
T
H
È
S
E

République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Batna 2, Mostefa Ben Boulaid
Faculté des Mathématiques et de l’Informatique

Département de Mathématiques
Laboratoire des Techniques Mathématiques, LTM

THÈSE
Présentée en vue d’obtenir du diplôme de doctorat

en mathématiques

Discipline:

Équations aux Dérivées Partielles et Applications

Présentée et soutenue publiquement par

Nedjem-Eddine RAMDANI

Sur les méthodes de projection et applications aux
équations intégrales et intégro-différentielles

Soutenue le : 14 Novembre 2018.

Devant le jury composé de:

Ameur SEDDIK Professeur Université de Batna 2 Président

Abdelaziz MENNOUNI Professeur Université de Batna 2 Rapporteur

Amar YOUKANA Professeur Université de Batna 2 Examinateur

Ali HAKEM Professeur Université de Sidi-Bel-Abbès Examinateur

Lakhdar CHITER Professeur Université de Sétif 1 Examinateur

Fadila BENTALHA Professeure Université de Batna 2 Invitée



T
H
E
S
I
S

Democratic and Popular Republic oF Algeria
Ministry of Higher Education and Scientific Research

University of Batna 2, Mostefa Ben Boulaid
Faculty of Mathematics and Computer Science

Department of Mathematics
Laboratory of Mathematical Techniques, LMT

THESIS
Submitted for the degree of doctorate in mathematics

Discipline:
Partial Differential Equations and Applications

Presented by

Nedjem-Eddine Ramdani

On projection methods and applications to integral and
integro-differential equations

Defended on : Novembre, 14th 2018.

Jury Members:

Ameur Seddik Professor University of Batna 2 President

Abdelaziz Mennouni Professor University of Batna 2 Supervisor

Amar Youkana Professor University of Batna 2 Examiner

Ali Hakem Professor University of Sidi-Bel-Abbes Examiner

Lakhdar Chiter Professor University of Setif 1 Examiner

Fadila Bentalha Professor University of Batna 2 Invited



Acknowledgments

I would like to warmly acknowledge and express my deep sense of gratitude and indebt-
edness to everyone who has supported me during the accomplishment of my thesis.

Firstly, a special thanks goes to my supervisor Professor Abdelaziz Mennouni for his
help, support, guidance, encouragement and suggestions over all the years of my study
and preparation of the final manuscript of this thesis.

My sincere thanks also go to the members of my thesis committee: Pr. Ameur Seddik,
Pr. Amar Youkana, Pr. Ali Hakem and Pr. Lakhdar Chiter for reviewing and evaluating
this thesis.

I am sincerely grateful to Pr. Fadila Bentalha for being part of the examination com-
mittee.

Pursuing a doctorate would have never been an option without the full support that I
got from my family, my friends and my colleagues.

Moreover, I would like to thank my teachers of the mathematics department at univer-
sity of Batna 2, every one with his/her name. Especially, Professor Salah-Eddine Rebiai,
Said Guedjiba, Ahmed Zerrouk Mokrane and all the other teachers, without forget the
Head of Department: Mister Mahmoud Brahimi.

I am thankful to all my friends for their help and support over the years and a spe-
cial thanks goes to: : Abderrahmane Youkana, Salah-Eddine Boutiah, Halim Bouhanef,
Moussa Berghout...

Least and not last, I am grateful to my parents, my wife all my family for all their love,
encouragement and supported me along the way.

The journey to a doctorate is a long ride and having my family and my friends along
that ride made it more appreciated. So, to all these amazing people who went with me
along this journey, I sincerely thank you.

i



ii



iii



Dedication

Dedicated to my wife

To my dear parents

To my brothers and sisters



Contents

Acknowledgments i

Introduction 1

1 Preliminary 4

1.1 Classification of integral equations . . . . . . . . . . . . . . . . . . . . . 4

1.2 Compact operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Integral operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Compact integral operator . . . . . . . . . . . . . . . . . . . . . 7

1.4 Projection and Riesz representation theorem . . . . . . . . . . . . . . . . 7

1.4.1 Approximation based on projection . . . . . . . . . . . . . . . . 7

1.4.2 Riesz-Fredholm theory . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 The Fredholm alternative theorem . . . . . . . . . . . . . . . . . 9

1.5 Application of integral equations for the investigation of differential equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Cauchy problem for first-order ODEs to integral equations . . . . 10

1.5.2 Cauchy problem for second-order ODEs to integral equations . . 11

1.5.3 Examples: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Convergence analysis of projection methods for solving singular integral equa-
tions on the real line 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Hermite functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

i



ii CONTENTS

2.3 Integral equations on the real line . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Galerkin projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Kulkarni method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Collocation method to solve second order Cauchy integro-differential equa-
tions 27

3.1 Introduction and mathematical background . . . . . . . . . . . . . . . . 28

3.2 Approximate solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Numerical solution of generalized logarithmic integral equations of the sec-
ond kind by projections 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . 35

4.2.1 Case h(s, ς) = −h(ς, s) . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Case h(s, ς) = h(ς, s) . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Bounded finite rank orthogonal projections . . . . . . . . . . . . . . . . 38

4.3.1 Case h(s, ς) = −h(ς, s) . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Case h(s, ς) = h(ς, s) . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.2 Classical Fredholm integral equation with logarithmic kernel of
the second kind . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 A new class of Fredholm integral equations of the second kind with non sym-
metric kernel: Solving by wavelets method 50

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Wavelet Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



CONTENTS iii

5.2.2 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 Preconditioning and diagonal scaling . . . . . . . . . . . . . . . 54

5.2.5 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . 55

5.3 Discretization of integral equation . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Projection of (I − A) with respect to B1 and B2 . . . . . . . . . . 56

5.4 Solving the linear systems . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Operation cost of the corresponding systems . . . . . . . . . . . 60

Conclusions and perspectives 63

Bibliography 64



Introduction

We have the habit of working on Differential Equations, but, as we know, they are not
always easy to handle. Another type of equations characterized with easiness of solving
and a better relevance to model phenomenas has emerged; they are called: Integral equa-

tions.
An integral equation is an equation where the unknown function is written under the inte-
gral sign. Their typical forms are:

ˆ
k(s, t)u(t)dt = f(s)

u(s)+

ˆ
k(s, t)u(t)dt = f(s),

where u is the unknown function, f is the known function called the right hand side and
k(., .) is called the kernel.

The first application of integral equations was done by Danial Bernoulli in around
1730 to study oscillations of stretched cord. However, the term integral equation was
used for the first time by Paul du Bois-Reymond in 1888.
Nowadays, integral equations occur in many problems in a lot of fields, especially Fred-
holm integral equations. Their importance leads us to study this kind of equations. There
are numerous researchers who studied such problems and they proposed several methods
like expansion method [68], wavelet moment method [16], a discrete collocation method
[44], a local radial basis function method [8], and other methods [63, 97, 87, 81, 79, 80].
Integral equations intervene in a lot of areas, including: Physics [76], mechanics [58], dy-
namics [108], electrostatics and electromagnetic [107], oscillating magnetics [9],· · · etc.
The aim of this thesis is to develop new methods to numerically solve some classes of
Fredholm integral and integro-differential equations.
The thesis is organized as follows: Firstly, in the introductory chapter, we start with the
classification of integral equations and the projection method. Then, we recall briefly
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2 Introduction

some basic concepts, notions and fundamental theorems such as: the Riesz theorem, the
Fredholm alternative and the application to Fredholm integral equations. To stress the
importance of integral equations, some real life examples are given.

In the second chapter, an interesting method has been developed a lot after the work
of Galerkin to solve integral equations called modified projection method. One of the pa-
pers published that caught our attention was Kulkarni’s[56] work, which used a projection
method based on orthogonal projection and piecewise polynomials of degree ≤ r − 1 to
prove that the convergence is of order 4r. However, the other works were restricted to
[0, 1]. One of the contributions of this thesis is the extension of the domain from [0, 1] to
the whole real line. Also, we used the Hermite polynomials instead of piecewise poly-
nomials. Finally, we gave the convergence order which is different from the previous
work.

The purpose of the third chapter is is devoted to the study of integro-differential equa-
tions which appear in many scientific fields such as: physics, biology and engineering.
In [79], the author introduced a projection method based on the Legendre polynomials to
solve an integro-differential equations of the first order with Cauchy kernel. In the same
perspective, our contribution in this chapter consists of a presentation of a modified col-
location method for solving integro-differential equations of second order. To do so, we
use a sequence of orthogonal finite rank projections called airfoil polynomials of the first
kind. We concluded this chapter by giving numerical examples.

The Fourth chapter to study another type of integral equations which has widely oc-
curred in several problems in many fields called singular integral equations. There are
many classes of singular integral equations with logarithmic kernel. In this work, we
were interested in a more general logarithmic kernel and we showed the existence and
uniqueness of the solution. In addition, we discussed the projection method to solve the
generalized logarithmic integral equation. After that, we presented our method which is
based on shifted-Legendre polynomials. Then, we proved the existence of the solution
for the approximate equation. In the end, we gave a new error estimate for the numerical
solution and we illustrated our approach with numerical examples.

In the last chapter, we were interested in the work of Xiao [51] which introduced
the application of the wavelet method in the resolution of integral equations. One of
the features provided by such an application is that symmetric systems can be solved in
O(n log n) operations, where n is the size of the systems. Our contribution here is a
generalization of this method to the second kind. Furthermore, we extended it to non-
symmetric kernel. this latter occurs in many problems and fields. In the end, we proved
that the new system can be solved in O(2n log n) operations.
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Chapter 1

Preliminary

1.1 Classification of integral equations

The classification of integral equations based on many basic characteristics

1. The integral bounds

I Both of them are constants: Fredholm equation.

I One of them is variable: Volterra equation.

2. The placement of the unknown function u:

I Just inside the integral: First kind.

I Both inside and outside the integral: Second kind. The Fredholm integral equation
of the first kind is given by:

ˆ b

a

k(s, t)u(t)dt = f(s), a ≤ s ≤ b.

The Volterra integral equation of the second kind is given by:

u(s)−
ˆ s

a

k(s, t)u(t)dt = f(s), a ≤ s ≤ b.

3. The nature of the known function f :

I Equal zero: homogeneous equation.

4
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I Different from zero: non-homogeneous equation. For example:

u(s)−
ˆ b

a

k(s, t)u(t)dt = 0, a ≤ s ≤ b

is a homogeneous Fredholm integral equation of the second kind.

The following equation

ˆ s

a

k(s, t)u(t)dt = f(s), a ≤ s ≤ b

is called non-homogeneous Volterra integral equation of the first kind.

4. The linearity: with respect to the unknown function u:

I Linear integral equations.

I Nonlinear integral equations. For example, the equation

u(s)−
ˆ b

a

k(s, u(t))dt = f(s), a ≤ s ≤ b,

is a nonlinear Fredholm integral equation of the second kind.

5. The nature of the kernel:

I Regular integral equations.

I Singular integral equations.

For example, the following equation

u(s)−
ˆ 1

0

u(t)

(s− t)α
dt = f(s), 0 < α < 1, 0 ≤ s ≤ 1

is called weakly singular integral equation of the second.

Moreover,

u(s)−
ˆ 1

0

u(t)√
s− t

dt = f(s), 0 ≤ s ≤ 1

is the Abel’s integral equation of the second.

The integral equation

u(s)−
ˆ 1

0

u(t)

s− t
dt = f(s), 0 < α < 1, 0 ≤ s ≤ 1

is the Cauchy integral equation of the second.
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Remark 1.1 The kernel k(., .) could play the role of several functions, exclusively:

1. The power-law functions (linear,quadratic,polynomial...);

2. The exponential functions;

3. The hyperbolic functions (cosh, sinh, tanh, coth);

4. The trigonometric functions (cos, sin, tan, cot);

5. The logarithmic functions.

An other type of integral equations occur with derivative on the unknown function u,
called integro-differential equations.
For example:

u′′(s)−
ˆ 1

−1
k(s, t)u(t)dt = f(s), −1 ≤ s ≤ 1

is an integro-differential equation of the second order.

1.2 Compact operator

Definition 1.1 Let X and Y be normed spaces and T : X → Y be a linear operator.

Recall that T is a bounded operator if and only if for every bounded subset M of X the

set T (M) is bounded in Y so that the closure of T (M), is closed and bounded. If the

closure of T (M) is compact for every bounded subset M of X , then the operator T is

said to be a compact operator.

Theorem 1.1 A linear operator T : X → Y from a normed spaceX into a normed space

Y is compact if and only if, for each bounded sequence (ϕn) in X the sequence (Aϕn)

contains a convergent subsequence in Y .

Proof : See [55]. �

Definition 1.2 Let H be a Hilbert space and T ∈ B(H). The adjoint of T is the operator

T ∗ ∈ B(H) with the property that, for all φ, ψ ∈ H, (Tφ, ψ) = (φ, T ∗ψ).

Lemma 1.1 Let H be a Hilbert space. If T ∈ B(H) is compact then T ∗ is also compact.

Proof : See [94]. �
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1.3 Integral operator

Let us consider an integral equation of the form

u(s)−
ˆ
D

k(s, t)u(t)dt = f(s),

where k is a suitable function on D ×D. Define the following integral operator

(Tu)(s) =

ˆ
D

k(s, t)u(t)dt.

The above equation reads as:
u− Tu = f.

1.3.1 Compact integral operator

Theorem 1.2 Let X := C(G) be the space of real continuous functions on a compact

subset G ⊂ R. The integral operator with continuous kernel is a compact operator on X .

Proof : See [46]. �

Theorem 1.3 Let K be a compact integral operator on X and T a bounded integral

operator. Then both KT and TK are compact integral operators.

Proof : See [46]. �

1.4 Projection and Riesz representation theorem

1.4.1 Approximation based on projection

Let X be a Banach space and T : X −→ X be a linear operator. Let us denote by N (T )

and R(T ) the null space ( or the kernel space) and the range of T , respectively. Let (πn)

be a sequence of nonzero bounded projections defined on X , that is each πn is bounded
operator and π2

n = πn, hence ‖πn‖ ≥ 1.
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The following three conditions are equivalent to each other if πn is a bounded projec-
tion defined on Hilbert space X:

π∗n = πn, ‖πn‖ ≤ 1, N (πn) = R(πn)⊥.

If one of these conditions is satisfied, then πn is called an orthogonal projection. (For
more details see [84]).

Now, we would like to obtain an approximate solution for (1.3) using a sequence of
bounded projections πn each one of finite rank,

In the beginning, we approach (1.3), we get the approximate problem:

(I − πnT )un = πnf, un ∈ Xn.

Lemma 1.2 Let X be a Banach space and (πn)n≥0 a sequence of bounded projections on

X , with

πnu→ u, as n→∞, for all u ∈ X.

Let T : X → X be compact. Then

‖T − πnT‖ → 0, n→∞.

Proof : See [11]. �

1.4.2 Riesz-Fredholm theory

Lemma 1.3 (Riesz Lemma) Let X be a normed space and let M ⊂ X a closed sub-

space, such that M 6= X , then:

∀ε ≥ 0, ∃u ∈ X, such that ‖u‖ = 1 and dist(u,M) ≥ 1− ε.

Proof : See [22]. �

Theorem 1.4 Let X be a Banach space, and let T : X → X be compact. Then:
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• N (I − T ) is a subspace of finite dimension.

• Im(I − T ) is a closed linear subspace.

• There exists r ∈ N, called Riesz number of the operator T such that:

{0} = Ker((I − T )0) $ N ((I − T )1) $ · · · $ N ((I − T )r) = N ((I − T )r+1) = · · ·

X = R((I − T )0) % R((I − T )1) % · · · % R((I − T )r) = R((I − T )r+1) = · · ·

Moreover, we have the direct sum :

X = N ((I − T )r)⊕R((I − T )r).

Proof : See [45]. �

Theorem 1.5 Let X be a Banach space, and let T : X → X be compact operator.

Then (I − T ) is injective if and only if it is surjective. Furthermore, the inverse operator

(I − T )−1 exists and is bounded.

Proof : See [33] �

1.4.3 The Fredholm alternative theorem

Theorem 1.6 Let X be a Hilbert space with scalars the complex numbers, T : X → X

be a compact operator, and let λ be a nonzero eigenvalue of T . Then:

• λ is an eigenvalue of the adjoint operator T ∗. In addition,N (λI−T ) andN (λI−
T ∗) have the same dimension.

• The equation (λI−T )u = f is solvable if and only if (f, z) = 0 z ∈ N (λI−T ∗).

Remark 1.2 Let X be a Hilbert space with scalars the complex numbers, T : X → X

be a compact operator. It is known that

R(λI − T ) = N (λI − T ∗)⊥;
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so that

X = N (λI − T ∗)⊕R(λI − T ).

Theorem 1.7 (Fredholm alternative) Let X be a Banach space, and let T : X → X be

compact operator. Then the equation (I − T )u = f has a unique solution u ∈ X for all

f ∈ X if and only if the homogeneous equation (I−T )u = 0 has only the trivial solution

u = 0. In such a case, the operator (I − T ) : X → X has a bounded inverse (I − T )−1.

Proof : See [11]. �

1.5 Application of integral equations for the investigation
of differential equations

As we mentioned above, integral equations play an important role in the theory of ordinary
and partial differential equations. Moreover, many results of the theory of differential
equations have been obtained by the investigation of the corresponding integral equations.

1.5.1 Cauchy problem for first-order ODEs to integral equations

The Cauchy problem: find a solution of the equation

u′(s) = H(s, u(s)), 0 ≤ s ≤ 1,

that satisfies the initial condition
u(s0) = u0,

for a given s0 ∈ [0, 1] and some know function u0.
By integration, the above Cauchy problem reduced to the equivalent integral equation:

u(s) = u0 −
ˆ s

s0

H(t, u(t))dt.

Thus, we can solve the Cauchy problem by solving its equivalent form given by the inte-
gral equation.
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1.5.2 Cauchy problem for second-order ODEs to integral equations

Consider the determination of u fromu′′(s) = H(s, u(s)), 0 ≤ s ≤ 1,

u(0) = u0, u(1) = u1,
(1.1)

where u′0 = C.
One integration gives

u′(s) =

ˆ s

0

H(t, u(t))dt+ C, 0 ≤ s ≤ 1,

satisfying u′(0) = u′0 = C and a second integration produces

u(s) =

ˆ s

0

dτ

ˆ t

0

H(t, u(t))dt+ Cs+ u0.

If we assume that H is a continuous function of both variables, then

ˆ s

0

dτ

ˆ t

0

H(t, u(t))dt =

ˆ s

0

(s− t)H(t, u(t))dt.

Finally, the integral equation corresponding to (1.1) is giving by

u(s) =

ˆ s

0

(s− t)H(s, u(t))dt+ Cs+ u0, 0 ≤ s ≤ 1.

Now, we need to determine C. Since u(1) = u1, we get

C = u1 − u0 −
ˆ 1

0

(1− t)H(t, u(t))ds.

Thus, the corresponding integral equation is giving as follows

u(s) = −
ˆ 1

0

k(s, t)H(t, u(t))dt+ (u1 − u0)s+ u0, 0 ≤ s ≤ 1,

such that

k(s, t) =

 t(1− s) if(t ≤ s),

s(1− t) if(s ≤ t).
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1.5.3 Examples:

Example 1.1 We have the following boundary problem

u′′(s) = −λu(s), 0 ≤ s ≤ 1,

u(0) = u0, u(1) = u1.

the above problem becomes a Fredholm integral equation of second kind

u(s) = λ

ˆ 1

0

k(s, t)u(t)dt+ f(s), 0 ≤ s ≤ 1,

where

f(s) = (u1 − u0)s+ u0.

Example 1.2 (Airy’s equation for second-order ODEs) Let u satisfies the following Airy’s

equation:

u′′(s) = su(s), 0 ≤ s ≤ 1,

and

u(0) = 1, u′(0) = 0.

One puts in (1.1)

H(s, t) = st, u0 = 1, u′0 = 0.

Then, we obtain the integral equation

u(s) =

ˆ s

0

(s− t)tu(t)dt+ 1, 0 ≤ s ≤ 1. (1.2)

We solve the Airy equation by solving the latter equation.

We can proceed by the same way to the second kind Volterra equation, using (1.2) for

illustration. We introduce the operator H by

(Hu)(s) =

ˆ s

0

(s− t)tu(t)dt, 0 ≤ s ≤ 1,

and let f(s) = 1. Thus, the abbreviate form is given as follows

u = f +Hu.
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Then,

u = f +H(f +Hu)

= f +Hf +H(Hu)

= f +Hf +H2u,

where

(Hf)(s) =

ˆ s

0

(s− t)tdt =
1

6
s3, 0 ≤ s ≤ 1

(H2f)(s) =

ˆ s

0

(s− t)t(Kf)(t)dt

=

ˆ s

0

(s− t)t(1

6
t3)dt =

1

180
s6, 0 ≤ s ≤ 1.

Hence, by the same way we obtain

u = f +Hf +H2f +H3u,

In the end, the solution reads as

u(s) = 1 +
1

6
s3 +

1

180
s6 + (H3u)(s), 0 ≤ s ≤ 1.

Remark 1.3 The Airy equation appears for modeling numerous physics phenomena such

us diffraction phenomena and aerodynamic.

Example 1.3 (Boundary value problems) Let u satisfy

u′′(s) + λv(s)u(s) = 0, 0 ≤ s ≤ 1,

u(0) = 0, u(1) = 0.

Thus, its equivalent integral equation is giving as follows

u(s) = λ

ˆ s

0

t(1− s)v(t)u(t)dt+ λ

ˆ 1

s

s(1− t)v(t)u(t)dt. 0 ≤ s ≤ 1,



Chapter 2

Convergence analysis of projection
methods for solving singular integral
equations on the real line

This chapter is the subject of an article submitted to the Electronic Journal of Differential
Equations.

Abstract

In this work, we extend the application of projection methods to approach the solution
of singular integral equations on the real line using Hermite functions. We obtain the or-
ders of convergence for the methods of Galerkin, Sloan, Kulkarni and Kulkarni’s iterated
method, respectively. We prove the following convergence orders: Galerkin’s order n−

r
2 ,

Sloan’s order n−r, Kulkarni’s order n−
3r
2 and Kulkarni’s iterated order n−2r.

2.1 Introduction

In the last decades, projection methods have been developed starting from the work of
Galerkin. This development founded by Sloan enhancing the Galerkin method adopting
the iteration techniques, which has been used to solve integral equations. In addition,
the Kantorovich method and its iterated version have been included in those projection
methods along with the Sloan method.

Among the interesting papers published after Sloan, we distinguish Kulkarni’s work,
where she based on the orthogonal projection and interpolatory projection to approach
solutions of compact operator equation with smooth kernel. She used piecewise poly-

14
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nomials of the degree ≤ r − 1 to prove that the convergence order is 4r. Therefore,
her results represent an improvement to the works presented in the literature, precisely,
Galerkin’s order r and Sloan’s order 2r (see [56]).

Several problems of engineering, quantum mechanics, probability theory, and statis-
tical mechanics are described in terms of integral equations on the half real line and real
line (cf. [59]). As a solution to these problems, the Hermite functions play a crucial role
in the approximation theory (cf. [52]). According to Anselone and Baker, there exist
computable bounds for the errors occuring in certain classes of Wiener-Hopf compact
operators (see [2]).

Unlike the previous works where the kernel is defined on [0, 1] × [0, 1], the present
paper considers the kernel as defined on R. The main idea of this work is to solve the
Fredholm integral equation of the second kind over the real line. Furthermore, we use the
Hermite polynomials instead of piecewise polynomials.

Anselone and Sloan [3], have applied a numerical approximation schemes of quadra-
ture type to solve the Wiener-Hopf integral equation. In [12], the author has developed
several numerical methods to solve integral equations on the half line. Moreover, Sloan
and Spence [100] have proved convergence results using projection methods to solve in-
tegral equations on the half line; the authors have investigated superconvergence of the
iterated solution obtained from the collocation method.

More recently, many authors have used the Hermite functions to solve different types
of equatios (cf. [90]). Among these, the authors of [4] have applied some addition formu-
lae similar to the well-known expansion of the Hermite polynomials. The decomposition
of powers in terms of the Hermite polynomials offers a different form of the formal mo-
ment generating function. A similar method without a CA system has been presented
in [49]. Moreover, the elements of the matrix for the Gaussian-type potential have been
calculated using the properties of the generating function of the Hermite polynomials (see
[96]). In [110], the authors have found that the quantum state for the two-variable Hermite
polynomial-Gaussian laser modes of the electromagnetic field are the Hermite-polynomial
excitation on the two-mode squeezed vacuum state. In [17], the authors have shown how
the combined use of the generating function method and of the theory of multivariable
Hermite polynomials is naturally suited to evaluate integrals of Gaussian functions and
of multiple products of Hermite polynomials. A more general class of multiple Hermite
polynomials has been studied in cf. [53].

In [81] the author presents a projection method to solve operator equations with bounded
operator in Hilbert spaces, and applies that method to solve the Cauchy integral equations
in two cases: Galerkin projections and Kulkarni methods, respectively, using a sequence



16 Chapitre 2 : Projection methods for singular integral equations on the real line

of orthogonal finite rank projections. In [78], the author introduces a modified method
which is based on the trapezoidal and Simpson’s rules, to solve a Volterra integral equa-
tions of the second kind. In [82], the authors have studied projection approximations to
solve Cauchy integro-differential equations using airfoil polynomials of the first kind. In
[79], the author introduces a projection method based on the Legendre polynomials, to
solve integro-differential equations with a Cauchy kernel. In the same context, the author
studies a collocation method, for approximate solution of an integro-differential equations
with logarithmic kernel, using airfoil polynomials (see [80]).

The main results of our work are illustrated through the convergence order for a set of
methods: for the Galerkin method, n−

r
2 ; for the Sloan method, n−r (with a better constant

than the former); for the Kulkarni method, n−
3r
2 ; and finally for the iterated Kulkarni

method, n−2r.

This chapter is organized as follows: Section 2 is devoted to derive some basic defini-
tions and preliminary results concerning the Hermite functions. In Section 3, we introduce
a singular integral equation on the real line, we discuss the compactness of integral opera-
tor. Section 4 applies the improved Galerkin method to solve a Fredholm integral equation
of the second kind over the real line, using the Hermite projection. Section 5 presents the
Kulkarni method. In section 6, we prove the convergence of our methods, Galerkin, Sloan,
Kulkarni and iterated Kulkrani respectively, and we give new error estimates.

2.2 Hermite functions

In this section, we briefly recall and discuss some basic formulae about the Hermite func-
tions.

The Hermite polynomials Hn, are the eigenfunctions of the singular Sturm-Liouville
problem in R (

e−x
2

H ′n(x)
)′

+ 2ne−x
2

Hn(x) = 0.

The analogue of the Rodriguez formula is

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

The Hermite polynomials have been introduced in [26].
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Hermite polynomials Hn are defined by the generating function [89]

Hn(t) ∼ Γ(n+ 1)

Γ(n/2 + 1)
et

2/2 cos
(√

2n+ 1t− nπ

2

)
, t ∈ R,

∼ n2et
2/2 cos

(√
2n+ 1t− nπ

2

)
, t ∈ R.

We note that Hn are unnormalized system in L2(R), but, as indicated in [89, 105], they
are orthogonal in R with respect to the function e−x2 , they satisfy

ˆ +∞

−∞
Hk(t)Hj(t)e

−t2dt = 2kk!
√
πδkj.

Let us consider the normalized Hermite functions ψn of the degree n

ψn(t) :=
1√

2nn!
√
π
Hn(t).

Hence, ψn are unnormalized system in L2(R), which means,

ˆ +∞

−∞
ψk(t)ψj(t)dt 6= δkj.

where δkj is the Kronecker delta function.

Clearly, Hermite functions ψn verify the orthonormality relation with respect to the
weight ω(t) := e−t

2 .

We introduce the following inner product

〈f, g〉ω :=

ˆ +∞

−∞
f(t)g(t)ω(t)dt.

Let us introduce the following weighted space

L2
ω(R,C) :=

{
ϕ : R→ C,

ˆ +∞

−∞
ω(t) |ϕ(t)|2 dt <∞

}
.

The norm in L2
ω(R,C) is defined by

‖ϕ‖w :=

(ˆ +∞

−∞
ω(t) |ϕ(t)|2 dt

) 1
2

.
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Any ϕ ∈ L2
ω(R) can be developed in a Fourier-Hermite series of the form

ϕ(s) :=
∞∑
k=0

ϕ̂kψk(s),

with

ϕ̂k :=

ˆ +∞

−∞
ω(t)ϕ(t)ψk(t)dt.

The theory of the Hermite polynomials are illustrated in [64].

2.3 Integral equations on the real line

Let H := L2
ω(R,C) be the universe of our discourse. Consider the following integral

equation on the real line

ϕ(s)−
ˆ +∞

−∞
Γ(t, s)ϕ(t)ω(t)dt = f(s), s ∈ R, (2.1)

Γ(t, s) := k(t, s) +

ˆ +∞

−∞

k(t, τ)

τ − s
dτ,

where f and k(., .) are given functions. Let

kt(s) := k(t, s) = ks(t).

We assume that

sup
t
‖kt‖2 +

∥∥∥k(r′)t

∥∥∥
2
<∞, for some r′ ≥ 0.

Hence, following [36], the operator

Tϕ(s) :=

ˆ +∞

−∞
Γ(s, t)ϕ(t)ω(t)dt, s ∈ R,

is compact from H into itself. In [36], the authors propose a simple numerical method to
approximate the solution of (2.1), using Lagrange polynomials. In this paper, we use a
set of methods to approximate the solution of (2.1), using a sequence of orthogonal finite
rank projections based on Hermite polynomials.

Let Xn denote the space spanned by the first n + 1 of Hermite functions. Let us
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consider (Πn)n≥1, the sequence of bounded projections of finite rank defined by

Πnx :=
n∑
j=0

〈x, ψj〉ω ψj.

Hence,
lim
n→∞

‖Πnψ − ψ‖ω = 0, for all ψ ∈ H.

As proved in [7], Πn is the best approximation associated with the inner product of the
spaceH, (see, also, [43, 20]).

2.4 Galerkin projection

Let TGn := ΠnTΠn denote the Galerkin projection with the corresponding approximate
equation

ϕGn − TGn ϕGn = Πnf, (2.2)

the approximate solution ϕGn is given by

ϕGn =
n∑
j=0

xn(j)ψj(s)

for some scalars xn(j). Equation (2.2) reads as

n∑
j=0

xn(j) [ψj − ΠnTψj] = Πnf.

We obtain the linear system

n∑
j=0

xn(j)

[
ψj −

n∑
i=0

〈Tψj, ψi〉ω ψi

]
=

n∑
i=0

〈f, ψi〉ω ψi.

That is

(I − An)xn = bn,
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where

An(k, j) :=

ˆ +∞

−∞

ˆ +∞

−∞
Γ(s, t)ψj(t)ω(t)ψk(s)ω(s)dtds,

bn(k) :=

ˆ +∞

−∞
f(s)ψk(s)ω(s)ds.

2.5 Kulkarni method

Consider the approximate operator

TKn := ΠnT + TΠn − ΠnTΠn,

Let ϕKn the approximate solution of equation (2.1) using TKn .

The approximate equation is

ϕKn − TKn ϕKn = f. (2.3)

Let
un := Πnϕ

K
n .

Since Πnun = un, there exist scalars xn(j) such that

un =
n∑
j=0

xn(j)ψj,

Equation (2.3) reads as

un − [ΠnTΠn + ΠnT (I − Πn)TΠn]un = Πnf + ΠnT (I − Πn) f,

so that

n∑
j=0

xn(j) [ψj − (ΠnTψj + ΠnT (I − Πn)Tψj)] = Πnf + ΠnT (I − Πn)f,
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and hence

n∑
j=0

xn(j)

[
ψj −

n∑
k=1

(〈Tψj, ψk〉ω + 〈T (I − Πn)Tψj, ψk〉ω)ψk

]

=
n∑
k=1

[〈f, ψk〉ω + 〈T (I − Πn)f, ψk〉ω]ψk.

Performing the inner product with ψi, we obtain

xn(i)−
n∑
j=0

xn(j) [〈Tψj, ψi〉ω + 〈T (I − Πn)Tψj, ψi〉ω] = 〈f, ψi〉ω + 〈T (I −Πn)f, ψi〉ω,

which becomes

xn(i)−
n∑
j=0

[
〈Tψj, ψi〉ω + 〈T 2ψj, ψi〉ω −

n∑
k=1

〈Tψj, ψk〉ω〈Tψk, ψi〉ω

]
xn(j)

= 〈f, ψi〉ω + 〈Tf, ψi〉ω −
n∑
k=1

〈f, ψk〉ω〈Tψk, ψi〉ω, i = 1, . . . , n. (2.4)

After solving system (2.4), the solution ϕKn is recovered as

ϕKn = un + (I − Πn)Tun + (I − Πn)f.

Therefore

ϕKn = un + Tun −
n∑
k=1

〈Tun, ψk〉ωψk + f −
n∑
k=1

〈f, ψk〉ωψk.

2.6 Convergence analysis

Since T is compact from H into itself, the approximate equation (2.3) has a unique solu-
tion ϕn (see [1, 11]).

Let us consider the weighted Sobolev space

Hm
ω :=

{
ϕ ∈ H ‖ϕ‖Hm

ω
< +∞

}
, m ≥ 0,

where

‖ϕ‖Hm
ω

:=
m∑
j=0

‖ϕ(j)‖L2
ω
.
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In [39], Freud proved the following estimate

‖ϕ− Πnϕ‖ω ≤ cn−
r
2‖ϕ‖r,ω for any ϕ ∈ Hr

ω and r ≥ 0. (2.5)

The convergence order of Galerkin projection method is given in the following

Theorem 2.1 Assume that f ∈ Hr
ω. The following estimate holds:

‖ϕGn − ϕ‖ω ≤ α[‖f‖r,ω + 2 ‖T‖ ‖ϕ‖r,ω]n−
r
2 , r ≥ 0,

for some positive constant α.

Proof : In fact

ϕGn − ϕ = (I − TGn )−1[(Πn − I)f + (TGn − T )ϕ].

Since

(TGn − T )ϕ = ΠnT (Πnϕ− ϕ) + (Πn − I)Tϕ.

Following [1], I − TGn is invertible and
∥∥(I − TGn )−1

∥∥ < C0, we get

ϕGn − ϕ = (I − TGn )−1[(Πn − I)f + ΠnT (Πnϕ− ϕ) + (Πn − I)Tϕ].

Hence

‖ϕGn − ϕ‖ω = ‖(I − TGn )−1[(Πn − I)f + ΠnT (Πnϕ− ϕ) + (Πn − I)Tϕ]‖ω
≤ ‖(I − TGn )−1‖ [‖(Πn − I)f‖ω + ‖Πn‖ ‖T‖‖(Πnϕ− ϕ)‖ω + ‖(Πn − I)Tϕ‖ω]

≤ ‖(I − TGn )−1‖ [C1n
− r

2‖f‖r,ω + ‖T‖C2n
− r

2‖ϕ‖r,ω + C3n
− r

2‖T‖‖ϕ‖r,ω]

for some positive constants C1, C2, C3.

Letting α := C0 min{C1, C2, C3} the proof is complete. �

Denote by Γs the conjugate of Γs(., ). From the same perspective, the convergence
order of Sloan projection method is given in the following theorem.

Theorem 2.2 Let r ≥ 0, assume that f ∈ Hr
ω. The following estimate holds:

‖ϕ− ϕSn‖ω ≤ βn−r‖ϕ‖r,ω‖Γs‖r,ω,
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for some positive constant β.

Proof : Indeed

ϕSn − ϕ = (I − T Sn )−1f − (I − T )−1f

= (I − T Sn )−1[(I − T )− (I − T Sn )](I − T )−1f

= (I − T Sn )−1(T Sn − T )ϕ.

We note that
sup
n
‖(I − T Sn )−1‖ <∞.

Since

(T Sn − T )ϕ = T (Πn − I)ϕ,

we get
ϕSn − ϕ = (I − T Sn )−1[T (Πn − I)ϕ].

Hence

‖ϕSn − ϕ‖ω ≤ ‖(I − T Sn )−1‖ ‖T (Πn − I)ϕ‖ω.

This leads to
‖ϕ− ϕSn‖ω ≤ βn−r‖ϕ‖r,ω‖Γs‖r,ω,

where β is a finite constant and Γs(t) = Γ(s, t). �

Similarly, the convergence order of Kulkarni method is given in the following theorem.

Theorem 2.3 Let r ≥ 0, assume that f ∈ Hr
ω. The following estimate holds:

‖ϕ− ϕKn ‖ω ≤ γ n−
3r
2 ‖ϕ‖r,ω‖Γs‖r,ω,

for some positive constant γ.

Proof : Following [56, 81],

ϕKn − ϕ = (I − TKn )−1(TKn − T )ϕ,
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According to the compactness of T , the theory put forward in [11] shows that the inverse
operator (I − TKn )−1 exists and is uniformly bounded for n large enough, which means
that

sup
n
‖(I − TKn )−1‖ <∞.

Since

(TKn − T )ϕ = [ΠnT (I − Πn)− T (I − Πn)]ϕ

= ΠnT (I − Πn)ϕ− T (I − Πn)ϕ

= −(I − Πn)T (I − Πn)ϕ,

we get
ϕKn − ϕ = −(I − TKn )−1[(I − Πn)T (I − Πn)ϕ],

‖ϕKn − ϕ‖ω = ‖(I − TKn )−1[(I − Πn)T (I − Πn)ϕ]‖ω
≤ ‖(I − TKn )−1‖ ‖[(I − Πn)T (I − Πn)ϕ]‖ω.

Using (2.5),

‖ϕKn − ϕ‖ω ≤ ‖(I − TKn )−1‖ C4n
− r

2 ‖T (I − Πn)ϕ‖r,ω

for some positive constant C4.

Consequently,
‖ϕ− ϕKn ‖ω ≤ γ n−

3r
2 ‖ϕ‖r,ω‖Γs‖r,ω,

which completes the proof. �

In the following, we provide the convergence order of iterated Kulkarni approxima-
tion:

ϕ̃Kn = TϕKn + f.

Theorem 2.4 Letr ≥ 0, assume that f ∈ Hr
ω. The following estimate holds:

‖ϕ̃Kn − ϕ‖ω ≤ δ‖(I − T )−1‖
[
‖Γs‖r,ω + ‖T‖2

]
‖ϕ‖r,ω‖Γs‖r,ωn−2r

for some positive constant δ.
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Proof : In fact

ϕ̃Kn − ϕ = T (ϕKn − ϕ) = (I − T )−1T [(I − Πn)T (I − Πn)(ϕKn − ϕ+ ϕ)].

We get

‖ϕ̃Kn − ϕ‖ω ≤ ‖(I − T )−1‖ ‖T (I − Πn)T (I − Πn)ϕ‖ω + ‖T (I − Πn)T (I − Πn)(ϕKn − ϕ)‖ω].

On one hand

‖T (I − Πn)T (I − Πn)ϕ‖ω ≤ β2n−2r‖ϕ‖r,ω‖Γs‖2r,ω.

On the other hand,

‖T (I − Πn)T (I − Πn)(ϕKn − ϕ)‖ω ≤ ‖T‖2Cn−
r
2‖ϕKn − ϕ‖ω

≤ ‖T‖2Cγ n−2r‖ϕ‖r,ω‖Γs‖r,ω,

which leads to

‖T (I − Πn)T (I − Πn)(ϕKn − ϕ)‖ω ≤ C4 ‖T‖2 n−2r‖ϕ‖r,ω‖Γs‖r,ω, with C4 := Cγ.

Hence

‖ϕ̃Kn − ϕ‖ω ≤ ‖(I − T )−1‖
[
β2n−2r‖ϕ‖r,ω‖Γs‖2r,ω + ‖T‖2C4n

−2r‖ϕ‖r,ω‖Γs‖r,ω
]
,

and

‖ϕ̃Kn − ϕ‖ω ≤ ‖(I − T )−1‖
[
β2‖Γs‖r,ω + ‖T‖2C4

]
‖ϕ‖r,ω‖Γs‖r,ωn−2r.

Letting δ := min{β2, C4} we get the desired result. �

2.7 Conclusion

A convergence analysis of Hermite projection methods have been presented to solve in-
tegral equations over the real line. New error estimates have been obtained. Our main
results of the convergence order have been given for the methods of Galerkin, Sloan,



26 Chapitre 2 : Projection methods for singular integral equations on the real line

Kulkarni and its iterated version, respectively:

‖ϕGn − ϕ‖ω = O(n−
r
2 ),

‖ϕSn − ϕ‖ω = O(n−r),

‖ϕKn − ϕ‖ω = O(n−
3r
2 ),

‖ϕ̃Kn − ϕ‖ω = O(n−2r).



Chapter 3

Collocation method to solve second
order Cauchy integro-differential
equations

This chapter is the subject of the following paper: A. Mennouni, N.E. Ramdani, Col-

location method to solve second order Cauchy integro-differential equations, in Differ-

ential and Difference Equations with Applications, ICDDEA 2017 proceedings, Editors:

Pinelas, S., Caraballo, T., Kloeden, P., Graef, J.R. (Eds.), springer 2018, ISBN 978-3-

319-75647-9.

abstract

In this chapter, we present a collocation method for solving the following second-order
Cauchy integro-differential equation

x′′(s) +

˛ 1

−1

ω(t)x(t)

s− t
dt = f(s), −1 < s < 1,

x′(−1) = x(1) = 0,

in the space X := C0([−1, 1],C), with domain

D := {x ∈ X : x′′ ∈ X , x′(−1) = x(1) = 0} .

The integral is a Cauchy principal value, and

ω(s) :=

√
1 + s

1− s

27
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is the weight function.
We come up with a modified collocation method to build an approximate solution xn

using the airfoil polynomials of the first kind.
Finally, we establish a numerical example to exhibit the theoretical results.

3.1 Introduction and mathematical background

Integro-differential equations appear in many applications in scientific fields such as bio-
logical, physical, and engineering problems. In [24], the authors have presented a high-
order methods for the numerical solution of Volterra integro-differential equations. In
[25], the authors have derived m-stage Runge-Kutta-Nystrom methods for the numerical
solution of general second-order Volterra integro-differential equations. These implicit
methods are based on collocation techniques in certain polynomial spline spaces. The
modified trapezoidal method adapted for general second order initial value problems has
been being given in [29]. In [40], the authors have presented a direct methods for a class of
second order Volterra integro-differential equations which explicitly contain a first order
derivative. In [81], the author has studied and presented a projection method for solv-
ing operator equations with bounded operator in Hilbert spaces. In [79], the author has
introduced a projection method based on the Legendre polynomials, for solving integro-
differential equations with Cauchy kernel. In [80], the author has studied a collocation
method, for approximate solution of an integro-differential equations with logarithmic
kernel, using airfoil polynomials. The goal of this study is to present a collocation method
for solving second order integro-differential equations, using airfoil polynomials.

LetL2([−1, 1],C), be the space of complex-valued Lebesgue square integrable (classes
of) functions on [−1, 1].

We recall that the so-called airfoil polynomials are used as expansion functions to
compute the pressure on an airfoil in steady or unsteady subsonic flow.

The airfoil polynomial tn of the first kind is defined by

tn(x) =
cos[(n+ 1

2
) arccosx]

cos(1
2

arccosx)
.

The airfoil polynomial un of the second kind is defined by

un(x) =
sin[(n+ 1

2
) arccosx]

sin(1
2

arccosx)
.
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3.2 Approximate solution

Consider the following second order Fredholm integro-differential equation with Cauchy
kernel:

ϕ′′(s) +

˛ 1

−1

ω(t)ϕ(t)

t− s
dt = f(s), −1 < s < 1. (3.1)

ϕ′(−1) = ϕ(1) = 0,

with the domain

D := {ϕ ∈ X : ϕ′′ ∈ X , ϕ′(−1) = ϕ(1) = 0} .

Letting

Sϕ(s) := ϕ′′(s), Tϕ(s) :=

˛ 1

−1

ω(t)ϕ(t)

t− s
dt.

The following two formulas (cf. [37])

(1 + s)t′i(s) = (i+
1

2
)ui(s)−

1

2
ti(s),

(1− s2)t′′i (s) + (1− 2s)t′i(s) + n(n− 1)ti(s) = 0

give

t′′i (s) =
(2s− 1)(n+ 1/2)

(1− s2)(1 + s)
ui(s)−

(2s− 1) + 2n(n− 1)

2(1− s2)
. (3.2)

We recall that (cf. [37]),

˛ 1

−1

√
1 + t

1− t
ti(t)

t− s
dt = πui(s). (3.3)

Our goal is to approximate the solution of equation (3.1) via the airfoil polynomials
of the first kind tn as

ϕn(s) =
n∑
i=0

aiti(s).

Consider the set of n+ 1 collocation points sj , which are the zeros of un+1:

sj = − cos
2j − 1

2n+ 3
π, j = 0, 1, . . . , n.
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Letting

(V1y)(s) =

ˆ s

−1
y(t)dt,

(V2ψ)(s) =

ˆ 1

s

ψ(t)dt.

We recall that V1, V2 : H → D are compact.

Moreover,

For all ϕ ∈ D,
(V2V1S)ϕ = −ϕ.

Consider the space C0,λ[−1, 1] of all functions ϕ defined on [−1, 1] satisfying the follow-
ing Hölder condition: ∃M ≥ 0 such that

∀s1, s2 ∈ [−1, 1] , |ϕ(s1)− ϕ(s2)| ≤M |s1 − s2|λ ,

where 0 < λ ≤ 1.

Let

H :=
{
ϕ ∈ L2[−1, 1] : ϕ′′ ∈ L2([−1, 1]), ϕ′(−1) = ϕ(1) = 0

}
.

Note that the operator T is bounded from L2[−1, 1] into itself and also from C0,λ [−1, 1]

into itself.

Consider hat functions e0, e1, e2, . . . , en in C0[−1, 1] such that

ej(xk) = δj,k.

Define the projection operators πn from C0[−1, 1] into the space of continuous functions
by

πng(x) :=
n∑
j=0

g(xj)ej(x).

Let us define the operators

Vn := V2V1πnT, V := V2V1T.

Consider the following approximate equation in the unknown ϕn:

−ϕn + Vnϕn = V2V1f.
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Theorem 3.1 Assume that f ∈ C0[−1, 1]. There exists a positive constant α, such that

‖ϕ− ϕn‖∞ ≤ α‖ (Vn − V )ϕ‖∞

for n large enough.

Proof : It is well-known that ‖πnx− x‖∞ → 0, for all x ∈ C0[−1, 1]. Since V2V1 is
compact, it is clear that V is compact. In (cf. [11] and [55]) it is shown that the inverse
operator (−I + Vn)−1 exists and is uniformly bounded for n large enough. On the other
hand,

ϕn − ϕ = [Vnϕn − V2V1f ]− [V ϕ− V2V1f ] ,

hence

ϕn − ϕ = [Vnϕn − V ϕ] .

This leads to

ϕn − ϕ = [(Vn − V )ϕ+ Vn(ϕn − ϕ)] .

Thus

(−I + Vn)(ϕ− ϕn) = (Vn − V )ϕ.

Consequently

ϕ− ϕn = (−I + Vn)−1 [(Vn − V )ϕ] ,

‖ϕn − ϕ‖∞ ≤ α‖(Vn − V )ϕ‖∞,

where

α := sup
n≥N

∥∥(−I + Vn)−1
∥∥ ,

which is finite. �
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Thus, we obtain the following system:

Sϕn(sj) + Tϕn(sj) = f(sj), j = 0, 1, . . . , n.

By (3.2) and (3.3), we get for j = 0, 1, . . . , n

n∑
i=0

ai

{[
(2sj − 1)(i+ 1/2)

(1− s2j)(1 + sj)
− π

]
ui(sj)−

(2sj − 1) + 2i(i− 1)

2(1− s2j)
ti(sj)

}
= f(sj).

3.3 Numerical results

Let us consider the integro-differential equation (3.1), with the following exact solution

ϕ(x) = x3 − 3x+ 2.

Table (3.1) gives the numerical results for Example 1.

x n=6 n=22 n=120
-0.8 0.133e-1 0.154e-2 0.142e-3
-0.6 0.172e-1 0.179e-2 0.147e-3
-0.4 0.124e-1 0.163e-2 0.241e-4
-0.2 0.321e-1 0.165e-2 0.134e-3
0.0 0.156e-1 0.187e-2 0.201e-4
0.2 0.179e-1 0.177e-2 0.443e-4
0.4 0.195e-1 0.165e-2 0.781e-4
0.6 0.541e-1 0.167e-2 0.795e-4
0.8 0.325e-1 0.167e-2 0.807e-4

Table 3.1: Example 1



Chapter 4

Numerical solution of generalized
logarithmic integral equations of the
second kind by projections

This chapter is the subject of an article submitted to the Malaysian Journal of Mathemat-
ical Sciences (MJMS).

Abstract

In this work, we present new techniques to solve integral equations of the second kind
with logarithmic kernel. First, we show the existence and uniqueness of the solution for
the problem in Hilbert spaces. Next, we discuss a projection method for solving integral
equations with logarithmic kernel of the second kind; the present method based on shifted
Legendre polynomials. We examine the existence of the solution for the approximate
equation, and we provide a new error estimate for the numerical solutions. At the end,
numerical examples are provided to illustrate the theoretical results.

4.1 Introduction

In past years, several problems of mathematics, engineering, physics and related sciences
are described in terms of integral equations, specifically, singular integral equations ( cf.
[59]). An important class of these equations is the singular integral equations with log-
arithmic kernel. Projection approximation methods play an important role in numerical
analysis, especially the projection method is an effective means of numerical solution of
integral equations ( cf.[11, 55]). [81] presented a projection method for solving operator

33
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equations with bounded operator in Hilbert spaces, and he applied the method for solving
the Cauchy integral equations for two cases: Galerkin projections and Kulkarni projec-
tions respectively, using a sequence of orthogonal finite rank projections. [78] introduced
a modified method which is based on the trapezoidal and Simpson’s rules, for solving a
Volterra integral equations of the second kind. [82] discussed a projection method for
solving Cauchy integro-differential equations via airfoil polynomials of the first kind.
[99] discussed the solutions of boundary integral equations and systems of logarithmic
integral equations of the first kind. [19] solved a logarithmic singular integral equation
in two disjoint finite intervals by using function theoretic method, under some conditions.
[27] considered a direct method to solve a singular integral equations of the first kind,
involving the combination of a logarithmic and a Cauchy type singularity. [23] solved an
integral equation of the first kind with logarithmic kernel as an improperly posed prob-
lem. [86] presented a closed form solutions for an important class of difference singular
integral equations of the first kind. He considered the kernel as the sum of a polynomi-
als, the second one is multiplied by a logarithm. [66] introduced a method to solve a
singular integral equations with logarithmic or Cauchy kernels. [106] investigated the an-
alytical properties of a logarithmic singular integral equation. He developed two product
integration methods to solve this class of integral equation, the first one based on Euler’s
method, but in the second one the author used a product trapezoidal method. [88] con-
sidered the Galerkin method for singular Fredholm integral equations of the second kind
with weakly kernel and its corresponding eigenvalue problem on [−1, 1]. More recently,
[10] described a collocation method using the radial basis function to numerically solve a
boundary singular integral equations of the second kind with logarithmic kernels. These
class of integral equations obtained from boundary value problems of Laplace equations
with linear Robin boundary conditions. Recently many researchers developed numerical
methods that solve integral equations of the first kind with logarithmic kernel via collo-
cation and Galerkin methods, see [30, 31], [47, 48], [101, 102] and references therein.
Based on the above, integral equations with logarithmic kernel are an important type of
singular integral equations. This class of singular integral equations has an important ap-
plications in several problems of economics, fluid dynamics, electrodynamics, elasticity,
fracture mechanics, biology and other scientific fields and the latest high technology.
The goal of this chapter is to introduce a shifted Legendre projection method to solve
generalized integral equations with logarithmic kernel of the second kind. We use new
techniques to show the existence and uniqueness of the solution for the present problem
in Hilbert spaces and the solution of its corresponding approximate problem.
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4.2 Existence and uniqueness of solutions

Let H be a Hilbert space. BL(H) will denote the space of bounded linear operators from
H into itself, and sp denotes the spectrum.
Let T ∈ BL(H), and let T ∗ be the adjoint of T . We recall that T is selfadjoint if T ∗ = T ,
and that T is skew-Hermitian if T ∗ = −T .

Lemma 4.1 Let T ∈ BL(H).

1. If T is self-adjoint, then sp (T ) ⊆ R.

2. If T is skew-Hermitian, then sp (T ) ⊆ iR.

Proof :

1. See [94].

2. It is clear that
(iT )∗ = −iT ∗ = iT,

so that the operator iT is self-adjoint, say sp (iT ) ⊆ R, hence sp (T ) ⊆ iR.

�

Throughout our paper, denote by H := L2([0, 1],C). Let us consider the generalized
integral equation with logarithmic kernel

ˆ 1

0

h(s, ς) ln |ς − s|ϕ(ς)dς = λϕ(s) + f(s), 0 ≤ s ≤ 1. (4.1)

We examine the numerical solution of this equation. Our discussion will be in two impor-
tant cases.

4.2.1 Case h(s, ς) = −h(ς, s)

In the first case, we assume that λ is real and non-zero, and h(., .) is continuous function,
moreover,

h(s, ς) = −h(ς, s).



36 Chapitre 4 : Numerical solution of generalized logarithmic integral equations

Letting

Su(s) :=

ˆ 1

0

h(s, ς) ln |ς − s|u(ς)dς. u ∈ H, 0 ≤ s ≤ 1.

We recall that S ∈ BL(H), further S∗ = −S.

Equation (4.1) is equivalent to

(S − λI)ϕ = f.

Theorem 4.1 For all f ∈ H , the logarithmic integral equation (4.1) has a unique solu-

tion ϕ ∈ H.

Proof : Since
h(s, ς) = −h(ς, s),

it follows that S is skew-Hermitian operator, and by Lemma 4.1, we get sp (S) ⊆ iR.

This shows that λ /∈ sp (S), consequently the operator S − λI is invertible. �

Theorem 4.2 The following estimate holds:

‖(S − λI)−1‖ ≤ 1

|λ|
.

Proof : As in [94], for all u ∈ H,

Re 〈(S − λI)u, u〉 =
1

2

[
〈(S − λI)u, u〉+ 〈(S − λI)u, u〉

]
=

1

2
[−2λ 〈u, u〉+ 〈Su, u〉+ 〈u, Su〉]

= −λ 〈u, u〉 ,

so that

|λ| ‖u‖2 = |Re 〈(S − λI)u, u〉| ≤ |〈(S − λI)u, u〉| ≤ ‖(S − λI)u‖ ‖u‖ ,
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which yields

‖(S − λI)−1‖ ≤ 1

|λ|
.

�

4.2.2 Case h(s, ς) = h(ς, s)

In this case, we assume that λ ∈ iR∗ and h(., .) satisfies

h(s, ς) = h(ς, s),

hence
S∗ = S.

Theorem 4.3 For all f ∈ H , the logarithmic integral equation (4.1) has a unique solu-

tion ϕ ∈ H.

Proof : Since
h(s, ς) = h(ς, s),

we deduce that S is selfadjoint operator. Hence

sp (S) ⊆ R,

and hence λ /∈ sp (S), which proves that the operator S − λI is invertible. �

Theorem 4.4 The following estimate holds:

‖(S − λI)−1‖ ≤ 1

|Im(λ)|
.

Proof : As in [94], for all u ∈ H, we have

|〈(S − λI)u, u〉|2 =
∣∣〈Su, u〉 − λ ‖u‖2∣∣2

=
∣∣〈S, u〉 − Re(λ) ‖u‖2

∣∣2 + |Im(λ)|2 ‖u‖4

≥ |Im(λ)|2 ‖u‖4 ,
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so that
|Im(λ)| ‖u‖2 ≤ |〈(S − λI)u, u〉| ,

which yields

‖(S − λI)−1‖ ≤ 1

|Im(λ)|
.

�

4.3 Bounded finite rank orthogonal projections

Let (Ln)n≥0 denote the sequence of Legendre polynomials. We recall that the Legendre
polynomials Ln(.) can be defined by

Ln(s) =
n∑
k=0

(−1)k
(
n

k

)2(
1 + s

2

)n−k (
1− s

2

)k
.

Their generating function is given by

1√
1− 2st+ t2

=
∞∑
n=0

Ln(s)tn.

Note that the first few Legendre polynomials are

L0(s) := 1;

L1(s) := s;

L2(s) :=
1

2

(
3s2 − 1

)
;

L3(s) :=
1

2

(
5s3 − 3s

)
;

L4(s) :=
1

8

(
35s4 − 30s2 + 3

)
.

The Legendre polynomials of higher degrees are often found by employing a three-term
recurence relation (see [91]).
Let us consider the following shifted Legendre polynomials

`n(s) := Ln(2s− 1), 0 ≤ s ≤ 1.
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Recall that the shifted Legendre polynomials are orthogonal on [0, 1].

An explicit formula for the shifted Legendre polynomials is given by

`n(s) = (−1)n
n∑
k=0

(
n

k

)(
n+ k

k

)
(−s)k.

The first few shifted Legendre polynomials are:

`0(s) := 1;

`1(s) := 2s− 1;

`2(s) := 6s2 − 6s+ 1;

`3(s) := 20s3 − 30s2 + 12s− 1;

`4(s) := 70s4 − 140s3 + 90s2 − 20s+ 1.

Letting

ej(t) :=
1√

2j + 1
`j(t), 0 ≤ t ≤ 1.

We define the spaceHn spanned by {ej, j = 0 . . . n}. We associate toHn the sequence
(πn)n≥0 of bounded finite rank orthogonal projections ontoHn given by

πnu :=
n∑
j=0

〈u, ej〉 ej.

We recall that, for all ψ ∈ H,

lim
n→∞

‖πnψ − ψ‖ = 0.

We consider the following approximate operator Sn := πnSπn.

4.3.1 Case h(s, ς) = −h(ς, s)

Since S is skew-Hermitian operator, it follows that (Sn)n≥1 is a sequence of skew-Hermitian
operator fromH into itself.

Theorem 4.5 We assume that λ ∈ R∗. For all n, the operator Sn − λI is invertible, and

‖ (Sn − λI)−1 ‖ ≤ 1

|λ|
.
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Proof : The proof is similar to the proof of Theorem 4.2. Obviously that λ /∈ sp (Sn)

(cf. Lemma 4.1), and hence the operator Sn − λI is invertible. We easily obtain

Re 〈(Sn − λI)u, u〉 = −λ 〈u, u〉 ,

so that
|λ| 〈u, u〉 ≤ |〈(Sn − λI)u, u〉| ≤ ‖(Sn − λI)u‖ ‖u‖ ,

that is to say
‖(Sn − λI)u‖ ≥ |λ| ‖u‖ .

Clearly, we have the bound

‖ (Sn − λI)−1 ‖ ≤ 1

|λ|
.

�

4.3.2 Case h(s, ς) = h(ς, s)

Since S is selfadjoint operator, it follows that (Sn)n≥1 is a sequences of selfadjoint oper-
ators fromH into itself.

Theorem 4.6 We assume that λ ∈ iR∗. For all n, the operator Sn − λI is invertible,

moreover

‖ (Sn − λI)−1 ‖ ≤ 1

|Im(λ)|
.

Proof : The proof is similar to the proof of Theorem 4.4. As before, for all u ∈ H, we
have

|〈(Sn − λI)u, u〉|2 =
∣∣〈Snu, u〉 − λ ‖u‖2∣∣2

=
∣∣〈Snu, u〉 − Re(λ) ‖u‖2

∣∣2 + |Im(λ)|2 ‖u‖4

≥ |Im(λ)|2 ‖u‖4 ,

hence
|Im(λ)| ‖u‖2 ≤ |〈(Sn − λI)u, u〉| .

This leads to
‖(Sn − λI)−1‖ ≤ 1

|Im(λ)|
.

�
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4.4 Approximate solutions

The approximate problem is the following equation for ϕn:

Snϕn − λϕn = πnf, (4.2)

For all n, the approximate equation (4.2) has a unique solution ϕn, given by

ϕn =
n∑
j=0

cjej,

for some scalars cj . Equation (4.2) reads as

n∑
j=0

cj [πnSej − λej] = πnf,

so that

n∑
j=0

cj

[
n∑
i=0

〈Sej, ei〉 ei − λej

]
=

n∑
i=0

〈f, ei〉 ei,

that is to say, the coefficients cj are obtained by solving the following linear system

(An − λI)xn = bn, (4.3)

where

An(k, j) :=

ˆ 1

0

ˆ 1

0

h(s, ς) ln |ς − s| ej(ς)ek(s)dςds,

bn(k) :=

ˆ 1

0

ek(s)f(s)ds.

As in [11, 38], we introduce a quadrature rule for computing An(k, j).

Let us consider the following change of variables

τ := ς − s, υ := ς + s,
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that is
ς =

τ + υ

2
, s =

−τ + υ

2
.

Letting

V (τ, υ) :=
1

2
h(
−τ + υ

2
,
τ + υ

2
) ln |τ | ej(

τ + υ

2
)ek(
−τ + υ

2
),

α(τ) := max(−τ, τ), β(τ) := min(2− τ, 2 + τ),

and

ϑ(τ) :=

ˆ β(τ)

α(τ)

V (τ, υ)dυ,

we get

An(k, j) :=

ˆ 1

−1
ϑ(τ)dτ.

Consider the following partition points of the interval [−1, 1]:

−1 + sj, −sj, sj, 1− sj, j = 0, 1, . . . ,m.

with
sj =

1

2
(
j

m
)q, j = 0, 1, . . . ,m.

Hence

An(k, j) =
4m∑
i=1

ˆ τi

τi−1

ϑ(τ)dτ,

where τ0, τ1, . . . τ4m are partition points in ascending order.

Letting

G(t) :=
4m∑
i=1

τi − τi−1
2

ϑ(
τi − τi−1

2
t+

τi − τi−1
2

),

we obtain

An(k, j) =

ˆ 1

0

G(t)dt.

In order to compute bn(k) accurately and effectively, we use the Legendre Gauss Lobatto
quadrature (cf. [26], pp. 331).

4.4.1 Convergence Analysis

Let ρ > 0 and Hρ (0, 1) be the classical Sobolev space, and let ‖.‖ρ denote its norm. (Cf.
[13], pp. 119.)
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As in [13] there exists c > 0 such that, for all x ∈ Hρ([0, 1],C),

‖(I − πn)x‖ ≤ cn−ρ‖x‖ρ. (4.4)

Theorem 4.7 Assume that f ∈ Hρ([0, 1],C), and

h(s, ς) = −h(ς, s), λ ∈ iR∗.

There exists a positive constant c, such that:

‖ϕn − ϕ‖ ≤
cn−ρ

|λ|
[(1 + 2‖S‖)‖ϕ‖ρ + ‖f‖ρ] ,

for n large enough.

Proof : We have

ϕn − ϕ = (Sn − λI)−1πnf − (S − λI)−1f

= (Sn − λI)−1πnf − (Sn − λI)−1f + (Sn − λI)−1f − (S − λI)−1f

= (Sn − λI)−1(πn − I)f + (Sn − λI)−1 [(S − λI)− (Sn − λI)] (S − λI)−1f

= (Sn − λI)−1 [(πn − I)f + (S − Sn)ϕ] .

But ∥∥(Sn − λI)−1
∥∥ ≤ 1

|λ|
,

and
(S − Sn)ϕ = (I − πn)Sϕ+ πnS(πn − I)ϕ,

and since ‖πn‖ = 1, then using (4.4), we get the desired result. �

Theorem 4.8 Assume that f ∈ Hρ([0, 1],C), and

h(s, ς) = h(ς, s).

There exists a positive constant c, such that:

‖ϕn − ϕ‖ ≤
cn−ρ

|Im(λ)|
[(1 + 2‖S‖)‖ϕ‖ρ + ‖f‖ρ] ,

for n large enough.
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Proof : Proceed in the similar manner as above, and using

∥∥(Sn − λI)−1
∥∥ ≤ 1

|Im(λ)|
,

we get the desired result. �

4.4.2 Classical Fredholm integral equation with logarithmic kernel
of the second kind

In this section, we turn our attention to the following classical Fredholm integral equation
with logarithmic kernel

ˆ 1

0

ln |ς − s|ϕ(ς)dς = λϕ(s) + f(s), 0 ≤ s ≤ 1.

We assume that this equation has unique solution inH.

Letting

Ku(s) :=

ˆ 1

0

ln |ς − s|u(ς)dς, u ∈ H, 0 ≤ s ≤ 1,

Kn := πnKπn.

We recall that K is compact fromH into itself, (see [11] pp. 8), further, ‖K‖ = 1 + ln 2,

(see [57], pp. 228). It is shown that the inverse operator (I−Kn)−1 exists and is uniformly
bounded for n large enough, (see [11] pp. 55).

As above, there exists a positive constant c, such that:

‖ϕn − ϕ‖ ≤ cn−ρ [(3 + 2 ln 2)‖ϕ‖ρ + ‖f‖ρ] ,

for n large enough.

4.5 Numerical Computations

In this section, we present some numerical examples to illustrate the theoretical results
obtained in the previous sections. For computations we use Gauss quadrature rule to solve
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the linear system. The errors of the projection method are presented for different kernels,
and for several values of n. In examples 4 and 5, we compare the present results with
previous results presented in many works related logarithmic singular integral equations.
We use the suggested method to solve the particular integral equations in all examples.
We evaluate An(k, j) and bn(k). Once the above matrix equation (4.3) is solved, we find
xn := [cj, j = 0, · · · , n], hence the solution ϕn is built through

ϕn(t) =
n∑
j=0

cj√
2j + 1

`j(t), 0 ≤ t ≤ 1.

The main advantages of the present method are that we give a new theoretical framework
for the logarithmic singular Fredholm integral equations by projections, the method is
applicable even for the particular cases mentioned above with a better accuracy and we
obtain new error estimate, which is small in comparison with other methods. However, it
may be difficult to use the present method for solving nonlinear integral equations.

Example 1

Let us first consider the generalized integral equation with logarithmic kernel (4.1) where
f is chosen such that the exact solution is

ϕ(s) = s(s− 1),

and

h(s, ς) = s2 − ς2, λ = 2.

It is clear that

h(ς, s) = −h(s, ς).

Table 4.1 shows the rate of convergence of the method.
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n ‖ϕ− ϕn‖

3 4.266× 10−3

4 8.575× 10−4

5 1.125× 10−4

6 4.751× 10−6

Table 4.1: Absolute errors for Example 1

Example 2

Let us consider the generalized integral equation with logarithmic kernel (4.1) where f is
chosen such that the exact solution is

ϕ(s) = s2 − s+ 1,

and

h(s, ς) = (s− 1)(ς − 1), λ = i.

It is clear that h(s, ς) = h(ς, s).

n ‖ϕ− ϕn‖

3 1.373× 10−5

4 3.735× 10−6

5 5.211× 10−7

5 6.283× 10−7

6 8.305× 10−8

Table 4.2: Absolute errors for Example 2

We present in Table 4.2 the corresponding absolute errors for the example 2.
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Example 3

Here, we consider the following integral equation with logarithmic kernel

u(s)−
ˆ 1

0

ln |s− t|u(ς)dς = (1− ln(s)es + Ei (s) + es−1 ln(1− s)− Ei (x− 1))e−s.

with the exact solution

u(s) = e−s.

We note that Ei (.) is the exponential integral function, which is defined as:

Ei (s) :=

ˆ ∞
−s

e−t

t
dt.

n ‖ϕ− ϕn‖2

3 1.94539× 10−4

4 1.22031× 10−4

5 6.32020× 10−5

6 1.47377× 10−5

7 8.57667× 10−6

Table 4.3: Absolute errors for Example 3

The corresponding absolute errors for the example 3 are presented in Table 4.3.

Example 4: (Cf. [18] pp. 536)

In [18], the author has used the modified quadrature method and the repeated Simpson’s
rule with step h := 1

n
to approximate the solution of the following Fredholm integral

equation with logarithmic kernel of the second kind

u(s)−
ˆ 1

0

ln |s− t|u(ς)dς =
3

2
s− 1

2
ln(s)s2 +

1

2
ln(−s+ 1)s2 +

1

4
− 1

2
ln(−s+ 1).
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with the exact solution

u(s) = s.

As in [18], we use a computer working to 10 decimal digits. We compare his results with

s |ϕ(s)− ϕn(s)| in [18] |ϕ(s)− ϕn(s)| for the present method

0 3.6× 10−3 4.9× 10−10

0.25 7.5× 10−5 4.× 10−10

0.5 3.6× 10−12 3.1× 10−13

0.75 7.5× 10−5 0.
1 3.6× 10−3 1.4× 10−10

Table 4.4: Absolute errors for Example 4

our results for n = 4 ( see Table (4.4).

Example 5: (Cf. [11] pp. 117)

The author of [11] has introduced the Nyström method to numerically solve the following
integral equation with logarithmic kernel of the second kind

u(s)−
ˆ 1

0

ln |s− t|u(ς)dς = es + ln(s)− esEi (−s)− e1 ln(1− s) + esEi (1− s),

with the exact solution

u(s) = es.

Numerical results of the present method are given in Table 4.5. In [11], the corresponding
uniform norm of the error is 1.16 × 10−3, for n = 10. However, only at n = 6, the
corresponding uniform norm of error by the present method is 2.1× 10−5.
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n ‖ϕ− ϕn‖2

2 6.29377× 10−3

3 5.28887× 10−3

4 3.31887× 10−4

5 1.68863× 10−5

6 5.00531× 10−6

Table 4.5: Absolute errors for Example 5

4.6 Conclusion

In this paper, we have proposed a projection method to numerically solve generalized
Fredholm integral equation with logarithmic kernel of the second kind. For our analysis
we used new techniques via spectral theory. The proposed method is based on the shifted
Legendre polynomials. We feel that the present method can be used to solve other classes
of integral and integro-differential equations.



Chapter 5

A new class of Fredholm integral
equations of the second kind with non
symmetric kernel: Solving by wavelets
method

This chapter is the subject of the following publication: A. Mennouni, N.E. Ramdani and
Kh. Zennir A New Class of Fredholm Integral Equations of the Second Kind with Non

Symmetric Kernel: Solving by Wavelets Method, Boletim da Sociedade Paranaense de
Matemática, 2018.

Abstract

In this chapter, we introduce an efficient modification of the wavelets method to solve a
new class of Fredholm integral equations of the second kind with non symmetric kernel.
This method based on orthonormal wavelet basis, as a consequence three systems are
obtained, a Toeplitz system and two systems with condition number close to 1. Since the
preconditioned conjugate gradient normal equation residual (CGNR) and preconditioned
conjugate gradient normal equation error (CGNE) methods are applicable, we can solve
the systems in O(2n log(n)) operations, by using the fast wavelet transform and the fast
Fourier transform.

5.1 Introduction

Integral equation perform role effectively in many fields of science and engineering. Re-
cently, there are a lot of orthonormal basis function that have been used to find an approx-

50
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imate solution, mention Fourier functions [6], Legendre polynomials [79] and wavelets
[50, 54, 61, 69, 70, 73, 74, 103]. Although, the wavelet bases is one of the most interest-
ing basis, especially for large scale problems, in which the kernel can be constituted as
sparse matrix.
We reminder that usually it is difficult to construct the exact solution of linear and non-
linear Fredholm integral equation via the well-known methods. A lot of different useful
methods have been developed to approximate the solutions of these equations, for in-
stance collocation methods are studied in [67, 95], spectral methods are given in [62, 72],
transform methods are introduced in [5, 15, 92], and homotopy perturbation method is
presented in [41] and others.
More recently, the multiresolution analysis has been considered by many researchers (see
[51, 54, 70, 73, 74, 109]). For instance, wavelets method play a key role to find the unique
solution for some Fredholm integral equations.
In the present chapter, we present wavelet basis to find the approximate solution of the
following Fredholm integral equation of second kind:

u(t)− 2β
ˆ +∞

0

k(2αs− 2αt)u(t)dt = f(t), s ∈ [0,+∞[, α > 0, β ∈ R, (5.1)

where u(.) is the unknown function, f(.) is the right hand side and k(s− t) is a non sym-
metric kernel.

A considerable part of this proposal is based on a study by [Jin and Yuan,1998], in
which the authors focused on the first kind with symmetric kernel. In contrast to their
work, we focused on the second kind with non symmetric kernel and as we know that
the symmetric property is necessary condition to apply Conjugate Gradient method and
in our case we don’t have this property so we dealt with the equivalent two systems that
have the symmetric property.

The outline of this chapter is as follows: In section 2, we describe the basic formula-
tion of wavelets and preliminary which are necessary for our development. Section 3, is
devoted to the discretization of the integral equation. In section 4, we study the condition
number of the matrix operator and we give the operation cost to solve the systems.
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5.2 Preliminaries

5.2.1 Wavelet Bases

The basic tool for our method to approximate the solution of (5.1) is wavelet bases. For
the convenience of the reader, we recall here some basic concepts and well-known results
concerning the multiresolution analysis (MRA for short). As in [35, 51], let us consider
a function ϕ ∈ L2(R), called the father wavelet (or scaling function), with a compact
support [0, a], a > 0. We assume that

ϕ(.− k), k ∈ Z (5.2)

form an orthonormal sequence in L2(R). Let V0 be the closed linear subspace of L2(R)

generated by (5.2). The multiresolution analysis (MRA), depending on the ϕ(.) consists
of:

(i)
f(.) ∈ V0 if and only if f(2j.) ∈ Vj+1 for all j ∈ Z;

(ii)
· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · ;

(iii) ⋃
j∈Z

Vj = L2(R) and
⋂
j∈Z

Vj = 0;

(iv) The sequence (5.2) forms a Riesz basis of V0.

Let Wj be the orthogonal complement of Vj in Vj+1, i.e.,

Vj+1 = Vj ⊕Wj.

According to the above definition, we have

+∞⊕
−∞

Wj = L2(R).

Following [32, 51, 85], there exists at least one function ψ ∈ W0 such that

ψ(.− k), k ∈ Z
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is an orthonormal basis of W0. The function ψ is called the mother wavelet.

A wavelet φ ∈ L2(R) is called orthonormal if the family of functions generated from
φ by

φj,k(s) = 2j/2φ(2js− k), j, k ∈ Z,

is orthonormal, that is,
〈φj,k, φm,n〉 = δj,mδk,n.

Let us introduce the following two wavelet sequences:

ϕj,k(s) = 2j/2ϕ(2js− k), j, k ∈ Z,

and
ψj,k(s) = 2j/2ψ(2js− k), j, k ∈ Z.

We recall that

〈ψm,k, ϕm,l〉 = 〈ψn,k, ϕn,l〉 , for all m,n, k, l ∈ Z.

Therefore, the wavelet sequence {ψj,k} forms a Riesz basis of Hs(R) for s ≥ 0.

Assume that B1 and B2 two bases in Vn with:

B1 = (ϕn,k(.))k, k ∈ Z,

and
B2 =

⋃
−∞<j≤n−1

(ψj,k(.))k, k ∈ Z.

We note that B1 and B2 follow from the father wavelet ϕ and the mother wavelet ψ,
respectively.

5.2.2 Wavelet Transform

Definition 5.1 (Continuous wavelet transform) The continuous wavelet transform of the

mother wavelet ϕ is defined by

(Sϕf)(j, k) =

ˆ +∞

−∞
f(t)ϕj,k(t)dt = 〈f, ϕa,b〉.

Definition 5.2 (Discrete wavelet transform) The discrete wavelet transform of the fa-
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ther wavelet ψ is defined by

(Sψf)(j, k) =

ˆ +∞

−∞
f(t)ψj,k(t)dt = 〈f, ψj,k〉.

5.2.3 Condition number

Condition number of a matrix gives the information about the singularity of the corre-
sponding matrix.

Definition 5.3 (Condition number) Let A be an n × n invertible matrix. Define κ(A),

the condition number of A, by

κ(A) = ‖A‖ ˙‖A−1‖.

The condition number of an n×n invertible matrixA is defined as the ratio of its maximum
singular value to its minimum singular value, that is, for

λM := max {|λ| , λ is an eigenvalue of A} ,

and
λm := min {|λ| , λ is an eigenvalue of A} ,

we have
κ(A) =

λM
λm

.

5.2.4 Preconditioning and diagonal scaling

A preconditioner P of a matrix A is given by P−1A which its condition number smaller
than the original matrix. In order to solve linear systems of the form Ax = b, precondi-
tioners are used for numerous iterative methods. Then, while the condition number of the
matrix A decreases, for a lot of iterative linear solvers the rate of convergence increases.
Hence, preconditioning is a very effective tool uses to reduce the condition number of the
matrix A small.

Diagonal scaling (DS) is a special case of preconditioning and it is an efficient tool
used to reduce the condition number of matrix A for ensuring the convergence and the
accuracy of the first method. In our case, in order to reduce the condition number of the
matrix A we apply the diagonal matrix D, in a way to speed up the method.
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5.2.5 Conjugate Gradient Method

Conjugate Gradient (CG) method used to solve linear system of the formAx = b to obtain
a quick convergence when κ(A) is smaller.

Generally, Conjugate Gradient method used for large problems in order to attain a
modest accuracy in a reasonable number of iterations.

Conjugate gradient normal equation residual and error

The conjugate gradient method can be applied on the normal equations. The CGNE and
CGNR methods are variants of this approach that are the simplest methods for non sym-
metric or indefinite systems. Since other methods for such systems are in general rather
more complicated than the conjugate gradient method, transforming the system to a sym-
metric definite one and then applying the conjugate gradient method is attractive for its
coding simplicity.
CGNR solves the system

(ATA)x = AT b.

CGNE solves the system
(AAT )y = d.

5.3 Discretization of integral equation

Let Hs(R) and Hs′(R) be two Sobolev spaces, with s ≥ s′ ≥ 0. Letting

(Ku)(s) := 2β
ˆ +∞

0

k(2αs− 2αt)u(t)dt, (5.3)

we assume that k(2a.− 2a.) ∈ Hs(R) is continuous non symmetric kernel.

The integral operator K from Hs(R) into Hs′(R) is compact. For a given function
f ∈ Hs′(R), we try to find u ∈ Hs(R) such that Equation (5.1) can be rewritten in
operator form as follows:

(I −K)u = f

and we assume that 1 is not an eigenvalue of K. Hence, the equivalent variational form
follows:  find u ∈ Hs(R) such that

B(u, v) = F (v), for all v ∈ Hs(R),
(5.4)
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where

B(u, v) = 〈u, v〉 − 〈Ku, v〉 =

ˆ +∞

0

u(s)v(s)ds−
ˆ +∞

0

ˆ +∞

0

k(s− t)u(t)v(s)dsdt,

and

F (v) =

ˆ +∞

0

f(s)v(s)ds.

Since
(Ku, v) ≤ β‖Ku‖Hs′‖v‖Hs′

it follows that (Ku, v) is a continuous bilinear form on Hs′(R)×Hs(R).
We assume that

(Ku, u) ≥ ρ‖u‖2Hs , for some constant ρ > 0.

Hence, (Ku, v) is coercive form on Hs′(R)×Hs(R).

5.3.1 Projection of (I − A) with respect to B1 and B2

• Let the matrix (I −An) relative to the basis B1, which is is the projection of the matrix
(I − A) on the subspace Vn.

The elements of the matrix (I − An) are given as follows

tp,q = 〈ϕn,p, ϕn,q〉 − 〈Kϕn,p, ϕn,q〉 (5.5)

=

ˆ +∞

0

ϕn,p(s)ϕn,q(s)ds− 2β
ˆ +∞

0

ˆ +∞

0

k(2αs− 2αt)ϕn,p(t)ϕn,q(s)dtds.

For all u, v ∈ Hs(R), we suppose that un, vn are the projections of u, v on Vn respectively.
Which implies that (5.4) becomes

ˆ +∞

0

un(s)vn(s)ds−
ˆ +∞

0

ˆ +∞

0

k(s− t)un(t)vn(s)dtds =

ˆ +∞

0

f(s)vn(s)ds (5.6)

Let
un =

∑
p

xpϕn,p and vn = ϕn,q, for all q ∈ Z. (5.7)

By substituting (5.7) into (5.6), we get a linear system given as follows

(I − T∞)x = b, (5.8)
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where (I − T∞)p,q = tp,q is given by (5.5), and

(x)p = xp, (b)q =

ˆ +∞

0

f(s)ϕn,q(s)ds.

We mention that ϕ has the compact support [0, a], which leads us to tp,q = tp−q.

tp,q =

ˆ +∞

0

ϕn,p(s)ϕn,q(s)ds−
ˆ +∞

0

ˆ +∞

0

2βk(2αs− 2αt)ϕn,p(t)ϕn,q(s)dtds

= δp,q − 2β+n
ˆ +∞

0

ˆ +∞

0

k(2αs− 2αt)ϕ(2nt− p)ϕ(2ns− q)dtds

= δp,q − 2β+n
ˆ 2−n(a+p)

2−np

ˆ 2−n(a+q)

2−nq

k (2αs− 2αt)ϕ(2nt− p)ϕ(2ns− q)dtds

= δp,q − 2β × 2−n
ˆ a

0

ˆ a

0

k
[
2−n × 2α(s− t+ p− q)

]
ϕ(t)ϕ(s)dtds

= δp,q − 2−n+β
ˆ a

0

ˆ a

0

k
[
2−n+α(s− t+ p− q)

]
ϕ(t)ϕ(s)dtds

= tp−q.

Hence (I − T∞) is a Toeplitz matrix.

• The matrix representation of (I−An) relative to the basis B2 has the elements given
as follows

ap,q,i,j = 〈ψp,qψi,j〉 − 〈Kψp,q, ψi,j〉 (5.9)

=

ˆ +∞

0

ψp,q(s), ψi,j(s)ds− 2β
ˆ +∞

0

ˆ +∞

0

k(2αs− 2αt)ψp,q(t)ψi,j(s)dtds,

for −∞ < p, i < n and −∞ < q, j < +∞.

Writing

un =
∑
p,q

xp,qψp,q, and vn = ψp,q, −∞ < p < n, for all q ∈ Z. (5.10)

We substitute (5.10) into (5.6), we obtain the linear system

(I − A∞)x = d, (5.11)

where (I−A∞)p,q,i,j = ap,q,i,j is unsymmetric given by (5.9), x = (xp,q)
T and d = (dp,q)

T
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are vectors with dp,q =

ˆ +∞

0

f(s)ψp,q(s)ds.

5.4 Solving the linear systems

5.4.1 Condition number

From the previous section we obtained two different linear systems. One of them is the
Toeplitz system (5.8) (relative to B1) and the other one is the systems (5.11) (relative to
B2).

Let us focus on studying the condition number of the last linear system. Actually,
we will develop the idea of Zhang [109] and in order to do that. Firstly, we present the
following Lemma which plays an important role for reducing the condition number of the
matrix.

Lemma 5.1 ([51, 85, 109]) Let

f =
∑
j,k

〈f, ψj,k〉ψj,k.

Then f ∈ Hs(R) if and only if∑
j,k

|〈f, ψj,k〉|2(1 + 4js) < +∞, −r < s < r,

where r is the regularity of the MRA. Moreover, since {ψj,k} is a Riesz basis of Hs(R),

we also have

C1

∑
j,k

|〈f, ψj,k〉|2(1 + 4js) ≤ ‖f‖2Hs ≤ C2

∑
j,k

|〈f, ψj,k〉|2(1 + 4js), (5.12)

where C2 ≥ C1 > 0 are constants.

Secondly, we know that (I − A∞) in system (5.11) is unsymmetric. Then, system
(5.11) becomes

(I − A∞)T (I − A∞)x = (I − A∞)Td, (5.13)

(I − A∞)(I − A∞)Ty = d, x = (I − A∞)Ty. (5.14)
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Now, let φ ∈ Vn with φ =
∑

j,k wj,kψj,k. We have

B1(φ, φ) :=
∑
j,k

∑
i,`

wj,kwi,`
[
〈(I − A∞)T (I − A∞)ψj,k, ψi,`〉

]
= wT (I − A∞)T (I − A∞)w, (5.15)

and

B2(φ, φ) :=
∑
j,k

∑
i,`

wj,kwi,`
[
〈(I − A∞)(I − A∞)Tψj,k, ψi,`〉

]
= wT (I − A∞)(I − A∞)Tw, (5.16)

wherew := (wj,k)
T is a vector. By the assumption thatB(u, v) ∈ {B1(u, v), B2(u, v)}

is a continuous elliptic bilinear from on the space Hs(R)×Hs(R), i.e.,

B(u, v) ≤ β‖u‖Hs · ‖v‖Hs ,

B(u, u) ≥ α‖u‖2Hs .

Since φ ∈ Vj , we get φ ∈ Hs.

Consequently,

C3‖φ‖2Hs ≤ B(φ, φ) ≤ C4‖φ‖2Hs , for some constants C4 ≥ C3 > 0. (5.17)

Condition number of system (5.15)

From (5.15) and (5.17), we get

C3‖φ‖2Hs ≤ wT (I − A∞)T (I − A∞)w ≤ C4‖φ‖2Hs .

By using (5.12), we obtain

C1

∑
j,k

|〈w,ψj,k〉|2(1 + 4js) ≤ ‖φ‖2Hs ≤ C2

∑
j,k

|〈w,ψj,k〉|2(1 + 4js),

then
C1

∑
j,k

|wj,k|222js ≤ ‖φ‖2Hs ≤ C2

∑
j,k

|wj,k|2 + C2

∑
j,k

|wj,k|222js.

Thus,
C1

∑
j,k

|2jswj,k|2 ≤ ‖φ‖2Hs ≤ C0

∑
j,k

|2jswj,k|2,
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so that

C3C1

∑
j,k

|2jswj,k|2 ≤ C3‖φ‖2Hs ≤ wT (I−A∞)T (I−A∞)w ≤ C4‖φ‖2Hs ≤ C4C0

∑
j,k

|2jswj,k|2.

Consequently,

C5

∑
j,k

|2jswj,k|2 ≤ wT (I−A∞)T (I−A∞)w ≤ C6

∑
j,k

|2jswj,k|2, for some constants C5 ≥ C6 > 0.

By using diagonal scaling D, we get

C5‖w‖2 ≤ wTD−1/2(I − A∞)T (I − A∞)D−1/2w ≤ C6‖w‖2,

where ‖ · ‖ is the L2-norm. In the end, the condition number of (I − A∞)T (I − A∞) is
close to 1, that is,

k(D−1/2(I − A∞)T (I − A∞)D−1/2) = O(1).

Condition number of system (5.16)

From (5.16) and (5.17), we get

C3‖φ‖2Hs ≤ wT (I − A∞)(I − A∞)Tw ≤ C4‖φ‖2Hs .

By following the same steps of the previous system we obtain that the condition number
of (I − A∞)(I − A∞)T after a diagonal scaling is

k(D−1/2(I − A∞)(I − A∞)TD−1/2) = O(1).

5.4.2 Operation cost of the corresponding systems

In order to numerically solve the system (5.8), we use a finite interval. For this reason,
let us consider the finite section Tn of T∞. Thus, the Toeplitz system (5.8) becomes an
n− by − n system

(I − Tn)x = b. (5.18)

Now, we introduce the relation between (I − Tn) and (I − An), which is similar to the
one given by the authors of [51] as follows

(I − An) = Wn(I − Tn)W−1
n ,
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where (I −An) is the finite section of (I −A∞) and Wn is a finite section of W which is
the wavelet transform matrix between two orthonormal wavelet bases B1 and B2.
Hence, we solve the Toeplitz system (5.8) by solving its equivalent form

(
Wn(I − Tn)W−1

n

)
Wnx = Wnb,

i.e.,
(I − An)x̃ = b̃, (5.19)

where x̃ := Wnx and b̃ := Wnb.

Now, we are going to solve the system (5.19). However, the matrix (I −An) does not
have a small condition number. Then we would like to apply PCG method with diagonal
preconditioner Dn in order to obtain a new matrix with a smaller condition number. Un-
fortunately, (I −An) does not have the symmetric property. That means the PCG method
will not work. Thus, two systems are obtained with symmetric property.

(I − An)Tn (I − An)x̃ = (I − An)T b̃, (5.20)

(I − An)(I − An)T ỹ = b̃, x̃ = (I − An)T ỹ. (5.21)

with (I − An)T (I − An) and (I − An)(I − An)T are symmetric.

Now, in order to solve the system (5.19), we solve its two equivalent systems (5.20)

and (5.21). We know that the matrices (I − An)T (I − An) and (I − An)(I − An)T do
not have a small condition number. Thus we apply conjugate gradient normal equation
residual CGNR method to (5.20) and conjugate gradient normal equation error CGNE
method to (5.21) with diagonal preconditioner Dn in order to obtain a new matrices with
a smaller condition number.

More precisely, by applying the diagonal preconditioner to (5.20), we have then the
following preconditioned system

D−1n (I − An)T (I − An)x̃ = D−1n (I − An)T b̃, (5.22)

with the condition number

k
(
D−1n (I − An)T (I − An)

)
= k

(
D−1/2n (I − An)T (I − An)D−1/2n

)
= O(1).

We apply again the diagonal preconditioner to (5.21), we get the following precondi-
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tioned system

D−1n (I − An)T (I − An)ỹ = D−1n b̃, x̃ = (I − An)T ỹ, (5.23)

with the condition number

k
(
D−1n (I − An)(I − An)T

)
= k

(
D−1/2n (I − An)(I − An)TD−1/2n

)
= O(1).

Hence, we can solve the system (5.22) by applying the conjugate gradient normal
equation residual CGNR method and (5.23) by applying the conjugate gradient normal
equation error CGNE method which give as a linear convergence rate (see[42]).

Thus, the equivalent form of (5.22) is

Ãny1 = z1, (5.24)

where
y1 := Dnx̃, z1 := D−1n (I − An)T b̃,

and
Ãn := D−1n (I − An)T (I − An)D−1n .

The equivalent form of (5.23) is

Ã′ny2 = z2, (5.25)

where
y2 = Dnỹ, z2 = D−1n b̃,

and
Ã′n = D−1n (I − An)(I − An)TD−1n .

In each iteration of CGNR and CGNE methods, requires computing (I −An)Tv1 and
(I − An)v2 for some vectors v1 and v2 respectively, and then solving (5.24) and (5.25)

(see[98]).

Well, after some updates to CG method, we can solve the systems Dnx̃ = y1 and
Dnỹ = y2 respectively.
For solving the above systems, we use the algorithm presented in [42].
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• For the case (I − An)Tv1, since

(I − An) = Wn(I − Tn)W−1
n ,

we get
(I − An)Tv1 = (W−1

n )T (I − T Tn )u1,

where u1 = W T
n v1, and by using FWT we could then compute u1 in O(n) operations

([21, 98]).

In addition, by using FFT we could then compute (I−Tn)u1 in O(n log n) operations
([28, 104]).

In the end, to solve (I − An)v1 = (W−1
n )T (I − Tn)u1 we use FWT and Strang’s al-

gorithm given in [104]. Therefore, the operation cost decreased to O(n log n). Regarding
the system Dnx̃ = y1 we just need O(n) operations.

Hence, the cost per iteration for (5.20) is O(n log n).

• For the case (I − An)v2, by similar way as above, we get the cost per iteration for
(5.21) is O(n log n).

Consequently, the total cost per iteration is O(2n log n).
Finally, we can solve the systems (5.18), (5.19) in O(2n log n), as a result of the indepen-
dence of the iterations and n.



Conclusions and perspectives

In this thesis, we are concerned with the resolution of some classes of Fredholm integral
and integro-differential equations, where we presented modified projection methods in
order to solve them and we illustrated our results by given some numerical examples.

The aim of our work is to construct approximate solution of linear integral and integro-
differential equations using projection methods based on several orthogonal polynomials.
This work may be extended to nonlinear integral and integro-differential equations and
other classes of singular integral equations.
As a future work, under which conditions the previous methods could be applied for
Volterra integral equations. These methods can be also applied to nonlinear integral and
integro-differential equations, but some modifications are required.

Specifically, we hope to use the present methods for approximate the solution of the
integral equations of the form

a(s)u(s) + b(s)
m∑
k=1

ˆ s

a

Hk(s, t, ψ(t))u(t)dt = f(s), m ∈ N∗, a ≤ s ≤ b,

a(s)u(s) + b(s)
m∑
k=1

ˆ s

a

Hk(s, t, ψ(t)) ln |s− t|h(s, t)u(t)dt = f(s), m ∈ N∗, a ≤ s ≤ b,

a(s)u(s) +
b(s)

π

ˆ 1

−1

h(s, t)k(s, t, ψ(t))

s− t
u(t)dt = f(s), , 0 ≤ s ≤ 1.
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Abstract 

      The main objective of this thesis is to study some classes of integral and integro-

differential equations with regular and singular kernels. We apply projection methods 

based on different orthogonal polynomials to solve Fredholm integral equation of the 

second kind; we also apply collocation method based on the airfoil polynomial to 

numerically solve an integro-differential equation of second order. We introduce a 

wavelets method to solve a new class of Fredholm integral equations of the second kind 

with non symmetric kernel.  

Key words:  Integral equations, integro-differential equations, projection methods, 

collocation methods. 

 

Résumé 

      L'objectif principal de cette thèse est d'étudier quelques classes des équations 

intégrales et intégro-différentielles avec des noyaux singuliers et réguliers. Pour 

résoudre les équations intégrales de Fredholm de la deuxième espèce, nous appliquons 

les méthodes de projections basées sur différents polynômes orthogonaux. Nous  

appliquons aussi  des méthodes de collocations basées sur les polynômes Tchebychev 

pour résoudre numériquement des équations intégro-différentielles de second ordre. 

Nous introduisons une méthode des ondelettes pour résoudre une nouvelle classe 

d'équations intégrales de Fredholm du second type avec un noyau non symétrique. 

Mots clés: Equations intégrales, équations intégro-différentielles, méthodes de 

projection, méthodes de collocation. 

 

 ملخص:

تفاضلية بنواة مفردة -المعادلات التكاملية و التكامل اصنافالهدف الرئيسي لهذه الأطروحة هو دراسة بعض       

 مختلف علىالمعتمدة الإسقاط  من النوع الثاني نطبق طرق حل المعادلات التكاملية لفريدهولمل .منتظمةو نواة 

لمعادلات احل ل شيبيشيفالحدود  اتلى كثيرع لمعتمدةا التجميع ايضا طرق قبطن .كثيرات الحدود المتعامدة

جديد من المعادلات التكاملية  صنفطريقة المويجات من اجل حل  نولد .من الدرجة الثانية عدديا تفاضلية-التكامل

 .لفريدهولم من النوع الثاني بنواة غير متناظرة

 .تجميعالطرق  ،طرق الاسقاط ،تفاضلية-المعادلات التكامل ،المعادلات التكاملية  الكلمات المفتاحية:
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