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Abstract

This thesis presents a full wave analysis of microstrip patch embedded in a multilayered
medium containing isotropic or anisotropic dielectrics and chiral substances. The analysis is
based on the derivation of the dyadic Green’s function in the spectral domain. Then the
electric field integral equation is formulated, and solved by the method of moments. The
resonant frequency and the bandwidth of the antenna are computed by finding the complex
roots of the determinant of the impedance matrix. Stationary phase theorem is used to
compute the far-field and thus determining the antenna radiation pattern. A parametric
study is achieved to investigate the influence of the patch dimensions and the substrate
characteristics, including the effect of anisotropy, on the resonance and the radiation
characteristics of the microstrip antenna. The mathematical details of the formulation are
presented. The basic theory involved in the modeling of the electromagnetic field with chiral
media is provided, and the different approaches proposed in the literature are mentioned.
The influence of chirality on the resonant frequency, bandwidth and the far field is shown.
Finally, an introduction into the modeling of the different feeding techniques and the effects

of two feeding techniques on the antenna performance is presented.



Résumé

Cette thése présente une analyse rigoureuse d’un résonateur patch noyé dans un milieu
multicouche qui contient des matériaux isotropes, ou anisotropes et des substances chiraux.
L'analyse est basée sur le calcul de la fonction dyadique de Green formulée dans le domaine
spectral. Ensuite, I’équation intégrale du champ électrique est formulée. La méthode des
moments est utilisée pour résoudre I’équation intégrale. La fréquence de résonance et la
bande passante sont calculées en cherchant les racines complexes du déterminant de la
matrice d’'impédance. Le théoréme de phase stationnaire est exploité afin de déterminer le
champ électrique lointain, ce qui permet la détermination du diagramme de rayonnement.
Les effets des différents parametres de la structure sur les caractéristiques de résonance et
rayonnement de I'antenne microbande, ont été analysés, notamment les dimensions du
patch et les caractéristiques de substrat en plus de l'effet de I'anisotropie. Les détails
mathématiques de la modélisation ont été présentés. La théorie qui décrit I'interaction du
champ électromagnétique avec les milieux chiraux, est présentée. En plus, les approches
proposées dans la littérature pour modéliser ce genre des milieux, ont été mentionnées.
L'influence de chiralité sur la fréquence de résonnance, la bande passante et le champ
rayonné est présentée. Finalement, une introduction est présentée sur la modélisation des
différentes méthodes d’excitation et I'influences de deux techniques sur la performance de

I’antenne microbande.
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Introduction

The first microstrip patch antennas have been fabricated on single layer isotropic
substrates. The emerging trend toward multilayered configurations was imposed by many
practical needs. For instance, in wireless applications, cover layers have been used for
protection against environmental effects. Also in microwave circuit applications where
microstrip antennas are integrated with feed networks and active devices, multilayered
substrates are used extensively [1] — [3]. The inherent narrow bandwidth of microstrip
antennas requires modeling methods capable of accurately predicting the resonant
frequency and examining the possible effects of different parameters on the antenna
performance. The available methods for such task are based on full wave approach and they
are implemented using numerical methods. These methods account rigorously for all
radiation, coupling and loss mechanisms. Furthermore, they are powerful tools for modeling

arbitrarily shaped radiating elements, arrays and different feeding techniques [4], [5].

Early substrates used for microstrip antenna technology, were isotropic. However, it was
proven that even the dielectrics considered isotropic, posses some amount of anisotropy. In
addition to the fact that, some artificial anisotropic materials are intentionally used to
achieve certain operational characteristics. Therefore, an accurate characterization of the
effect of anisotropy on the antenna performance is needed [6] — [8]. Chiral materials gained
a significant interest in electromagnetics community, where a great amount of research has
been accomplished on the theory of electromagnetic wave propagation in chiral media. The
research on chiral media, which is a bi-isotropic media, has been accomplished in the course

of the greater context of bi-anisotropic materials [9] — [12]. This thesis presents an efficient

9



algorithm, based on the use of spectral dyadic Green’s function and the method moments,
for the analysis of microstrip patch embedded in a multilayered medium containing

isotropic, anisotropic and chiral materials.

The thesis is organized in the following manner:

The first chapter presents an overview on two broad categories of methods developed for
modeling RF and microwave devices. These categories are, simplified or reduced analysis
based methods, and full wave or rigorous analysis based methods. Reduced-analysis
approaches are based on the use of simple physical models, where simplicity and physical
insight are granted at the expense of accuracy. These methods are generally, of a limited
scope. In this chapter, transmission line, cavity and multiport connection models are
described and their features are presented. Then, a comparison is made between these
models in terms of different criteria. Full wave approaches are based on the use of numerical
methods; these methods sacrifice simplicity and physical insight at the expense of accuracy.
These methods are the core algorithms of almost all CAD commercial microwave packages.
The Numerical methods presented in this chapter, are classified according to the kind of

equations usually, these methods are applied to. Thus, we will have two categories:

Differential equation methods and integral equation methods, finite element method, finite
difference and transmission line matrix methods are treated under differential equation
methods. Whereas, the method of moments, the finite integration technique and partial
element equivalent circuit methods, are treated under integral equation methods. At the
end of this chapter, the most popular methods are compared in terms of their performance

and features. Since the method of moments requires the formulation of the appropriate
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Green’s function, a section is added on the mathematical concept, the types and the

methods used to derive Green’s functions.

In chapter 2, an efficient algorithm based on the use of spectral dyadic Green’s function and
the method moments, is provided. This model is used to characterize a microstrip patch
embedded in a multilayered medium, where the dielectric can be isotropic or anisotropic.
The resonant frequency and the bandwidth are computed by seeking the complex roots of
the determinant of the impedance matrix. The radiated field is calculated using the
stationary phase theorem. The mathematical features of the present formulation, makes it
an efficient tool for analyzing stratified media. The use of the concept of transfer matrix to
represent the layered medium is of a great importance for two main reasons; it allows the
formulation of the Green’s function easily, furthermore, the characteristics of each layer are
easily included. A parametric study on the influence of the patch dimensions, the
permittivity, permeability and the thickness of the substrate, is provided. Also the effect of

electric and magnetic anisotropy is investigated.

Chapter 3 provides a survey on the theoretical models proposed for the study of
electromagnetic wave propagation in a chiral media, and the refection and scattering from
achiral-chiral interface. A comprehensive formulation describing the process yielding the
derivation of dyadic Green’s function in the Fourier transform domain. The process starts
from the constitutive relations of a chiral media, and proceeds until the transverse
components of the electric and magnetic fields are written, in spectral domain, in terms of
longitudinal components of right- and left-circularly polarized waves. Enforcing boundary
conditions yields the derivation of the corresponding Green’s function. The effect of chirality

on resonant frequency, bandwidth and the far field, is shown.
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In the last chapter, an overview is presented on the characteristics and the mathematical
formulation of popular feeding techniques, namely microstrip line, coaxial probe, proximity
coupling and aperture coupling feeding techniques. The influence of the parameters of two
feeding techniques is presented. Finally, summary and discussion results are listed in the

conclusion.
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Chapter 1: Computational Electromagnetics

1.1. Introduction

Electromagnetic analysis treats the interaction of the electromagnetic fields with objects and
the surrounding environment. The analysis approaches can be divided into two broad
categories, reduced or simplified analysis and full wave analysis. In the reduced-analysis,
some approximations are made in the description of the problem; these simplifying
assumptions allow the use of simple physical models where the analysis results are close to
those of the original problem. Simplified analysis usually employs analytical methods, and
these methods maintain simplicity at the expense of accuracy or versatility. On the other
hand, full wave analysis involves the use of numerical methods. These methods maintain

rigor and accuracy at the expense of computational simplicity.

The applied methods in the modeling of the electromagnetic fields and devices can be

classified as [13], [14]:

e Analytical methods: where closed-form solutions are obtained through the use of
analytical formulas.

e Semi-analytical methods: which provide explicit solutions requiring final numerical
evaluation (such as complicated integrals, infinite series ...)

e Numerical methods: these methods transform the integral or differential equations
of Maxwell (or an equation derived from them), into an approximate discrete

formulation (matrix equation) solved directly (by matrix inversion) or iteratively.

We will start by describing the popular analytical models as applied for microstrip antenna
structures. These models can be classified into three main models: transmission line model,

cavity model and multiport network model.
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Chapter 1: Computational Electromagnetics

1.2. Analytical models
1.2.1. Transmission line model

The transmission line model is the first technique employed to analyze a rectangular
microstrip antenna by Munson in 1974 [14]. In this model, the microstrip patch antenna is
assimilated to a section of a transmission line of length L where its characteristic impedance
and the propagation constant are determined by the patch size and the substrate
parameters. The edges of the patch are classified into radiating and non-radiating edges
such as the radiating edges are associated with slow (uniform) field variations along their
lengths, whereas non-radiating edges have an integral multiple of half-wave length
variations along each edge which results in almost complete cancellation of the radiated
power at these edges [14]. Usually, the radiating edges are considered as two narrow
apertures (slots), each of width W, height d (representing the substrate thickness) separated
by a distance L Fig.1. Each of the two slots is represented by a parallel equivalent admittance

Y with a conductance G and a susceptance B Fig.2.

AA4E vy

yvvy A444

Fig. 1 Radiating and non-radiating edges of the patch
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Chapter 1: Computational Electromagnetics

T
—
X

(a) (b)

Fig. 2 (a) Rectangular patch, (b) Transmission line equivalent

Where Y, is the characteristic admittance (it is related to the characteristic impedance Z. by
Y. = 1/Z.). The conductance G is associated with the radiated power, and the susceptance B
is related to the stored energy in the fringing field near the edge [5], [14]. The resonant
frequency is function of the ratio L/d. The determination of the resonant frequency requires
the computation of the effective length of the patch which is a result of the fringing, and the
effective dielectric constant which accounts for the Quasi-TEM nature of the wave in the
microstrip antenna structure. This model is conceptually simple, however, it is very
approximate and the model is applicable only for a rectangular patch, besides, the effects of

substrate on radiation and input impedance, are not considered.

Further improvement is achieved on this model by including mutual coupling between the
radiating edges through a mutual admittance Y,, connected between the two ends of the
transmission line [15], as depicted in Fig. 3. In Fig. 3, yois the characteristic admittance, y; is
the shunt load admittance and Y is the complex propagation constant having the form Y = a

+ jB where a accounts for the dielectric and conductor losses of the antenna.
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Chapter 1: Computational Electromagnetics

Y= ¥m

Fig. 3 Transmission line equivalent circuit (a) simple model (b) including mutual coupling

The improved transmission line model can be applied on rectangular and square microstrip
patches only. Furthermore, only microstrip and coaxial feeds are supported. Proximity-

coupled and aperture-coupled fed microstrip antennas cannot be analyzed.

More elaborate model called the generalized transmission line model GTLM [16]-[18] has
been proposed. In this model, transmission line sections, which may be non-uniform, on
either sides of the current source (which represents the feed), are converted into m-network
equivalent circuit. This equivalent circuit is then simplified using the star-delta and delta-star
transformations to obtain the voltage across the current source [19]. GTLM can be applied to
any separable geometry of the microstrip antenna including rectangular, circular and
annular ring patches, with linear or circular polarization. However, the application GTLM to
an arbitrary patch shape is not possible. Also, some of the feeding techniques such as

Proximity- coupled and aperture-coupled microstrip feeds cannot be modeled.
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1.2.2. Cavity model

Microstrip antennas are narrow-band resonant antennas, so they resemble dielectric-loaded
cavities. But unlike cavities, microstrip patch antennas are radiating elements; therefore
they must be treated as lossy cavities. Cavity model was advanced by Lo et al [20]-[22],
where the microstrip antenna is modeled as a cavity bounded by electric walls on the top
and the bottom, and magnetic walls along the periphery. We should point out that, in this
model, the substrate is assumed truncated and it does not extend beyond the edges of the
patch. The patch antenna is represented by four slots, only two (the radiating slots) account
for most of the radiation, the fields radiated by the two (non-radiating slots) cancel along the

principle planes as shown in Fig. 4.

Fig. 4 Electric field in (a) radiating slots and (b) non-radiating slots of microstrip patch

Various types of losses (such as dielectric, conductor and radiation loss) are characterized in
the cavity model by an effective tangent loss 8¢ which is related to the quality factor Q by
St = 1/Q. The resonant frequency of the antenna is defined to be the resonant frequency of
the cavity for a given mode. Different patch shapes with linear or circular polarization and

even stacked patches antennas have been treated by the cavity model. Also, the mutual

18
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coupling between the apertures is included implicitly, however, the cavity model does not
estimate the ratio of aperture fields correctly in microstrip antennas with more than one

aperture therefore cavity model is not suitable for array applications [14].

The cavity model also has been generalized to analyze non-separable geometries [23], [24],
where Green’s functions have been used. In this model, the analysis of a given geometry

proceeds as the following:

» First, the given geometry is converted into an equivalent geometry with magnetic
walls at the peripheries.

» Then, the geometry with the magnetic walls is segmented into regular geometries
for which Eigen-functions are available.

» The planar circuit approach [25] is applied to determine the electric fields under the
patch.

» Next, the quality factor of the patch cavity is calculated using the procedure given in
the cavity model.

» Finally, the input impedance can be obtained from the ratio of the voltage and the

current at the feed point.

This approach has been used to analyze a rectangular ring, cross-shaped and H-shaped

patches.

1.2.3. Multiport Connection Method

Multiport connection method (MNM) model [26] can be considered an extension of the
cavity model in which the impedance boundary condition at the periphery is enforced

explicitly. This model takes into account the mutual coupling between various edges. The
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Chapter 1: Computational Electromagnetics

MNM use the planar circuit approach [25], where the field in the interior region is modeled
as a multiport planar circuit with ports located all along the periphery. The field in the
exterior region, which includes the fringing fields, the radiation fields and the surface wave
fields, are represented by load admittances. Unlike transmission line model, all the edges,
radiating and non-radiating are represented as load admittances in the MNM. Table 1
provides a comparison between the different analytical models that have been presented in

the literature for the analysis of microstrip patch antennas.

1.3. Numerical methods

Finding a solution for practical problems is a complex task. It requires simplifying
assumptions and/or numerical approximations [27]. Analytical models, as we have seen, are
based on analytical formulas which are exact, however, the made simplifying assumptions
make them applicable to only a limited set of problems [28]. In the other hand, the
approaches relaying on numerical methods, although their results are also approximate, but
they generally offer results with good accuracy. Besides, they are applicable on wide range
of problems which makes them the preferred choice for solving most of engineering
problems. Eventually, even numerical methods based approaches make some simplifying
assumptions such as infinite dielectric and ground plane, zero thickness strips or patches...
etc [27]. Solving electromagnetic field problems is known as computational electromagnetics
CEM [27], or also numerical electromagnetics [13]. Full-wave analysis uses CEM methods as
powerful tools to account rigorously for electromagnetic waves propagation in the structure

under study.
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Chapter 1: Computational Electromagnetics

Table 1 comparison of various analytical models [14].

Model
Application | Transmission | GTLM Lossy Cavity Generalized | MNM
line model trans. model cavity.model
line
Patch Rectangular | Separable | Arbitrary | Regular Separable Separable
shapes only geometries | shapes shapes geometries | geometries
Substrate Thin Thin Thin Thick Thin Thin
thickness
Feed type Microstrip Microstrip | Possibly | Microstrip | Microstrip Microstrip
used edge feed, edge feed, | all types | edge, edge feed, edge,
probe feed probe feed probe and | probe feed probe feed
aperture and
feed proximity
coupling

Circular No Yes No Yes Yes Yes
polarization
Stacked No No Yes Yes No No
patches
Mutual Explicitly Explicitly implicitly | implicitly | implicitly Explicitly
coupling included included included | included included included
between
edges
Application | Yes Yes No No No Yes
to arrays

The purpose of all numerical methods used in electromagnetics is to find approximate

solutions to Maxwell’s equations (or of equations derived from them) that satisfy boundary

conditions [13]. That is why such kind of problems is referred to as boundary value problems

[29], [30]. Almost all numerical methods in electromagnetics share the idea of discretizing

some unknown electromagnetic property, that is , the unknown function (the solution) is

expanded

in terms of expansion functions with unknown coefficients [13],

[27].

Nevertheless, numerical techniques have differences in their mathematical foundation

which makes one technique more suitable for a specific class of problems compared to the

other [28].
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The classification of computational electromagnetics techniques can be made according to

different criteria such as:

e The quantity being discretized or solution variable (circuit or field variables) [27], [28]
e Domain of the solution (space and time or frequency)

e Number of dimensions (1D, 2D, 2.5D, 3D) [13], [27].

e The form of the equation(s) being treated by the method (differential or integral

form) [31].

We note that, in general, the above classifications are not rigid, that is, labeling a method to
as a time domain method does not mean that it cannot be applied in frequency domain, but
rather it means that the method is usually applied in time domain. For instance, the methods
usually applied in time domain include finite difference time domain (FDTD) and
Transmission line matrix (TLM), where the methods usually applied in frequency domain

include Finite element method (FEM) and the method of moments (MoM).

In this thesis, the numerical methods applied for the electromagnetic field problems, are
classified on the basis of the form of the equations usually treated by these methods, and
hence, they will be classified into differential equation methods (usually applied on partial

differential equation or PDE), and integral equation (IE) methods, as shown in Fig. 5.
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Chapter 1: Computational Electromagnetics

Numerical Electromagnetics

Differential Equation Integral Equation

FEM FD|M LM MoM FIT PEEC

FDTD FDFD

Fig. 5 Differential equation and Integral equation CEM methods

For a given application, some methods are more suitable than the others. For example [28]:

Electrical interconnect packaging (EIP) analysis (PEEC, MoM)

e Printed circuit board (PCB) simulations (mixed circuit and EM problems) (PEEC)
e Coupling mechanism characterization (MoM, PEEC)

e Electromagnetic field strength and pattern characterization (MoM)

e Antenna design (MoM)

Scattering problems (FEM, FDM)

The differences between the methods illustrated in Fig. 5, arise in two main points [28]:

» Discretization of the structure: For the differential formulation, the complete
structure including the air needs to be discretized. Whereas, in integral
formulation, only the materials need to be discretized.

» Solution variables: Differential equation based techniques deliver the solution in

field variables i.e. electric and magnetic field. Post-processing of the field
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Chapter 1: Computational Electromagnetics

variables is needed to obtain the currents and the voltages of the structure. For
the integral equation based techniques, the solution is expressed in terms of
circuit variables, i.e. currents and voltages. To convert the system current and

voltages to EM field components, post-processing is needed.

In the following section, the concept and the main features of each of the methods

illustrated in Fig. 5 will be presented.

1.3.1. Differential equation methods
a- Finite Element Method (FEM)

The laws of physics for space- and time-dependent problems are usually expressed in terms
of partial differential equations (PDEs). For the majority of geometries and problems, these
PDEs cannot be solved analytically. Instead, they are solved approximately, typically using
different types of discretization [32]. Finite element method (FEM) is used to convert the
PDEs describing a boundary value problem into a system of equations (matrix equation).
FEM is powerful technique for handling problems involving complex geometries and
heterogeneous media, and it is applicable in both time and frequency domain [28]. The

procedure of FEM analysis can be summarized as the following [33]:

e Discretizing the solution domain into a finite number of sub-domains or elements.
e Deriving the governing equations (elemental equation) for a typical element.
e Assembling all the elements in the solution domain to form matrix equation.

e Solving the system of the obtained equations.

The first step consists of subdividing the domain of the problem into smaller parts called

finite elements, this process is called meshing. The shape of these elements depends on the
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Chapter 1: Computational Electromagnetics

domain of the given problem. The advantages of the subdivision of the whole domain into

smaller parts are [34]:

» Accurate representation of complex geometry
» Inclusion of dissimilar material properties
» Easy representation of the total solution

» Capture of local effects

The element equations derived in the second step, are simple equations that locally
approximate the original complex equation to be studied. Next, a global system of equations
is generated from the element equations through a transformation of coordinates from the
sub-domain local nodes to the domain global nodes. After that, the system of equations is
solved by a direct or iterative method. Post-processing provides an estimate of the error in
terms of the quantity of interest. When the error is larger than the acceptable value, the
discretization level (i.e. meshing) has to be changed manually or by an automated adaptive

process (adaptive meshing).

Generally, three approaches are being used when formulating an FEM problem [35]:

*

+» Direct approach

®,

+* Variational approach

®,

*» Weighted residual method

Direct approach: This approach was applied initially in structural analysis, and it is the

easiest to understand because it involves the application of the concept of FEM it its
simplest form. This approach consists of two steps: first, the system under consideration is

replaced by an equivalent idealized system consisting of individual elements. These elements
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Chapter 1: Computational Electromagnetics

are assumed to be connected to each other at specified points called nodes. When the
elements are defined, the direct physical reasoning can be used to establish the element
equations in terms of pertinent variables. In the second step, the individual element
equations are combined to form the equations for the complete system, and then the
system of equations is solved for the unknown nodal variables. This approach can be used

only for simple problems.

Variational approach: this approach relies on some variational principle such as the

principle of minimizing the energy of a functional, where the energy can be obtained by
integrating the (unknown) fields over the structure volume [36]. The variational approach is
widely used whenever classical variational statement is available for the given problem. Such

statement may not be available for some physical problems such as nonlinear problems.

Weighted residual methods: It is a generic class that is developed to obtain

approximate solution to differential equations of the form:

L(p)+ f =0 InthedomainD (1)

Where, ¢ (x) is an unknown function (a dependent variable) of the variable x such as x € D

f(x) Is a known function, and L is a differential operator involving spatial derivatives of ¢

Weighted residual method involves two main steps. In the first step, an approximate
solution ¥(x) which satisfies the boundary conditions is assumed. The approximate solution
is expressed in terms of a sum that consists of (chosen) trial functions multiplied by unknown
fitting coefficients. This approximate solution is substituted in the differential equation.

Since the approximate solution will not satisfy the differential equation thatis, L () + f #
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0 producing an error which measures the difference between the exact and the

approximate solution, this error is called a residual R defined as

L)+ f=R (2)

The residual is then made to vanish in some average sense over the entire solution domain
to produce a system of algebraic equations. Mathematically, this is accomplished by

multiplying eq. (2) by weighting functions w(x) and integrating over the domain D to obtain

Jw@IL @) + f1dD = [w(x)R(x) dD (3)
Then, the weighted residual integral is forced to vanish over the solution domain, that is
fw)R(x)dD =0 (4)

The second step is to solve the resulting system of equations to find the sought approximate
solution by defining the fitting coefficients. Galerkin procedure, in which trial functions are
equal to weighting functions, is among the weighted residual methods. FEM in general, has

the following features:

e Meshing of the entire domain is required (object + background)

e Great flexibility in modeling complicated and irregular geometries.

e Good handling of inhomogeneous media, 2-D and 3-D linear and nonlinear problems

e Solution domain has to be terminated by “numerical”’ absorbing boundaries ABC or
perfectly matched layers PML.

e Widely used in frequency domain

e FEM produces large sparse matrices
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b- Finite Difference Methods (FDM)
Finite difference methods (FDMs) are numerical methods for solving differential equations
by approximating them with difference equations. The domain is partitioned in space and
time (Fig. 6) and an approximation of the solution is computed at space and time points [37].
The error between the numerical solution and the exact solution is produced when going
from differential operator to difference operator, and this error is called discretization or
truncation error [37]. The main concept behind any finite difference scheme is related to the

definition of the derivative of a smooth function f in the neighborhood of a point x € R:

f'(x) = limy_, UG ORI IC A D IC) for sufficiently small h. near the point of

h h

interest (i.e. point x), f'(x) can be approximated by Taylor series.

: ’ fiy =fladt, jAS)

i At T=NAt T

Fig. 6 Discretization of the domain in space and time [38]

For the 1°' derivative, we can distinguish forward-, backward- and central- difference

approximations such as:
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Finite Difference Time Domain (FDTD)
Finite difference time domain (FDTD) belongs to finite difference methods. The first FDTD
algorithm was established by Yee in 1966. FDTD is a numerical technique for finding
approximate solutions for the associated system of differential equations, where time- and
space- derivatives are approximated using finite difference expressions [36]. This method is
widely used within electromagnetic modeling, mainly, due to its simplicity, where Maxwell’s
equations (in differential form), are discretized using central difference approximations to
the space and time partial derivatives [31], [39]. In FDTD, the whole domain must be divided
(discretized) into volume elements (cells), often, these elements are cubes (called voxels)
[27]. For these elements, Maxwell’s equations are approximated by finite difference

equations. The volume elements sizes are determined by considering two main factors [36]:

e Frequency: the cell size should not exceed A/10, where A corresponds to the
maximum frequency in the excitation
e Structure: the cell size must allow discretization of thin structures. The time step is

limited by courant’s condition [33]:

1
J W)+ (Yay) + V)’
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The three-dimensional space of the problem is truncated by absorbing boundaries. The most
popular absorbing boundary is the perfectly matched layer (PML) [31]. The unknown
function to be computed for FDTD method is field variables i.e. electric and magnetic fields
which are alternatively calculated at every half time step and at all locations of the
discretized domain [33]. When Maxwell’s equations are examined, it can be seen that the
change in the E-field in time (the time derivative) is dependent in the H-field across space
(the curl). This is the basic idea behind FDTD time-stepping relation that is, at any point in
space, the updated value of the E-field in time is dependent on the stored value of the E-
field and the numerical curl of the local distribution of the H-field in space. The H-field is
time-stepped in a similar manner. At any point in space, the updated value of the H-field in
time is dependent on the stored value of the H-field and the numerical curl of the local
distribution of the E-field in space. This process known as loop-frog procedure, its algorithm

is illustrated in Fig. 7 [31].

The FDTD method has the following advantages:

» Simple implementation and easy to understand.

» No matrix inversion involved.

» Easy modeling of complex material configuration

» Since FDTD is a time domain technique, the response of the system over a wide
frequency range can be obtained with a single simulation.

» FDTD calculate the electric and magnetic fields everywhere in the computational
domain as they evolve in time, which provides animated displays of the

electromagnetic field movement through the model.

30



Chapter 1: Computational Electromagnetics

» FDTD computes the electric and magnetic fields directly which is more convenient to
EMC/EMI modeling.

» A wide variety of linear and nonlinear dielectric and magnetic materials can be
naturally and easily modeled.

» Ability to perform both transient and steady state analysis.
However, FDTD have some weaknesses such as:

» Since the entire domain have to be discretized and the resulting elements must be
sufficiently fine to resolve both the smallest wavelengths and the smallest
geometrical feature of the model which results a large computational domain
resulting a long simulation time.

» The need of absorbing boundaries ABC (PML) to truncate unbounded problem
domain

> Difficulties with curve structures.

Finite Difference Frequency Domain (FDFD)
Finite Difference Frequency domain (FDFD) method is conceptually a simple method to solve
time-dependent differential equations for steady state solutions. FDFD method transforms

Maxwell’s equations (or other PDE for fields and source), into a matrix equation of the form

» A x = b where A is a matrix derived from the wave equation operator, the column
vector operator x contains (the unknown) field components and the column vector b

describes the source.
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Fig. 7 Leap-frog algorithm

FDFD and FDTD share many common features. Beside the fact that FDFD is implemented in

frequency domain, they are different in some points:

e There no time step to be computed in FDFD

e FDFD solves a large sparse matrix (FDFD in this point is similar to FEM).
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Cc- Transmission Line Matrix (TLM) method
Transmission line matrix (TLM) is a space and time discretization method for the
computation of the electromagnetic fields. TLM is based on Huygens principle Fig. 8 in which
Huygens states that: “ All points on a wave front serve as point sources of spherical
secondary wavelets. After a time t the new position of the wave front will be the surface of

tangency to these secondary wavelets . This principle can be explained as the following:

At time O the central point scatters a wave. At time t; all the points in the wave front are
acting as point sources, and the wave front at any time later, is the wave front from these

secondary point sources.

TN Wave front— Wave front
Attime t,  Aftimet:

Wave front
Attime £

0

(a) A point source scattering wave

Wave front |

Attimet; |

/ 0 \/ \

.....
............

(h) Wave front at time f, () Each point in the wave front act as a point source () Wave front at time 1

Fig. 8 Huygens principle
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Johns [40] modeled Huygens principle by sampling time and the space and representing it
with a mesh of passive transmission line components. He modeled the wave propagation as
voltage and current travelling in this mesh. The relationship between time sample At and

space sample Al is given by: Al = cAt where cis the free space light speed.

To understand the concept of TLM method, let us consider the TLM grid illustrated in Fig. 9.
Assuming that at a time zero, an impulse is incident to the middle node, this node will
scatter the wave to its 4 neighboring nodes. The scattered wave reaches these nodes at the
instant At. Now these four nodes will scatter waves to their neighboring nodes at time equal
to 2At. At each time step, each node receives an incident wave from the adjacent nodes and
scatters it to the other adjacent nodes. By repeating the above process for each node, the
wave distribution in the medium can be calculated. The choice of two- or three-dimensional
TLM modeling depends on the complexity of the problem under study. In two-dimensional
TLM model represented in Fig. 9, each node is surrounded by 4 nodes (Fig. 10), while in

three dimensional TLM model (Fig. 11); each node is surrounded by 6 nodes (Fig. 12).

Fig. 9 Wave propagation in two-dimensional TLM mesh
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TLM method uses the concept of scattering matrix where (for 2D TLM model) the voltages
V.’ representing the scattering waves, are related to the voltages v, representing the

incident waves by

1’ -1 1 1 1 MW7

V2 _1|l1 -1 1 1 [|% (5)
V3 2 1 1 _1 1 V3

V4 K+1 1 1 1 _1 V4_ K

Where

S, |: Scattered and Incident waves respectively

K, K+1: arbitrary consecutive time steps

Based on the above equation, if the magnitude of the wave (voltage in the TLM modeling) is
known at any instant KAt, then the magnitude of the wave could be found at the instant
(K+1) At. By repeating this for each time step, wave propagation could be modeled. Similarly,

for three-dimensional TLM model, the eq. (5) could be rewritten as:

8 2 1 11 1 11T
V; 1 -2 111 1]V
V3 _1 1 1 =2 1 1 1||V; (6)
V, 1 1 1 -2 1 1||%
Vs 1 1 1 1 -2 1{|vs
Vel o 1 1 11 1 =2yl

TLM method can model homogeneous and non-homogeneous, lossless and lossy structures,
each one requires different mesh model. TLM and FDTD are considered the most powerful

time domain methods.
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1.3.2. Integral equation methods
a- Finite integration technique (FIT)

Finite integration technique (FIT) proposed in 1977 by Thomas Weiland, is a discretization
method which is similar to FDTD method, however, FIT discretizes Maxwell’s equations in
their integral form. Maxwell’s equations are transformed into a system of linear equations.
This method is flexible in geometrical modeling and it handles curved boundaries and
complex shapes with more accuracy. To explain the concept of the FIT, we consider

Maxwell’s equations for a linear and lossy medium [41]:
2 [[eME@,0dA = $H(r,t)dr — [[ o(r)E(r,t)dA (7)

0 * * *
= [fu@H(@r, t)dA* = —$E(r,t)dr — [[ o*(r)H(r,t)dA (8)

Where E(r,t) and H(r, t) represent the electric and magnetic fields respectively, and the
media parameters are described by the permittivity £(r), the permeability u(r), and the
electric and magnetic conductivity o(r) and (). Equations (7) and (8) are approximated

by the finite difference equations:

E;’}*Zt— % J[ e()dA = $ HE+*>(r)dr — Ef*! [ o(r)dA (9)

n+0.5 n-0
HJtOS— !

BT ([ u(r)dA” = — $ER(dr — HEOS [[o'(dAT (10)

Where At is the time step, Ef and Hit%> are dielectric and magnetic field vector

approximated at time points nAt and (n+0.5)At for n=0,1,...

Then, FIT proceeds in a similar manner as FDTD. Both methods share advantages such as

simple implementation and efficient parallel computing. They share disadvantages such
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those encountered when Yee Cartesian grid is used. To overcome such shortcoming,

adaptive mesh, and sub-gridding, non-orthogonal FIT (NFIT), have been proposed [41].

5
Vs, V:.
2 14 = N —
_— —
vV, Va
1 Vi, l Tvi
(a) Representation in a mesh (b) Actual model

Fig. 10 Model for a node in TLM mesh

.l .2}

1 [
/I o’ L__— . x,y,z-1)
z il |
(x-l:yaz)_l qlg (x+1:y>2)
c,y,z+1) B
(x’y-laz)

Fig. 11 Three-dimensional TLM mesh
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V4

Fig. 12 Node model of three-dimensional TLM mesh

b- Partial element equivalent circuit (PEEC)
Partial element equivalent circuit (PEEC) introduced by Albert Ruehli in 1972, is a three
dimensional full-wave method suitable for combined electromagnetic and circuit analysis.
The main feature of the PEEC method is that the combined circuit and EM solution is
performed with the same equivalent circuit in time or frequency domain [28]. PEEC method
is applied to an integral equation like the method of moments. But, unlike MoM, PEEC is a
full spectrum method that is valid from DC to the maximum frequency determined by the
meshing. In the PEEC method, the integral equation is interpreted as the Kirchhoff’s voltage
applied to a basic PEEC cell which results in a complete circuit solution for three-dimensional

geometries [36].

PEEC method is applied to mixed potential integral equation (MPIE), in which the current-
and charge-densities are discretized. The resulting integral equation for the PEEC

formulation is interpreted as an equivalent circuit. Then, the equivalent circuit is analyzed
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using circuit theory [28]. To obtain field variables, post-processing of circuit variables is

necessary.

¢c- Method of moments
Method of moments (MoM) known also as boundary element method (BEM), is a numerical
method for solving integral equations by transforming them into a matrix equation. The
MoM owes its name to the process of taking moments by multiplying with appropriate
weighting functions and integrating. In MoM, only conducting surfaces have to be

discretized. The method of moments is applied to equations of the form

L.f=g (11)

Where Lis a linear operator (an integral operator), f the unknown function (current
density) and g is a known excitation function (a voltage in radiation problems, and an
incident electric field in scattering problems). The unknown current density is approximated
in term of a finite number of chosen basis (expansion) functions f; multiplied by unknown

weighting coefficients a; to be computed, that is

f=Ilaf (12)

The approximation of current density is substituted back in the integral equation (11) which

now will have the form

LY aifi=g (13)

The eq. (13) consists of N unknown to be determined. To solve eq. (13), we use M weighting
(or testing) functions which are multiplied by each term in eq. (13) and integrating over the

domain of the current densities to transform eq. (13) into a matrix equation of the form
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[Z][1] = [V] (14)

Where the vectors [I] and [V] represent the unknown current coefficient and the excitation,
respectively. Whereas, the matrix [Z], known as the impedance matrix, represents the
interaction between the conducting object (e.g. an antenna) and the excitation voltage or
the incident electric field. MoM is applicable to problems for which Green’s function can be
calculated. MoM discretization results in large dense matrix. Fast algorithms such as Multi-
level fast multi-pole method (ML-FMM), Conjugate Gradient Fast Fourier Transform (CG-FFT)
and Adaptive integral method (AIM) are proposed to reduce the memory storage and

accelerate matrix —vector multiplication.

In Table 2, a comparison between the most popular computational electromagnetic
techniques is provided [27]. In Table 2, TD and FD stand for time and frequency domains

respectively.

Table 2 Comparison between FEM, FDTD and MoM

MoM FEM FDTD
Descritization Only wires or Entire domain Entire domain
surfaces (tetrahedron) (cube)
Solution method FD, linear equations | FD, linear equations TD, iterations
Full matrix Sparse matrix
Boundary conditions | No need for special Absorbing Absorbing
BC Boundary conditions | Boundary conditions
Numerical effort ~ N3 ~ N? ~N
Well suited for Wire and surface Arbitrary shapes Arbitrary materials
Antennas, coupling And metals, single Orthogonal
Arbitrary shaped Or few frequencies Planar boundaries
Surfaces, single or Broadband
Few frequencies Investigations
Not well suited for Electrically very Electrically large Coupling between
Large structures, Structures, coupling Distant elements
Broadband Between distant High-Q
Investigations Elements, Broadband Structures
Investigations
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The dyadic Green’s function is often found as a kernel in integral-equation technique, in
combination with the method of moments, to solve the boundary value problem of the
microstrip antennas [42]. The next section contains an overview on the concept, the types

and the methods used to derive the Green’s functions.

1.4. Green’s functions

When a physical system is subject to some external disturbance, non-homogeneity arises in
the mathematical formulation of the problem, that is, if the system is described by a
differential equation, the external disturbance makes the differential equation non-
homogeneous. Methods such as the method of undetermined coefficients or the variation
of parameter technique could be used for solve non-homogeneous differential equation.
However such methods do not have any special physical significance. Green’s functions also
could be used for such task. Green’s functions have an advantage over the other methods,
since every Green’s function has a special physical significance. The Green’s function
measures the response of a system due to a point source somewhere in the fundamental
domain [36]. To understand the concept of the Green’s function, let us consider the

following inhomogeneous differential equation:

Ly=f (15)
Where
L: is a differential operator

y: the unknown response function
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f: the known excitation function (the source)

When the source function is an impulse located somewhere in the space & (r, r’), the

response function will be the Green’s function G (r, r’) such as

LG(r,r")=46(r1") (16)

The solution of the original equation can be found by integrating the product of the Green’s

function and the in-homogeneity f over the volume of the source such as [43]

y=JGfds (17)

The process vyielding to eq. (17) is described in [43], [44]. Thus, we can notice that the
Green’s function is the analogy of the impulse response of a linear system. The major
advantage of the Green’s function is that when the Green’s function is derived for a
particular problem, for a given set of boundary conditions, solving the same problem for a
different source constrained by the same boundary conditions, is simple and
straightforward [44]. However, there are cases when the Green’s function does not exist,
depending on the boundaries. In electrostatics, the Green’s function G (r, r’) is the potential
due to a stimulus applied at a particular point in space [36]. Where r is the observation
point and r’ is the source (stimulus) point. G (r, r’) is translational-invariant if it depends
solely on the difference (r-r’) rather than the separate values of r, r’ [44]. The Green’s
function is often singular at r=r’ and an infinitesimal exclusion volume surrounding r=r’ has
to be included [43]. In electromagnetics, most of the problems are of a vector nature;
therefore it is necessary to extend the above one-dimensional scalar Green’s function to
multi-dimensional Green’s function. Such type is often referred to as dyadic Green’s

function [44]. In electromagnetic computation, it is common to use two methods for
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determining the Green’s function; these methods are the eigenfunction expansion method

and the method of images [36].
There are many types of Green’s functions, they are classified according to

» The quantity being treated: potentials or fields.

» The domain: spatial or spectral.

In terms of the potentials, we can distinguish two related types of Green’s functions, scalar
and vector potentials Green’s functions i.e. Gy , G4 respectively. They are related to scalar- V

and vector A potentials by the formulas [43]
A(r) = [Gu(r,r)] (") ds’ (18)
V=[Gy(r,r)qr") ds’ (19)
Where
J (r'): the surface current density
g (r'): the surface charge density
S: the surface of the PEC current surface.

In terms of fields, we can distinguish electric type Green’s function and magnetic type
Green’s function. Eventually, there are many types of Green’s functions according to
whether the electric and magnetic field is generated by an electric or magnetic current [45]-
[46]. When only the electric current density is considered, the electric and the magnetic
fields are related to the electric type and the magnetic type Green’s functions G,, G,,

respectively, by the expressions [47]
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E() = [ff G.(r,v)](r")dv’ (20)
H() = [[f Gn(r,r)](Dav’ (21)

The Green’s functions presented so far depend only on spatial coordinates therefore they
are referred to as spatial domain Green’s functions. The counterpart of this type, are the

spectral domain Green’s functions.

It is common to express the space domain Green’s function in term of Sommerfeld’s Integral

G = = JopHo” (kop) G (Kp)kpdk, (22)
Where

5(kp) The dyadic Green’s function in spectral domain

Héz) The Hankel’s function of the second kind
SIP stands for Sommerfeld integration path

Evaluating Sommerfeld’s integral is numerically time-consuming process. Therefore, fast
techniques were dedicated to this task, which yields the determination of dyadic Green’s
function. Among these techniques, discrete complex images method (DCIM), Modified fast
Hankel transform and window Function method [48]. For example, DCIM approximates the
spectral domain Green’s function in terms of complex exponentials using either the
Generalized Pencil of function (GPOF) or the Prony’s method. Then, these exponentials are
transformed analytically into a set of complex images in space domain using the
Sommerfeld’s identity [48]. The Green’s function in spectral domain is related to the spatial

Green’s function by the Fourier transform, or Hankel transform [47]. The main advantage of
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spectral green’s function is that it can be written analytically i.e. in a closed-form. For
instance, the electric field £ and the electric current density J in the spectral domain are

related as

e

Il
Qn
~

(23)

This formula is valid in both Fourier transform domain (FTD) and Hankel transform domain
(HTD). Similarly to spatial domain Green’s function, several methods have been suggested to
derive the spectral dyadic Green’s function, especially for multilayered medium. These
methods include vector wave eigenfunction expansion technique (VWEET), wave iterative
technique (WIT) [48] and full-wave equivalent circuit method [42]. Green’s function in
spectral domain has singularities i.e. points were the Green’s function is not defined. These
points represent surface wave poles. Since spectral Green’s function is written in a closed-
form, these singularities can be located [49]. Different approaches have been proposed to
handle this problem such as extracting these singularities using the residue theory. Other
approaches are based on changing the path of integration in the complex plane to avoid

these singularities [50] — [51].
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1.5. Conclusion

An overview on different analytical and numerical methods is presented. We have shown
that each analytical model is actionably a set of sub-models, where each sub-model is an
enhancement of the previous one. It is also shown the analytical methods differ in their
capabilities and their range of applications. The best method, for a given problem, is the
simplest method providing a result with the required accuracy. Full wave methods also
introduce some assumptions on the problem description, however, since they offer good
accuracy compared to analytical methods, they are more suitable for complex problems. The
classification of numerical methods used in computational electromagnetics, is done
according to different criteria such as the quantity being discretized, solution domain, the
type of equation being treated ... etc. In this chapter, different numerical methods have been
presented, and their concept and features are explained. It was shown that for some
applications, some methods are more suitable than the others. To give an idea how such
decision is made, a comparison between three popular numerical electromagnetics methods
is accomplished on the basis of different criteria. A section on Green’s function is introduced
due to its importance in the method of moment formulation adopted in this thesis. The
concept behind the Green’s function, in addition to its different types, are introduced. In this
thesis, spectral domain Green’s function in conjunction with the method of moments, are

employed to model microstrip patch in a multilayered dielectric.
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Chapter 2: Microstrip patch in isotropic or anisotropic medium

2.1. Introduction

In This Chapter we present a mathematical formulation of multilayered microstrip
antenna structure where the dielectric can be isotropic or anisotropic. Papers treating such
structures have not been published until late 90s, such as the paper of Chunfei et al [52] for
rectangular patch and the papers of Losada et al [3], [53] for circular patch antenna. The
early works on microstrip antenna analysis and design have considered the simplest form
which consists of a single rectangular or circular disc patch printed on a single layer isotropic
substrate. The early studies date back to mid 70s [54] followed by [55]-[57] for circular
patch, and [58], [59] and later [60]-[62] for rectangular patch structure. The influence of
patch dimensions and substrate parameters on radiation and resonance characteristics of
the antenna were studied, either incidentally in the context of presenting an analytical or
numerical method, or deliberately as in the case of experimental studies [60], [62], in

addition to their purpose of checking the validity of theoretical results.

The theory presented in this chapter has been applied on single layer and bi-layered
structures; one example of bi-layered structure is the microstrip patch in a substrate-
superstrate configuration, Bahl et al [1] was among the firsts who have published a paper in
the early 80s, in which the effect of cover layer on the resonant frequency of the antenna is
described. Two years later, Alexopoulos and Jackson [2] have published a paper containing a
design study, in which they have defined the criteria of choosing the cover layer parameters
to enhance the antenna radiation efficiency. Row and Wong [63] and later Losada et al [3]
have presented numerical studies on such a structure, where Fortaki et al [64] have

investigated the effect of cover layer properties on the antenna’s radiation characteristics.
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Most of the works published on the theory and the experiments of microstrip antennas have
considered isotropic dielectrics, however, it was found that even the dielectrics that were
considered isotropic possess a certain amount of anisotropy [6]. In addition to that some
anisotropic dielectrics are intentionally used to achieve certain practical characteristics in
microwave devices [6]. All this imply the developing of an appropriate formulation to
characterize such materials. One of the first papers in this regard, was published by Pozar [6]
who presented a theory based on the method of moments and investigated the effect of
anisotropy on the resonant frequency and surface wave excitation. Wong et al [7] have
presented a study on the influence of positive and negative anisotropy on the resonant
frequency. Similar studies were published by [8] for single patch and [65] for stacked patches
structures. We note that the anisotropy mentioned in the above references is the dielectric
anisotropy that is the anisotropy related to the permittivity. Magnetic anisotropy (that is
related to permeability) has not been studied before [3], [47], [66], until magneto-dielectric
substrates have been used in microstrip antenna structures [67]-[70]. This new trend toward
magneto-dielectric substrates allowed the characterization of the effect of permeability on
the antenna characteristics. But the main motivation was antenna miniaturization offered by

the use of magneto-dielectric materials. A good reference on this subject is [69].
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2.2. Theory

The present formulation is for a multilayered structure of N layer, where the dielectric is
characterized by permittivity and permeability tensors. The patch is placed on the layer P
where P<N. The XY plane is the plane of the patch, therefore, x and y components represent
the tangential (or transversal) components, and z component represents the normal (or

longitudinal) component. The structure under study is illustrated in Fig. 1

As detailed in chapter 1, the general process to compute the resonant frequency and the
bandwidth in addition to the radiation pattern of the microstrip antenna, can be

summarized as the following:
1/ the derivation of the dyadic Green’s function in the spectral domain
2/ the computation of the impedance matrix

3/Finding the root of the impedance matrix determinant, which corresponds to the complex

resonant frequency, defines the antenna resonant frequency and bandwidth.

4/the eigenvector that corresponds to the smallest eigenvalue of the impedance matrix
defines the weighting coefficients, and thus allowing the determination of the approximate
formula of the current density on the patch. Then the stationary phase theorem is used to

determine the radiation pattern of the antenna.
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Fig. 1 multilayered microstrip antenna structure

2.2.1. Derivation of Dyadic Green’s function

The dielectric is considered anisotropic medium characterized by a permittivity and

permeability, tensors having the form:

& 00
=g [O Ex 0] (1)
0 0 g
e 0 0
I = o [ 0 wue O ] (2)
0 0 u

By assuming time dependence of e/“!, and for a source free medium Maxwell’s equations

can written as:

VxE=—jowpuH (3-a)
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VxH=jwéiE (3-b)
V.E=0 (3-c)
V.H=0 (3-d)

The corresponding wave equations for E, and H, have the form

0%E, + 0%E, £z 0%E,

9x2 ayz £x 9z2 +l'l’x <c"Z k(Z) EZ = 0 (4-a)

0%H, 0%H, u, 0%H,
dx2 0y2  u, 0z2

+ Uz Ex k(z) Hz =0 (4'b)

Where ky = w,/lo&y isthe free space wavenumber.

We can rewrite the eq. (4-a), (4-b) in spectral domain by applying Fourier transform to

obtain:

azEz X r
— + (uxexkg + ‘:—Z ksz) , =0 (5-a)
62Hz X 7
2+ (neckd + b k2)H, =0 (5-b)

Where kZ = ki + k;
The general solutions for E, and A, have the form:
E,= A, e"z 4 B, eikiz (6-a)
q,= 4, e~ikiz 4 By, eiklz (6-b)
Where the coefficients A, , B, , A, and B}, are functions of k; , k¢ and k[ are expressed as:
1
ke = (meekl + = 12) (72
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1/2
Kb = (meeckd + 2 k2)

(7-b)

We can notice that in the case of an anisotropic medium, the electric and the magnetic fields

have different wavenumbers.

By a simple mathematical manipulation, each of the components E, , E,, , H, and H,, can be

written in terms of E, and H, , in spectral domain, the tangential components of the electric

and magnetic fields can be expressed as:

= iky &, OE, ky ~

= X2z 7z =
Ex_ k2 & 0z + Wy k2 HZ

~ iky e, OF kx 7%
E = 2X2Z__z2_ = H
y k2 & 0z Holz k2 z

~ ik, py 0H, ky =~

H, = —5= — w&E, 5 E
*KE px 0z 0% kg 77
g = % ks O x

k~
+ weye, = E
Yo k% py 0z 0°z y2 =2

(8-a)

(8-b)

(8-c)

(8-d)

The next step is to write each of the tangential components of the electric and magnetic

fields as a superposition of TM and TE waves as:

Where
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i &, 0E,

€e = ks & 0z (12_3)
ey = “";—” H, (12-b)
he = wioez EZ (12-C)
i z aHz
hy = kis % o2 (12-d)
The indexes e and h represent the TM and TE waves respectively.
ee
We can put: e(ks,z) = [eh] (13)
he
h(k,,z) = n ] (14)
h

e, h are the electric and magnetic fields in the (TM, TE) representation.

In a multilayered dielectric, let j be an arbitrary layer characterized by a permittivity &; ,

permeability f; and a thickness d; . The layer j is located between the planes z=z;; and z=z;

The electric and the magnetic fields on the lower (at z=z;;) and the upper (at z=z)

boundaries of the layer j can be related by transfer matrix 7_"] by the expression:

[e(ks,zj") _ e(ks, z", (15)
h(ks, z") 7 \h(ks, z" )
Where
T T T?] [ cosd; —i gj 'sinf; (16)
PoTR TR |-iggsing cos;
With
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kg 0
0; = d; 17
=4[ ) )
WEYEY
— 0
KE;
g=|" (18)
Wptoty

By applying the boundary conditions, we can relate the fields across the interface between

the adjacent layers. The boundary conditions for the tangential components are defined as:
E(ksz)= E(ksz') ,j=1,2,..,N (19)

Jx(ks)

P T ky) (20)

ﬁ(kS,Zj_) - Hi(ks,Zj-l-) = SJPI(kS) = 6]

Where J, andfy are the Fourier transforms of the x- and y- polarized current densities on

the patch J, , Jyrespectively. §;p Is the symbol of Kronecker, and it is defined as

)

_{1 if j=P
jp =

0 if j£P

Similarly, for the fields in the (TM, TE) representation, the eq. (19), (20) can be rewritten as:

e(ks, z7) = e(ks,z") ,i=1,2,..,N (21)
_ . Je(ks)
h(ks,z7) — h(ks,z) = 8pjlks) = §p S0 (22)
Where
(ke o
0] = P Tk (23)

Using the eq. (15), (21) and (22), the fields on the plane z=0 can be related to the fields at

the plane z = z, by the expression
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e(ks,z7)| _ ¢ [e(ks,0)

h(ks,z)] — "< Lh(ks,0) (24)

And the fields on the plane z = Z; can be related to the fields at the plane z = zy by the

expression
e(kSlZN) r e(kSlZ;) (25)
h(ks,zy)l 7 Lh(ks, 23)
With
=11 =12 =11 =12
= _ "< <|_wmo s = _ |5 s P+1 7
<= l—21 —22] - j=PTj s = I—21 =22 H T (26)
< I< r~ IS

The purpose of these equations is to write the electric field in term of the current density on

the patch by a formula having the form:

e(ks'zp) = é(ks)j(ks) (27)

Where Q (k) the spectral dyadic Green’s function in the (TM, TE) representation, and it is

defined as
é(ks) = [ (_12) + (goriz - F>) (gorll - r> )] (28)
With
= o
— Z0
9o = 0 o (29)
WHo
koo = (k3 — k2)'V2 (30)

The dyadic spectral Green’s function is given by the following expression
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G_(ks) = F(ks)é(ks)ﬁ(ks) (31)

We note that G (k) has the form

G_(ks) =

Gox ny] (32)

Gyx Gy
The dyadic spectral Green’s function relates the tangential electric field with current density
on the patch in the spectral domain by the expression

E(ks,z,) = G(ky)J(ks) (33)

2.2.2. The formulation of the integral equation

The tangential electric field in eq. (33) is expressed in spectral domain, to derive its

expression in space domain; we apply inverse Fourier transform on eq. (33) to obtain:

1
412

E(x,y,2) = — [ [T7 Gk J(ky) e/t )de, dk,, (34)

Because the tangential electric field vanishes on the perfectly conducting patch, the eq. (34)

becomes:

1 oo

42 J—o0

17 G ko) J (ko) ey dke, dky, = 0 (35)
The equation above is called “the electric field integral equation’ (EFIE).

2.2.3. Solving the integral equation

The eq. (35) cannot be solved directly because the current density on the patch is unknown.
The method of moments (MoM) is used to solve this problem. The basic idea is to

approximate the current density on the patch using a limited number of chosen basis
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functions weighted by unknown coefficients to be computed. In this work, entire domain
basis functions are used, where the current density in the patch is expressed in terms of x-

and y- polarized basis functions as:

16 = v [ gt by [, 0] (36)

Where
Jxk, Jym are the basis functions, anday , by, are the weighting coefficients.

In this thesis, the Galerkin method applies the method of moments where the basis
functions are chosen to be the same as testing functions. The method of moments converts

the integral equation described in eq. (35) into a matrix equation of the form:

o el i) =0
Where
Zidge = S0 J77 G Juq (=) i (ks) dkydk, (38-a)
Zidam = 170 [ Guy Jxq(—k)ym (ks) dkdk, (38-b)
Zoue = 70 177 Gy Fy (=)o (k) dheedie, (38-c)
Zodim = I~ I Gyy Tt (=) ym (k) dieydk, (38-d)

The matrix containing the elements Z,,,, is called the impedance matrix. The value that

cancels the determinant of the impedance matrix is the complex resonant frequency having

the form f = f. + if; where f,is the resonant frequency and zfi/f is the fractional
r
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bandwidth. Once the resonant frequency is computed, the eigenvector that correspond the

smallest eigenvalue of the impedance matrix determines the current weighting coefficients.

2.3. Results and Discussions

2.3.1. Effect of dielectric parameters

In this part, we shall investigate the effect of the dielectric parameters such as the thickness,
the permittivity and the permeability as well as the influence of the dielectric and magnetic
anisotropy on the resonance and radiation characteristics of the microstrip antenna. All the
structures studied in this part and in the subsequent parts, will have the same dielectric

thickness.
a- Effect of thickness

In this section we explore the effect of thickness on the resonant frequencies and the
bandwidths of three different structures, a single layer structure, two layers substrate and
substrate - superstrate configurations. For all the three structures, the dielectric is
considered homogenous, its thickness is varied from 0.4-2.4 mm and the results are
presented for three different values of permittivity. The effect of the thickness of the cover
layer on the resonant frequency Fig. 2 and the bandwidth Fig. 3, the case of superstrate
configuration is also shown. Also the effect thickness variation on the radiation pattern is
shown in Fig. 4. We note that the radiation pattern presented in Fig. 4 and the subsequent
figures is expressed in terms of the normalized radiated electric field as a function of the
angle ©. The radiation patterns are taken for the plane perpendicular to the patch i.e. at the

angle ¢ = /2 rad. The TMg; resonant mode is considered unless otherwise specified.
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Fig. 2 Effect of thickness on resonant frequency of three structures for a=1 cm, b=1.25 cm
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Fig. 3 Bandwidth of a single layer structure as a function of thickness for a=1 cm, b=1.25 cm
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Fig. 4 Effect of thickness on the radiation pattern of for a=1 cm, b=1.25cm, €, = 2.2

We can observe form the Fig. 2(a)-(c) that the resonant frequency is inversely proportional
to the substrate thickness regardless of its permittivity or its homogeneity. From Fig. 3, we
notice that the bandwidth is directly proportional to the substrate thickness, this is observed
for both two-layer structures. Also we can observe that the radiated field strength is directly

proportional to the substrate thickness.

b- Effect of permittivity

We can compare the effect of relative permittivity for both two-layers substrate and
superstrate structures by considering an homogenous dielectric with the same thickness
mm), and varying the relative permittivity from 2 to 12, and the patch size is a=1 cm, b=1.25
cm. The resonant frequency and the bandwidth variations are presented in Fig. 5.
Furthermore, the influence of the dielectric permittivity on the radiation pattern is also
illustrated in Fig. 6. We can notice that both the resonant frequency and bandwidth are
inversely proportional to the relative permittivity. When we compare the effect of the
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thickness to the effect of the permittivity by comparing the maximum to the minimum
resonant frequency ratio in both cases, we find that impact of the permittivity is larger than
the effect of the thickness. In addition, the cover layer (superstrate) exhibit a similar
behavior as mentioned above concerning the influence of the thickness and the permittivity
on the resonant frequency as it is shown in Fig. 7. The permittivity as depicted by Fig. 6 is

inversely proportional with the radiated field.
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Fig. 5 Influence of permittivity on (a) resonant frequency (b) bandwidth (d; = d> = 0.5 mm)
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Fig. 7 Impact of Cover layer (a) thickness for d; = 0.6 mm (b) permittivity for d; =d, = 0.5 cm,

€r1 = 6, on the resonant frequency of substrate-superstrate structure

c- Effect of permeability

The effect of the permeability is investigated by varying the relative permeability form 1 to
10 for three cases, two layers structures (two layers substrate, substrate-superstrate
configurations) with a single patch, and a two layers structure with stacked patches. The
effects of the permeability on the resonant frequency and bandwidth of these structures are

shown in Fig. 8 and 9. The effect of permeability on the radiation pattern is shown in Fig. 10.

We notice that the resonant frequency is inversely proportional to the permeability for both
single patch and stacked patches structures. The bandwidth of single patch structures is
proportional to the permeability. For stacked patches configuration, the same thing applies

to the upper resonance bandwidth, but the opposite is noticed for the lower resonance

bandwidth.
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Fig. 8 The influence of relative permeability on (a) resonant frequency and (b) bandwidth for

the case of a single patch, d;=d>,=0.5cm, €1 =€, =2, a=1 cm, b=1.25cm
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Fig. 9 Influence of relative permeability on (a) resonant frequency and (b) bandwidth for the
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The maximum to the minimum resonant frequency ratio in the case of permeability is high
which indicates a strong influence of the dielectric permeability on the resonant frequency.

Also, we can see that the radiated field is getting stronger as the permeability is increased.

d- Effect of anisotropy

This section will be divided into two parts, first, we will explore the effect of the anisotropy
ratio and the elements of permittivity and permeability tensors, and then we will check the
effect of the anisotropy on the resonant frequency by comparing the results obtained when
the anisotropy is considered to those when it is ignored. The first part is detailed in the
Tables 1 and 2, where the second part is illustrated by the Fig. 11 and Fig. 12. In this section,
the patches have the same size (a=1 cm, b=1.25 cm) and the substrate is homogenous with d

=1, (d1 =d, =0.5 cm). If we take case 1 (AR =1) in table 1 for example as a reference, when
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we increase the anisotropy ratio to 2 (cases 2 and 3), we can see that the resonant
frequency does not follow a specific direction of variation i.e. the resonant frequency
increases as in case 3 and decreases as in case 2 although the anisotropy ratio AR has been
increased from 1 to 2 in both cases. This proofs that the consideration of the anisotropy ratio
alone does not allow the prediction of the resonant frequency behavior, this conclusion
applies on both dielectric and magnetic anisotropy. In order the investigate the effect of
elements of the permittivity tensor (¢, and &), we take case 1 (&, = 2.32,¢, = 2.32)asa
reference, and we increase or decrease ¢, (as in cases 2 and 4 respectively) or €, (as in cases
5 and 3 respectively), we can see that the rate of change is at most 2.31% for &, , but the
change reaches 31.85% for ¢, . This means that €, has a larger influence than ¢, on the
resonant frequency. To investigate the effect of elements of the permeability tensor (u, and
U,), we take case 1 (&, = 2.4, ¢, = 2.4) as areference, and we increase or decrease [, (as
in cases 2 and 4 respectively), or i, (as in cases 5 and 3 respectively), we can see that the
maximum rate of change is 0.38% for u, , but the rate of change exceeds 35.84% for u, .

This means that u, has a larger influence than p, on the resonant frequency.

Table 1 Influence of permittivity tensor elements on resonant frequency, p, =1

Case # | &, &, | AR Single patch Stacked patches

fr(GHz) | &f. (%) | fi(GHz) | Af, (%) | fu(GHz) | Afu (%)

1 2321232 | 1 7.518 0 7.488 0 7.751 0

2 464232 | 2 | 7.344 2.31 7.274 2.85 7.692 0.76

3 232 |116| 2 | 9913 | 31.85 | 9.871 | 31.82 | 10.812 | 39.49

4 1.16 | 2.32 | 0.5 | 7.629 1.47 7.62 1.76 7.797 0.59

5 232 |4.64|05| 5555 | 26.11 | 5.488 | 26.71 5.57 28.14
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Table 2 Influence of permeability tensor elements on resonant frequency, €, = 2.35

Case# | Uy | U, | AR Single patch Stacked patches

fr(GHz) | Af (%) | fi(GHz) | Afi (%) | fu(GHz) | Af, (%)

1 24124 |1 5.482 0 4.632 0 5.657 0

2 481242 4.068 | 25.79 | 3.237 | 30.11 | 4.215 | 25.49

3 241122 5.503 0.38 | 4.664 | 0.69 5.685 0.49

4 1224|105 7447 | 3584 | 7.407 | 59.91 | 7.686 | 35.86

5 2414805 5.47 0.21 4.611 0.45 5.641 0.28
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When the anisotropy is considered the resonant frequency (for a constant value of the
dielectric thickness) increases with respect to isotropic case if the dielectric possess a
positive uniaxial anisotropy, and it decreases if the dielectric possess a negative uniaxial
anisotropy. The maximum change in the resonant frequency for a single patch is 1.69% (for
negative anisotropy), 1.71% (for positive anisotropy) and 2% for stacked patches. The effect

of anisotropy becomes significant for thick substrates.

2.3.2. Effect of patch dimensions

Now we will consider that the patch length “a” is along the x-axis, and that the patch width
“b” is along the y-axis, thus the first resonant mode is TMjpand the second resonant mode is
TMp: which they have current density with x and y dependences respectively. We are going
to investigate the effect of the patch length when its width is kept constant, and we will see
effect of the patch width when its length is kept constant in Fig. 13 and 14 respectively. After
that, we vary both the length and the width while keeping the length to width ratio constant

as it is shown in Table 3.
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Fig. 14 Influence of the patch width on (a) resonant frequency and (b) bandwidth fora =1

cm,d=1mm, &, =2.2

Table 3 Comparison of the first two resonances (TMyo and TMy;) for a constant length-to-

width ratio (a/b=1.25),d=1mm, &, =2.2

a(cm) | b(m) TM1o mode TMo; mode

fr(GHz) | BW (%) | fr (GHz) | BW (%)

1 0,8 | 9,495 4,31 11,465 | 6,52
11 | 0,88 | 8,681 3,98 10,501 | 5,92
12 | 096 | 7,992 3,44 9,687 5,49
1.3 | 1,04 | 7,406 3,15 8,99 5,12
1,4 | 1,12 | 6,902 2,93 8,398 4,81
1,5 1,2 6,46 2,72 7,873 4,5
1,6 | 1,28 | 6,071 2,53 7,408 4,22
1,7 | 1,36 | 5,727 2,36 6,996 3,97
1,8 | 1,44 | 5,419 2,22 6,627 3,75
1,9 | 1,52 | 5,142 2,09 6,296 3,55

2 1,6 | 4,893 1,98 5,995 3,37
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Careful observation of Fig. 13, 14 and Table 3 leads to the following results:

The resonant frequency is inversely proportional to the length and it is proportional to the
width (for both modes). The length has a large impact on the TM1, mode, where the width
has a large impact on the TMg; mode. The bandwidth always decreasing for increasing the
length or the width for TM1y Mode, the opposite is noticed for the TMy; mode. When both
the length and the width are increased by the same amount (the length to width ratio
remains constant), both the resonant frequency and the bandwidth will decrease (for both
modes). Furthermore, when we compute the physical bandwidth in GHz, we can find that
the TMp; mode has a larger physical and fractional bandwidth than the TM,y mode. The
impact of the patch dimensions on the radiation pattern has been also investigated as shown
in Fig. 15, 16. The length and the width are chosen so that the fundamental mode is the
TMp: mode. The radiation pattern of a given microstrip antenna for two resonant modes is
also presented Fig. 17 and 18. From Fig. 15 and 16, we observe that the radiated field
intensity increases as the patch becomes larger, however, the impact of the width is larger
than the impact of the length on the radiation pattern. Whereas the result concluded from
Fig. 17 and 18 is that the second resonance always has the strongest radiated field

regardless of the relative dimensions of the patch.
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2.4. Conclusion

We have presented a full-wave analysis of a multilayered structure microstrip patch
antenna. The analysis was based on deriving the dyadic Green’s function of the substrate in
spectral domain, and on the use of the method of moments to solve the electric field
integral equation. The complex resonant frequency, yielding to the determination of the
resonant frequency and the bandwidth, is computed by solving the characteristic equation
for which the impedance matrix determinant vanishes. Stationary phase theorem allows the
computation of the far field and subsequently the antenna radiation pattern. Throughout
the accomplished parametric study on the influence of the different parameters of the
structure on resonance and radiation characteristics of the microstrip antenna, the following

results have been concluded:

- Thicker substrates offer larger bandwidths, but it produces also lower resonant
frequencies.

- Permittivity and permeability have similar effects on resonant frequency, but they
have opposite effects on bandwidth, where low permittivity values are required for
large bandwidth, while for the permeability, high values are required.

- These results mean that choosing thicker substrates with low permittivity and high
permeability enhances significantly the antenna bandwidth.

- For the substrate, the impact of the material properties (i.e. permittivity and
permeability) on the resonant frequency is larger than the effect of its dimensions

(mainly its thickness)
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It was found that in the case of dielectric anisotropy, the element of the permittivity
tensor that is along the axis parallel to optical axis is the dominant element.
However, in the case of magnetic anisotropy, the element of the permeability tensor
that is along the axis perpendicular to optical axis is the dominant element.

The resonant frequency is directly proportional to the patch width, and it is inversely
proportional to the patch length.

The patch length has a large influence on the first resonance while the width has a
large influence on the second resonance (for our case, the first and the second
resonances correspond to the modes TM;g and TMo; respectively).

The patch width has the greater influence on the radiated field.

The second resonance has a larger impact on the radiated field than does the first

resonance.
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Chapter 3: Microstrip patch in Chiral medium

3.1. Introduction

Chiral medium is a reciprocal, optically active medium, in which right- and left-circularly
polarized waves propagates through it with different phase constants. This property makes it
similar to ferrites which are non-reciprocal and anisotropic materials. Physically, a chiral
medium consists of an ordinary dielectric containing chiral objects of the same handedness;
these objects are randomly oriented and uniformly distributed [11], [71]-[73]. The
phenomenon of optical activity was discovered by Arago in 1811. He found that crystals of
guartz rotate the plane of polarization of linearly polarized light transmitted in the direction
of its optical axis, where the optical activity was found to be a result of chiral molecules in
that medium [71]. Chirality or handedness is a purely geometric concept that refers to the
lack of bilateral symmetry of an object. A chiral object, by definition, is a body that cannot be
brought into congruence with its mirror image by translation and rotation. Such a body has
the property of handedness and is either right-handed or left-handed [71], [74]. Optical
activity can be explained through the magneto-electric coupling mechanism where, the
electric field induces not only an electric polarization but also a magnetic polarization, and

conversely, a magnetic field produces both electric and magnetic polarization [75].

Chiral materials are bi-isotropic media, and they are a special case of a wider class referred
to as bi-anisotropic media. In a bi-anisotropic medium, the constitutive relations relate D to
both E and B, and H to both E and B by three-dimensional tensors. When these tensors
reduce to scalar quantities, this medium becomes bi-isotropic [9], and sometimes referred to
as Tellegan [76]. The prefix “bi” is used to demonstrate the dependence of D or H to both E

and B [9]. Chirality and its effects in optical activity began to attract attention in the
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Electromagnetics community with experiments performed by Lindeman [77]-[78] and
Pickering [79] in microwave regime where the results were somewhat similar to those in
optical frequencies. Since the paper published by Kong [9] in 1972 on the theory of
electromagnetic field in bi-anisotropic media, many works have been published on the
interaction of the electromagnetic field with both bi-anisotropic and bi-isotropic media.
Propagation through chiral media was treated by [10], [76], [80]-[81]. The reflection and
transmission through achiral-chiral interface or scattering from a chiral slab have been also
considered [10], [82]-[84]. Studies on electromagnetic wave propagation in guided
structures such as waveguides have been reported by Eftimiu and Pearson [85], and also by
Pelet and Engheta [71]. Microstrip lines on a chiral substrate have been analyzed by Kluskens
and Newman [11], and also by Toscano and Vegni [75]. Printed antennas on chiral media
have gained similar interest, where the radiation of a straight thin wire embedded in an
isotropic chiral media, was investigated by Lakhtakia [85]. A similar work on printed dipoles

was accomplished by Lumini and Lacava [86].

Microstrip patch radiators on chiral substrates have been studied by Pelet and Engheta [12].
Pozar [72] has also considered microstrip arrays. Toscano and Vegni [87] presented a
formulation for arbitrary shaped patch antennas on a chiral slab. The published studies were
not limited only to planar structures. Li et al [88] published a paper on the analysis of a
rectangular patch printed on a cylindrical chiral substrate. Furthermore, radiation of dipoles
in multilayered chiral media has also been reported for planar [89], spherically- [90] and
cylindrically- [91] layered structures. Green’s functions associated to the chiral media, was
derived by most of the after mentioned references. Specifically, [10], [75], [87] and [92] have

derived spectral-domain Green’s function for a single layer medium. Ali et al [76] have
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formulated spectral domain Green’s function for layered chiral media. Whereas Li et al [88]

have provided spatial domain Green’s function.

3.2. Theory

In order to analyze the electromagnetic field in a chiral media, a good starting point is

constitutive relations. As described by [11] and [72], constitutive relation s are given by

D= ¢E—j¢B (1)

_lp_ .
H=-B-j{E (2)

Where &, i, & are, respectively, the permittivity, permeability and chiral admittance.

The equations (1) and (2) can be rewritten as

D= eE—juH 3)

B = uH + jué E (4)

With

g = €+ u&? (5)

Assuming e/“t time-dependence, Maxwell’s equations (with current density equal to zero),

are defined as

VXE= —jwB

(6-a)
V XH= joD (6-b)
V.D=p (6-c)
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V.B=0 (6-d)

Using (3) and (4), the equations (6-a) to (6-d) can be rewritten as

VXE= wuéE—jouH (7-a)
VXH= jwe. E+ wué H (7-b)

_ P -
V.E= = (7-c)
V.H= —j¢* (7-d)

Using bi-dimensional Fourier Transform defined by

A (k, Ky ,z) =FT{A(x,y,2)} = ffj:A (x,y,z)e TE*+kyY)dx dy (8)

Then
FT{V XE}=V x E (9)

With
V=jkeex+ jkyey,+ = e, (10)

eyx,ey, e, Are the unit vectors of a Cartesian coordinate system.

Thus eq. (7a) — (7b) in spectral domain, can be written as

VXE= wuéE—jou H (11-a)

<t

xH= joe. E+ wué H (11-b)
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We can write eq. (7-a), (7-b) in matrix form as

o (5)- i (£)
Where
(K] = [fouf —jou (13)
jwe,  wpg
Using the properties
VXxVXE=V(V.E)— V’E (14)
VXxVxH=V(V.H)— VH (15)
We find
VZE + ((wpé)? + w?ue) E — j2(wp)?€H =0 (16)
V2H + ((wué)?* + w?ue,) H+ j2w?ue £ E =0 (17)
In matrix form, equations (16) and (17) can be written as
o (5) w(5)=c 9
Where
) = |(©0r + w?pe. —1'22(0)#)226 (19)
J2w pec (wpd)* + wpe,
With
[M] = [K]? (20)

So we can rewrite eq. (18) as
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v (5)+ K2 () =0 (21)

The matrix [K] can be diagonalized as

K=l 0] rar (22)
Where
1 1
[A4] = [L _Ll (23)
Nc Nc
-1_1 1 —jn.
A= = 2 [1 e ] (24)
And
ne= i (25)
ky = w\fuec = wpg (26)

In eq. (26), k, is related to right-hand circularly polarized (RHCP) wave, whereas k_ is
related to left-hand circularly polarized (LHCP) wave. Substituting [K] by its expression given

in eq. (22) in eq. (21) will lead to
ke 07
a1 (5 + [ 0+ k_] [ (5) =0 (27)
If we put

A ()= (&) (28
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Then eq. (27) becomes

E k, 07°(E
2 (E+ + +\ _
v(5)+ o o] (£)=0 (29)
Or more simply by
E kZE
2 (E+ +04) _
7 (g')* (ag) =0 (30)

E, H are related to E, and E_ by

E)=o ] () o)

This yield to
E=E,+ E_ (32)
HznicE+—nicE_=H++H_ (33)
With
(w7) = £ (%) 2

By replacing eq. (31) in (12) we can rewrite Maxwell’s equations in terms of E, and E_

VXE_=—-k_E_ (35-b)

Consequently, the wave equations in terms of E, and E_ can be defined as
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VZE_+ k*E_=0 (36-b)
In spectral domain equations (36-a), (36-b) can be written as
V’E, + k2E. =0 (37-a)
VZE_+ k2E_=0 (37-b)
Using the expression of V given in eq. (10), V 2 can be defined as
52

V2=V.V=—k§+a7 (38)

Substituting V 2 as defined by (38), in equations (37-a), (37-b) gives

Zh K2 E =0 (39-a)

kLB =0 (39-b)
Where

koo = ki — k2 (40-a)

koo = k2 — k2 (40-b)

For z-component, the general solution for £, and E_ are given by
E,, = Aje /K% 4 B elkz+? (41-a)
EZ— == Aze—ij_Z + Bzejkz_z (41‘b)

We point out that both £, and E_ have x-, y- and z-components. By using eq. (10), (39-a)
and (39-b), the x- and y-components of E, and E_ (Transverse components) can be

expressed in terms of z-components of £, and E_ (longitudinal components) as
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Eyy = % 65_?'*‘ % ki Eqy (42-a)
Ey+ = % 65_?_ % k. Ez+ (42-b)
E, = Jkﬁ k_B, — % P (43-a)
B, =Lk B, + 52 2= (43-b)

By substituting eq. (41-a), (41-b) in eq. (42-a) — (43-b), and applying boundary conditions at
the interface ground plane-dielectric, and at the interface patch/dielectric- air, dyadic
Green’s function in closed-form, can determined. The detailed expressions of Green’s
function elements are given in [72]. We note that the symmetry in the dyadic Green’s tensor
that usually exists for an ordinary dielectric substrate does not exist for the case of chiral
substrate, which increase the computational effort by a factor of four. Moreover, extending
the solution for a patch antenna on an ordinary dielectric substrate to chiral substrate,

involves only the use of the new Green’s function components.

3.3. Results and Discussions

In this section we will investigate the effect of chirality, represented by chiral admittance ¢,
on the resonant frequency, bandwidth and radiated field. The numerical results illustrated in
Fig. 1-6, are computed for two different patch sizes and for each case the impact of chirality
is shown for different substrate thicknesses. From Fig. 1 and 2 it can be noticed that
increasing chiral admittance, which measures the degree of chirality, increases the resonant
frequency. However, this seems to be thickness- and patch size-dependent, in another word,

this result is valid only for thick substrates. How a substrate looks thick, depends to the
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patch size as depicted by Fig. 1 and 2. In term of the bandwidth, Fig. 3, 4 show that
increasing chiral admittance increases the bandwidth regardless to dielectric thickness.
However, this enhancement in the bandwidth does not exceed 1.42% and it looks also
dependent to the patch size, where smaller patches offer better bandwidths. Radiated field
intensity increases by about 10% with the increase of the substrate chirality as shown in Fig.

5 and 6. Again, this increase is patch-size dependent where it is significant for small size

patches.
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Fig. 1 Influence of Chirality on the resonant frequency foraxb=2x3cm, &, = 2.2
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3.4. Conclusion

The theory of electromagnetic waves propagation in chiral media is presented. It was shown
the chirality is basically a purely geometric concept, and it has been studied extensively in
different fields, prior electromagnetics. The interest in chiral materials, by the
electromagnetics community, date back to the early seventies. The chiral materials are
referred to as bi-isotropic materials, and they are a sub-class of the more general class called
bi-anisotropic materials. The background of this subject has been sufficiently described. The
interest in chiral materials in the field of microstrip antennas and wave guiding structures
was motivated by the similarities shared with the ferrites, where the phenomenon of optical

activity is present in both materials. Since ferrites have proven novel characteristics for
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microwave applications in general and microstrip antennas in particular, chiral materials
have been studied to check whether they can provide similar operational characteristics. It
was also shown that modeling chiral medium starts with the use of constitutive relations to
derive the associated Maxwell’s equation. Then matrix algebra is used to decouple the wave
equation yielding to right and left circularly polarized waves for the electric and magnetic
fields. After that, Maxwell’s equations in terms of the new components are derived. The rest
of the process to derive Green’s function associate to the structure, is similar to that of
ordinary substrate. It has been shown that the influence of chirality on resonant frequency
in particular, is dependent to substrate thickness and patch size. It has been shown also that
increasing the substrate chirality increases, although to a small degree, the bandwidth and
the radiated field of a microstrip antenna. The positive impact of chirality, on bandwidth and

the radiated field, becomes significant for small size patches.

94



Chapter 4

Feeding Techniques



Chapter 4: Feeding Techniques

4.1. Introduction

When a microstrip antenna is operating in transmitting/receiving mode, RF signals are
usually carried to/from the antenna using a transmission line called a feed. Different feeding
methods have been suggested and many theoretical models have been proposed for
microstrip antenna structures where these feeding methods are including in the
formulation. The availability of theoretical models for the feed, allows quantifying its
possible effects on the characteristics of the microstrip antenna. Early microstrip antennas
used either a microstrip line feed or a coaxial probe feed. Pozar published a paper [93], on
the calculation of the input impedance of microstrip line fed and coaxial probe fed
rectangular patch antenna. Few years later, he participated in developing a more elaborate
study on the modeling of microstrip line fed and proximity coupling fed patch antenna [94].
Similar works [95], [96] were published later. The published theoretical models were not
limited to a single layer structures, but they were also extended to multilayered structures
[52]. In addition to full-wave analysis based works treating stacked circular [97] and
rectangular [98] patches, as well coaxial probe fed- [99] and microstrip line fed- [100] arrays
of rectangular patches. Most of the numerical studies on such structures were based on the
use of Green’s functions and the method of moments. However, formulations based on
finite difference time domain (FDTD) method, were also reported [101]-[102].Experimental
studies were also reported [62], [103]. These studies provide a set of measured data to
examine the accuracy of the theoretical models, and to determine their range of validity.
Microstrip line and coaxial probe feeds belong to direct contacting feeding methods. Such

feeding methods have the advantage of simplicity, but they have several disadvantages such

96



Chapter 4: Feeding Techniques

as the bandwidth/feed radiation trade off. Where, an increase of the substrate thickness for
the purpose of increasing the bandwidth leads to an increase of spurious feed radiation.

Practically, such antennas are limited in bandwidth to about 2 - 5 % [4].

Another type of non-contacting feeds, have been developed for microstrip antennas,
namely, the proximity coupling and the aperture coupling feeds. For proximity coupling, the
patch can be placed on a relatively thick substrate for improved bandwidth, while the feed
line is placed on a thinner substrate to reduce spurious radiation. In 1987, Pozar and
Kaufman [104] have published a work on increasing the bandwidth of a microstrip antenna
by proximity coupling. In the same year, another paper has been published by Pozar and
Voda [94], in which a modeling of proximity coupling feed has been presented. Splitt et al
[105] have provided a similar study for both circular and rectangular patch antennas. Other
works have been published in this regard for arrays [106] and single-element rectangular
patch antennas [96], [107]. Aperture coupling is another type of non-contacting feeds. This
type is proposed by Pozar in 1985 [108]. A microstrip feed line on the bottom substrate is
coupled through a small aperture in the ground plane to a microstrip patch on the top
substrate. This arrangement allows a thin, high dielectric constant substrate for the feed,
and a thick, low dielectric constant substrate for the antenna element. In addition, the
ground plane eliminates spurious radiation from the feed from interfering with the antenna
pattern [4]. Aperture coupled-fed stacked rectangular patch antenna has been studied in a
paper published by Croq et al [95]. Aperture-fed circular patch also has been analyzed [109].
Circular [47] and rectangular [110] microstrip patches in layered medium have been also
studied. Aperture coupling feed technique has been applied on an array of circular patches

[111]. Aperture shape is usually, although it is not limited to, rectangular or circular. H-
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shaped aperture, with a microstrip line feed, has been used in feeding a dual-band square

patch [103].

4.2. Theory

4.2.1. Microstrip line feed

Two possible configurations of a microstrip line fed patch antenna Fig. 1 (b) ordinary

microstrip, (c) feed line and inset feed line.

Feeding strip

Ground plane

(b) (c)

Fig.1 Structures of microstrip line fed patch antenna
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Where

W: the patch width

L: the patch length

Wr : the feed line width

S: the inset length

(X0, Yo): the feed position

The equivalent circuit of the both configurations of microstrip line fed patch antenna is
shown in Fig. 2. Where the RLC circuit represents the resonant patch and the feed is

represented by the series inductance [4].

Ot Y Y\

Fig. 2 Equivalent circuit of microstrip line fed patch antenna

The method of moments transforms the integral equation of the electric field into matrix
equation of the form [Z]. [I] = [V], where the voltage vector [V] represents the excitation. In

[94], the impressed (source) current is modeled as

Ji= 6(x —x0).6(y — ¥o) (1)
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Where (xo , Yo) are the coordinates of the feed position. The feed is incorporated in the

computation of the elements of the voltage vector which is expressed as

/2

V=4 [, [ Qv Im [E U)e’™|Re [} (J,)e/*r¥0]BdBda (2)

F; and E, are the Fourier transforms of x and y dependences of the current density. The

expressions of Fy, F, and Q,, are given in [93]. The feed width can be included in the

formulation by modifying the voltage term in eq. (2) by the factor /% to account for the

edge effect of the microstrip line. W, is the effect width of the feed line and d is the
substrate thickness [93]. In the study presented in [94], Pozar and Voda have presented a
theoretical model which is suitable for both microstrip line fed and proximity coupling fed
patch antennas. In this model, the currents on the feed line and on the patch are expanded

in term of three types of modes:

1/ Traveling wave current on the feed line

2/Patch current (expanded in terms of entire domain modes)

3/ Overlap current (expanded in terms of piecewise sinusoidal (PWS) modes)
Overlap currents enforce continuity of current from the feed line to the patch.
The inset length is included in the modeling of the current density in the feed line.

Feeding along the radiating edge is the most common in feeding patch antennas, where the
feed line is usually placed at the center of this edge. One of the reasons why the feed line-

patch contact point is on the resonant edge is that the feed currents are co-polarized with
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the currents of the patch which minimizes cross-polarization radiation. In addition, there is a

little change in the input impedance as the feed point is moved along this edge [94].

The formulation provided by [94] has been used in [96] to derive a MoM formulation of
microstrip line fed patch antenna. PWS basis functions have been used to approximate both
the feed line and the patch currents. The final matrix equation has the form

7 Vel = 1] @

The matrix Z and the vector V; are associated to the feed line, and the matrix Y and the
vector V, are associated to the patch. Whereas the matrices T and C represent the coupling

between the feed line and the patch basis functions [96].

4.2.2. Coaxial probe feed

The structure of coaxial probe fed patch antenna is illustrated in Fig. 3, its equivalent
structure is similar to that of a microstrip line fed patch antenna. Unlike microstrip line feed,
the position of a coaxial probe is not restricted to be only on the perimeter of the patch, but
rather it can be placed in any point on the patch area. The coaxial probe feed is often
modeled as a short, vertical filament of current. If the probe is assumed to be along the z-

axis, then the current impressed by the probe has the form

J = Z68(x—x0).6(y — ¥o) (4)

Where (g, Yo) represent the feed position. This formulation of the feed has been adopted
before in [93], where the position of the feed probe is included in the calculation of the

elements of voltage vector.
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Coaxial feed

Ground plane

Fig. 3 Structure of coaxial probe fed patch antenna

Also in [93], it has been shown that the probe self inductance can be accounted to by adding

jXp to the input impedance, where

X, = \/Z—EO_Ttan(\/e_r ko d) (5)
With
Zy s the free space intrinsic impedance (Z, = 120 Q)
& Is the dielectric relative permittivity
d Is the dielectric thickness

ko Is the free space wave number
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In [52], a spectral domain MoM formulation has been presented for a coaxial probe fed

patch antenna in a layered medium. The integral equations of such structure are given by
W22 Gl + Gyl | e7/0x¥bo%) dley dley, = [[77 Grf, e /K499 dk, dk,  (6-a)
ﬂjozo[éyx]x + gyyjy ] e—j(kxx+kyy) dkx dky = ff:: éyzfz e—j(kxx+kyy) dkx dky (6‘b)
In the above equations, ], and jy are the Fourier transforms of the x and y components of

The unknown current on the patch and J, is the Fourier transform of the known exciting

current on the coaxial probe, and it is defined as
jz = I e/ (kxXotkyyo) (7)

Somewhat a similar formulation of coaxial probe feed has been employed by [98], in which a
full wave analysis of probe-fed stacked circular patch antenna is provided. A coaxial probe of

radius R is placed at a position having the coordinates (p,, ¢,) as depicted by Fig. 4.

z
Ho, €0 P
Hi, €1 |4 a ol Ihl
Hz, €2 | gz > | Ihz
Uz, €3 — »J«—2R hz

e | '/x”/’///

|
Po

Fig. 4 probe-fed stacked circular patch antenna
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The current on the probe has been expressed as

]_probe(ﬁ' z) = ZA% 6(pp - R) (8)

With the local coordinates defined as p, = p— py and py = (Pg, Po)

4.2.3. Proximity coupling feed

Proximity coupling is, besides aperture coupling, one of feeding methods in which the signal
is transmitted from the feed to the antenna element through electromagnetic coupling, and
it is classified among non-contacting feeding methods. The structure of proximity coupling
fed patch antenna is illustrated in Fig. 5. For this type of feeding, two parameters affect the
antenna characteristics, the line-patch overlap, and the patch width to line width ratio
[4].Matching the feed line is simply achieved by selecting the appropriate line-patch overlap
[105]. The equivalent circuit of proximity coupling fed patch antenna is shown in Fig. 6,
where the RLC circuit represent always the resonant patch, while the series capacitance
represents the feed. The main advantage of using proximity coupling feed is the possibility of
placing the feed network on a thin substrate in order to reduce radiation from the
transmission feed line, and placing the patch on a thick substrate for an improved bandwidth

[105]. Bandwidths of 13% have been achieved using this type of feed [4].

Among the theoretical models that have been proposed for proximity coupling fed patch
antenna, a study based on the broadside coupled lines and improved transmission line
methods [106]. This model allows the calculation of the input impedance, and can be applied
on single element and arrays patch antennas. Method of moments based formulation which

valid also for microstrip line fed antennas has been proposed by [94]. Costa et al [107] have
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Presented full-wave analysis of proximity coupling fed patch antenna, with anisotropic

dielectric. In their study, coaxial-to-microstrip junction has been modeled by a voltage-gap

generator. The feed line configuration is illustrated in Fig. 7, where

_(1 at (xo,Yo)
Vn = {0 elsewehere ®)

’ — Substrate g4 i @

v

IL b

Substrate g5 "1 S e -

7 Microstrip line w
4 e
Ground plane

(a)

Fig. 5 proximity coupling fed patch antenna (a) 3D structure (b) Top view

Fig. 6 Equivalent circuit of proximity coupling fed patch antenna
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Fig. 7 Voltage-gap model for the feed line

4.2.4. Aperture coupling feed

Another type of non-contacting feed is the aperture coupling feed. This configuration uses
two parallel substrates separated by a ground plane, where the patch is excited by the
microstrip line etched on the substrate below the ground plane, though a narrow aperture

(slot) Fig. 8. The equivalent circuit of the structure of Fig. 8 is illustrated in Fig. 9.

The resonant patch now is represented by a series RLC circuit, with a shunt inductance
representing the coupling slot. Among the advantages of this type of feeding, the possibility
of using thin substrate of a high dielectric constant for the feeding network, and a thick
substrate of a low dielectric constant for the antenna element, yielding optimal performance
for both the feed and the antenna. Also, the radiation arising from the feeding network
cannot interfere with the main radiation pattern generated by the patch antenna since the
ground plane separates the two radiating mechanisms. The aperture is usually smaller than
the resonant size, so the backlobe radiated by the slot is typically 15-20 dB below the

forward main beam [4]. This geometry has at least four degrees of freedom:
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» The slot size
» Its position
» The feed substrate parameters

> The feed line width

Impedance matching is performed by adjusting the size of the coupling slot together with
the width of the feed line. Coupling can occur via an equivalent electric or magnetic
polarizability in the slot, but the magnetic case is the stronger mechanism. The maximum
coupling occurs when the aperture is centered below the patch where the magnetic field is
at its maximum. The aperture coupled patch with a centered feed, has no cross-polarization
in the principle planes [4]. For a slot-coupled patch antenna, the slot becomes the feed
element to be modeled. A system of two integral equations is generated where the various
unknowns, the patch current density and the transverse electric field over the aperture, are

expanded into a series of basis functions covering the entire domain.

’ Substrate g4

Aperture

Ground plane

Substrate g5

I

—————— Microstrip line

Fig. 8 Aperture coupled fed microstrip patch

107



Chapter 4: Feeding Techniques

— MWW=

Fig. 9 Equivalent circuit of aperture coupling fed patch antenna

Method of moments is used to compute the surface current on the patch and reflection
coefficient on the microstrip line. The input impedance and radiation pattern are then easily
obtained [95]. One of the methods developed to model aperture coupling fed patch
antenna, is that adopted by Losada et al [47], where dyadic Green’s functions in Hankel

transform domain (HTD), have been derived for the structure illustrated in Fig. 10.

Circular patch

Ho, €0
|"_I3JE3 4 20 '/:l Id3

Ha, €2

20, | %
i, & / ! I di

Circular .aF:nertL,lrneJ Ground plane

Fig. 10 Circular patch fed by circular aperture
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For such structures, regardless the numbers of the dielectric layers, the unknown quantities
are the surface current density on the patch and the transverse electric field on the
aperture. Considering the structure of Fig. 10, let j;(p, @) be the current density on the
ground plane with a circular aperture, and j,(p, @) be the current density on the circular
patch. And E;(p, @,z = d,) and E;(p, ¢,z = d,) the transverse electric fields on the plane
of the aperture and the plane of the patch respectively, these quantities are related by the

following equations
Ji(ky) = Hyy(ky)Ei(k,) + Hiz (k)2 (k) (10-a)
Ey(k,) = Hy (ky)Es(ky) + Hyp(ky)i2(Ky) (10-b)
Where

Ji.J>, E; and E, are the Hankel transforms of j;(p,¢), j2(p,®), E:(p, 9,z =d;) and
E.(p, @,z = d,) respectively, and H,;, H,,, H,; and H,, are 2 x 2 matrices that stands for
dyadic Green’s functions in the HTD. Chebychev polynomials have been used as expansion
functions. By starting from equations (10-a), (10-b) the hybrid integral equations could be
formulated and then solved using the method of moments. Instead of the transverse electric
field on the aperture, the equivalent magnetic current density could be expanded using the

same set of basis functions where [47]

Mi(p,p)= —2xE(p,p,z= dy) (11)

A similar study has been reported in [113], where the patch and the aperture now have a
rectangular shape and Green’s functions are formulated in Fourier transform domain instead
of Hankel transform domain. Unlike [47], expansion functions derived from the cavity model

are employed instead of Chebychev polynomials. A quiet different formulation is used in
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[109] where the authors have presented a mathematical formulation for a circular patch fed
by a rectangular aperture. Green’s functions are formulated in spectral domain. The chosen
basis functions are based on the TM, modes of a circular cavity. Reciprocity theorem is used
along the analysis. Similar to the analysis of a slot on a waveguide wall, the effect of a slot
discontinuity on the microstrip transmission line can be considered as a series impedance Z.
Thus the equivalent circuit for the aperture coupled patch antenna is shown in Fig. 11. In
this circuit, the series impedance Z is found by applying the reciprocity theorem to the fields
of the microstrip line and considering the reflected and the transmitted waves on the line,

the impedance Z is given by

Av?
2= Zeverya 12
o Z 00 o
Zc ZC ZC
O = =
Equivalent Open-circuited
Circuit Tuning stub

Fig. 11 equivalent circuit for the aperture coupled patch antenna as seen by the feed line

The expressions of Av and Y¢ can be computed directly, whereas Y% has to be computed

using the method of moments. Finally the input impedance is given by

Zin = Z — jZccot(BLs) (13)

Where

Lg Is the stub length
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4.3. Results and Discussions

In this part, a parametric study is provided on two different structures, namely microstrip
line fed- and coaxial probe fed-patch antennas. The influence of the feed characteristics on
the resonant frequency and radiated fields is shown. The reported results are generated
using HFSS software. The structures data are synthesized using ADK tool so that the patch
operates around 4 GHz and 5 GHz for microstrip line fed- and coaxial probe fed-patch

respectively.

4.3.1. Microstrip line feed

The patch dimensions are a x b = 2.96 x 2.53 cm, the substrate is characterized by a dielectric
constant equal to 2.2, a tangent loss of 0.0005 and a thickness of 3 mm. The feed line width,
Inset distance and inset gap are varied and their impact on the resonant frequency Tables 1-

3, and the far-field Fig. 12-14, is observed.

Table 1 Effect of feed line width on resonant frequency and return loss with Inset

distance=0.771 cm and Inset gap = 0.012 cm

Feed width (cm) | Resonant frequency (GHz) | Return loss (dB)
0.012 No resonance -
0.023 3.818 -16.86
0.046 3.939 -1.15
0.092 3.899 -2.24
0.115 3.818 -1.53
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Table 2 Effect of Inset distance on resonant frequency and return loss with feed width =

0.023 cm and Inset gap = 0.012 cm

Inset distance (cm) | Resonant frequency (GHz) | Return loss (dB)
0 3.939 -2.93
0.385 3.939 -4.93
0.771 3.818 -16.86
1.265 No resonance -

and Inset distance = 0.771 cm

Table 3 Effect of inset gap on resonant frequency and return loss with feed width = 0.023 cm

Inset Gap (cm) | Resonant frequency (GHz) | Return loss (dB)
0 3.939 -2.93
0.006 3.98 -1.30
0.012 3.818 -16.86
0.024 3.98 -4.56
0.048 3.98 -6.30
0.12 4.02 -0.66

The initial feed line width set by the ADK tool is 0.023 cm and the corresponding resonant
frequency (equal to 3.818 GHz) is considered as a reference resonant frequency. Frequency

shift is computed with respect to this frequency. The initial values set by the ADK tool for the
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inset distance and the inset gap are 0.771 cm and 0.012 cm respectively. Therefore, the

corresponding resonant frequencies are also considered as reference frequencies.

When the feed width is varied with integer multiples of the initial value the maximum
frequency shift is about 3%. Return loss levels are highly affected when the feed line width
shifts from its initial value, resulting in poor impedance matching. This is result natural
because the characteristic impedance, which is a function of the feed width, of the
microstrip line is substantially changed. Similar results are observed for the case of the inset
distance and the inset gap. In terms of return loss, the best result is offered by using the feed
parameters generated by the ADK tool, where the return loss at the resonant frequency

3.818 GHz is about -16 dB.

XY Plot 2 Paich Antenna ADKvi A
375.00
. Curve Info
N
7 / = gbs(rETotal)
/ Setup? ; LastAdaptive
- 7 FeedWidth=0.023cm' Freq=4GHz InsetDistance=0.771cm' InsetGap=10.012cm' Phi=%0deg'
- / = abs(rETotal)
/ Sefup! : LastAdapive
- / FeedWidth=0.046cm' Freq=4GHz InsetDistance=0.771cm’ InsetGap=0.012cm' Phi=%0deq'
,"* = abs(rETotal)
25000 — / Setup! : LastAdaptive
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g g ‘/ \'\
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Fig. 12 Impact of feed line width on the radiated field
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Careful observation of influence of feed parameters on the radiated field leads to the
conclusion that the radiated field variation does not follow any clear behavior. However
when particular cases are compared to each other, we find that feed characteristics offering
good results in terms of impedance matching do not necessarily offer the best result in

terms of the radiated field.

4.3.2. Coaxial probe feed

The patch dimensions are a x b = 2.37 x 2.02 cm, the substrate is characterized by a
dielectric constant equal to 2.2, a tangent loss of 0.0005 and a thickness of 3 mm. The
resonant frequency Table 4, and the radiation pattern Fig. 16-17, variations in terms of the
probe location (xo , yo) are reported. We note that patch is centered at the coordinate
system as shown in Fig. 15. The initial feed location set by ADK software is (0, 0.39 cm). The
results reported in Table 4 show that when the feed location is near the center of the patch
gives the lowest resonant frequency. Unlike the case of microstrip line feed, the coaxial
probe location set by ADK did not gave the best results in term of return loss, although is
acceptable, but rather when the feed probe is at (-0.4 cm, -0.39 cm) where the return loss is
-14 dB. The radiation pattern of a coaxial probe fed-patch antenna shows that the main lobe
slightly deviates from the direction normal to the patch plane (i.e. theta = 0). Moving the
feed probe along the y-axis also slightly changes the direction of the main lobe as illustrated
in Fig. 17. Similarly to case of microstrip line fed patch, the probe feed location set by the
ADK software give the lowest field magnitude compared to the other locations as shown in
Fig. 17 and 18. This later result leads to the conclusion that the feed parameters defined by
the ADK software as a starting point, puts impedance matching is the primary goal not the

radiation characteristics of the patch antenna.
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. —

0 25 5 (cm)

Fig. 15 Coordinates system for coaxial probe fed patch antenna

Table 4 Effect of feed location on resonant frequency and return loss

Xo(cm) =-0.4 Xo(cm) =0 Xo(cm) =0.9
yolcm) | Resonant | Return | Resonant | Return | Resonant | Return
Frequency | Loss | Frequency | Loss | Frequency | Loss
(GHz) (dB) (GHz) (dB) (GHz) (dB)
-0.8 4.8 -3 5 -5.41 5 -4.86
-0.6 4.95 -7.19 4.7 -8.02 4.95 -5.94
-0.39 4.6 -14 4.6 -7.14 4.60 -4
-0.18 4.5 -0.48 4.55 -0.27 4.55 -3.14
0 3.9 -1.17 - - 4.05 -3.5
0.18 3.9 -1.08 4.55 -0.96 4.60 -6.07
0.39 4.6 -2.57 4.55 -9.65 4.65 -3.42
0.6 4.65 -1.78 4.65 -7 4.65 -4.76
0.8 4.7 -4.15 4.7 -2.91 4.70 -4.46
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Radiation Pattern 2
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Fig. 16 Effect of probe location along x-axis on the radiation pattern
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Fig. 17 Effect of probe location along y-axis on the radiation pattern
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4.4. Conclusion

The state of art of popular feeding techniques is presented. The operating principles and the
parameters of each technique have been described. The features of these methods and their
historical development have been also presented. Different mathematical formulations
modeling these feeding techniques are mentioned. When the method of moment is
employed, the feed model is included in the computation of the elements of the voltage
vector which represents the excitation. The different approaches used to compute the input
impedance are presented. The influence of the parameters of two feeding techniques on the
resonant frequency and the radiation pattern is also reported. Among the concluded results:
the feeding technique has an effect, although it is small, on the resonant frequency. Two
main criteria are to be met by a given feeding methods, these criteria are the bandwidth,
and the radiation pattern, on the basis of these criteria feeding methods are evaluated.
Modeling methods are evaluated according to their accuracy in predicting resonant
frequency and the input impedance. For a microstrip line feed, the line width is chosen to
provide characteristic impedance that is close to the resonant input resistance of the patch
antenna. If this is not sufficient, feed inset is used to adjust the input impedance in order to
achieve impedance matching. For a coaxial probe feed, the probe location is determined to

provide impedance matching between the feed probe and the patch antenna.
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Conclusion

We have presented a full wave analysis of microstrip patch embedded in a multilayered
medium containing isotropic or anisotropic dielectrics and chiral substances. The analysis is
based on the derivation of the dyadic Green’s function in spectral domain. The electric field
integral equation is formulated and solved by the method of moments. The complex roots of
the impedance matrix determine the resonant frequency and the bandwidth. The general
diagram of analytical and numerical methods used electromagnetic modeling is shown. A

careful reading of this thesis enables us to draw the following conclusions:

- Analytical methods are based on assimilating the microstrip antenna to a physical
device of a known mathematical model such as a transmission line or a cavity.

- Numerical methods share the idea of discretizing some unknown electromagnetic
property.

- The differences between popular numerical methods are, basically, in the structure
being descretized and solution variables.

- Numerical methods are classified according to different criteria, however, the
resulting classes are not completely independent to each other but rather they look
like overlapping fields.

- The mathematical foundation of each numerical method makes it more suitable to a
particular problem than the other methods.

- Problem complexity and required accuracy versus the computational cost are the

factors dictating the choice of the analytical or the numerical method.
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On the effect of dielectric parameters, it has been shown that the impact of material
characteristics, permittivity and permeability, is larger than the impact of the
dielectric thickness.

It has been proven that the use of thick substrates with low permittivity and high
permeability enhances significantly the antenna performance.

The patch length has a large influence on the first resonance, whereas the width has
a large influence on the second resonance.
We have shown that for a chiral substrate, the electric and magnetic fields are
coupled in the wave equation. Linear algebra is employed to obtain decoupled fields
wave equations. Consequently, both the electric and magnetic fields are decomposed
into right hand- and left hand-circularly polarized field components.
Extending the solution from an ordinary dielectric substrate to chiral substrate
involves only changing the Green’s function.
It has been found that increasing the substrate chirality enhances the bandwidth and
increases the radiated field magnitude. This effect is more prominent for patches
with small dimensions.
Feeding techniques that are based on electromagnetic coupling were proven to be
advantageous with respect to direct contacting techniques in terms of antenna
performance and the extra degrees of freedom available to designers. However, this
advantage is accompanied with increased modeling difficulty.
It has been found that the feeding technique has a small influence on resonant

frequency.
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- For a microstrip line fed-patch antenna, the width of the feed line is adjusted to
achieve impedance matching with antenna, or alternatively, by adjusting the feed
inset.

- For a coaxial probe, the optimal probe location is defined as the location providing

impedance matching.

Finally, the parametric study performed throughout this thesis is an attempt to shed some
light on the influence of different parameters of the microstrip antenna structure on its
performance. This is believed to inspire more elaborate studies which allow exploring the

potential possibilities to enhance the microstrip antenna performance.
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