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INTRODUCTION

The notion of invertibility of the elements is a notion that exists in all the �elds of
mathematics such as algebra, numerical analysis, spectral theory,....
Many problems are interpreted by an equation of the type Ax = y, where A is a given
transformation (a matrix or a lineair application), if A is invertible then there exists a
unique solution for x given by x = A−1y.
We see that a lot of problems appear when A is non invertible, this is the reason for
which some mathematicians have introduced a new notion of invertibility (generalized
inverse or pseudo inverse) to solve these problems.
The generalized inverse of an element A is the element Ag satisfy the two properties
AAgA = A and AgAAg = Ag, these properties which are those of the usual inverse
(A−1) make Ag as close to the ordinary inverse in other words we are close to getting
AgA = AAg = I.
From the mathematicians who introduced the notion of generalized inverse, we mention
Fredholm in 1903. He had introduced the concept of pseudo inverse of integral operators
to treat the integral equations.
In 1936, J.Von Neumann [46] introduced the notion of generalized inverse for elements
in a ring, then in 1948, I.Kaplansky [24] gave an extension for this notion for algebra.
In 1920, E.H. Moore [32] gave a de�nition of the generalized inverse of an n×m matrix A
is equivalent to the existence of n×m matrix B such that AB = PR(A) and BA = PR(B)

(where P is an orthogonal projection).
Unware of Moore's work, R.Penrose [34] showed in 1955 that there exists a unique matrix
B satis�ying the four relations

AB = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

A year later, in 1956 Rado [35] proved that these two de�nitions of Moore and Penrose are
equivalent. Since then this generalized inverse is called the Moore-Penrose generalized
inverse and it's denoted by A+.
Note that the generaliezed inverse is re�exive in the sense if B is generalized inverse of
A, then A is generalized inverse of B.
In 1958, Drazin [15] introduced a di�erent kind of generalized inverse in associative
rings and semigroups that does not have the re�exivity property but commutes with the
element, he de�ned the drazin inverse of a an element of a semi group is the element b
of the semi group that satisfy

ab = ba, b = ab2, ak = ak+1b



Contents 7

for some non negative integer k, the drazin inverse of a is denoted by ad.
Note that the group inverse is a special drazin inverse with k = 1, and it's denoted by
a#.

Through this thesis we are interested in the C∗ algebra of all bounded lineair operators
acting on a complex Hilbert space H, so the �rst section of chapter one contains some
basic theorems of operator theory. For the importance of the Moore-Penrose inverse and
the group inverse in this thesis, we consecrate both second and third section to recall
theirs algebraic and topological properties.

One of the most essential inequalities in operator theory is the Heinz inequality which
is given by

∀X ∈ B(H), ‖PX +XQ‖ ≥ ‖PαXQ1−α + P 1−αXQα‖,

where P and Q are positive operators, and 0 ≤ α ≤ 1.
It's original proof however is based on the complex analysis theory and somewhat com-
plicated.
In 1978, McIntosh [29] proved that Heinz inequality is consequence of the following
inequality

∀A,B,X ∈ B(H), ‖A∗AX +XBB∗‖ ≥ 2‖AXB‖. (A.G.M.I)

This inequality is called the arithmetic geometric mean inequality. From McIntosh in-
equality, we deduce the following inequality

∀S ∈ S0(H), ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2‖X‖. (C.P.R.I)

Note that, this inequality was proved by Corach Porach Recht in [8, 1990]. The C.P.R.I
is a key factor in their study of di�erential geometry of selfadjoint operators. They
proved this inequality by using the integral representation of a selfadjoint operator with
respect to a spectral measure.
Three years later, in 1993, J.I.Fujji, M.Fujji Furuta, and Nakamato [19] showed that
Heinz inequality, A.G.M.I and C.P.R.I are equivalent, and they are equivalent to some
three other inequalities. They also presented an easier proof of Heinz inequality.
In the last section of the �rst chapter, we discuss the above inequalities and some others
norm inequalities.
Based on C.P.R.I, Seddik [38] proved that the following property characterizes exactely
the class of all invertible selfadjoint operators in B(H) multiplying by scalars, that is
the class C∗S0(H)

∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2‖X‖, (S ∈ I(H)), (S1)

This was the begining of this kind of problems of the characterisation of some distin-
guished classes of operators in terms of operator inequalities.
In [40], Seddik has found two other characterizations of this last class given by

∀X ∈ B(H), ‖SXS−1 + S−1XS‖ = ‖S∗XS−1 + S−1XS∗‖, (S ∈ I(H)), (S2)
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∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ ‖S∗XS−1 + S−1XS∗‖, (S ∈ I(H)). (S3)

Note that the class C∗S0(H) is exactly the class of all invertible normal operators in
B(H) the spectrum of which is included in straight line passing through the origin.

For the class N0(H) of all invertible normal operators, Seddik [42] showed, that this
class is characterized by each of the four following properties

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = ‖S∗XS−1‖+ ‖S−1XS∗‖, (S ∈ I(H)), (N1)

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ ‖S∗XS−1‖+ ‖S−1XS∗‖, (S ∈ I(H)), (N2)

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ ‖S∗XS−1‖+ ‖S−1XS∗‖, (S ∈ I(H)), (N3)

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ 2‖X‖, (S ∈ I(H)). (N4)

Concerning the class R∗U(H) of all the unitary operators multiplying with a nonzero
scalar, Seddik could �nd in [40, 41], that this class is characterized by each of the
following properties

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = 2‖X‖, (S ∈ I(H)), (U1)

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ 2‖X‖, (S ∈ I(H)), (U2)

∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≤ 2‖X‖, (S ∈ I(H)), (U3)

∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ ≤ 2‖X‖, (S ∈ I(H)), (U4)

∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ = 2‖X‖, (S ∈ I(H)). (U5)

Using the two properties (S1) and (U3), we deduce that the class R∗Ur(H) of all uni-
tary re�ection operators multiplied by nonzero real numbers, is given by the following
inequality

∀X ∈ B(H), ‖SXS−1 + S−1XS‖ = 2‖X‖, (S ∈ I(H)).

It is clear that the notion of the usual inverse plays a key role in all the previous charac-
terizations, and here the question is appear what if S is not invertible, what if we replace
S−1 by S+ in the above inequalities, is the characterizations still holds?
In [43], Seddik gave the extension of the above properties from the domain I(H) of in-
vertible operators to the domain R(H) of operators with closed ranges. he could found
that the class of all seladjoint operators with closed ranges is characterized by each of
the following properties

∀X ∈ B(H), ‖SXS+ + S+XS‖ = ‖S∗XS+ + S+XS∗‖, (S ∈ R(H)), (S4)

∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ ‖S∗XS+ + S+XS∗‖, (S ∈ R(H)), (S5)

∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ 2‖SS+XS+S‖, (S ∈ R(H)), (S6)

∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2‖SXS‖, (S ∈ R(H)). (S7)

Note that the above properties are extension of the properties (S1), (S2) and (S3) from
the domain I(H) to the domain R(H).
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Concerning the class Ncr(H) of all normal operators with closed ranges, the characteri-
zations are given by

∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ = ‖S∗XS+‖+ ‖S+XS∗‖, (S ∈ R(H)), (N5)

∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ ‖S∗XS+‖+ ‖S+XS∗‖, (S ∈ R(H)), (N6)

∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≤ ‖S∗XS+‖+ ‖S+XS∗‖, (S ∈ R(H)), (N7)

∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2‖S+SXS+S‖, (S ∈ R(H)) , (N8)

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖, (S ∈ R(H)). (N9)

The second chapter contains a detailed study of all the above characterizations. Based
on this chapter, we �nd new characterizations.
In the third chapter, we characterize some subclasses by properties that have new forms
given by

∀X ∈ B(H), ‖S∗XS + SXS∗‖ = 2‖SXS‖, (S ∈ B(H)),

∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≥ 2‖SXS‖, (S ∈ B(H)),

∀X ∈ B(H), ‖S∗XS‖+ ‖SXS∗‖ ≤ 2‖SXS‖, (S ∈ B(H)),

∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≤ 2‖SXS‖, (S ∈ B(H)).

Also, we give the extension of the properties (N1-N3) from the domain I(H) to the
domain I1(H), where I1(H) is the set of all operators S ∈ B(H) such that ind(S) ≤ 1,
it's mean we replaced the usual inverse by the group inverse

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ =
∥∥S∗XS#

∥∥+
∥∥S#XS∗

∥∥ , (S ∈ I1(H)),

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ ≤ ∥∥S∗XS#
∥∥+

∥∥S#XS∗
∥∥ , (S ∈ I1(H)),

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ ≥ ∥∥S∗XS#
∥∥+

∥∥S#XS∗
∥∥ , (S ∈ I1(H)).

Finally, we give chracterizations of some subclasses of nonnormal operators, precisely the
subclass of all isometry operators in B(H) and the subclass of all quasinormal partial
isometry operators B(H). The �rst class is characterized by the following property (that
has a form which missed the symmetric form):

∀X ∈ B(H), ‖X‖+
∥∥S+XS

∥∥ ≤ 2
∥∥SXS+

∥∥ , (S ∈ R(H)).

The second class is characterized by the following property

∀X ∈ B(H), ‖X‖+
∥∥SXS+

∥∥ ≥ 2
∥∥S+XS

∥∥ , (S ∈ R(H)).

In the last chapter; and with colaboration with Menkad Safa, we are interesting by the
study of two classes of operators in B(H), the generalized projections and hypergener-
alized projections, which are extension of the orthogonal projections.
The concepts of generalized projections and hypergeneralized projections on a �nite
dimensional Hilbert space was introduced by GroB and Trenkler [17]. The variety char-
acterizations of the two classes have been studied by many authors (see[1],[2]).
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H.Du and Y.Li [12], was extended the concept of generalized projection on B(H), where
H is not necessarily �nite dimensional. They proved that the properties found in [17]
hold for an in�nite dimensional Hilbert space.
Later in 2006, Deng, Li, and Du [9], by the spactral theoretic argument, they established
the geometrical characterizations of both generalized and hypergeneralized projections.
Recently in 2012, S. Radosavljevic and D.S.Djordjevic [36], gave the same characteri-
zations (but in�uenced by the work of D.S Djordjevic and J.Koliha (see[13]), who gave
matrix representation of a closed range operator in B(H)), they gave a proof more easier
than of them.
The �rst section contains a detailed study about those two classes of operators regards
their characterizations, matrix representation and properties of product, sum and di�er-
ence of generalized and hypergeneralized projections.
In the second section, we de�ne a new class of operator which extends the notion of
idempotent unlike the two above classes. Also by a similar method, we give some basic
characterizations and properties of this class.
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Terminology

Let B(H) be the C∗-algebra of all bounded linear operators acting on a complex
Hilbert space H, and let S(H), N (H), U(H) and V(H) denote the class of all selfadjoint
operators, the class of all normal operators, the class of all unitary operators and the
class of all isometry operators in B(H), respectively.

We denote by

• I(H), the group of all invertible elements in B(H),

• Ur(H) = U(H) ∩ S(H), the set of all unitary re�ection operators in B(H),

• S0(H) = S(H) ∩ I(H), the set of all invertible selfadjoint operators in B(H),

• N0(H) = N (H) ∩ I(H), the set of all invertible normal operators in B(H),

• R(H), the set of all operators with closed ranges in B(H),

• Ncr(H) = N (H) ∩ R(H), the set of all normal operators with closed ranges in
B(H),

• Scr(H) = S(H) ∩ R(H), the set of all selfadjoint operators with closed ranges in
B(H),

• F1(H), the set of all operators of rank one in B(H),

• S1, the set of all unit bounded functionals acting on B(H),

• x⊗y (where x, y ∈ H), the one rank operator on H de�ned by (x⊗ y) z = 〈z, y〉x,
for every z ∈ H,

• L ◦ M = {
∑n

i=1 αiβi : (α1, ..., αn) ∈ L, (β1, ..., βn) ∈ M}, where L ⊂ Cn and
M ⊂ Cn ,

• R(S), the range of S ∈ B(H),

• kerS, the kernel of S ∈ B(H),

• |S|, the positive square root of the positive operator S∗S (where S ∈ B(H)),

• DS = [S∗, S] = S∗S − SS∗, the self-commutator of S ∈ B(H),

• {S}′ = {X ∈ B(H) : SX = XS}, the commutator of S ∈ B(H),

• σ(S), the spectrum of S ∈ B(H),

• r(S) = sup
λ∈σ(S)

|λ|, the spectral radius of S ∈ B(H),

• W (S) = {〈Sx, x〉 : x ∈ H, ‖x‖ = 1}, the numerical range of S ∈ B(H),
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• w(S) = sup
λ∈W (S)

|λ|, the numerical radius of S ∈ B(H),

• coσ(S), the convex hull of S ∈ B(H),

• Dθ, the straight line passing through the origin with slope tan θ, for θ ∈ [0, π[,

• (M)1 = {x ∈M : ‖x‖ = 1}, where M is a subset of a normed space,

Let A be a complex unital normed algebra. For A,B ∈ A, and C = (C1, ..., Cn), D =
(D1, ..., Dn) two n-tuples of elements in A, we denote by:

• V (A) = {f(A) : f ∈ A′, f(I) = ‖f‖ = 1},

• MA,B, the multiplication operator de�ned on A byMA,B(X) = AXB,

• V (C) = {(f(C1), ..., f(Cn)) : f ∈ A′, f(I) = ‖f‖ = 1}, the joint algebraic numeri-
cal range of C,

• RC,D, the elementary operator de�ned on A by RC,D(X) =
∑n

i=1 CiXDi,

For a n-tuple A = (A1, ..., An) of commuting operators in B(H), we denote by:

• ΓA, the set of all multiplicative functionals acting on the maximal commutative
Banach algebra that contains the operators A1, ..., An,

• σ(A) = {(ϕ(A1), ..., ϕ(An)) : ϕ ∈ ΓA}, the joint spectrum of A.



1. PRELIMINARIES AND ARITHMETIC GEOMETRIC MEAN

INEQUALITY

Through this thesis B(H) denotes the C∗- algebra of all bounded linear operators
acting on the complex Hilbert space H.
This chapter contains three sections, the �rst section consecrates to some basic notions
and theorems of operator theory, and we also give some propositions of Seddik which
are useful in the second chapter. In the second section, we introduce the concept of the
Moore-Penrose generalized inverse and we recall some of it's properties, we also mention
the famous theorem of the reverse order law for the the Moore-Penrose inverse. The
third section contains the notions of the ascent and descent of an operator, the group
inverse and EP operators. We �nish this chapter by the section where we discuss some
famous inequalities in operator theory and the relation between them.

1.1 Basic Theorems

Theorem 1.1. (Hahn Banach theorem). Let E be a normed vector space, let M ⊆ E be
a linear subspace, and g be a bounded linear functional on M. Then there is a bounded
linear functional f on E which is an extension of g to E and has the same norm:
‖f‖ = ‖g‖.

Theorem 1.2. (Closed graph theorem). Let F and G be two Banach spaces. Let A be a
linear operator from F into G. Assume that the graph of A , G(A) is closed in F × G.
Then A is continuous.

Theorem 1.3. ([11], Theorem of Douglas). Let A,B ∈ B(H). Then the following
conditions are equivalent:
(i) R(A) ⊂ R(B),
(ii)AA∗ ≤ λBB∗ for some constant λ > 0,
(iii) there exists a bounded operator C on H so that A = BC.

Proof. (i)⇒ (iii). Assume (i) holds.
Let x ∈ H. We have Ax ∈ R(A) ⊂ R(B), then there exists h ∈ (kerB)⊥ such that
Bh = Ax.
Let B0 be the restriction of B to (kerB)⊥. Then B−1

0 : R(B) → (kerB)⊥ is a closed
linear transformation.
Since R(A) ⊂ R(B), then B−1

0 A exists. This implies that Cx = h = B−1
0 Ax, for all
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x ∈ H is a closed linear transformation from H.
To prove that C is bounded it su�ces to show that C has a closed graph.
Let (xn, hn)n≥1 is a sequence of elements in the graph of C such that xn → x and hn → h,
where x ∈ H, h ∈ (kerB)⊥. Then Axn → Ax and Bhn → Bh. Therefore h = Cx. Hence
C has been shown to be bounded.
(ii)⇒ (iii). Assume (ii) holds. Then ‖A∗x‖ ≤ λ‖B∗x‖, for all x ∈ H.
Let the linear map D : R(B∗)→ R(A∗), de�ned by D(B∗x) = A∗x, for all x ∈ H.
We have

∀x ∈ H, ‖D(B∗x)‖2 = ‖A∗x‖2 = 〈AA∗x, x〉 ≤ λ2〈BB∗x, x〉 = λ2‖B∗x‖2

Hence D is bounded. Therefore D can be extended to the closure of R(B∗).
Let S be a bounded operator de�ned on H as follows

S(x) =

{ ∼
D(x) if x ∈ R(B∗).

0 if x ∈ R(B∗)
⊥
.

Hence SB∗x =
∼
DB∗x = DB∗x = A∗x, for every x ∈ H.

So A = BC with C = S∗.
(iii)⇒ (ii). Assume (iii) holds. Then for all x in H :

〈AA∗x, x〉 = ‖A∗x‖2 = ‖C∗B∗x‖2 ≤ ‖C∗‖2‖B∗x‖2 = ‖C∗‖2〈BB∗x, x〉.

The implication (iii)⇒ (i) is trivial.

Notation 1.1. For A a complex unital normed algebra, we denote by P(A), the set of
all states on A given by:

P(A) = {f ∈ A′ : f(I) = ‖f‖ = 1}.

De�nition 1.1. For A ∈ A, we de�ne the algebraic numerical range V (A) as follows

V (A) = {f(A), f ∈ P(A)}.

such that f(A∗) = f(A).

For every A ∈ A, V (A) is convex, closed and contains σ(A) (for more details see
[45]). A is Hermitian if V (A) is real.

De�nition 1.2. For an operator A ∈ B(H), the usual numerical range W (A) is de�ned
as the set

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

Proposition 1.1. [45] Let A ∈ B(H). Then
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(i) V (A) = W (A) (the closure of W (A)).

(ii) A is selfadjoint if and only if W (A) is real.

De�nition 1.3. • Let A ∈ B(H). A is called:

(a) convexoid if W (A) = coσ(A),

(b) normaloid if ‖A‖ = r(A),

(c) paranormal if ‖S2x‖ ≥ ‖Sx‖2, for every x ∈ (H)1,

(d) quasinormal if A and A∗A commute.

• Let A,B ∈ B(H). We say that A is norm-parallel to B (A‖B) if ‖A + λB‖ =
‖A‖+ ‖B‖, for some unit scalar λ.

Proposition 1.2. [38] Let A ∈ B(H). If ‖A− α‖ = r(A− α), for all complex α, then
A is convexoid.

Proposition 1.3. Let A be a positive operator in B(H) and let X ∈ B(H). If A2X =
XA2, then AX = XA.

Elementary operator and injective norm on tensor product space

Let us consider E a normed space over R. For A = (A1, ..., An) and B = (B1, ..., Bn)
be two n-tuples of operators in B(E). We denote by RA,B, the elementary operator on
B(E) given by

RA,B(X) =
n∑
i=1

AiXBi, X ∈ B(E).

We denote by E(B(E)), the vector space of all elementary operators acting on B(E).
For R ∈ E(B(E)), we put d(RA,B) = sup

‖X‖=rankX=1

‖RA,B(X)‖.

For A,B ∈ B(E), we denote A⊗ B the bounded bilinear form in B(E)′ ×B(E)′ given
by

(A⊗B)(f, g) = f(A)g(B), f, g ∈ B(E)′.

We denote by B(E)⊗B(E), the vector space given by B(E)⊗B(E) = {
∑n

i=1 Ai⊗Bi :
n ≥ 1, Ai, Bi ∈ B(E), i = 1, .., n}.
We de�ne on B(E) ⊗ B(E), the standard norm of a bounded bilinear form, given as
follows

‖
n∑
i=1

Ai ⊗Bi‖λ = sup
f,g∈(B(E)′)1

|
n∑
i=1

f(Ai)g(Bi)|, (A1, ..., An), (B1, ..., Bn) ∈ B(E)

The norm ‖.‖λ is called the injective norm on B(E)⊗B(E).
The next proposition shows the relation between the injective norm ‖.‖λ and d(.) of any
elementary operator on B(E).
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Proposition 1.4. [40] Let A = (A1, ..., An) and B = (B1, ..., Bn) be two n-tuples of
operators in B(E). The following equalities hold:

d(RA,B) = ‖
n∑
i=1

Ai ⊗Bi‖λ

= sup
f∈(B(E)′)1

‖
n∑
i=1

f(Bi)Ai‖

= sup
f∈(B(E)′)1

‖
n∑
i=1

f(Ai)Bi‖.

Proof. We denote by k1, k2 and k3 the obove supremum in the same order. Let x, y ∈
(E)1, f, g ∈ (B(E)′)1 and h ∈ (E ′)1.
We have d(RA,B) ≥ ‖

∑n
i=1Ai(x⊗h)Bi‖ ≥ ‖

∑n
i=1Ai(x⊗h)Biy‖ = ‖(

∑n
i=1 h(Biy)Ai)x‖,

then by taking the supremum over x ∈ E1, it follows that

d(RA,B) ≥ ‖
n∑
i=1

h(Biy)Ai‖.

So that

d(RA,B) ≥ |
n∑
i=1

h(Biy)f(Ai)| = |h(
n∑
i=1

f(Ai)Biy)|.

By taking the supremum over h ∈ (E ′)1, we obtain

d(RA,B)‖ ≥ ‖(
n∑
i=1

f(Ai)Bi)y‖.

Thus

d(RA,B) ≥ ‖
n∑
i=1

f(Ai)Bi‖,

and so

d(RA,B) ≥ |g(
n∑
i=1

f(Ai)×Bi)| = |
n∑
i=1

f(Ai)× g(Bi)|.

Therefore
d(RA,B) ≥ k1.

It's clear that k1 ≥ ‖f(
∑n

i=1 g(Bi)Ai)‖, then k1 ≥ ‖
∑n

i=1 g(Bi)Ai‖.
So that

k1 ≥ k2.

Since k2 ≥ ‖f(
∑n

i=1 g(Bi)Ai)‖ = ‖g(
∑n

i=1 f(Ai)Bi‖, taking the supremum over g ∈
(B(E)′)1, it follows that

k2‖
n∑
i=1

f(Ai)Bi‖.
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Therefore
k2 ≥ k3.

Since k3 ≥ |h(
∑n

i=1 f(Ai)Biy| = |
∑n

i=1 f(Ai)h(Biy)| = |f(
∑n

i=1 h(Biy)Ai|, then

k3 ≥ ‖
n∑
i=1

h(Biy)Ai‖ ≥ ‖
n∑
i=1

h(Biy)Aix‖ = ‖
n∑
i=1

Ai(x⊗ h)Biy‖.

Therefore
k3 ≥ d(RA,B),

this completes the proof.

The following proposition, is a particular case of the above proposition where the
normed space is an Hilbert space.

Proposition 1.5. [39] Let A = (A1, ..., An) and B = (B1, ..., Bn) be two n-tuples of oper-
ators inB(H). The following equality holds ‖

∑n
i=1Ai⊗Bi‖λ = sup{|

∑n
i=1〈Aix, y〉〈Biu, v〉 :

x, y, u, v ∈ (H)1}.

Proof. Put k = sup{|
∑n

i=1〈Aix, y〉〈Biu, v〉 : x, y, u, v ∈ (H)1}. Let x, y, u, v ∈ (H)1, and
let f ∈ S1. From proposition 1.4, we have

‖
n∑
i=1

Ai ⊗Bi‖λ ≥ ‖
n∑
i=1

f(Bi)Ai‖ ≥ |
n∑
i=1

f(Bi)〈Aix, y〉| = |f(
n∑
i=1

〈Aix, y〉Bi)|.

By taking the supremum over f ∈ S1, we obtain

‖
n∑
i=1

Ai ⊗Bi‖λ ≥ ‖
n∑
i=1

〈Aix, y〉Bi‖ ≥ |
n∑
i=1

〈Aix, y〉〈Biu, v〉|.

Taking the supremum over x, y, u, v ∈ (H)1, we have∥∥∥∥∥
n∑
i=1

Ai ⊗Bi

∥∥∥∥∥
λ

≥ k.

It remains to prove that k ≥ ‖
∑n

i=1Ai⊗Bi‖λ. It's clear that k ≥ |〈
∑n

i=1〈Aix, y〉Biu, v〉|,
taking the supremum over v ∈ (H)1 then over u ∈ (H)1, it follows

k ≥ ‖(
n∑
i=1

〈Aix, y〉Bi)u‖ ≥ ‖
n∑
i=1

〈Aix, y〉Bi‖.

Hence

k ≥ |
n∑
i=1

〈Aix, y〉f(Bi)| ≥ |
n∑
i=1

〈f(BiAix, y〉|,
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taking the supremum over v ∈ (H)1 then over u ∈ (H)1, it follows

k ≥ ‖(
n∑
i=1

f(Bi)Ai)x‖ ≥ ‖
n∑
i=1

f(Bi)Ai‖.

Finally, by taking the supremum over f ∈ S1 and by using proposition 1.4, we obtain
that

k ≥

∥∥∥∥∥
n∑
i=1

Ai ⊗Bi

∥∥∥∥∥
λ

.

The remaining proposition in this section, provides a lower estimate for the injective
norm ‖

∑n
i=1Ai ⊗ Bi‖λ, where A and B are two n-tuples of commuting operators in

B(H) and it characterizes this norm for two n-tuples of commuting normal operators .

Proposition 1.6. [41] Let A = (A1, ..., An) and B = (B1, ..., Bn) be two n-tuples of
commuting operator in B(H). Then ‖

∑n
i=1Ai⊗Bi‖λ ≥ |σ(A) ◦ σ(B)|, and ‖

∑n
i=1 Ai⊗

Bi‖λ = |σ(A) ◦ σ(B)| if Ai and Bi are normal operators.

Proof. Let (φ, ψ) be an arbitrary pair in ΓA × ΓB . Using Hahn�Banach theorem, we
may extend φ and ψ to unit functionals f and g on B(H), respectively. So it follows
from Proposition 1.4 that

‖
n∑
i=1

Ai ⊗Bi‖λ ≥ |
n∑
i=1

f(Ai)g(Bi)| = |
n∑
i=1

ϕ(Ai)ψ(Bi)|.

Therefore

‖
n∑
i=1

Ai ⊗Bi‖λ ≥ |σ(A) ◦ σ(B)|.

Now suppose that all Ai and Bi are normal operators. It su�ce to prove that |σ(A) ◦
σ(B)| ≥ ‖

∑n
i=1Ai ⊗ Bi‖λ. Since |σ(A) ◦ σ(B)| ≥ |ψ(

∑n
i=1 φ(Ai)Bi)| and

∑n
i=1 ϕ(Ai)Bi

is normal, for every (ϕ, ψ) ∈ ΓA × ΓB , then

|σ(A) ◦ σ(B)| ≥ sup
ψ∈ΓB

|ψ(
n∑
i=1

ϕ(Ai)Bi)| = ‖ψ(
n∑
i=1

ϕ(Ai)Bi)‖, ∀ϕ ∈ ΓA.

Thus

|σ(A) ◦ σ(B)| ≥ |
n∑
i=1

ϕ(Ai)f(Bi)| = |ϕ(
n∑
i=1

f(Bi)Ai)|, ∀ϕ ∈ ΓA;∀f ∈ S1.

Hence

|σ(A) ◦ σ(B)| ≥ ‖
n∑
i=1

f(Bi)Ai‖,∀f ∈ S1.
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So it follows from Proposition 1.4 that

σ(A) ◦ σ(B)| ≥ ‖
n∑
i=1

Ai ⊗Bi‖λ.

1.2 The Moore-Penrose generalized inverse and the reverse order law

1.2.1 The Moore-Penrose generalized inverse

We start by giving a little introduction about the origin of the Moore-Penrose gener-
alized inverse.
In 1903, Fredholm introduced the concept of pseudo inverse of integral operators. Then,
in 1936, J. Von Neumann [46] introduced the notion of generalized inverse for an ele-
ments of ring. Later, in 1948, I. Kaplansky [24] gave an extention of this notion for the
algebras. At last the notion of Moore-Penrose inverse or Pseudo-inverse was establish
par E. H. Moore [32] in 1920, he gave an explicit de�nition of the generalized inverse of
an arbitrary matrix as follows if A ∈ Cn×m which is de�ned to be the unique matrix A+

such that AA+ = PR(A) and A
+A = PR(A+).

This work was either little noticed or its signi�cance not realized (perhaps because of the
very individualistic Moore's terminology and notation). So the subject of generalized
inverses remained undeveloped for 35 years.
In 1955, R.Penrose [34] who was apparently unware of Moore's work; he gave the def-
inition of the generalized inverse for every matrix A of real complex elements, which
is the unique matrix A+ that satis�es the four equations (that we called the Penrose
equations):

AA+A = A, A+AA+ = A+, (AA+)∗ = AA+, (A+A)∗ = A+A.

A year later in 1956, Rado [35] proved that these two de�nitions of Moore and Penrose are
equivalents. Since then this generalized inverse is called the Moore-Penrose generalized
inverse.
In C∗-algebra of all bounded linear operators acting on a complex Hilbert space H, R.
Hart and M. Mbekhta [20] proved that every operator A ∈ B(H) has a Moore-Penrose
inverse if and only if A has a closed range.

Theorem 1.4. Let A ∈ B(H). Then
(i) R(A) is closed if and only if R(AA∗) is closed. In this case R(A) = R(AA∗).
(ii) R(A) is closed if and only if R(A∗) is closed.

Proof. (i). Suppose that R(A) is closed, then H = R(A) ⊕⊥ kerA∗ = R(A∗) ⊕⊥ kerA.
Hence A has a representation of the form:

A =

[
A1 0
0 0

]
:

[
R(A∗)
kerA

]
→
[
R(A)
kerA∗

]
,
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where A1 is invertible from R(A∗) to R(A). Therefore

AA∗ =

[
A1A

∗
1

0
0 0

]
:

[
R(A)
kerA

]
→
[
R(A)
kerA∗

]
.

Since A1 is invertible, then A1A
∗
1 is invertible operator in B(R(A)). And since R(AA∗) =

R(A1A
∗
1), we get R(AA∗) = R(A), where R(A) is closed.

Conversely; suppose that R(AA∗) is closed, then H = R(AA∗) ⊕ ker(AA∗). Since
ker(AA∗) = kerA∗, we have

H = R(AA∗)⊕ ker(AA∗) ⊂ R(A)⊕ ker(A∗) ⊂ H,

thus R(A) = ker(A∗)⊥. Therefore R(A) is closed and R(A) = R(AA∗).
(ii). Suppose that R(A) is closed, then using (i) we have R(A) = R(AA∗). Hence for all
x ∈ H, there exists y ∈ H such that Ax = AA∗y, which gives that x− A∗y ∈ kerA and
x = (x−A∗y) +A∗y ∈ kerA+R(A∗). So R(A∗) = (kerA)⊥. Therefore R(A∗) is closed.
The inverse implication is obtained by symmetry with the adjoint.

Theorem 1.5. Let A ∈ B(H). Then the following properties are equivalent:
(i) R(A) is closed,
(ii) there exists B ∈ B(H) such that ABA = A,
(iii) there exists B ∈ B(H) such that ABA = A,BAB = B, (AB)∗ = AB, (BA)∗ = BA,
(iv) there exists B ∈ B(H) such that ABA = A,BAB = B.

Proof. (i) ⇒ (ii). Assume (i) holds. Then, by theorem 1.4, R(A∗) is closed. So H =
R(A)⊕ kerA∗ = R(A∗)⊕ kerA. Thus, The general form of the operator A is given by

A =

[
A1 0
0 0

]
:

[
R(A∗)
kerA

]
→
[
R(A)
kerA

]
,

where A1 is an invertible operator from R(A∗) to R(A).
Let

B =

[
A−1

1
0

0 0

] [
R(A)
kerA

]
→
[
R(A∗)
kerA

]
,

B satis�es the equation ABA = A.
(ii)⇒ (iii). By the same choice of B, we �nd that B satis�es the others three equations.
(iii)⇒ (iv). The imlication is trivial.
(iv) ⇒ (i). Assume that (iv) holds. Then AB is an idempotent on R(A). Hence R(A)
is closed.

Remarks 1.1. 1. The operator B that satis�es the condition in (ii) is called inner
inverse of A.
2. The operator B that satis�es the conditions in (iii) it is unique, and it's called Moore-
Penrose inverse of A and it is denoted by A+.
3. The operator B that satis�es the conditions in (iv) is called the re�exive inverse (or
generalized inverse) of A it's mean both inner inverse and outer inverse.
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Remark 1.1. Let A ∈ R(H). Then

1. AA+ is an orthogonal projection onto R(A),

2. A+A is an orthogonal projection onto R(A∗),

3. kerA+ = ker(AA+) = kerA∗,

4. R(A+) = R(A+A) = R(A∗).

The next proposition gives some properties of the Moore-Penrose inverse that show
the relation between the adjoint and the Moore-Penrose inverse of an operator.

Proposition 1.7. Let A ∈ R(H). Then we have
(i) (A+)+ = A,
(ii) (A∗)+ = (A+)∗,
(iii) (A∗A)+ = A+(A+)∗,
(iv) (AA∗)+ = (A+)∗A+,
(v) A∗ = A+AA∗ = A∗AA+,
(vi) A+ = (A∗A)+A∗ = A∗(AA∗)+,
(vii) (A∗)+ = A(A∗A)+ = (AA∗)+A.

Proof. (i). Trivial.
(ii). (A+)∗ must satis�es the four conditions of the Moore-Penrose:
(A+)∗A∗(A+)∗ = (A+AA+)∗ = (A+)∗,
A∗(A+)∗A∗ = (AA+A)∗ = A∗,
(A∗(A+)∗)∗ = A+A = (A+A)∗ = A∗(A+)∗, and
((A+)∗A∗)∗ = AA+ = (AA+)∗ = (A+)∗A∗.
Therefore (A+)∗ is the Moore-Penrose inverse of A∗.
(iii). Since R(A∗) = R(A∗A) and R(A∗) is closed, then (A∗A)+ exists.
A∗AA+(A+)∗A∗A = A∗AA+(AA+)∗A = A∗AA+AA+A = A∗A,
A+(A+)∗A∗AA+(A+)∗ = A+(AA+)∗AA+(A+)∗ = A+AA+(A+)∗ = A+(A+)∗,
(A∗AA+(A+)∗)∗ = A+AA+A = A+A = (A+A)∗ = (AA+A)∗(A+)∗ = A∗AA+(A+)∗, and
(A+(A+)∗A∗A)∗ = (A+(A)A+A)∗ = A+A = A+(A+)∗A∗A.
Hence A+(A+)∗ is the Moore-Penrose inverse of A∗A.
(iv). Follows immediately from (iii), we replace A by A+.
(v). Since A+A is an orthogonal projection onto R(A∗), then we obtain

A∗ = A+AA∗ = (A+A)∗A∗ = A∗(AA+)∗ = A∗AA+.

(vi). It is clear that A+ = A+(A+)∗A∗. Using (iii), we obtain the �rst equality of (vi).
By the same method, we obtain also the second equality of (vi).
(vii). The two inequalities follow immediately from (vi).
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D. Djordjevic and J. Koliha [13], established the matrix representation of a linear
bounded operator with a closed range operator on in�nite dimensional Hilbert space H
depending on the di�erent decomposition of the space in the following lemma.

Lemma 1.1. [13] Let A ∈ R(H). Then the operator A has the following three matrix
representation with respect to the orthogonal sum of subspaces H = R(A) ⊕ kerA∗ =
R(A∗)⊕ kerA
(a) We have

A =

[
A1 0
0 0

]
:

[
R(A∗)
kerA

]
→
[
R(A)
kerA∗

]
, (1.1)

where A1 is invertible. Moreover

A+ =

[
A−1

1
0

0 0

]
:

[
R(A∗)
kerA

]
→
[
R(A)
kerA

]
.

(b) We have

A =

[
A1 A2

0 0

]
:

[
R(A)
kerA∗

]
→
[
R(A)
kerA∗

]
, (1.2)

where D = A1A
∗
1 + A2A

∗
2 maps R(A) onto itself and D > 0. Also

A+ =

[
A∗

1
D−1 0

A∗
2
D−1 0

]
.

(c) Alternatively

A =

[
A1 0
A2 0

]
:

[
R(A∗)
kerA

]
→
[
R(A∗)
kerA

]
, (1.3)

where C = A∗1A1 + A∗2A2 maps R(A∗) onto itself and C > 0. Also

A+ =

[
C−1A∗

1
C−1A∗

2

0 0

]
Proof. The proof of (a) is straightforward.
(b). The operator A has the following representation

A =

[
A1 A2

A3 A4

]
:

[
R(A)
kerA∗

]
→
[
R(A)
kerA∗

]
,

i.e.

A1 = A | R(A) : R(A)→ R(A),A2 = A | ker(A∗) : ker(A∗)→ R(A)

A3 = A | R(A) : R(A)→ ker(A∗),A4 = A | ker(A∗) : ker(A∗)→ ker(A∗)

Furtheremore

A∗ =

[
A∗

1
A∗

3

A∗
2
A∗

4

]
:

[
R(A∗)
kerA

]
→
[
R(A∗)
kerA

]
.
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From A∗(ker(A∗)) = 0, we obtain A∗3 = 0 and A∗4 = 0. So A3 = 0 and A4 = 0. Hence

A =

[
A1 A2

0 0

]
. Notice that

AA∗ =

[
D 0
0 0

]
,

where D = A1A
∗
1 +A2A

∗
2 : R(A)→ R(A). From kerA∗A = ker(A∗), it follows that D is

injective. From R(AA∗) = R(A), it follows that D is surjective. Hence D is invertible.
Finally, we obtain the form of tho Moore-Penrose inverse of A, by using proposition
1.7(vi).
The proof of (c) is analogous.

Remark 1.2. 1. If A ∈ B(H) is an invertible operator then A+ = A−1.
2. If P ∈ B(H) is an orthogonal projection then P+ = P .
3. If S ∈ B(H) is a partial isometry then S+ = S∗.

4.(0)+ = 0 and (λI)+ =
1

λI
, for λ 6= 0.

1.2.2 The reverse order law

We know that if A and B are two invertible operators in B(H), then AB is invertible
and (AB)−1 = B−1A−1; is called the reverse order law for the ordinary inverse. It is well
known that the reverse order law does not hold for various classes of generalized inverses.
Hence, a signi�cant number of authors treat the su�cient or equivalent conditions such
that the reverse order law holds in some sense. Some authors proved that the reverse
order law holds in the setting of element in rings and others in setting of matrices.
In 1974, Greville [16] gave some necessary and su�cient conditions for the Moore-Penrose
inverse of a complex matrix product AB to be expressed as (AB)+ = B+A+. This result
is extended for linear bounded operators on Hilbert spaces, by Bouldin [6] and Izumino
[23].
In 1981, Saichi Izumino [23] proved the following result:

Theorem 1.6. Let A,B ∈ R(H) such that AB ∈ R(H). Then the following statements
are equivalent:
(i) A+A commute with BB∗ and BB+ commute with A∗A,
(ii) AB(AB)+ = ABB+A+ and (AB)+AB = B+A+AB,
(iii) (AB)+ = B+A+.

1.3 The group inverse and EP operators

De�nition 1.4. Let A ∈ R(H). We call a group inverse of A, the operator B ∈ B(H)
satis�ed

(1)ABA = A, (2)BAB = B, (3)AB = BA
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Remark 1.3. • The group inverse of an operator A ∈ R(H) if exists, it's unique
and it's denoted by A#.

• From (3) we have R(A) = R(A#) and kerA = kerA#.

• Since R(A) = R(A#), then AA+A# = A#A+A = A#.

• From (1) and (3), we �nd that A#A = AA# is a projection onto R(A).

De�nition 1.5. The ascent and descent of an operator A ∈ B(H) are de�ned by

asc(A) = inf{p ∈ N ∪ {0} : ker(Ap) = ker(Ap+1)},

dsc(A) = inf{p ∈ N ∪ {0} : R(Ap) = R(Ap+1)},

(where inf∅ =∞); if they are �nite, they are equal and their common value is called the
index of A and it is denoted by ind(A).

The following theorem gives a necessary and su�cient condition which guarantee the
existence of the group inverse of an operator in R(H).

Theorem 1.7. Let A ∈ R(H). Then the following properties are equivalent:
(i) A has a group inverse,
(ii) H = R(A)⊕ kerA,
(iii) ind(A) ≤ 1.

Proof. (i) ⇒ (ii). Suppose that B is group inverse of A. Then by de�nition, AB is an
idempotent on R(A). Hence H = R(A)⊕ kerA topological direct sum.
(ii)⇒ (iii). Assume (ii) holds.
Let x ∈ H. Then x = Ax+ y, where y ∈ kerA. Thus Ax = A2x. Hence R(A) = R(A2).
Now let x ∈ kerA2. Then Ax ∈ kerA. Thus Ax ∈ R(A) ∩ kerA = {0}. Therefore
kerA = kerA2.
(iii)⇒ (i). Since kerA2 = kerA, then R(A∗)2 = R(A∗).
From the two hypotheses R(A2) = R(A), R(A∗)2 = R(A∗) and using theorem of Douglas,
we �nd that there exist two bounded operators C,D on H such that A = A2C = DA2.
Let B = DAC. We have
ABA = ADACA = ADA2CCA = AACCA = ACA = DA2CA = DA2 = A,
BAB = DACADAC = DACADA2CC = DACAACC = DACAC = DDA2CAC =
DDAAC = DAC.
From another side, we have
AB = ADAC = ADA2CC = AACC = AC, and
BA = DACA = DDA2CA = DDAA = DA = DA2C = AC.
Then AB = BA. Therefore B satis�es the three equations of the group inverse. So B is
the group inverse of A.

Lemma 1.2. Let E,F two Banach spaces and let A ∈ B(E,F ). LetM be closed subspace
of F such that R(A)⊕M is closed. Then R(A) is also closed.
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Proof. We equipped the vectorial space E \ kerA ×M by the norm ‖(x,m)‖ = ‖x‖ +
‖m‖, x ∈ E \ kerA,m ∈M.
Let us de�ne the operator A0 : E \ kerA×M → R(A)⊕M.
A0 is de�nite, linear, bounded and bijective. Then A0 is invertible operator. Hence A0

is bounded below i.e there exists a constant k > 0 such that ∀x ∈ E \ kerA,∀m ∈
M, ‖Ax+m‖ ≥ k(‖x‖+ ‖m‖). So

∀x ∈ E, ‖Ax‖ ≥ k‖x‖, (*)

which proves that the operator A : E \ kerA → R(A) is linear, bounded and bijective.
Then, A has a bounded inverse.
Now, let us prove that R(A) is closed.
Let yn ∈ R(A) such that yn = Axn → y (where (xn)n≥1 is a sequence in H).
Applying (*) for x = xn − xm (where n,m ≥ 1), we �nd

∀n,m ≥ 1; ‖xn − xm‖ ≤
1

k
‖Axn − Axm‖.

By passing to the limit, we obatin that (xn)n≥1 is a Cauchy sequence, then there exists
a vector x ∈ E such that xn → x. Hence Axn = Axn → Ax, so y = Ax. Therefore R(A)
is closed.

Theorem 1.8. [37] Let A ∈ B(H) with ind(A) ≤ 1. Then R(A) is closed.

Proof. Let A ∈ B(H) with ind(A) ≤ 1. Then from theorem 1.7, we have H = R(A) ⊕
kerA. Since the kernel space kerA is always closed, then the closedness of R(A) is a
consequence of lemma 1.2.

Notation 1.2. We denote by I1(H), the set of all operators A ∈ B(H) such that indA ≤
1.

Lemma 1.3. [13] Let A ∈ I1(H). Then
(i) Relative to the representation matrix (1.2) of A, A1 is invertible and

A# =

[
A−1

1
A−2

1
A2

0 0

]
.

(ii) Relative to the representation matrix (1.3) of A, A1 is invertible and

A# =

[
A−1

1
0

A2A
−2
1

0

]
.

Proof. (i) A has the following matrix representation

[
A1 A2

0 0

]
with respect to the

orthogonal decomposition H = R(A) ⊕ kerA∗ (where A1 : R(A) → R(A)). Since
ind(A) ≤ 1, then R(A2) = R(A) gives that A1 is surjective, and kerA2 = kerA gives
that A1 is injective. Hence A1 is invertible.
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Let

[
B1 B2

B3 B4

]
be the matrix representation of A#. A# satis�ed the three conditions

of the group inverse, so

A1B1A1 = A1, B1A1 = B1, B1A1 = A1B1, B3 = B4 = 0, B2 = B2
1A2.

B1 is the group inverse of A1 and since A1 is invertible, then B1 = A−1
1 .

Therefore A# =

[
A−1

1
A−2

1
A2

0 0

]
.

(ii) By the same argument as above.

Remark 1.4. (i). If H has a �nite dimension, then the ascent and descent of an operator
A are �nite.
(ii). A is invertible if and only if ind(A) = 0.

Examples 1.1. If P ∈ B(H) is a projection then P# = P .

De�nition 1.6. Let A ∈ R(H). We call A is an EP stands for equal projection if
A+A = AA+,or equivalently R(A) = R(A∗).

Note that any normal operator with a closed range is an EP operator, but the converse
is not true even in a �nite dimensional space.
The characterizations of selfadjoint, normal and EP operators on Hilbert spaces was
established by Dragan S. Djordjevic and J. J. Koliha in [13], where they gave the following
result.

The following lemma gives the matrix representation of some classes of operators:

Lemma 1.4. Let A ∈ R(H) has the following matrix representation

[
A1 A2

0 0

]
with

respect to the orthogonal decomposition H = R(A)⊕kerA∗. Then the following properties
hold:
(i) A is selfadjoint if and only if A2 = 0 and A1 is selfadjoint.
(ii) A is normal if and only if A2 = 0 and A1 is normal.
(iii) A is EP if and only if A2 = 0 and A1 is invertible.
(iv) A is normal partial isometry if and only if A2 = 0 and A1 is unitary.
(v) A is selfadjoint partial isometry if and only if A2 = 0 and A1 is unitary re�ection.

Proof. The proof is easy.

Remark 1.5. If A ∈ R(H). Then A is an EP operator if and only if A+ = A#.

1.4 Norm inequalities equivalent to Heinz inequality

In this section, we are interested by giving some famous inequalities in operator theory
and the relation between them.
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In 1951, Heinz [22] proved that for every positifs operators P,Q ∈ B(H) and for every
α ∈ [0, 1], we have

∀X ∈ B(H), ‖PX +XQ‖ ≥ ‖PαXQ1−α + P 1−αXQα‖,

which is one of the most essential inequalities in operator theory. Its original proof is
based on the complex analysis theory and is somewhat complicated.
From Heinz inequality, we may remark that for α = 1

2
and if we put P = |A| and Q = |B|,

we obtain the following inequality

∀A,B,X ∈ B(H), ‖A∗AX +XBB∗‖ ≥ 2‖AXB‖. (A.G.M.I1)

In literature, this inequality is called the Arithmetic-Geometric Mean Inequality.
In 1978, McIntosh [29] proved that (A.G.M.I1) holds and he deduced Heinz inequality
from (A.G.M.I1). Then the two inequalities of Heniz and McIntosh are equivalent.
In 1990, independently of the two works of Heinz and McIntosh and with another moti-
vation, Corach-Porta-Recht [8] have proved the following inequality

∀S ∈ S0(H),∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2‖X‖. (C.P.R.I)

This inequality was a key factor in their study of di�erential geometry of selfadjoint op-
erators. They proved this inequality by using the integral representation of a selfadjoint
operator with respect to a spectral measure.
We may remark that for any invertible operator S, we have 0 ≤ inf

‖X‖=1

‖SXS−1 +

S−1XS‖ ≤ 2. Using the (C.P.R.I), the above in�mum gets it's maximal value 2, for
S an invertible selfadjoint operator in B(H).
Three years later, in 1993, J.I.Fujji, M.Fujji Furuta, and Nakamato [19], showed by
elemantary calculations that Heinz inequality, (A.G.M.I1), (C.P.R.I) and some other in-
equalities are equivalent. They presented an easy proof for one of them and hence, they
deduced Heinz inequality.

In the next proposition, we shall present other operator inequalities that are equiv-
alent to Heinz inequality.

Proposition 1.8. The following operator inequalities hold and are mutually equivalent:

(1) ∀A,B,X ∈ B(H), ‖A∗AX +XBB∗‖ ≥ 2 ‖AXB‖ ,
(2) ∀S,R ∈ R(H), ∀X ∈ B(H), ‖S∗XR+ + S+XR∗‖ ≥ 2 ‖SS+XR+R‖ ,
(3) ∀S,R ∈ I(H),∀X ∈ B(H), ‖S∗XR−1 + S−1XR∗‖ ≥ 2 ‖X‖ ,
(4) ∀S,R ∈ Scr(H),∀X ∈ B(H), ‖SXR+ + S+XR‖ ≥ 2 ‖SS+XR+R‖ ,
(5) ∀S,R ∈ S0(H),∀X ∈ B(H), ‖SXR−1 + S−1XR‖ ≥ 2 ‖X‖ ,
(6) ∀S,R ∈ Scr(H),∀X ∈ B(H), ‖S2X +XR2‖ ≥ 2 ‖SXR‖ ,
(7) ∀S,R ∈ S(H),∀X ∈ B(H), ‖S2X +XR2‖ ≥ 2 ‖SXR‖ ,
(1′) ∀A,X ∈ B(H), ‖A∗AX +XAA∗‖ ≥ 2 ‖AXA‖ ,
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(2′) ∀S ∈ R(H),∀X ∈ B(H), ‖S∗XS+ + S+XS∗‖ ≥ 2 ‖SS+XS+S‖ ,
(3′) ∀S ∈ I(H),∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ ≥ 2 ‖X‖ ,
(4′) ∀S ∈ Scr(H),∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ 2 ‖SXS‖ ,
(5′) ∀S ∈ S0(H), ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2 ‖X‖ ,
(6′) ∀S ∈ Scr(H),∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2 ‖SXS‖ ,
(7′) ∀S ∈ S(H),∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2 ‖SXS‖ .

Proof. (1) ⇒ (2). Assume (1) holds. Let S,R ∈ R(H), X ∈ B(H). Since S∗ = S∗SS+

and R∗ = R+RR∗, then from (1) it follows that∥∥S∗XR+ + S+XR∗
∥∥ =

∥∥S∗S (S+XR+
)

+
(
S+XR+

)
RR∗

∥∥
≥ 2

∥∥SS+XR+R
∥∥ .

Hence (2) holds.
(2)⇒ (3). trivial.
(3)⇒ (1). Let P,Q be two invertible positive operators. Then from (3), it follows that

∀X ∈ B(H),
∥∥P 2X +XQ2

∥∥ ≥ 2 ‖PXQ‖ .

Now let A,B ∈ B(H). Then P = |A|, Q = |B| are two positive operators. It's clear that
the two operators P + εI and Q+ εI are normal and invertible, for every ε > 0. So, using
the last inequality, we obtain

∀ε > 0,∀X ∈ B(H),
∥∥(P + εI)2X +X(Q+ εI)2

∥∥ ≥ 2 ‖(P + εI)X(Q+ εI)‖ .

By letting ε→ 0, we deduce (1).
Hence the operator inequalities (1),(2) and (3) are equivalent.
(4)⇒ (2). Trivial.
(1) ⇒ (4). Assume (1) holds. Let S,R ∈ Scr(H), X ∈ B(H). Since S = S∗SS+ and
R = R+RR∗, then from (1) it follows that∥∥SXR+ + S+XR

∥∥ =
∥∥S∗S (S+XR+

)
+
(
S+XR+

)
RR∗

∥∥
≥ 2

∥∥SS+XR+R
∥∥ .

Hence (4) holds.
The implications (1)⇒ (7)⇒ (6) and (6)⇒ (5) are trivial.
(5)⇒ (3). Assume (5) holds. Let S,R ∈ I(H), X ∈ B(H) and let S = UP and R = V Q
be the polar decomposition of S and R. Then we obtain∥∥S∗XR−1 + S−1XR∗

∥∥ = ‖PU∗XQ−1V ∗ + P−1U∗XQV ∗‖
= ‖(PU∗XQ−1 + P−1U∗XQ)V ∗‖
= ‖P (U∗X)Q−1 + P−1(U∗X)Q‖.
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Now applying (5), it follows that∥∥S∗XR−1 + S−1XR∗
∥∥ ≥ 2‖U∗X‖ = 2‖X‖.

Hence (3) holds. Thus the operator inequalities (1)− (7) are equivalent.

From pair operators to single operators, we deduce that the operator inequalities
(1′)− (7′) are also equivalent.

The implication (1)⇒ (1′) is trivial.
(1′)⇒ (1). This follows immediately by using the Berberian technics.

Let A,B,X ∈ B(H). Hence

[
A 0
0 B

]
,

[
0 X
0 0

]
∈ B(H ⊕ H), then by using (1′) we

get that∥∥∥∥[ A 0
0 B

]∗ [
A 0
0 B

] [
0 X
0 0

]
+

[
0 X
0 0

] [
A 0
0 B

] [
A 0
0 B

]∗∥∥∥∥ ≥ 2

∥∥∥∥[ A 0
0 B

] [
0 X
0 0

] [
A 0
0 B

]∥∥∥∥ .
So that we obtain ∥∥∥∥[ 0 A∗AX +XBB∗

0 0

]∥∥∥∥ ≥ 2

∥∥∥∥[ 0 AXB
0 0

]∥∥∥∥ .
Hence ‖A∗AX +XBB∗‖ ≥ 2 ‖AXB‖ .
Then the inequalities (1)− (7), and (1′)− (7′) are mutually equivalent.
It remains to prove that one of them holds. we shall prove that (5′) holds. The proof is
given in two steps.
Step 1. Let S ∈ S0(H), and X ∈ S(H).
Since X is selfadjoint, then ‖X‖ = r(X). So there exists λ ∈ σ(X) such that |λ| = ‖X‖.
We have σ(X) = σ(SXS−1) ⊂ V (SXS−1), then λ ∈ V (SXS−1). So there exists f ∈ S1

such that λ = f(SXS−1).
Since X is selfadjoint then λ is real. Hence we have

2λ = λ+ λ̄

= f(SXS−1) + (f(SXS−1))

= f(SXS−1) + f(SXS−1)∗

= f(SXS−1) + f(S−1XS)

= f(SXS−1 + S−1XS).

Hence
2‖X‖ = 2|λ| = |f(SXS−1 + S−1XS)| ≤ ‖SXS−1 + S−1XS‖.

Step 2. Let S ∈ S0(H), and X ∈ B(H).

Since

[
S 0
0 S

]
∈ S0(H ⊕ H),

[
0 X
X∗ 0

]
∈ S(H ⊕ H). Then by using step 1 we have

that∥∥∥∥∥
[
S 0
0 S

] [
0 X
X∗ 0

] [
S 0
0 S

]−1

+

[
S 0
0 S

]−1 [
0 X
X∗ 0

] [
S 0
0 S

]∥∥∥∥∥ ≥ 2

∥∥∥∥[ 0 X
X∗ 0

]∥∥∥∥ .



1. Preliminaries and Arithmetic Geometric Mean Inequality 30

So that we obtain∥∥∥∥[ 0 SXS−1 + S−1XS
SX∗S−1 + S−1X∗S 0

]∥∥∥∥ ≥ 2

∥∥∥∥[ 0 X
X∗ 0

]∥∥∥∥ .
Hence it follows that ‖SXS−1 + S−1XS‖ ≥ 2‖X‖.

By triangular inequality, it follows from the (A.G.M.I1) that the following inequal-
ity holds

∀A,B,X ∈ B(H), ‖A∗AX‖+ ‖XBB∗‖ ≥ 2‖AXB‖ (A.G.M.I2)

In the next proposition, we shall give some operator inequalities equivalent to (A.G.M.I2).
For the proof, we need the following elementary characterization

∀S ∈ B(H), (S ∈ N (H))⇔ (∀X ∈ B(H), ‖SX‖ = ‖S∗X‖). (N)

Proposition 1.9. The following operator inequalities hold and are mutually equivalent:

(1) ∀A,B,X ∈ B(H), ‖A∗AX‖+ ‖XBB∗‖ ≥ 2 ‖AXB‖ ,
(2) ∀S,R ∈ R(H),∀X ∈ B(H), ‖S∗XR+‖+ ‖S+XR∗‖ ≥ 2 ‖SS+XR+R‖ ,
(3) ∀S,R ∈ I(H), ∀X ∈ B(H), ‖S∗XR−1‖+ ‖S−1XR∗‖ ≥ 2 ‖X‖ ,
(4) ∀S,R ∈ Ncr(H),∀X ∈ B(H), ‖SXR+‖+ ‖S+XR‖ ≥ 2 ‖SS+XR+R‖ ,
(5) ∀S,R ∈ N0(H),∀X ∈ B(H), ‖SXR−1‖+ ‖S−1XR‖ ≥ 2 ‖X‖ ,
(6) ∀S,R ∈ Ncr(H),∀X ∈ B(H), ‖S2X‖+ ‖XR2‖ ≥ 2 ‖SXR‖ ,
(7) ∀S,R ∈ N (H),∀X ∈ B(H), ‖S2X‖+ ‖XR2‖ ≥ 2 ‖SXR‖ ,
(1′) ∀A,X ∈ B(H), ‖A∗AX‖+ ‖XAA∗‖ ≥ 2 ‖AXA‖ ,
(2′) ∀S ∈ R(H),∀X ∈ B(H), ‖S∗XS+‖+ ‖S+XS∗‖ ≥ 2 ‖SS+XS+S‖ ,
(3′) ∀S ∈ I(H),∀X ∈ B(H), ‖S∗XS−1‖+ ‖S−1XS∗‖ ≥ 2 ‖X‖ ,
(4′) ∀S ∈ Ncr(H),∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2 ‖SS+XS+S‖ ,
(5′) ∀S ∈ N0(H),∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ 2 ‖X‖ ,
(6′) ∀S ∈ Ncr(H),∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2 ‖SXS‖ ,
(7′) ∀S ∈ N (H),∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2 ‖SXS‖ .

Proof. (1)⇒ (2). Using the same argument as used in the implication ((1)⇒ (2)) of the
proposition 1.8, we �nd that (2) holds.
(2)⇒ (3). trivial.
(3) ⇒ (1). Using the same argument as used in the implication ((3) ⇒ (1)) of the
proposition 1.8, we �nd that (1) holds.
Hence the operator inequality (1), (2) and (3) are equivalent.
(1) ⇒ (4). Assume (1) holds. Let S,R ∈ Ncr(H), X ∈ B(H). Since S is normal then
from (N), we obtain that∥∥SXR+

∥∥+
∥∥S+XR

∥∥ =
∥∥S∗XR+

∥∥+
∥∥S+XR∗

∥∥ .
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Since S∗ = S∗SS+ and R∗ = R+RR∗, then from the above equality and from (1), it
follows that∥∥SXR+

∥∥+
∥∥S+XR

∥∥ =
∥∥S∗S (S+XR+

)∥∥+
∥∥(S+XR+

)
RR∗

∥∥
≥ 2

∥∥SS+XR+R
∥∥ .

Hence (4) holds.

(4) ⇒ (6). Assume (4) holds. Let S,R ∈ Ncr(H), X ∈ B(H). Then from (4) and
since SS+S = S, RR+R = R, and both of S+S, RR+ are orthogonal projections, it
follows that ∥∥S2X

∥∥+
∥∥XR2

∥∥ ≥ ∥∥S (SXR)R+
∥∥+

∥∥S+ (SXR)R
∥∥

≥ 2
∥∥SS+ (SXR)R+R

∥∥
= 2 ‖SXR‖ .

Thus (6) holds.

(6)⇒ (5). This implication is trivial.

(5)⇒ (1). Assume (5) holds. Then the following inequality holds

∀S,R ∈ N0(H),∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XR2

∥∥ ≥ 2 ‖SXR‖ .

Let A,B,X ∈ B(H). Put P = |A| , Q = |B∗|. It is clear that the two operators
P+εI and Q+εI are normal and invertible, for every ε > 0. So, using the last inequality,
we obtain

∀ε > 0,
∥∥(P + εI)2X

∥∥+
∥∥X (Q+ εI)2

∥∥ ≥ 2 ‖(P + εI)X (Q+ εI)‖ .

By letting ε→ 0, we deduce (1).

(1)⇒ (7). This follows immediately by using (N).

(7)⇒ (6). This implication is trivial.

Therefore the operator inequalities (1), (4), (5), (6) and (7) are equivalent.

Hence the operator inequalities (1)− (7) are equivalent.
From pair operators to single operators, we deduce that the operator inequalities (1′)−
(5′) are also equivalent.

(1)⇒ (1′). This implication is trivial.

(1′)⇒ (1). This follows immediately by using the Berberian technics.

Therefore the inequalities (1)−(7), and (1′)−(7′) are mutually equivalent. It remains
to prove that one of them holds. It is clear that (1) is an immediate consequence of
(A.G.M.I1). But here, we shall give a direct proof of (1) independently of (A.G.M.I1)
by using the numerical arithmetic-geometric mean inequality. Let A,B,X ∈ B(H).
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Then we have

1

2
(‖A∗AX‖+ ‖XBB∗‖) ≥

√
‖A∗AX‖ ‖XBB∗‖

≥
√
‖BB∗X∗A∗AX‖

≥
√
r(BB∗X∗A∗AX)

=
√
r (B∗X∗A∗AXB)

= ‖AXB‖ .



2. CHARACTERIZATIONS OF SOME DISTINGUISHED CLASSES OF

OPERATORS IN TERMS OF OPERATOR INEQUALITIES

From Proposition 1.8 and with single operator case, we may introduce the following
properties generated by operator inequalities

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)), (PS1)

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ‖SXS‖ , (S ∈ R(H)), (PS2)

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H)), (PS3)

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ‖SXS‖ , (S ∈ B(H)). (PS4)

Using Proposition 1.8, the property (PS1) is satis�ed for every S ∈ C∗S0(H), each
of the two properties (PS2), (PS3) is satis�ed for every S ∈ CScr(H), and the property
(PS4) is satis�ed for every S ∈ CS(H). Note that Corach-Porta-Recht [8], proved with
another motivation and independently of (A.G.M.I1) that the property (PS1) is valid
for every S ∈ S0(H).

From Proposition 1.9 and with single operator case, we may introduce the following
properties generated by operator inequalities

∀X ∈ B(H),
∥∥SXS−1

∥∥+
∥∥S−1XS

∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)), (PN1)

∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ‖SXS‖ , (S ∈ R(H)), (PN2)

∀X ∈ B(H),
∥∥SXS+

∥∥+
∥∥S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H)), (PN3)

∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ‖SXS‖ , (S ∈ B(H)). (PN4)

Using Proposition 1.9, the property (PN1) is satis�ed for every S ∈ N0(H), each of
the two properties (PN2), (PN3) is satis�ed for every S ∈ Ncr(H), and the property
(PN4) is satis�ed for every S ∈ N (H).

So it is interesting to ask to describe the subclasses characterized by the above proper-
ties that are generated by operator inequalities related to the known arithmetic-geometric
mean inequality.
This kind of problem was introduced by Seddik [38], by considering the Corach-Porta-
Recht inequality. It was proved that the property (PS1) characterizes exactly the sub-
class C∗S0(H) (the subclass of all rotations of invertible selfadjoint operators in B(H)).
This was the beginning of the characterization of some distinguished classes of operators
in term of operator inequalities.

In this chapter, we will give all the characterizations found of some subclasses by
the author Seddik.
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2.1 Characterizations of the class of normal operators

In [43], Seddik has given characterizations of the class of normal invertible operators in
terms of operators inequalities, to give his main result of the characterizations we need
the following results which are useful in the proof of the main result.
The following proposition gives some preliminary characterizations of normal operators:

Proposition 2.1. Let S ∈ B(H). Then the following properties are equivalent:
(i) S is normal,
(ii) ∀x ∈ H, ‖Sx‖ = ‖S∗x‖,
(iii) ∀X ∈ B(H), ‖SX‖ = ‖S∗X‖,
(iv) ∀X ∈ B(H), ‖XS‖ = ‖XS∗‖.

Proof. Easy.

Lemma 2.1. [38] Let P ,Q be in B(H) such that P > 0 and Q > 0. If we have

∀X ∈ B(H), ‖PXP−1‖+ ‖Q−1XQ‖ ≥ 2‖X‖, (1)

then {P}′ = {Q}′ .

Proof. Assume (1) holds.
If we replace X by QXQ−1 in (1), we have

∀X ∈ B(H), ‖X‖+ ‖PQXQ−1P−1‖ ≥ 2‖QXQ−1‖, (*)

Let UM be the polar decomposition of PQ (U is unitary and M = (QP 2Q)
1
2 ).

Then, from (∗), we obtain

∀X ∈ B(H), ‖X‖+ ‖MXM−1‖ ≥ 2‖QXQ−1‖. (**)

Let X ∈ S(H) such that MX = XM , and let α be a complex number. Then, by (∗∗),
we get

‖X − αI‖ ≥ ‖Q(X − αI)Q−1‖.

Since (X − αI) is normal, we have

r(X − αI) = ‖X − αI‖ ≥ ‖Q(X − αI)Q−1‖ ≥ r(Q(X − αI)Q−1) = r(X − αI);

so that

‖QXQ−1 − αI‖ = ‖Q(X − αI)Q−1‖ = r(Q(X − αI)Q−1) = r(QXQ−1 − αI).

Then, by proposition 1.2, we haveQXQ−1 is convexoid. HenceW (QXQ−1) = coσ(QXQ−1) =
coσ(X). Since X is selfadjoint, then coσ(X) ⊂ R. So W (QXQ−1) ⊂ R. Thus QXQ−1

is selfadjoint. Hence QXQ−1 = Q−1XQ, then Q2X = XQ2. Since Q is positive, then
from proposition 1.3, we conclude that QX = XQ.
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Now let X ∈ B(H) and put X = X1 + iX2(where X1 = ReX and X2 = ImX),
such that MX = MX. Then, we have MX1 = X1M and MX2 = X2M . From
the above step it follows that QX1 = X1Q and QX2 = X2Q, thus QX = XQ. We
conclude that {M}′ ⊂ {Q}′ . So we have MQ = QM . Then M2Q = QM2, thus
QP 2Q2 = Q2P 2Q. Hence P 2Q = QP 2. Since P is positive, then from proposition 1.3,
we �nd that PQ = QP .
Let X ∈ S(H) such that PX = XP , and let α be a complex number.
Since PX = XP and PQ = QP , then QXQ−1 ∈ {P}′ . So from (∗), we obtain

‖X − αI‖ ≥ ‖Q(X − αI)Q−1‖.

By the same argument as used before, it follows that QX = XQ , so that {P}′ ⊂ {Q}′ .
From (1) and by the same method, we obtain that {Q−1}′ ⊂ {P−1}′ . Then {Q}′ ⊂ {P}′ .
Finally we have {P}′ = {Q}′ .

Lemma 2.2. [38] Let ε > 0, α1, ..., αn, β1, ..., βn ( n ∈ N∗) such that 0 < α1 < ... <

αn ≤ 1, {α1, ..., αn} = {β1, ..., βn} and αi
αj

+
βj
βi
≥ 2− ε, for all i, j.

Then we have |αi − βi| < ε, for all i.

Proof. We have αi
αj
< 1, if i < j.

Let i, j ∈ {1, ..., n} such that i < j. Thus 2 − ε < αi
αj

+
βj
βi
< 1 +

βj
βi
. Then 1 − ε < βj

βi
.

Hence βi − βj < εβi < ε. Therefore βi − βj < ε.
There are three cases.
Let i ∈ {1, ..., n} such that αi 6= βi (in the case αi = βi, of course we have |αi − βi| =
0 < ε).
Case 1. i = 1. There exists j ≥ 2, such that βj = α1, so we have |β1 − α1| = β1−βj < ε,
since j > 1.
Case 2. i = n. There exists j < n, such that βj = αn, so we have |βn − αn| = βj−βn < ε,
since n > j.
Case 3. 1 < i < n. If βi > αi, then there exists j > i, such that βj ≤ αi, so we have
|βi − αi| = βi − βj < ε, since j > i. If βi < αi, then there exists j < i, such that
|βi − αi| = βj − βi < ε, since i > j.

Lemma 2.3. [38] Let P,Q ∈ B(H) such that P > 0, Q > 0 and σ(P ) ⊆ σ(Q). Then
the following properties are equivalents:
(i) ∀X ∈ B(H), ‖PXP−1‖+ ‖Q−1XQ‖ ≥ 2 ‖X‖ ,
(ii) P = Q.

Proof. We may assume, without loss of the generality, that ‖P‖ = ‖Q‖ = 1.
(i)⇒ (ii). Decompose P and Q using the spectral measure

P =

∫
λdEλ, Q =

∫
λdFλ,

and consider

Pn =

∫
hn(λ)dEλ = hn(P ), Qn =

∫
hn(λ)dFλ = hn(Q),
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where hn(λ) is a function of the form:

hn(λ) = k
n
, for k

n
≤ λ < k+1

n
, and k = 0, 1, 2, ...

Hence Pn and Qn are positive invertible operators with �nite spectrums.
By the spectral theorem and by the form of hn(λ), we have hn(λ)→ λ uniformly. Thus
Pn −→ P and Qn −→ Q uniformly.
We have also

σ(Pn) = σ(hn(P )) = hn(σ(P )) ⊆ hn(σ(Q)) = σ(hn(Q)) = σ(Qn).

On the other hand, we have Pn ∈ {P}
′′
and Qn ∈ {Q}

′′
. By (i) and lemma 2.1 we have

{P}′ = {Q}′ .
Let X ∈ {P}′ . Since Pn ∈ {P}

′′
, thus X ∈ {Pk}

′
, for all k ≥ 1. So {P}′ ⊂ ∩∞k=1{Pk}

′
.

Now let X ∈ ∩∞k=1{Pk}
′
, then X ∈ {Pk}

′
, for all k ≥ 1. Since Pn ∈ {P}

′′
, thus X ∈ {P}′ .

Hence ∩∞k=1{Pk}
′ ⊂ {P}′ . Therefore {P}′ = ∩∞k=1{Pk}

′
.

By the same argument as used before, we obtain that {Q}′ = ∩∞k=1{Qk}
′
.

Since σ(Pn) is �nite. Put σ(Pn) = {α1, ..., αp} such that 0 < α1 < ... < αp ≤ 1. Then

there exist p orthogonal projections E1, ..., Ep such that EiEj = 0 if i 6= j,
p∑
i=1

Ei = I and

p∑
i=1

αiEi = Pn.

We have {P}′ = {Q}′ , thus PQ = QP. Since Pn ∈ {P}
′′
, then PnQ = QPn. And since

Qn ∈ {Q}
′′
, then PnQn = QnPn.

Since σ(Pn) ⊆ σ(Qn), PnQn = QnPn and Qn is selfadjoint, then there exist p positive

numbers β1, ..., βp such that σ(Pn) = {α1, ..., αp} ⊆ {β1, ..., βp} = σ(Qn) and
p∑
i=1

βiEi =

Qn.
We have 0 < α1 < ... < αp ≤ 1, then card(σ(Pn)) = p. And card(σ(Qn)) ≤ p. Since
σ(Pn) ⊆ σ(Qn), so that σ(Pn) = {α1, ..., αp} = {β1, ..., βp} = σ(Qn).
We have Pn −→ P and Qn −→ Q uniformly, thus P−1

n −→ P−1 and Q−1
n −→ Q−1

uniformly.
Then there exists a constant M > 1 such that

‖P−1
n ‖ ≤M, ‖Q−1

n ‖ ≤M, for every n ≥ 1.

Let ε > 0. Then there exists an integer N ≥ 1 such that

∀n ≥ N : ‖Pn − P‖ < ε
4M
, ‖Qn −Q‖ < ε

4M
, ‖P−1

n − P−1‖ < ε
4M

et ‖Q−1
n −Q−1‖ < ε

4M
.
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Let X ∈ (B(H))1 and let n ≥ N . Then, we have

‖PnXP−1
n ‖ = ‖PnXP−1

n + PXP−1
n − PXP−1

n + PXP−1 − PXP−1‖
= ‖(Pn − P )XP−1

n + PX(P−1
n − P−1) + PXP−1‖

≥ ‖PXP−1‖ − ‖Pn − P‖‖P−1
n ‖ − ‖P−1

n − P−1‖

≥ ‖PXP−1‖ − ε

2
.

Using the same argument, we obtain also

‖QnXQ
−1
n ‖ ≥ ‖QXQ−1‖ − ε

2
.

So, we deduce

∀X ∈ (B(H))1,∀n ≥ N : ‖PnXP−1
n ‖+ ‖Q−1

n XQn‖ ≥ 2− ε.

Then

∀n > N , ∀X ∈ B(H), ‖PnXP−1
n ‖+ ‖Q−1

n XQn‖ ≥ (2− ε) ‖X‖ .

Let n > N and Xij = EiXEj. For X ∈ B(H), we have:

‖PnXijP
−1
n ‖+ ‖Q−1

n XijQn‖ ≥ (2− ε) ‖Xij‖.

Since

PnXijP
−1
n =

p∑
n=1

αnEnEiXEj

p∑
n=1

α−1
n En

= αiEiEiXEjα
−1
j Ej

= αiEiXEjα
−1
j

=
αi
αj
EiXEj,

Q−1
n XijQn =

p∑
n=1

β−1
n EnEiXEj

p∑
n=1

βnEn

= β−1
i EiEiXEjβjEj

= β−1
i EiXEjβj

=
βj
βi
EiXEj,

then using the last inequaliy, we get

(αi
αj

+
βj
βi

) ‖Xij‖ ≥ (2− ε) ‖Xij‖.

Which gives
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αi
αj

+
βj
βi
≥ 2− ε.

From above, it follows that
(a) α1 < α2 < ... < αp,
(b) {α1, ..., αp} = {β1, ..., βp},
(c) αi

αj
+

βj
βi
≥ 2− ε, for i, j = 1, ..., p.

Then from lemma 2.2, we obtain that |αi − βi| < ε, for all i. Therefore

‖Pn −Qn‖ = max
1≤i≤p

|αi − βi| < ε.

By letting n −→∞, we obtain ‖P −Q‖ < ε. Now, letting ε −→ 0, we deduce P = Q.
(ii)⇒ (i). Suppose that P = Q. Then we have

∀X ∈ B(H), ‖PXP−1‖+ ‖P−1XP‖ ≥ 2 ‖X‖ ,

which is true from Corach Porta Recht inequality.

The characterization of the class N0(H) of all invertible normal operators in B(H)
is given in the following theorem:

Theorem 2.1. [41,43] Let S ∈ I(H). Then the following properties are equivalent:
(i) S ∈ N0(H),
(ii) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = ‖S∗XS−1‖+ ‖S−1XS∗‖,
(iii) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ ‖S∗XS−1‖+ ‖S−1XS∗‖,
(iv) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ 2‖X‖,
(v) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ ‖S∗XS−1‖+ ‖S−1XS∗‖.

Proof. (i)⇒ (ii). This implication follows immediately from proposition 2.1.
(ii)⇒ (iii). The implication is trivial.
The implication (iii)⇒ (iv) follows immediately from proposition 1.8(3′).
(iv) ⇒ (i). Let S = UP and S∗ = U∗Q be the polar decomposition of S and S∗(where
P = |S| and Q = |S∗|). Using the polar decomposition of S and S∗ in (iv) we obtain

∀X ∈ B(H), ‖PXP−1‖+ ‖Q−1XQ‖ ≥ 2‖X‖. (*)

Since P 2 = S∗S and Q2 = SS∗, then σ(P 2) = σ(Q2). By the spectral theorem, it
follows that σ(P ) = σ(Q). Using the inequality (*) and the condition σ(P ) = σ(Q), and
applying lemma 2.3, it follows that P = Q. Therefore S∗S = SS∗.
(i)⇒ (v). Follows immediately from proposition 2.1.
(v) ⇒ (i). Assume (v) holds. If we replace X by x ⊗ y (where x, y ∈ (H)1) in (v), we
obtain

∀x, y ∈ (H)1, ‖Sx‖‖(S−1)∗y‖+ ‖S−1x‖‖S∗y‖ ≤ ‖S∗x‖‖(S−1)∗y‖+ ‖S−1x‖‖Sy‖.

Hence
∀x, y ∈ (H)1, (‖Sx‖ − ‖S∗x‖)‖(S−1)∗y‖ ≤ (‖Sy‖ − ‖S∗y‖)‖S−1x‖. (**)
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If there exists y ∈ (H)1, such that ‖Sy‖ ≤ ‖S∗y‖, then ∀x ∈ (H)1, ‖Sx‖ ≤ ‖S∗x‖. Else
∀y ∈ (H)1, ‖Sy‖ ≥ ‖S∗y‖.
Thus

(∀x ∈ (H)1, ‖Sx‖ ≥ ‖S∗x‖) or (∀x ∈ (H)1, ‖Sx‖ ≤ ‖S∗x‖).

Assume that the inequality ‖Sx‖ ≥ ‖S∗x‖ holds for every x ∈ (H)1.
Since the relation 1

‖T−1‖ ≤ ‖Tx‖ ≤ ‖T‖ holds for every T ∈ I(H) and for every x ∈ (H)1,

then from (∗∗), it follows that

∀x, y ∈ (H)1, ‖Sx‖ − ‖S∗x‖ ≤ k(‖Sy‖ − ‖S∗y‖),

where k = ‖S‖‖S−1‖. So we have

∀x, y ∈ (H)1, ‖Sx‖+ k‖S∗y‖ ≤ ‖S∗x‖+ k‖Sy‖.

Hence
∀x ∈ (H)1, sup

‖y‖=1

(‖Sx‖+ k‖S∗y‖) ≤ sup
‖y‖=1

(‖S∗x‖+ k‖Sy‖).

Thus
∀x ∈ (H)1, ‖Sx‖+ k‖S‖ ≤ ‖S∗x‖+ k‖S‖.

So it follows that the inequality ‖Sx‖ ≤ ‖S∗x‖ holds for every vector x in (H)1.
Hence, the equality ‖Sx‖ = ‖S∗x‖ holds for every vector x in (H)1. Therefore S ∈
N0(H).
With the second assumption and by the same argument, we �nd also that S ∈ N0(H).

Remark 2.1. From the above propositions, it follows that the class N0(H) is given by

N0(H) = {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = ‖S∗XS−1‖+ ‖S−1XS∗‖}
= {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ ‖S∗XS−1‖+ ‖S−1XS∗‖}
= {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ ‖S∗XS−1‖+ ‖S−1XS∗‖}
= {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ 2‖X‖}.

In [44] Seddik extend the properties (N1), (N2), and (N4) in the above theorem
from the domain I(H) to the domain R(H). (he did a version of the above inequalities
for Moore-Penrose invertible operators).
For the extentions, we need the following lemma which is useful in the proof of his
principal theorem.

Lemma 2.4. [44] Let S ∈ B(H). If S injective with closed range (or surjective) and
satis�es the following inequality

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖, (2)

then S is normal.



2. Characterizations of some distinguished classes of operators in terms of operator inequalities 40

Proof. Assume that S 6= 0 and all 2×2 matrices used in this proof are given with respect

to the orthogonal direct sum H = R(S)⊕ kerS∗. Then S =

[
S1 S2

0 0

]
.

Put P = |S|, Q = |S∗|, P1 = |S1|, P2 = |S2|, Q1 = (S1S
∗
1 + S2S

∗
2)1/2.

So we have S∗S = P 2 =

[
P 2

1
S∗

1
S2

S∗
2
S1 P 2

2

]
, SS∗ = Q2 =

[
Q2

1
0

0 0

]
. It is clear that Q1 is

invertible then Q+ =

[
Q−1

1
0

0 0

]
.

Since S is injective with a closed range, then S+S = I, kerP = kerS = {0}, and R(P ) =
R(S∗S) is closed (since R(S∗) is also closed). Thus kerP = 0 and R(P ) = (kerP )⊥ = H.
So, P is invertible.
Since S is injective with closed range, then ker(S2) ⊂ ker(S+S2) = kerS = {0}. Thus
S2 is also injective with closed range. Hence (S2)+S2 = I.
If we replace X by S+XS+ in (2), it follows that

∀X ∈ B(H), ‖S2S+XS+‖+ ‖S+XS‖ ≥ 2‖SS+X‖. (*)

The proof is given in four steps.
Step 1. Prove that (S2)+S = S+.
If we replace X by XS+ in (2), we obtain

∀X ∈ B(H), ‖S2XS+‖+ ‖XS‖ ≥ 2‖SX‖.

It is known that S+ is the unique solution of the following four equations: SXS =
S;XSX = X; (XS)∗ = XS; (SX)∗ = SX. It is easy to see that (S2)+S satis�es the
�rst three equations.
Now we prove that (S2)+S also satis�es the last equation. Since, the operator S(S2)+S
is a projection, it su�ces to prove that its norm is less than or equal to one. By taking
X = (S2)+S in (∗), we obtain

2 ≥ ‖S2(S2)+S(S)+‖+ ‖(S2)+SS‖ ≥ 2‖S(S2)+S‖.

Hence ‖S(S2)+S‖ ≤ 1. Therefore (S2)+S = S+.
Step 2. Prove that (S+)2 = (S2)+.
Since S2(S2)+ = SS+S2(S2)+, then S2(S2)+ = S2(S2)+SS+. So from step 1, we obtain
S2(S2)+ = S2(S+)2. Since S2 is injective, we have (S+)2 = (S2)+.
Step 3. Prove that kerS∗ = {0}.
Since (S+)2 = (S2)+, then by theorem of the reverse order law the two operators S∗S

and SS+ commute. Hence S∗S = P 2 =

[
S∗

1
S1 0

0 S∗
2
S2

]
. So that P =

[
P1 0
0 P2

]
.

Since kerS∗ 6= {0}, then σ(Q2) = σ(Q2
1)∪{0}. From the fact that σ(P 2) = σ(Q2)−{0},

we have σ(P 2) = σ(Q2
1). Then σ(P 2

1 ) ∪ σ(P 2
2 ) = σ(Q2

1). Hence σ(P 2
1 ) ⊂ σ(Q2

1). Thus
σ(P1) ⊂ σ(Q1). Using the polar decomposition of S and S∗ in the inequality (∗), we
obtain the following inequality

∀X ∈ B(H), ‖S2S+X(P )−1‖+ ‖Q+XQ‖ ≥ 2‖SS+X‖.
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By taking X =

[
X1 0
0 0

]
(resp. X =

[
0 X2

0 0

]
), where X1 ∈ B(R(S)) (resp. X2 ∈

B(kerS∗;R(S)) in the last inequality and since S2S+ =

[
S1 0
0 0

]
, we deduce the two

following inequalities

∀X1 ∈ B(R(S)), ‖P1X1P
−1
1 ‖+ ‖Q−1

1 X1Q1‖ ≥ 2‖X1‖. (**)

∀X2 ∈ B(kerS∗;R(S)), ‖P1X2P
−1
2 ‖ ≥ 2‖X2‖. (***)

By taking X2 = x⊗ y (where x ∈ (R(S))1, y ∈ kerS∗) in (∗ ∗ ∗), we obtain

∀x ∈ (R(S))1, ∀y ∈ kerS∗, ‖P1x‖‖P−1
2 y‖ ≥ 2‖y‖.

So we have
∀x ∈ (R(S))1,∀y ∈ (kerS∗)1, ‖P1x‖ ≥ 2‖P2y‖.

Thus ‖P2y‖ ≤ k
2
, for every y ∈ (kerS∗)1 (where k = inf‖P1x‖ > 0). Then 〈P 2

2 y, y〉 ≤ k2

4
,

for every y ∈ (kerS∗)1. So we obtain σ(P 2
2 ) ⊂ (0, k

2

4
] and σ(P 2

1 ) ⊂ [k2,∞). Since σ(P1) ⊂
σ(Q1), then using Lemma 2.3 with (∗∗), we obtain P1 = Q1. Hence σ(Q2

1) = σ(P 2
1 ) =

σ(P 2
1 ) ∪ σ(P 2

2 ). Then σ(P 2
2 ) ⊂ σ(P 2

1 ), that is impossible since (0, k
2

4
] ∩ [k2,∞) = ∅.

Therefore kerS∗ = {0}.
Step 4. Prove that S is normal.
Since kerS∗ = {0}, then R(S) = H. So that S is invertible and satis�es the inequality
(2). Hence S satis�es the following inequality

∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≥ 2‖X‖

Therefore S is normal (using theorem 2.1).
With the second assumption S surjective. S∗ injective with closed range satisfying also
the inequality (2), so that S∗ is normal. Hence S is normal.

Theorem 2.2. [44] Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ Ncr(H),
(ii) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ = ‖S∗XS+‖+ ‖S+XS∗‖,
(iii) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ ‖S∗XS+‖+ ‖S+XS∗‖,
(iv) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2‖SS+XS+S‖,
(v) ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖.

Proof. The proof is trivial if S = 0. Assume now that S 6= 0.
(i)⇒ (ii). This implication follows immediately using proposition 2.1.
The implication (ii)⇒ (iii) is trivial.
(iii)⇒ (vi). This implication follows immediately from proposition 1.9 (3′).
(iv)⇒ (v). Assume (iv) holds. If we replace X by SXS. Then the following inequality
holds

∀X ∈ B(H), ‖S2XSS+‖+ ‖S+SXS2‖ ≥ 2‖SS+SXSS+S‖.
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From this inequality and since ‖SS+‖ = ‖S+S‖ = 1, the property (v) follows immedi-
ately.
(v)⇒ (i). Assume (v) holds. The implication is trivial if S = 0. Assume now that S 6= 0.

Let S =

[
S1 S2

0 0

] [
R(S)
kerS∗

]
and let S∗ =

[
T1 T2

0 0

] [
R(S∗)
kerS

]
.

Put X =

[
X1 0
0 0

] [
R(S)
kerS∗

]
. By a simple computation, we obtain

S2X =

[
S2

1X1 0
0 0

]
, XS2 =

[
X1S

2
1 X1S1S2

0 0

]
, SXS =

[
S1X1S1 S1X1S2

0 0

]
.

Hence, we have

‖S2X‖ = ‖S2
1X1‖, ‖XS2‖2 = ‖X1S1(S1S

∗
1 + S2S

∗
2)S∗1X

∗
1‖ = ‖X1S1K‖2,

‖SXS‖2 = ‖S1X1(S1S
∗
1 + S2S

∗
2)X∗1S

∗
1‖ = ‖S1X1K‖2,

(where K is the positive square root of the positive operator S1S
∗
1 + S2S

∗
2). Then using

(v), we obtain the following inequality

∀X1 ∈ B(R(S)), ‖S2
1X1‖+ ‖X1S1K‖ ≥ 2‖S1X1K‖. (*)

On the other hand, if we put X = x⊗ y (for x; y ∈ H) in (v), we obtain

∀x, y ∈ (H), ‖y‖‖S2x‖+ ‖x‖‖(S∗)2y‖ ≥ 2‖Sx‖‖S∗y‖. (**)

We shall prove (i) in three steps.
Step 1. Prove that S1 or T1 is bounded below.
Assume that it is not the case. S1 and T1 are not bounded below.
With the condition S1 is not bounded below, we may choose a sequence (un) in H such
that

S2un → 0 and ‖Sun‖ = 1, for n ≥ 1.

For every n ≥ 1, there exist xn ∈ R(S∗) and zn ∈ kerS such that un = xn + zn. Thus,
we obtain

S2xn = S2un → 0, ‖Sxn‖ = ‖Sun‖ = 1, ‖xn‖ = ‖S+Sun‖ ≤ ‖S+‖, for n ≥ 1.

With the second condition �T1 is not bounded below�, by the same argument, we may
choose a bounded sequence (yn) in H satisfying

(S∗)2yn → 0 and ‖S∗yn‖ = 1, for n ≥ 1.

Applying (**) for x = xn and y = yn, we obtain

∀n ≥ 1, ‖yn‖‖S2xn‖+ ‖xn‖‖(S∗)2yn‖ ≥ 2.

Letting n → ∞, we have 0 ≥ 2, which is impossible. Therefore S1 or T1 is bounded
below.
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Step 2. Prove that S1 or T1 is surjective.
Assume that T1 is bounded below. Then there exists a constant k > 0 such that

∀x ∈ H, ‖(S∗)2x‖ ≥ k‖S∗x‖.

So we have S2(S∗)2 ≥ k2SS∗. From theorem of Douglas, we obtain R(S2) ⊃ R(S). Thus
R(S2) = R(S). So S1 is surjective.
Also, if S1 is bounded below, then by the same argument, we deduce that T1 is surjective.
Step 3. Prove that S is normal.
Assume that S1 is surjective (on R(S)). Then S2

1 is also surjective on R(S). Since
R(S) 6= 0, thus S1S

+
1 = I1 = S2

1(S2
1)+ (where I1 is the identity operator on R(S)), S1S

+
1

and S2
1(S2

1)+ are nonzero orthogonal projections.
By putting X1 = (S2

1)+ in (∗), we obtain

‖S2
1(S2

1)+‖+ ‖(S2
1)+S1K‖ ≥ 2‖S1(S2

1)+K‖.

Hence, ‖S2
1(S2

1)+‖ = 1, ‖(S2
1)+S1K‖ = ‖(S2

1)+S2
1S

+
1 K‖ ≤ ‖S+

1 K‖, and ‖S1(S2
1)+K‖ ≥

‖S+
1 S

2
1(S2

1)+K‖ = ‖S+
1 K‖. Thus 1 ≥ ‖S+

1 K‖. Hence

1 ≥ ‖S+
1 K‖2 = ‖S+

1 K
2(S+

1 )∗‖ = ‖S+
1 S1 + (S+

1 S2)(S+
1 S2)∗‖ ≥ ‖S+

1 S1‖ = 1.

Hence ‖S+
1 S1 + (S+

1 S2)(S+
1 S2)∗‖ = 1. Since S+

1 S1 is an orthogonal projection, then by
a simple computation, we obtain that S+

1 S1S
+
1 S2 = 0. Hence S2 = S1S

+
1 S1S

+
1 S2 = 0.

So, we obtain that S1 is a surjective operator (as element in B(R(S)) and satis�es the
following inequality

∀X1 ∈ B(R(S)), ‖S2
1X1‖+ ‖X1S

2
1‖ ≥ 2‖S1XS1‖.

Utilizing Lemma 2.4, we obtain that S1 is normal. Hence S is normal. With the second
assumption �T1 surjective�, and since S∗ satis�es (v), by using the same argument as
used with the �rst assumption, we obtain also that S∗ is normal. Thus S is normal

The extension of the property (N3) in theorem 2.1 from the domain I(H) to the
domain R(H), was found by Menkad [31], as follows

Theorem 2.3. Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ Ncr(H),
(ii) ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≤ ‖S∗XS+‖+ ‖S+XS∗‖.

Proof. The proof is trivial if S = 0. Assume now that S 6= 0.
The implication (i)⇒ (ii) follows immediately from proposition 2.1.
(ii)⇒ (i). If we put X = x⊗ y (where x, y ∈ H) in (ii), we obtain

∀x, y ∈ H, ‖Sx⊗ (S+)∗y‖+ ‖S+x⊗ S∗y‖ ≤ ‖S∗x⊗ (S+)∗y‖+ ‖S+x⊗ Sy‖. (**)

Let y ∈ kerS∗ and since kerS+ = kerS∗, from (**), we obtain

∀x ∈ H, ‖Sx‖‖(S+)∗y‖ = 0.



2. Characterizations of some distinguished classes of operators in terms of operator inequalities 44

Since S 6= 0, choose x such that Sx 6= 0 in this last inequality, we obtain Sy = 0.
Hence kerS∗ ⊂ kerS. The same argument shows that kerS ⊂ kerS∗. Consequently,
kerS∗ = kerS, and so S is an EP operator. Hence S = S1 ⊕ 0 with respect to the
orthogonal direct sum H = R(S) ⊕ kerS, and where S1 is an invertible operator in
B(R(S)). By choosing X = X1 ⊕ 0 (where X1 ∈ B(R(S))), in (ii) we have

∀X ∈ B(R(S))1, ‖S1X1S
−1
1 ‖+ ‖S−1

1 X1S1‖ ≤ ‖S∗1X1S
−1
1 ‖+ ‖S−1

1 X1S
∗
1‖.

Hence using theorem 2.1, we obtain S1 is normal. Therefore S is normal.

Remark 2.2. From the above theorems, it follows that the class Ncr(H) is characterized
by

Ncr(H) = {S ∈ R(H) : ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ = ‖S∗XS+‖+ ‖S+XS∗‖}
= {S ∈ R(H) : ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ ‖S∗XS+‖+ ‖S+XS∗‖}
= {S ∈ R(H) : ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≤ ‖S∗XS+‖+ ‖S+XS∗‖}
= {S ∈ R(H) : ∀X ∈ B(H), ‖SXS+‖+ ‖S+XS‖ ≥ 2‖S+SXS+S‖}
= {S ∈ R(H) : ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖}.

2.2 Characterizations of the class of selfadjoint operator multiplied by

scalars

In 2001, Seddik [38] could �nd a characterization of nonzero scalars of invertible self-
adjoint operators based on the C.P.R.I. Note that this class of operators is the class of
all invertible normal operators in B(H) the spectrum of which is included in a straight
line passing through the origin. We start by the following lemma which is useful in
investigating his theorem.

Lemma 2.5. [38] Let λ, µ ∈ C∗ such that
λ

µ
+
µ

λ
∈ R and

∣∣∣∣λµ +
µ

λ

∣∣∣∣ ≥ 2. Then there

exists a scalar θ ∈ [0, π[ λ, µ ∈ Dθ.

Proof. Let r1e
iθ1 and r2e

iθ2 be the polar decomposition of λ and µ. Then we have:

λ

µ
+
µ

λ
=
r1e

iθ1

r2eiθ2
+
r2e

iθ2

r1eiθ1
=
r1

r2

ei(θ1−θ2) +
r2

r1

ei(θ2−θ1).

So, we have

λ

µ
+
µ

λ
= (

r1

r2

+
r2

r1

) cos(θ1 − θ2) + i(
r1

r2

− r2

r1

) sin(θ1 − θ2).
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Since
λ

µ
+
µ

λ
∈ R, then (

r1

r2

− r2

r1

) sin(θ1 − θ2) = 0. Thus
r1

r2

− r2

r1

= 0 or sin(θ1 − θ2) = 0.

There are two cases.
Case 1:

r1

r2

− r2

r1

= 0.

Then r1 = r2, thus

2 ≤
∣∣∣∣λµ +

µ

λ

∣∣∣∣ = 2 |cos(θ1 − θ2)| ≤ 2,

which implies that |cos(θ1 − θ2)| = 1, and so θ1 − θ2 ≡ k1π, for some k1 ∈ Z.
Case 2: sin(θ1 − θ2) = 0.
Then θ1 − θ2 ≡ k2π, for some k2 ∈ Z.
Both cases ensure that there exists some k such that θ1 − θ2 ≡ kπ. So we have λ =
r1e

iθ1 = r1e
i(θ2+kπ) =+

− r1e
iθ2 . Therefore λ, µ ∈ Dθ1 .

Theorem 2.4. [38,42] Let S ∈ I(H). Then the following properties are equivalent:
(i) S ∈ C∗S0(H).
(ii) ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ = ‖S∗XS−1 + S−1XS∗‖,
(iii) ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ ‖S∗XS−1 + S−1XS∗‖,
(iv) ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2 ‖X‖.

Proof. (i)⇒ (ii)⇒ (iii). The implications are trivial.
(iii)⇒ (iv). This implication follows immediately using proposition 1.8(3′).
(iv)⇒ (i). Assume that (iv) holds.
Using theorem 2.1, we �nd that S is normal. Then, by the spectral measure of S; there
exists a sequence (Sn) of invertible normal operators with �nite spectrum such that

(a) Sn −→ S uniformly,

(b) for all λ ∈ σ(S), there exists a sequence (λn) such that λn ∈ σ(Sn), for all n and
λn −→ λ.

By the same argument as used in lemma 2.3, we �nd that

∀n > N,∀X ∈ B(H),
∥∥SnXS−1

n + S−1
n XSn

∥∥ ≥ (2− ε) ‖X‖ . (*)

Let λ, µ ∈ σ(S). For all n ≥ 1, there exist λn, µn ∈ σ(Sn), λn −→ λ, µn −→ µ.
Let n > N and since Sn is normal with �nite spectrum, there exist p orthogonal projec-
tions E1, ..., Ep such that EkEj = 0, if k 6= j,

∑p
k=1 Ek = I, and Sn =

∑p
k=1 αkEk (with

respect to the decomposition H = H1 ⊕H2 ⊕ ...⊕Hp), where σ(Sn) = {α1, ..., αp} and
α1 = λn, α2 = µn.
We may choose an orthonormal set {e1, e2} such that e1 ∈ H1, e2 ∈ H2.
Decompose orthogonaly H1, H2 as follows H1 = [{e1}]⊕K1, H2 = [{e2}]⊕K2.
Put L = [{e1, e2}]. Then H = L⊕M, where M = K1 ⊕K2 ⊕pi=3 Hi.

Put An = Sn|L. Hence An =

[
λn 0
0 µn

]
∈ B(L).
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Let Y =

[
x1 x2

x3 x4

]
∈ B(L) (where x1, x2, x3, x4 ∈ C).

By taking X = Y ⊕ 0 ∈ B(L⊕M) in (∗), we �nd∥∥AnY A−1
n + A−1

n Y An
∥∥ ≥ (2− ε) ‖Y ‖ .

Using an elementary matricielle computation, we deduce

∀Y ∈ B(L),

∥∥∥∥[ 2 γn
γn 0

]
◦ Y
∥∥∥∥ ≥ (2− ε)‖Y ‖, (**)

where γn =
λn
µn

+
µn
λn
. So, it follows that

∀Y ∈ B(L),

∥∥∥∥∥∥∥
 1

2
δn

δn
1

2

 ◦ Y
∥∥∥∥∥∥∥ ≤

‖Y ‖
2− ε

, (***)

where δn = 1
γn
.

By taking Y =

(
0 0
1 0

)
in (**), we obtain

|γn| ≥ 2− ε.

Letting n→ 0, we have
∣∣∣λµ + µ

λ

∣∣∣ ≥ 2− ε.

Now, letting ε→ 0, we deduce
∣∣∣λµ + µ

λ

∣∣∣ ≥ 2.

On the other hand, if we put Y =

(
1 ia
ia 1

)
, such that a > 0, in (***), we obtain

∥∥∥∥( 1
2

δn
δn

1
2

)
◦
(

1 ia
ia 1

)∥∥∥∥2

=

∥∥∥∥( 1
2

δnia
δnia

1
2

)∥∥∥∥2

=
1

4
+ a2 |δn|2 + a |Im(δn)|

≤ ‖X‖2

(2− ε)2

=
1 + a2

(2− ε)2
.

Thus

1
4

+ a2 |δn|2 + a |Im(δn)| ≤ 1+a2

(2−ε)2 .

Letting n→ +∞, then

1
4

+ a2 |δ|2 + a |Im(δ)| ≤ 1+a2

(2−ε)2 .
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Now, let ε −→ 0, we obtain

1
4

+ a2 |δ|2 + a |Im(δ)| ≤ 1+a2

4
.

This implies a |δ|2 + |Im(δ)| ≤ a. Letting a −→ 0, then Im(δ) = 0. Hence λ
µ

+ µ
λ
∈ R.

Since λ
µ

+ µ
λ
∈ R and

∣∣∣λµ + µ
λ

∣∣∣ ≥ 2, then using lemma 2.5 there exists a scalar θ ∈ [0, π[

such that λ, µ ∈ Dθ. Hence σ(S) ⊂ Dθ. If we put M = e−iθS, then M is an invertible
normal operator with real spectrum. So we have S = eiθM , where M is an invertible
selfadjoint operator. Therefore (i) holds.

Remark 2.3. It follows from the above theorem that

C∗S0(H) = {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ = ‖S∗XS−1 + S−1XS∗‖}
= {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ ‖S∗XS−1 + S−1XS∗‖}
= {S ∈ I(H) : ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≥ 2‖X‖}.

For the class CScr(H), Seddik [44] extend the properties (S1 − S3) in the above
theorem from the domain I(H) to the domain R(H). So he gets the following theorem
that characterizes the class CScr(H) :

Theorem 2.5 (44). Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ CScr(H),
(ii) ∀X ∈ B(H), ‖SXS+ + S+XS‖ = ‖S∗XS+ + S+XS∗‖,
(iii) ∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ ‖S∗XS+ + S+XS∗‖,
(iv) ∀X ∈ B(H), ‖SXS+ + S+XS‖ ≥ 2‖SS+XS+S‖,
(v) ∀X ∈ B(H), ‖S2X +XS2‖ ≥ 2‖SXS‖.

Proof. The implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
The implication (iii)⇒ (iv) follows immediately from proposition 1.8(2′).
The implication (i)⇒ (v) follows immediately from A.G.M.I1.
Assume now that (iv) or (v) holds. Applying the triangular inequality in (iv) or (v), we
obtain from theorem 2.2, that S is normal (with a closed range).

So that S is an EP operator satisfying (iv) or (v). Then S =

[
S1 0
0 0

] [
R(S)
kerS∗

]
, where

S1 is invertible operator on R(S). Thus we obtain the following inequality

∀X ∈ B(R(S)), ‖S1X1S
−1
1 + S−1

1 X1S1‖ ≥ 2‖X1‖.
Hence by theorem 2.4, S1 is a selfadjoint operator in B(R(S)) multiplied by a nonzero
scalar. Therefore S ∈ CS(H).

2.3 Characterizations of the classes of unitary and unitary re�ection

operators

We start by the following proposition which gives us some preliminary characterizations
of the class of unitary operators in B(H).
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Proposition 2.2. [43] Let S ∈ I(H). Then the following properties are equivalent:
(i) S ∈ R∗U(H),
(ii) ‖S‖‖S−1‖ = 1,
(iii) ∀X ∈ B(H), ‖SXS−1‖ = ‖X‖,
(iv) ∀X ∈ B(H), ‖SXS−1‖ ≤ ‖X‖,
(v) ∀X ∈ B(H), ‖SXS−1‖ ≥ ‖X‖.

Proof. The equivalence (i)⇔ (ii) is clear.
The equivalences (ii) ⇔ (iii), (ii) ⇔ (iv) and (ii) ⇔ (v) follow from the fact that

sup
‖X‖=1

‖SXS−1‖ = ‖S‖‖S−1‖ and inf
‖X‖=1

‖SXS−1‖ =
1

‖S‖‖S−1‖
.

Lemma 2.6. [42] Let S ∈ I(H). If |〈Sx, x〉| ≤ 1 and |〈S−1x, x〉| ≤ 1 for every unit
vector x in H, then S is unitary.

Lemma 2.7. Let S ∈ I(H). Then S is normal if and only if S∗S−1 is unitary.

In the two next propositions, Seddik [41] de�ne the injective norm of the operators
S⊗S−1 +S−1⊗S and S∗⊗S−1 +S−1⊗S∗ in the product tensor space B(H)⊗B(H).

Proposition 2.3. Let S ∈ I(H). Then we have

(i) ‖S ⊗ S−1 + S−1 ⊗ S‖λ ≥ sup
λ,µ∈σ(S)

∣∣∣∣λµ +
µ

λ

∣∣∣∣.
If S is normal, then the two following inequalities hold:

(ii) ‖S ⊗ S−1 + S−1 ⊗ S‖λ = sup
λ,µ∈σ(S)

∣∣∣∣λµ +
µ

λ

∣∣∣∣ ,
(iii) ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = sup

λ,µ∈σ(S)

(

∣∣∣∣λµ
∣∣∣∣+
∣∣∣µ
λ

∣∣∣).
Proof. Both (i) and (ii) are immediately from proposition 1.6.
(iii). Let S ∈ N (H). From proposition 1.6 and from the fact that σ(S∗) = σ(S), we �nd
that

‖S∗⊗S−1+S−1⊗S∗‖λ = sup
λ,µ∈σ(S)

(

∣∣∣∣λµ +
µ

λ

∣∣∣∣) = sup
λ,µ∈σ(S)

|λ|2 + |µ|2

|λµ|
= sup

λ,µ∈σ(S)

(

∣∣∣∣λµ
∣∣∣∣+∣∣∣µλ ∣∣∣).

Proposition 2.4. The following inequality holds:

∀S ∈ I(H), ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = ‖S‖‖S−1‖+
1

‖S‖‖S−1‖
.

Proof. Let S ∈ I(H), and let S = UP be the polar decomposition of S. From the
fact that {X ∈ B1(H) : rankX = 1} = {U∗X : X ∈ B1(H), rankX = 1} and



2. Characterizations of some distinguished classes of operators in terms of operator inequalities 49

‖S‖ = ‖P‖, ‖S−1‖ = ‖P−1‖, it follows that

‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = sup
‖X‖=1=rankX

‖S∗XS−1 + S−1XS∗‖

= sup
‖X‖=1=rankX

‖PU∗XP−1U∗ + P−1U∗XPU∗‖

= sup
‖X‖=1=rankX

‖P (U∗X)P−1 + P−1(U∗X)P‖

= sup
‖X‖=1=rankX

‖PXP−1 + P−1XP‖

= ‖P ⊗ P−1 + P−1 ⊗ P‖λ.

Since P = |S| is an invertible positive operator in B(H), then from proposition 2.3. It
follows that

‖P ⊗ P−1 + P−1 ⊗ P‖λ = sup
λ,µ∈σ(P )

(

∣∣∣∣λµ
∣∣∣∣+
∣∣∣µ
λ

∣∣∣)
= sup

λ,µ∈σ(P )

(
λ

µ
+
µ

λ
)

= sup
t∈σ(MP )

(t+
1

t
).

Since σ(MP,P−1) = σ(P )σ(P−1), then min σ(MP,P−1) =
1

‖P‖‖P−1‖
= p and max

σ(MP,P−1) = ‖P‖‖P−1‖ =
1

p
. So that max

t∈σ(MP,P−1 )
{t+

1

t
: p ≤ t ≤ 1

p
} = p+

1

p
.

Hence

‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = ‖P ⊗ P−1 + P−1 ⊗ P‖λ

= ‖P‖‖P−1‖+
1

‖P‖‖P−1‖

= ‖S‖‖S−1‖+
1

‖S‖‖S−1‖
.

From proposition 2.3, it follows immediately that if S ∈ I(H), then ‖S⊗S−1 +S−1⊗
S‖λ ≥ 2 and ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ ≥ 2. It's easy to see that the two last inequalities
become equalities when S is unitary. Seddik [42] characterized the class of all invertible
operators in B(H) for which the injective norm of S ⊗ S−1 + S−1 ⊗ S get's it's minimal
value 2.

Proposition 2.5. Let S ∈ I(H). The following properties are equivalent:
(i) ∀X ∈ F1(H), ‖SXS−1 + S−1XS‖ ≤ 2‖X‖,
(ii) ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2,

(iii) S is normal and sup
λ,µ∈σ(S)

∣∣∣∣λµ +
µ

λ

∣∣∣∣ = 2.



2. Characterizations of some distinguished classes of operators in terms of operator inequalities 50

Proof. (i)⇒ (ii). Assume that (i) holds. Then we have

2 ≤ ‖S ⊗ S−1 + S−1 ⊗ S‖λ = sup
X∈F1(H)

‖SXS−1 + S−1XS‖ ≤ 2,

which proves (ii).
(ii)⇒ (iii). Firstly, we should prove that S is normal.
Using proposition 1.5, we obtain

∀x, y ∈ (H)1, 2 = ‖S ⊗ S−1 + S−1 ⊗ S‖λ ≤ 2|〈Sx, y〉〈S−1x, y〉|.

Hence the inequality |〈Sx, y〉〈S−1x, y〉| ≥ ‖x‖2‖y‖2 holds for every x, y ∈ H. So we have
|〈S∗S−1x, x〉| ≤ 1 and |〈(S∗S−1)−1x, x〉| ≤ 1 for every x in (H)1. Then from lemma 2.6,
it follows that S∗S−1 is unitary. Using lemma 2.5, we deduce that S is normal.

Since S is normal, then using proposition 2.3, we �nd that sup
λ,µ∈σ(S)

∣∣∣∣λµ +
µ

λ

∣∣∣∣ = 2. Therefore

(iii) holds.
(iii)⇒ (i). Using the fact that σ(S) = {ϕ(S) : ϕ ∈ ΓS}. Then from (iii) it follows that

sup
ϕ,ψ∈Γ(S)

∣∣∣∣ϕ(S)

ψ(S)
+
ψ(S)

ϕ(S)

∣∣∣∣ = 2.

Since λS + µS−1 is normal for every complex numbers λ and µ, the following inequality
holds

∀ϕ ∈ ΓS, sup
ψ∈Γ(S)

|ψ(ϕ(S)S−1 + ϕ(S−1)S)| = ‖ϕ(S)S−1 + ϕ(S−1)S‖ ≤ 2.

Thus
∀ϕ ∈ ΓS,∀f ∈ S1, |ϕ(f(S−1)S + f(S)S−1)| ≤ 2.

Hence
∀f ∈ S1, ‖f(S−1)S + f(S)S−1‖ ≤ 2

For every x, y ∈ (H)1, de�ne the functional fx,y on B(H) by fx,y(T ) = 〈Tx, y〉. It is
easy to see that fx,y ∈ S1 for every x, y ∈ (H)1.
So from the last inequality, it follows that

∀u, v ∈ (H)1, ‖〈S−1u, y〉S + 〈Su, y〉S−1‖ ≤ 2.

Thus
∀u, v, x ∈ (H)1, ‖S(x⊗ y)S−1u+ S−1(x⊗ y)Su‖ ≤ 2.

So, we obtain
∀x, y ∈ (H)1, ‖S(x⊗ y)S−1 + S−1(x⊗ y)S‖ ≤ 2.

Therefore (i) follows immediately.
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The above proposition showed that the set of all invertible operators satis�es the
equality ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2, does not charactrerizes the class of all unitary
operators inB(H); it's characterizes the class of all invertible normal operators satisfying

the condition sup
λ,µ∈σ(S)

∣∣∣∣λµ +
µ

λ

∣∣∣∣ = 2. Using this result Seddik [42] could �nd some operator

inequalities that characterized the class R∗U(H) in the following theorem:

Theorem 2.6. Let S ∈ I(H). The following properties are equivalent:
(i) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = 2‖X‖,
(ii) ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ 2‖X‖,
(iii) ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≤ 2‖X‖,
(iv) S ∈ R∗U(H).

Proof. The two implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
(iii) ⇒ (iv). From (iii), it follows that ‖S ⊗ S−1 + S−1 ⊗ S‖λ = 2. Using proposition

2.5, we obtain that S is normal and

∣∣∣∣λµ +
µ

λ

∣∣∣∣ ≤ 2 for every λ, µ ∈ σ(S).

Using the spectral measure of S, there exists a sequence (Sn) of invertible normal oper-
ators with �nite spectrum such that Sn → S uniformly, and for every λ ∈ σ(S), there
exists a sequence (λn) such that λn ∈ σ(Sn) for all n and λn → λ.
Let λ, µ ∈ σ(S) and let (λn), (µn) ∈ σ(Sn) such that λn → λ, µn → µ. Let ε > 0. Then
from (iii) and from Sn → S, there exists an integer N such that

∀n > N,∀X ∈ B(H), ‖SnXS−1
n + S−1

n XSn‖ ≤ (2 + ε)‖X‖. (*)

Let n > N . Since Sn is normal with �nite spectrum, there exist p orthogonal projectionsE1, ..., Ep
such that EkEj = 0 if k 6= j, E1 ⊕ ...Ep = I and Sn =

∑p
j=1 αjEj, where σ(Sn) =

{α1, ..., αp} and α1 = λn, α2 = µn. Then using (*) by the same argument as used in
theorem 2.6, we obtain

∀X ∈ B(C2), ‖C ◦X‖ ≤ (2 + ε)‖X‖, (**)

where C =

[
2 γn
γn 2

]
, and γn =

λn
µn

+
µn
λn

.

Let X =

[
tImγn i
i tImγn

]
(where t is an arbitrary positive number), we obtain that

C ◦X =

[
2tImγn iγn
iγn 2tImγn

]
.

Thus

‖X‖2 = ‖XX∗‖ = (tImγn)2+1, ‖C◦X‖2 = ‖C◦X(C◦X)∗‖ = (2tImγn)2+|γn|2+4t(Imγn)2.

Hence the inequality (**) becomes

(2tImγn)2 + |γn|2 + 4t(Imγn)2 ≤ (2 + ε)2((tImγn)2 + 1)
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(2tImγn)2 + |γn|2 + 4t(Imγn)2 ≤ 4((tImγn)2 + 1) + (4ε+ ε2)

(2tImγn)2 + |γn|2 + 4t(Imγn)2 ≤ (2tImγn)2 + 4 + (4ε+ ε2)(t2(Imγn)2 + 1)

|γn|2 + 4t(Imγn)2 ≤ 4 + (4ε+ ε2)(t2(Imγn)2 + 1).

Put γ =
λ

µ
+
µ

λ
. Letting n→∞, it follows that

|γ|2 + 4t(Imγ)2 ≤ 4 + (4ε+ ε2)(t2(Imγ)2 + 1).

Letting ε → 0, we obtain that the inequality 4t(Imγ)2 ≤ 4 − |γ|2 holds for every real

t > 0. So the inequality 4(Imγ)2 ≤ 4− |γ|2

t
holds. Letting t → ∞, we obtain that

Imγ = 0. Since |γ| ≤ 2, thus by a simple computation, we �nd that |λ| = |µ|. So that
σ(S) is included in some circle centred at the origin with radius ‖S‖ (since S is normal).

Thus σ(
1

‖S‖
S) is included in the unit circle, and since S is normal, we obtain that

1

‖S‖
S

is unitary. Therefore (iv) follows immediately.
(iv)⇒ (i). The implication is trivial.

In the following theorem, Seddik [41] could �nd three other characterizations of the
class R∗U(H); where one of them is the set of all operators S ∈ I(H) for which the
injective norm of S∗ ⊗ S−1 + S−1 ⊗ S∗ attains its minimal value 2.

Theorem 2.7. Let S ∈ I(H). The following properties are equivalent:
(i) S ∈ R∗U(H),
(ii) ∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ ≤ 2‖X‖,
(iii) ∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ = 2‖X‖,
(iv) ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = 2.

Proof. (i)⇒ (ii). The implication is trivial.
(ii) ⇒ (iii). Assume that (ii) holds. Using proposition 1.8(2′), then (iii) follows imme-
diately.
(iii)⇒ (iv). The implication is trivial.
(iv)⇒ (i). Using proposition 2.4, it follows that

2 = ‖S∗ ⊗ S−1 + S−1 ⊗ S∗‖λ = ‖S‖‖S−1‖+
1

‖S‖‖S−1‖
.

Hence ‖S‖‖S−1‖ = 1. Using proposition 2.2, then (i) follows immediately.

Remark 2.4. From the two above theorems, it follows that the class R∗U(H) is given by

U(H) = {S ∈ I1(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ = 2‖X‖}
= {S ∈ I1(H) : ∀X ∈ B(H), ‖SXS−1‖+ ‖S−1XS‖ ≤ 2‖X‖}
= {S ∈ I1(H) : ∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≤ 2‖X‖}
= {S ∈ I1(H) : ∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ ≤ 2‖X‖}
= {S ∈ I1(H) : ∀X ∈ B(H), ‖S∗XS−1 + S−1XS∗‖ = 2‖X‖}.
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From theorems 2.4 and 2.6, Seddik [42] deduced the following corollary that gives
a complete characterization of the class C∗Ur(H) of all unitary re�ection operators in
B(H) multiplied with a nonzero complex.

Corollary 2.1. Let S ∈ B(H). Then the equality ‖SXS−1 + S−1XS‖ = 2‖X‖, holds
for all X in B(H) if and only if λS is a unitary re�ection for some nonzero complex
number λ.

2.4 Characterizations of the class of partial isometries

De�nition 2.1. An operator S ∈ B(H) is said to be a partial isometry if and only if
‖Sx‖ = ‖x‖, for all x ∈ (kerS)⊥.

Proposition 2.6. Let S ∈ B(H). Then the following statements are mutually equiva-
lent:
(i) S is a partial isometry,
(ii) S∗ is a partial isometry,
(iii) SS∗S = S,
(iv) S∗SS∗ = S∗,
(v) SS∗ is an orthogonal projection,
(vi) S∗S is an orthogonal projection.

By the de�nition of Moore-Penrose inverse and the above proposition, we �nd that
S ∈ R(H) is a partial isometry if and only if S+ = S∗.

In 2004, Mbekhta [28] has given the following characterization of partial isometries
in Hilbert spaces.

Theorem 2.8. Let S ∈ R(H). Then S is a nonzero partial isometry if and only if
‖S‖ = ‖S+‖ = 1.

Proof. ⇒ The implication is trivial.
Conversely, Assume that ‖S‖ = ‖S+‖ = 1. Now, let x ∈ H, then ‖S+x‖ = ‖S+SS+x‖ ≤
‖SS+x‖ ≤ ‖S+x‖. Therefore, for every x ∈ H, we have

‖S+x‖2 = ‖SS+x‖2 ⇒ 〈(I − S∗S)S+x, S+x〉 = 0.

Since ‖S‖ = 1, then the operator (I − S∗S)) is positive. Let (I − S∗S)
1
2 be its positive

square root, then, for every x ∈ H, ‖(I − S∗S)
1
2S+x‖2 = 〈(I − S∗S)S+x, S+x〉 = 0.

Consequently, (I − S∗S)
1
2S+ = 0. Thus (I − S∗S)S+ = 0. Hence S+ = S∗SS+. Finally

we obtain that S = SS+S = SS∗SS+S = SS∗S, which proves that S is a partial
isometry.

Proposition 2.7. Let Let S ∈ R(H) be a nonzero operator. Then ‖S‖‖S+‖ = 1 if and

only if
S

‖S‖
is a partial isometry.
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Proof. Let T =
S

‖S‖
, it's obvious that ‖T‖ = 1. From the other side we have ‖T+‖ =

‖S‖‖S+‖. Using theorem 2.8, we �nd that
S

‖S‖
is a partial isometry if and only if

‖S‖‖S+‖ = 1.

Based on the theorem of Mbekhta, Menkad [30] could �nd a complete characterization
of the class of partial isometries in terms of operator inequalities. The following theorem
is an extension of theorem 2.7 from the domain I(H) to the domain R(H).

Theorem 2.9. Let S ∈ R(H) be a nonzero operator. Then the following properties are
equivalent:

(i)
S

‖S‖
is a partial isometry,

(ii) ∀X ∈ B(H), ‖S∗XS+‖+ ‖S+XS∗‖ ≤ 2‖SS+XS+S‖,
(iii) ∀X ∈ B(H), ‖S∗XS+ + S+XS∗‖ = 2‖SS+XS+S‖,
(iv) ‖S∗ ⊗ S+ + S+ ⊗ S∗‖λ = 2.

Proof. Without loss of generality, we can take ‖S‖ = 1.
(i)⇒ (ii). Since S is partial isometry, then S∗ = S+. Therefore

∀X ∈ B(H), ‖S∗XS+‖+ ‖S+XS∗‖ =2‖S∗XS∗‖ = 2‖S∗SS∗XS∗SS∗‖
≤ 2‖SS∗XS∗S‖ = ‖SS+XS+S‖.

Thus
∀X ∈ B(H), ‖S∗XS+‖+ ‖S+XS∗‖ ≤ 2‖SS+XS+S‖.

(ii)⇒ (iii). Assume that (ii) holds. Then

∀X ∈ B(H), ‖S∗XS+ + S+XS∗‖ ≤ 2‖SS+XS+S‖.

Using the above inequality and the inequality (2′) from proposition 1.8, we obtain the
equality (iii).
(iii)⇒ (iv). From (iii) and proposition 1.5, it follows that

‖S∗ ⊗ S+ + S+ ⊗ S∗‖λ = sup
‖X‖=1=rankX

‖S∗XS+ + S+XS∗‖

= sup
‖X‖=1=rankX

2‖SS+XS+S‖ = 2‖SS+‖‖S+S‖ = 2.

(iv)⇒ (i). Assume that (iv) holds. Then we obtain

∀X ∈ F1(H), ‖S∗XS+ + S+XS∗‖ ≤ 2‖X‖.

If we replace X by SS+XS+S, the above inequality becomes

∀X ∈ F1(H), ‖S∗XS+ + S+XS∗‖ ≤ 2‖SS+XS+S‖.
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Let S = UP be the polar decomposition of S. Then the above inequality becomes

∀X ∈ F1(H), ‖PU∗XP+U∗ + P+U∗XPU∗‖ ≤ 2‖PP+U∗XP+P‖.

Thus
∀X ∈ F1(H), ‖PU∗XP+ + P+U∗XP‖ ≤ 2‖PP+U∗XP+P‖.

By replacing again X by UX, we get

∀X ∈ F1(H), ‖PXP+ + P+XP‖ ≤ 2‖PP+XP+P‖.

Thus
‖P ⊗ P+ + P+ ⊗ P‖λ ≤ 2.

P is selfadjoint operator with a closed range, then P is an EP operator has the following

matrix representation P =

[
P1 0
0 0

]
(where P1 invertible) with respect to the orthogonal

direct sum H = R(P )⊕ kerP. Choose X = X1 ⊕ 0 (where X1 ∈ B(R(P )) and ‖X1‖ =
rankX1 = 1), then the above inequality becomes

‖P1 ⊗ P−1
1 + P−1

1 ⊗ P1‖λ ≤ 2.

Using proposition 2.4, we obtain that

‖P1‖‖P−1
1 ‖+

1

‖P1‖‖P−1
1 ‖
≤ 2.

Hence ‖P1‖‖P−1
1 ‖ = 1 = ‖P‖‖P+‖ = ‖S‖‖S+‖. So (i) follows immediately from Propo-

sition 2.7.



3. NEW CHARACTERIZATIONS OF SOME SUBCLASSES OF

OPEARTORS

This chapter cosists of our contribution in the characterizations of some distinguished
subclasses of operators in terms of operator inequalities.
We start by giving some new forms of operator inequalities as follows:

∀X ∈ B(H), ‖S∗SX +XSS∗‖ ≥ ‖S∗XS‖+ ‖SXS∗‖, (S ∈ I(H)), (N10)

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ = ‖S∗SX‖+ ‖XSS∗‖, (S ∈ R(H)), (N11)

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ ‖S∗SX‖+ ‖XSS∗‖, (S ∈ R(H)), (N12)

∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≤ 2‖SXS‖, (S ∈ R(H)), (N13)

∀X ∈ B(H), ‖S∗XS + SXS∗‖ = 2‖SXS‖, (S ∈ B(H)), (S8)

∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≥ 2‖SXS‖, (S ∈ B(H)). (S9)

Also, we shall interest to the following extensions of the three properties (N1-N3) from
the domain I(H) to the domain I1(H):

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ =
∥∥S∗XS#

∥∥+
∥∥S#XS∗

∥∥ , (S ∈ I1(H)), (N14)

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ ≤ ∥∥S∗XS#
∥∥+

∥∥S#XS∗
∥∥ , (S ∈ I1(H)), (N15)

∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ ≥ ∥∥S∗XS#
∥∥+

∥∥S#XS∗
∥∥ , (S ∈ I1(H)). (N16)

Finally, we give characterizations of subclasses of nonnormal operators, precisely the
subclass V(H) of all isometry operators in B(H) and subclasses of partial isometry
operators in B(H).
Note that this work was published in [7].

3.1 Subclasses of normal operators

In this section, we prove that the property (N10) characterizes the class N0(H), the
properties (N11−N13) characterize the class Ncr(H), and the two properties (S8), (S9)
characterize the class CS(H).
We also prove that the properties (N14−N16) characterize the class Ncr(H).
At the end of this section, we deduce some characterizations of the class U(H).

Proposition 3.1. Let S ∈ I(H). Then the following properties are equivalent:
(i) S ∈ N0(H),
(ii) ∀X ∈ B(H), ‖S∗SX +XSS∗‖ ≥ ‖S∗XS‖+ ‖SXS∗‖.
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Proof. (i) ⇒ (ii). This implication follows immediately using McIntosh inequality and
proposition 2.1.
(ii)⇒ (i). Assume (ii) holds.
Applying (ii) for X = S−2, we obtain

‖S∗S−1 + S−1S∗‖ ≥ ‖S∗S−1‖+ ‖S−1S∗‖.

Hence
‖S∗S−1 + S−1S∗‖ = ‖S∗S−1‖+ ‖S−1S∗‖.

Using [3, Theorem 2], we obtain

1 = w((S∗S−1)(S−1S∗)∗) = ‖S∗S−1‖‖S−1S∗‖ = ‖S∗S−1‖‖(S∗S−1)−1‖.

So, From lemma 2.6.(i), S∗S−1 = ‖S∗S−1‖U, for some unitary operator U in B(H).
Hence ‖S∗S−1‖ = 1. Then S∗S−1 is unitary. Using lemma 2.6(ii), we obtain that S is
normal.

From the above proposition, it's natural to ask the following problem:

Problem 3.1. Is it true that the class of normal operators is characterized by

∀X ∈ B(H), ‖S∗SX +XSS∗‖ ≥ ‖S∗XS‖+ ‖SXS∗‖, (S ∈ B(H))?

We shall extend the properties (N1−N3) in proposition 2.2 and proposition 2.3 from
the domain I(H) to the domain I1(H) (where the usual inverse is replaced by the group
inverse).

Proposition 3.2. Let S ∈ I1(H). Then the following properties are equivalent:

(i) S ∈ Ncr(H),

(ii) ∀X ∈ B(H),
∥∥SXS#

∥∥+
∥∥S#XS

∥∥ =
∥∥S∗XS#

∥∥+
∥∥S#XS∗

∥∥ ,
(iii) ∀X ∈ B(H),

∥∥SXS#
∥∥+

∥∥S#XS
∥∥ ≤ ∥∥S∗XS#

∥∥+
∥∥S#XS∗

∥∥ ,
(iv) ∀X ∈ B(H),

∥∥SXS#
∥∥+

∥∥S#XS
∥∥ ≥ ∥∥S∗XS#

∥∥+
∥∥S#XS∗

∥∥ .
Proof. (i)⇒ (ii). Assume (i) holds. Since S# = S+, then (ii) holds using theorem 2.4.

(ii)⇒ (iii). The implication is trivial.

(iii)⇒ (i). Assume (iii) holds.

Let X = S(S+)2S−S+S2S+. Since S∗SS+ = S+SS∗ = S∗ and SS+S# = S#S+S =
S#, we obtain that

S∗XS# = S∗S(S+)2SS# − S∗S+S2S+S# = S∗S+SS# − S∗S+SS# = 0,

S#XS∗ = S#S(S+)2SS∗ − S#S+S2S+S∗ = S#SS+S∗ − S#SS+S∗ = 0,

S#XS = S#S(S+)2SS − S#S+S2S+S = S#S(S+)2S2 − S#S,

SXS# = SS(S+)2SS# − SS+S2S+S# = S2(S+)2SS# − SS#.
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Applying (iii) for X = S(S+)2S − S+S2S+, we get that∥∥S2(S+)2SS# − SS#
∥∥+

∥∥S#S(S+)2S2 − S#S
∥∥ = 0.

Then
∥∥S#S(S+)2S2 − S#S

∥∥ = 0, so S#SS+2S2 − S#S = 0. Using the matrices repre-
sentation with respect to the orthogonal direct sum H = R(S)⊕ kerS∗ of the operators
S, S+, and S#, we obtain that

S#SS+2S2 =

[
S∗1K

−1S∗1K
−1S2

1 + S−1
1 S2S

∗
2K
−1S∗1K

−1S2
1 ∗

0 0

]
=

[
I1 S−1

1 S2

0 0

]
= S#S,

(where I1 is the identity on R(S)).
Hence

S∗1K
−1S∗1K

−1S2
1 + S−1

1 S2S
∗
2K
−1S∗1K

−1S2
1 = I1.

It follows that
S−1

1 (S1S
∗
1 + S2S

∗
2)K−1S∗1K

−1S2
1 = I1.

Thus S−1
1 S∗1K

−1S2
1 = I1, which implies that S1S

∗
1K
−1 = I1.

So K = S1S
∗
1 . Consequently S2 = 0. Since S1 is invertible , then S is an EP operator.

Now applying again (iii) for X = X1 ⊕ 0 (where X1 ∈ B(R(S))), we obtain

∀X1 ∈ B(R(S)),
∥∥S1X1S

−1
1

∥∥+
∥∥S−1

1 X1S1

∥∥≤ ∥∥S∗1X1S
−1
1

∥∥+
∥∥S−1

1 X1S1

∥∥ .
Using proposition 2.4 with the Hilbert space R(S), we �nd that S1 is normal. Hence

S is normal.

(i)⇒ (iv). This implication is trivial.

(iv) ⇒ (i). Assume (iv) holds. If we put X = x ⊗ y (where x, y ∈ H) in (iv), then
we obtain

∀x, y ∈ H, ‖Sx‖
∥∥(S#)∗y

∥∥+
∥∥S#x

∥∥ ‖S∗y‖ ≥ ‖S∗x‖∥∥(S#)∗y
∥∥+

∥∥S#x
∥∥ ‖Sy‖ .

From this last inequality, it follows that kerS = kerS∗. Then S is an EP operator.
Hence S = S1 ⊕ 0 with respect to the orthogonal direct sum H = R(S) ⊕ kerS, and
where S1 is an invertible operator in B(R(S)). Applying (iv) for X = X1 ⊕ 0 (where
X1 ∈ B(R(S))), we obtain the following inequality

∀X1 ∈ B(R(S)),
∥∥S1XS

−1
1

∥∥+
∥∥S−1

1 XS1

∥∥ ≥ ∥∥S∗XS−1
1

∥∥+
∥∥S−1

1 XS∗
∥∥ .

Then from this last inequality, and using proposition 2.3 with the Hilbert space R(S),
we obtain that S1 is normal. Therefore S is normal.
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In the two next propositions, we shall give another characterizations of the class
Ncr(H) of all normal operators with closed ranges in B(H).

Proposition 3.3. Let S ∈ R(H). Then the following properties are equivalent:
(i) S ∈ Ncr(H),
(ii) ∀x ∈ H, ‖S2x‖ = ‖S∗Sx‖; ‖(S∗)2x‖ = ‖SS∗x‖,
(iii) ∀x ∈ H, ‖S2x‖ ≥ ‖S∗Sx‖; ‖(S∗)2x‖ ≥ ‖SS∗x‖,
(iv) ∀X ∈ B(H),B(H), ‖S2X‖+ ‖XS2‖ = ‖S∗SX‖+ ‖XSS∗‖,
(v) ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ ‖S∗SX‖+ ‖XSS∗‖,
(vi) S∗DSS = 0 = SDSS

∗,
(vii) S∗DSS ≤ 0 ≤ SDSS

∗.

Proof. (i)⇒ (ii). The implication follows immediately from proposition 2.1.
(ii)⇒ (iv). Asume (ii) holds. Let X ∈ B(H), x ∈ (H)1, Using (ii), we obtain that

∀X ∈ B(H),∀x ∈ (H)1, ‖S2Xx‖ = ‖S∗SXx‖; ‖(S∗)2Xx‖ = ‖SS∗Xx‖,

by taking the supremum over x ∈ (H)1, we �nd

∀X ∈ B(H), ‖S2X‖ = ‖S∗SX‖; ‖(S∗)2X‖ = ‖SS∗X‖,

Thus
∀X ∈ B(H), ‖S2X‖ = ‖S∗SX‖; ‖XS2‖ = ‖XSS∗‖,

Therefore (iv) holds.
(iv)⇒ (v). This implication is trivial.
(v) ⇒ (i). Using the A.G.M.I in (v) and using theorem 2.4, the implication follows
immediately.
The implication (ii)⇒ (iii) is trivial.
Hence the properties (i), (ii), (iv), (v), and (iii) are equivalent.
(ii)⇔ (vi). The proof follows immediately from the two following equivalences:{

(S∗DSS = 0)⇔ (∀x ∈ (H), ‖S2x‖ = ‖S∗Sx‖).
(SDSS

∗ = 0)⇔ (∀x ∈ (H), ‖(S∗)2x‖ = ‖SS∗x‖).

(iii)⇔ (vii). By the same argument as used above.
Therefore the properties (i− vii) are equivalent.

Proposition 3.4. Let S ∈ R(H). Then the two following properties are equivalent:

(i) S ∈ Ncr(H),

(ii) ∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≤ 2 ‖SXS‖.

Proof. The proof is trivial if S = 0. Assume now that S 6= 0.

(i) ⇒ (ii). The implication follows immediately using the triangular inequality and
the proposition 2.1.
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(ii)⇒ (i). Assume (ii) holds. We shall prove (i) in two steps.

Step 1. Suppose that S is invertible.

Then applying (ii) for X = S−1(S−1)∗, we obtain

1 +
∥∥S∗S−1

∥∥2
=

∥∥S∗S−1(S∗S−1)∗ + I
∥∥

≤ 2
∥∥S∗S−1

∥∥ .
Hence ‖S∗S−1‖ = 1. On the other hand, we remark that (ii) holds if we replace S by

S∗. It follows that, ‖S∗S−1‖ = 1 = ‖(S∗S−1)−1‖. So, we have S∗S−1 is unitary. Thus S
is normal.

Step 2. General case S ∈ R(H).

If we put X = x⊗ y (where x, y ∈ H) in (ii), we obtain

∀x, y ∈ H, ‖S∗x⊗ S∗y + Sx⊗ Sy‖ ≤ 2 ‖Sx‖ ‖S∗y‖ .

From this last inequality, it follows immediately that kerS∗ = kerS. Then S is an EP
operator. Hence S = S1⊕0 with respect to the orthogonal direct sum H = R(S)⊕kerS∗,
and where S1 is invertible. Applying (ii) for X = X1 ⊕ 0 (where X1 ∈ B(R(S)), we
obtain

∀X1 ∈ B(R(S)), ‖S∗1X1S1 + S1X1S
∗
1‖ ≤ 2 ‖S1X1S1‖ .

From step 1, S1 normal. Hence S is normal.

As an immediate consequence of the previous proposition we have

Corollary 3.1. The following property characterizes the class N0(H)

∀X ∈ B(H),
∥∥S∗S−1X +XS−1S∗

∥∥ ≤ 2 ‖X‖ , (S ∈ I(H)).

Remark 3.1. Let S ∈ B(H). The three following properties characterize the class N (H)
of all normal operators in B(H)

∀X ∈ B(H), ‖S∗XS‖+ ‖SXS∗‖ = 2‖SXS‖ (*)

∀X ∈ B(H), ‖S∗XS‖+ ‖SXS∗‖ ≥ 2‖SXS‖ (**)

∀X ∈ B(H), ‖S∗XS‖+ ‖SXS∗‖ ≤ 2‖SXS‖ (***)

It's easy to see that every normal operator satis�es the three above properties.
Conversely , for (*) and (**) it's enough to replace X by x ⊗ y (for x, y ∈ H), then
take the supremum for ‖y‖ = 1. For the last property we replace replace X by x⊗ x (for
x ∈ H).

Proposition 3.5. Let S ∈ B(H). Then the following properties are equivalent:
(i)S ∈ N (H),
(ii)∀X ∈ B(H),

√
‖S2X‖ ‖XS2‖ ≥ ‖SXS‖ .
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Proof. (i)⇒ (ii). Assume (i) holds. Then for X ∈ B(H), we have√
‖S2X‖ ‖XS2‖ =

√
‖S∗SX‖ ‖XSS∗‖

≥
√
‖SS∗X∗S∗SX‖

≥
√
r(SS∗X∗S∗SX)

=
√
r (S∗X∗S∗SXS)

=
√
r ((SXS)∗SXS)

= ‖SXS‖

Therefore (ii) holds.
(ii)⇒ (i). Assume (ii) holds.
By taking X = x⊗ y in (ii), where x, y ∈ (H)1, we �nd the following

∀x, y ∈ (H)1,
∥∥S2x

∥∥∥∥S∗2y∥∥ ≥ ‖Sx‖2 ‖S∗y‖2 .

Then
∀x, y ∈ (H)1, ‖S‖2

∥∥S∗2y∥∥ ≥ ∥∥S2x
∥∥∥∥S∗2y∥∥ ≥ ‖Sx‖2 ‖S∗y‖2 .

Thus
∀x, y ∈ (H)1, ‖S‖2

∥∥S∗2y∥∥ ≥ sup
‖x‖=1

(
∥∥S2x

∥∥∥∥S∗2y∥∥) ≥ ‖S‖2 ‖S∗y‖2 .

Hence ‖S∗2y‖ ≥ ‖S∗y‖2, for every y ∈ (H)1. Then S
∗ is paranormal.

By the same argument, we obtain that S is also paranormal.
Using [47], we deduce that S is normal.

Remark 3.2. In [44], Seddik proved that the class Ncr(H) is characterized by the fol-
lowing inequality

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖, (S ∈ R(H)),

So it is natural to ask: does the following property characterizes the class N (H)

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≥ 2‖SXS‖, (S ∈ B(H))? (PN4)

The above question is still unsolved, but we may remark that the following property

∀X ∈ B(H),
√
‖S2X‖‖XS2‖ ≥ ‖SXS‖, (S ∈ B(H)), (PN5)

implies the property (PN4). And the above proposition shows that (PN5) characterizes
exactely the class N (H).

Proposition 3.6. Let S ∈ B(H). Then the three following properties are equivalent:

(i) S ∈ CS(H),

(ii) ∀X ∈ B(H), ‖S∗XS + SXS∗‖ = 2 ‖SXS‖ ,
(iii) ∀X ∈ B(H), ‖S∗XS + SXS∗‖ ≥ 2 ‖SXS‖.
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Proof. The proof is trivial if S = 0. Assume now that S 6= 0.

The two implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.

(iii)⇒ (i). Assume (iii) holds.

By taking X = x⊗ y (where x, y ∈ (H)1) in (iii), we obtain

∀x, y ∈ (H)1 , ‖S
∗x‖ ‖S∗y‖+ ‖Sx‖ ‖Sy‖ ≥ 2 ‖Sx‖ ‖S∗y‖ . (A)

From (A), we deduce that

∀x, y ∈ (H)1 , ‖S‖ (‖S∗x‖+ ‖Sx‖) ≥ 2 ‖Sx‖ ‖S∗y‖ .

By taking the supremum in the above inequality over y ∈ (H)1, we deduce that

∀x ∈ H, ‖S∗x‖ ≥ ‖Sx‖ . (B)

Using the same argument as used before, we deduce from (A) that

∀x ∈ H, ‖Sx‖ ≥ ‖S∗x‖ . (C)

Them from (B) and (C), S is normal. So from (iii) and proposition 2.1, it follows
that

∀X ∈ B(H), ‖S∗XS + SXS∗‖ = ‖S∗XS‖+ ‖SXS∗‖ . (D)

Let now X ∈ B(H) and put A = SXS∗, B = S∗XS. Then from (D), we deduce
that

‖A‖2 + ‖B‖2 + 2‖A‖‖B‖ = ‖(A+B)∗(A+B)‖
= ‖AA+BB + 2Re(B∗A)‖
≤ ‖A‖2 + ‖B‖2 + 2‖B∗A‖
≤ ‖A‖2 + ‖B‖2 + 2‖A‖‖B‖.

Hence, ‖B∗A‖ = ‖A‖ ‖B‖ . So, we have

∀X ∈ B(H), ‖S∗XS‖ ‖SXS∗‖ = ‖(S∗XS)∗ (SXS∗)‖ .

Since S 6= 0 and S is normal, then we may choose a vector y ∈ H such that Sy 6= 0
and S∗y 6= 0. By taking X = x ⊗ y (where x arbitrary in H) in the last inequality, we
obtain the following

∀x ∈ H, ‖S∗x‖ ‖Sx‖ = |〈S∗x, Sx〉| .

Thus S∗x and Sx are linearly dependent, for every x ∈ H. Since S is normal, then
for every x ∈ H such that Sx 6= 0, there exists a complex numbers λ(x) (depending in x)
of modulus one such that S∗x = λ(x)Sx. By taking X = x⊗ y in (D), for x, y ∈ H such

that Sx 6= 0, Sy 6= 0, we deduce that
∣∣∣1 + λ(x)λ(y)

∣∣∣ = 2 and so λ(x) = λ(y). Hence

there exits a constant real number θ such that S∗x = eiθSx, for every x ∈ H. Thus
S∗ = eiθS. Put M = ei

θ
2S. Then M is selfadjoint in B(H) and S = e−i

θ
2M . Therefore

(i) holds.
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From the preceding proposition, we can obtain the following corollary:

Corollary 3.2. The class C∗S0(H) is characterized by each of the two following proper-
ties

∀X ∈ B(H),
∥∥S∗S−1X +XS−1S∗

∥∥ = 2 ‖X‖ , (S ∈ I(H)),

∀X ∈ B(H),
∥∥S∗S−1X +XS−1S∗

∥∥ ≥ 2 ‖X‖ , (S ∈ I(H)).

Proposition 3.7. Let S ∈ B(H), such that S2 6= 0. Then the following properties are
equivalent:

(i) S ∈ R∗U(H),
(ii) ∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ ≤ 2‖SXS‖,
(iii) ∀X ∈ B(H), ‖S2X +XS2‖ ≤ 2‖SXS‖.

Proof. The two implications (i)⇒ (ii) and (ii)⇒ (iii) are trivial.
(iii)⇒ (i). Assume that S2 6= 0. If we put X = x⊗ y (for x, y ∈ H) in (iii), we obtain

∀x, y ∈ H, ‖S2x⊗ y + x⊗ S∗2y‖ ≤ 2‖Sx‖‖S∗y‖. (**)

We shall prove (i) in three steps.
Step 1. Prove that S is injective.
Let x ∈ kerS, then (**) becomes

∀y ∈ H, ‖x‖‖S∗2y‖ = 0.

Since S2 6= 0, we may choose y in H such that S∗2y 6= 0, it follows that x = 0. Hence S
injective.
Step 2. Prove that S∗ is injective.
By the same argument as above, we �nd that S∗ injective.
Step 3. Prove that R(S) closed.
Let (xn)n≥1 be a sequence in H, and let y in H such that Sxn → y. Applying (∗∗) for
x = xn − xm (where n,m ≥ 1), we obtain

∀y ∈ H,∀n,m ≥ 1; ‖xn − xm‖‖S∗2y‖ ≤ 2‖Sxn − Sxm‖‖S∗y‖+ ‖S(Sxn − Sxm)‖‖y‖.

We may choose y such that S∗2y 6= 0, thus by passing to the limit, we obtain that (xn)n≥1

is a Cauchy sequence, which implies that (xn)n≥1 converges to some vector x ∈ H. By
the continuity of S we �nd y = Sx. Thus R(S) is closed.
By the three above steps, we �nd that S is invertible. If we replace X by S−1XS−1 in
(iii), we obtain

∀X ∈ B(H), ‖SXS−1 + S−1XS‖ ≤ 2‖X‖.
Using theorem 2.8, we get S ∈ R∗U(H).

Remark 3.3. By the same argument as used in the above theorem, we can see that a
nonzero operator which satis�es each of the property (*),(**) or (***) is an invertible
operator

∀X ∈ B(H), ‖S2X‖+ ‖XS2‖ = 2‖SXS‖, (S ∈ B(H)) (*)
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∀X ∈ B(H), ‖S∗SX +XSS∗‖ = 2‖SXS‖, (S ∈ B(H)) (**)

∀X ∈ B(H), ‖S2X +XS2‖ = 2‖SXS‖, (S ∈ B(H)) (***)

Replace X by S−1XS−1 and using theorem 2.8, we can see that property (*) and (**)
characterize the class RU(H) and the property (***) characterizes the class RUr(H).

The following proposition characterizes the class R∗U(H) using the notion of paral-
lelism.

Proposition 3.8. Let S ∈ I(H) such that 0 /∈ W (S), then the following properties are
equivalent:
(i)S‖S−1,
(ii)S ∈ R∗U(H).

Proof. (i)⇒ (ii). Assume (i) holds. Then using [3], we obtain that

w(S∗S−1) = w(SS∗−1) =
∥∥S∗S−1

∥∥ =
∥∥SS∗−1

∥∥ = ‖S‖
∥∥S−1

∥∥ .
So both S∗S−1 and SS∗−1 are normaloid operators.
We also have (S∗S−1)−1S = S(S∗S−1)∗ with 0 /∈ W (S).
Applying [10, Theorem 1], we get that S∗S−1 is unitary. Hence∥∥S∗S−1

∥∥ = 1 = ‖S‖
∥∥S−1

∥∥ .
Therefore S ∈ R∗U(H).
(ii)⇒ (i). The implication is trivial.

Remark 3.4. The above proposition doesn't holds without the condition 0 /∈ W (S). In

B(C2), S =

[
1 1
0 −1

]
= S−1. We notice that S‖S−1, but S is not unitary.

3.2 Isometry operators and subclasses of partial isometry operators

The purpose of this section is to establish the following propositions that provide a
useful characterizations of subclasses of nonnormal operators brecisely the subclass V(H)
of all isometry operators in B(H) and the subclass of all quasinormal partial isomerty
operators inB(H) (that contain U(H)). Those properties that give the characterizations
have new forms that missed the symmetry form. Finally, we deduce another characteri-
zations of the class U(H).

Proposition 3.9. Let S ∈ (R(H))1. Then the two following properties are equivalent:

(i) S ∈ V(H),

(ii) ∀X ∈ B(H), ‖X‖+ ‖S+XS‖ ≤ 2 ‖SXS+‖.
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Proof. The implication (i)⇒ (ii) is trivial.

(ii)⇒ (i). Assume (ii) holds. We prove (i) in three steps:

Step 1. Prove that S is injective.

If we replace X by x⊗ y (for x, y ∈ H) in (ii), we obtain

∀x, y ∈ H, ‖x‖ ‖y‖+
∥∥S+x

∥∥ ‖S∗y‖ ≤ 2 ‖Sx‖
∥∥(S+)∗y

∥∥ .
By taking x ∈ kerS and choosing y 6= 0 in the above inequality, we obtain that x = 0.

Hence S is injective.

Step 2. Prove that (S2)+S = S+.

Since S is injective with a closed range, then S2 is also injective with a closed range.
Thus S+S = (S2)+S2 = I.

It's known that S+ is the unique solution of the four following equations: SXS =
S, XSX = X, (XS)∗ = XS, (SX)∗ = SX. It is easy to see that (S2)+S satis�es
the �rst three equations. Now, prove that (S2)+S satis�es the last equation. Since the
operator S(S2)+S is a projection, it su�ces to prove that its norm is less than or equal
to one. By taking X = S(S2)+S in (ii), we obtain∥∥S(S2)+S

∥∥+
∥∥S+S(S2)+SS

∥∥ ≤ 2
∥∥SS(S2)+SS+

∥∥
≤ 2

∥∥S2(S2)+
∥∥∥∥SS+

∥∥
≤ 2.

Thus ‖S(S2)+S‖ ≤ 1. Hence S((S2)+S) is a projection of norm less or equal to one.
Thus S(S2)+S is a selfadjoint projection. So (S2)+S satis�es the above four equations.
Therefore (S2)+S = S+.

Step 3. Prove that S ∈ V(H).

Since S2(S2)+ = SS+S2(S2)+ and that SS+, S2(S2)+ are selfadjoint, then S2(S2)+ =
S2(S2)+SS+. So from step 2, we obtain S2(S2)+ = S2(S+)2. Since S2 is injective, we
have (S+)2 = (S2)+.

Return to (ii) and replace X by SXS+, we obtain

∀X ∈ B(H),
∥∥SXS+

∥∥+ ‖X‖ ≤ 2
∥∥S2X(S2)+

∥∥ .
Put P = |S|, R = |S2|. Since S and S2 are both injective with closed ranges, then P

and R are invertible. By taking the polar decomposition of each of the two operators S
and S2 in the last inequality, we obtain

∀X ∈ B(H),
∥∥PXP−1

∥∥+ ‖X‖ ≤ 2
∥∥RXR−1

∥∥ . (*)

If we replace X by R−1XR in the above inequality, we obtain

∀X ∈ B(H),
∥∥PR−1XRP−1 ‖+‖R−1XR

∥∥ ≤ 2 ‖X‖ .
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So from proposition 1.8(5′), we get that

∀X ∈ B(H),
∥∥PR−1XRP−1 ‖+‖R−1XR

∥∥ ≤ ∥∥RXR−1
∥∥+

∥∥R−1XR
∥∥ .

Thus
∀X ∈ B(H),

∥∥PR−1XRP−1
∥∥ ≤ ∥∥RXR−1

∥∥ .
Hence

∀X ∈ B(H),
∥∥∥PR−2X

(
PR−2

)−1
∥∥∥ ≤ ‖X‖ .

So, we obtain that

∀X ∈ B(H),
∥∥PR−2XR2P−1

∥∥ = ‖X‖ .

Using again (∗) and replace X by R−2XR2, we �nd

∀X ∈ B(H),
∥∥PR−2XR2P−1 ‖+‖R−2XR2

∥∥ ≤ 2
∥∥R−1XR

∥∥ .
So, we have

∀X ∈ B(H),
∥∥X ‖+‖R−2XR2

∥∥ ≤ 2
∥∥R−1XR

∥∥ .
Thus,

∀X ∈ B(H),
∥∥RXR−1 ‖+‖R−1XR

∥∥ ≤ 2 ‖X‖ .

Using theorem 2.8 and since R is positive, we obtain R = ‖R‖ I. Then (∗) becomes

∀X ∈ B(H),
∥∥PXP−1

∥∥ ≤ ‖X‖ .
Thus 1 ≤ ‖P‖ ‖P−1‖ = sup

‖X‖=1

‖PXP−1‖ ≤ 1. Hence ‖P‖ ‖P−1‖ = 1. So we have

P = ‖P‖ I = I. Hence S∗S = P 2 = I. Therefore S ∈ V(H).

From the preceding proposition, we can obtain the following corollary:

Corollary 3.3. The class U(H) is characterized by each of the two following properties:

∀X ∈ B(H), ‖X‖+
∥∥SXS−1

∥∥ ≤ 2
∥∥S−1XS

∥∥ , (S ∈ (I(H))1) ,

∀X ∈ B(H), ‖X‖+
∥∥S−1XS

∥∥ ≤ 2
∥∥SXS−1

∥∥ , (S ∈ (I(H))1) .

In the three next propositions, we shall give some characterizations of some subclasses
of partial isometry operators in B(H).

Proposition 3.10. Let S ∈ (R(H))1. Then the following properties are equivalent:
(i)S∗‖S+,
(ii)S is a partial isometry.
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Proof. (i)⇒ (ii). Assume (i) holds. Then using [3] we �nd that

w(SS+) =
∥∥SS+

∥∥ = ‖S‖
∥∥S+

∥∥ = 1,

Therefore S is a partial isometry.
(ii)⇒ (i) Trivial.

Proposition 3.11. Let S ∈ I1(H). Then the following properties are equivalent:
(i)S∗‖S#,
(ii)S ∈ R∗(U(H)⊕ 0) .

Proof. (i)⇒ (ii). Assume (i) holds. Then using [3], we �nd that

w(SS#) =
∥∥SS#

∥∥ = ‖S‖
∥∥S#

∥∥ ,
thus SS# is normaloid and idempotent. Hence SS# is orthogonal projection which give
us that S is EP operator.
this yield that

w(SS#) = 1 = ‖S‖
∥∥S#

∥∥ = ‖S1‖
∥∥S−1

1

∥∥ .
Therefore S ∈ R∗(U(H)⊕ 0).
The implication (ii)⇒ (i) is trivial.

Proposition 3.12. Let S ∈ (R(H))1. Then the following properties are equivalent:

(i) S is a direct sum of an isometry and zero,

(ii) S is a partial isometry and quasinormal,

(iii) ∀X ∈ B(H), ‖X‖+ ‖SXS+‖ ≥ 2 ‖S+XS‖ .

Proof. (i) ⇒ (ii). Since S = (S1 ⊕ 0), where S1 is an isometry, then S∗ = S∗1 ⊕ 0 =
S∗1(S1S

∗
1)−1⊕0 = S+. Thus from proposition 2.6, S is a partial isometry. Hence SS∗S =

S = S1 ⊕ 0 = (S∗1S1)S1 ⊕ 0 = S∗SS.
(ii) ⇒ (i). Assume (ii) holds. Then SS∗S = S = S∗SS, thus R(S) ⊂ R(S∗). Hence
S = S1 ⊕ 0 with respect to the orthogonal decomposition H = R(S∗)⊕ kerS, where S1

is injective.
On the other hand, we have S∗ = S∗1 ⊕ 0 and S+ = S∗1(S1S

∗
1)−1 ⊕ 0. From the fact that

S∗ = S+, we obtain (S∗1S1)−1S∗1 = S∗1 , since S1 is injective, then (S∗1S1)−1 = I1.
So that S∗1S1 = I1. Hence (i) holds.
Therefore (i)⇔ (ii).
(ii) ⇒ (iii). Assume (ii) holds. Then S = S∗S2, so we have R(S) ⊂ R(S∗). Using
Douglas Theorem, we obtain ‖Sx‖ ≥ ‖S∗x‖, for every x ∈ H. Hence, ‖SX‖ ≥ ‖S∗X‖,
for every X ∈ B(H).

Now let X ∈ B(H). Then we have ‖X‖ ≥ ‖S∗XS‖ = ‖S+XS‖ (since ‖S‖ = 1 and
S∗ = S+), and∥∥SXS+

∥∥ = ‖SXS∗‖ ≥ ‖S∗XS∗‖ = ‖SX∗S‖ ≥ ‖S∗X∗S‖ = ‖S∗XS‖ =
∥∥S+XS

∥∥
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Hence ‖X‖+ ‖SXS+‖ ≥ 2 ‖S+XS‖. This proves (iii).

(iii)⇒ (ii). Assume (iii) holds. It follows immediately that

1 +
∥∥S+

∥∥ ‖S‖ ≥ 2
∥∥S+

∥∥ ‖S‖ .
Hence ∥∥S+

∥∥ ‖S‖ ≤ 1.

Thus, ∥∥S+
∥∥ ‖S‖ = 1.

Since ‖S‖ = 1, then using theorem 2.8, S is a partial isometry.

It remains to prove that S is quasinormal. By taking X = Sx ⊗ Sx (where x ∈ H)
in (iii), we obtain

∀x ∈ H, ‖Sx‖2 +
∥∥S2x

∥∥2 ≥ 2 ‖S∗Sx‖2 . (*)

Since S∗ is also a partial isometry, then

∀x ∈ H, ‖S∗Sx‖ = ‖Sx‖ . (**)

From (*) and (**), we obtain the following inequality

∀x ∈ H,
∥∥S2x

∥∥ ≥ ‖Sx‖ .
Since ‖S‖ = 1, we have

∀x ∈ H,
∥∥S2x

∥∥ = ‖Sx‖ .

Hence S∗(I − S∗S)S = 0 (where I − S∗S ≥ 0). Then (I − S∗S)S = 0. So S =
(S∗S)S = S (S∗S). Therefore S is quasinormal.

As an immediate consequence of the above proposition, we have the following corol-
lary:

Corollary 3.4. The class U(H) is characterized by each of the the two following prop-
erties:

∀X ∈ B(H), ‖X‖+
∥∥SXS−1

∥∥ ≥ 2
∥∥S−1XS

∥∥ , (S ∈ (I(H))1) ,

∀X ∈ B(H), ‖X‖+
∥∥S−1XS

∥∥ ≥ 2
∥∥SXS−1

∥∥ , (S ∈ (I(H))1) .

As an immediate consequence of both Corollary 3.3 and Corollary 3.4, we deduce the
following characterization:

Corollary 3.5. The class U(H) is characterized by the following property:

∀X ∈ B(H), ‖X‖+
∥∥SXS−1

∥∥ = 2
∥∥S−1XS

∥∥ , (S ∈ (I(H))1) .



4. CHARACTERIZATIONS OF THE EXTENSIONS OF THE

IDEMPOTENTS AND THE ORTHOGONAL PROJECTIONS

This chapter contains two sections, in the �rst section we are interesting by the study
of two classes of operators in B(H), the generalized projections and hypergeneralized
projections, which are extension of the orthogonal projections.
In the second section, we de�ne a new class of operator in B(H) which is extension of
idempotents.

4.1 Characterizations of generalized and hypergeneralized projections

An operator A ∈ B(H) is said to be an idempotent (projection) if A2 = A, n-
idempotent if An = A, and an orthogonal projection if A2 = A = A∗. The notion of
orthogonal projection has been generalized in variant directions. For example, the gen-
eralized projections and the hypergeneralized projections whose concepts was introduced
in 1997 by GroB and Trenkler [17] in �nite dimensional Hilbert space, those operators
extend the idea of orthogonal projections by removing the idempotency requirement.
The variety properties of generalized projections and hypergeneralized projections in �-
nite dimensional Hilbert space have been studied by many authors (see [1],[2],[17]).
Later many authors extended the concept of generalized projections and hypergeneral-
ized projections on an in�nite dimensional Hilbert space (see [9],[27],[36]).
In [9], Deng and Li have given the following characterization of n-idempotent operators
in Hilbert space which is important in the characterizations of generalized and hyper-
generalized projections.

Lemma 4.1. Let A ∈ B(H). Then An = A if and only if

(i) σ(A) ⊂ {0, e
i2kπ
n−1 : 0 ≤ k ≤ n− 2}.

(ii) there exists a resolution {E(λ), λ ∈ σ(A)} of the identity I and an invertible operator
S such that

SAS−1 =
∑

λ∈σ(A)

⊕ λE(λ) .

where E(λ), λ ∈ σ(A) are orthogonal projections adding up to unity,
∑

λ∈σ(A)

E(λ) = I and

E(λ)E(µ) = E(µ)E(λ) = 0 if λ, µ ∈ σ(A) and λ 6= µ.

De�nition 4.1. 1. An operator A ∈ B(H) is called generalized projection if A2 = A∗,
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2. An operator A ∈ R(H) is called hypergeneralized projection if A2 = A+.

Notation 4.1. We denote by P(H) the set of all idempotent operators, OP(H) the set
of all orthogonal projections on H.
The set of all generalized projections on H is denoted by GP(H), and the set of all
hypergeneralized projections on H is denoted by HGP(H).
The set of all EP oprators on H is denoted by EP(H).

In [36], Sonja Radosavljevic and Dragan gived the following theorems that show some
characterisations of the two both classes generalized and hypergeneralized projections.

Theorem 4.1. Let A ∈ B(H). Then the following properties are equivalent:
(i) A is a generalized projection,
(ii) A is a normal operator and A4 = A,
(iii) A is a partial isometry and A4 = A.

Proof. (i)⇒ (ii). Assume (i) holds. Then, we have

AA∗ = AA2 = A3 = A2A = A∗A,

A4 = (A2)2 = (A∗)2 = (A2)∗ = (A∗)∗ = A.

Hence (ii) holds.
(ii) ⇒ (i). Since A is normal, then using the spectral measure, A has the following
spectral representation

A =

∫
λdEλ,

where Eλ is the spectral projection associated with λ ∈ σ(A).

From A4 = A, and using lemma 4.1, we obtain that σ(A) ⊂ {0, 1, e 2πi
3 , e

−2πi
3 }.

Since A is normal and σ(A) ⊂ {0, 1, e 2πi
3 , e

−2πi
3 }, then A has the form

A = 0E(0)⊕ E(1)⊕ e
2πi
3 E(e

2πi
3 )⊕ e

−2πi
3 E(e

−2πi
3 ),

such that E(λ) = 0 if λ ∈ {0, 1, e 2πi
3 , e

−2πi
3 } \ σ(A), E(λ) 6= 0 if λ ∈ σ(A), and E(0) ⊕

E(1)⊕ E(2πi
3

)⊕ E(−2πi
3

) = I.

We may remark that λ2 = λ̄, for every λ ∈ {0, 1, e 2πi
3 , e

−2πi
3 }. Hence

A2 = 0E(0)⊕ E(1)⊕ e
4πi
3 E(e

2πi
3 )⊕ e

−4πi
3 E(e

−2πi
3 )

= 0E(0)⊕ E(1)⊕ e
−2πi

3 E(e
2πi
3 )⊕ e

2πi
3 E(e

−2πi
3 )

= A∗.

Therefore A is a generalized projection.
(i)⇒ (iii). Assume (i) holds. Then we know A = A4 = AA2A = AA∗A. Multiplying the
left side (or the right side) by A∗, we get A∗A = A∗AA∗A (or AA∗ = AA∗AA∗A), which
proves that A∗A (or AA∗) is the orhtogonal projection onto R(A∗A) = R(A∗) = ker(A)⊥
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(or R(AA∗) = R(A) = ker(A∗)⊥). Then, from proposition 2.6(v), it follows that A is a
partial isometry.
(iii)⇒ (i). Assume (iii) holds. Since A is a partial isometry, then A∗ = A+ and AA∗ is
the orthogonal projection onto R(AA∗) = R(A). Thus, AA∗A = PR(A)A = A.
From other side, since A4 = A then A4 = AA2A = A. The uniqueness of A+ implies
A2 = A∗.

The following theorem gives matrix representation of generalized projections based
on the previous characterization.

Theorem 4.2. Let A ∈ B(H) be a generalized projection. Then A is a closed range
operator and A3 is an orthogonal projection on R(A). Moreover, H has decomposition
H = R(A)⊕ ker(A)⊥ = R(A)⊕ ker(A) and A has the following matrix representaton

A =

[
A1 0
0 0

] [
R(A)
kerA

]
→
[
R(A)
kerA

]
,

where the restriction A1 = A |R(A) is unitary on R(A).

Proof. Since A is a generalized projection, then A is a partial isometry implying that

A3 = AA∗ = PR(A),

A3 = A∗A = Pker(A)⊥ .

Thus, A3 is an orthogonal projection onto R(A) = ker(A)⊥ = R(A∗). Consequently,
R(A) is a closed subset in H as a range of an orthogonal projection on a Hilbert space.
So H has the following decomposition H = R(A∗)⊕ ker(A) = R(A)⊕ ker(A). Now, A
has the following matrix representation in accordance with this decomposition:

A =

[
A1 0
0 0

] [
R(A)
kerA

]
→
[
R(A)
kerA

]
,

where A2
1 = A∗1, A

4
1 = A1 and A1A

∗
1 = A∗1A1 = A3

1 = IR(A).

Theorem 4.3. Let A ∈ R(H). Then the following properties are equivalent:
(i) A is a hypergeneralized projection,
(ii) A3 is an orthogonal projection onto R(A),
(iii) A is an EP and A4 = A.

Proof. (i)⇒ (ii). Assume (i) holds. Then A3 = AA+ = PR(A) conclusion follows.
(ii)⇒ (i). Assume (ii) holds. A direct veri�cation of the Moore-Penrose equations shows
that A2 = A+.
(i)⇒ (iii). Assume (i) holds. Thus

AA+ = AA2 = A3 = A2A = A+A,
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we conclude that A is an EP operator. Then A+ = A#. Thus (A+)n = (An)+, for all
n ≥ 1. Hence

A4 = (A2)2 = (A+)2 = (A2)+ = (A+)+ = A.

(iii) ⇒ (i). Assume (iii) holds. Since A is an EP operator, then A+ = A#. Hence
A2A+ = A. Since A4 = A2A2 = A, then from uniquencess of A+, it follows that
A2 = A+.

Theorem 4.4. Let A ∈ R(H) be an hypergeneralized projection. Then A3 is an or-
thogonal projection on R(A). Moreover, H has decomposition H = R(A) ⊕ ker(A)⊥ =
R(A)⊕ ker(A) and A has the following matrix representation

A =

[
A1 0
0 0

] [
R(A)
kerA

]
→
[
R(A)
kerA

]
,

where the restriction A1 = A |R(A) satis�es A
3
1 = IR(A), A

2
1 = A+

1 .

Proof. Since A is hypergeneralized projection, then A is an EP. So we have the following
decomposition of the space H = R(A)⊕ ker(A) and A has the required representation.

Remark 4.1. From the above theorems, we have if A ∈ B(H) is a generalized projection,
then A2 = A∗ = A+ = A#. So A is an hypergeneralized projection. Besides, Both of
generalized and hypergeneralized projections are EP operators.
Every orthogonal projection is a generalized projection.
So, we have the inclusions

OP(H) ⊆ GP(H) ⊆ HGP(H) ⊆ EP(H).

Theorem 4.5. Let A ∈ B(H). Then the following holds:
(i) A ∈ GP(H) if and only if A∗ ∈ GP(H).
(ii) If A ∈ R(H), then A ∈ GP(H) if and only if A+ ∈ GP(H).
(iii) If ind(A) ≤ 1, then A ∈ GP(H) if and only if A# ∈ GP(H).

Proof. (i) If A ∈ GP(H), then

(A∗)∗ = A = A4 = (A2)2 = (A∗)2;

meaning that A∗ ∈ GP(H). Conversely, if A∗ ∈ GP(H), then A2 = ((A∗)∗)2 =
((A∗)2)∗ = A∗. Hence A ∈ GP(H).
(ii) If A ∈ GP(H), then A+ = A2 = A∗. Thus (A+)2 = (A2)2 = A = (A∗)∗ = (A+)∗

implying A+ ∈ GP(H).
If A+ ∈ GP(H), then (A+)2 = (A+)∗ = (A+)+ = A and (A+)4 = A+. Thus

A2 = (A+)4 = A+,

A∗ = ((A+)∗)∗ = A+.
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Hence A ∈ GP(H).
(iii) If A ∈ GP(H), then A+ = A#. So part (ii) of this theorem implies that A# ∈
GP(H).
To prove the converse, it is enough to see that A# ∈ GP(H) implies (A#)2 = (A#)∗ =
(A#)+ = (A#)# = A and (A#)4 = A#. Hence

A2 = (A#)4 = A# = ((A#)∗)∗ = A∗.

Therefore A ∈ GP(H).

Remark 4.2. Let us mention an alternative proof for the previous theorem. If A+ ∈
GP(H), then A and A+ have representations

A =

[
A1 A2

0 0

]
:

[
R(A∗)
kerA∗

]
→
[
R(A)
kerA∗

]
, A+ =

[
A∗

1
K−1 0

A∗
2
K−1 0

]
,

where K = (A1A
∗
1 + A2A

∗
2). From (A+)2 = (A+)∗, we get[

A∗
1
K−1A∗

1
K−1 0

A∗
2
K−1A∗

1
K−1 0

]
=

[
K−1A1 K−1A2

0 0

]
,

which implies A2 = 0, and K = A1A
∗
1. So

A =

[
A1 0
0 0

]
, A+ =

[
A−1

1
0

0 0

]
.

Since (A−1
1 )2 = (A−1

1 )∗, then the same equality is also satis�ed for A1. Hence A ∈ GP(H).
Similarly, to prove that A# ∈ GP(H) implies A ∈ GP(H), assume that H = R(A) ⊕
ker(A∗). Then, A,A# have the following representation

A =

[
A1 A2

0 0

]
, A# =

[
A−1

1
(A−1

1
)2A2

0 0

]
.

Since (A#)2 = (A#)∗, we get A2 = 0 and (A−1
1 )2 = (A−11)∗.

Consequently, (A1)2 = A∗1 which proves that A ∈ GP(H).

Theorem 4.6. Let A ∈ R(H). Then the following holds:
(i) A ∈ HGP(H) if and only if A∗ ∈ HGP(H).
(ii) A ∈ HGP(H) if and only if A+ ∈ HGP(H).
(iii) If ind(A) ≤ 1, then A ∈ HGP(H) if and only if A# ∈ HGP(H).

Proof. Proofs of (i) and (ii) are similar to proofs of theorem 4.5(i) and (ii).
For the proof of (iii), we should only prove that A# ∈ HGP(H) implies A ∈ HGP(H),
since the implication (⇒) is analogous to the same part of theorem 4.5.
Let H = R(A)⊕ ker(A∗) and ind(A) ≤ 1. Then

A =

[
A1 A2

0 0

]
, A# =

[
A−1

1
(A−1

1
)2A2

0 0

]
, (A#)+ =

[
(A−1

1
)∗K−1 0

(A−1
2

)∗K−1 0

]
,

where K = A−1
1 (A−1

1 )∗+A−1
2 (A−1

2 )∗. From (A#)+ = (A#)2, we get A2 = 0 and A1 = A−2
1 .

Multiplying with A2
1, the last equation becomes A3

1 = IR(A). Hence A ∈ HGP(H).
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They also examined under what conditions product, sum and di�erence of generalized
(hypergeneralized) projections is still a generalized (hypergeneralized) projection. The
following theorem gives very useful matrix representation of generalized projections.

Theorem 4.7. Let A,B ∈ GP(H) and H = R(A) ⊕ kerA. Then A and B have the
following representations with respect to the decomposition of the space:

A =

[
A1 0
0 0

] [
R(A)
kerA

]
→
[
R(A)
kerA

]
,

B =

[
B1 B2

B3 B4

] [
R(A)
kerA

]
→
[
R(A)
kerA

]
,

where
B∗1 = B2

1 +B2B3,
B∗2 = B3B1 +B4B3,
B∗3 = B1B2 +B2B4

B∗4 = B3B2 +B2
4 .

Furtheremore, B2 = 0 if and only if B3 = 0.

Proof. Let H = R(A) ⊕ ker(A). The representation of A follows from theorem 4.2 and
let B has the followig representation

A =

[
B1 B2

B3 B4

]
.

Then, from

B2 =

[
B2

1
B2B3 B1B2 +B2B4

B3B1 +B4B3 B3B2 +B2
4

]
=

[
B∗

1
B∗

3

B∗
2

B∗
4

]
= B∗,

the conclusion follows directly.
If B2 = 0, then B∗3 = B1B2 + B2B4 = 0 and B3 = 0. Analogously, B3 = 0 implies
B2 = 0.

Theorem 4.8. Let A ∈ B(H) be a generalized projection. Then I − A is a normal
operator. Moreover, I − A is a generalized projection if and only if A is an orthogonal
projection.
If I − A is a generalized projection, then A is a normal operator and A is a generalized
projection if and only if I − A is an orthogonal projecton.

Proof. If A is a generalized projection, then A is a normal operator and A4 = A, which
implies that A has the form

A = 0E(0)⊕ 1E(1)⊕ e
2πi
3 E(e

2πi
3 )⊕ e

−2πi
3 E(e

−2πi
3 ),



4. Characterizations of the extensions of the idempotents and the orthogonal projections 75

where E(λ) is the orthogonal projection such that E(λ) 6= 0 if λ ∈ σ(A), E(λ) = 0, if

λ ∈ {0, 1, e 2πi
3 , e

−2πi
3 } \ σ(A) and E(0)⊕ E(1)⊕ E(e

2πi
3 )⊕ E(e

−2πi
3 ) = I.

Thus

I − A = (1− 0)E(0)⊕ (1− 1)E(1)⊕ (1− e
2πi
3 )E(e

2πi
3 )⊕ (1− e

−2πi
3 )E(e

−2πi
3 ),

and
(I − A)2 = E(0)⊕ (1− e

2πi
3 )2E(e

2πi
3 )⊕ (1− e

−2πi
3 )2E(e

−2πi
3 ),

(I − A)∗ = E(0)⊕ (1− e
2πi
3 )∗E(e

2πi
3 )⊕ (1− e

2πi
3 )∗E(e

2πi
3 ),

Hence, (I − A)2 = (I − A)∗ if and only if (1− e 2πi
3 )2E(e

2πi
3 ) = (1− e 2πi

3 )∗E(e
2πi
3 )

and (1− e−2πi
3 )2E(e

−2πi
3 ) = (1− e−2πi

3 )∗E(e
−2πi

3 ).

This is true if and only if E(e
2πi
3 ) = 0 and E(e

−2πi
3 ) = 0, which is equivalent to σ(A) =

{0, 1} and A is an orthogonal projection.

Theorem 4.9. Let A,B ∈ GP(H). If AB = BA, then AB ∈ GP(H)

Proof. If

AB =

[
A1B1 A1B2

0 0

]
=

[
B1A1 0
B3A1 0

]
= BA,

it is clear that A1B1 = B1A1, B2 = 0 and B3 = 0. Form theorem 4.7 we conclude that
B∗1 = B2

1 , B
∗
4 = B2

4 , and

(AB)2 =

[
(A1B1)

2 0
0 0

]
=

[
(A1B1)

∗ 0
0 0

]
= (AB)∗

Theorem 4.10. Let A,B ∈ GP(H). Then A+B ∈ GP(H) if and only if AB = BA = 0.

Proof. If

(A+B)2 =

[
(A1 +B1)

2 +B2B3 (A1 +B1)B2B4

B3(A1 +B1) +B4B3 B3B2 +B2
4

]
=

[
(A1 +B1)

∗ B∗
3

B∗
2

B∗
4

]
= (A+B)∗,

it is clear that (A1 +B1)2 = A2
1 +A1B1 +B1A1 +B2

1 = (A1 +B1)∗. Since B∗1 = B2
1 +B2B3,

we get A1B1 + B1A1 = 0. Thus, B1 = 0 which implies B2 = B3 = 0, B2
4 = B∗4 . In this

case we obtain AB = BA = 0.
Conversely, if AB = BA = 0, then A1B1 = B1A1 = 0, implying B1 = B2 = B3 =
0, B2

4 = B∗4 , and obviously, (A+B)2 = (A+B)∗.

Theorem 4.11. Let A,B ∈ GP(H). Then A− B ∈ GP(H) if and only if AB = BA =
B∗.
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Proof. If

(A−B)2 =

[
(A1 −B1)

2 +B2B3 −(A1 −B1) +B2B4

−B3(A1 +B1) +B4B3 B3B2 +B2
4

]
=

[
(A1 −B1)

∗ −B∗
3

−B∗
2

−B∗
4

]
= (A−B)∗,

we get B2 = B3 = 0, B2
4 = −B∗4 . Since B2

4 = B∗4 , then B4 = 0.
We also get that

(A1 −B1)2 = A2
1 − A1B1 −B1A1 +B2

1 = A∗1 −B∗1 ,

This is true if and only if A1B1 = B1A1 = B∗1 , and in that case AB = BA = B∗.

For hypergeneralized projections they didn't establish equivalency like the one they
established for the generalized projections because they needed additional conditions to
ensure that (A+B)+ = A+ +B+.

Theorem 4.12. Let A,B ∈ HGP(H). If AB = BA, then AB ∈ HGP(H)

Proof. Let H = R(A)⊕ kerA and A,B ∈ HGP(H) have representations

A =

[
A1 0
0 0

]
, B =

[
B1 B2

B3 B4

]
.

Then

AB =

[
A1B1 A1B2

0 0

]
, (AB)2 =

[
A1B1A1B1 A1B1A1B2

0 0

]
.

it is clear to see that

(AB)+ =

[
(A1B1)

∗D−1 0
(A1B2)

∗D−1 0

]
,

where D = A1B1(A1B1)∗ + A1B2(A1B2)∗ > 0 is invertible.
Assume that the two hypergeneralized projections A,B commute, i.e., that

AB =

[
A1B1 A1B2

0 0

]
=

[
B1A1 0
B3A1 0

]
= BA,

This implies B2 = 0, B3 = 0, A1B1 = B1A1 and it is easy to see that (AB)2 = (AB)+.

Theorem 4.13. Let A,B ∈ HGP(H). If AB = BA = 0, then A+B ∈ HGP(H)

Proof. From the matrix representations it is easy to see that AB = BA = 0 implies
B1 = B2 = B3 = 0 and B2

4 = B+
4 . Now,

(A+B)2 = A2 +B2 = A+ +B+ = (A+B)+.
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4.2 Characterizations of a new class of operators

Based on the two classes of generalized projections and hypergeneralized projections, we
shall introduce a new class of operators which is de�ne by Ω# = {A ∈ I1(H) : A2 = A#},
this class of operators extend the idea of idempotent operators unlike generalized projec-
tions and hypergeneralized projections which extend the idea of orthogonal projections
by removing the idempotency requirement.

Theorem 4.14. Let A ∈ B(H). Then the following properties are equivalent:
(i) A ∈ Ω#,
(ii) A4 = A,
(iii) there exists a resolution {E(λ), λ ∈ σ(A)} of the identity I and an invertible operator
S such that

SAS−1 = 0E(0)⊕ 1E(1)⊕ e 2πi
3 E(e

2πi
3 )⊕ e−2πi

3 E(e
2πi
3 ),

where σ(A) ⊂ {0, 1, e 2πi
3 , e

−2πi
3 }, E(λi), where λi ∈ σ(A) are orthogonal projections adding

up to unity (
∑4

i=1 E(λi) = I) and E(λi)E(λj) = E(λj)E(λi) = 0 if λi, λj ∈ σ(A) and
λi 6= λj.

Proof. (i) ⇒ (ii). Since A2 = A#, then A3 = AA# = A#A = PR(A). Thus A
4 = A

conclusion follows.
(ii)⇒ (iii). This implication follows immediately by using lemma 4.1.
(iii) ⇒ (i). Assume (iii) holds. We may remark that for every ∀λ ∈ σ(A) \ 0 : λ2 =
λ−1, 0# = 0. Thus

SA2S−1 = (SAS−1)2

= 0E(0)⊕ 1E(1)⊕ (e
i2π
3 )2E(e

i2π
3 )⊕ (e

i4π
3 )2E(e

i4π
3 )

= 0E(0)⊕ 1E(1)⊕ (e
i2π
3 )−1E(e

i2π
3 )⊕ (e

i4π
3 )−1E(e

i4π
3 )

= (SAS−1)#

= SA#S−1.

Therefore A2 = A#.

Remark 4.3. The class Ω# contains both idempotents and orthogonal projections unlike
the generalized and hypergeneralized projections which contains only orthogonal projec-
tions.

OP(H) ⊂ GP(H) ⊂ HGP(H) ⊂ Ω#, P(H) ⊂ Ω#.

Proposition 4.1. Let A ∈ B(H). Then
(i)A ∈ Ω# and R(A) ⊥ N(A) then A ∈ HGP(H),
(ii)A ∈ Ω# and A is normal, then A ∈ GP(H),
(iii)A ∈ Ω# and A is partial isometry, then A ∈ GP(H),
(iv)A ∈ Ω# and A selfadjoint then A ∈ OP(H),
(v)A ∈ Ω# and A positive then A ∈ OP(H).
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Proof. (i)A ∈ Ω#, then H = R(A) ⊕ N(A). Since R(A) ⊥ N(A), then H = R(A) ⊕⊥
N(A). Thus A is an EP operator, hence A+ = A#. Therefore A2 = A+.
(ii)A ∈ Ω# and A is normal, then from the above theorem A4 = A and A is normal.
Using theorem 4.1, we �nd that A ∈ GP(H).
(iii)A ∈ Ω#, and A is a partial isometry, then A4 = A and A is a partial isometry. Using
theorem 4.1, we �nd that A ∈ GP(H).
(iv)A ∈ Ω# and A selfadjoint then, using (ii) we �nd that A2 = A∗. Since A selfadjoint,
then A2 = A∗ = A.
(v)A ∈ Ω# and A positive , then A is selfadjoint and using (iv), we �nd that A ∈
OP(H).

Proposition 4.2. Let A ∈ B(H). Then the following holds:
(i) A ∈ Ω# if and only if A∗ ∈ Ω#,
(ii) A ∈ Ω# if and only if A# ∈ Ω#,
(iii) If A ∈ Ω# and C ∈ B(H) is unitary equivalent to A, then C ∈ Ω#.

Proof. (i) If A ∈ Ω#, then (A∗)2 = (A2)∗ = (A#)∗ = (A∗)# implying A∗ ∈ Ω#.
Conversely, if A∗ ∈ Ω#, then A2 = ((A∗)∗)2 = ((A∗)2)∗ = ((A∗)#)∗ = ((A∗)∗)# = A#

meaning that A ∈ Ω#.
(ii) If A ∈ Ω#, then A

4 = A and (A#)2 = A#A# = A2A2 = A4 = A = (A#)#. Therefore
A# ∈ Ω#.
Conversely, if A# ∈ Ω#, then (A2)# = (A#)2 = (A#)# = A. So A# ∈ Ω#.
(iii) C is unitary equivalent of A, then there exists a unitary operator U such that
C = UAU∗.
Hence C2 = UAU∗UAU∗ = UA2U∗ = UA#U∗ = (UAU∗)# = C#. Therefore C ∈
Ω#.

Proposition 4.3. Let T1, ..., Tn ∈ Ω#. Then T1 ⊕ ... ⊕ Tn and T1 ⊗ ... ⊗ Tn are two
operators in Ω#.

Proof. Since (T1 ⊕ ... ⊕ Tn)2 = T 2
1 ⊕ ... ⊕ T 2

n = T#
1 ⊕ ... ⊕ T#

n = (T1 ⊕ ... ⊕ Tn)#. Then
(T1 ⊕ ...⊕ Tn) ∈ Ω#.
For x1, ..., xn ∈ H, (T1 ⊗ ...⊗ Tn)2(x1, ..., xn) = (T 2

1 ⊗ ...⊗ T 2
n)(x1, ..., xn) = T 2

1 x1 ⊗ ...⊗
T 2
nxn = T#

1 x1 ⊗ ...⊗ T#
n xn = (T#

1 ⊗ ...⊗ T#
n )(x1, ..., xn) = (T1 ⊗ ...⊗ Tn)#(x1, ..., xn).

So (T1 ⊗ ...⊗ Tn)2 = (T1 ⊗ ...⊗ Tn)#. Thus (T1 ⊗ ...⊗ Tn) ∈ Ω#.

Theorem 4.15. Let A ∈ R(H). Then the following statements are equivalent:
(1) A ∈ Ω#,
(2) ind(A) ≤ 1 and An+2 = A#An = AnA#, ∀n ∈ N,
(3) ind(A) ≤ 1 and (A#)n−2 = (A#)n+1; , ∀n ∈ N,
(4)A3 is an idempotent and asc(A) ≤ 1,
(5)A3 is an idempotent and dsc(A) ≤ 1,
(6) ind(A) ≤ 1 and A4A+ + A+A4 = A+A+ AA+,
(7) dsc(A) ≤ 1 and A∗A4A+ = A∗,
(8) dsc(A) ≤ 1 and A+A4A∗ = A∗,
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(9) asc(A) <∞ and there exists some X ∈ B(H) such that A4A+X = A and AA+X =
A,
(10) ind(A) ≤ 1 and there exists some X ∈ B(H) such that A#(A2)+X = A2 and
AA+X = A2,
(11) ind(A) ≤ 1 and there exists some X ∈ B(H) such that A(A2#)+X = A2# and
AA+X = A2# .

Proof. Property (1) implies conditions (2)− (11) is trivial.
Conversely, we prove that each of statements (2)-(11) implies that A ∈ Ω#.
The two implications (2)⇒ (1) and (3)⇒ (1) are trivial.
(4)⇒ (1). A3 is an idempotent, then A6 = A3. Thus A2(A4−A) = 0. Since asc(A) ≤ 1,
then A(A4 − A) = 0. So A2(A3 − I) = 0, thus A(A3 − I) = 0. Hence A4 = A. Using
theorem 4.14, we obtain that A ∈ Ω#.
(5)⇒ (1). Same method as the above implication.
(6)⇒ (1). Since ind(A) ≤ 1, then A# exists. Multiplying the equality A4A+ + A+A4 =
A+A+AA+ by A# from both left and right sides, we get that A = A#2

. Hence A ∈ Ω#.
(7) ⇒ (1). Multiplying the equality A∗A4A+ = A∗ by A from the left side, we obtain
A∗A4 = A∗A. Then (A∗A)+A∗A4 = (A∗A)+A∗A. Since dsc(A) ≤ 1, it follows that
A3 = (A∗A)+A∗A. Hence A4 = A. Using theorem 4.14 we obtain that A ∈ Ω#.
(8)⇒ (1). This implication can be proved in the same way as the previous one.
(9)⇒ (1). The condition A4A+X = A is equivalent to R(A) = R(A2), then dsc(A) ≤ 1
and since asc(A) < ∞, then ind(A) ≤ .1 Hence A# exists. Multiplying the equality
A4A+X = A by (A#)2 from the left side, we get AA+X = (A#)3 and since AA+X = A,
then (A#)2 = A. Consequently A ∈ Ω#.
(10) ⇒ (1). Multiplying the equality A#(A2)+X = A2 by AA+ from the left side, we
�nd AA+X = A5 and since AA+X = A2, then A2 = A5. Multiplying this last equality
by (A#)3, we obtain that A ∈ Ω#.
(11)⇒ (1). This implication can be proved in the same way as the previous one.

Now, we study the properties of this class by examine the conditions which
imply that the product, sum and di�erence of those operators belongs to the same class
of operators.

Theorem 4.16. Let A,B ∈ Ω#. If AB = BA, then AB ∈ Ω#.

Proof. Since (AB)2 = A2B2 = A#B# = (AB)#, then AB ∈ Ω#.

Lemma 4.2. [4] Let A be an algebra with unity. If a, b ∈ A# satisfy ab = ba = 0, then
a+ b ∈ A# and

(a+ b)# = a# + b#.

Theorem 4.17. Let A,B ∈ Ω#. If AB = BA = 0, then A+B ∈ Ω#.
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Proof. Since AB = BA = 0, then

(A+B)2 = A2 + AB +BA+B2 = A2 +B2 = A# +B#.

Using the above lemma, we �nd that

(A+B)2 = A# +B# = (A+B)#.

Therefore A+B ∈ Ω#.

Corollary 4.1. Let A,B ∈ Ω#. If AB = BA = 0, then A−B ∈ Ω#.

Finally, we try to reduce the above conditions using the matrix representation.
For the group inverse of upper triangular operator matrix.
For that, we need the following lemma that gives the group inverse of upper triangular
operator matrix (see [21, Theorem 1]).

Lemma 4.3. Let H,K be Hilbert spaces, and M =

[
A B
0 D

]
be an operator on H⊕K.

Then the following assertions hold.
(i) If D# exists, then M# exists if and only if A# exists and AπBDπ = 0.
(ii) If A# and D# exist, then M# exists if and only if AπBDπ = 0. In this case,[

A B
0 D

]#

=

[
A# Y
0 D#

]
,

where Y = (A#)2BDπ + AπB(D#)2A#BD#(Aπ = I − A#A).

Theorem 4.18. Let P ∈ B(H) be an orthogonal projection and let A ∈ Ω#. If (I −
P )AP = 0, then AP ∈ Ω#. Similarly, If PA(I − P ) = 0, then PA ∈ Ω#.

Proof. Let H = R(P )⊕ (R(P ))⊥. Then

P =

[
I 0
0 0

]
, A =

[
A1 A2

A3 A4

]
, AP =

[
A1 0
A3 0

]
(I − P )AP = 0 i.e. A3 = 0, then A has matrix form

A =

[
A1 A2

0 A4

]
, A2 =

[
A2

1
A1A2 + A2A4

0 A2
4

]
,

using the above lemma, we �nd that

A# =

[
A#

1
(A#

1
)2A2(I − A4A

#
4

)− A#
1
A2A

#
4

0 A#
4

]
.

A ∈ Ω# gives that A#
1 = A2

1 and consequently
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(AP )2 =

[
A2

1
0

0 0

]
=

[
A#

1
0

0 0

]
= (AP )#.

Theorem 4.19. Let P ∈ B(H) be an orthogonal projection and let A ∈ Ω#. If (I −
P )AP = 0 or PA(I − P ) = 0, then A(I − P ) ∈ Ω#. Similarly, if (I − P )AP = 0 or
PA(I − P ) = 0, then (I − P )A ∈ Ω#.

Proof. Let H = R(P )⊕ (R(P ))⊥. Then

P =

[
I 0
0 0

]
, A =

[
A1 A2

A3 A4

]
, AP =

[
A1 0
A3 0

]
.

If (I − P )AP = 0 i.e. A3 = 0, then A has matrix form

A =

[
A1 A2

0 A4

]
, A2 =

[
A2

1
A1A2 + A2A4

0 A2
4

]
,

and it is easy to see that

A# =

[
A#

1
(A#

1
)2A2(I − A4A

#
4

)− A#
1
A2A

#
4

0 A#
4

]
.

Since A ∈ Ω#, it is clear that A
#
4 = A2

4 and consequently

(A(I − P ))2 =

[
0 A2A4

0 A2
4

]
=

[
0 A2(A

#
4

)2

0 A#
4

]
= (A(I − P ))#.

Theorem 4.20. Let Q ∈ B(H) be an idempotent and let A ∈ Ω#. If (I − Q)AQ = 0,
then AQ,QA,A(I −Q), and (I −Q)A are operators in Ω#.

Proof. Let H = R(Q)⊕ (R(Q))⊥. Then

Q =

[
I Q1

0 0

]
, A =

[
A1 A2

A3 A4

]
.

(I−Q)AQ = 0 i.e. A3 = 0. Then A ∈ Ω# gives A2
1 = A#

1 and A2
4 = A#

4 . So consequently

(AQ)2 =

[
A2

1
A2

1
Q1

0 0

]
=

[
A#

1
A#

1
Q1

0 0

]
= (AQ)#.

(QA)2 =

[
A2

1
A1(A2 +Q1A4)

0 0

]
=

[
A#

1
A#2

1
(A2 +Q1A4)

0 0

]
= (QA)#.

(A(I −Q))2 =

[
0 (A1Q1 + A2)A4

0 A2
4

]
=

[
0 (A1Q1 + A2)A

#2
4

0 A#
4

]
= (A(I −Q))#.
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((I −Q)A)2 =

[
0 Q1A

2
4

0 A2
4

]
=

[
0 Q1A

#
4

0 A#
4

]
= ((I −Q)A)#.

Theorem 4.21. Let Q ∈ B(H) be an idempotent and let P ∈ B(H) be an orthogonal
projection. If (I − P )QP = 0, then PQ,QP, P (I − Q), and (I − Q)P are operators in
Ω#.

Proof. Let H = R(Q)⊕ (R(Q))⊥. Then

Q =

[
I Q1

0 0

]
, P =

[
P1 P2

P ∗
2

P3

]
.

(I−P )QP = 0 i.e. P2 = 0. Then P ∈ Ω# gives P 2
1 = P#

1 and P 2
3 = P#

3 . So consequently

(QP )2 =

[
P 2

1
P1Q1P3

0 0

]
=

[
P#

1
P#2

1
Q1P3

0 0

]
= (QP )#.

(PQ)2 =

[
P 2

1
P 2

1
Q1

0 0

]
=

[
P#

1
P#

1
Q1

0 0

]
= (PQ)#.

(P (I −Q))2 =

[
0 P1Q1P3

0 P 2
3

]
=

[
0 P1Q1P

#2
3

0 P#
3

]
= (p(I −Q))#.

((I −Q)P )2 =

[
0 Q1P

2
3

0 P 2
3

]
=

[
0 Q1P

#
3

0 P#
3

]
= ((I −Q)P )#.
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Abstract

The �rst chapter summarizes the background that will be required for the thesis
which is represented by some basic notions and theorems of operator theory and also
some famous inequalities in the theory of operator and the relation between them.
Based on these inequalities Seddik could �nd a complete characterisations of some dis-
tinguished subclasses of operator. In the second chapter, we give a detailed study of all
the characterisations found of some subclasses by operator inequalities.
The third chapter consists of our contribution in the characterisations of some subclasses
by operator inequalities.
The last chapter contains two sections, in the �rst we study the variety properties of the
two classes generalized projections and hypergeneralized projections which extend the
idea of orthogonal projections by removing the idempotency requirement.
Based on the two classes, we de�ne in the second section a new class of operators that
extend the idea of idempotency and give a complete characterisation of this class.

Keywords

Closed range operator, Moore-Penrose inverse, group inverse, selfadjoint operator,
unitary operator, normal operator, partial isometry operator, isometry operator, opera-
tor inequality.

Résumé

Le premier chapitre résume le contexte requis pour la thèse qui est représentée par
quelques notions de base et théorèmes de la théorie de l'opérateur et aussi quelques iné-
galités célèbres dans la théorie de l'opérateur et la relation entre eux.
En se basant sur ces inégalités, Seddik pourrait trouver une caractérisation complète de
certaines sous-classes distinguées. Le deuxième chapitre, nous étudions toutes les carac-
térisations trouvées de certaines sous-classes par les inégalités de l'opérateur.
Le troisième chapitre consiste en notre contribution à la caractérisation de certaines
sous-classes par les inégalités de l'opérateur.
Le dernier chapitre contient deux sections, dans la première section on étudie les dif-
férentes Propriétés des deux classes de projections généralisées et les projections hy-
pergénéralisées qui étendent l'idée de projections orthogonales en supprimant l'exigence
d'idempotence.
Basé sur les deux classes, nous dé�nissons dans la deuxième section une nouvelle classe
d'opérateurs qui étend l'idée d'idempotence et donnons une caractérisation complète de
cette classe.

Mots clés

Operateur à image fermé, Moore-Penrose inverse, group inverse, operateur autoad-
joint, operateur unitaire, opérateur normal, opérateur isométrie partielle, opérateur
isométrique, inegalité d'opérateur.


