities
for n x n operator matrices with a single non zero row, utilising this result we conclude
numerical radius inequalities for arbitrary n x n operator matries. Other results for 3 x 3
operator matrices that involve the skew diagonal part of 2 x 2 operator matrices are also
obtained in this section. Our results are a natural generalisation of some of numerical ra-
dius inequalities for 2 x 2 operator matrices which are given in [25] , and references therein,
our results are sharp. In Section 2.2, we prove new numerical radius inequalities for the

skew diagonal part of 3 x 3 operator matrices. We give several upper and lower bounds for

CONTENTS 7
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0 0 A

w 0 B O such that A, B, C € B(H), with an application when A, and C are positive
C 0 0

operator, and B is a self-adjoint operator.

An inequality involving the generalised Aluthge transform is also obtained in this Section.

Chapter 3 is devoted to prove numerical radius inequalities for products and commu-
tators of operators. In fact the numerical radius is not multiplicative, for all A, B € B(H) the
inequality

w(AB) = w(A)w(B) (0.0.2)

is not true even for commuting operators, which made many researchers to find condi-
tions under which refines the inequalty (0.0.2). The authors in [27], [21] have refined the
inequality (0.0.2) but under the condition AB = BA (i.e, A commute with B). They proved
that for all A, B € B(H), such that AB=BA

w(AB) = 2w(A)w(B)

For additional results, see Gustafson and Rao [21].
Further, other mathematicians proved new numerical radius inequalities for the product
of two operators without commutativity conditions. In (2008) Dragomir has shown that,
for all A, B € B(H)
* 1 2 2
w(B"A) < 5 I1A]" + Bl

M. Sattari, M. S. Moslehian, and T. Ymazaki [41] have established a generalisation of the

result of Dragomir, as follows
1 1
w' (B*A) < Z|||A*|2’ +|B* 12" + 5w’(AB*).

After that in (2015) Abu-Omar and Kittaneh [3] have shown that, for all A, B € B(H)

w(AB) < luﬂwz + WMB)*FM + 1w(BA)
T4 Al IBI 2 '

A new research appeared when they are looking for the improvement of the inequality

(0.0.2) that is finding numerical radius inequalities for commutators of operators that im-

CONTENTS 8



CONTENTS

prove the inequalities folow directly by appliying the triangle inequality of numerical ra-
dius.

Chapter 3 is divided into 2 Sections. In Section 3.1, we present numerical radius inequal-
ities for products of three operators whithout assuming the commutativity of operators.
Our results refine and generalise recent results which are obtained by Abu-Omar and Kit-
taneh [3] in (2015), and M, Sattari, M. S. Moslehian, and T. Yamazaki [41] in (2015). In
Section 3.2, we give new numerical radius for sums and commutators of operators.

In Chapter 4, we establish a generalisation for recent results which are obtained by
Abu-Omar and Kittaneh [4] in (2014) and we give new generalised numerical radius in-
equalities. Using an analysis that is totaly different from the ones used in Chapter 2, we
obtain a new numerical radius inequalities for arbitrary n x n operators matrices, from
these results, we establish a new spectral radius inequalities for sums and products of
operators. A spectral radius inequality for commutators of operators is also obtained in
this Chapter. An improvement of the generalised triangle inequality of the usual operator
norm is given in this Chapter.

Finally, we apply some of the previous results to operators whith closed range, and we
found new spectral radius inequalities for Moore-Penrose inverse and we improve some

of well-known inequalities about them.

CONTENTS 9



CHAPTER 1
PRELIMENARIES

Throughout this thesis H denotes a complex Hilbert space with inner product (:,-) and
B(H) is the C*-algebra of all bonded linear operators on H. In this Chapter we collect
some of basic properties of Hilbert space and operator theory, that will be used throughout

this thesis. The most data of Section 1.1 is from [16, 18, 30, 37, 39, 40].

1.1 Basic facts

Définition 1.1.1. LetH be a Complex vector space.
(1) AnormonH isa function ||.| : H— R such that forall x,ye Hand a € C

(@) llx|l =0 (strictly positive).
(b) x|l =0ifandonlyifx=0
© llax| =lallx| (strictly homogeneous).

@) llx+yl < llxll+ |yl (triangle inequality).

(2) A vector space H on which there is a norm is called a normed vector space, or just a

normed space.
(3) A Banach space is a complet normed vector space .

Définition 1.1.2. LetH be a Complex vector space.



CHAPTER 1. PRELIMENARIES

(1) An inner product on H is a function {,) : H — H such that for all x,y,z € H, and
a,feC

(a) {x,x)=0.
(b) {x,x)=0ifandonlyifx=0.
(©) {ax+ By, z)=aix,z)+ By 2).

@ <x,y)=<y,x.
(2) A complex vector space H with an inner product {,) is called Inner product space.

(3) An inner product space which is complete with respect to the metric associated with

the norm induced by inner product is called Hilbert space.

Any inner product salisfies an important inequality, called the Cauchy-Schwarz in-

equality which is due to John von Neumann (1930).
Proposition 1.1.3. LetH be an inner product space, and let x, y € H. Then
@ 1<%, Y)I* < (x, X, ¥

(b) The function ||.| : H— C defined by || x| = (x, x>%, is a norm on H called the norm

induced by inner product.

An inner product (x, y) can be expressed in termes of norms as follows.

Theorem 1.1.4. (Polarisation identity)

LetH be an inner product space, and let x,y € H. Then
1 . . . .
@y = U+ IR ==yl + illx+ iyl = dllx+ iy)°).

Définition 1.1.5. Let H be an inner product space, and let M be a subspace of H. The or-

thogonal complement of M is the set

Ml:{er:(x,y):O for all yeMj.

1.1. BASIC FACTS 11



CHAPTER 1. PRELIMENARIES

Définition 1.1.6. (Direct sum) A vector spaceH is said to be direct sum of two subspaces V
and W ofH, written

H=VeW,
ifeach x € H has a unique representation
X=v+w for all veV weW.
Theorem 1.1.7. LetH be an inner product space and let M be a closed subspace of H. Then
H=MeM™".

The direct sum decomposition of H may be expanded to a finit of mutualy orthogonal

closed subspaces M; e Hforalli =1,2,...,n, so that
H= GB?le,'.

Définition 1.1.8. Let M be a subset of a Hilbert spaceH .

(@) M is said to be convex if

tx+(1-0yeM for all x,yeM and te€]0,1].
(b) The convex Hull of M denoted by conv(M) is the smallest convex set of H contained
M, in other word , conv(M) is the intersection of all convex sets containing M.

Définition 1.1.9. LetH be a Hilbert space. An operator A:H—— H is:

* Linear operator if

Alax+ Py) = aAx) + BA(y),

forall x,y e H, and scalars a, (5.

* Bounded Linear operator if A is linear and there exist a positive number k such that

|Ax| < kllx|| for all xeH.

1.1. BASIC FACTS 12



CHAPTER 1. PRELIMENARIES

Définition 1.1.10. Let A be a bounded linear operator. The norm of A is defined by

| All = sup [[Ax].
lxl=1

An equivalent definition of the operator norm is

A= sup [(Ax, I for all x,yeH.
Ixl=lyl=1

The set of all bounded linear operators A:H+~— K is denoted by B(H, K). If K is a Banach
space, then B(H, K) is a banach space. When H = K, we will write B(H) for B(H, H).

To each operator A € B(H) correspends a unique operator A* € B(H) that satisfies
(Ax,y) =(x, A% y) for all x,yeH.
The operator A* is called the adjoint of the operator A. Moreover, A* satisfies
LAl =1A*l  and  ||AI* =] A" Al = |AA*].
If A= A%, then A is self-adjoint operator.

Theorem 1.1.11. (Generalized Polarization Identity). For each A€ B(H) and x, y € H, we

have
) )
(Ax,y) = ZKA(H Vhx+y)—(Ax-y),x—-»+ i[(A(x+ iy, x+iy)—(Ax—-iy),x—iyl.

Définition 1.1.12. An operator A € B(H) is called non-negative operator (or positive opera-

tor) if A is a self-adoint operator and (Ax, x) = 0, forall x e H.

Theorem 1.1.13. Every positive operator A € B(H) hase a unique non-negative square root
B € B(H) defined by B = A? . Furthermore B commutes with each operator that commautes

with A.

If Ae B(H). Then

1.1. BASIC FACTS 13



CHAPTER 1. PRELIMENARIES

¢ The Kernel of A is the closd subspace of H defined by

ker(A)={xeH: Ax=0}.

¢ The Range of A is the subspace of H defined by

R(A)={Ax:He H}.

Définition 1.1.14. An operator U € B(H) is called a partial isometry if
|Ux|l=|lx|  for all xekerU)t.

In that case ker(U)* is called the initial space of U and R(U) is called the final space.

The range of U is always closed.

Theorem 1.1.15. Let A€ B(H). Then there exists a partial isometry
U € B(H) such that

A=U|Al where |Al=(A*A)2. (1.1.1)

Furthermore, U may be chosen such that R(|A]) = R(A) = ker(A)* is the initial space of U
and in that case the decomposition (1.1.1) is unique and is called the Polar decomposition

of A.

For every A € B(H). The Aluthge transform of A denoted by A € B(H) was first defined
by Aluthge [8] as
A=|AZU|AP.
The generalised Aluthge transform of A denoted by Ay, is defined by

A, =|AI'UIA™T  for te[0,1].

Theorem 1.1.16. Let A € B(H). Then there exists self-adjoint operators B,C € B(H) such
that

A=B+iC. (1.1.2)

1.1. BASIC FACTS 14



CHAPTER 1. PRELIMENARIES

+ A* A- A"

Necessarily B = ,and C =

The decomposition (1.1.2) is called the Cartesian

21
decomposition of A. The operators B, and C are called real part , and imaginary part of A

respectively.
Définition 1.1.17. [I16] Let A€ B(H). Then

(a) The spectrum of A denoted by o (A) is the non-empty compact set of all complex num-

bers A defined by

0(A)={AeC:A-AI is not invertible}.

(b) The spectral radius of A is the number given by

r(A) = max{|A|: A€ o (A)}.

r(A) is the radius of the smallest closed disk centred at origin of the comlex plane and
containing o (A).

The most important property of the spectral radius is the Gelfand formula
1
r(A) = nlim IA™|7.
It is well-Known that for all A€ B(H)
r(A) = || All.

Proposition 1.1.18. [/6] Let A,B € B(H). Then

(@) o(AB)\{0} =0 (BA)\{0}.

(b) r(AB) =r(BA)

Let Hy,Hy,Hs,...,H, be Hilbert spaces and let H = ea?zlﬂ-ﬂi. denote by
Py, forall i = 1,2,..., n the projection into H;. Let A € B(H), we can express A in the form
of operator matrix

A=[Ajjlnxn for all (i,j=1,2,..,n),

1.1. BASIC FACTS 15



CHAPTER 1. PRELIMENARIES

where A;; = Py, (A|H;) are the projections into H; of the restriction of Ato Hj, so
A;j € B(H},H;). the operations on operator matrices are the obious ones with respect the

same decomposition of H. The adjoint of A = [A; ]« is the operator matrix
A= [A}fl.]nxn for all i,j=1,2,..,n.

The diagonal operator matrix [A;j]l,x, with A;; =0 when i # j is the directe sum of the

operators [A;;],x, forall i = 1,2,...,n and denoted by GB?ZIAH.
Theorem 1.1.19. [/] Let A; € B(H;) foralli=1,2,...,n. Then
U(EB?:lAi) = U?ZIO'(AZ').
Theorem 1.1.20. [9] Let A € B(H) be a diagonal operator matrix (or A= EB;’ZIAZ-Z-). Then

IAl' = max(l A1 ll, | A2z, ..., [ Arn)l,

r(A) = max(r(A11), r(Az),..., r(Ann)).

Theorem 1.1.21. [29] LetH1,Hy, ...,H,, be Hilbert spaces and let A = [Aj; j],,x, be an operator
matrix, whith A;j € BHj,H;) foralli, j=1,2,..,nandlet T = [|| Ajj]nxn. Then

TAI<UITIH=1TIAijllnxnll,

r(A) = (1) =r(lAijlnxn)-

Proposition 1.1.22. [35, 9] LetH,,H; be a Hilbert spaces and let A € B(H,,H,),
Be B(Hy, H>). Then

0 A
(“)r([B 0

0 A
(b) H[ B 0 ]H=max{||A||,||B||}.

|- vrtaB)

1.1. BASIC FACTS 16



CHAPTER 1. PRELIMENARIES

1.2 Numerical Range

Définition 1.2.1. /2], 22] The Numerical Range (also known as field of values) of an opera-

tor A€ B(H) is the non empty subset of the complex numbers C, given by
WA ={{Ax,x), xeH, x| =1}
The following properties are immediate
Proposition 1.2.2. [2], 22] Let A, B € B(H), F subspace ofH and a, f € C. Then
1. W(al+ BA) =a+pW(A),
2. W(A") =, A e W(A),
3. WWU*AU)=W(A) for any unitary UeB(H),
4. W(AIF)cW(A),
5. WA+B)cW(A)+W(B),
6. W(Re(A)) = Re(W(A)) and W (Im(A)) = Im(W (A)).

Example 1.2.3. [2]] Let A € B(H) be the unilateral shift on l,, the Hilbert space of square
summable sequences. For any x = (X1, X2, X3,...) € H, |x]| = 1, we have Ax = (X2, X3, X4, ...)
and hence consider

(AX,X) = X1X3 + Xo X3+ X3X3 + ...

with
2 2 2
|X1| +|.)C2| +|X3| +...=1.
Notice that
[{Ax, x)| < [|xillx2] + X2/l x3] + [x3]]x4] + ...
1 2 2 2
< §[|x1| + 2| %07 + 2| x3]" +...]
1
< -2,
2 1

1.2. NUMERICAL RANGE 17
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Hence |{Ax,x)| < 1 if |x1] # 0. For |x;| = 0 and x containing a finite number of nonzero
entries, we can show in the same way that|{Ax, x)| < 1 by considering the minimum natural
number n for which x, # 0.

Thus W (A) is contained in the open disk {z : |z| < 1}. We now show that it is in fact the open

unit disk. Let z = re'?,0 < r < 1, be any point of this disk.

Consider
x=(V1-72,rV1-r2e r2\/1-r2e7210 ).
Observe that
||x||2 =1-r’+r’+ r2(1 — r2) + r4(1 — r2) +..=1.
Furthermore
(Ax,x)=r(1- rz)eie + r3(1 - rz)ei'g +..=re,

Thus ze W(A), so that
W(A) =1{z:|z| < 1}.

Theorem 1.2.4. [2]] Let A be an operator on a two-dimensional space. Then W (A) is an

ellipse whose foci are the eigenvalues of A.

A
Proof. Let A= 01 /{l , where 1; and A, are the eigenvalues of A.
2
First,if A1 = 1> = A, we have
0 a
A-Al=
A [ 0 0
Then W(A-AI) € {z: |zl < 4.
We now show that W(A-AI) ={z:|z| < %}.
. lal .
Letz=re?, 0<r< %, andlet x = (acosa, ﬁsinae’e), where sin2a = |27|r <landO=<sa=<
%, then
: asin2a :
(A= ADx,x) = |ale®® cosasina = |ale’? —= = re'?,
so that

WA-AD={z:|z|< %},

1.2. NUMERICAL RANGE 18
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then W (A — AlI) is a cercle with center 0 and radius '%', so W (A) is a cercle with center A

%, which is an ellipse.

and radius
If A; # A, and a =0, we have

A—)LI:[ A0 ]

0 A

Let x = (x;, x») be a unit vector, then
(Ax,x) = 7L1|x1|2 +/12|xg|2 =AMt+A(1—-1t) where t= |x1|2.

So W(A) is the set of combinations of 1; and A, and is the segment joining them.

If A; # A, and a # 0, we have

/11+/12 —11_12 a
A—( )I: A1—A .
2 0 —(dzhy
. A+ A o) M=
e 0A—( 1 2)I): roae — A where 2L _rel?,
2 0O -r 2

Let x = (x1, X») be a unit vector in C2, where x; = e!%cos6, x, = ¢Psind, a € [0,%] and,

B €[0,2n]. Then we get

) . I . . o .
Ax=(rei%cosO+ae 0ePsingd, —re'fsin0) = (re’®cosd + ae'??sin0, —re'f sin0),

and
(A,x, x) = r(cos’0—sin’0) + ae'P=2=9 cos0sin0
= rcos20+ |2£| sin2@[cos(f—a—-0+y)+isin(f—a—-0+7y)] where vy =arg(a)
= v+iw,
with
v=rcos20 + |2i|sin29cos(ﬁ —a-0+7y),
and

w= |2i|sin298in(,6—a—9+y).
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So
2 2 lal® 2
(v—rcos20) -+ w :Tsm 20.

This is a family of circles Rewriting this last expression as

2 2 lal® . 2
(v=rcos¢p) +w :Tsm o, O0<¢p=m.
and differentiating w.r.t. ¢, we get

|al?
(v=rcos)r = Tcosgb.

Eliminating ¢ between the last two equations, one obtains

v? w?

+ =1
r2+(al2/4) (lal?/4)

This is an ellipse with center at 0, minor axis a, and major axis v/ 72 + (|a|?/4). O

The most important property of W (A) is given in the so-called Hausdorff-Toeplitz theo-

rem.
Theorem 1.2.5. [2]1] The numerical range of an operator is convex.

Proof. Let a = (Ax, x), B = (Ay, y) two separate points, with || x| = ||yl = 1. It’s enough to
prove that the segment containing a and £ is contained in W (A).

Let F = Vect(x, y) the subspace spanned by x and y. From Theorem 1.2.4 w(A/F) is an
ellipse, which contains the segment joining @ and f and from Proposition 1.2.2, we get

W(A/F)c W(A). Then W(A) contains the segment joining a and S. O

Theorem 1.2.6. [2]](Spectral inclusion)

The spectrum of an operator A € B(H) is contained in the closure of its numerical range.

Proof. Let A € 04y, (A) and let {f;} be a sequence of unit vectors with

ICA=AD full — 0.
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By the Schwarz inequality,
K(A=AD fu, f)l < 1(A=AD) frll — 0.

so ((A—AD fn, fn) — A. Thus A € W(A).
As the boundary of the spectrum is included in the approximate point spectrum, and the
numerical range is convex, we conclude that the spectrum of A is contained in the closure

of its numerical range.

Theorem 1.2.7. [/] Let A; € BH;) foralli=1,2,...,n. Then
W(e? | A;) = convu}_ | W(A)).

Theorem 1.2.8. [/] LetHy,Hy, ...,H, be Hilbert spaces and let A = [A;j],xn be an operator
matrix, whith A;j € BHj,H;) foralli, j=1,2,...,n. Then

W(A;;) c W(A) for all i=1,2,..,n. (1.2.1)

1.3 Numerical Radius

As the spectrum, the numerical range also links a set with each operator, this set called
the set of valued-function of operators and this link generates a numerical function called

Numerical Radius.

Définition 1.3.1. [22] The numerical radius of an operator A € B(H) denoted by w(.) and
given by

w(A) = sup [{Ax, x)|. (1.3.1)
llxll=1

Obviously, for any x € H, we have

{AX, x)| < w(A) [ x]?. (1.3.2)
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Example 1.3.2. [2]] Let T be the Unilateral Shift operator in C", defined by
T(xly X2y X3y o0 xn) = (0) X1, X2, X35 o0 xl’l—l)-

The operator T is represented by the Matrix

0 0O 0

1 00 0

010 0
A=

0 00 .. 1 O0

Forall x = (x1, X2, X3, ..., Xn) € C", we have

n-1

KTx, ) <) [xillxil.
i=1
In order to find w(T), we must calculate sup {Z?;ll |x;11%;411} over all unit vectors x € C". To

acheive our goal we use the method of Lagrange Multipliar. Let y; = |x;| and consider the
Lagrange function
n
F(yl; Y2, J’n;/l) =Ny2t..+¥Vn-1¥n— A/(Z ylz -1). (1.3.3)
i=1

From (1.3.3), we have

oF = 2Ay1 =0

an =) n=y

OF
0— :y1+y3—21y2:0,
2
(1.3.4)
OF
3Ynt =Yn—2+¥Yn—2Ayp-1=0,
OF
3 =Yn-1—2Ayn=0

We can write the equation (1.3.4) in the form

BY =AY where Y =01,y2 0V
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and
0200 ..0
1030 ..0
1 1
5| 02035 .0
. S
. . . . .i. z
00001210
Thus, A is an eigenvalue of B, it is well known that
/2
A =cos , k=1,2,..n.
n+1

w(T) is the maximum value of the expression for A, we have

kn
w(T) =sup {cos , k=1,2,...,n}.
n+1l

Thus

b1
w(T) =cos
n+1

It easy to see that w(.) define a norm. Thatis forall A,Be B(H) and a € C

* w(A)=0and w(A) =0 ifandonlyif A=0.
e w(aA) =|alw(A).
* w(A+B) <w(A) +w(B).

This norm is unitary invariant, means that

w(A) = (U™ AU).

(1.3.5)

for all unitary operator U and it is equivalent to the usual operator norm, we present this

equivalence in this Theorem.

Theorem 1.3.3. [21] Let A€ B(H), Then

1
EIIAII s w(A) = ||A].

(1.3.6)

1.3. NUMERICAL RADIUS
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Proof. Let A = (Ax, x), with || x|| = 1 and let y € H, we have by the Schwarz inequality
Al = [{Ax, x)| < [|Ax|l < [ A]l.

to prove the second inequality, we use the polarization identity, which may be verified by

direct computation,
4Ax,y) = (Alx+y),(x+y)—(Ax—y),(x—yN) +i{Ax+iy), (x+iy)) - i{Ax—iy),(x—1iy)).
Hence,

4Ax,Y) < oAIx+yIP+lIx=yI>+Ix+iyl*+llx—iyl?]

4w(A)[Ix)? + 1 yII%.

Chosing [ x|l = [lyll = 1, we get
4(Ax,y) < 8w(A).

Thus,
Al = 2w(A).
0
The next Theorem gives a useful characterization of the numerical radius.
Theorem 1.3.4. [43] Let A€ B(H). Then
w(A) = sup|Re(e”A)|
0eR
= sup ||Im(ei'9A) Il.
0eR
Proof. For all A€ B(H), and x € H, we have
sup Re(eie(Ax, X)) =|{(Ax, x)|.
OcR
Thus,
sup [|[Re(e’? A)|| = supw(Re(e? A)) = w(A).
OcR 0cR
O
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Theorem 1.3.5. [9] Let A € B(H) be a diagonal operator matrix (or A= ®?:1Aii)- Then
w(A) = max(w(A11), w(Az2), ..., 0(App)).

Theorem 1.3.6. [29] LetHy,Hy, ...,H, be Hilbert spaces and let A = [A;jlnxn be an operator
matrix, whith A;j € BMHj,H;) foralli, j=1,2,..,nandletT = [|| A;jl]nxn. Then

w(A) =w(T) =l Aijllnxn). (1.3.7)
Theorem 1.3.7. [2]] Let A€ B(H). Ifw(A) = ||All. Then
r(A) = [ All

Proof. Let w(A) = || Al = 1. Then there is a sequence of unit vectors { f;} such that

(Afn, fn) — A€ W(A), and |A| = 1. From the inequality

KAfw )l < IAfall <1,

we have | f,I| — 1. Hence

IA=AD full® = 1Al = CAf, Afu) = Afo, Afd + | full® = 0.
Thus, A € 04p,(A) and r(A) = 1. O

Theorem 1.3.8. [2]] Let A€ B(H). IfR(A) L R(A¥). Then

(=14
=

Proof. Let x = x1+x2 be aunit vector in H = N(A)® R(A*), where x; € N(A) and x; € R(A*).
Thus we have,

[{Ax, x)| = [{A(x1 + x2), X1 + X2)| = [{AX2, X1)|.

Since, Ax; =0 and (Axy, x2) = (X2, A*x2) =0, we get

Al Al
[{Ax, 2)| < | Allll 21 [T 22l < T[IIJQII +x2ll] = 5

then,

Al Al
— <w(A) < T
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Theorem 1.3.9. [2]] Let A€ B(H). If A is idempotent and w(A) < 1, then A is an orthogonal

projection.

Proof. To prove this theorem it is sufficient to prove that A is null on R(A)'. Let xe R(A)*

and y = Ax. Then for ¢ = 0, we have
AX+ty)=y+tA%y=(1+1)y.
As x 1 y,we have

(Alx+ty),x+ty)

(I+Dy,x+ty)

((A+Dy,ty

@+ eyl

On the other hand, we have
A+ DOty = (A + 1Y), x+ ty) < w(A) |l x+ tyl? = | x]|* + t] y)?

because w(A) < 1. Thus

tlyl? < llxl%.

Since t is arbitrary, we conclude that || y|| = 0 and A =0 on R(A)". O

Theorem 1.3.10. [19, 38] Let A€ B(H), Then
w(A™ <™, for all m=1,2,.., (1.3.8)
or equivalently
w(A) <1 implie w(A™<1, for all m=1,2,.., (1.3.9)

Proof. First we prove the equivalence between (1.3.8), and (1.3.9), clearly (1.3.8) implies
(1.3.9). Conversely, suppose that (1.3.9) hold. Assume that A # 0 because if A =0 there

A
is nothing to prove. As A # 0, consider the operator B = m, by Proposition 1.2.2 (1),
w
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m
w(B) = 1. Hence w(B™) = w( ’”(A)) < 1. So by Proposition 1.2.2 (1) also we obtain (1.3.8).
w
let now prove the theorem, let m be a nonegative integer, note the two polynomial identi-
ties
m
= H(l—rkz), (1.3.10)
k=1
and
1 m m
:—Z H (1—rkz), (1311)
M o1 k=1k#j
where
ri= e o

The two previous equations are correct when z is replaced by any operator B € B(H). Now,

for an arbitrary unit vector x € H define the vectors,

m
[I a-rBx|,
k=1,k#j

j=12,.,m.

The following list of equations was found by using the two equations (1.3.10) and (1.3.11),

1 2 Xj Xj 1
— Y xil?|1-ri(—, =) = =Y A0-r;iB)x;,x;)
nl}é% ] J xj xj nz}é% 7 v
1 m m
= EZ H(l—rkB)x » Xj
Jj=1 k=1
1 o m
= o (=B )

~.
II

— _pmn _ .
= (1-B )x,m];xp

3 _ m lm m _
= (A-B"Mx,— ) | [] a-rB)
m k

j=1 [ k=1,k#j

y
= {((1-B™x,x)

= 1—-(B™x, x).

In particular, setting

B=AeY  OeR.
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Thus

Ax; X; )
—an]n 1-r;e%—L, =y | =1- ™A™, x).
Xj o Xj

As w(A) < 1, the real part of each term in the right-hand side of the previeus equation is

positive, so that for any unit vector x and real 0, we have
Re(1—e™(A™x, x)) =0,

thus,

[{A™x,x)| < 1.
Then (1.3.8) follows. ]
1.4 Moore-Penrose inverse

Définition 1.4.1. Let A € B(H), the Moore-Penrose Inverse of A denoted by A* € B(H) is the

unique solution of the following set of equations

AATA= A, (1.4.1)
ATAAT =AY, (1.4.2)
AT =(AAT)",
TA=(ATA".
Notice that A* exists if and only if R(A) is closed [23]. In this case AA™ and A* A are the

orthogonal projections onto R(A) and R(A*) respectively. The following assertions will be

used in the last chapter of this thesis.

(A*A)t = AT (A" (1.4.3)
AT=(A"ATA" = A" (AAH)" (1.4.4)
A" =ATAA" = A" AAT (1.4.5)
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If Ais a partial isometry, then A* = A*.

Many refinments and generalisations of the equation (0.0.1) have been given by many
mathematicians. In the following section we give some important improvements of the

equation (0.0.1).

1.5 Some improved numerical radius inequalities
In (2003) Kittaneh [31] refines the second inequality in (0.0.1) as follows.
Theorem 1.5.1. [3]] Let A€ B(H). Then

w(A) < ~[|All + | 2] 2].

N | =

Proof. The author in [31] need the following Lemmas to prove his result, the first and the
second Lemmas contains a Mixed Schwarz inequality, the third Lemma contains a norm
inequality which is equivalent to some Lower-Heinz type inequality and the fourth Lemma
contains a norm inequality for sums of positive operators that is sharper than the triangle

inequality.

Lemma 1.5.2. [22] Let A € B(H) be a positive operator and let x, y € H. Then (Ax, x) defines

an inner product, it follows that A satisfies the schwartz-like inequality
[(Ax, )P < (Ax, x)(Ay, y). (1.5.1)
Lemma 1.5.3. [22] Let A€ B(H) and let x,y € H. Then
(Ax, )] < (1AL, x) 2 (A" |y, 1) 2. (15.2)
Proof. Let A= U|A| be the polar decomposition, whith |A| = (A*A)%. Since

AA* = U|A|AIU* = UIAPU* = |A*)?,

1.5. SOME IMPROVED NUMERICAL RADIUS INEQUALITIES 29



CHAPTER 1. PRELIMENARIES

it follows that,
|A*| = UIAIU".
From Lemma 1.5.2, we have
KAx, ;) = KUIAlx, y)?
= Alx, Uy

< ({Alx, x){|AlU" y,U* y)
= (Alx, x)UIAIU"y, y)

= (Alx, x){|A" |y, ).

O
Lemma 1.5.4. [/7] Let A, B € B(H) be positive operators. Then
11 1
|AzBz|| < ||AB]|2.
Lemma 1.5.5. [33] Let A, B € B(H) be positive operators. Then
1 \/ 2 inli
A+ B < E[IIAII + 1Bl +\/ (Al = IIB[)= + 4[| Az B2 7]
Proof of Theorem
Let x € H, by Lemma 1.5.3, and the arithmetic-geometric mean inequality, we have
KAX, 0 < (Alx, )7 (A% |x, %)
1 *
< §[<|A|x, x) +{|A7[x, x)]
1 *
= E((IAI +|A ) x, x)
Thus,
1 *
w(A) < EIIIAI +]A™| (1.5.3)

As | Al and |A*| are positive operator and by Lemmas 1.5.4 and 1.5.5, we have

WA =1A* = 1Al and  [IAIA*|] = A°].
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we have also,

* 1
Al + Al < | All + [ A%]| 2. (1.5.4)

The desired inequality in Theorem 1.5.1 now follows from (1.5.3) and (1.5.4).

(|
The author in [31] gave an immediate consequence of Theorem 1.5.1 when A% = 0.
Corollary 1.5.1. [31] Let A€ B(H), is such that A%2=0. Then
1
w(A) = EIIAII. (1.5.5)

The Aluthge transform was introduced by Aluthge in [8]. The idea behind the Aluthge
transform is to convert an operator into another operator which shares with the first one

some spectral properties. It is well known the following properties of T:
@ Al <Al
(i) w(A) = w(4A),
(i) r(A) =r(A).

The Aluthge transform has received much attentions by many mathematicians in re-
cent years, among them is Takeaki Yamazaki [43], who proved the following important

result which refines the result of Kittaneh [31].
Theorem 1.5.6. Let A€ B(H). Then
1 -
w(A) < E[IIAII +w(A)]. (1.5.6)

Proof. Let A = U|A| be the polar decomposition of A. Then by the Generalised Polarisa-

tion identity, we have

(e Ax, x) @9 Alx, U* x)

1 ) . .
= mew”+Uﬁmwﬁ+Uﬂm—qmwﬁ—uﬂmw”—uﬂm)

+ £(<|A|(e"9+iU*)x,(ei9+iU')x>—<|A|(ei9—iU*)x,(e"9—iU*)x)).
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Thus,

Re(e'? Ax, x) 1(<(e—f9 +)|AIEP + U x, x)— (e — D Al(e'? — U™)x, x))
) 4 ) )

IA

L _ip 0, g
Z((e + U)]A|(e™ + U ) x, x)

IA

1 . . .
Sl 0 uyAle’ + UM
Lok i0 | e —i0 1 * *
= JMAEE?+UNE P+ DAL by XX =1XX])
1 o~ Ly~
= Z||2|A|+e19A+e"9(A)*||

1 0+
= 3lllAI+Re(e Al

IA

LA+ LiiRe(e? A))
— — ele
2 2

1||A||+1 (A)
= —w
2 2

IA

(by Theoreml.3.4).
Since,
sup Re(eie(Ax, X))

0eR

1||A||+1 (A)
— _w y
2 2

[{Ax, x)|

IA

then

w(A) = %IIAII + %W(A)-

O

Remark 1.5.7. The result of Yamazaki [13] is sharper than the result of Kittaneh [31], this

follows from the Heinz inequality [24]
I|A"XB"|| < ||AXBI|" |1 x|} for A,B=0 and rel0,1].

we have,

. . 1 1 ool 1
w(D) < ITI=ITIZUITI2| < ITIUITIIZNUNZ = [1T?))2.
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Abu-Omar and Kittaneh [2] used the generalized Aluthge transform to improve the

inequality 1.5.6, they proved that
1 ~
w(A) = E(IIAII +w(Ap). (1.5.7)
The inequality (0.0.1) was also refined by Kittaneh [34], he proved that
1 2 %2 2 1 2 *2
ZIIIAI +HA " l=w (A)SEIIIAI +ATI7]l (1.5.8)
If A= B+ iC is the cartesian decomposition of A, then
| AP +1A%> = 2B +1CP).
Thus, the inequalities in (1.5.8) can be written as
Lo 2 2 2 2
EIIIBI +ICI7 Il = w™(A) = lIBI” +[CI”|l.

This inequalitis was also reformulated and generalized in [14].

In (2008) Dragomir [13] used Buzano inequality to improve (0.0.1) as follows

1Al + w(A?)]. (1.5.9)

N —

W’ (A) <

This result was also recently generalized by M, Sattari, M. S. Moslehian, and T. Yamazaki

[41] in (2015), they proved that, forall r = 1

JWmséw%ﬁnmex
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— CHAPTER 2
NUMERICAL RADIUS INEQUALITIES FOR

OPERATOR MATRICES

The n x n operator matrices A = [A; ], x5 are regarded as operators on @?:1”'”1' (the direct
sum of the complex Hilbert spaces Hy, Hy, ..., Hy), where A;; € B(H;,H;) for i, j = 1,2,..., n.
Here, B(H;,H;) denotes the space of all bounded linear operators from H; to H;. When
i = j, we simply write B(H;) for B(H;,H;). Operator matrices played important role in
operator theory. This Chapter is about new numerical radius inequalities for arbitrary

n x n operator matrices. Related to this direction Hou, and Du [29] have been proved that

W([Ajjlnxn) = w([”Aij”]nxn)-

After that Abu-Omar, and Kittaneh improved this inequality as follows

W([Ajjlnxn) = w(@ijlnxn),

where
0 Ajj ]) ..
aji=w or i,j=1,2,...,n.
Y ([ a0 |} Ter b
and

a;i=w(A;) for i=1,2,..,n.

In the first Section of this Chapter, we present numerical radius inequalities for n x n op-
erator matrices with a single nonzero row. Then we use these inequalities to establish nu-
merical radius inequalities for arbitrary n x n operator matrices. Moreover, we give numer-

ical radius inequalities for 3 x 3 operator matrices that involve the numerical radii of the
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skew diagonal (or the secondary diagonal) parts of 2 x 2 operator matrices. Our new nu-
merical radius inequalities for n x n operator matrices are natural generalizations of some
of the numerical radius inequalities for 2 x 2 operator matrices given in [25], [26], [42], and
references therein. In the second section, we present numerical radius inequalities for the
skew diagonal (or the secondary diagonal) parts of 3 x 3 operator matrices, including an
inequality involving the generalized Aluthge transform. Related numerical radius inequal-

ities for 2 x 2 operator matrices can be found in [25], [42] and refrences therein.

2.1 Numerical radius inequalities for 7 x n operator matri-
ces

To present our results, we need the following lemmas.

Lemma 2.1.1. [25, p. 44] Let A = |a;jluxn be an n x n matrix such that a;; = 0 for all
i,j=1,2,..,n. Then

1
w(A) = ET([ai]’ +ajl).

Lemma 2.1.2. [29] Let Hy,Hy, ...,H,, be Hilbert spaces, and let A = [A;jjlnxn be an nx n

operator matrix with A;j € B(Hj,H;). Then
r(A) = r(llAijlllnxn)-
Lemma 2.1.3. [6] Let A= [A;jlnxn be n x n operator matrix with A;j € B(Hj,H;). Then
w(A) = w(la;jl),
where
a,-j:w([ A(i'i Aoij ]) for i,j=1,2,..,n.
Note that a;; = w(A;;) fori=1,2,...,n and the matrix |a; ] is real symmetric.

Our first result in this section can be stated as follows.
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Theorem 2.1.4. Let A; € B(H,), A; € B(Hy,Hy),..., A, € B(H,,H;). Then

A A -+ Ay,
0 0 - 0 1 n

ol . . . =3 (w(A1)+\lw2(Al)+ > |A]-|2).
: T j=2
0 0 0

Proof. Applying Lemmas 2.1.1, 2.1.3 and the identity (1.5.5), we obtain

0 A 0 A ]
oy ol g ) ef[o 7]
A A o Ay 0 0]
0 0 -~ 0 w( ) 0 0
w o _ < w | A2 0 ]
0 O 0 . 0 0 . )
e
I Azl
= 0 0
= 2
ARl :
5 0 0
20(A) Azl - ||An||]
1 I Azl 0 0
= 57 : :
IAl 0 == 0 ‘
1 2 < 2
= S|en+ w? (A1) + ) IIAjI7 |.
j=2

O

Based on Theorem 2.1.4, we obtain the following numerical radius inequality for arbi-

trary n x n operator matrices.

Corollary 2.1.1. Let A= [A;jlnxn be an n x n operator matrix with A;; € B(H;,H;). Then

1 n n

w(A) < > Y oA+ |04+ ) 1A% .
i=1 j=1
J#i
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Proof. Fori =2,...,n, let U; be the n x n permutation operator matrix obtained by inter-
changing the first and the i’" rows of the identity operator matrix. Then U; is a unitary

operator, and so by the triangle inequality and the identity (1.3.5), we have

All Alz Aln 0 0 0
0 0 0 A21 A22 Azn
w(A) <= w . . . tw . . .
0 0 0 0 0 0
0 0 0
ot :
0 0 0
Anl An2 Ann
An A Ain Ay An Ao
0 0 0 0 0 0
- +w|U; . U,
0 0 0 0 0 0
Ann AnZ Anl
| o o 0
+--+tw|U, . U,
0 0 0
Al A A1n Az Ap Aop
0 0 0 0 0 0
= w +w )
0 0 0 0 0 0
Ann An2 Anl
0 0 0
) )
0 0 0

Now, using Theorem 2.1.4, we have

1 n n

w(A) < 3 Y oA+ |04+ Y 1A% ]
i=1 j=1
J#i
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Other related results are given as follows.

Theorem 2.1.5. Let A} € B(H,), Ay € B(Hz,H1),---, A, € B(H,,H;). Then

A Ay - A,
0 0 0 1 n
) . <[ IAl+ 1) AjA%I2 .
. 2 j=1 I
0 0 0
A A Ap
Proof. Let A= . . . |. Then for every 0 € R, we have
IRe(e A) = r(Re(e” A)
[Al Ay - An] [Aik 0 --- 0]
_ 1 ei9 0 0 0 +e—i0 A2 o --- 0
2 S P
[ ei9A1+e_i6Ai‘ elfa, ... elf4,
e 0A; 0 - 0
= _r . . .
| efAr 0 - 0
[ AT o7 . 0][e™® 0 -+ 0
A; 0 0 Ar Ap Ay
= -r . .
| A% 0 0 0 0 0

It follows by the commutativity property of the spectral radius and Lemma 2.1.2 that
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e 7T 0 - 0 Ar €91 ... 0
Re@ = S| A A A 0
e(e = —r
2 : Do S
0 0 - 0 A5 0 - 0
e A I 0]
_ L || BlaaA) a0
2 : DL
|45 1 0
n CA*
o] =] Ao
2 : o
0 0 - 0|
1
= |na+

Now, using Lemma 1.3.4, we get

sup IIRe(eiGA) I
feR

w(A)

IA

. ALl +
5 |14

O

Using Theorem 2.1.5 and an argument similar to that used in proof of Corollary 2.1.1,

we have the following corollary.

Corollary 2.1.2. Let A= [A;jlnxn be an n x n operator matrix with A;; € B(H;,H;). Then

1 -
0 =23 | Ml + | 1AiAL+ ) AijAL
i=1 j=1

1
w(A) =max(w(A11),w(Az2), -, w(Apy)) + Y
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Proof. We have

2 [ 0 0 O .- 0
8 A(;Z A(;n A1 0 Ay -+ App
_ | 0o o o0 - 0
00 0 0O 0 O 0
0 0 0o 012
: 0 0
= 0 0 0 0
0 0 . 0 0
| An1 A2 -0 Apg-n 0
00 0
00 0
00 0
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By the triangle inequality and the identity (1.5.5), we have

All 0 0 0 A12 Aln
0 Ay . 0 - 0
w(A) = w ) 22 +w .
: . . . 0 : oo
0 - 0 A, o o -- 0
0 0 0 0]
0 0
t-tw 0 0 0 0
0 0 0 0
| A A2 0 Ap-ny 0
0 Ap Ain
0 0
= max(w(A11),w(Az2),- ,a)(Ann))+5 :
0O o0 0
0O 0 O 0 0 0 0 0 ]
A1 0 Aps 0 0
Do 0 0

= max(w(A1),w(Azr),

1 n n
= max(@(An), ©(Az), ., (Ann)) + 3 > |12 AiAL L
i=1 j=1

J#i

O

The proof of the following theorem has been pointed out to us by Amer Abu-Omar. For

simplicity, we state it for 3 x 3 operator matrices.
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Theorem 2.1.7. Let A= [A;jl3x3 be a3 x 3 operator matrix with A;; € B(Hj,H;). Then

1 3 aii—aj]- 2 5
w(A)SE Zaii+ Z (T) +4daj; |
i=1 1=i<j=<3
where,
0 Aij
= =1,2

ai; a)(LA]_i 0 ]) for i,j=1,2,..,n

and

a;i=w(A;;) for i=1,2,..,n.

Proof. By the triangle inequality and Lemma 2.1.3, we have

[ A A
% A O % 0 A 0 AO 0
wA) < o|| Ay 2 0 ||+ 0 0 O +w|| 0 “F Ay
06 o A 0 A 0 A A2
[ % [Z5)) 0 % 0 a3 0 0 0
< || a % 0|+ 0 0 0 +o|| 0 2 ay
0 0 0 as; 0 % 0 ap %
% a2 0 % 0 a3 [ 0 0 0
= r|| a1 B 0|[|+r]| O 0 0 [[+r]]| 0 % ax
0 0 0 azg; 0 4 [ 0 a3z %
13 aji — ajj\?
= 5 Zaii"‘ Z \/(T”) +atl.2j (recallthataij:aji).
i=1 1<i<j<3

O

With the same notations used in Theorem 2.1.7, we have the following related result.

Theorem 2.1.8. Let A= [A;jl3x3 be a3 x 3 operator matrix with A;; € B(H;,H;). Then

w(A) < max(ay1, ax3) + max(ayp, a;3) + max(ass, aj2).

Here,

0 Ay N
a,-]-:w([Aﬁ o ]) for i,j=12,..,n

and
a;i=w(A;) for i=12,..,n.
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I 00

Proof. LetU=| 0 0 I [|.Then U isaunitaryoperator, and so by the triangle inequality
0 IO
1.3.5

and the identity (1.3.5), we have

[ A;; O 0 | [ 0 A 0 ] 0 0 A
w4 = w 0 0 Ao +w Ao 0 0 +w 0 Ao
| 0 Az 0 | | O 0 Asz | Az1 O 0
[ A;; O 0 | [ 0 A 0 ] 0 A3z O
= 0 0 A23 + Agl 0 0 +w|U" A31 0 0 U
| 0 A3z 0 | | O 0 Asz | 0 0 A
[ A;; O 0 ] [ 0 A 0 ] 0 Az O
= w 0 0 Ars +w A 0 0 +w Az 0 0
0 Ap O | | 0 0 As | 0 0 Ay
= max(ai, az3) + max(ay, ai3) + max(ass, a2).
O

Concerning Theorems 2.1.7 and 2.1.8, we note that several bounds for a;; have been
given in [25, 26, 42] and references therein. Moreover, when H; = Hj, it has been shown in
IAij+ Ajill

5 .
We conclude by remarking that the numerical radius inequalities presented in this

[6] that if A;; and Aj; are positive, then a;; =

chapter are sharp. Moreover, by employing similar analysis to different partitions of oper-

ator matrices, it is possible to obtain further numerical radius inequalities.

2.2 Numerical radius inequalities for the skew diagonal parts
of 3 x 3 operator matrices

Our first result in this section can be stated as follows.

Theorem 2.2.1. Let A,B,Ce€

B(M). Then
0O 0 A
w 0 B O
C 00

> ,w(B)).

« 1 sl
) IHA®[+[CHZ[I|A] +]C™ ]2
< max(
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0 0 A X1
Proof. LetT=| 0 B 0 [andx=| x2 | beaunitvectorinHeHe&H
C 00 X3
(i.e., Ix1I* + I x21* +  x3/1* = 1). Then
KTx,x)| = [{Axz,x1) +{(Bx2,x2) +{(Cx1,x3)]
< [(Ax3, x| +[{(Bxz, x2)| + [{CXx1, x3)|
1 1 1, 1
< (| Alxs, x3)Z{|A%|x1, x1) 2 +{|Clx1, X1)2{|C* | X3, %3) % + w(B) | x2 |12
(by Lemma 1.5.3)
< [A*x1,x1) + (|Clx1, X112 [{| Al x3, x3) + (| C*| x3, X3)]2 + 0(B) || x2||*
(by the Cauchy-Schwarz inequality)
N 1 . 1
= (A% +|CDx1, x1) 2 (Al +|C* ) x3, X3) 2 + w(B) | x2 I
* 1 %L
< [A*[+ICHZ A+ ICH1Z 1 1 x3 1l + w(B) [l 211
N 1 ool 12 + [l x)l?
< [IA*|+ICIIZIIAl +]C |||z%+w(3)ux2n2
(by the arithmetic-geometric mean inequality)
1 1
[IA*[+ICIlIZ[I|Al +|C*]]|2
< max ,w(B)|.
2
Hence,

1 1
A"+ IClIZ 1Al +1C*]1I2
2

,w(B)|.

w(T) = sup [{Tx,x)| <max
lxll=1

O

As an application of Theorem 2.2.1, we have the following numerical radius inequality

involving positive operators and self-adjoint operators.

Corollary 2.2.1. Let A, B,C € B(H) such that A, C be positive operators and B is self-adjoint
_ A+ Cl
w = max|——, IBI].
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0 0
0 B
cC 00
tor, it follows from Theorem 2.2.1 that

A
Proof. Let T = 0 |. Since A, C be positive operators and B is self-adjoint opera-

|A+Cl
w(T) < max — Bl -

On the other hand, it follows from [36, Theorem 2.1] that
A+ C]
= max 5 IBI|.

0 A+C

2
o(T) z |Re(D) = B 0
0 0

0
0
A+

2

Hence,w(T):max(”%;C”,llBll). O
The 2 x 2 operator matrix version of the folowing Lemma can be founed in [26].

Lemma 2.2.2. Let A,B,C e B(H) and 0 € R. Then

A0 O
(@ w 0 B O =max(w(A),w(B),w(C)),
0 0 C
0 0 A 0 0 A
h) w 0 B 0 =w 0 B O )
e%c 0 0 C 0 0
[0 0 A 0 0 C
(c) w 0 B O =w 0 B O ,
| C 0 0 | A0 0
[ A 0 B
@d) w 0 C O =max(w(A+ B),w(A- B),w(C)),
| B 0 A |

Proof.  (a) This part is well-known.

0 0 A
(b) This part follows by applying the identity (1.3.5) to the operator T=| 0 B 0
cC 0 0
e®7 0 0
and the unitary operator U = 0o I 0
0 0 e
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0 0 A
(c) This part follows by applying the identity (1.3.5) to the operator T=| 0 B 0 ]
cC 00
0 0 I
and the unitary operatorU=| 0 I 0
I 00
0 0 A
(d) This part follows by applying the identity (1.3.5) to the operator T=| 0 B 0 ]
cC 00
I 0 -1
and the unitary operator U = % [ 0 V21 0 ] . In fact, we have
I 0 1
A 0 B A 0 B A+B 0 0
w(OCO)—a)(U*OCO U)—a)( 0 C 0 )
B 0 A B 0 A 0 0 A-B

max(w(A+ B),w(A—- B),w(C)).

Remark 2.2.3. Let Be B(H). Then

{33504

Remark 2.2.4. The results of Lemma 2.2.2 are true for the usual operator norm.

0 0 B
0 00
B 0 O

0 0 B
0 B O =w(B).
B 0 O

The following lemma contains pinching inequalities for the numerical radius. It is also

true for every weakly unitary invariant norm, including the usual operator norm (see, e.g.,

[9, p. 107)).

Lemma 2.2.5. Let A,B,C,D,E,F,G,H,K € BH). Then

A B C A 0 O
w( D E F )zw([o E 0 )
G H K 0 0 K
and
A B C 0 0 C
a)( D E F )zw( 0 E O )
G H K G 00
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Theorem 2.2.6. Let A,B,C € B(H). Then

00 AN mingascnia-cn
w 0 B O < +min(w(A),w(C)) + w(B).
C 0 0 2

Vi
0
(1.3.5), we have

)

I 0 -1
Proof. Let U = - [ 0 vV2I 0 ] . Then U is a unitary operator, and so by the identity
I I

0 0 A 0 0 A
w 0 B O = w|U*| 0 B 0 |U
C 0 0 C 00
1 [ A+C 0 A-C
= Ew 0 2B 0
| —-(A-C) 0 —-(A+QO)
1 A+C 0 A+C 0 0 -2C 0O 0 O
= Ew 0 0 0 + 0 O 0 +| 0 2B 0
| —(A+C) 0 -(A+0O) | 2C 0 0 0O 0 O
A+C 0 A+C ] 1 0O 0 -2C
< —w 0 0 0 +§w 0 0 0
| —(A+C) 0 —-(A+C) | 2C 0 O
1 0O 0 O
+5w 0 2B O .
0O 0 O
Since )
A+C 0 A+C 0 0O
0 0 0 =0 0 0],
—-(A+C) 0 —-(A+0O) 0 0O
we have

) 1 A+C 0 A+C
— 0 0 0
2 —-(A+C) 0 —-(A+0O
A+ CI.

A+C 0 A+C
0 0 0
—-(A+C) 0 —-(A+0O

| |

Here, we used the fact that | T| = | T* TII% for every operator 7. By Lemma 2.2.2 (b) and

(c) and Remark 2.2.3, we have

0 0 -2C 0 0 2C
w 0O 0 O =w 0O 0 O =2w(C).
2C 0 O 2C 0 O
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Hence,
0 0 A
A+ Cl
w 0 B O < 5 +w(C)+w(B).
C 0 0
In the inequality (2.2.1) replacing C by —C, we have
0O 0 A
|A-C]|
w 0 B O ST+a)(C)+w(B).
-C 0 0

By Lemma 2.2.2 (b) and (c), we have

0 0 A 0O 0 A
w 0 B O =w 0 B O .
C 0O -C 0 0
Thus,
0 0 A
IA-CI
w 0 B O < 5 +w(C) +w(B),
CcC 0 O

From the inequalities (2.2.1) and (2.2.2), we have

|

In the inequality (2.2.3), interchanging A and C, we have

|

By Lemma 2.2.2 (c), we have

0 A
B 0 >
0 0

)<mm0A+CHA—CD
C

0 0 C
0 B O >
A 0 O

)<mmﬂA+CLM—CD

0 0 A 0O 0 C
wll 0 B oll=w 0O B 0 ]].
CcC 0 O A 0 O
Thus,
0O 0 A .
min(||A+ CJ[, [|A-C])
w 0 B O < > +w(A) + w(B).
C 0 O

+w(C) + w(B).

+w(A) +w(B).

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)
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From the inequalities (2.2.3) and (2.2.4), we have
w (

Theorem 2.2.7. Let A,B,C € B(H). Then

|

Proof. By proof of Theorem 2.2.6, we have

+min(w(A),w(C)) + w(B).

0 0 A
0 B O >
C 0 0

J _ min(JA+ CJ, | A~CI)

w(B).

0 0 A
0 B O >
cC 0 0

) wA+C)+w(A-C)
< +

0O 0 A 1 [ A+C 0 A-C
w 0 B O = —w 0 2B 0
C 0 O | —-(A-C) 0 —-(A+0O)
1 [ A+C 0 0 ] 0O 0 O 0 0 A-C
= Ew 0 0 0 +1 0 2B 0 |+ 0 0 0
| 0 0 -(A+C) | 0O 0 O -(A-C) O 0
1 [ A+C 0 0 ] 1 0O 0 O
< 5(1) 0 0 0 +§(U 0 2B 0
0 0 -(A+0O) | 0O 0 O
1 0 0 A-C ]
+§w 0 0 0
—-(A-C) 0 0

= %w(A +C)+w(B) + %w(A —C) (by Lemma 2.2.2 (a), (b), and (d)).

O

Now, we give a lower bounded estimase that complements the upper bounds given in

Theorems 2.2.1, 2.2.6, and 2.2.7.

Theorem 2.2.8. Let A,B,C € B(H). Then

|
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Proof. Let U be as in the proof of Theorem 2.2.6. Then

0 0 A 1 A+C 0 A-C
u*l{o B 0 |U = > 0 2B 0
C 0 0 | —(4-C) 0 —(A+0O) |
1 A+C 0 A+C 0 O
= 2 0 2B 0 +-1 0 O
| -(A+C) 0 —(A+CO) | 2C 0
and so
A+C 0 A+C 0 0 A 0 0 -2C
2 0 2B 0 =U*| 0 B 0 |(U-=| 0 0 o0
-(A+C) 0 —-(A+QO cC 0 0 2C 0 O
Now, by the identity (1.3.5), we have
1 A+C 0 A+C
Ew 0 2B 0
-(A+C) 0 —-(A+QO
0 0 A 1 0 0 -2C 1 0
< w|U"| 0 B 0U +Ew 0 0 O +Ew 0
cC 0 0 2C 0 0 0
0 0 A 1 0 0 -2C ] 1 0 0
= w 0 B O +Ew 0 0 O +§a) 0 2B
cC 0 0 2C 0 0 | 0 O
Clearly, it follows by Lemmas 2.2.5 that
A+C 0 A+C
) 0 2B 0 =>w(A+Q0).
—(A+C) 0 —(A+C) |
Thus,
1 1 A+C 0 A+C
Ew(A+C) < Ew 0 2B 0
-(A+C) 0 —-(A+Q
[ 0 0 A ] 1 0 0 -2C 1
< w 0 B O +-w 0 0 O +-w
lco o) % \|2c 0 o 2
[ 0 0 A ]
< w 0 B O +w(C)+w(B).
| C 0 0 |

S O O

o5
c oo

|

(2.2.5)
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Replacing C by —C in the inequality (2.2.5), we have

1 0O 0 A
Ew(A—C)Sw 0 B O +w(C) + w(B).
-C 0 0
By Lemma 2.2.2 (b), we have
0O 0 A 0O 0 A
w 0 B O =w 0 B O .
C 0O -C 0 0
Thus,
1 0 0 A
Ea)(A—C) <w 0 B O +w(C)+ w(B). (2.2.6)
C 00
From the inequalities (2.2.5) and (2.2.6), it follows that
max(w(A+ C),w(A—C)) 0.0 4
<w 0 B O +w(C) +w(B). (2.2.7)
2 C 0 0

In the inequality (2.2.7), interchanging A and C, we have

max(w(A+ C),w(A—C)) 0 0 C
<w 0 B O +w(A) +w(B).
2 A0 0
By Lemma 2.2.2 (c), we have
0 0 A 0 0 C
w 0 B 0 |]=w|] 0 B 0 .
C 0O A 0 O
Thus,
max(w(A+ C),w(A—-C)) 0.0 4
5 <w 0 B O +w(A) +w(B). (2.2.8)
C 00
From the inequalities (2.2.7) and (2.2.8), we have
max(w(A+C),(A-C)) 004 .
<w 0 B O +min(w(A),w(C)) + w(B).
2 C 00
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|

Theorem 2.2.9. Let A,B,C € B(H). Then

Hence,

—min(w(A),w(C)) —w(B).

A
0 2
0

Oo o
oW o

) _ max(@(A +C),0(A-C))

0 10 4 WA+ C)+w(A-C)+w(B)
w 0 3B 0 < 5 ,
cC 0 O
and
0 10 A Ww(A+B+C)—max(w(A+ C),w(B))
w 0 EB 0 = 5 .
cC 0 O

Proof. The first inequality follows from Theorem 2.2.7. To prove the second inequality, we

apply the Remark 2.2.3, we have

0 0 A+B+C
w(A+B+(C) = w 0 A+B+C 0
| A+B+C 0 0
[ 0 0 A O 0 C 0 0 B
< of[0 3B 0 ||+of| 0 B 0 ||+eo|[| 0 A+C o ||,
| Cc 0 o0 A 0 0 B 0 0
By Lemma 2.2.2 (c), we have
0O 0 A O 0 C
w|| 0 3B 0 |]|=w|[0 3B 0]],
cC 0 0 A 0 0

and by Lemma 2.2.2 (d), we have
a) (

(MA+B+052w(

0 0 B
0 A+C O
B 0 0

) =max(w(B),w(A+ C)).

Thus,

0 0 A
0 3B 0
cC 0 O

) +max(w(B),w(A+ C)),
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|

Let A= U|A|, B=V|B|,and C = W|C| be the polar decompsitions of the operators A, B,

and so

D=

0 A
B 0 >
0 0

ol=N=

) - Ww(A+B+C)—max(w(A+ C),w(B))

O

and C, respectively. Then we conclude with the following numerical radius inequalities

involving the generelized Aluthdge transform.

Theorem 2.2.10. Let A,B,C € B(H). Then

|

forallte[0,1].

oo

A
0
0

0o o

l 1 tyax1-t tyxl-t l R
= Smax(ANLIBILICH + ZANCHIAT -+ HAFICT I+ SoB:)

oo

A
0
0

N oo

Proof. Let T = (

) and r € [0,1]. Then

1Tl = max || (1Al B, 1CID.

The polar decomposition of T is given by

0 0 A 0 0 U IC] 0 O
0O B of|=[0 V O 0 |Bl O
c 0 O w 0 0 0 0 |[A|
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The generalized Aluthge transform of T is given by

0 0 U
T, = 1*l o v o [|1*"
W 0 0
|ICIT 0 0 0 0 U lIci-t 0 0
= 0 |BIY o0 0 V o 0 IBI*"t 0
0 0 A" W 0 0 0 0 |AILE
0 0 ICI*U A
= 0 |B|'V|B|}~! 0
| jAlfwC|! 0 0
[ 0 0 |CltU|A|M!
= 0 B; 0
| JAfWICI T 0 0
Now,
0 0 |CltU|AM!
(U(Tt) = 0 Bt 0
| 1APWIC) T 0 0
[0 0 |Cl'U|AM! 0 0 0
< w||0O0 0 +o|l| 0 B, 0
[ 0 0 0 0 0 O
0 0 0
+w 0 0 0
IA'W|C|*™t 0 0
1 ~ ~ .
= 5[|||C|IU|A|1 U+ 1A WICI ]+ w(By).
Since ) 5
0 0 0 0 0 |CI'UIAI! 0 00
0 00| =00 0 =100 0],
[A'W|C)*™t 0 0 0 0 0 000
we get
0 0 |CI'UIAI® Lfo o ICI'U|AI !
w|l|] 0 0 0 = 3 0 0 0
0 0 0 0 0 0

]. — ]- * E3 — 1 Ed -
5|||C|‘U|A|1 f||=5|||C|fUU |A*|! fU||sz|||C|f|A T
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and
0 0 0 1 0 0 0
w 0 00 = 5 0 00
IAI'WIC]™™t 0 0 JA'WICIT™T 0 0
1 _
= 5|||AVW|C|1 gl

1 t * k1t
= EIIIAI WW=|C™ |7 W

1 B
< 5|||A|f|(:*|1 1.

By the inequality (1.5.7), we have

w(T)

IA

1 -
§(||T||+w(Tt))

l 1 ty ax(1-t tyx1-t l D
2max(||A||,||B||,||C||)+4[|||C| [AT [+ ITA[T1CT |”+2w(Bt)-

IA
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— CHAPTER 3
NEW NUMERICAL RADIUS INEQUALITIES

FOR PRODUCTS AND COMMUTATORS OF
OPERATORS

The numerical radius is not submultiplicative, in fact, the inequality

w(AB) = w(A)w(B),

is not true even for commuting operators A, B € B(H). It follows readly from the inequali-
ties (0.0.1) that
w(AB) = 4w (A)w(B).

A simple example shows that w(AB) can exceed the product w(A)w(B) for all A, B € B(H)

Let
0 00O
1 000
A‘0100
0010

be the right shift. Then by the example 1.3.2, we have w(A) = cos(g) =0,809 and w(A?) =
w(A3) = 0,5, so that
0,5=w(A%) = w(A)w(A?).

The authors of [21] have proved the following results about the numerical radius of prod-

uct of operators assuming that AB = BA.

Theorem 3.0.11. Let A, B € B(H) such that AB = BA. Then
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(1) w(AB) =2w(A)w(B),

(2) If A is unitary operator, then
w(AB) < w(B).

(3) If A is a normal operator, then

w(AB) = w(A)w(B).

We say that A and B double commute if AB= BA and AB* = B* A.

Theorem 3.0.12. Let A, B € B(H) if A and B double commute. Then
w(AB) < |Allw(B).

The previous results are also known in [27]. For more results in this direction see [21, 22,
I.

In the first section of this Chapter, we prove new numerical radius inequalities for products

of three bounded operators without assuming the commutativity of the operators. In the

second Section we present new numerical radius for sums and commutators of operators.

3.1 Numerical radius inequalities for products of operators

More recently Dragomir [12] has shown that
* 1 2 2
w(B A)SzlllAl +BIl. 3.1.1)

M. Sattari, M. S. Moslehian, and T. Ymazaki [41] have established an improvement of the
inequality (3.1.1) and a generalisation of the inequality (0.0.1), these results says that for
all A, Be B(H),

w"(B*A) < }L|||A*|2’ +IB | + %a)’(AB*). (3.1.2)

and

W’ (A) < %(w’(Az) +IAI%D). (3.1.3)
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Abu-Omar and Kittaneh [3] have shown that, for all A, B € B(H)

w(AB) <1||@|A|2+W|(3)*|2||+1w(3,4) (3.1.4)
~ 4 |Al IBI 2 ' "

In this Section, we prove new numerical radius inequalities for products of three bounded
operators without assuming the commutativity of the operators, using this results we give
some improvements of the inequalities (3.1.2), (3.1.3) and (3.1.4) and we establish new
bounds for w(A) and w(A,).

To present our result we need the following Lemmas

Lemma 3.1.1. [25] Let X,Y € B(H). Then
I 0 X —w 0 Y —w 0 X
' Y 0 “\Xx o) "|efy o)

0 X
2. w( X 0 ):w(X).

0 X
Lemma 3.1.2. [6] LetH;,H, be Hilbert spaces, and letA:( v 0 ), with

X € B(Hz,Hy), and Y € B(H;,Hy). Then

1 1
SVIIXE+]Y*2+2m(Y X) s 0(A) = SVIIXE+ Y2 +20(Y X),
where m(Y X) is the nonnegative number defined by
m(Y X) =inf|{Y Xx, x}|.
Lemma 3.1.3. [36] Let A,B € B(H). Then
0 A
|A+ B sZw( B* 0 ) < [|All + || BII.

Lemma 3.1.4. [7]

Ifa,beC. Then

P+ b = la+ bl?+|a—b|?
> )
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Let A€ B(H), from Theorem 1.3.4, we have

and

0 0

0 A) 1
w( )=—||A||.
2

0 A
w(A 0):w(A).

(3.1.5)

(3.1.6)

Our main result can be stated as follows. The following Theorem gives a new estimate for

w" (ABC) forallr = 1.

Theorem 3.1.5. Let A,B,C € B(H). Then

" (ABC) sw”([

forallr = 1.

0

BC 0

A

1 1
)SZMAWAwaVFW+Ew%BCAL

Proof. Let x € H be a unit vector, we have

Re(eieABCx, X)

IA

IA

IA

IA

Re(e®BCx, A* x)
iuw”BC+AﬂxV—inw”BC—Aﬁxw
(by the polarisation identity)
ill(eiQBC+A*)x||2

i||ei9Bc+A*||2

W2 0 eBC
A 0
(by Lemma 3.1.3)

(5 o |

BC 0

(by Lemma 3.1.1(1))
L2 w2y, L

ZIIIAI +1(BC)"| ||+§w(BCA)

(by Lemma 3.1.2)

By taking the supremum over x € H whith || x|| = 1, we have

w(ABC) swz(

0
BC 0

A

1 2 *12 1
SZIIIAI +[(BC)| |I+Ew(BCA).
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1
From the convexity of the function ¢", and the concavity of ¢+ for all r = 1, we have

wr(ABC)swz’”([ BOC ’gl)

IA

ZMA|+KBC)|H+§waA)

1 AP +[(BO)*Z 1 ’

2
1 |A]%2+|(BC)*|? 1

< —II—| " +IBO)] I"+=w"(BCA)
2 2 2
1. AP +|(BO)*|?" 1 1

< —Ii( ) 1"+ = w "(BCA)
2 2
1 AP +|(BO)*|* 1

= EII( > )||+ " (BCA).

O

In the following Corollary, we present our improvement of the inequality (1.5.3).

Corollary 3.1.1. Let A,Be B(H), andr = 1. Then
B M=o § )< B P 0T (4B,

forallr = 1.
Proof. Leting C = I in Theorem 3.1.5. O

Our result in Theorem 3.1.5 refined and generalised the inequality (2.2.8).
Corollary 3.1.2. Let A,B € B(H). Then

wr(AB)Ser( : V7 ) LB e 1A gy C o s,
H B 0 Al IBIl 2

forallr = 1.
Proof. Leting A= ”ﬁ AB= ”g B, and C = I in Theorem 3.1.5. O
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Corollary 3.1.3. Let A€ B(H). Then

AP +1]

r
w' (A) = >

forallr = 1.

A new bounds of 0" (A), and w” (A,) for all 7 = 1 can be stated as follows.

Corollary 3.1.4. Let Ac BH), t€[0,1] andr =1. Then

0 | Al 1 _ |
r < 2T < _ 2tr+ 2(1-Dr + 0"
w (A <=w ( AL-TU* 0 )— 4|||A| | Al | 5@ (Ap),
and
- 0 |A|f 1 _ 1
r < 2T < _ 2tr *2(1-6)r T
w (A =w ( UlAl-t o )_4II|AI +]A"| ||+2w (A).
In particular ifr =1,t = %, we have
0o 1Az ) 1
w(A) < w? < = [IAl + w(A)],
AlZU* 0 2

Proof. From the polar decomposition of A and the definition of Aluthge transform of A,
we have

A* =|AIU* = |AINAITU*,  and  (Ap)* =|AIMTU*IALN

From Theorem 3.1.5, we have

w( A"l AU
2r 0 |A|t
|A|1—tU* 0

w'(A) =o' (AY)

IA

w

IA

1 B _ 1 _

Z”'A'Ztr”'A'l ‘urulAl' "‘)’||+5wf(|A|1 tU*|AlY
1 _ 1 S

= Z”'A|2”+|A'2(1 “’||+5wr((At) )

1 Y o] |
= Z|||A|2”+|A 124 ”’||+5w’(At).
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This proves the first inequality

Similarly it follows from the definition of the Aluthge transform and Theorem 3.1.5 that

w (A;) = o (AI'UIAI"Y

< 2r 0 |A| !

= UIAMT 0
1 B P 1 _

< me”ﬂwMAmeM“”U)W+Ew%UmHﬂAm
1 _ . 1 _

= me”ﬂwumW1”U)W+5w%wAHﬂAﬁ
1 20— 1 _

= ZMAF”+mw”1”W+5wWMAHﬂAm
1 1

< SAPT + AP0 20" (A).
4 2

This proves the second inequality and completes the proof of the Corollary. O

We are in a position to give our improvement of the inequality (1.3.3).

Corollary 3.1.5. Let A€ B(H). Then
2r 1 2r * |21 1 T2 1 2r a2
w (A)SZIIIAI +]A7] ||+§w (A )SE[IIAII +w (A%)],
forallr = 1.
Proof. In Theorem 3.1.51et B=A,C = I, we have
0 A
Fra2 2r
0 (A)<w ( A 0 )

By Lemma 3.1.1 , we have
0 A
2r _2r
w (A 0 )—w (A).

Thus,

IN

1 1
AP+ |A* T + ' (A%)
4 2

IA

1
EmAV’+w%A%L
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3.2 Numerical radius inequalities for commutators of op-
erators

Our aim in this Section is to give a new numerical radius inequalities for commutators of

operators. The following Theorem is our main result
Theorem 3.2.1. Let A,B,C,D,E,F € B(H). Then

1 0 A+D 0 A-D
. 1 2r 2r
' (ABC£DEP) = 7 |0 ([ BC+EF 0 )*“’ (BC—EF 0 m

forallr = 1.
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Proof. Let x € H be a unit vector, we have

Re(e'?(ABC + DEF)x, x) Re(e! ABCx, x) + Re(e’® DEFx, x)

IA

= Re(e!®BCx, A*x) + Re(e'" EFx, D" x)

= in(e"@BC+A*)xu2—in(e"HBC—A*)xn2

+ ill(eieEF+D*)x||2—ill(eieEF—D*)xllz
(by the polarisation identity)

< i||(ei93c+A*)x||2+%||(e"9EF+D*)x||2

= i (1eBC+ A*>x, x) + (| EF + D* |, x)

1 , .
= Z<(|e’93c+ A*2+ e EF + D*)?)x, x)

IN

1 . . . )
5<|e"’Bc+A* +eEF+ D* 12+ e"BC+ A* — (" EF + D*)%x, x)

(by Lemma 3.1.4)

IA

1 . . ; )
g|||e’QBc+A* +e®EF+D*)? +1e?BC+ A* — (" EF + D)%)

IA

11 i0 * 112 1 i0 * *y12
5[Z|||€ (BC+EF)+ (A" +D")| ||+Z|||€ (BC-EF)+ (A" =Dl

11 i0 * %4112 1 i0 * *y112
= —[lee (BC+EF)+ (A" + D) +Z”e (BC—EF)+ (A" —D"I|"]
0 A* + D*

2
@ ( e (BC+EF)* 0 )

A vl e 3 )

IA

2
1
2
1
2 e®(BC-EF)* 0
(by Lemma 3.1.3)

ol acter 1 e 5 Pl

BC+EF 0 BC—-EF 0
(by Lemma 3.1.1).

By taking the supremum over x € H whith || x|| = 1, we have

1, 0 A+D) ,( 0 A-D
w(ABCiDEF)SE w ([ BC+EF 0 )+w (BC—EF 0 ])]
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From the convexity of the function ¢", we have

"(ABC+ DEF) < (% wz( soupr ol )“‘)2([3(:?151? AgDm)r
= %[wzr([BCSEF ASD )+w2r([BC2EF ASD m
O
Corollary 3.2.1. Let A,B € B(H). Then
w"(AB+BA) < %[wzr(A+B) +w?" (A- B)],
forallr = 1.
Proof. In Theorem 3.2.11et E= A,D =B,C = F = I, we have
wasssn = 2o ([0, A58 (|2, 458 )
< %[wZ'(A+B)+w2r(A—B)]
(by Lemma 3.1.1).
0
Corollary 3.2.2. Let A,B € B(H). Then
||AA*¢BB*||rs%[||A+B||2’+||A—B||2r],
forallr = 1.
Proof. Letting B=A*,D=B,E=B*,C=F =1inTeorem 3.2.1, we have
|AA*+BB*|" = w’'(AA"+BB")
= %[wzr(A*-?-B* AJ(;B)erzr(A*EB* ABB)]
= %[||A+B||2’+||A—B||2f1.
O
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Corollary 3.2.3. Let A,B € B(H). Then

IA-B|?" .\ I|A+ B +2271||
4r 4

w (A+B) <

forallr = 1.

Proof. Letingin Theorem 3.2.1 B=C=E=F=1,D=B., we have

2 % (40

.
+ j—
w' (A+B) < 2 o] 0
From Lemmas 3.1.2, and the inequality (3.1.5), we have

(l)r(AiB) < ller( 20[ A;B)+w2r(g A;B ])]

2
- [u+—lllA+B|2’+22rIII +—wr(2(A+B))]-
2 47 4 2

IA

Thus,
IA-B|?" .\ I|A+BJ?+2271||

w' (A+B) <
47 4

Theorem 3.2.2. Let A;,B;,C; € BH) foralli=1,...,n. Then

i=1 o = BiC; 0

forallr = 1.

) < 2 AP+ 1B + S0 (BiCi A,
i=1

Proof. forall r = 1, We have

o' (A;B;C;)

wzr([ BiOCi Igi ])

1 2 %12 1
Z|||Ai| +1(B;Cy)" | ||+£CU(BiCiAi)

IN

N
I
—

n
w"(}_ AiBiC))
i1

IA

-~
Il
—

r

IA
1P

=

y Theorem 2.1.5)

IA
3

1 . 1
Z|||Ai|2’+|(B,-ci) 127 +5w’(BiCiAi)
=1

12

1
(the convexity of the function t, and the concavity of tr)

O
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Corollary 3.2.4. Let A,B € B(H). Then

0 A
w’(AB+BA)52w2’([ B 0o ]

)

forallr = 1.

Proof. leting Ay = Ap = A,B; =B, =B,C =F =1in Theorem 3.2.2 , and by Lemma 3.1.1,

we have

0 A
r 2r
w (AB+BA)<uw ([B 0

3.2. NUMERICAL RADIUS INEQUALITIES FOR COMMUTATORS OF OPERATORS 67



— CHAPTER 4
GENERALIZED NUMERICAL RADIUS,

SPECTRAL RADIUS AND NORM
INEQUALITIES WITH APPLICATIONS TO
MOORE-PENROS INVERSE

In this chapter we establish some generalized results. In Section 4.1, we present a gener-
alisation of some of recent results which are obtained by kittaneh [4, 5] and we give new
generalised numerical radius inequalities for bounded operators, whith an analysis which
is totaly different from ones used in Chapter 2 we prove new numerical radius inequality
for n x n operator matrices. Using this result we present new spectral radius inequali-
ties for sums, products and commutators of operarors in Section 4.2. In Section 4.3 we
improve the generalised triangle inequality for the usual operator norm. At the end of this
Chapter we apply some of our results to Moore-Penrose inverse to give new spectral radius
inequalities for Moore-Penrose inverse and to improve some of well-known inequalities

about them.

4.1 Generalized numerical radius inequalities for Hilbert space
operators

In (2014) Abu-Omar and Kittaneh [4] refined the triangle inequality of the numerical ra-

dius as follows.
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Lemma4.1.1. [4] Let A1, A» € B(H). Then

w(A1+ Ap) = \/wZ(Al) +w?(A2) + ALl Azl + w(A] Ay).
Our result is to prove the general case.

Theorem 4.1.2. Let A; € B(H) foralli=1,...,n. Then

i=1 Jj=i+l i=1j=i+1

n
CU(ZAL')S\IZCUZ(A)“'Z|A I Z IA; ||+Z Z W(A]Ay). 4.1.1)

Proof. By recurrence, from Lemma (4.1.1) the formula (4.1.1) is true whenn=2.

Now assume that

w(ZAi)S\IZwZ(A)+Z Il A Z ||A]||+Z Z w(ATA). (4.1.2)

i=1 j=i+1 i=1 j=i+l

for all integer n = 1.

Then, we have

n+l1 n+l
w(} A) = wlh+) A

i=2

IA

n+1
\le(Al)mZ(Z A+ 1AL ZA I +w(ZA A)

=2 i=2 i=2
(By Lemma 4.1.1).

Thus, by equation (4.1.2), we have

n+l

() A)
i=1
<
n+1 n+1 n n+l n+l n+1
wZ(A1)+Zw2(A)+Z||A I HAjI+Y X @(ATA) +IALl ) Al + ) w(A] Ay
\ i=2 i=2 Jj=i+l i=2j=i+1 i=2 i=2

n+l1 n+l n n+l
sz(AHZIIA I Y 1A+ ) Y w(ArA).

j=i+l i=1j=i+l

Therefore by the principle of mathematical induction, our formula holds for all inte-

gers n greater than 1. O

4.1. GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE 69
OPERATORS



CHAPTER 4. GENERALIZED NUMERICAL RADIUS, SPECTRAL RADIUS AND NORM
INEQUALITIES WITH APPLICATIONS TO MOORE-PENROS INVERSE

A direct result of Theorem 4.1.2 is given in this Corollary.

Corollary 4.1.1. Let Ay, Ay, A3 € B(H). Then

3

w(A1+A2+A3)S\IZ‘“2(A)+Z > w(A*A)+Z||A I Z Al

i=1 i=1j=i+1 i=1 j=i+l

In the same context, the authors of [5] have found a special case of Lemma 4.1.1 that is

A, B are doubly commutes.

Lemma 4.1.3. [5] Let Ay, A» € B(H) such that A, doubly commutes with A,. Then

w(A;+ Ap) < \/wZ(Al) +w?(Az) + w(A1 A2) + (AT Ap).
Now let us prove the general case

Theorem 4.1.4. Let A; € B(H) such that A; doubly commutes with A; foralli,j=1,..,n
Then

n n-1 n
w()_ A=< J Y WAHAN+ Y Y w(AiA)+w(ALA)). (4.1.3)

i=1 i= i=1 j=i+1
Proof. By recurrence, from Lemma (4.1.3) the formula (4.1.3) is true when n = 2 . Now

assume that

n n-1 n
w(ZA,-)SJZwZ(A)+Z Y. w(AjA) +w(ATA)). (4.1.4)

i=1 i=1 i=1 j=i+1

for all integer n > 1.
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We have
n+l n+l
w() A) = wAr+ ) A)
i=1 i=2
n+l n+l n+l
< G| 0PAD +02( ). A+ oA ) A +w(AT ) A)
\ i=2 i=2 i=2
(By Lemma 4.1.3)
n+l n n+l n+l n+l
< \ W (A + ) WA+ ) Y [wAiA) +w(AT AN+ (A1 ) A)+w(A] ) A)
i=2 =2 j=i+l i=2 i=2

(By equation (4.1.4))

n+l n n+l

= \ Z_Zia)z(A )+ZZIJZL;H [w(A; A])+(U(A*A])]

Therefore by the principle of mathematical induction, our formula holds for all integers n

great than 1 O
In the following theorem we give a new bounds for arbitrary n x n operator matrix

Theorem 4.1.5. LetH,,Hy,...,Hy, be Hilbert spaces and let A = [A;j];xn, be an nx n operator

matrix, with A;j € BH;,H;) foralli,j=1,2,..,n. Then

(Aji)—w(Ajj) % *
mm< Y oA+ X ],H¢W T2+ 1A+ LA AL+ Azl |-

X1
X2
Proof. LetH = @?zll]-l]l-, andlet X = ’ be a unit vector in H
Xn
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(e, |xI*=X" x> =1). Then

[ A11 A12 Aln 11 X1 ] [ X1 ] Z;'lzlAljxj [ X1 ]
A1 Az ... Aop X2 X2 Z7:1 AzjXj X2
< IR (R
| An Anp ... Aunn 1L Xn | | Xn | Z;?:lAnjx]' | Xn |
n h Jn n-1
< D KAuxpxpd+Y. Y [{Aijxj, xi)l.
i=1 i=1j=i+1

From the inequality (1.3.2) and Lemma 1.5.3, we have

-1

Zw(All)”xl” +Z Z <|Al]|xl’xl> <|Al]| x];x]>2+<|A]z|x],x]> <|A]l| xl)xl>2
i=1 i=1j=i+1

[{(Ax, x)|

IA

= Zw(A”)nx,n +Z1 Zl[<|A,]xl,xl>+<|A,l|xl,x>] A7 1,7 + LAl xpp |
i=1j=i+

(on the Cauchy Schwarz inequality)

= Za)(All)”xl” +Z Z

NSIE

1
A1+ 145D ) | QAT+ 14307

i=1j=i+1
n n-1
= Y wA)lxl? +Z > |||Az]|+|A],||| |||A,]|+|A,z||| i Il x5
i=1 i=1j=i+1
n-1 n .. 12 .. .12
(Al xil1” + w(Aj )Xl
= > +I1Aij1+1A7; 1112 A7 |+|A]z||| il lx; 0y -
i=1 j=i+1 n

As x is a unit vector in ®”_ H;. Then [x;|*+ |lx;|* < 1, forall i, j = 1,2,..,n,i # j. and
;1% = V1 =l 112

Thus, with same condition of i, j, we have

nf Z WA 117 + w(A; ) xillv/1 = [1x:012

w(A) = sup
I 12 +11x;12<1 i=1 j=i+1 2
n-1 n 1 L
* = * =
+ ) > A1+ AGZNAG + 1Az 2 1l 1= D]l
i=1 j=i+1

By maximizing the function

w(Ai) —0(Af)) 1
fl=—= p L2 4 1A+ LASIZ AL+ 1A 120V = 32 + = —0(4j),
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we find an upper bound for [(Ax, x)| is

% a)(Aii)-;a)(Ajj)+\/(w(Aii)—w(Ajj))2+”|Aij|+|A;i|||”|A;j|+|Aji||| |

Thus

o) < ’:11]:2’111% w(Aii)-’:w(Ajj)+\/(w(Aii);lw(Ajj))2+|||Aij|+|A7l~|””|A;<j|+|Aji|”
= % T oA + X0 ;Lmww)h|||Al~,-|+|A;i||||||A;j|+|Aji||| ]

O

In this Theorem we find an upper and lower bounds of w(AB), where A, B are bounded

linear operators.
Theorem 4.1.6. Let A,B € B(H). Then
1 T -
2m(B)w(A) - I BIllAll = w(AB) < | BlIZ[I|B"|2 A7

where

m(B) = inf |(Bx, x)|.
lxll=1

Proof. To prove the first inequality we need the following extention of Schwartz inequality,

which obtained by Buzano [11], if a, b, x are vectors in an inner product space. Then
lallbll +Ka, b
<@, x)|1{x, b)| < 5 (B (4.1.5)

In the equation (4.1.5) let a = Bx and b = Ax, we have

I BxIlll Ax|l + [{Bx, A* x)|

2
I BIIIAI +{ABx, )|

2
IBIIIAl +w(AB)

2

I(Bx, x)|l{x, A*x)| <
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In the other hand, we have
[{Bx, x)|[{x, A*x)| = [{Bx, x)||[{Ax, x)| = m(B)|(Ax, x)|,

Thus,

I Bl All + w(AB)
m(B)|{Ax, x)| < m(B) sup |[{Ax,x)| < 5 .
[xll=1

Consequently
IBIlIIAll + w(AB)

m(B)w(A) < 2

To prove the second inequality, we use Lemma (1.5.3), we have

|{ABx, x)| |(Bx, A% x)]|

IN

(IBlx, x)2(|B*|A*x, A" x)?
= (IBlx,x)?(|B*|? A*x,|B*|? A*x)?
= (IBIx,x)2[IIB*|Z A*x|%]?
= (IBlx,x)?||B*|Z A*x]|
< [IBIIZ]IB*|Z A%
= |BIZIIIB*|Z A"
By (1.3.1), we have
w(AB) < ||B|IZ|||B*|2 A*|.

This completes the proof. O

Remark 4.1.7. In Theorem 4.1.6 see that
1o 1
w(AB) <|[Bllz|[|[B"[2A™ || = [|AlIB].

Theorem 4.1.8. Let A; € BH) foralli=1,...,n. Then
1n—l . n n 1 n n 1

2" [ mApo (A - 12" U 1Al < o([] A) < 121 ] AsdAD*I([ ] AD* 112
i=1 i=1 i=1 i=2 i=1

(4.1.6)

foralln=1.
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Proof. We start with the first inequality.
By recurence, from Theorem 4.1.6 the formula (4.1.6) is true when n = 2.

Now assume that for all n =2

n—1 n n
2" [T mAnwAn - 2" =1 [ 1Al = o ] 4. (4.1.7)
i=1 i=1 i=1
Then, we have
n+l n+l
o([TA) = o ][] A4)
i=1 i=2
n+1 n+1
= 2m(ANo([] A) - 1A T Al
i=2 i=2
(by theorem 4.1.6)
n+l-1 n+1 n+1
> 2m(Ay) [2"7 [] mADwApa) — 1277 - HnA I —||A1||H||A I

i=2
(by the inequality (4.1.7))
n+1 n+1

= Z”Hm(A Yo (A1) —2mADR" =11 [T 14l = 1AL T 1A
i=1 i=2 i=1

n+l n+l
= 2" H Mm(AN©(Ans1) =21l A2 =10 T 1A = LA T T 1Al
i=1 i=2 i=1

n+l

= 2"1'[m(A No(Ana) =127 =11 T 14l
i=1 i=1

Therefore by the principle of mathematical induction, our formula holds for all integers n
greater than 1.

For the second inequality, by Theorem 4.1.6, we have

w(HA)—w(AlﬂA)<||A1|| ||1'[A|(A1) |(HA) 2.

i=1 i=2 i=2 i=1
]

4.2 Generalized spectral radius inequalities for Hilbert space
operators

Theorem 4.2.1. Let A;,B; € B(H) foralli=1,...,n, then
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n n-1 n+l w(B;jA;)—w(BiAj)
T)2 4+ 1By Al + | AS B3IIIAS BT |+ Bj Al

1 n
r(zAiBi)Sz[Zw(BiAi)"‘Z PIRVA¢
j i=1

i=1 i=1j=i+1 -1

Proof. We have

" 0 0 .. 0
r(_AiB) = 1

i=1

Al A2 An Bl 0 0

0 O 0 B, 0 0
= r

By

B, 0 .. 0\ A A . A,

B, 0 0 0 O 0
= r

B, . . . 0 . . 0

BiA, BjA» .. BjA,
B,A, BsA, .. ByA,

BiA; BjAs .. BjA,
B, A1 BsAy ... BoAy

IA
S

Hence, by Theorem 4.1.5, we have

n 1 n n-1 n+l w(B~A-)—w(B-A-)
r(ZAiBi)sg[Zw(BiA,-HZ Yo el
i=1 i=1

i=1j=i+1

— )2+ I1BiAjl + A7 B NIIAT B |+ 1B Aill

O
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A directe result of Theorem 4.2.1, when n = 2 is given in this Corollary

Corollary 4.2.1. Let Ay, Ay, B1,By € B(H). Then

1
r(A1B1+A2By) < > w(B1 A1) +w(B2A2) + \/(w(B1A1) —w(B2A2))? + [[|By Az| + | A} B || A By | + | B2 Ayl | -
The following list of corollaries is an immediate consequence of Corollary 4.2.1.

Corollary 4.2.2. Let A,B € B(H). Then

1
r(AB+BA) = > [w(BA) +w(AB) + V (w(BA) — w(AB))? + ||| B2| +(A2)* || [|(BY)*| + IAZIII] .

Proof. In Corollary 4.2.1 we put A; = B, = A,B; = A, = £B, we have

1
r(AB+ BA) = 7 |0(BA) + 0(AB) + v/ (@(BA) = w(AB)? + [ [B2|+ [(A7)“ 1| (B2)° | + 1 4211 |.
O]

Remark 4.2.2. In Corollary 4.2.2 if P,Q are two projection , we have

r(PQ+QP) < %

w(QP) +w(PQ) + \/(w(QP) —w(PQ)?+ QI+ IP*INQ*| + IPIIII .

Corollary 4.2.3. Let A,B € B(H). Then

1
r(A+B) = 2 [w(A) +w(B)+V (@A) —w(B)2 + |1+ |(BA* ||+ IBAIII] .

Proof. In Corollary 4.2.1 we put Ay = A,B; = A» = I, and By = B, we have

1
r(A+B) = 2 [0(4) + 0(B) + V() - w(B)’ + 1T+ [(BA I +BA .
0

Remark 4.2.3. In Corrolary 4.2.3 if A= P and B = I — P such that P is a projection, we have

1:r(I):r(P+(I—P)S% wP)+wlI—-P)+ V(@) -wl-P)2+1|.
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Corollary 4.2.4. Let A,B € B(H). Then

1
r(AB) = 2 [w(BA) +w(AB) + V (w(BA) — w(AB))? + |||B| + [(ABA)*|||||B*| + |ABA]|l| .

Proof. In Corollary 4.2.1 we put Ay = A,B; = %B, Ar,=1,and B, = %AB, we have

1
r(AB) = 2

A

1 1 1 1 1 1 1 1
w(zBA)+w(-AB +\/w —BA)-w(-AB))?+|[|zBl+|(-ABA)*||II-B*|+|-ABA
(GBA+w(GAB) +[/(w(5BA) —w(FAB)* +[I5BI+1(5 IS B+13 Il

1
= 2 [w(BA) +w(AB) +V (w(BA) — w(AB))? + ||| B| + |(ABA)*| ||| B*| + IABAIII] .

O

4.3 Generalized norm inequalities for Hilbert space opera-
tors

In the following Theorem we present our improvement of the triangle inequality for the

usual operator norm.

Theorem 4.3.1. Let A;, A> € B(H) . Then

141+ Apll < (/1AL 12 + | A2 2 + 200(A3 Ay).
Proof. We have,

I(A; + Az)x|I*

((A1 + A2)x, (A1 + Ag)x)

= (A1x,A1x)+{A1x,Axx) + (Arx, A1 X) + (Arx, A1 X)
= [ A1x[” + | A2x[1* + 2Re(A; x, Ar x)

= [A1x]® + [ Agx| + 2 Ay x, Ap )|

= [l Ayx]® + [ A2x]1? + 21(A5 Ay x, X)].

Thus,
1AL + AzlI? < 1A% + | A2 11 + 2w (A5 Ay),
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and so,

141+ Agll < /1AL + | A2 + 20(A3 Ay,

Corollary4.3.1. Let A= B+ iC be Cartesian decomposition of A€ B(H). Then

IAl < VIBIZ+ [CI2 + 2w(CB) < VIIBI2 + | C|2 + 20(B)w(C).

Proof. From Theorem 4.3.1, we have

IAIl = IB+iCl < VIBI2+|Cl?+2w(C*B).
As B, C are self-adjoint, we have
w(C*B)=w(CB) < |CBI < IClIBl = wo(CQ)w(B).

Thus

LAl = 1B+ iCl < VIBI2+ |C|2 +2w(CB) < VIIBI2 + | C|| + 20(B)w(C).

We are in a position to give the general case of Theorem 4.3.1.

Theorem 4.3.2. Let A; € BH) foralli=1,...,n. Then

n n n-1 n
1) Aill< \l YoIANE+ DY D 20(A7 Ay (4.3.1)
i=1 i=1

i=1 j=i+1
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Proof. Let x € H. Then

Il
M:

n n
1y Apxll Z
i=1 i=1

1

n

(Aix, Aix) + Z Z Ajx, Ajx) +(Ajx, Aix)
]ZZ
n

I
M= 5

1 i=1

n—1
(Aix, Aix)+ Y Y 2Re({A;x,Ajx))
1 i=1 j=i+1

N
I

I
M=

N
I

n-1 n
(AxAx)+Z Y 2KAix, Ajx)|
i=1j=i+1

IA
M=

-~
I
—

Il
i M:

|Ax|| +Z Z 2[(AT Ajx, X))

i=1 j=i+1

Thus,

IIZAII <ZI|A & +Z Z 20(A} Ay).

i=1j=i+1

and so,

i=1j=i+l

n n n-1
||2Ai|s\lZ|A 12+ ) Z 20(A5 Ap).
i=1 i=1

4.4 Applications to Moore-Penrose inverse
Theorem 4.4.1. Let A€ B(H). Then

2 1 TNE pk) A 2
w(A%) < [|AlZ(I(A)"|A7 2] = || Al

4.4. APPLICATIONS TO MOORE-PENROSE INVERSE 80



CHAPTER 4. GENERALIZED NUMERICAL RADIUS, SPECTRAL RADIUS AND NORM
INEQUALITIES WITH APPLICATIONS TO MOORE-PENROS INVERSE

Proof.

w(A%) w(AA)

LA
IANZI1A™[2A

IN

(by Theorem 4.1.6)
1 I *
= [AlzIIIATI2U"|A7]]]
(from Polar decomposition)
SRS (R
= [AlzlIIA"|2U"|A7|2|A7| 2|

S |
= |AlZI[(A"[A™ 2]

< |Al%

O

Theorem 4.4.2. Let A € B(H) be a non zero operator with closed range. Then

1< AIZ 1A% (AN < |ANIA* .
Proof. From , we have
w(ATA) =1.
By Theorem 4.1.6, we have
1= w(A"A) < [AIZ[|A%]2(A%) "] < [ Al A",

O

Theorem 4.4.3. Let A € B(H) be a nonzero operator with closed range. Then

1
m(A) <

— 1Al + < | All.
2|||| | All

AT

Proof. By the equation (1.4.4), we have

At = AT (AAHT
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From Theorem 4.1.6, we have

w(AT) w(A*(AAH))

\%

2m(A*)w((AA*)T) = | A* [ (AA®)T]
= 2m(A)||ATI? - | Al AT

= A2 12m(A)] - I All].

As A#0, AT # 0 also. Then

2m)) -] < 240 1
AT T AT
Thus,
1
m(A) < — [||A|| + .
2 | A* |
As | Al A* = 1, then T ILA]l
Thus,
1
= [I1All + < [ All.
2 [ | Al

Theorem 4.4.4. Let A€ B(H) be a nonzero operator with closed range. Then

VA2 + AR 1(A*)?)*| +] A2

IAAT+ AT Al <1+ 5

Proof. In Corollary 4.2.2 we put B = A*, we have

1
r(AAT + AT A) < 3 [w(AA*) +w(A*A) + V1A +(AD (AT *] + A2

We have AA* + A" A is a self-adjoint operator and AA*, A* A are orthogonal projections,
then

r(AAT+ ATA) =w(AAT+ ATA) = |[AAT + AT A||,

and

w(AAY) =w(ATA) =1.
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Thus,

VA2 + 1A TIA)?) <] + 1A%

IAAT+ AT A <1+ 5

Theorem 4.4.5. Let A€ B(H) be a nonzero operator with closed range. Then

2< VAR [+ A AD)*] + | AllL
Proof. In corollary 4.2.4 we put B= A", we have

1 = r(AAhH

1
= |0 +oAnT) + Viw(AT4) - 0(AAD2 + AT+ [AAT A ITIAT) |+ AATAIl

1
= [T+ VAT IAAT A TIIAT T [AAT ATl

Thus,

2< VAT +(AA* A 1(AY)* |+ ] AA* Al

From the inequality (1.4.1), we have A= AA* A, and so

2 < VIILA* + A A ]+ Al

Theorem 4.4.6. Let A € B(H) be a nonzero operator with closed range. Then

1
r(A") < 1 (AT + [|AY|+ V(| A*] - w(AT)2 + [ AAT +[ (A2 *[ | AAT +[(AP?2[]].

Proof. By (1.4.2),
ATAAT=A".

In corollary 4.2.4 we put A= A* and B = AA™, we have

r(Ah)

IA

i |0(4") + (44" 4%) + V(0(A7) - (AAT A+ AAT + [(ADD*[[| AAT + (A7

- i [w(A+) +0(AATAT) + V(0(AAT AT) — 0(AN)2 + | AA*T +|((AD)D)*[[[| AAT +|(AM)2] II] :
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We have,
W(AATAT) S |[AATAT| < |AAT|IIAT] = | AT].

Thus,

1
r(A") < 1 (AN + [|AY |+ V (IA*] - w(AD)2 + [ AAT + (A2 *[I AAT +[(AD?2(]].
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Conclusion

¢ In this thesis we prove new numerical radius inequalities for Hilbert space operators

» we present numerical radius inequalities for operator matrices, products, and
commutators of operators,
» Inequalities involving the Generalized Aluthge Transform are also obtained,

» we generalise some results,

» we apply some of our results to Moore-Penrose inverse to give new spectral
radius inequalities for Moore-Penrose inverse and to improve some of well-

known inequalities about them.

Prospects

In the future we examinate 3 problems

e Problem 1: The improvement of the inequality

1
EllAllsw(A) for all AeB(H),

¢ Problem 2: Numerical radius inequalities for products of operators under conditions

around operators,

normal operators.

hyponormal operators.

projections.

commuting operators.

e Problem 3: More results about numerical radius inequalities for Moore-Penrose In-

verse.
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Abstract

In this thesis we prove new numerical radius inequalities for Hilbert space operators, we
present numerical radius inequalities for operator matrices, products, and commutators
of operators, we give also inequalities involving the generalized Aluthge transform. Some
of generalized results are given in this thesis, we apply some of our results to Moore-
Penrose inverse to give new spectral radius inequalities for Moore-Penrose inverse and

to improve some of well-known inequalities about them

Keywords
Numerical radius, Spectral radius, Operator matrix, spectrum, commutators, operator

norm, Aluthge transform, inequality.

Résume

Dans cette these, nous prouvons nouvelles inégalités sur le rayon numérique des opéra-
teurs dans un espace de Hilbert, nous présentons des inégalités sur le rayon numérique
pour matrice d ‘opérateurs, produits et commutateurs des opérateurs, nous donnons des
inégalités impliquantla transformation d "Aluthge généralisée. Certains des résultats général-
isés sont donnés dans cette thése , nous appliquons certains de nos résultats a l'inverse
de Moore-Penrose pour donner de nouvelles inégalités de rayon spectral A 1'inverse de

Moore-Penrose et pour améliorer certaines inégalités bien connues A leur sujet.

Mots-clés
Rayon numérique, Rayon spectral, matrice daopérateur, spectre, commutateurs, norme

d’ opérateur, transformation d “Aluthge, inégalité.
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