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Abstract 

 

      This thesis presents a full wave analysis of microstrip patch embedded in a multilayered 

medium containing isotropic or anisotropic dielectrics and chiral substances. The analysis is 

based on the derivation of the dyadic Green’s function in the spectral domain. Then the 

electric field integral equation is formulated, and solved by the method of moments. The 

resonant frequency and the bandwidth of the antenna are computed by finding the complex 

roots of the determinant of the impedance matrix. Stationary phase theorem is used to 

compute the far-field and thus determining the antenna radiation pattern. A parametric 

study is achieved to investigate the influence of the patch dimensions and the substrate 

characteristics, including the effect of anisotropy, on the resonance and the radiation 

characteristics of the microstrip antenna. The mathematical details of the formulation are 

presented. The basic theory involved in the modeling of the electromagnetic field with chiral 

media is provided, and the different approaches proposed in the literature are mentioned. 

The influence of chirality on the resonant frequency, bandwidth and the far field is shown. 

Finally, an introduction into the modeling of the different feeding techniques and the effects 

of two feeding techniques on the antenna performance is presented.  



Résumé 

 

      Cette thèse présente une analyse rigoureuse d’un résonateur patch noyé dans un milieu 

multicouche qui contient des matériaux isotropes, ou anisotropes et des substances chiraux. 

L’analyse est basée sur le calcul de la fonction dyadique de Green formulée dans le domaine 

spectral. Ensuite, l’équation intégrale du champ électrique est formulée. La méthode des 

moments est utilisée pour résoudre l’équation intégrale. La fréquence de résonance et la 

bande passante sont calculées en cherchant les racines complexes du déterminant de la 

matrice d’impédance. Le théorème de phase stationnaire est exploité afin de déterminer le 

champ électrique lointain, ce qui permet la détermination du diagramme de rayonnement. 

Les effets des différents paramètres de la structure sur les caractéristiques de résonance et 

rayonnement de l’antenne microbande, ont été analysés, notamment les dimensions du 

patch et les caractéristiques de substrat en plus de l’effet de l’anisotropie. Les détails 

mathématiques de la modélisation ont été présentés. La théorie qui décrit l’interaction du 

champ électromagnétique avec les milieux chiraux, est présentée. En plus, les approches 

proposées dans la littérature pour modéliser ce genre des milieux, ont été mentionnées. 

L’influence de chiralité sur la fréquence de résonnance, la bande passante et le champ 

rayonné est présentée. Finalement, une introduction est présentée sur la modélisation des 

différentes méthodes d’excitation et l’influences de deux techniques sur la performance de 

l’antenne microbande.  



 ملخص
 

Δمبني Δدراس ϡدϘت Δحϭهذه الأطر ϰϠع  ΕΎϘمتعددة الطب ΔزلΎدة عΎم Δضمن بني Δعϭالمطب ΕΎائيϭϬال Δمل لدراسΎذج شϭنم

 Δالبني ϱϭيمكن أن تح Ύكم ،ΕΎفϭϔمص ϭأ ΔميϠشكل أعداد س ϰϠع Εابϭصف بثϭيمكن أن ت ΔئيΎيزيϔال ΎϬئصΎحيث أن خص

دراسΔ هذه البنيΔ مبنيΔ عϰϠ استخراج دالΔ غرين في المجΎل الطيϔي، ثϡ كتΎبΔ المعΎدلΔ التكΎمϠيΔ كيرال.  نϭعمϭاد من 

 ϙبعد ذل ϭ ،ئيΎربϬل الكϘحϠيل .ΔدلΎلأجل حل هذه المع ϡϭالعز ΔϘهي طريϭ Δعددي ΔϘطري ϡاستخدا ϡعرض ت ϭ تردد الرنين

ϭϔلمميز مص Δر المركبϭد الجذΎإيج ϕعن طري ΎمϬبΎحس ϡت ϕΎر النطϘر المستϭالط Δنظري ϡاستخدا ϡت Ύبينم .ΔنعΎالمم Δف

 ϰϠع Ύأثره ϭ املϭف العϠمخت Δدراس ϡائي. تϭϬلΎص بΎع الخΎاستخراج مخطط الإشع ϭ ئيΎربϬل الكϘالح ΏΎلحس

خصΎئص الϭظيϔيΔ لϭϬϠائي، هذه العϭامل تتمثل بشكل أسΎسي في خصΎئص الشريط المطبϭع ϭكذلϙ خصΎئص المΎدة ال

تخدمΔ. كمΎ تϡ عرض الجϭانΏ الريΎضيΔ لϠنمϭذج المتبع. المبΎدئ الأسΎسيΔ التي تصف تΎϔعل الحϘل العΎزلΔ المس

نϭع كيرال تϡ عرضΎϬ، كمΎ تϡ ذكر النمΎذج المختΔϔϠ المϘترحΔ لدراسΔ هذا النϭع من الكϬرϭمغنΎطيسي مع المϭاد من 

. ϭ في الأخير، تϭ ϡاد عϰϠ الخصΎئص الϭظيϔيΔ لϭϬϠائيبΎلإضΎفΔ إلϰ تبين أثر الخΎصيΔ المميزة لϬذا النϭع من الم المϭاد

 تأثير نϭعين من هذه التϘنيΕΎ دراسΔإعطΎء مϘدمΔ عن نمذجΔ مختϠف التϘنيΕΎ المستعمΔϠ لتغذيΔ الϭϬائيΕΎ المطبϭعϭ ،Δكذا 

 .ΕΎائيϭϬأداء هذه ال ϰϠع          
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Introduction 

       

        The first microstrip patch antennas have been fabricated on single layer isotropic 

substrates. The emerging trend toward multilayered configurations was imposed by many 

practical needs. For instance, in wireless applications, cover layers have been used for 

protection against environmental effects. Also in microwave circuit applications where 

microstrip antennas are integrated with feed networks and active devices, multilayered 

substrates are used extensively [1] – [3]. The inherent narrow bandwidth of microstrip 

antennas requires modeling methods capable of accurately predicting the resonant 

frequency and examining the possible effects of different parameters on the antenna 

performance. The available methods for such task are based on full wave approach and they 

are implemented using numerical methods. These methods account rigorously for all 

radiation, coupling and loss mechanisms. Furthermore, they are powerful tools for modeling 

arbitrarily shaped radiating elements, arrays and different feeding techniques [4], [5].  

Early substrates used for microstrip antenna technology, were isotropic. However, it was 

proven that even the dielectrics considered isotropic, posses some amount of anisotropy. In 

addition to the fact that, some artificial anisotropic materials are intentionally used to 

achieve certain operational characteristics. Therefore, an accurate characterization of the 

effect of anisotropy on the antenna performance is needed [6] – [8]. Chiral materials gained 

a significant interest in electromagnetics community, where a great amount of research has 

been accomplished on the theory of electromagnetic wave propagation in chiral media. The 

research on chiral media, which is a bi-isotropic media, has been accomplished in the course 

of the greater context of bi-anisotropic materials [9] – [12]. This thesis presents an efficient 
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algorithm, based on the use of spectral dyadic Green’s function and the method moments, 

for the analysis of microstrip patch embedded in a multilayered medium containing 

isotropic, anisotropic and chiral materials.   

The thesis is organized in the following manner: 

The first chapter presents an overview on two broad categories of methods developed for 

modeling RF and microwave devices. These categories are, simplified or reduced analysis 

based methods, and full wave or rigorous analysis based methods. Reduced-analysis 

approaches are based on the use of simple physical models, where simplicity and physical 

insight are granted at the expense of accuracy. These methods are generally, of a limited 

scope. In this chapter, transmission line, cavity and multiport connection models are 

described and their features are presented. Then, a comparison is made between these 

models in terms of different criteria. Full wave approaches are based on the use of numerical 

methods; these methods sacrifice simplicity and physical insight at the expense of accuracy. 

These methods are the core algorithms of almost all CAD commercial microwave packages. 

The Numerical methods presented in this chapter, are classified according to the kind of 

equations usually, these methods are applied to. Thus, we will have two categories: 

 Differential equation methods and integral equation methods, finite element method, finite 

difference and transmission line matrix methods are treated under differential equation 

methods. Whereas, the method of moments, the finite integration technique and partial 

element equivalent circuit methods, are treated under integral equation methods. At the 

end of this chapter, the most popular methods are compared in terms of their performance 

and features. Since the method of moments requires the formulation of the appropriate 
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Green’s function, a section is added on the mathematical concept, the types and the 

methods used to derive Green’s functions. 

In chapter 2, an efficient algorithm based on the use of spectral dyadic Green’s function and 

the method moments, is provided. This model is used to characterize a microstrip patch 

embedded in a multilayered medium, where the dielectric can be isotropic or anisotropic. 

The resonant frequency and the bandwidth are computed by seeking the complex roots of 

the determinant of the impedance matrix. The radiated field is calculated using the 

stationary phase theorem. The mathematical features of the present formulation, makes it 

an efficient tool for analyzing stratified media. The use of the concept of transfer matrix to 

represent the layered medium is of a great importance for two main reasons; it allows the 

formulation of the Green’s function easily, furthermore, the characteristics of each layer are 

easily included. A parametric study on the influence of the patch dimensions, the 

permittivity, permeability and the thickness of the substrate, is provided. Also the effect of 

electric and magnetic anisotropy is investigated.  

Chapter 3 provides a survey on the theoretical models proposed for the study of 

electromagnetic wave propagation in a chiral media, and the refection and scattering from 

achiral-chiral interface. A comprehensive formulation describing the process yielding the 

derivation of dyadic Green’s function in the Fourier transform domain. The process starts 

from the constitutive relations of a chiral media, and proceeds until the transverse 

components of the electric and magnetic fields are written, in spectral domain, in terms of 

longitudinal components of right- and left-circularly polarized waves. Enforcing boundary 

conditions yields the derivation of the corresponding Green’s function. The effect of chirality 

on resonant frequency, bandwidth and the far field, is shown. 



12 

 

In the last chapter, an overview is presented on the characteristics and the mathematical 

formulation of popular feeding techniques, namely microstrip line, coaxial probe, proximity 

coupling and aperture coupling feeding techniques. The influence of the parameters of two 

feeding techniques is presented. Finally, summary and discussion results are listed in the 

conclusion. 



 

 

Chapter 1: 

Computational  

Electromagnetics 
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1.1. Introduction 

Electromagnetic analysis treats the interaction of the electromagnetic fields with objects and 

the surrounding environment. The analysis approaches can be divided into two broad 

categories, reduced or simplified analysis and full wave analysis. In the reduced-analysis, 

some approximations are made in the description of the problem; these simplifying 

assumptions allow the use of simple physical models where the analysis results are close to 

those of the original problem. Simplified analysis usually employs analytical methods, and 

these methods maintain simplicity at the expense of accuracy or versatility. On the other 

hand, full wave analysis involves the use of numerical methods. These methods maintain 

rigor and accuracy at the expense of computational simplicity. 

The applied methods in the modeling of the electromagnetic fields and devices can be 

classified as [13], [14]: 

 Analytical methods: where closed-form solutions are obtained through the use of 

analytical formulas. 

 Semi-analytical methods: which provide explicit solutions requiring final numerical 

evaluation (such as complicated integrals, iŶfiŶite seƌies …)   

 Numerical methods: these methods transform the integral or differential equations 

of Maxwell (or an equation derived from them), into an approximate discrete 

formulation (matrix equation) solved directly (by matrix inversion) or iteratively. 

We will start by describing the popular analytical models as applied for microstrip antenna 

structures. These models can be classified into three main models: transmission line model, 

cavity model and multiport network model. 
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1.2. Analytical models  

1.2.1. Transmission line model 

The transmission line model is the first technique employed to analyze a rectangular 

microstrip antenna by Munson in 1974 [14]. In this model, the microstrip patch antenna is 

assimilated to a section of a transmission line of length L where its characteristic impedance 

and the propagation constant are determined by the patch size and the substrate 

parameters. The edges of the patch are classified into radiating and non-radiating edges 

such as the radiating edges are associated with slow (uniform) field variations along their 

lengths, whereas non-radiating edges have an integral multiple of half-wave length 

variations along each edge which results in almost complete cancellation of the radiated 

power at these edges [14]. Usually, the radiating edges are considered as two narrow 

apertures (slots), each of width W, height d (representing the substrate thickness) separated 

by a distance L Fig.1. Each of the two slots is represented by a parallel equivalent admittance 

Y with a conductance G and a susceptance B Fig.2. 

 

Fig. 1 Radiating and non-radiating edges of the patch 
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Fig. 2 (a) Rectangular patch, (b) Transmission line equivalent  

 

Where Yc is the characteristic admittance (it is related to the characteristic impedance Zc by 

Yc = 1/Zc). The conductance G is associated with the radiated power, and the susceptance B 

is related to the stored energy in the fringing field near the edge [5], [14]. The resonant 

frequency is function of the ratio L/d. The determination of the resonant frequency requires 

the computation of the effective length of the patch which is a result of the fringing, and the 

effective dielectric constant which accounts for the Quasi-TEM nature of the wave in the 

microstrip antenna structure. This model is conceptually simple, however, it is very 

approximate and the model is applicable only for a rectangular patch, besides, the effects of 

substrate on radiation and input impedance, are not considered. 

Further improvement is achieved on this model by including mutual coupling between the 

radiating edges through a mutual admittance Ym connected between the two ends of the 

transmission line [15], as depicted in Fig. 3. In Fig. 3, y0 is the characteristic admittance, ys is 

the shunt load admittance and ϒ is the complex propagation constant having the form ϒ = α 

+ jβ ǁheƌe α aĐĐouŶts foƌ the dieleĐtƌiĐ aŶd ĐoŶduĐtoƌ losses of the aŶteŶŶa. 
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Fig. 3 Transmission line equivalent circuit (a) simple model (b) including mutual coupling  

 

The improved transmission line model can be applied on rectangular and square microstrip 

patches only. Furthermore, only microstrip and coaxial feeds are supported. Proximity- 

coupled and aperture-coupled fed microstrip antennas cannot be analyzed. 

More elaborate model called the generalized transmission line model GTLM [16]-[18] has 

been proposed. In this model, transmission line sections, which may be non-uniform, on 

either sides of the current source (which ƌepƌeseŶts the feed), aƌe ĐoŶǀeƌted iŶto π-network 

equivalent circuit. This equivalent circuit is then simplified using the star-delta and delta-star 

transformations to obtain the voltage across the current source [19]. GTLM can be applied to 

any separable geometry of the microstrip antenna including rectangular, circular and 

annular ring patches, with linear or circular polarization. However, the application GTLM to 

an arbitrary patch shape is not possible. Also, some of the feeding techniques such as 

Proximity- coupled and aperture-coupled microstrip feeds cannot be modeled. 
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1.2.2. Cavity model 

Microstrip antennas are narrow-band resonant antennas, so they resemble dielectric-loaded 

cavities. But unlike cavities, microstrip patch antennas are radiating elements; therefore 

they must be treated as lossy cavities. Cavity model was advanced by Lo et al [20]-[22], 

where the microstrip antenna is modeled as a cavity bounded by electric walls on the top 

and the bottom, and magnetic walls along the periphery. We should point out that, in this 

model, the substrate is assumed truncated and it does not extend beyond the edges of the 

patch. The patch antenna is represented by four slots, only two (the radiating slots) account 

for most of the radiation, the fields radiated by the two (non-radiating slots) cancel along the 

principle planes as shown in Fig. 4.  

 

Fig. 4 Electric field in (a) radiating slots and (b) non-radiating slots of microstrip patch 

 

Various types of losses (such as dielectric, conductor and radiation loss) are characterized in 

the cavity model by an effective tangent loss δeff which is related to the quality factor Q by 

δeff = 1/Q. The resonant frequency of the antenna is defined to be the resonant frequency of 

the cavity for a given mode. Different patch shapes with linear or circular polarization and 

even stacked patches antennas have been treated by the cavity model. Also, the mutual 

M1 

E1 

M2 E2 
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coupling between the apertures is included implicitly, however, the cavity model does not 

estimate the ratio of aperture fields correctly in microstrip antennas with more than one 

aperture therefore cavity model is not suitable for array applications [14]. 

The cavity model also has been generalized to analyze non-separable geometries [23], [24], 

where Green͛s functions have been used. In this model, the analysis of a given geometry 

proceeds as the following: 

 First, the given geometry is converted into an equivalent geometry with magnetic 

walls at the peripheries. 

 Then, the geometry with the magnetic walls is segmented into regular geometries 

for which Eigen-functions are available. 

 The planar circuit approach [25] is applied to determine the electric fields under the 

patch. 

 Next, the quality factor of the patch cavity is calculated using the procedure given in 

the cavity model. 

 Finally, the input impedance can be obtained from the ratio of the voltage and the 

current at the feed point. 

This approach has been used to analyze a rectangular ring, cross-shaped and H-shaped 

patches. 

1.2.3. Multiport Connection Method  

Multiport connection method (MNM) model [26] can be considered an extension of the 

cavity model in which the impedance boundary condition at the periphery is enforced 

explicitly. This model takes into account the mutual coupling between various edges. The 
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MNM use the planar circuit approach [25], where the field in the interior region is modeled 

as a multiport planar circuit with ports located all along the periphery. The field in the 

exterior region, which includes the fringing fields, the radiation fields and the surface wave 

fields, are represented by load admittances. Unlike transmission line model, all the edges, 

radiating and non-radiating are represented as load admittances in the MNM. Table 1 

provides a comparison between the different analytical models that have been presented in 

the literature for the analysis of microstrip patch antennas. 

1.3. Numerical methods 

Finding a solution for practical problems is a complex task. It requires simplifying 

assumptions and/or numerical approximations [27]. Analytical models, as we have seen, are 

based on analytical formulas which are exact, however, the made simplifying assumptions 

make them applicable to only a limited set of problems [28]. In the other hand, the 

approaches relaying on numerical methods, although their results are also approximate, but 

they generally offer results with good accuracy. Besides, they are applicable on wide range 

of problems which makes them the preferred choice for solving most of engineering 

problems. Eventually, even numerical methods based approaches make some simplifying 

assuŵptioŶs suĐh as iŶfiŶite dieleĐtƌiĐ aŶd gƌouŶd plaŶe, zeƌo thiĐkŶess stƌips oƌ patĐhes… 

etc [27]. Solving electromagnetic field problems is known as computational electromagnetics 

CEM [27], or also numerical electromagnetics [13]. Full-wave analysis uses CEM methods as 

powerful tools to account rigorously for electromagnetic waves propagation in the structure 

under study. 
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Table 1 comparison of various analytical models [14]. 

 

Application 

Model 

Transmission 

line model 

GTLM Lossy 

trans. 

line 

Cavity 

model 

Generalized 

cavity.model 

MNM 

Patch 

shapes 

Rectangular 

only 

Separable 

geometries 

Arbitrary 

shapes 

Regular 

shapes 

Separable 

geometries 

Separable 

geometries 

Substrate 

thickness 

Thin Thin  Thin Thick Thin Thin 

Feed type 

used 

Microstrip 

edge feed, 

probe feed 

Microstrip 

edge feed, 

probe feed 

Possibly 

all types 

Microstrip 

edge, 

probe and 

aperture 

feed 

Microstrip 

edge feed, 

probe feed 

Microstrip 

edge, 

probe feed 

and 

proximity 

coupling  

Circular 

polarization 

No Yes  No  Yes Yes Yes 

Stacked 

patches 

No No Yes Yes No  No 

Mutual 

coupling 

between 

edges 

Explicitly 

included 

Explicitly 

included 

implicitly 

included 

implicitly 

included 

implicitly 

included 

Explicitly 

included 

Application 

to arrays 

Yes Yes No No No  Yes 

   

The purpose of all numerical methods used in electromagnetics is to find approximate 

solutions to Maxwell͛s equations (or of equations derived from them) that satisfy boundary 

conditions [13]. That is why such kind of problems is referred to as boundary value problems 

[29], [30]. Almost all numerical methods in electromagnetics share the idea of discretizing 

some unknown electromagnetic property, that is , the unknown function (the solution) is 

expanded in terms of expansion functions with unknown coefficients [13], [27]. 

Nevertheless, numerical techniques have differences in their mathematical foundation 

which makes one technique more suitable for a specific class of problems compared to the 

other [28].  
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The classification of computational electromagnetics techniques can be made according to 

different criteria such as: 

 The quantity being discretized or solution variable (circuit or field variables) [27], [28] 

  Domain of the solution (space and time or frequency) 

 Number of dimensions (1D, 2D, 2.5D, 3D) [13], [27]. 

 The form of the equation(s) being treated by the method (differential or integral 

form) [31].  

We note that, in general, the above classifications are not rigid, that is, labeling a method to 

as a time domain method does not mean that it cannot be applied in frequency domain, but 

rather it means that the method is usually applied in time domain. For instance, the methods 

usually applied in time domain include finite difference time domain (FDTD) and 

Transmission line matrix (TLM), where the methods usually applied in frequency domain 

include Finite element method (FEM) and the method of moments (MoM).  

In this thesis, the numerical methods applied for the electromagnetic field problems, are 

classified on the basis of the form of the equations usually treated by these methods, and 

hence, they will be classified into differential equation methods (usually applied on partial 

differential equation or PDE), and integral equation (IE) methods, as shown in Fig. 5. 
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Fig. 5 Differential equation and Integral equation CEM methods 

For a given application, some methods are more suitable than the others. For example [28]: 

 Electrical interconnect packaging (EIP) analysis (PEEC, MoM) 

 Printed circuit board (PCB) simulations (mixed circuit and EM problems) (PEEC) 

 Coupling mechanism characterization (MoM, PEEC) 

 Electromagnetic field strength and pattern characterization (MoM) 

 Antenna design (MoM) 

 Scattering problems (FEM, FDM) 

The differences between the methods illustrated in Fig. 5, arise in two main points [28]: 

 Discretization of the structure: For the differential formulation, the complete 

structure including the air needs to be discretized. Whereas, in integral 

formulation, only the materials need to be discretized. 

 Solution variables: Differential equation based techniques deliver the solution in 

field variables i.e. electric and magnetic field. Post-processing of the field 
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variables is needed to obtain the currents and the voltages of the structure. For 

the integral equation based techniques, the solution is expressed in terms of 

circuit variables, i.e. currents and voltages. To convert the system current and 

voltages to EM field components, post-processing is needed. 

In the following section, the concept and the main features of each of the methods 

illustrated in Fig. 5 will be presented.  

1.3.1. Differential equation methods 

a- Finite Element Method (FEM) 

The laws of physics for space- and time-dependent problems are usually expressed in terms 

of partial differential equations (PDEs). For the majority of geometries and problems, these 

PDEs cannot be solved analytically. Instead, they are solved approximately, typically using 

different types of discretization [32]. Finite element method (FEM) is used to convert the 

PDEs describing a boundary value problem into a system of equations (matrix equation). 

FEM is powerful technique for handling problems involving complex geometries and 

heterogeneous media, and it is applicable in both time and frequency domain [28]. The 

procedure of FEM analysis can be summarized as the following [33]: 

 Discretizing the solution domain into a finite number of sub-domains or elements. 

 Deriving the governing equations (elemental equation) for a typical element. 

 Assembling all the elements in the solution domain to form matrix equation. 

 Solving the system of the obtained equations. 

 The first step consists of subdividing the domain of the problem into smaller parts called 

finite elements, this process is called meshing. The shape of these elements depends on the 
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domain of the given problem. The advantages of the subdivision of the whole domain into 

smaller parts are [34]: 

 Accurate representation of complex geometry 

 Inclusion of dissimilar material properties 

 Easy representation of the total solution 

 Capture of local effects 

The element equations derived in the second step, are simple equations that locally 

approximate the original complex equation to be studied. Next, a global system of equations 

is generated from the element equations through a transformation of coordinates from the 

sub-domain local nodes to the domain global nodes. After that, the system of equations is 

solved by a direct or iterative method. Post-processing provides an estimate of the error in 

terms of the quantity of interest. When the error is larger than the acceptable value, the 

discretization level (i.e. meshing) has to be changed manually or by an automated adaptive 

process (adaptive meshing). 

Generally, three approaches are being used when formulating an FEM problem [35]:  

 Direct approach  

 Variational approach 

 Weighted residual method  

Direct approach: This approach was applied initially in structural analysis, and it is the 

easiest to understand because it involves the application of the concept of FEM it its 

simplest form. This approach consists of two steps: first, the system under consideration is 

replaced by an equivalent idealized system consisting of individual elements. These elements 
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are assumed to be connected to each other at specified points called nodes. When the 

elements are defined, the direct physical reasoning can be used to establish the element 

equations in terms of pertinent variables. In the second step, the individual element 

equations are combined to form the equations for the complete system, and then the 

system of equations is solved for the unknown nodal variables. This approach can be used 

only for simple problems. 

Variational approach: this approach relies on some variational principle such as the 

principle of minimizing the energy of a functional, where the energy can be obtained by 

integrating the (unknown) fields over the structure volume [36]. The variational approach is 

widely used whenever classical variational statement is available for the given problem. Such 

statement may not be available for some physical problems such as nonlinear problems. 

Weighted residual methods: It is a generic class that is developed to obtain 

approximate solution to differential equations of the form: 

ℒ ሺ𝜙ሻ +  ݂ = Ͳ   In the domain D                                                 (1) 

Where, 𝜙 ሺݔሻ is an unknown function (a dependent variable) of the variable x such as x ϵ D 

݂ሺݔሻ Is a known function, and ℒ is a differential operator involving spatial derivatives of 𝜙 

Weighted residual method involves two main steps. In the first step, an approximate 

solution 𝜓ሺݔሻ which satisfies the boundary conditions is assumed. The approximate solution 

is expressed in terms of a sum that consists of (chosen) trial functions multiplied by unknown 

fitting coefficients. This approximate solution is substituted in the differential equation. 

Since the approximate solution will not satisfy the differential equation that is, ℒ ሺ𝜓ሻ +  ݂ ≠



Chapter 1: Computational Electromagnetics 

 

27 

 

Ͳ   producing an error which measures the difference between the exact and the 

approximate solution, this error is called a residual R defined as       

ℒ ሺ𝜓ሻ +  ݂ = 𝑅                                                                           (2) 

The residual is then made to vanish in some average sense over the entire solution domain 

to produce a system of algebraic equations. Mathematically, this is accomplished by 

multiplying eq. (2) by weighting functions w(x) and integrating over the domain D to obtain 

ሻ[ℒ ሺ𝜓ሻݔሺݓ׬ +  ݂] ܦ݀ = ሻݔሻ𝑅ሺݔሺݓ׬   (3)                                     ܦ݀

Then, the weighted residual integral is forced to vanish over the solution domain, that is 

ሻݔሻ𝑅ሺݔሺݓ׬ ܦ݀ = Ͳ                                                               (4) 

The second step is to solve the resulting system of equations to find the sought approximate 

solution by defining the fitting coefficients. Galerkin procedure, in which trial functions are 

equal to weighting functions, is among the weighted residual methods. FEM in general, has 

the following features: 

 Meshing of the entire domain is required (object + background) 

 Great flexibility in modeling complicated and irregular geometries. 

 Good handling of inhomogeneous media, 2-D and 3-D linear and nonlinear problems 

 Solution domain has to be terminated by ͚͛numerical͛͛ absorbing boundaries ABC or 

perfectly matched layers PML. 

 Widely used in frequency domain 

 FEM produces large sparse matrices 
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b- Finite Difference Methods (FDM) 

Finite difference methods (FDMs) are numerical methods for solving differential equations 

by approximating them with difference equations. The domain is partitioned in space and 

time (Fig. 6) and an approximation of the solution is computed at space and time points [37]. 

The error between the numerical solution and the exact solution is produced when going 

from differential operator to difference operator, and this error is called discretization or 

truncation error [37]. The main concept behind any finite difference scheme is related to the 

definition of the derivative of a smooth function ݂ in the neighborhood of a point x ϵ R:  ݂′ሺݔሻ =  limℎ→଴ ௙ሺ𝑥+ℎሻ−௙ሺ𝑥ሻℎ  ≅  ௙ሺ𝑥+ℎሻ−௙ሺ𝑥ሻℎ       for sufficiently small h. near the point of 

interest (i.e. point x), ݂′ሺݔሻ can be approximated by Taylor series. 

 

Fig. 6 Discretization of the domain in space and time [38] 

 

For the 1
st

 derivative, we can distinguish forward-, backward- and central- difference 

approximations such as: 
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 Forward difference: 
𝜕௙𝜕௧ ≅ ௙೔+భ,ೕ− ௙೔,ೕ∆௧  ,     

𝜕௙𝜕௦ ≅ ௙೔,ೕ+భ− ௙೔,ೕ∆௦   

 Backward difference: 
𝜕௙𝜕௧ ≅ ௙೔,ೕ− ௙೔−భ,ೕ∆௧  ,  

𝜕௙𝜕௦ ≅ ௙೔,ೕ− ௙೔,ೕ−భ∆௦   

 Central difference: 
𝜕௙𝜕௧ ≅ ௙೔+భ,ೕ− ௙೔−భ,ೕଶ∆௧  , 

𝜕௙𝜕௦ ≅ ௙೔,ೕ+భ− ௙೔,ೕ−భଶ∆௦   

 For the second derivative, we have: 
𝜕మ௙𝜕௦మ  ≅  ௙೔,ೕ+భ−ଶ௙೔,ೕ+ ௙೔,ೕ−భሺ∆௦ሻమ    

  

Finite Difference Time Domain (FDTD) 

Finite difference time domain (FDTD) belongs to finite difference methods. The first FDTD 

algorithm was established by Yee in 1966. FDTD is a numerical technique for finding 

approximate solutions for the associated system of differential equations, where time- and 

space- derivatives are approximated using finite difference expressions [36]. This method is 

widely used within electromagnetic modeling, mainly, due to its simplicity, where Maxwell͛s 

equations (in differential form), are discretized using central difference approximations to 

the space and time partial derivatives [31], [39]. In FDTD, the whole domain must be divided 

(discretized) into volume elements (cells), often, these elements are cubes (called voxels) 

[27]. For these elements, Maxwell͛s equations are approximated by finite difference 

equations. The volume elements sizes are determined by considering two main factors [36]: 

 Frequency: the cell size should not exceed λ/10, where λ corresponds to the 

maximum frequency in the excitation 

 Structure: the cell size must allow discretization of thin structures. The time step is 

limited by courant͛s condition [33]: 

ݐ∆ ≤  ͳ√(ͳ ⁄ݔ∆ )ଶ + ቀͳ ⁄ݕ∆ ቁଶ + (ͳ ⁄ݖ∆ )ଶ  
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The three-dimensional space of the problem is truncated by absorbing boundaries. The most 

popular absorbing boundary is the perfectly matched layer (PML) [31]. The unknown 

function to be computed for FDTD method is field variables i.e. electric and magnetic fields 

which are alternatively calculated at every half time step and at all locations of the 

discretized domain [33]. When Maxwell͛s equations are examined, it can be seen that the 

change in the E-field in time (the time derivative) is dependent in the H-field across space 

(the curl). This is the basic idea behind FDTD time-stepping relation that is, at any point in 

space, the updated value of the E-field in time is dependent on the stored value of the E-

field and the numerical curl of the local distribution of the H-field in space. The H-field is 

time-stepped in a similar manner. At any point in space, the updated value of the H-field in 

time is dependent on the stored value of the H-field and the numerical curl of the local 

distribution of the E-field in space. This process known as loop-frog procedure, its algorithm 

is illustrated in Fig. 7 [31]. 

The FDTD method has the following advantages: 

 Simple implementation and easy to understand. 

 No matrix inversion involved. 

 Easy modeling of complex material configuration 

 Since FDTD is a time domain technique, the response of the system over a wide 

frequency range can be obtained with a single simulation. 

 FDTD calculate the electric and magnetic fields everywhere in the computational 

domain as they evolve in time, which provides animated displays of the 

electromagnetic field movement through the model. 
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 FDTD computes the electric and magnetic fields directly which is more convenient to 

EMC/EMI modeling. 

 A wide variety of linear and nonlinear dielectric and magnetic materials can be 

naturally and easily modeled. 

 Ability to perform both transient and steady state analysis. 

However, FDTD have some weaknesses such as: 

 Since the entire domain have to be discretized and the resulting elements must be 

sufficiently fine to resolve both the smallest wavelengths and the smallest 

geometrical feature of the model which results a large computational domain 

resulting a long simulation time. 

 The need of absorbing boundaries ABC (PML) to truncate unbounded problem 

domain 

 Difficulties with curve structures. 

Finite Difference Frequency Domain (FDFD) 

Finite Difference Frequency domain (FDFD) method is conceptually a simple method to solve 

time-dependent differential equations for steady state solutions. FDFD method transforms 

Maxwell͛s equations (or other PDE for fields and source), into a matrix equation of the form  

 A x = b where A is a matrix derived from the wave equation operator, the column 

vector operator x contains (the unknown) field components and the column vector b 

describes the source. 
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Fig. 7 Leap-frog algorithm 

 

FDFD and FDTD share many common features. Beside the fact that FDFD is implemented in 

frequency domain, they are different in some points: 

 There no time step to be computed in FDFD 

 FDFD solves a large sparse matrix (FDFD in this point is similar to FEM). 
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c-  Transmission Line Matrix (TLM) method 

Transmission line matrix (TLM) is a space and time discretization method for the 

computation of the electromagnetic fields. TLM is based on Huygens principle Fig. 8 in which 

Huygens states that: ͚͛ All points on a wave front serve as point sources of spherical 

secondary wavelets. After a time t the new position of the wave front will be the surface of 

tangency to these secondary wavelets ͛͛. This principle can be explained as the following: 

At time 0 the central point scatters a wave. At time t1 all the points in the wave front are 

acting as point sources, and the wave front at any time later, is the wave front from these 

secondary point sources.  

 

Fig. 8 Huygens principle 
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Johns [40] modeled Huygens principle by sampling time and the space and representing it 

with a mesh of passive transmission line components. He modeled the wave propagation as 

voltage and current travelling in this mesh. The relationship between time sample Δt and 

space sample Δl is given by: ∆݈ =  .where c is the free space light speed  ݐ∆ܿ 

To understand the concept of TLM method, let us consider the TLM grid illustrated in Fig. 9. 

Assuming that at a time zero, an impulse is incident to the middle node, this node will 

scatter the wave to its 4 neighboring nodes. The scattered wave reaches these nodes at the 

instant Δt. Now these four nodes will scatter waves to their neighboring nodes at time equal 

to 2Δt. At each time step, each node receives an incident wave from the adjacent nodes and 

scatters it to the other adjacent nodes. By repeating the above process for each node, the 

wave distribution in the medium can be calculated. The choice of two- or three-dimensional 

TLM modeling depends on the complexity of the problem under study. In two-dimensional 

TLM model represented in Fig. 9, each node is surrounded by 4 nodes (Fig. 10), while in 

three dimensional TLM model (Fig. 11); each node is surrounded by 6 nodes (Fig. 12).  

 

 

 

Fig. 9 Wave propagation in two-dimensional TLM mesh 
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TLM method uses the concept of scattering matrix where (for 2D TLM model) the voltages 

Vn
s
 representing the scattering waves, are related to the voltages Vn

i
 representing the 

incident waves by 

[𝑉ଵ𝑉ଶ𝑉ଷ𝑉ସ]𝐾+ଵ
𝑆 = ଵଶ  [−ͳ ͳͳ −ͳ ͳ ͳͳ ͳͳ ͳͳ ͳ −ͳ ͳͳ −ͳ] [𝑉ଵ𝑉ଶ𝑉ଷ𝑉ସ]𝐾

ூ
                                       (5) 

Where  

S, I: Scattered and Incident waves respectively 

K, K+1: arbitrary consecutive time steps  

Based on the above equation, if the magnitude of the wave (voltage in the TLM modeling) is 

known at any instant KΔt, then the magnitude of the wave could be found at the instant 

(K+1) Δt. By repeating this for each time step, wave propagation could be modeled. Similarly, 

for three-dimensional TLM model, the eq. (5) could be rewritten as: 

[  
   
𝑉ଵ𝑉ଶ𝑉ଷ𝑉ସ𝑉ହ𝑉଺]  

   
𝐾+ଵ

𝑆
= ଵଷ  [  

   −ͳʹ ͳ−ʹ ͳ ͳ ͳ ͳͳ ͳ ͳ ͳͳͳ ͳͳ −ʹ ͳ ͳ ͳͳ −ʹ ͳ ͳͳͳ ͳͳ ͳ ͳ −ʹ ͳͳ ͳ ͳ −ʹ]  
   
[  
   
𝑉ଵ𝑉ଶ𝑉ଷ𝑉ସ𝑉ହ𝑉଺]  

   
𝐾

ூ
                                 (6) 

TLM method can model homogeneous and non-homogeneous, lossless and lossy structures, 

each one requires different mesh model. TLM and FDTD are considered the most powerful 

time domain methods. 
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1.3.2. Integral equation methods 

a- Finite integration technique (FIT) 

Finite integration technique (FIT) proposed in 1977 by Thomas Weiland, is a discretization 

method which is similar to FDTD method, however, FIT discretizes Maxwell͛s equations in 

their integral form. Maxwell͛s equations are transformed into a system of linear equations. 

This method is flexible in geometrical modeling and it handles curved boundaries and 

complex shapes with more accuracy. To explain the concept of the FIT, we consider 

Maxwell͛s equations for a linear and lossy medium [41]: 

𝜕𝜕௧ ׭  ,ݎሺܧሻݎሺߝ ሻ݀𝐴ݐ = ,ݎሺܪׯ  ݎሻ݀ݐ ,ݎሺܧሻݎ𝜎ሺ׭ −  ሻ݀𝐴                           (7)ݐ

𝜕𝜕௧ ,ݎሺܪሻݎ𝜇ሺ׭  ∗ሻ݀𝐴ݐ ,ݎሺܧׯ− = ݎሻ݀ݐ ,ݎሺܪሻݎ𝜎∗ሺ׭ −  ሻ݀𝐴∗                 (8)ݐ

Where ܧሺݎ, ,ݎሺܪ ሻ andݐ  ሻ represent the electric and magnetic fields respectively, and theݐ

media parameters are described by the permittivity ߝሺݎሻ, the permeability 𝜇ሺݎሻ, and the 

electric and magnetic conductivity 𝜎ሺݎሻ and 𝜎∗ሺݎሻ. Equations (7) and (8) are approximated 

by the finite difference equations: 

𝐸ℎ𝑛+భ− 𝐸ℎ𝑛∆௧ ׭  ሻ݀𝐴ݎሺߝ = ݎሻ݀ݎℎ௡+଴.ହሺܪׯ  ℎ௡+ଵܧ −  ሻ݀𝐴                             (9)ݎ𝜎ሺ׭

ுℎ𝑛+బ.5− 𝐸ℎ𝑛−బ.5∆௧ ∗ሻ݀𝐴ݎ𝜇ሺ׭  ݎሻ݀ݎℎ௡ሺܧׯ− = ℎ௡+଴.ହܪ −  ሻ݀𝐴∗             (10)ݎ𝜎∗ሺ׭

Where Δt is the time step, ܧℎ௡  and ܪℎ௡+଴.ହ  are dielectric and magnetic field vector 

approximated at time points nΔt and (n+0.5)Δt  foƌ Ŷ=Ϭ,ϭ,… 

Then, FIT proceeds in a similar manner as FDTD. Both methods share advantages such as 

simple implementation and efficient parallel computing. They share disadvantages such 
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those encountered when Yee Cartesian grid is used. To overcome such shortcoming, 

adaptive mesh, and sub-gridding, non-orthogonal FIT (NFIT), have been proposed [41]. 

 

Fig. 10 Model for a node in TLM mesh 

 

Fig. 11 Three-dimensional TLM mesh 
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Fig. 12 Node model of three-dimensional TLM mesh 

b- Partial element equivalent circuit (PEEC) 

Partial element equivalent circuit (PEEC) introduced by Albert Ruehli in 1972, is a three 

dimensional full-wave method suitable for combined electromagnetic and circuit analysis. 

The main feature of the PEEC method is that the combined circuit and EM solution is 

performed with the same equivalent circuit in time or frequency domain [28]. PEEC method 

is applied to an integral equation like the method of moments. But, unlike MoM, PEEC is a 

full spectrum method that is valid from DC to the maximum frequency determined by the 

meshing. In the PEEC method, the integral equation is interpreted as the Kirchhoff͛s voltage 

applied to a basic PEEC cell which results in a complete circuit solution for three-dimensional 

geometries [36].   

PEEC method is applied to mixed potential integral equation (MPIE), in which the current- 

and charge-densities are discretized. The resulting integral equation for the PEEC 

formulation is interpreted as an equivalent circuit. Then, the equivalent circuit is analyzed 
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using circuit theory [28]. To obtain field variables, post-processing of circuit variables is 

necessary.   

c-  Method of moments 

Method of moments (MoM) known also as boundary element method (BEM), is a numerical 

method for solving integral equations by transforming them into a matrix equation. The 

MoM owes its name to the process of taking moments by multiplying with appropriate 

weighting functions and integrating. In MoM, only conducting surfaces have to be 

discretized. The method of moments is applied to equations of the form  

𝐿 . ݂ = ݃                                                                        (11) 

Where  𝐿 is a linear operator (an integral operator), ݂  the unknown function (current 

density) and ݃ is a known excitation function (a voltage in radiation problems, and an 

incident electric field in scattering problems). The unknown current density is approximated 

in term of a finite number of chosen basis (expansion) functions 𝑖݂  multiplied by unknown 

weighting coefficients 𝛼𝑖 to be computed, that is 

݂ ≅  ∑ 𝛼𝑖 𝑖݂𝑁𝑖=ଵ                                                                (12) 

The approximation of current density is substituted back in the integral equation (11) which 

now will have the form 

𝐿  ∑ 𝛼𝑖 𝑖݂ = ݃𝑁𝑖=ଵ                                                             (13) 

The eq. (13) consists of N unknown to be determined. To solve eq. (13), we use M weighting 

(or testing) functions which are multiplied by each term in eq. (13) and integrating over the 

domain of the current densities to transform eq. (13) into a matrix equation of the form  
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[𝑍][ܫ] = [𝑉]                                                                   (14) 

Where the vectors [ܫ] and [𝑉] represent the unknown current coefficient and the excitation, 

respectively. Whereas, the matrix [𝑍], known as the impedance matrix, represents the 

interaction between the conducting object (e.g. an antenna) and the excitation voltage or 

the incident electric field. MoM is applicable to problems for which Green͛s function can be 

calculated. MoM discretization results in large dense matrix. Fast algorithms such as Multi-

level fast multi-pole method (ML-FMM), Conjugate Gradient Fast Fourier Transform (CG-FFT) 

and Adaptive integral method (AIM) are proposed to reduce the memory storage and 

accelerate matrix –vector multiplication.  

In Table 2, a comparison between the most popular computational electromagnetic 

techniques is provided [27]. In Table 2, TD and FD stand for time and frequency domains 

respectively.   

Table 2 Comparison between FEM, FDTD and MoM 

 MoM FEM FDTD 

Descritization Only wires or 

surfaces 

Entire domain 

(tetrahedron) 

Entire domain 

(cube) 

Solution method FD, linear equations 

Full matrix 

FD, linear equations 

Sparse matrix 

TD, iterations 

Boundary conditions No need for special 

BC 

Absorbing 

Boundary conditions 

Absorbing 

Boundary conditions 

Numerical effort ~ N
3 

~ N
2 

~ N 

Well suited for Wire and surface 

Antennas, coupling 

Arbitrary shaped 

Surfaces, single or 

Few frequencies 

Arbitrary shapes 

And metals, single 

Or few frequencies 

 

Arbitrary materials 

Orthogonal  

Planar boundaries 

Broadband 

Investigations  

Not well suited for Electrically very 

Large structures, 

Broadband 

Investigations  

Electrically large 

Structures, coupling 

Between distant 

Elements, Broadband 

Investigations  

Coupling between 

Distant elements 

High-Q 

Structures  
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The dyadic Green͛s function is often found as a kernel in integral-equation technique, in 

combination with the method of moments, to solve the boundary value problem of the 

microstrip antennas [42]. The next section contains an overview on the concept, the types 

and the methods used to derive the Green͛s functions.  

1.4. Green’s functions 

When a physical system is subject to some external disturbance, non-homogeneity arises in 

the mathematical formulation of the problem, that is, if the system is described by a 

differential equation, the external disturbance makes the differential equation non-

homogeneous. Methods such as the method of undetermined coefficients or the variation 

of parameter technique could be used for solve non-homogeneous differential equation. 

However such methods do not have any special physical significance. Green͛s functions also 

could be used for such task. Green͛s functions have an advantage over the other methods, 

since every Green͛s function has a special physical significance. The Green͛s function 

measures the response of a system due to a point source somewhere in the fundamental 

domain [36]. To understand the concept of the Green͛s function, let us consider the 

following inhomogeneous differential equation:   

𝐿 ݕ = ݂                                                                      (15) 

Where  

L: is a differential operator 

y: the unknown response function 
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f: the known excitation function (the source) 

When the source function is an impulse located somewhere in the space δ (r, r͛), the 

response function will be the Green͛s function G (r, r͛) such as  

𝐿 ܩሺݎ, ሻ′ݎ = ,ݎሺߜ  ሻ                                                          (16)′ݎ

The solution of the original equation can be found by integrating the product of the Green͛s 

function and the in-homogeneity f over the volume of the source such as [43] 

ݕ = ׬   (17)                                                                     ݏ݀ ݂ ܩ

The process yielding to eq. (17) is described in [43], [44]. Thus, we can notice that the 

Green͛s function is the analogy of the impulse response of a linear system. The major 

advantage of the Green͛s function is that when the Green͛s function is derived for a 

particular problem, for a given set of boundary conditions, solving the same problem for a 

different source constrained by the same boundary conditions, is simple and 

straightforward [44]. However, there are cases when the Green͛s function does not exist, 

depending on the boundaries. In electrostatics, the Green͛s function G (r, r͛) is the potential 

due to a stimulus applied at a particular point in space [36]. Where r is the observation 

point and r͛ is the source (stimulus) point. G (r, r͛) is translational-invariant if it depends 

solely on the difference (r-r͛) rather than the separate values of r, r͛ [44]. The Green͛s 

function is often singular at r=r͛ and an infinitesimal exclusion volume surrounding r=r͛ has 

to be included [43]. In electromagnetics, most of the problems are of a vector nature; 

therefore it is necessary to extend the above one-dimensional scalar Green͛s function to 

multi-dimensional Green͛s function. Such type is often referred to as dyadic Green͛s 

function [44]. In electromagnetic computation, it is common to use two methods for 
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determining the Green͛s function; these methods are the eigenfunction expansion method 

and the method of images [36].  

There are many types of Green͛s functions, they are classified according to  

 The quantity being treated: potentials or fields. 

 The domain: spatial or spectral. 

In terms of the potentials, we can distinguish two related types of Green͛s functions, scalar 

and vector potentials Green͛s functions i.e. ܩ𝑉  ,  𝐴 respectively. They are related to scalar- Vܩ

and vector A potentials by the formulas [43] 

𝐴ሺݎሻ = ׬  ,ݎ𝐴ሺܩ̅  (18)                                                 ′ݏ݀ ሻ′ݎሺܬሻ′ݎ

V = ܩ׬𝑉ሺݎ,  (19)                                                         ′ݏ݀ ሻ′ݎሺݍሻ′ݎ

Where  

J (r͛): the surface current density 

q (r͛): the surface charge density 

S: the surface of the PEC current surface. 

In terms of fields, we can distinguish electric type Green͛s function and magnetic type 

Green͛s function. Eventually, there are many types of Green͛s functions according to 

whether the electric and magnetic field is generated by an electric or magnetic current [45]-

[46]. When only the electric current density is considered, the electric and the magnetic 

fields are related to the electric type and the magnetic type Green͛s functions ̅ܩ௘ ,  ௠ܩ̅

respectively, by the expressions [47] 
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ሻݎሺܧ = ,ݎ௘ሺܩ̅׮   (20)                                                ′ݒሻ݀′ݎሺܬሻ′ݎ

ሻݎሺܪ = ,ݎ௠ሺܩ̅׮   (21)                                               ′ݒሻ݀′ݎሺܬሻ′ݎ

The Green͛s functions presented so far depend only on spatial coordinates therefore they 

are referred to as spatial domain Green͛s functions. The counterpart of this type, are the 

spectral domain Green͛s functions.  

It is common to express the space domain Green͛s function in term of Sommerfeld͛s Integral 

ܩ =  ଵସగ ׬  ఘ݀݇ఘ𝑆ூ𝑃݇(ఘ݇)ܩ̃̅଴ሺଶሻ(݇ఘ𝜌)ܪ                                        (22) 

Where 

 The dyadic Green͛s function in spectral domain (ఘ݇)ܩ̃̅

଴ሺଶሻܪ
 The Hankel͛s function of the second kind  

SIP stands for Sommerfeld integration path 

Evaluating Sommerfeld͛s integral is numerically time-consuming process. Therefore, fast 

techniques were dedicated to this task, which yields the determination of dyadic Green͛s 

function. Among these techniques, discrete complex images method (DCIM), Modified fast 

Hankel transform and window Function method [48]. For example, DCIM approximates the 

spectral domain Green͛s function in terms of complex exponentials using either the 

Generalized Pencil of function (GPOF) or the Prony͛s method. Then, these exponentials are 

transformed analytically into a set of complex images in space domain using the 

Sommerfeld͛s identity [48]. The Green͛s function in spectral domain is related to the spatial 

Green͛s function by the Fourier transform, or Hankel transform [47]. The main advantage of 
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spectral green͛s function is that it can be written analytically i.e. in a closed-form. For 

instance, the electric field ̃ܧ and the electric current density ̃ܬ in the spectral domain are 

related as 

ܧ̃ =  (23)                                                                        ܬ̃ ܩ̃̅ 

This formula is valid in both Fourier transform domain (FTD) and Hankel transform domain 

(HTD). Similarly to spatial domain Green͛s function, several methods have been suggested to 

derive the spectral dyadic Green͛s function, especially for multilayered medium. These 

methods include vector wave eigenfunction expansion technique (VWEET), wave iterative 

technique (WIT) [48] and full-wave equivalent circuit method [42]. Green͛s function in 

spectral domain has singularities i.e. points were the Green͛s function is not defined. These 

points represent surface wave poles. Since spectral Green͛s function is written in a closed-

form, these singularities can be located [49]. Different approaches have been proposed to 

handle this problem such as extracting these singularities using the residue theory. Other 

approaches are based on changing the path of integration in the complex plane to avoid 

these singularities [50] – [51].    
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1.5. Conclusion 

An overview on different analytical and numerical methods is presented. We have shown 

that each analytical model is actionably a set of sub-models, where each sub-model is an 

enhancement of the previous one. It is also shown the analytical methods differ in their 

capabilities and their range of applications. The best method, for a given problem, is the 

simplest method providing a result with the required accuracy. Full wave methods also 

introduce some assumptions on the problem description, however, since they offer good 

accuracy compared to analytical methods, they are more suitable for complex problems. The 

classification of numerical methods used in computational electromagnetics, is done 

according to different criteria such as the quantity being discretized, solution domain, the 

type of eƋuatioŶ ďeiŶg tƌeated … etĐ. IŶ this Đhapter, different numerical methods have been 

presented, and their concept and features are explained. It was shown that for some 

applications, some methods are more suitable than the others. To give an idea how such 

decision is made, a comparison between three popular numerical electromagnetics methods 

is accomplished on the basis of different criteria.  A section on Green͛s function is introduced 

due to its importance in the method of moment formulation adopted in this thesis. The 

concept behind the Green͛s function, in addition to its different types, are introduced. In this 

thesis, spectral domain Green͛s function in conjunction with the method of moments, are 

employed to model microstrip patch in a multilayered dielectric.  
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2.1. Introduction 

       In This Chapter we present a mathematical formulation of multilayered microstrip 

antenna structure where the dielectric can be isotropic or anisotropic. Papers treating such 

structures have not been published until late 90s, such as the paper of Chunfei et al [52] for 

rectangular patch and the papers of Losada et al [3], [53] for circular patch antenna. The 

early works on microstrip antenna analysis and design have considered the simplest form 

which consists of a single rectangular or circular disc patch printed on a single layer isotropic 

substrate. The early studies date back to mid 70s [54] followed by [55]-[57] for circular 

patch, and [58], [59] and later [60]-[62] for rectangular patch structure. The influence of 

patch dimensions and substrate parameters on radiation and resonance characteristics of 

the antenna were studied, either incidentally in the context of presenting an analytical or 

numerical method, or deliberately as in the case of experimental studies [60], [62], in 

addition to their purpose of checking the validity of theoretical results.  

The theory presented in this chapter has been applied on single layer and bi-layered 

structures; one example of bi-layered structure is the microstrip patch in a substrate-

superstrate configuration, Bahl et al [1] was among the firsts who have published a paper in 

the early 80s, in which the effect of cover layer on the resonant frequency of the antenna is 

described. Two years later, Alexopoulos and Jackson [2] have published a paper containing a 

design study, in which they have defined the criteria of choosing the cover layer parameters 

to enhance the antenna radiation efficiency. Row and Wong [63] and later Losada et al [3] 

have presented numerical studies on such a structure, where Fortaki et al [64] have 

investigated the effect of cover layer properties on the antenna͛s radiation characteristics.  
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Most of the works published on the theory and the experiments of microstrip antennas have 

considered isotropic dielectrics, however, it was found that even the dielectrics that were 

considered isotropic possess a certain amount of anisotropy [6]. In addition to that some 

anisotropic dielectrics are intentionally used to achieve certain practical characteristics in 

microwave devices [6]. All this imply the developing of an appropriate formulation to 

characterize such materials. One of the first papers in this regard, was published by Pozar [6] 

who presented a theory based on the method of moments and investigated the effect of 

anisotropy on the resonant frequency and surface wave excitation. Wong et al [7] have 

presented a study on the influence of positive and negative anisotropy on the resonant 

frequency. Similar studies were published by [8] for single patch and [65] for stacked patches 

structures. We note that the anisotropy mentioned in the above references is the dielectric 

anisotropy that is the anisotropy related to the permittivity. Magnetic anisotropy (that is 

related to permeability) has not been studied before [3], [47], [66], until magneto-dielectric 

substrates have been used in microstrip antenna structures [67]-[70]. This new trend toward 

magneto-dielectric substrates allowed the characterization of the effect of permeability on 

the antenna characteristics. But the main motivation was antenna miniaturization offered by 

the use of magneto-dielectric materials. A good reference on this subject is [69]. 
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2.2. Theory 

The present formulation is for a multilayered structure of N layer, where the dielectric is 

characterized by permittivity and permeability tensors. The patch is placed on the layer P 

where P<N. The XY plane is the plane of the patch, therefore, x and y components represent 

the tangential (or transversal) components, and z component represents the normal (or 

longitudinal) component. The structure under study is illustrated in Fig. 1 

As detailed in chapter 1, the general process to compute the resonant frequency and the 

bandwidth in addition to the radiation pattern of the microstrip antenna, can be 

summarized as the following: 

1/ the derivation of the dyadic Green͛s function in the spectral domain 

2/ the computation of the impedance matrix  

3/Finding the root of the impedance matrix determinant, which corresponds to the complex 

resonant frequency, defines the antenna resonant frequency and bandwidth.   

4/the eigenvector that corresponds to the smallest eigenvalue of the impedance matrix 

defines the weighting coefficients, and thus allowing the determination of the approximate 

formula of the current density on the patch. Then the stationary phase theorem is used to 

determine the radiation pattern of the antenna.     
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Fig. 1 multilayered microstrip antenna structure 

2.2.1. Derivation of Dyadic Green’s function 

The dielectric is considered anisotropic medium characterized by a permittivity and 

permeability, tensors having the form:  

ߝ ௫ߝ] ଴ߝ = ̅  Ͳ ͲͲ ௫ߝ ͲͲ Ͳ  ௭]                                                                   (1)ߝ

𝜇̅  = 𝜇଴ [𝜇௫ Ͳ ͲͲ 𝜇௫ ͲͲ Ͳ 𝜇௭]                                                                (2) 

By assuming time dependence of  ݁௝ఠ௧ , and for a source free medium Maxwell͛s equations 

can written as: 

∇  x 𝑬 = − ݆𝜔 𝜇 ̅𝑯                                                                 (3-a) 
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∇  x 𝑯 =  ݆𝜔 ߝ𝑬̅                                                                    (3-b) 

∇ . 𝑬 = Ͳ                                                                               (3-c) 

∇ . 𝑯 = Ͳ                                                                              (3-d) 

The corresponding wave equations for ܧ௭ and  ܪ௭ have the form       

డ2𝐸೥డ௫2  + 
డ2𝐸೥డ௬2  + 

𝜀೥𝜀ೣ  డ2𝐸೥డ௭2  + 𝜇௫ ߝ௭ ݇଴ଶ ܧ௭ = Ͳ                              (4-a) 

డ2𝐻೥డ௫2  + 
డ2𝐻೥డ௬2  + 

𝜇೥𝜇ೣ  డ2𝐻೥డ௭2  + 𝜇௭ ߝ௫ ݇଴ଶ ܪ௭ = Ͳ                            (4-b) 

Where  ݇଴ =  𝜔√𝜇଴ߝ଴   is the free space wavenumber. 

We can rewrite the eq. (4-a), (4-b) in spectral domain by applying Fourier transform to 

obtain: 

డ2𝐸̃೥డ௭2  + ቀ𝜇௫ߝ௫݇଴ଶ +  𝜀ೣ𝜀೥  ݇௦ଶቁ ௭ܧ̃ = Ͳ                                               (5-a) 

డ2𝐻̃೥డ௭2  + ቀ𝜇௫ߝ௫݇଴ଶ +  𝜇ೣ𝜇೥  ݇௦ଶቁ ௭ܪ̃ = Ͳ                                              (5-b) 

Where  ݇௦ଶ =  ݇௫ଶ +  ݇௬ଶ   

The general solutions for ̃ܧ௭ and ̃ܪ௭  have the form: 

௭ܧ̃ = 𝑒 ݁−௜௞೥𝑒௭ܣ  +  𝑒 ݁௜௞೥𝑒௭                                                           (6-a)ܤ 

௭ܪ̃ = ℎܣ   ݁−௜௞೥ℎ௭ +  ℎ ݁௜௞೥ℎ௭                                                         (6-b)ܤ 

Where the coefficients  ܣ𝑒 , ܤ𝑒 , ܣℎ and ܤℎ are functions of ݇௦ , ݇௭𝑒 and ݇௭ℎ are expressed as: 

݇௭𝑒 =  ቀ𝜇௫ߝ௫݇଴ଶ +  𝜀ೣ𝜀೥  ݇௦ଶቁଵ ଶ⁄
                                                          (7-a) 
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݇௭ℎ =  ቀ𝜇௫ߝ௫݇଴ଶ +  𝜇ೣ𝜇೥  ݇௦ଶቁଵ ଶ⁄
                                                        (7-b) 

We can notice that in the case of an anisotropic medium, the electric and the magnetic fields 

have different wavenumbers.  

By a simple mathematical manipulation, each of the components  ܧ௫ , ܧ௬ , ܪ௫ and ܪ௬ can be 

written in terms of ܧ௭ and ܪ௭ , in spectral domain, the tangential components of the electric 

and magnetic fields can be expressed as: 

௫ܧ̃ =  ௜௞ೣ௞𝑠2  𝜀೥𝜀ೣ  డ𝐸̃೥డ௭  +  𝜔𝜇଴𝜇௭  ௞೤௞𝑠2  ௭                                                     (8-a)ܪ̃ 

௬ܧ̃ =  ௜௞೤௞𝑠2  𝜀೥𝜀ೣ  డ𝐸̃೥డ௭ −  𝜔𝜇଴𝜇௭  ௞ೣ௞𝑠2  ௭                                                      (8-b)ܪ̃ 

௫ܪ̃ =  ௜௞ೣ௞𝑠2  𝜇೥𝜇ೣ  డ𝐻̃೥డ௭ −  𝜔ߝ଴ߝ௭  ௞೤௞𝑠2  ௭                                                      (8-c)ܧ̃ 

௬ܪ̃ =  ௜௞೤௞𝑠2  𝜇೥𝜇ೣ  డ𝐻̃೥డ௭ +  𝜔ߝ଴ߝ௭  ௞ೣ௞𝑠2  ௭                                                     (8-d)ܧ̃ 

The next step is to write each of the tangential components of the electric and magnetic 

fields as a superposition of TM and TE waves as: 

[௬ܧ௫̃ܧ̃] =  ሺ݇௦ሻ [݁𝑒݁ℎ]                                                                              (9)ܨ̅ 

[ [௫ܪ̃−௬ܪ̃ =  ሺ݇௦ሻ [ℎ𝑒ℎℎ]                                                                       (10)ܨ̅ 

Where 

ሺ݇௦ሻܨ̅ =  ͳ ݇௦⁄ ⌊݇௫ ݇௬݇௬ −݇௫⌋ =  ଵሺ݇௦ሻ                                         (11)−ܨ̅
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݁𝑒 =  ௜௞𝑠  𝜀೥𝜀ೣ  డ𝐸̃೥డ௭                                                                            (12-a) 

݁ℎ =   ఠ𝜇0𝜇೥௞𝑠  ௭                                                                        (12-b)ܪ̃ 

ℎ𝑒 =   ఠ𝜀0𝜀೥௞𝑠  ௭                                                                         (12-c)ܧ̃ 

ℎℎ =  ௜௞𝑠  𝜇೥𝜇ೣ  డ𝐻̃೥డ௭                                                                         (12-d) 

The indexes e and h represent the TM and TE waves respectively.  

We can put:                                       𝒆ሺ݇௦, ሻݖ  = [݁𝑒݁ℎ]                                                                      (13) 

                                                             𝒉ሺ݇௦, ሻݖ = [ℎ𝑒ℎℎ]                                                                     (14)                             

 e, h are the electric and magnetic fields in the (TM, TE) representation. 

In a multilayered dielectric, let j be an arbitrary layer characterized by a permittivity ߝ௝̅ , 

permeability  𝜇̅௝  and a thickness ௝݀ . The layer j is located between the planes z=zj-1 and z=zj  

The electric and the magnetic fields on the lower (at z=zj-1) and the upper (at z=zj) 

boundaries of the layer j can be related by transfer matrix 𝑇̅௝  by the expression: 

[𝒆ሺ݇௦, ,௝−ሻ𝒉ሺ݇௦ݖ [௝−ሻݖ =  𝑇̅௝  [𝒆ሺ݇௦, +௝−ଵݖ ሻ𝒉ሺ݇௦, +௝−ଵݖ ሻ]                                                         (15) 

Where  

𝑇̅௝ =  [𝑇̅௝ଵଵ 𝑇̅௝ଵଶ𝑇̅௝ଶଵ 𝑇̅௝ଶଶ] =  [ 𝑠𝜃̅௝݋ܿ −݅ ݃̅௝−ଵ𝑠݅݊𝜃̅௝−݅ ݃̅௝𝑠݅݊𝜃̅௝ 𝑠𝜃̅௝݋ܿ ]                        (16) 

With 
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𝜃̅௝ =  ௝݀  [݇௭௝𝑒 ͲͲ ݇௭௝ℎ ]                                                                  (17) 

݃̅௝ =  [ఠ𝜀0𝜀ೣ௞೥𝑗𝑒 ͲͲ ௞೥𝑗ℎఠ𝜇0𝜇ೣ
]                                                                (18) 

By applying the boundary conditions, we can relate the fields across the interface between 

the adjacent layers. The boundary conditions for the tangential components are defined as: 

𝑬 ̃(݇௦, (−௝ݖ =  𝑬 ̃(݇௦,  ௝+)  , j=ϭ, Ϯ, … , N                                                 (19)ݖ

𝑯 ̃(݇௦, (−௝ݖ −  𝑯 ̃(݇௦, (+௝ݖ = ௝𝑃𝑱̃ሺ݇௦ሻߜ  = ௝𝑃ߜ   [𝐽௫ሺ݇௦ሻ𝐽௬ሺ݇௦ሻ]                      (20) 

Where  𝐽௫ and 𝐽௬ are the Fourier transforms of the x- and y- polarized current densities on 

the patch 𝐽௫ , 𝐽௬respectively. ߜ௝𝑃 Is the symbol of Kronecker, and it is defined as  

௝𝑃ߜ =  {ͳ    if    ݆ = ܲͲ    if   ݆ ≠ ܲ       

Similarly, for the fields in the (TM, TE) representation, the eq. (19), (20) can be rewritten as: 

𝒆(݇௦, (−௝ݖ =  𝒆(݇௦,  ௝+)  , j=ϭ, Ϯ, … , N                                               (21)ݖ

𝒉(݇௦, (−௝ݖ −  𝒉(݇௦, (+௝ݖ = ௝𝑃𝒋ሺ݇௦ሻߜ  = ௝𝑃ߜ   [ 𝑒݆ሺ݇௦ሻ݆ℎሺ݇௦ሻ]                     (22) 

Where 

[ 𝑒݆ሺ݇௦ሻ݆ℎሺ݇௦ሻ] =  ሺ݇௦ሻ 𝑱̃ሺ݇௦ሻ                                                                    (23)ܨ̅ 

Using the eq. (15), (21) and (22), the fields on the plane z=0 can be related to the fields at 

the plane ݖ =  ௣−  by the expressionݖ 
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[𝒆ሺ݇௦, ,𝑃−ሻ𝒉ሺ݇௦ݖ [𝑃−ሻݖ =  Γ̅<  [𝒆ሺ݇௦, Ͳሻ𝒉ሺ݇௦, Ͳሻ]                                                                (24) 

And the fields on the plane ݖ = ݖ ௣+  can be related to the fields at the planeݖ  =  ே+  by theݖ 

expression 

[𝒆ሺ݇௦, ,ே+ሻ𝒉ሺ݇௦ݖ [ே+ሻݖ =  Γ̅>  [𝒆ሺ݇௦, ,𝑃+ሻ𝒉ሺ݇௦ݖ  𝑃+ሻ]                                                             (25)ݖ

With 

Γ̅< =  [Γ̅<ଵଵ Γ̅<ଵଶ
Γ̅<ଶଵ Γ̅<ଶଶ] =  ∏ 𝑇̅௝ଵ௝=𝑃    , Γ̅> =  [Γ̅>ଵଵ Γ̅>ଵଶ

Γ̅>ଶଵ Γ̅>ଶଶ] =  ∏ 𝑇̅௝𝑃+ଵ௝=ே              (26) 

The purpose of these equations is to write the electric field in term of the current density on 

the patch by a formula having the form: 

𝒆(݇௦, (௣ݖ =  ܳ̅ሺ݇௦ሻ𝒋ሺ݇௦ሻ                                                                     (27) 

Where ܳ̅ሺ݇௦ሻ the spectral dyadic Green͛s function in the (TM, TE) representation, and it is 

defined as 

ܳ̅ሺ݇௦ሻ =  [Γ̅<૛૛(Γ̅<ଵଶ)−૚ + (݃̅଴Γ̅>ଵଶ −  Γ̅>ଶଶ)−૚(݃̅଴Γ̅>ଵଵ −  Γ̅>ଶଵ)]−૚
              (28) 

With  

݃̅଴ =  [ఠ𝜀0௞೥0 ͲͲ ௞೥0ఠ𝜇0]                                                                                        (29) 

݇௭଴ =  ሺ݇଴ଶ −  ݇௦ଶሻଵ ଶ⁄                                                                                   (30) 

The dyadic spectral Green͛s function is given by the following expression 
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ሺ݇௦ሻܩ̅ =  ሺ݇௦ሻ                                                             (31)ܨሺ݇௦ሻܳ̅ሺ݇௦ሻ̅ܨ̅ 

We note that  ̅ܩሺ݇௦ሻ has the form  

ሺ݇௦ሻܩ̅ = ௫௫ܩ]  ௬௫ܩ௫௬ܩ  ௬௬]                                                                        (32)ܩ

The dyadic spectral Green͛s function relates the tangential electric field with current density 

on the patch in the spectral domain by the expression 

𝑬̃(݇௦, (௣ݖ =  ሺ݇௦ሻ 𝑱̃ሺ݇௦ሻ                                                                (33)ܩ̅ 

2.2.2. The formulation of the integral equation 

The tangential electric field in eq. (33) is expressed in spectral domain, to derive its 

expression in space domain; we apply inverse Fourier transform on eq. (33) to obtain: 

,ݔሺܧ ,ݕ ሻݖ =  ଵ4𝜋2 ∫ ∫ ∞−∞+∞−∞+ሺ݇௦ሻ 𝑱̃ሺ݇௦ሻ ݁௜(௞ೣ௫+௞೤௬)݀݇௫݀݇௬ܩ̅                        (34) 

Because the tangential electric field vanishes on the perfectly conducting patch, the eq. (34) 

becomes: 

ଵ4𝜋2 ∫ ∫ ∞−∞+∞−∞+ሺ݇௦ሻ 𝑱̃ሺ݇௦ሻ ݁௜(௞ೣ௫+௞೤௬)݀݇௫݀݇௬ܩ̅ = Ͳ                                      (35) 

The equation above is called ͚͛the electric field integral equation͛͛ (EFIE). 

2.2.3. Solving the integral equation 

The eq. (35) cannot be solved directly because the current density on the patch is unknown. 

The method of moments (MoM) is used to solve this problem. The basic idea is to 

approximate the current density on the patch using a limited number of chosen basis 
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functions weighted by unknown coefficients to be computed. In this work, entire domain 

basis functions are used, where the current density in the patch is expressed in terms of x- 

and y- polarized basis functions as: 

𝐽ሺݔ, ሻݕ = ∑ ܽ௞ [𝐽௫௞ሺݔ, ሻͲݕ ] + ∑ ܾ௠ [ Ͳ𝐽௬௠ሺݔ, ሻ]ெ௠=ଵ𝐾௞=ଵݕ                                       (36) 

Where 

  𝐽௫௞, 𝐽௬௠ are the basis functions, andܽ௞ , ܾ௠ are the weighting coefficients. 

In this thesis, the Galerkin method applies the method of moments where the basis 

functions are chosen to be the same as testing functions. The method of moments converts 

the integral equation described in eq. (35) into a matrix equation of the form: 

[ሺܼ̅ଵଵሻ𝐾 x 𝐾 ሺܼ̅ଵଶሻ𝐾 x ெሺܼ̅ଶଵሻெ x 𝐾 ሺܼ̅ଶଶሻெ x ெ] [ሺܽሻ𝐾 x ଵሺܾሻெ x ଵ] = Ͳ                                            (37) 

Where 

ሺܼ̅ଵଵሻ௤௞ =  ∫ ∫ ∞−∞+∞−∞+௫௫ 𝐽௫௤ሺ−݇௦ሻ𝐽௫௞ሺ݇௦ሻܩ ݀݇௫݀݇௬                             (38-a) 

ሺܼ̅ଵଶሻ௤௠ =  ∫ ∫ ∞−∞+∞−∞+௫௬ 𝐽௫௤ሺ−݇௦ሻ𝐽௬௠ሺ݇௦ሻܩ ݀݇௫݀݇௬                          (38-b) 

ሺܼ̅ଶଵሻ௟௞ =  ∫ ∫ ∞−∞+∞−∞+௬௫ 𝐽௬௟ሺ−݇௦ሻ𝐽௫௞ሺ݇௦ሻܩ ݀݇௫݀݇௬                              (38-c) 

ሺܼ̅ଶଶሻ௟௠ =  ∫ ∫ ∞−∞+∞−∞+௬௬ 𝐽௬௟ሺ−݇௦ሻ𝐽௬௠ሺ݇௦ሻܩ ݀݇௫݀݇௬                             (38-d) 

The matrix containing the elements ܼ௠௡ is called the impedance matrix. The value that 

cancels the determinant of the impedance matrix is the complex resonant frequency having 

the form ݂ =  ௥݂ +  ݅ ௜݂   where  ௥݂  is the resonant frequency and 
ʹ ௜݂ ௥݂⁄  is the fractional 
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bandwidth. Once the resonant frequency is computed, the eigenvector that correspond the 

smallest eigenvalue of the impedance matrix determines the current weighting coefficients.   

2.3. Results and Discussions 

2.3.1. Effect of dielectric parameters 

In this part, we shall investigate the effect of the dielectric parameters such as the thickness, 

the permittivity and the permeability as well as the influence of the dielectric and magnetic 

anisotropy on the resonance and radiation characteristics of the microstrip antenna. All the 

structures studied in this part and in the subsequent parts, will have the same dielectric 

thickness. 

a- Effect of thickness 

In this section we explore the effect of thickness on the resonant frequencies and the 

bandwidths of three different structures, a single layer structure, two layers substrate and 

substrate - superstrate configurations. For all the three structures, the dielectric is 

considered homogenous, its thickness is varied from 0.4-2.4 mm and the results are 

presented for three different values of permittivity. The effect of the thickness of the cover 

layer on the resonant frequency Fig. 2 and the bandwidth Fig. 3, the case of superstrate 

configuration is also shown. Also the effect thickness variation on the radiation pattern is 

shown in Fig. 4. We note that the radiation pattern presented in Fig. 4 and the subsequent 

figures is expressed in terms of the normalized radiated electric field as a function of the 

angle ϴ. The radiation patterns are taken for the plane perpendicular to the patch i.e. at the 

aŶgle φ = π/Ϯ rad. The TM01 resonant mode is considered unless otherwise specified.    
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(a) Single layer substrate 

 

(b) Two-layer substrate  
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(c) Substrate-superstrate configuration 

Fig. 2 Effect of thickness on resonant frequency of three structures for a=1 cm, b=1.25 cm 

 

Fig. 3 Bandwidth of a single layer structure as a function of thickness for a=1 cm, b=1.25 cm 
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Fig. 4 Effect of thickness on the radiation pattern of for a=1 cm, b=1.25 cm, ߝ௥ = 2.2 

We can observe form the Fig. 2(a)-(c) that the resonant frequency is inversely proportional 

to the substrate thickness regardless of its permittivity or its homogeneity. From Fig. 3, we 

notice that the bandwidth is directly proportional to the substrate thickness, this is observed 

for both two-layer structures. Also we can observe that the radiated field strength is directly 

proportional to the substrate thickness. 

b- Effect of permittivity 

We can compare the effect of relative permittivity for both two-layers substrate and 

superstrate structures by considering an homogenous dielectric with the same thickness  

mm), and varying the relative permittivity from 2 to 12, and the patch size is a=1 cm, b=1.25 

cm. The resonant frequency and the bandwidth variations are presented in Fig. 5. 

Furthermore, the influence of the dielectric permittivity on the radiation pattern is also 

illustrated in Fig. 6. We can notice that both the resonant frequency and bandwidth are 

inversely proportional to the relative permittivity. When we compare the effect of the 
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thickness to the effect of the permittivity by comparing the maximum to the minimum 

resonant frequency ratio in both cases, we find that impact of the permittivity is larger than 

the effect of the thickness. In addition, the cover layer (superstrate) exhibit a similar 

behavior as mentioned above concerning the influence of the thickness and the permittivity 

on the resonant frequency as it is shown in Fig. 7. The permittivity as depicted by Fig. 6 is 

inversely proportional with the radiated field.   

 

(a) 

 

(b) 

Fig. 5 Influence of permittivity on (a) resonant frequency (b) bandwidth (d1 = d2 = 0.5 mm)  
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Fig. 6 Influence of permittivity on the radiation pattern for ݀ = 1 mm 
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(b) 

Fig. 7 Impact of Cover layer (a) thickness for d1 = 0.6 mm (b) permittivity for d1 = d2 = 0.5 cm, 

εr1 = 6, on the resonant frequency of substrate-superstrate structure 

c- Effect of permeability 

The effect of the permeability is investigated by varying the relative permeability form 1 to 

10 for three cases, two layers structures (two layers substrate, substrate-superstrate 

configurations) with a single patch, and a two layers structure with stacked patches. The 

effects of the permeability on the resonant frequency and bandwidth of these structures are 

shown in Fig. 8 and 9. The effect of permeability on the radiation pattern is shown in Fig. 10.  

We notice that the resonant frequency is inversely proportional to the permeability for both 

single patch and stacked patches structures. The bandwidth of single patch structures is 

proportional to the permeability. For stacked patches configuration, the same thing applies 

to the upper resonance bandwidth, but the opposite is noticed for the lower resonance 

bandwidth. 
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(a) 

 

(b) 

Fig. 8 The influence of relative permeability on (a) resonant frequency and (b) bandwidth for 

the case of a single patch, d1 = d2 = Ϭ.5 cŵ, εr1 = εr2 = 2, a=1 cm, b=1.25 cm 
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(a) 

 

(b) 

Fig. 9 Influence of relative permeability on (a) resonant frequency and (b) bandwidth for the 

case of stacked patches, d1 = d2 = Ϭ.5 cŵ, εr1 = εr2 = 2, a1 = a2  = 1 cm, b1 = b2  =  1.25 cm  
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Fig. 10 Effect of permeability on radiation pattern for a=1 cm, b=1.25 cm, ݀ = 1 mm, ߝ௥ = 

2.35 

The maximum to the minimum resonant frequency ratio in the case of permeability is high 

which indicates a strong influence of the dielectric permeability on the resonant frequency. 

Also, we can see that the radiated field is getting stronger as the permeability is increased.   
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the patches have the same size (a=1 cm, b=1.25 cm) and the substrate is homogenous with d 
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we increase the anisotropy ratio to 2 (cases 2 and 3), we can see that the resonant 

frequency does not follow a specific direction of variation i.e. the resonant frequency 

increases as in case 3 and decreases as in case 2 although the anisotropy ratio AR has been 

increased from 1 to 2 in both cases. This proofs that the consideration of the anisotropy ratio 

alone does not allow the prediction of the resonant frequency behavior, this conclusion 

applies on both dielectric and magnetic anisotropy. In order the investigate the effect of 

elements of the permittivity tensor (ߝ௫ and ߝ௭ሻ, we take case 1 (ߝ௫ = ௭ߝ , ʹ͵.ʹ  =  ʹ.͵ʹ ) as a 

reference, and we increase or decrease ߝ௫ (as in cases 2 and 4 respectively) or ߝ௭ (as in cases 

5 and 3 respectively), we can see that the rate of change is at most 2.31% for ߝ௫ , but the 

change reaches 31.85% for ߝ௭ . This means that ߝ௭ has a larger influence than  ߝ௫ on the 

resonant frequency. To investigate the effect of elements of the permeability tensor (𝜇௫ and 𝜇௭ሻ, we take case 1 (ߝ௫ =  ʹ.Ͷ , ߝ௭ =  ʹ.Ͷ ) as a reference, and we increase or decrease 𝜇௫ (as 

in cases 2 and 4 respectively), or 𝜇௭ (as in cases 5 and 3 respectively), we can see that the 

maximum rate of change is 0.38% for 𝜇௭ , but the rate of change exceeds 35.84% for 𝜇௫ . 

This means that 𝜇௫ has a larger influence than  𝜇௭ on the resonant frequency. 

Table 1 Influence of permittivity tensor elements on resonant frequency, μr = 1  

Case # ߝ௫ ߝ௭ AR Single patch Stacked patches 

fr (GHz) Δfr (%) fL (GHz) ΔfL (%) fU (GHz) Δfu (%) 

1 2.32 2.32 1 7.518 0 7.488 0 7.751 0 

2 4.64 2.32 2 7.344 2.31 7.274 2.85 7.692 0.76 

3 2.32 1.16 2 9.913 31.85 9.871 31.82 10.812 39.49 

4 1.16 2.32 0.5 7.629 1.47 7.62 1.76 7.797 0.59 

5 2.32 4.64 0.5 5.555 26.11 5.488 26.71 5.57 28.14 
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Table 2 Influence of permeability tensor elements on resonant frequency, εr = 2.35 

Case # 𝜇௫ 𝜇௭ AR Single patch Stacked patches 

fr (GHz) Δfr (%) fL (GHz) ΔfL (%) fU (GHz) Δfu (%) 

1 2.4 2.4 1 5.482 0 4.632 0 5.657 0 

2 4.8 2.4 2 4.068 25.79 3.237 30.11 4.215 25.49 

3 2.4 1.2 2 5.503 0.38 4.664 0.69 5.685 0.49 

4 1.2 2.4 0.5 7.447 35.84 7.407 59.91 7.686 35.86 

5 2.4 4.8 0.5 5.47 0.21 4.611 0.45 5.641 0.28 
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(b) 

Fig. 11 Effect of (a) negative anisotropy and (b) positive anisotropy on the resonant 

frequency of a single patch configuration 

 

Fig. 12 Effect of anisotropy on the resonant frequency of a stacked patches configuration 
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When the anisotropy is considered the resonant frequency (for a constant value of the 

dielectric thickness) increases with respect to isotropic case if the dielectric possess a 

positive uniaxial anisotropy, and it decreases if the dielectric possess a negative uniaxial 

anisotropy. The maximum change in the resonant frequency for a single patch is 1.69% (for 

negative anisotropy), 1.71% (for positive anisotropy) and 2% for stacked patches. The effect 

of anisotropy becomes significant for thick substrates. 

2.3.2. Effect of patch dimensions 

Now we will consider that the patch length ͞a” is along the x-axis, and that the patch width 

͞b͟ is along the y-axis, thus the first resonant mode is TM10 and the second resonant mode is 

TM01 which they have current density with x and y dependences respectively. We are going 

to investigate the effect of the patch length when its width is kept constant, and we will see 

effect of the patch width when its length is kept constant in Fig. 13 and 14 respectively. After 

that, we vary both the length and the width while keeping the length to width ratio constant 

as it is shown in Table 3.  
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(b) 

Fig. 13 Influence of the patch length on (a) resonant frequency and (b) bandwidth for b = 1 

cm, d = 1 mm, ߝ௥  = 2.2 
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(b) 

Fig. 14 Influence of the patch width on (a) resonant frequency and (b) bandwidth for a = 1 

cm, d = 1 mm, ߝ௥  = 2.2 

Table 3 Comparison of the first two resonances (TM10 and TM01) for a constant length-to-

width ratio (a/b = 1.25), d = 1 mm, ߝ௥  = 2.2 

a(cm) b(m) TM10 mode TM01 mode 

fr (GHz) BW (%) fr (GHz) BW (%) 

1 0,8 9,495 4,31 11,465 6,52 

1.1 0,88 8,681 3,98 10,501 5,92 

1.2 0,96 7,992 3,44 9,687 5,49 

1.3 1,04 7,406 3,15 8,99 5,12 

1,4 1,12 6,902 2,93 8,398 4,81 

1,5 1,2 6,46 2,72 7,873 4,5 

1,6 1,28 6,071 2,53 7,408 4,22 

1,7 1,36 5,727 2,36 6,996 3,97 

1,8 1,44 5,419 2,22 6,627 3,75 

1,9 1,52 5,142 2,09 6,296 3,55 

2 1,6 4,893 1,98 5,995 3,37 
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Careful observation of Fig. 13, 14 and Table 3 leads to the following results:  

The resonant frequency is inversely proportional to the length and it is proportional to the 

width (for both modes). The length has a large impact on the TM10 mode, where the width 

has a large impact on the TM01 mode. The bandwidth always decreasing for increasing the 

length or the width for TM10 Mode, the opposite is noticed for the TM01 mode. When both 

the length and the width are increased by the same amount (the length to width ratio 

remains constant), both the resonant frequency and the bandwidth will decrease (for both 

modes). Furthermore, when we compute the physical bandwidth in GHz, we can find that 

the TM01 mode has a larger physical and fractional bandwidth than the TM10 mode. The 

impact of the patch dimensions on the radiation pattern has been also investigated as shown 

in Fig. 15, 16. The length and the width are chosen so that the fundamental mode is the 

TM01 mode. The radiation pattern of a given microstrip antenna for two resonant modes is 

also presented Fig. 17 and 18. From Fig. 15 and 16, we observe that the radiated field 

intensity increases as the patch becomes larger, however, the impact of the width is larger 

than the impact of the length on the radiation pattern. Whereas the result concluded from 

Fig. 17 and 18 is that the second resonance always has the strongest radiated field 

regardless of the relative dimensions of the patch.  
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Fig. 15 radiation pattern for b=1.5 cm, ݀ = 1 mm, ߝ௥ = 2.2 

 

Fig. 16 radiation pattern for a=1cm, ݀ = 1 mm, ߝ௥ = 2.2 
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Fig. 17 radiation pattern of TM10 and TM01 for a=1.8 cm, b=1.5 cm, ݀ = 1 mm, ߝ௥ = 2 

 

Fig. 18 radiation pattern of TM10 and TM01 for a=1.25 cm, b=2 cm, ݀ = 1 mm, ߝ௥ = 2 
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2.4. Conclusion  

We have presented a full-wave analysis of a multilayered structure microstrip patch 

antenna. The analysis was based on deriving the dyadic Green͛s function of the substrate in 

spectral domain, and on the use of the method of moments to solve the electric field 

integral equation. The complex resonant frequency, yielding to the determination of the 

resonant frequency and the bandwidth, is computed by solving the characteristic equation 

for which the impedance matrix determinant vanishes. Stationary phase theorem allows the 

computation of the far field and subsequently the antenna radiation pattern. Throughout 

the accomplished parametric study on the influence of the different parameters of the 

structure on resonance and radiation characteristics of the microstrip antenna, the following 

results have been concluded:  

- Thicker substrates offer larger bandwidths, but it produces also lower resonant 

frequencies. 

-  Permittivity and permeability have similar effects on resonant frequency, but they 

have opposite effects on bandwidth, where low permittivity values are required for 

large bandwidth, while for the permeability, high values are required. 

- These results mean that choosing thicker substrates with low permittivity and high 

permeability enhances significantly the antenna bandwidth. 

- For the substrate, the impact of the material properties (i.e. permittivity and 

permeability) on the resonant frequency is larger than the effect of its dimensions 

(mainly its thickness) 
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- It was found that in the case of dielectric anisotropy, the element of the permittivity 

tensor that is along the axis parallel to optical axis is the dominant element. 

However, in the case of magnetic anisotropy, the element of the permeability tensor 

that is along the axis perpendicular to optical axis is the dominant element.  

- The resonant frequency is directly proportional to the patch width, and it is inversely 

proportional to the patch length. 

- The patch length has a large influence on the first resonance while the width has a 

large influence on the second resonance (for our case, the first and the second 

resonances correspond to the modes TM10 and TM01 respectively). 

- The patch width has the greater influence on the radiated field. 

- The second resonance has a larger impact on the radiated field than does the first 

resonance. 
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3.1. Introduction  

Chiral medium is a reciprocal, optically active medium, in which right- and left-circularly 

polarized waves propagates through it with different phase constants. This property makes it 

similar to ferrites which are non-reciprocal and anisotropic materials. Physically, a chiral 

medium consists of an ordinary dielectric containing chiral objects of the same handedness; 

these objects are randomly oriented and uniformly distributed [11], [71]-[73]. The 

phenomenon of optical activity was discovered by Arago in 1811. He found that crystals of 

quartz rotate the plane of polarization of linearly polarized light transmitted in the direction 

of its optical axis, where the optical activity was found to be a result of chiral molecules in 

that medium [71]. Chirality or handedness is a purely geometric concept that refers to the 

lack of bilateral symmetry of an object. A chiral object, by definition, is a body that cannot be 

brought into congruence with its mirror image by translation and rotation. Such a body has 

the property of handedness and is either right-handed or left-handed [71], [74]. Optical 

activity can be explained through the magneto-electric coupling mechanism where, the 

electric field induces not only an electric polarization but also a magnetic polarization, and 

conversely, a magnetic field produces both electric and magnetic polarization [75]. 

Chiral materials are bi-isotropic media, and they are a special case of a wider class referred 

to as bi-anisotropic media. In a bi-anisotropic medium, the constitutive relations relate D to 

both E and B, and H to both E and B by three-dimensional tensors. When these tensors 

reduce to scalar quantities, this medium becomes bi-isotropic [9], and sometimes referred to 

as Tellegan [76]. The prefix ͞bi͟ is used to demonstrate the dependence of D or H to both E 

and B [9]. Chirality and its effects in optical activity began to attract attention in the 
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Electromagnetics community with experiments performed by Lindeman [77]-[78] and 

Pickering [79] in microwave regime where the results were somewhat similar to those in 

optical frequencies. Since the paper published by Kong [9] in 1972 on the theory of 

electromagnetic field in bi-anisotropic media, many works have been published on the 

interaction of the electromagnetic field with both bi-anisotropic and bi-isotropic media. 

Propagation through chiral media was treated by [10], [76], [80]-[81]. The reflection and 

transmission through achiral-chiral interface or scattering from a chiral slab have been also 

considered [10], [82]-[84]. Studies on electromagnetic wave propagation in guided 

structures such as waveguides have been reported by Eftimiu and Pearson [85], and also by 

Pelet and Engheta [71]. Microstrip lines on a chiral substrate have been analyzed by Kluskens 

and Newman [11], and also by Toscano and Vegni [75]. Printed antennas on chiral media 

have gained similar interest, where the radiation of a straight thin wire embedded in an 

isotropic chiral media, was investigated by Lakhtakia [85]. A similar work on printed dipoles 

was accomplished by Lumini and Lacava [86].  

Microstrip patch radiators on chiral substrates have been studied by Pelet and Engheta [12]. 

Pozar [72] has also considered microstrip arrays. Toscano and Vegni [87] presented a 

formulation for arbitrary shaped patch antennas on a chiral slab. The published studies were 

not limited only to planar structures. Li et al [88] published a paper on the analysis of a 

rectangular patch printed on a cylindrical chiral substrate. Furthermore, radiation of dipoles 

in multilayered chiral media has also been reported for planar [89], spherically- [90] and 

cylindrically- [91] layered structures. Green’s functions associated to the chiral media, was 

derived by most of the after mentioned references. Specifically, [10], [75], [87] and [92] have 

derived spectral-domain Green’s function for a single layer medium. Ali et al [76] have 
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formulated spectral domain Green’s function for layered chiral media. Whereas Li et al [88] 

have provided spatial domain Green’s function.  

3.2. Theory 

In order to analyze the electromagnetic field in a chiral media, a good starting point is 

constitutive relations. As described by [11] and [72], constitutive relation s are given by 

ࡰ =  𝜀ࡱ − ݆𝜉 (1)                                                                       ࡮ 

𝑯 =  ଵ𝜇 ࡮  − ݆𝜉 (2)                                                                      ࡱ 

Where 𝜀, 𝜇, 𝜉 are, respectively, the permittivity, permeability and chiral admittance. 

The equations (1) and (2) can be rewritten as 

ࡰ =  𝜀𝑐ࡱ − ݆𝜇𝜉 𝑯                                                                   (3) 

࡮ =  𝜇𝑯 + ݆𝜇𝜉 (4)                                                                     ࡱ 

With  

𝜀𝑐 =  𝜀 +  𝜇𝜉ଶ                                                                         (5) 

Assuming ݁௝ఠ௧ time-dependence, Maxwell’s equations (with current density equal to zero), 

are defined as 

∇  × ࡱ =  −݆𝜔࡮                                                                 (6-a) 

∇  × 𝑯 =  ݆𝜔ࡰ                                                                   (6-b) 

∇ . ࡰ =  𝜌                                                                            (6-c) 
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∇ . ࡮ = Ͳ                                                                           (6-d) 

Using (3) and (4), the equations (6-a) to (6-d) can be rewritten as 

∇  × ࡱ =  𝜔𝜇𝜉 ࡱ − ݆𝜔𝜇 𝑯                                                            (7-a) 

∇  × 𝑯 =  ݆𝜔𝜀𝑐 ࡱ + 𝜔𝜇𝜉 𝑯                                                         (7-b) 

∇ . ࡱ =  𝜌𝜀                                                                                         (7-c) 

∇ . 𝑯 =  −݆𝜉 𝜌𝜀                                                                                (7-d) 

Using bi-dimensional Fourier Transform defined by 

, ௫݇)̃ ࡭ ݇௬ , (ݖ = , ݔሺ ࡭} 𝑇ܨ , ݕ {ሻݖ =  ∬ , ݔሺ ࡭ , ݕ ∞−∞+ݕ݀ ݔሻ݁−௝ሺ௞ೣ௫ + ௞೤௬ሻ݀ݖ              (8) 

Then  

× ∇}𝑇ܨ {ࡱ =  ∇̃  ×  (9)                                                                      ࡱ̃  

With  

∇ ̃ = ݆݇௫  𝒆࢞ +  ݆݇௬ 𝒆࢟ +  డడ௭  𝒆(10)                                                   ࢠ 

 

𝒆࢞ , 𝒆࢟ , 𝒆ࢠ  Are the unit vectors of a Cartesian coordinate system. 

Thus eq. (7a) – (7b) in spectral domain, can be written as 

∇̃  × ࡱ̃ =  𝜔𝜇𝜉 ̃ࡱ − ݆𝜔𝜇 𝑯̃                                                      (11-a) 

∇̃  × 𝑯̃ =  ݆𝜔𝜀𝑐 ̃ࡱ + 𝜔𝜇𝜉 𝑯̃                                                    (11-b) 
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We can write eq. (7-a), (7-b) in matrix form as 

∇  × ቀࡱ𝑯ቁ =  [𝑲] ቀࡱ𝑯ቁ                                                    (12) 

Where 

[𝑲] =  [𝜔𝜇𝜉 −݆𝜔𝜇݆𝜔𝜀𝑐 𝜔𝜇𝜉 ]                                                    (13) 

Using the properties 

∇  × ∇  × ࡱ =  ∇ሺ∇ . ሻࡱ −  ∇ଶ(14)                                         ࡱ 

∇  × ∇  × 𝑯 =  ∇ሺ∇ . 𝑯ሻ −  ∇ଶ𝑯                                       (15) 

We find  

∇ଶࡱ + ሺሺ𝜔𝜇𝜉ሻ𝟐 +  𝜔ଶ𝜇𝜀𝑐ሻ ࡱ − ݆ʹሺ𝜔𝜇ሻଶ𝜉 𝑯 = Ͳ                            (16) 

∇ଶ𝑯 +  ሺሺ𝜔𝜇𝜉ሻ𝟐 +  𝜔ଶ𝜇𝜀𝑐ሻ 𝑯 + ݆ʹ𝜔ଶ𝜇𝜀𝑐𝜉 ࡱ = Ͳ                           (17) 

In matrix form, equations (16) and (17) can be written as 

∇ଶ ቀࡱ𝑯ቁ +  [𝑴] ቀࡱ𝑯ቁ = Ͳ                                                     (18) 

Where 

[𝑴] =  [ሺ𝜔𝜇𝜉ሻ𝟐 +  𝜔ଶ𝜇𝜀𝑐 −݆ʹሺ𝜔𝜇ሻଶ𝜉݆ʹ𝜔ଶ𝜇𝜀𝑐𝜉 ሺ𝜔𝜇𝜉ሻ𝟐 +  𝜔ଶ𝜇𝜀𝑐]                                (19) 

With 

[𝑴] =  [𝑲]ଶ                                                                     (20) 

So we can rewrite eq. (18) as 
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∇ଶ ቀࡱ𝑯ቁ +  [𝑲]ଶ ቀࡱ𝑯ቁ = Ͳ                                                               (21) 

The matrix [K] can be diagonalized as 

[𝑲] = [࡭]  [݇+ ͲͲ  ଵ                                                         (22)−[࡭] [−݇

 

Where  

[࡭] =  [ ͳ ͳ௝𝜂𝑐 − ௝𝜂𝑐]                                                                         (23) 

ଵ−[࡭] = ଵଶ  [ͳ −݆𝜂𝑐ͳ ݆𝜂𝑐 ]                                                                (24) 

And 

𝜂𝑐 =  √ 𝜇𝜀𝑐                                                                                 (25) 

݇± =  𝜔√𝜇𝜀𝑐  ±  𝜔𝜇𝜉                                                          (26) 

In eq. (26), ݇+ is related to right-hand circularly polarized (RHCP) wave, whereas ݇− is 

related to left-hand circularly polarized (LHCP) wave. Substituting [𝑲] by its expression given 

in eq. (22) in eq. (21) will lead to 

ଵ∇ଶ−[࡭] ቀ𝐄𝐇ቁ +  [݇+ ͲͲ ݇−]ଶ ଵ−[࡭] ቀ𝐄𝐇ቁ = Ͳ                                     (27) 

If we put 

ଵ−[࡭] ቀ𝐄𝐇ቁ =  (𝐄+𝐄−)                                                                             (28) 
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Then eq. (27) becomes 

∇ଶ (𝐄+𝐄−) +  [݇+ ͲͲ ݇−]ଶ (𝐄+𝐄−) = Ͳ                                                (29) 

Or more simply by 

∇ଶ (𝐄+𝐄−) +  (k+ଶ 𝐄+k−ଶ 𝐄−) = Ͳ                                                              (30) 

E, H are related to ࡱ+ and ࡱ− by 

ቀࡱ𝑯ቁ =  [ͳ ͳ௝𝜂𝑐 − ௝𝜂𝑐] (𝐄+𝐄−)                                                            (31) 

This yield to 

ࡱ =  𝐄+ +   𝐄−                                                                           (32) 

𝑯 =  ௝𝜂𝑐  𝐄+ −  ௝𝜂𝑐  𝐄− =  𝐇+ +  𝐇−                                         (33) 

With 

(𝑯+𝑯−) =  ௝𝜂𝑐  (  (34)                                                                   (−ࡱ−+ࡱ

By replacing eq. (31) in (12) we can rewrite Maxwell’s equations in terms of ࡱ+ and ࡱ−  

∇ = +ࡱ ×   (a-35)                                                                +ࡱ +݇ 

∇ = −ࡱ ×   (b-35)                                                             −ࡱ −݇− 

Consequently, the wave equations in terms of ࡱ+ and ࡱ− can be defined as 

∇ଶࡱ+ +  ݇+ଶ +ࡱ  = Ͳ                                                             (36-a) 
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∇ଶࡱ− +  ݇−ଶ −ࡱ  = Ͳ                                                          (36-b) 

In spectral domain equations (36-a), (36-b) can be written as 

∇̃ଶ̃ࡱ+ +  ݇+ଶ +ࡱ̃  = Ͳ                                                         (37-a) 

∇̃ଶ̃ࡱ− +  ݇−ଶ −ࡱ̃  = Ͳ                                                        (37-b) 

Using the expression of ∇ ̃ given in eq. (10), ∇ ̃ଶ can be defined as 

∇ ̃ଶ =  ∇ ̃. ∇ ̃ =  −݇௦ଶ +  డ2డ௭2                                                (38) 

Substituting ∇ ̃ଶ as defined by (38), in equations (37-a), (37-b) gives 

డ2𝐸̃+డ௭2 +  ݇௭+ ଶ +ܧ̃ = Ͳ                                                         (39-a) 

డ2𝐸̃−డ௭2 +  ݇௭− ଶ −ܧ̃ = Ͳ                                                         (39-b) 

Where  

݇௭+ =  √݇+ଶ −  ݇௦ଶ                                                         (40-a) 

݇௭− =  √݇−ଶ −  ݇௦ଶ                                                         (40-b) 

For z-component, the general solution for  ̃ܧ+ and ̃ܧ− are given by 

+௭ܧ̃ = ଵ݁−௝௞೥+௭ܣ  +  ଵ݁௝௞೥+௭                                     (41-a)ܤ 

−௭ܧ̃ = ଶ݁−௝௞೥−௭ܣ  +  ଶ݁௝௞೥−௭                                     (41-b)ܤ 

We point out that both ̃ܧ+ and ̃ܧ− have x-, y- and z-components. By using eq. (10), (39-a) 

and (39-b), the x- and y-components of ̃ܧ+  and ̃ܧ−  (Transverse components) can be 

expressed in terms of z-components of ̃ܧ+ and ̃ܧ− (longitudinal components) as 
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+௫ܧ̃ =  ௝௞ೣ௞𝑠2  డ𝐸̃೥+డ௭ +  ௝௞೤௞𝑠2  ௭+                                                   (42-a)ܧ̃ +݇ 

+௬ܧ̃ =  ௝௞೤௞𝑠2  డ𝐸̃೥+డ௭ −  ௝௞ೣ௞𝑠2  ௭+                                                   (42-b)ܧ̃ +݇ 

−௫ܧ̃ =  ௝௞೤௞𝑠2 −௭ܧ̃−݇  −  ௝௞ೣ௞𝑠2   డ𝐸̃೥−డ௭                                                     (43-a) 

−௬ܧ̃ =  ௝௞ೣ௞𝑠2 −௭ܧ̃−݇  + ௝௞೤௞𝑠2   డ𝐸̃೥−డ௭                                                    (43-b) 

By substituting eq. (41-a), (41-b) in eq. (42-a) – (43-b), and applying boundary conditions at 

the interface ground plane-dielectric, and at the interface patch/dielectric- air, dyadic 

Green’s function in closed-form, can determined. The detailed expressions of Green’s 

function elements are given in [72]. We note that the symmetry in the dyadic Green’s tensor 

that usually exists for an ordinary dielectric substrate does not exist for the case of chiral 

substrate, which increase the computational effort by a factor of four. Moreover, extending 

the solution for a patch antenna on an ordinary dielectric substrate to chiral substrate, 

involves only the use of the new Green’s function components. 

3.3. Results and Discussions 

IŶ this seĐtioŶ ǁe ǁill iŶǀestigate the effeĐt of Đhirality, represeŶted ďy Đhiral adŵittaŶĐe ξ, 

on the resonant frequency, bandwidth and radiated field. The numerical results illustrated in 

Fig. 1-6, are computed for two different patch sizes and for each case the impact of chirality 

is shown for different substrate thicknesses. From Fig. 1 and 2 it can be noticed that 

increasing chiral admittance, which measures the degree of chirality, increases the resonant 

frequency. However, this seems to be thickness- and patch size-dependent, in another word, 

this result is valid only for thick substrates. How a substrate looks thick, depends to the 
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patch size as depicted by Fig. 1 and 2. In term of the bandwidth, Fig. 3, 4 show that 

increasing chiral admittance increases the bandwidth regardless to dielectric thickness. 

However, this enhancement in the bandwidth does not exceed 1.42% and it looks also 

dependent to the patch size, where smaller patches offer better bandwidths. Radiated field 

intensity increases by about 10% with the increase of the substrate chirality as shown in Fig. 

5 and 6. Again, this increase is patch-size dependent where it is significant for small size 

patches. 

 

 

Fig. 1 Influence of Chirality on the resonant frequency for a x b = 2 x 3 cm, 𝜀௥ = 2.2 
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Fig. 2 Influence of Chirality on the resonant frequency for a x b = 4 x 5 cm, 𝜀௥ = 2.2 

 

Fig. 3 Influence of Chirality on the bandwidth for a x b = 2 x 3 cm, 𝜀௥ = 2.2 
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Fig. 4 Influence of Chirality on the bandwidth for a x b = 4 x 5 cm, 𝜀௥ = 2.2 

 

Fig. 5 Effect of chirality on the far field for a x b = 2 x 3 cm, 𝜀௥ = 2.2, d = 1.5 mm and φ = 90˚ 
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Fig. 6 Effect of chirality on the far field for a x b = 4 x 5 cm, 𝜀௥ = 2.2, d = 1.5 mm and φ = 90˚ 

3.4. Conclusion    

The theory of electromagnetic waves propagation in chiral media is presented. It was shown 

the chirality is basically a purely geometric concept, and it has been studied extensively in 

different fields, prior electromagnetics. The interest in chiral materials, by the 

electromagnetics community, date back to the early seventies. The chiral materials are 

referred to as bi-isotropic materials, and they are a sub-class of the more general class called 

bi-anisotropic materials. The background of this subject has been sufficiently described. The 

interest in chiral materials in the field of microstrip antennas and wave guiding structures 

was motivated by the similarities shared with the ferrites, where the phenomenon of optical 

activity is present in both materials. Since ferrites have proven novel characteristics for 
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microwave applications in general and microstrip antennas in particular, chiral materials 

have been studied to check whether they can provide similar operational characteristics. It 

was also shown that modeling chiral medium starts with the use of constitutive relations to 

derive the associated Maxwell’s equation. Then matrix algebra is used to decouple the wave 

equation yielding to right and left circularly polarized waves for the electric and magnetic 

fields. After that, Maxwell’s equations in terms of the new components are derived. The rest 

of the process to derive Green’s function associate to the structure, is similar to that of 

ordinary substrate. It has been shown that the influence of chirality on resonant frequency 

in particular, is dependent to substrate thickness and patch size. It has been shown also that 

increasing the substrate chirality increases, although to a small degree, the bandwidth and 

the radiated field of a microstrip antenna. The positive impact of chirality, on bandwidth and 

the radiated field, becomes significant for small size patches.    



 

Chapter 4 

 

Feeding Techniques 
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4.1. Introduction 

      When a microstrip antenna is operating in transmitting/receiving mode, RF signals are 

usually carried to/from the antenna using a transmission line called a feed. Different feeding 

methods have been suggested and many theoretical models have been proposed for 

microstrip antenna structures where these feeding methods are including in the 

formulation. The availability of theoretical models for the feed, allows quantifying its 

possible effects on the characteristics of the microstrip antenna. Early microstrip antennas 

used either a microstrip line feed or a coaxial probe feed. Pozar published a paper [93], on 

the calculation of the input impedance of microstrip line fed and coaxial probe fed 

rectangular patch antenna. Few years later, he participated in developing a more elaborate 

study on the modeling of microstrip line fed and proximity coupling fed patch antenna [94]. 

Similar works [95], [96] were published later. The published theoretical models were not 

limited to a single layer structures, but they were also extended to multilayered structures 

[52]. In addition to full-wave analysis based works treating stacked circular [97] and 

rectangular [98] patches, as well coaxial probe fed- [99] and microstrip line fed- [100] arrays 

of rectangular patches. Most of the numerical studies on such structures were based on the 

use of Green’s functions and the method of moments. However, formulations based on 

finite difference time domain (FDTD) method, were also reported [101]-[102].Experimental 

studies were also reported [62], [103]. These studies provide a set of measured data to 

examine the accuracy of the theoretical models, and to determine their range of validity. 

Microstrip line and coaxial probe feeds belong to direct contacting feeding methods. Such 

feeding methods have the advantage of simplicity, but they have several disadvantages such 



Chapter 4: Feeding Techniques  

 

97 

 

as the bandwidth/feed radiation trade off. Where, an increase of the substrate thickness for 

the purpose of increasing the bandwidth leads to an increase of spurious feed radiation. 

Practically, such antennas are limited in bandwidth to about 2 - 5 % [4].   

Another type of non-contacting feeds, have been developed for microstrip antennas, 

namely, the proximity coupling and the aperture coupling feeds. For proximity coupling, the 

patch can be placed on a relatively thick substrate for improved bandwidth, while the feed 

line is placed on a thinner substrate to reduce spurious radiation. In 1987, Pozar and 

Kaufman [104] have published a work on increasing the bandwidth of a microstrip antenna 

by proximity coupling. In the same year, another paper has been published by Pozar and 

Voda [94], in which a modeling of proximity coupling feed has been presented. Splitt et al 

[105] have provided a similar study for both circular and rectangular patch antennas. Other 

works have been published in this regard for arrays [106] and single-element rectangular 

patch antennas [96], [107]. Aperture coupling is another type of non-contacting feeds. This 

type is proposed by Pozar in 1985 [108]. A microstrip feed line on the bottom substrate is 

coupled through a small aperture in the ground plane to a microstrip patch on the top 

substrate. This arrangement allows a thin, high dielectric constant substrate for the feed, 

and a thick, low dielectric constant substrate for the antenna element. In addition, the 

ground plane eliminates spurious radiation from the feed from interfering with the antenna 

pattern [4]. Aperture coupled-fed stacked rectangular patch antenna has been studied in a 

paper published by Croq et al [95]. Aperture-fed circular patch also has been analyzed [109]. 

Circular [47] and rectangular [110] microstrip patches in layered medium have been also 

studied. Aperture coupling feed technique has been applied on an array of circular patches 

[111]. Aperture shape is usually, although it is not limited to, rectangular or circular. H-
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shaped aperture, with a microstrip line feed, has been used in feeding a dual-band square 

patch [103].        

4.2. Theory 

4.2.1. Microstrip line feed 

Two possible configurations of a microstrip line fed patch antenna Fig. 1 (b) ordinary 

microstrip, (c) feed line and inset feed line.  

 

 

Fig.1 Structures of microstrip line fed patch antenna 
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Where  

W: the patch width 

L: the patch length 

Wf : the feed line width 

S: the inset length 

(x0 , y0): the feed position 

The equivalent circuit of the both configurations of microstrip line fed patch antenna is 

shown in Fig. 2. Where the RLC circuit represents the resonant patch and the feed is 

represented by the series inductance [4]. 

 

Fig. 2 Equivalent circuit of microstrip line fed patch antenna 

The method of moments transforms the integral equation of the electric field into matrix 

equation of the form [Z]. [I] = [V], where the voltage vector [V] represents the excitation. In 

[94], the impressed (source) current is modeled as  

௜ܬ = ݔሺߜ  − . ଴ሻݔ ݕሺߜ −  ଴ሻ                                                                (1)ݕ
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Where (x0 , y0) are the coordinates of the feed position. The feed is incorporated in the 

computation of the elements of the voltage vector which is expressed as 

௠ܸ = ׬ 4݆ ׬ ܳ𝑣 ܫ𝑚 [ܨ௫∗ሺܬ௠ሻ݁௝௞ೣ௫0]ܴ݁ ∞଴గ/ଶ଴  (2)                 ߙ݀ߚ݀ߚ[௠ሻ݁௝௞೤௬0ܬ௬∗ሺܨ]

 ௬  are the Fourier transforms of x and y dependences of the current density. Theܨ ௫ andܨ

expressions of ܨ௫ , ௬ܨ  and ܳ𝑣  are given in [93]. The feed width can be included in the 

formulation by modifying the voltage term in eq. (2) by the factor √𝑊𝑒ௗ  to account for the 

edge effect of the microstrip line. ௘ܹ is the effect width of the feed line and d is the 

substrate thickness [93]. In the study presented in [94], Pozar and Voda have presented a 

theoretical model which is suitable for both microstrip line fed and proximity coupling fed 

patch antennas. In this model, the currents on the feed line and on the patch are expanded 

in term of three types of modes: 

1/ Traveling wave current on the feed line 

2/Patch current (expanded in terms of entire domain modes) 

3/ Overlap current (expanded in terms of piecewise sinusoidal (PWS) modes) 

Overlap currents enforce continuity of current from the feed line to the patch. 

The inset length is included in the modeling of the current density in the feed line. 

Feeding along the radiating edge is the most common in feeding patch antennas, where the 

feed line is usually placed at the center of this edge. One of the reasons why the feed line-

patch contact point is on the resonant edge is that the feed currents are co-polarized with 
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the currents of the patch which minimizes cross-polarization radiation. In addition, there is a 

little change in the input impedance as the feed point is moved along this edge [94]. 

The formulation provided by [94] has been used in [96] to derive a MoM formulation of 

microstrip line fed patch antenna. PWS basis functions have been used to approximate both 

the feed line and the patch currents. The final matrix equation has the form 

[ܼ 𝐶𝑇 [௕ܫ௔ܫ] [ܻ =  [ ଵܸܸଶ]                                                                   (3) 

The matrix Z and the vector V1 are associated to the feed line, and the matrix Y and the 

vector V2 are associated to the patch. Whereas the matrices T and C represent the coupling 

between the feed line and the patch basis functions [96].    

4.2.2. Coaxial probe feed 

The structure of coaxial probe fed patch antenna is illustrated in Fig. 3, its equivalent 

structure is similar to that of a microstrip line fed patch antenna. Unlike microstrip line feed, 

the position of a coaxial probe is not restricted to be only on the perimeter of the patch, but 

rather it can be placed in any point on the patch area. The coaxial probe feed is often 

modeled as a short, vertical filament of current. If the probe is assumed to be along the z-

axis, then the current impressed by the probe has the form 

̅ ܬ = ݔሺߜ̂ ݖ  − .଴ሻݔ ݕሺߜ −  ଴ሻ                                                         (4)ݕ

Where (x0 , y0) represent the feed position. This formulation of the feed has been adopted 

before in [93], where the position of the feed probe is included in the calculation of the 

elements of voltage vector. 
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Fig. 3 Structure of coaxial probe fed patch antenna 

Also in [93], it has been shown that the probe self inductance can be accounted to by adding 

jXp to the input impedance, where 

ܺ௣ =  ௓0√𝜀𝑟 tanሺ√ߝ௥ ݇଴ ݀ሻ                                                           (5) 

With 

ܼ଴  Is the free space intrinsic impedance (ܼ଴ = ͳʹͲ ߨ   Ωሻ 

 ௥  Is the dielectric relative permittivityߝ

݀ Is the dielectric thickness 

݇଴ Is the free space wave number  
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In [52], a spectral domain MoM formulation has been presented for a coaxial probe fed 

patch antenna in a layered medium. The integral equations of such structure are given by 

׭ ௫௫ܩ̃] ௫ܬ̃ + ௫௬ܩ̃ ∞−∞+[ ௬ܬ̃  ݁−௝(௞ೣ௫+௞೤௬) ݀݇௫ ݀݇௬ = ׭  ∞−∞+௭ܬ௫௭̃ܩ̃  ݁−௝ሺ௞ೣ௫+௞೤௬ሻ ݀݇௫ ݀݇௬      (6-a) 

׭ ௬௫ܩ̃] ௫ܬ̃ + ௬௬ܩ̃ ∞−∞+[ ௬ܬ̃  ݁−௝(௞ೣ௫+௞೤௬) ݀݇௫ ݀݇௬ = ׭  ∞−∞+௭ܬ௬௭̃ܩ̃  ݁−௝ሺ௞ೣ௫+௞೤௬ሻ ݀݇௫ ݀݇௬     (6-b) 

In the above equations, ̃ܬ௫ and ̃ܬ௬ are the Fourier transforms of the x and y components of  

The unknown current on the patch and ̃ܬ௭ is the Fourier transform of the known exciting 

current on the coaxial probe, and it is defined as 

௭ܬ̃ =  ଴ ݁௝ሺ௞ೣ௫0+௞೤௬0ሻ                                                                 (7)ܫ 

Somewhat a similar formulation of coaxial probe feed has been employed by [98], in which a 

full wave analysis of probe-fed stacked circular patch antenna is provided. A coaxial probe of 

radius R is placed at a position having the coordinates ሺߩ଴, 𝜑଴ሻ as depicted by Fig. 4. 

 

Fig. 4 probe-fed stacked circular patch antenna 
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The current on the probe has been expressed as 

,ߩ௣̅௥௢௕௘ሺ̅ܬ ሻݖ = ݖ̂  𝐼ଶగ𝑅 ௣ߩሺߜ  −  ܴሻ                                              (8) 

With the local coordinates defined as  ̅ߩ௣ = ߩ̅  ଴ߩ̅ ଴  andߩ̅ − = ሺߩ଴, 𝜑଴ሻ  

4.2.3. Proximity coupling feed 

Proximity coupling is, besides aperture coupling, one of feeding methods in which the signal 

is transmitted from the feed to the antenna element through electromagnetic coupling, and 

it is classified among non-contacting feeding methods. The structure of proximity coupling 

fed patch antenna is illustrated in Fig. 5. For this type of feeding, two parameters affect the 

antenna characteristics, the line-patch overlap, and the patch width to line width ratio 

[4].Matching the feed line is simply achieved by selecting the appropriate line-patch overlap 

[105]. The equivalent circuit of proximity coupling fed patch antenna is shown in Fig. 6, 

where the RLC circuit represent always the resonant patch, while the series capacitance 

represents the feed. The main advantage of using proximity coupling feed is the possibility of 

placing the feed network on a thin substrate in order to reduce radiation from the 

transmission feed line, and placing the patch on a thick substrate for an improved bandwidth 

[105]. Bandwidths of 13% have been achieved using this type of feed [4]. 

Among the theoretical models that have been proposed for proximity coupling fed patch 

antenna, a study based on the broadside coupled lines and improved transmission line 

methods [106]. This model allows the calculation of the input impedance, and can be applied 

on single element and arrays patch antennas. Method of moments based formulation which 

valid also for microstrip line fed antennas has been proposed by [94]. Costa et al [107] have 
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Presented full-wave analysis of proximity coupling fed patch antenna, with anisotropic 

dielectric. In their study, coaxial-to-microstrip junction has been modeled by a voltage-gap 

generator. The feed line configuration is illustrated in Fig. 7, where  

௠ܸ = {ͳ                ܽ𝑡 ሺݔ଴ ,  ଴ሻͲ              elsewehere                                                           (9)ݕ

 

 

Fig. 5 proximity coupling fed patch antenna (a) 3D structure (b) Top view 

 

 

Fig. 6 Equivalent circuit of proximity coupling fed patch antenna 
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Fig. 7 Voltage-gap model for the feed line 

4.2.4. Aperture coupling feed 

Another type of non-contacting feed is the aperture coupling feed. This configuration uses 

two parallel substrates separated by a ground plane, where the patch is excited by the 

microstrip line etched on the substrate below the ground plane, though a narrow aperture 

(slot) Fig. 8. The equivalent circuit of the structure of Fig. 8 is illustrated in Fig. 9. 

The resonant patch now is represented by a series RLC circuit, with a shunt inductance 

representing the coupling slot. Among the advantages of this type of feeding, the possibility 

of using thin substrate of a high dielectric constant for the feeding network, and a thick 

substrate of a low dielectric constant for the antenna element, yielding optimal performance 

for both the feed and the antenna. Also, the radiation arising from the feeding network 

cannot interfere with the main radiation pattern generated by the patch antenna since the 

ground plane separates the two radiating mechanisms. The aperture is usually smaller than 

the resonant size, so the backlobe radiated by the slot is typically 15-20 dB below the 

forward main beam [4]. This geometry has at least four degrees of freedom: 
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 The slot size 

 Its position 

 The feed substrate parameters 

 The feed line width 

Impedance matching is performed by adjusting the size of the coupling slot together with 

the width of the feed line. Coupling can occur via an equivalent electric or magnetic 

polarizability in the slot, but the magnetic case is the stronger mechanism. The maximum 

coupling occurs when the aperture is centered below the patch where the magnetic field is 

at its maximum. The aperture coupled patch with a centered feed, has no cross-polarization 

in the principle planes [4]. For a slot-coupled patch antenna, the slot becomes the feed 

element to be modeled. A system of two integral equations is generated where the various 

unknowns, the patch current density and the transverse electric field over the aperture, are 

expanded into a series of basis functions covering the entire domain. 

 

Fig. 8 Aperture coupled fed microstrip patch 



Chapter 4: Feeding Techniques  

 

108 

 

 

 

Fig. 9 Equivalent circuit of aperture coupling fed patch antenna 

Method of moments is used to compute the surface current on the patch and reflection 

coefficient on the microstrip line. The input impedance and radiation pattern are then easily 

obtained [95]. One of the methods developed to model aperture coupling fed patch 

antenna, is that adopted by Losada et al [47], where dyadic Green’s functions in Hankel 

transform domain (HTD), have been derived for the structure illustrated in Fig. 10.    

 

Fig. 10 Circular patch fed by circular aperture  
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For such structures, regardless the numbers of the dielectric layers, the unknown quantities 

are the surface current density on the patch and the transverse electric field on the 

aperture. Considering the structure of Fig. 10, let ݆ଵሺߩ, 𝜑ሻ be the current density on the 

ground plane with a circular aperture, and ݆ଶሺߩ, 𝜑ሻ be the current density on the circular 

patch. And ܧ௧ሺߩ, 𝜑, ݖ = ݀ଵሻ and ܧ௧ሺߩ, 𝜑, ݖ = ݀ଶሻ the transverse electric fields on the plane 

of the aperture and the plane of the patch respectively, these quantities are related by the 

following equations 

ଵ(݇ఘ)ܬ̃ = ଵ(݇ఘ)ܧ̃ଵଵ(݇ఘ)ܪ̃  +  ଶ(݇ఘ)                                  (10-a)ܬ̃ଵଶ(݇ఘ)ܪ̃

ଶ(݇ఘ)ܧ̃ = ଵ(݇ఘ)ܧ̃ଶଵ(݇ఘ)ܪ̃  +  ଶ(݇ఘ)                                  (10-b)ܬ̃ଶଶ(݇ఘ)ܪ̃

Where 

,ଵܬ̃ ,ଶܬ̃ ଵܧ̃  and ̃ܧଶ  are the Hankel transforms of ݆ଵሺߩ, 𝜑ሻ , ݆ଶሺߩ, 𝜑ሻ ,ߩ௧ሺܧ , 𝜑, ݖ = ݀ଵሻ  and ܧ௧ሺߩ, 𝜑, ݖ = ݀ଶሻ respectively, and ̃ܪଵଵ, ,ଵଶܪ̃  ଶଶ are 2 x 2 matrices that stands forܪ̃ ଶଵ andܪ̃

dyadic Green’s functions in the HTD. Chebychev polynomials have been used as expansion 

functions. By starting from equations (10-a), (10-b) the hybrid integral equations could be 

formulated and then solved using the method of moments. Instead of the transverse electric 

field on the aperture, the equivalent magnetic current density could be expanded using the 

same set of basis functions where [47] 

, ߩଵሺܯ 𝜑ሻ = , ߩ௧ሺܧ ݔ ݖ̂ −  𝜑, ݖ =  ݀ଵሻ                                            (11) 

A similar study has been reported in [113], where the patch and the aperture now have a 

rectangular shape and Green’s functions are formulated in Fourier transform domain instead 

of Hankel transform domain. Unlike [47], expansion functions derived from the cavity model 

are employed instead of Chebychev polynomials. A quiet different formulation is used in 
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[109] where the authors have presented a mathematical formulation for a circular patch fed 

by a rectangular aperture. Green’s functions are formulated in spectral domain. The chosen 

basis functions are based on the TMz modes of a circular cavity. Reciprocity theorem is used 

along the analysis. Similar to the analysis of a slot on a waveguide wall, the effect of a slot 

discontinuity on the microstrip transmission line can be considered as a series impedance Z. 

Thus the equivalent circuit for the aperture coupled patch antenna is shown in Fig. 11.  In 

this circuit, the series impedance Z is found by applying the reciprocity theorem to the fields 

of the microstrip line and considering the reflected and the transmitted waves on the line, 

the impedance Z is given by 

ܼ =  ܼ௖ ∆𝑣2௒𝑒+ ௒𝑎                                                                      (12) 

 

Fig. 11 equivalent circuit for the aperture coupled patch antenna as seen by the feed line 

The expressions of ∆𝑣 and ܻ௘ can be computed directly, whereas ܻ௔ has to be computed 

using the method of moments. Finally the input impedance is given by 

ܼ௜௡ = ܼ − ݆ܼ௖cot ሺܮߚ௦ሻ                                                        (13) 

Where  

 ௦ Is the stub lengthܮ
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4.3. Results and Discussions 

In this part, a parametric study is provided on two different structures, namely microstrip 

line fed- and coaxial probe fed-patch antennas. The influence of the feed characteristics on 

the resonant frequency and radiated fields is shown. The reported results are generated 

using HFSS software. The structures data are synthesized using ADK tool so that the patch 

operates around 4 GHz and 5 GHz for microstrip line fed- and coaxial probe fed-patch 

respectively.  

4.3.1. Microstrip line feed  

The patch dimensions are a x b = 2.96 x 2.53 cm, the substrate is characterized by a dielectric 

constant equal to 2.2, a tangent loss of 0.0005 and a thickness of 3 mm. The feed line width, 

Inset distance and inset gap are varied and their impact on the resonant frequency Tables 1-

3, and the far-field Fig. 12-14, is observed.   

Table 1 Effect of feed line width on resonant frequency and return loss with Inset 

distance=0.771 cm and Inset gap = 0.012 cm 

Feed width (cm) Resonant frequency (GHz) Return loss (dB) 

0.012 

0.023 

0.046 

0.092 

0.115 

No resonance 

3.818 

3.939 

3.899 

3.818 

- 

-16.86 

-1.15 

-2.24 

-1.53 
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Table 2 Effect of Inset distance on resonant frequency and return loss with feed width = 

0.023 cm and Inset gap = 0.012 cm 

Inset distance (cm) Resonant frequency (GHz) Return loss (dB) 

0 

0.385 

0.771 

1.265 

3.939 

3.939 

3.818 

No resonance 

-2.93 

-4.93 

-16.86 

- 

 

Table 3 Effect of inset gap on resonant frequency and return loss with feed width = 0.023 cm 

and Inset distance = 0.771 cm 

Inset Gap (cm) Resonant frequency (GHz) Return loss (dB) 

0 

0.006 

0.012 

0.024 

0.048 

0.12 

3.939 

3.98 

3.818 

3.98 

3.98 

4.02 

-2.93 

-1.30 

-16.86 

-4.56 

-6.30 

-0.66 

 

The initial feed line width set by the ADK tool is 0.023 cm and the corresponding resonant 

frequency (equal to 3.818 GHz) is considered as a reference resonant frequency. Frequency 

shift is computed with respect to this frequency. The initial values set by the ADK tool for the 
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inset distance and the inset gap are 0.771 cm and 0.012 cm respectively. Therefore, the 

corresponding resonant frequencies are also considered as reference frequencies.     

When the feed width is varied with integer multiples of the initial value the maximum 

frequency shift is about 3%. Return loss levels are highly affected when the feed line width 

shifts from its initial value, resulting in poor impedance matching. This is result natural 

because the characteristic impedance, which is a function of the feed width, of the 

microstrip line is substantially changed. Similar results are observed for the case of the inset 

distance and the inset gap. In terms of return loss, the best result is offered by using the feed 

parameters generated by the ADK tool, where the return loss at the resonant frequency 

3.818 GHz is about -16 dB.   

 

Fig. 12 Impact of feed line width on the radiated field  
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Fig. 13 Impact of Inset distance on the radiated field 

 

Fig. 14 Impact of Inset gap on the radiated field 
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Careful observation of influence of feed parameters on the radiated field leads to the 

conclusion that the radiated field variation does not follow any clear behavior. However 

when particular cases are compared to each other, we find that feed characteristics offering 

good results in terms of impedance matching do not necessarily offer the best result in 

terms of the radiated field.  

4.3.2. Coaxial probe feed 

 The patch dimensions are a x b = 2.37 x 2.02 cm, the substrate is characterized by a 

dielectric constant equal to 2.2, a tangent loss of 0.0005 and a thickness of 3 mm. The 

resonant frequency Table 4, and the radiation pattern Fig. 16-17, variations in terms of the 

probe location (x0 , y0) are reported. We note that patch is centered at the coordinate 

system as shown in Fig. 15. The initial feed location set by ADK software is (0, 0.39 cm). The 

results reported in Table 4 show that when the feed location is near the center of the patch 

gives the lowest resonant frequency. Unlike the case of microstrip line feed, the coaxial 

probe location set by ADK did not gave the best results in term of return loss, although is 

acceptable, but rather when the feed probe is at (-0.4 cm, -0.39 cm) where the return loss is 

-14 dB. The radiation pattern of a coaxial probe fed-patch antenna shows that the main lobe 

slightly deviates from the direction normal to the patch plane (i.e. theta = 0). Moving the 

feed probe along the y-axis also slightly changes the direction of the main lobe as illustrated 

in Fig. 17. Similarly to case of microstrip line fed patch, the probe feed location set by the 

ADK software give the lowest field magnitude compared to the other locations as shown in 

Fig. 17 and 18. This later result leads to the conclusion that the feed parameters defined by 

the ADK software as a starting point, puts impedance matching is the primary goal not the 

radiation characteristics of the patch antenna.  
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Fig. 15 Coordinates system for coaxial probe fed patch antenna  

Table 4 Effect of feed location on resonant frequency and return loss 

 

y0(cm) 

x0 (cm) = -0.4  x0 (cm) = 0 x0 (cm) = 0.9 

Resonant 

Frequency  

(GHz) 

Return 

Loss 

(dB) 

Resonant 

Frequency  

(GHz) 

Return 

Loss 

(dB) 

Resonant 

Frequency  

(GHz) 

Return 

Loss 

(dB) 

  -0.8 

-0.6 

-0.39 

-0.18 

0 

0.18 

0.39 

0.6 

0.8 

      4.8 

4.95 

4.6 

4.5 

3.9 

3.9 

4.6 

4.65 

4.7 

  -3 

-7.19 

-14 

-0.48 

-1.17 

-1.08 

-2.57 

-1.78 

-4.15 

       5 

4.7 

4.6 

4.55 

- 

4.55 

4.55 

4.65 

4.7 

  -5.41 

-8.02 

-7.14 

-0.27 

- 

-0.96 

-9.65 

-7 

-2.91 

      5 

4.95 

4.60 

4.55 

4.05 

4.60 

4.65 

4.65 

4.70 

  -4.86 

-5.94 

-4 

-3.14 

-3.5 

-6.07 

-3.42 

-4.76 

-4.46 
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Fig. 16 Effect of probe location along x-axis on the radiation pattern 

 

Fig. 17 Effect of probe location along y-axis on the radiation pattern 
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4.4. Conclusion  

The state of art of popular feeding techniques is presented. The operating principles and the 

parameters of each technique have been described. The features of these methods and their 

historical development have been also presented. Different mathematical formulations 

modeling these feeding techniques are mentioned. When the method of moment is 

employed, the feed model is included in the computation of the elements of the voltage 

vector which represents the excitation. The different approaches used to compute the input 

impedance are presented. The influence of the parameters of two feeding techniques on the 

resonant frequency and the radiation pattern is also reported. Among the concluded results: 

the feeding technique has an effect, although it is small, on the resonant frequency. Two 

main criteria are to be met by a given feeding methods, these criteria are the bandwidth, 

and the radiation pattern, on the basis of these criteria feeding methods are evaluated. 

Modeling methods are evaluated according to their accuracy in predicting resonant 

frequency and the input impedance. For a microstrip line feed, the line width is chosen to 

provide characteristic impedance that is close to the resonant input resistance of the patch 

antenna. If this is not sufficient, feed inset is used to adjust the input impedance in order to 

achieve impedance matching. For a coaxial probe feed, the probe location is determined to 

provide impedance matching between the feed probe and the patch antenna.  



 

 

 

Conclusion 
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Conclusion 

       

      We have presented a full wave analysis of microstrip patch embedded in a multilayered 

medium containing isotropic or anisotropic dielectrics and chiral substances. The analysis is 

based on the derivation of the dyadic Green’s function in spectral domain. The electric field 

integral equation is formulated and solved by the method of moments. The complex roots of 

the impedance matrix determine the resonant frequency and the bandwidth. The general 

diagram of analytical and numerical methods used electromagnetic modeling is shown. A 

careful reading of this thesis enables us to draw the following conclusions: 

- Analytical methods are based on assimilating the microstrip antenna to a physical 

device of a known mathematical model such as a transmission line or a cavity. 

- Numerical methods share the idea of discretizing some unknown electromagnetic 

property. 

- The differences between popular numerical methods are, basically, in the structure 

being descretized and solution variables. 

-  Numerical methods are classified according to different criteria, however, the 

resulting classes are not completely independent to each other but rather they look 

like overlapping fields. 

-   The mathematical foundation of each numerical method makes it more suitable to a 

particular problem than the other methods. 

- Problem complexity and required accuracy versus the computational cost are the 

factors dictating the choice of the analytical or the numerical method. 
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- On the effect of dielectric parameters, it has been shown that the impact of material 

characteristics, permittivity and permeability, is larger than the impact of the 

dielectric thickness.  

- It has been proven that the use of thick substrates with low permittivity and high 

permeability enhances significantly the antenna performance. 

-   The patch length has a large influence on the first resonance, whereas the width has 

a large influence on the second resonance. 

- We have shown that for a chiral substrate, the electric and magnetic fields are 

coupled in the wave equation. Linear algebra is employed to obtain decoupled fields 

wave equations. Consequently, both the electric and magnetic fields are decomposed 

into right hand- and left hand-circularly polarized field components. 

- Extending the solution from an ordinary dielectric substrate to chiral substrate 

involves only changing the Green’s function. 

- It has been found that increasing the substrate chirality enhances the bandwidth and 

increases the radiated field magnitude. This effect is more prominent for patches 

with small dimensions. 

- Feeding techniques that are based on electromagnetic coupling were proven to be 

advantageous with respect to direct contacting techniques in terms of antenna 

performance and the extra degrees of freedom available to designers. However, this 

advantage is accompanied with increased modeling difficulty. 

- It has been found that the feeding technique has a small influence on resonant 

frequency. 
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- For a microstrip line fed-patch antenna, the width of the feed line is adjusted to 

achieve impedance matching with antenna, or alternatively, by adjusting the feed 

inset. 

- For a coaxial probe, the optimal probe location is defined as the location providing 

impedance matching. 

Finally, the parametric study performed throughout this thesis is an attempt to shed some 

light on the influence of different parameters of the microstrip antenna structure on its 

performance. This is believed to inspire more elaborate studies which allow exploring the 

potential possibilities to enhance the microstrip antenna performance. 
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