Abstract

In this thesis, we establish well-posedness, regularity and exact controllability of sev-
eral input-output systems described by partial differential equations (transmission
Schodinger equation, fourth order Schrodinger equation) with boundary control and
collocated observation. The aproach we adopt uses classical multiplier, geometric mul-
tiplier method on Riemanniann manifolds and compactness/uniqueness arguments
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Chapter 1

Introduction

Linear finite dimensional control and observavtion systems have the following general
form

z(t) = Axz(t) + Bu(t) (1.1)
y(t) = Cx(t) + Du(t) (1.2)

where z(t) € X = R", the state space, u(t) € U = R", the input space and
y(t) € Y = R" is the output space, (A, B,C, D) is a quadruple of matrices of compat-
ible dimensions, which we call the generating operators of (1.1)-(1.2). An important
property of the differential equation (1.1) is that its unique continuously differentiable
solution is defined by

¢
z(t) = ey + /e(t_")ABu(a)da. (1.3)
0

for any given initial state 2(0) = xg € X. This formula defines the state trajectories
x(.) also for input functions u € L2([0, 00); U).

For any linear systems as above, we denote by S(t) = ¢4 the semigroup on X and
we introduce families of linear operators depending on 7 > 0, ¢, € L(L?([0,00);U), X),
L, € L(X,L%*([0,00);Y)) and F, € L(L?([0,00);U), L*([0,0); Y))

T

du = /E(TU)ABU(O')CZO' (1.5)
0
tA
Ly ={ S 0T (1.6)
C / DA Bu(0)do + Du(t), te [0,7]
(Fru)(t) = J ’ ’ (1.7)
0, t>T
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are the input (reachability), output (observability) and input/output maps, respec-
tively.

y(t) = Cetag + C/e(T_”)ABu(U)dU + Du(t) (1.8)
0

If we let 29 = 0 in (1.8) and take Laplace transform, we obtain the frequency domain
description

9(s) = G(s)a(s). (1.9)
Where G(s) is the transfer function of the system (1.1)-(1.2), given by

G(s)=C(sI —A)'B+D (1.10)

Notice that the operators ¢, L, and G satisfies the following properties
(i) ¢, € L(L*([0,00);U), X) is bounded, i.e., for some and hence (for any) ¢ > 0,
there exists Cy > 0 such that

T 2 t
o, (w)|)? = /S (t — o) Bu(o)do|| < ct/ lu(r)||F dr Yu € L*(0,T;U). (1.11)
0 0

(ii) L, € L(X,L?([0,00);Y)) is bounded, i.e., for some and hence (for any) t > 0,
there exists C} > 0 such that

t
/0 ICS()al2 dt < Cllle|%, ¥z e D(A) (1.12)

(iii) There is an a € R, G is bounded on C, = {s € C/Re(s) > a}, i.e., for some
(and hence for any) ¢ > 0, there exists C}’ such that

/ ly@®)|3 dt < CY |lu(®)|F, Yue L2(0,U)  when zo =0 (1.11)
0

Linear infinite dimensional control and observation systems can be described:

(i) directely in terms of PDEs or differential-deley equations (see Lions [35],
Lasiecka and Triggiani [33], Triggiani and Yao [56], Delfour and Mitter [16], Hale
[27], Hale and Lunel [28],...);

(ii) in terms of a quadruple (A, B,C, D) of abstract operators on a Banach (or
Hilbert) space (see Weiss and Curtain [61], Curtain [10], Salamon [52],...);

(iii) as a frequency domain relationship between inputs and outputs (see Wen,
Chai and Guo [67], [69], Staffans and Weiss [53],...).

Let us illustrate (ii) with the well known infinite dimensional linear systems, we
choose X, U and Y, to be the state, input and output Hilbert spaces, respectively.
This system is described as (1.1)-(1.2) where the (usually unbounded) A generates a
Co-semigroup S(.) on X, B is a control operator from U to X, C is an observation
operator from X to Y and D is a bounded operator from U to Y. If we suppose that B
and C are bounded operators between compatible spaces, then the properties (1.11),
(1.12) and (1.11) holds. However, many interesting infinite-dimensional systems fall
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outside this subclass. Usual applications include actuators and sensors supported at
isolated points or on lower-dimensional hyper-surfaces, or on the boundary of, a spatial
domain. As it is well known, such control and observation operators present consider-
able technical difficulties even at the level of state space formulations of the dynamics.
Indeed, there has been and continues to be significant research devoted to formulating
analogs of classical feedback control methodologies for such systems. The most gen-
eral class of infinite-dimensional systems for which there is a well established theory
of representation, transfer function, feedback, dynamic stabilization, controllability,
observability is the class of well-posed linear systems. This class introduced by Sala-
mon and Weiss in the late 1980s cover many control systems described by PDE’s or
differential delay equations. The aim was to provide a unifying abstract framework
to formulate and solve control problems for systems described by functional and par-
tial differential equations. Roughly speaking, a well-posed linear systems is a time
invariant system such that on any finite time interval, the operator from the initial
state and the input function to the final state and the output function is bounded.
This means that every well-posed system has a well defined transfer function G(.).
An important subclass of well-posed linear systems is formed by the regular systems.
A regular system ([63]) is a well posed system satisfying the extra requirement that

lim G(s) = D exists.
seR,s—40c0

There is now a rich literature on the abstract theory for regular well-posed linear
systems and from a practical point of view, the construction of specific examples of
infinite dimensional systems which belong to this class is of considerable importance.
In recent years, a number of PDEs with boundary control and observation are proved
to be well-posed and regular (see Guo and Shao [20], [21], [19], Guo and Zhang [18],
[25], [23], [24], Allag and Rebiai [1], Weiss, [64], Byrnes, Gilliam, Shubov and Weiss

Byrnes, Gilliam, Shubov and Weiss [6] established the well posedness and regu-
larity of the multi dimensional heat equation with both Dirichlet and Neumann type
boundary controls. Using micro local analysis, Ammari [3] proved that the wave equa-
tion with boundary Dirichlet input and colocated output is well-posed with state space
X = L%3(Q) x H1(Q), input, output space U = Y = L?(I'g) and the regularity was
proved by Guo and Zhang [18]. The well posedness and regularity of multi dimen-
sional Euler-Bernoulli plate equation on a bounded domain of R™ (n > 2), in the state
space X = L2(Q) x H~2(Q) and input output spaces U = Y = L?(Ty) was estab-
lished by Guo and Shao [21] and they proved in [20] that the system composed by
Schrodinger equation with Dirichlet control and colocated observation with state space
X = H~1(Q) and input, output space U =Y = L?(T'y) is well-posed and regular. By
using the Riemannian geometry, Guo and Zhang [22] showed that the wave equation
with variable coefficients is well-posed and regular. Guo and Shang [23] established
the well-posedness and regularity of an Euler-Bernoulli plate with variable coefficients
and boundary control and observation by using the multiplier method on Riemannian
manifold. Similarly to [23], Wen, Chai and Guo [69], proved the well-posedness and
regularity of Euler-Bernoulli equation with variable coefficients and Dirichlet bound-
ary control and colocated observation. A system of transmission of Euler-Bernoulli
plate equation with variable coefficients under Neumann control and colocated obser-
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vation is studied by Guo and Shao [19], using the mulitiplier method on a Riemannian
manifold, it was shown that the system is well-posed and regular with feedthrough op-
erator is found to be zero, then they developed under a uniqueness assumption the
exact controllability by establishing the observability for the dual system.

The fourth order Schridinger equation arises in many scientific fields such as quan-
tum mechanics, plasma physics, nolinear optics and so on. In quantum mechanics, the
solution ¢(x,t) of system (4.43) denotes the probability amplitude function and the
conservation of the norms validates the Born’s statistical interpretation of ¢(x,t).
Furthermore, fQ |<p(a:,t)\2 d€) represents the probability of finding the particle which
will not disapear in €. The existence and uniqueness of the solutions has been studied
intensively from perspectives of mathematics (see [29], [30]) and the references therin.

Wen, Chai and Guo [67], studied the well posedness and exact controllability of a
system described by the this equation on a bounded domain on R™ (n > 2) with bound-
ary control and colocated observation, with the state space X = H~2(£2) and the input
and output space U = Y = L?(I'g). The Neumann boundary control problem is first
discussed, it is shown that the system is well-posed. This result is then generalized to
the Dirichlet boundary control problem. Then they discussed the exact controllability
with the Dirichlet boundary control, which is similar to the Neumann boundary case.
In addition, they proved that both systems are regular and their feedthrough opera-
tors are zero. They showed in [68] that the same equation with hinged boundary by
either moment or Dirichlet boundary control and colocated observation are well-posed
which implies that the systems are exactly controllable in some finite time interval if
and only if its corresponding closed loop systems under the direct output proportional
feedback are exponentially stable, so they discussed the exact controllability of the
systems. In addition they showed that the systems are regular and their feedthrough
operators are zero.

Wen and Chai [70] generalize the well-posedness and exact controllability of this
equation with Neumann boundary control ([67]) in the case where the coefficients are
spatial variable dependent. Using the multilplier method on Riemannian manifold,
they showed that the system is well-posed, regular and that the feedthrough operator
is zero. So in order to conclude feedback stabilization from well posedness, they studied
the exact controllability under a uniquenss assumption by presenting the observability
inequality for the dual system.

To facilitate the reading of the thesis, we give a brief description of the material
contained in the fulfilled chapters.

Chapter 2: This chapter contains some material which will be used in this thesis
such as: admissible control and observation operators, transfer functions, well-posed
and regular linear systems, concepts of controllability and stability of well-posed linear
systems.

Chapter 3: The aim of this chapter is to study the well posedness, regularity
and exact controllability for the problem of transmission of the Schrédinger equation
with Dirichlet control and colocated observation. First, we form the system into an
abstract framework of a first order colocated system, this formulate enable us to show
that the system is well-posed with input and output space U = Y = L2(T), state
space X = H~1(Q), by using the multiplier method. The regularity of the system is
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also established and the feedthrough operator is found to be zero. We conclude this
chapter by obtaining the exact controllability using the observability inequality of the
dual system.

Chapter 4: The objectif of this chapter is to generalize the well posedness
for fourth order Schrodinger equation with hinged boundary control and colocated
observation [70] to the variable coefficients case. On the one hand, we establish
the well posedness of this system in the state space V' which is the dual space of
V= {Lp € H3(Q): plp = Ap| = 0} with respect to the pivot space L?(2) and the in-
put and output space U = Y = L?(T'g) with help of multiplier method on Riemannian
manifold. In addition this system is regular with zero feedthrough operator. On the
other hand, we establish the exact controllability of this system by presenting the
observability inequality for the dual system.

Chapter 5: We recall that in chapter 4, our system is described with hinged
boundary condition. In this chapter we study the same system with impose the mo-
ment boundary control and set the Dirichlet boundary condition to be zero. We
begin with showing the well posedness of this system in the state space H& (©) and
input /output space U = Y = L?(Ty), the regularity of the system is also proved with
feedthrough operator is found to be zero. From the result of the well posedness, we
know that this system is exactly controllable in some interval [0,7] (7" > 0) if and
only if its corresponding closed loop systems under the output proportional feedback
u = —ky, k > 0 is exponentialy stable. Based on this argument, to get the feedback
stabilization of this system from the well posedness, we study the exact controllability
of the open-loop system.

Chapter 6: In this chapter we consider an open-loop system of a fourth or-
der Schrodinger equation with variable coefficients, Dirichlet boundary control and
colocated observation, following the approach developed in [67] and the multiplier
method on Riemannian manifold, we show that the system is well-posed with in-
put and output space U = Y = L?(Ty), state space V’ which is the dual space of
V= {go € H3(Q): ¢lp = gj—i‘ = O} with respect to the pivot space L?(Q2). In ad-
dition, this system is regular with zero feedthrough operator. In order to prove the
feedback stabilization from well posedness, we discuss the exact controllability of this
system.



Chapter 2

Basic properties of regular linear
systems

In this chapter, we introduce some basic concepts concerning regular linear systems. To
this aim, we define the admissible control and observation operators, transfer function
and well posed linear systems. For detailed definitions, we refer to Salamon [52],
Curtain [17], Prichard and Salamon [47], or to Weiss [63], [64].

Notation. Throughout this chapter, U, X and Y are Hilbert spaces which are
identified with their duals. A denote the generator of a strongly continuous semigroup
S. The Hilbert spaces X1 and X_; are defined as follows: X; is the domain of A with
the norm ||z|j; = || (B — A) z||, where 8 € p(A) is fixed and X_; the completion of
X with respect to the norm ||z||_; = || (3] — A)~' . These spaces are independent
of the choise of . If D(A*) is quite with its graph norm, then X_; can be identified
with D(A*)*, the dual of D(A*) with respect to the scalar product of X. We have
X7 — X — X 4, densely and with continuous embeddings. The semi group S can
be restricted to a semigroup on X; and extended to a semigroup on X_;. These
three semigroups are isomorphic and we shall denote them by the same symbol. The
generator of S on X is the restriction of A to D(A), and the generator of S on X_;
is the extension of A to X, which is bounded as an operator from X to X_;. Like in
the case of S, we will use the same notation for the original generator A and for its
restriction and extension described above.

2.1 Admissible control and observation operators

2.1.1 Admissible control operators

The concept of an admissible control operator is motivated by the study of the solutions

of the differential equation
x(t) = Ax(t) + Bu(t) (2.1)

where u € L2 ([0,00];U), 2(0) € X and B € L(U, X_1). We would like to study those

loc
operators B for which all mild solutions z of this equation are continuous X-valued

functions. Such operators will be called admissible.
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Let B € L(U, X_1) and 7 > 0. We define the input maps ¢ € L(L?([0,00);U), X _1)
by

b () = /0 " S(r - 0)Bu(0)d(o),  Vu € LA([0,00); U) (2.2)

Definition 2.1. The operator B € L(U, X_1) is called an admissible control operator
for S with respect to X_; if for some 7 > 0 the inputs maps {¢,} ., are bounded
from L2(]0,00);U) to X; i. e., Rang ¢, C X.

The operator B is called bounded if B € L(U,X) and unbounded otherwise.
Obeviously, every bounded B is admissible for S.

Proposition 2.1. ([57]) Suppose that B € L(U, X_1) is admissible; i.e., Rang
¢, C X holds for a specific 7 > 0. Then for every ¢t > 0 we have

¢ € L(L*([0,00);U), X)

Remark 2.1. By a step function on [0, 7] (or a piecewise constant function) we
mean a function that is constant on each interval of a partition of [0, 7] into finitely
many intervals. We have the following equivalent characterization of admissible control
operators: B € L(U,X_1) is admissible iff, for some 7 > 0, there exists a K; > 0 such
that for every step function v : [0, 7] — U,

- (VI < Kt [oll 2, (2.3)

Proposition 2.2. ([57]) Assume that B € L(U, X_;) is an admissible control
operator for S. Then for every z¢ € X and every u € L2 ([0,00); U), the initial value

problem
#(t) = Az(t) + Bu(t), z(0) = zo,

has a unique solution in X_;. This solution is given by
z(t) = S(t)xo+ ¢p,u, t>0

and it satisfies
z € C([0,00); X) N HL,.([0,00); X_1).

2.1.2 Admissible observation operators

We now introduce the concept of an admissible observation operator, which will turn
out to be the dual of the concept of an admissible control operator.

Let C € L(X1,Y). We are interested in the output function y generated by the
system

z(t) = Axz(t), x(0)= m, (2.4)

where xg € X7 and t > 0.

Definition 2.2. An operator C € L(X;,Y) is called an admissible observation
operator for S(t) with respect to Xj. If for some (and hence for any) 7 > 0, the output
map L, : X7 — L2([0, +00);Y), defined by

L. (2)(t) = { COS(t):UO, forf; [TO,T) (2.6)



2. Basic properties of regular linear systems 10

has a continuous extension to X.
Equivalently, C' € L(X1,Y) is called admissible observation operator for S(t) iff,
for some 7 > 0, there exists a constants K, > 0, such that

t
/ |CS(t)xol|3 dt < K, ||woll%, Vo € D(A), >0, (2.7)
0

The operator C is called bounded if it can be extended such that C' € L(X,Y) and
unbounded otherwise. Obviously, every bounded C' is admissible for S.
Theorem 2.1. ([57], [52]) Suppose that B € L(U, X_1). Then B is an admissible

control operator for S(t) if and only if B* is an admissible observation operator for
S*(t). If B is admissible, then

where L (with T > 0) are the output maps corresponding to the semigroup S*(t)
with the observation operator B*.

Definition 2.3. The Lebesgue extension of C' (with respect to S(t)), Cr : D(CL) —
Y is defined by

d
Lix

Ip:all = |

1 T
7'/0 S (o) zodo (2.8)

with D(CL) = {xo € X/ the limit in (2.8) exists}, and

CL{IZ() = }%C

X1 —=D(CL) — X
For every zy € X, there holds S(t)zp € D(Cp) for almost every ¢t > 0 and
(Loozo) (t) = CLS(t)x0
A similar A-extension of C, denote Cy, is defined by

Cr = lim CAA — A)™ ' g (2.9)
A—400
Its domain D (Cy) consists of all g € X, for which the above limit exists. Cj is an
extension of C7,.

2.2 Transfer functions

In this section, we use the control and observation operators to obtain a simple repre-
sentation of the transfer function.

Definition 2.4. Suppose that B € L(U, X_1) is an admissible control operator
for S(t) with respect to X_; and that C € L(X;,Y) is an admissible observation
operator for S(¢) with respect to X;. Then we define the transfer functions of the
triple (A, B, C) to be the solutions, G : p (A) — L(U,Y") of

G(s) = G(B)

=g = CGI-ATBI-ATB, forsfep(d), s#£B  (210)
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We remark that since B is an admissible control operator for S(t), (I — A)™' B is an
L(U, X )-valued analytic function and since C' is an admissible observation operator
for S(t), C (I —A)~"is a L(X,Y)-valued analytic function. Both (.I — A)™' B and
C (1 — A)~! are analytic on some right half plane C}; = {s € C/ Re(s) > a}. Thus
any transfer function is L(U,Y')-valued function which is analytic in some C/. More-
over any two transfer functions differ only by an additive constant, D € L(U,Y’). The
point is that they need not necessarily be bounded on any C_.

2.3 Well-posed linear system

In the previous sections, we considered the admissible control, observation opera-
tors and the transfer functions, here we consider the extra assumption on the triple
(A, B,C) to be well-posed.

Definition 2.5. Under the same assumption as in Definition 2.4, we say that the
triple (A, B, C) is well-posed if B € L(U,X_1) is an admissible control operator for
S(t) and C € L(X;,Y) is an admissible observation operator for (¢) and its transfer
functions are bounded on some half-plane C .i.e.

sup  [|[GN) [y < o0 (2.11)
Re(s)>a>p

The main result in Curtain and Weiss [13] is that a triple (A, B, C) that is well-posed
defines a familly of well-posed linear systems, ¥ = (T, ¢, L, F), where T, ¢ and L are
as before and the input-output map F is defined by

(Foot)(t) = Cp [ /0 " S(r — o) Bu(o)d(o) — (BI — A Bu)| + GBu()  (212)

for u € L2 (0,00;U).
If (A, B,C) is well-posed, then the state z(t) and the output y(¢) satisfy the fol-
lowing equations for almost all ¢

z(t) = S{t)zo + [3 S (t — ) Bu(r)dr € C ([0,00); X)
Vao € X,u € L2 _(0,00;U),

loc
y(t) = Cn [2(t) = (BI = A)7" Bu(t)| + G(B)ut) € L}, (0,05:Y).
Yu e L2 (0,00;U),

loc

(2.13)

A well-posed system is a system for which both the state and output depend con-
tinuously on the initial state and input function of the system. The input/output
functions u and y are locally Lo functions with values in U and in Y respectively.
The boundedness property mensioned earlier means that for every ¢ > 0 there is a ¢,
(which independent of x¢ and of u) such that

me+AHMﬂWms£Dmmﬂ+Awwﬂﬂw] (2.14)
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2.4 Regular linear systems

The paper [61] introduced an important subclass of well-posed systems, the so called
regqular systems, for which the representation (2.13) becomes much simpler.
Definition 2.6. Let X be a well-posed linear system, if for any v € U, the following

limit exists .

1
lim— [ y,(7)dr = Du: (2.15)

where D is called the feedthrough operator and y, denotes the step response corre-
sponding to the constant input wu.

In particular, if 3 is a well-posed system according to Definition 2.5, then a suffi-
cient condition that they generates a regular linear system is:

there exists s € p(A) such that (sI — A) ' Bue D(Cp), forany u € U (2.16)

In this case, Cp (sI — A)"' B is an analytic L(U,Y)-valued function of s on p(A),
bounded on some right-half plane.

Theorem 2.1. ([9]) Let ¥ = (S,¢,L,F) be a reqular linear system with input
and output spaces U and Y, respctively. Let A be the infinitesimal generator of S, B
be the admissible control operator, C' be the admissible observation operator, Cp, is its
Lebesque extension and D be the feedthrough operator of . Then for any xo € X and
any u € L2 _(0,00;U) the functions x : [0,00) — X and y € L? _(0,00;Y) defined by

loc loc

z(t) = St)xo+ ¢ u (2.17)
Yy = Loozo+ Foou (2.18)

satisfy the following equations for almost all t > 0

z(t) = Ax(t) + Bu(t) (2.19)
y(t) = Crz(t) + Du(t) (2.20)
In particular, the function x is the unique strong continuous solution of (2.17) under

the initial condition x(0) = zo and x(t) € D(CL).
The Laplace transform of y satisfies

§(s) = C (sI — A g + G(s)a(s) (2.21)

for s € C with Re s sufficiently large.
The transfer function G is given by

G(s)=Cr(sI—A)'B+D (2.22)
and, for any u € U

)\lim GANu=Du, AeR (2.23)
——400
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2.5 Usefullness of regular linear systems

The motivation for introducing regular linear systems has been the simple strucure
of the output equation and the simple formula for the trunsfer function, because this
allow us to try to replicate classical ideas from finite-dimensional control theory in
an infinite-dimensional context. Good examples of this being done are the papers
([60], [15]) on Luenberger observers, dynamic stabilization and coprime factorization.
Regular systems is also used in optimal control, see [11] and the references there in, the
theory of exponential stabilization by colocated feedback in [14], in the state feedback
regulator theory from [42], in the PI controller theory of [38] and others. The paper
[39] explores the robust stability of feedback systems with respect to small delay in
the loop.

2.6 Unitary group systems with unbounded control and
colocated observation

We consider the linear time invariant system:

@(t) = Az(t)+ Bu(t) in D(A*) (2.24)
y(t) = Ba(t)

where
(a;) A: D(A) (C X) — X satisfies A* = —A so that A is the infinitesimal generator
of a unitary Cy-group e on X.

(a,) B is linear operator U — [D(A*%)}/, duality with respect to X as a pivot
space.

The following results provide sufficient conditions for well-posedness and regularity
of system (2.24)

Theorem 2.2 ([67]) Assume assumptions (a1) and (az2). If for some (and hence
for all) t > 0, the input/output map is continuous:

||y||L2(o,t;U) <G ||U||L2(0,t;U) ,(0) =0, Vu € Ll200 (0,00;U) (2.25)

for some positive constant Cy indepedent of u, then B is admissible for S(t) and hence
system (2.24) is well posed.

Theorem 2.3 ([67]) Under the assumptions of Theorem 2.2, the system (2.24) is
reqular and the feedthrough operator is zero.

Now, we recall the concepts of controllability, stability for the system (2.24) and
explore how they are related to each other.

Definition 2.8. Let 7 > 0.

The system (2.24) is exactly controllable on X over [0, 7] if and only if,

For any xg,z1 € X, there exists u € L? ([0, 7]; U) such that the solution z of (2.24)
satisfies (1) = ;.

Equivalently ([57]):
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The system (2.1) is exactly controllable on X over [0, 7] if and only if, there exists
~ > 0 such that

t
/O 1B*5* (7) @2 dr = ]l |

Definition 2.9. A Cy-semigroup S(¢) on Hilbert space X is exponentially stable,
if for some constants M, w > 0

ISH)|| < Me™**,  forallt > 0.

The following Theorem relates the concepts of exact controllability and uniform
stabilization for system (2.24).

Theorem 2.4 ([67], [34]) Assume assumptions (a1) and (a2), then the following
assertions hold true

1. If the open-loop system of (2.24) is well-posed with state space X, input/output
space U =Y and ezactly controllable on X over [0,T] then, the operator Ap =
A — BB* generates an exponential stable Co-semi group on X.

2. If the operator Ap = A — BB* generates an exponential stable Cy-semi group
on X, then the system (2.24) is exactly controllable.



Chapter 3

Well posedeness, regularity and
exact controllability for the
problem of transmission of the
Schrodinger equation

In this chapter we shall study the system of transmission of Schrédinger equation with
Dirichlet boundary control and colocated observation. Using the mutiplier method,
we show that the system is well-posed with input and output space U = Y = L2(I)
and state space X = H~! (). The regularity of the system is also established and the
feedthrough operator is found to be zero. Finally, the exact controllobility of the open
loop system is obtained by proving the observability inequality of the dual system.
This chapter was the subject of the paper [2].

3.1 System description and main result.

Let Q be an open bounded domain of R™(n > 2) with smooth boundary I" and let €y
be a bounded domain contained inside ; Q; C Q with smooth boundary I'1,Qs is the
domain 2\ Q) and v is the unit normal of I" or I'; pointing toward the exterior of 2.
Let a time T" > 0 and two distinct constants a1, as > 0 be given.
In this chapter, we shall concerned with the following system of transmission of
the Schrodinger equation with Dirichlet control and colocated observation.

y(z,t) = idiv(a(x)Vy(z,t)), reQt>0, (3.1)
y(z,0) = yo(x), T €€, (3.2)
y2(z,0) = wu(z), (z,t) € I' x (0,7), (3.3)
y1(z,0) = yo(x,0), (z,t) € 'y x (0,7, (3.4)

o 2D, O ET) (2,1) € Ty % (0,T), (3.5)
z(xz,t) = iaay (A ya(z, 1)), (z,t) e T x (0,7), (3.6)

15
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a1, T €
h —
where a(x) { oz ey

(2,1) = yi(z,t),  (x,t) € Q1 x (0,7)
I ya(w,t),  (z,1) € Q% (0,7)
A H7Y(Q) — H7Y(Q) is a positive self adjoint operator defined by

u(.,.) is the input function, and z(.,.) is the output function

Equation (3.1), known as the position-dependent-mass (effective mass) Schrédinger
equation, has important applications in the field of material science and condensed
matter physics such as semiconductor heterostructure(see [40], [51] and the references
therin).

When a; = a2, Guo and Shao[20] ahve shown that the system (3.1)-(3.6) is well
posed with input and output space U = Y = L?(T') and the state space X = H~!
and regular with zero as the feedthrough operator. One of the aims of this chapter is
to investigate the well-posedness and regularity of the system (3.1)-(3.6) in the case
where

a1 # as.

Indeed, we shall prove the following

Theorem 3.1. The equations (3.1)-(3.6) determines a well-posed linear system
with input and output space U =Y = L*(T) and the state space X = H~1(Q).

Theorem 3.2. The equations (3.1)-(3.6) is reqular with zero feedthrough operator.
This means that the initial state y(.,0) = 0 and u(.,t) = u(t) € U is a step input, then
the correspending output satisfies

g

Lim 1/z(:1c,t)dt do =0 (3.7)
o—0 o
r 0
The second aim is to study the exact controllability problem for the open loop system
(3.1)-(3.6). Exact controllability of the Schrodinger equation with smooth coefficients
in the elliptic principal part and subject to boundary control was treated in [32], [41]
and [56]. To state our exact controllability result, we need the following assumptions:
(A1) T' =Ty UTYy; 'y is possibly empty while I'y is nonempty and relatively open.
(AQ) as < aj.
(A3) There exists a real vector field h(.) € (C* (Q))" such that

Re /H(x)v(x).v(a:)d:c > p/ |v(z)||? dz:
Q Q
for all v(.) € (L?(2))" for some p > 0, where

H(x) = <Gg;(x)) ,i=1,...,nand j=1,...,n.
J

h(z).v(z) <0, =xely.
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(Asc)
h(z).v(z) <0, xeTl.

Theorem 3.3. Let T > 0 be arbitrary. Assume hypotheses (A1) and (As), then for
any initial data y° € H=1(Q), there exists a control u € L?(0,T; L*(T)) with u =0 on
Ty such that the corresponding solution of the system (3.1)-(3.5) satisfies y(x,T") = 0.

As a consequence of Theorem 2.1, Theorem 2.3, and proposition 3.1 of [34], we
have the following uniform stabilization result for the system (3.1)-(3.5) on the space
H1(Q).

Corollary 3.1. Let the hypotheses of Theorem 2.3 hold true. Then there exist
positive constant M, w such that the solution of (3.1)-(3.5) with u = —az (a > 0)
satisfies

ly(®)lly < Met 0] -

3.2 Abstract formulation
We define the space
H*(Q,T1) = {yeHy(Q):y =yl €H(Q)i=1,2;

a%:a% onT
181/ 281/’ 1

with the norm
2 2 2
Hy”HZ(QIl) = HyIHHZ(Ql) + Hy2||H2(92) .

It can be shown that H?(Q,T1) is dense in H} (Q).

Let Ay : H} (Q) — H71(Q) be the extenstion of —div (a(z)V.) to HE (). This
means that A; f = — div (a(z)V f) whenever f € H?(,T1) and that A7 f = — div (a(z)V) ' g
for any g € L*(9).

Let Ay : H1(Q) — (D(A)) be the extension of A; to H~! (). Notice that
(D(A))" is the dual of D(A) with respect to the pivot space H~1(Q).

Define the Dirichlet map v by

YU =0

if and only if

div (a(z)Vv) = 0in Q,

u = wvonl,
vy = wvgonly,
8’01 82)2 T
al—— = a2—o0nlq
ov ov ’

then v € L (L?(T), L* () ([34]).
Using the operators introduced above, we can rewrite (3.1), (3.3)-(3.5) on (D(A))’
as
ye(x,t) = —1A_1y(t) + Bu(t)
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where B € L (U, (D(A))’) is given by
Bu =1iA_1vu

we have via, Greens second theorem,

0
vy =90 e D(a)

Now, we can reformulate the system (3.1)-(3.6) into an abstract form in the state space
H~1(Q) as follows

y(x, t) = —iAyy(t) + Bu(t) (3.8)
y(0) = 4° (3.9)
z(t) = Cult) (3.10)

3.3 Proof of Theorem 3.1

The fact that the operator —iA; generates a Cy-group of unitary operators S(t) on X
is a consequence of a Stone’s Theorem (see [46]). In order to establish the admissibility
of B and C for the group S(t), we need the following identity, which is a particular
case of the identity (3.69) in the appendix.

Lemma 3.1. Let m(x) be a real vector field on Q of class C*! such that

m=vonl' m=0in Q,

where g is an open domain in R™ that satisfies Q1 C Qo C Q¢ C €.
Let {&, fi} € HY(Q;) x LY(0,T, L?(;)), i = 1.2, such that

5(1] = 68 on Fl?
53 = OonT
then for every week solution of
§(x,t) = idiv(a(z)VE(z,1)) + f(z,1), (z,t) €2 x(0,T), (3.11)
£(z,0) = £%x), z € Q, (3.12)
&o(z,0) = 0, (z,t) € ' x (0,7), (3.13)
& (z,t) = &y(z,t), (z,t) €'y x (0,7, (3.14)
alw = CLQM, (J},t) el x (O,T), (315)

ov ov
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the following identity holds true:

T oe PP
az//‘ay drdt (3.16)
0T
T T
= Im /{m.VEdQ +a2Re//§VE.V(divm) dQadt
2 0 0 Qz
T T T
—2as Re//Vﬁ.mVﬁdet—l—Re//fﬁdivmd(ldt—QIm//fm.Vfdet.
0 Qy 0 Qo 0 Qo

Remark 3.1. Liu and Williams [9] made use of the vector field m to establish a
boundary regularity for the problem of transmission of the plate equation.
3.3.1 Admissibility of B and C for the group S(t).

Since the system (3.8)-(3.10) is colocated, the dmissibility of B for the group S(t) is
equivalent to the admissibility of C for the group S(t). But the latter means that

T

/ / S ddt < k []% (3.17)
or

for all ¢» € D(A) and for some 7" > 0.

Here and throughout the rest of the chapter, k is a positive constant that takes
different values at different occurences.

An equivalent partial differential equation characterization of the estimate (3.17)

is given by
T
/15
ov
0r

where ¢ = A=) and ¢ is the solution of

2
drdt < ko713 o) (3.18)

oz, t) = 1idiv(a(xz)Ve(z,t)), (z,t) € Q x (0,T), (3.19)
o(2,0) = %), zeq, (3.20)
wo(x,0) = 0, (z,t) €T x (0,7), (3.21)
o1(z,t) = @y(z,t), (x,t) € T1 x (0,7), (3.22)
alig@l(a%t) = @Log(x,t)’ (.’L‘,t) < Fl X (O,T). (3.23)

ov ov
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Specialization of the identity (3.16) to the p-problem (3.19)-(3.23) yields

T 2 T T
// (;go dl'dt = Im /gom.Vgon + ag Re//nggp.V (divm) dQdt
v
0T . 56
T
—2a9 Re //Vgo.mV@det (3‘24)
0 Qs

Using Schwartz and Poincaré inequalities, we obtain from (3.24)

11

But

dth< /\w\ det+k/yw 2,0)[? dQ+k/\V<p 2. T2 d9.

/|w(x,t)|2dQ:/\wO}2dQ
Q Q

T
/1%
ov
0T

3.3.2 Boundedness of the input/output map.

Thus

drdt < klloll 7o)

It suffices to show that the solution of (3.1)-(3.5) with y(z,t) = 0 satisfies

T 2

// OA y(z,t)
ov

0r

for all u € L%(0,T;U).
From the admissibility of B, we have y € C(0,T; H=(Q)) for every y° € H~(Q).
Let as introduce a new variable by setting

T
drdt < k//\u(x,t)ﬁdrdt (3.25)
or

wi(z,t) = idiv(a(z)Vw(z,t)) + iyu(z,t), (x,t) € 2 x(0,T), (3.26)
w(z,0) = 0, x €, (3.27)
wa(z,0) = 0, (z,t) e ' x (0,7), (3.28)
wi(z,t) = wa(z,t), (x,t) € 'y x (0,7, (3.29)
al‘%“a(:’ H _ aza"g(j’t), (z,t) € Ty x (0,T), (3.30)
The estimate (3.25) becomes
T ) T
//'a“’éi’t) drdt < k// lu(z,t)|? dldt (3.31)
0r or
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As for (3.18), the estimate can also be deduced from the identity (3.16). Indeed setting
f =iyu in (3.16) and using the fact that v € L (L*(T'), L* (2)), we obtain

T 9 T T
//‘W dTdt < k//yw\dedtJrk/\vW(a;,T)\deJr// |2 dUd
0T 0Q Q or
2 2
< k (HWHC(O,T;H(%(Q)) + ||u”L2(0,T;L2(F))> :

this together with the admissibility of B for the Cop—group S(¢) yields (3.31).

3.4 Proof of Theorem 3.2

Since the system (3.1)-(3.6) is well-posed, its trunsfer function G(s) is bounded on
some right half-plane (see[7]). To continue, we need the following results.
The assertion of Theorem 2.2 holds if for any v € C§° (I') the solution y of

sy(z) = idiv(a(z)Vy(z)), x € Q, (3.32)
ya(z) = wu(x), rzel, (3.33)
yi(z) = ya(x), x ey, (3.34)
oy (x 0ya(x
ar yéi )~ o y;,E ). z €Ty, (3.35)
Satisfies
1 [0y
Lt — | =|dl' = .
SER,SZT-FOO s/8u 0 (3 36)
rl o

Proof. We know from [7] that in the frequency domain, (3.7) is equivalent to

Lim G(s)u=0 (3.37)

s€R,s—400

In the strong topologiy of U, for any u € U. Due to the boundedness of G(s) and the
density of L? (T') in C§° (T'), it suffices to establish (3.37) for all u € C§° (T') . Now for
u e CP(T) and s > 0, let y satisfies (3.32)-(3.35) and

~1
(Gs) (1) =175 V), wer.

It follows from Lemma 7.1 in the appendix that there exists a function v € H?(Q,T'1)
satisfies the following boundary value problem:

div (a(x)Vy(z)) = 0, x € Q,
vo(z) = wu(z), zel,
vi(z) = wva(x), x eIy,
ovi(z Ova(x
a1 51/ ) = a2 821(/ ), xz eIy,
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Consequently, (3.32)-(3.35) can be written as

sy(z) —idiv (a(x)V (y(z) —v(z))) = 0, z € Q,
(y2(z) —v2(z)) = 0, €T,
(y1(z) —vi(z)) = wyo(zr) —ve(z), v €Ty,
0 (y1(w) — v1(z)) _ d (ya(r) — va(x)) cT
“ ov - ¢ ov v b
Hence 5 5
(Gs)y) (a) = 2D _ @1 002)

This gives (3.36).
Lemma 3.2. Let m be the vector field introducing in subsection 3.1. Let u €
C3° (I') . Then the solution of (3.32) satisfies

o[
r

2
dlT = —aiIm /ym.Vde + 2Re /Vyg.MVdeQ (3.38)
2
Q Qo

—/|Vy22divmdQ+/ng2\2dF.
Qo T

Proof. We multiply both sides of (3.32) by m.Vy and integrate over €2, using
Green’s first Theorem, we find

s/ |ly|? m.vdl — s/ym.Vde - s/ ly|? div mdS + ialf%qilm.VyldF(?)BQ)
r Q Q I

0 0
—i—ial/Vyl.V (m.Vyy)dQ — ia2/a‘yjm.vg2df - iag/ayjm.VdeF
[ 1) r

-l-iag/Vyg.v (ngjg) dQ=0
Qo

Recalling the assumptions made on the vector field m, we simplify (3.39) to

s/ ly|? m.vdl — s/gjm.Vde - s/ ly|* div md$ — iag/ ‘%
r Q Q r

+ iag/Vyg.V (mVQQ) dQ1=0
Qo

2
ar

from which we obtain

a / )
2 ov
T

2
dalr’ = —s/gjm.Vde — s/ |y|2div mdS) + as Re /Vyg.v (m.Vya) dQ
Q Q Q2

(3.40)
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On the other hand, we have

1 1
Re /VyQ.v (m. Vi) dQ = Re /Vy2.Mng2dQ + 2/ [Vys|? dl" — 2/ IVys|? div mdQ
Qo Qo T Qo

(3.41)
where
M= <8mz>
Ox; ij=1,...n
Using the fact that
s |2
Vol = [Vowl* + | 52| onT,
Ov
(3.41) becomes
1
Re /Vyg.v (m.Vga)dQ = Re /Vyg.Mngng - 2/ V2|2 div mdQ
Qo Qo Qo
- . I'+—- [ |=| dI. .42
+2/|Vy2|d+2/ayd (3.42)
r r
Insertion of (3.42) into (3.40) yields (3.38). W
Lemma 3.3. Let y be a solution of (3.32)-(3.35). Then
2 . 2 . Oya _
s |lyl7dQ+1i [ a(x)|Vy|*dQ = iag Eygdf. (3.43)
Q Q r

Proof. We multiply both sides of (3.32) by ¢ and integrate over €. From Green’s first
theorem, we have

) B
s/lledQ—i az/mﬂzdr+a2/%2dr—a2/|vy22cm (3.44)
ov ov
Q T I Qo

v

0
—a1/ yl@ldf —a1/ [Vys|* d2
Fl Q2

Inserting the boundary condition (3.35) into (3.44), we find that this simplifies to
(3.43). W

3.4.1 Completion of the proof of Theorem 3.2

We first introduce some constants:
a = min (a1,az2), iy = sup |m(x)|, pg = sup [[M(z)|, pz = sup |[divv(z)|
Q Q Q
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From (3.38), we have the estimate

o
/‘ e ” 1/\ 240 + 3/|vy\ Q) (3.45)
a252 a232

2
LHs “2/|v 2|2 dQ+/|VJy2] dr

Qo

On the other hand, (3.43) implies

1 as Oya|?
1/|y|2dQ < — 5/‘ (3.46)
s2 232 2
Q
1 0
3//|Vy|2dQ < 1/| yo|? dl + /‘ v | . (3.47)
s2 2as2 asz
QQ
substituting (3.46),(3.47) into (3.45), we get
8 + 2
4s2  4as?2 2a5
+ 2 8 1
452 4as? 2as § § 2
since
yo=u on I x (0,7T)
and

Iyl Zr ey = lwlZzey + 1Voylll7z(ry

we rewrite (3.48) as follows:

1 8y2
52
r

a + 2
< <:u’11 + 251 + 2(”3 M2)>HU||%{1

4s2 4(15% 2as

a +2 0
+<u11+ M 2 (3 M2>52/’ Yo |2

4s2 4(15% 2as

This last estimate shows that

Lim /89 dr = 0.

sER,s—H—oo

Remark 3.1. The result can also be proved by applying Theorem 5.2 of [67]
which appeared shortly after the publication of their paper.
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3.4.2 Proof of Theorem 3.3.
Let
E(t) = /a(x) V| dQ

Q
bet the energy corresponding to the solution of the system (3.19)-(3.23). Then

E(t) = E(0) for all t > 0

By classical duality theory, to prove Theorem 3.2 it is enough to establish the
associated observability inequalitiy

T
[/15]
ov
0T
where ¢ is the solution of the homogenuous system (3.19)-(3.23)
To this end, we apply the identity (3.69) to the p—problem (3.19)-(3.23), to obtain

-Jt]
(-2 1]

—al// IV, > h.vdldt + Im /cph VadQY| +2Re // z)Vo.HV pdQdt

dUdt > k |leol| 70 (3.50)

h.vddt (3.51)

T
h.vdldt + as / / IV po|? h.vdDdt

0 F1 Q 0
+Re//a(x)g0V<p.V(div h)dQdt. (2.52)
But
dy; 2
|V<Pi|2 ‘ 81/2 + |Vgg0i\2 onT'y x (0,7), i=1,2
Voerl” = [Voiol* on Ty x (0,7),

then (Ag) and (Agp) imply that

T T T
2
2a, (1—“1> // ‘?;01 h.ydet+a2//|Vg02|2h.ydfdt—al//|chl|2h.dedt
a2 v

01y 01 01

T 9 T
_ 2 (1_21> // % h.ydI‘dt—(a1—ag)//|VUg01|2h.dedt20. (3.53)
2

0F1 Orl
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from (2.52) and (3.53), we deduce that

T T
0|2 Dy 2 -
20T [ a(z) ‘Vgp | QY < az rm h.vdldt —Im | [ ph.V@dQ
v
Q 0TI 0
T
+Re// )V p.V(div h)dQdt. (3.54)
0

Application of Schwartz and Poincaré inequalities to the / -terms on the right hand

Q
side (3.54) yields

<2 T—Clg>/ ) [Vl Pdn < a2c1//'

+- <(020p +e2)T +

h.udet (3.55)

2% ) ol
- Pllco,r;HE(9)

DO |

where ¢; = sup |h(x)|, c2 =sup |V (divh)],
Q Q

¢p is the Poincaré constant:/ lp]? dQ < cp/ IVio|? dQ2, and

Q Q
€ is an arbitary positive small constant

The sought-after estimate follows from (3.55) by a compactness/uniqueness argu-
ment.

3.5 Appendix

Lemma 3.4. Let f be a solution to the following elliptic problem:

div(a(x)Vf(z)) = g(x) e, (3.56)
fo(z) = wu(z), zel, (3.57)

filz) = fa(x), x €Ty, (3.58)

ax 8f1($) = a J;i ), x €Ty, (3.59)

for g € L?(Q) and u € H 3 (©2). Then there exists a constant k independent of f, g
and u such that

12y = B9l sz + el g o -

Proof. Let f be a solution to (3.56)-(3.59). Then f can be written as

| filx), ze
fa={ 1 Tea
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where fo and f; are respectively the solution of

asAfo(x) = g(x), x€Q,

fo(x) = wu(x), z€T,
and
wAfi(@) = g(@), ze, (3.60)
filz) = faz), z €T,
SO o)

From elliptic regularity theory (see[37]), we have
1ol < Fllol sy + Nl 3 - (3.1

It follows from the trace theorem that fo|p € H 3 (T'1) and
122008 0,y < 1ol (3.62)

(3.60) together with (3.62) implies again via the elliptic regularity that f; € H?(Q4)
and
1f1ll 2y < B9l p2 ) + ”fZHH%(Fl)}' (3.63)

combining (3.61),(3.62) and (3.63), we obtain
11l g2y + 12l g2y < B9l 20) + ||UHH%(F)}~
from which follows the desired estimate, since
£ a2y = A2, + I f2llErz ) - u

Lemma 3.5. Let h be a real vector field of class C* on 2. Then for every solution
of the problem

§i(z,t) = idiv(a(x)VE(x,t)) + g(x,t), (z,t) € Qx(0,T), (3.64)
£(z,0) = &%), r€Q, (3.65)
&(z,0) = 0, (z,t) € I' x (0,7), (3.66)
&1 (x,t) &o(z, 1), (x,t) e Ty x (0,7), (3.67)
alagla(j’t) = agaé-%(ft), (;U,t) el x (0,T), (3.68)
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we have

T
2
QQ//‘%% hvdldt + 2a, <_1) //‘ o, [
0or
T
a2//|V§2’2h-Vdth+a1//!V§1|2h.udI‘dt

h.vdldt (3.69)

0 I' 0 ry
T T
= Im /cph.Vg&dQ +2Re//a(x)V§.HV§det
Q 0 00

T T T
+Re / / a(z)EVE.V(div h)dQdt + Im / / g€ div hdQdt — 2Tm / / gh.VEdQdt
0 Q 0 Q 0 Q

Proof. The identity (3.69) will be established for strong solutions and the general
case will follow by a standard density argument. to this end, let {5?, fz} € H2() x
HY(Q;) x LY(0, T, H' (%)), i = 1.2, such that

(1] = 53 on I'y,
g1 = gaonlyx(0,71),
9 = 0onT
g2 = 0onT x(0,7),
651 3
= —< T
31/ a 81/, onlij,

we multiply both sides of (3.64) by h.V¢ and integrate over  x (0,7') to obtain

/ / £,h.VEQdt = / / div (a(2)VE) h.VEAQdt + / / gh.VEdQdt. (3.70)

we have

T
O/ Q/ ¢,h.VEQdt =

T

/ ER.VEAQ / / €€, h.vdldt (3.71)

0
T

/ / —idiv (a(z)VE) + g) h.VEIQdE + / / €€, div hdQdt.
0Q
substituting (3.71) into (3.70), we get
T T

/ / €€, h.vdldt + / / —idiv (a(z)VE) + g) h.VEdQdt

0

/ / ¢€, div hdQdt = / / (div (a(z)VE)) h.VEIQL + / / gh. VEdQL.

/ gh.vEdQ
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hence

T

—Im / / ¢&,h.vdldt
+Im / / ¢€, div hdQdt — 2Im / / gh.VEdQdt.

2 Re / / (div (a(z)VE)) h.VEdQt = Tm

/ ¢h.VEAD

(3.72)
Using Green’s first theorem along with identity
2 Re /Vw.V(h.Vw)dQ = 2Re /Vw.HdeQ + /h.V (\WF) dQ
Q
we rewrite the left hand side of (3.72) as
T
2Re / / (div (a(x)VE)) h.VEdQt (3.73)
= 2asRe / / %y, VEydldt + 2as Re / / 9%, Vé,dldt
0 1"1
—2a; Re // ;1 h.VE& dTdt — ag// V| hovdDdt — ag// V& |? h.vdDdt
0 I 0 1N

tay / / V&, |2 hovdDdt — 2as / / V&, HVEdQdt + as / / V&, |2 div hdQdt

01, 0 Q9 0 Qo

T T
—2a1 Re / / VE L HVE dQdE + ay / / Ve, | div hdQudt

091 OQ2

recalling the boundary conditions(3.66)-(3.68), we have

hV&y = 8;2}1.1/ onI'x (0,7), (3.74)
V(€ —&) = (5191/ 52)

_ <1 - > % on Ty % (0, 7). (3.75)

a2
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Inserting (3.74) and (3.75), we find that this simplifies to
T
2Re / / (div (a(z)VE)) h.VEdQdt (3.76)
0 Q

T 8 9 T 8
~ o og (1-® //51 h.udfdt+a2//52
as ov ov

0rI 0or

T
2
h.vdldt — as / / IVE,y|? hvdDdt

0Ty
T T T
+a1//]V§1|2h.udth—2Re//a(x)V§.HV§det+//a(a:)\V§]2divhd9dt
0TIy 0 Q 0 Q

Now, we consider the third integral on the right hand side of (3.72). Applying Green’s
first theorem and taking into consideration the boundary condition (3.66), we obtain

T
Im [ [ &€, div hdQdt (3.77)
/]

T T T
= Re / / a(z) |VE]? div hdQdt + Re / / a(z)EVE.V (div h) dQdt + Im / / g€ div hdQudt.
0 Q 0 Q 0 Q

Substituting (3.76) and (3.77) into (3.72) and using the boundary condition (3.66), we
obtain (3.69). W



Chapter 4

Well posedness and exact
controllability of fourth order
Schrodinger equation with
variable coefficients, hinged
boundary control and colocated
observation

The objectif of this chapter is to generalize the well-posedness for fourth order Schrodinger
equation with hinged boundary control and colocated observation [70] to the variable
coefficients case. On the one hand, we establish the well-posedness of this system in
the state space V' which is the dual space of V = {¢ € H*(Q) : ¢|p = Ap| =0} with
respect to the pivot space L?(Q2) and the input/output space U = Y = L?(Tg) with
help of multiplier method on Riemannian manifold. In addition this system is regular
with feedthrough operator is found to be zero. On the other hand, we establish the
exact controllability of this system by presenting the observability inequality for the
dual system.

4.1 System description and statement of main results.

The system what are concerned with in this paper is described by the following PDEs

iwg(x,t) + Aw(z,t) =0 r€eNt>0
w(z,t) = u(z,t) ze€lg,t>0
w(z,t) =0 rely,t>0 (4.1)
Aw(z,t) =0 xedt>0
—2
y(z,t) = — 24 0@ z €Tt >0

Let Q C R (n > 2) is an open bounded region with C3-boundary 0Q =T =Ty UT;
and assume that g (intl'yg # @) and I'; are relatively open in 9Q and I'oNT'; = @.

31
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The operator A; is defined in (4.4) later and A is a second order partial differential
operator

A= Z aj) (4.2)

731

n

which for some constants a, b > 0, satisfies
B n
3 ai(@)6g; <b > I& (4.3)
i=1

@Z|§i\2
=1 i,7=1
a”L] = a’jl E COO (Rn), VZ,] == ].,2, ...,n.
VQ’} € Qv é-: (615527 afn) € Cn? ?

IN

we define the operator A; as follows

Af = —Af (4.4)
Vf € D(Ay) = H*Q)NH}Q)

and define

VA = (Z viag (T Z Viag (T Z viars(x Z Vign (@ ) (4.5)

0 - 0
— ()i ——
Ova Z () Z@:Bj
3,j=1
where v is the unit normal vector of 92 pointing outwards of 2, v and y are the

boundary control and the boundary observation of the system (4.1) respectively.
Now, let A the positive self-adjoint operator in L? (Q) defined by

Ap = A2<p, (4.6)
D(A) = {peL*(Q),A%ecL*(Q),¢lr = Aplp =0}
= {pe H*(Q); ¢lr = Aplp =0}

One can show that Az = A; where A; is given by (4.4)
Let V = D(A%) = {¢ e H*(Q); ¢|p = Ap|p =0} and V' its dual space with
respect to the pivot space L? (), in the sence of Gelfand’s triple inclusions

Ve L2(Q) — V.

The following Theorem shows that the system (4.1) is well-posed with state space V'
and input/output space U =Y = L?(I').

Theorem 4.1 The system (4.1) is well-posed. More precisely, for any T > 0,
initial value wo € V' and control input v € L?(0,T;U) there exists a constant Cr that
1s independent of wg and u such that

lw( D + Iyl < Crlllwoll + lulla o) (4.7)
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It is proved in [24, Theorem 5.8] (see also [43, Theorem 5.2]) that if the abstract system
(4.1) introduced later is well-posed, it must be regular in the sense of Weiss with the
zero feedthrough operator.

The following result is hence a consequence of Theorem 4.1.

Corollary 4.1 The system (4.1) is reqular with zero feedthrough operator. This
means that if the initial state w(.,0) =0 and u(.,t) = u(t) € U is a step input, then
the correspending output satisfies

- 2

1
Ling /y(m,t)dt dl' =0 (4.8)
o— o

r 0

The second aim is to study the exact controllability problem for the open loop system
(4.1), this is the result of Theorem 4.1 under a certain geomtric condition on §.
(H1) There is a vector field N on (R", g) such that

DN(X,X)=b(z)|X|?, VX €T,R", z€Q. (H1)

where b(z) is a function defined on 2 so that

bop = ;Ielgb(.r) > 0. (H2)
(H2)
I" satisfies N(z).v > 0 on I'y (H3)

Theorem 4.2 Under assumptions (H1)-(H3), system (4.1) is exactly controllable
on some [0, T], T > 0. That is, given initial data w(.,0) = wo € V' and time T > 0,
there exists a boundary control u € L(0,T;L*(Ty)), such that the unique solution to
the system (4.1) satisfies w(T) = 0.

The following result is a direct consequence Theorems 4.1 and 4.2.

Corollary 4.2

Let the Hypotheses of Theorem 4.2 hold true. Then system (4.1) is exponentially
stable under the proportional output feedback u = —ky for any k& > 0.

4.2 Abstarct formulation

In this section we cast the system (4.1) into an abstract framework of a first order
collocated system in the state space V' and input/output space U =Y = L3(Ty).
Extend the operator A of A to the domain V' as follows:

(Ap, ) = (A2, A2y, Vo, € V. (4.9)
Then A is a positive self-adjoint operato in V’. In fact,
= 1 1 1 _1
(Ap, )y = (A2p, A2p)yr = (AT, AT1p) 12(q) (4.10)

2

2 4 —3
> Cllelae > ¢ 475,

= Clell}r, VeV



4. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, hinged boundary control and
colocated observation 34

where C' and C are constants. We identify H = V' with it’s dual H. Then the
following Gelfand triple continuous inclusions positive hold true:

D(Az) — H =H < D(Az) (4.11)
Define an extension A € L(D(AY?), D(AY/2)") of A:

~ 1 ~1 ~1
<Af, g>D(A%)’,D(A%) = <A2 f,A2g>V/7 Vf,g c _D(A2) (412)
S

Let v be the Dirichlet map: v € L(L*(To), H'/2(Q)) [34, p. 188-189] so that yu = ¢
if and only if
A2p=0, z€Q,

(@), = u(z), o), =0, (4.13)
Ap(z)|p =0
By virtue of the above map, one can write (4.1) in D([l%)/ as
W = iAw + Bu. (4.14)
where B € L(U,D(fl%)') is given by
Bu = —iAyu, YueU. (4.15)

Define B* € L(D(A2),U) by

<B*fa u>U = <f) Bu>

Then for any f € D(A%) and u € C§°(I'y), we have
<f, BU)D = <f7 _1A7u>D(A1/2),D(A1/2)/ — —i<A1/2f’ A1/2’7u>\/’
= —(AT(AT)), Ayu)ye
= —i(ATAR(ATR ), A Au) 120y, with A3 = A

N

Vf e D(Az2), ueU.

D(A%),D(A%)"

Nl

(A2),D(A2)

, _ (AR
= A A, = =P gy
We have used in the last step Green’s second theorem.
Since C§°(Tp) is dense in L?(Ty), we obtain
A7 ~
Brf= i QAP yr e i), (4.16)
Oova T

we have thus formulated the open loop system (4.1) into an abstract first-order form
in the state space V':

W = iAw+ Bu (4.17)
y = B'w (4.18)
where A, B and B* are defined by (4.12), (4.15) and (4.16) respectively.

_ The operator A defined in (4.6) is a positive self adjoint in L?(9), then the operator
A defined in (4.10) is a positive self adjoint in V', this follows that the operator iA

A\ ¥ ~ ~
is a skew-adjoint (iA) = —iA and from the Stone’s Theorem, the operator iA is the

infinitesimal generator of a Cy-unitary group on V.



4. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, hinged boundary control and
colocated observation 35

4.3 Proof of Theorem 4.1

To prove Theorem 4.1, we need the following Lemma which comes from Theorem 8.4
of [24].

Lemma 4.1 If there exist constants 7" > 0 and Cr > 0 such that the input and
the output of system (4.1) satisfy

T T
| lw@ide<or [ ulp e vue roniim) @)
0 0

with w(.,0) = 0, the system (4.1) is well-posed.
By lemma 4.1, Theorem 4.1 amounts to saying that the solution to system (4.1)
with zero initial data satisfies

Hy(t)H%?(O,T;L?(FO)) <Cr ”u(t)H%%O,T;L?(FO)) , Yue L*(0,T; L*(T)).

Make a transformation z = A7%w(t) € C (0,T;V). Instead with (4.1), we consider the
following system in V :

zi(m,t) =iA%2(2,t) +i(Gru(., 1)) (x,t), (z,t) € Qx (0,T] =: Q,

z(x,0) = zo(z), x € (),
z(x,t) = Az(x,t) =0, ,(z,t) € 02 x [0,T] =: %,
y(z, t) = 1250), (x,t) €Ty x [0,T] =: %

(4.20)
where we used the following fact in the first equation of (4.20):

A7 Yyu = —Ghu, Yu € L*(Ty)

so Theorem 4.1 holds true if and only if for some (and hence for all) 7" > 0, there exists
a Cp > 0 such that the solution to (4.1) satisfies (consider smooth w if necessary)

T T
/ A2 0) 240 < o / (s, £)|2dTdt. (4.21)
0 To 8VA 0 T'o

Proof of Theorem 4.1 The proof will be spit into three steps
Step 1. As indicated in the beginning of the proof of Theorem.4.1, since 0f2 is of class
C3, it follows from Lemma 2.1 [25, Lemma 4.1], that there exists a C? vector field h
on Q such that

h(z) = p(z), z€l; |N(z)|y <1, z€.

Multiply both sides of the first equation in (4.20) by h(AZ) and integrate over @ to
obtain

/ 2 h(AZ)dQ — i / A2zh(AZ)dQ + i / Giuh(AZ)dQ = 0. (4.22)
Q Q Q
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Computing the second term on the left-hand side of (4.22) gives

i / A?2h(Z)dQ (4.23)
Q
= i/ Ay (Az)h(AZ)dQH/ Dp (Az) h(AZ)dQ
@ Q
_ | oA, A . . i A
_ UE 5y (AR /Q<vg(A ).V, (A )>ng] + /Qpp(A ) h(AZ)dQ

- 1{ /E 8(8‘22)h(Az)d2— /Q Dh(V,(Az),V, (Az))dQ}

1 1
H [-2 /Q divy IV (A2)[2 h) dQ + 3 /Q Vs <Az>lidivgth]
+i / Dp (Az) h(AZ)dQ

Q

and by virtue of the divergence formula, we have

i /Q AZh(AZ)dQ = i[ /Z 8(€)iz)h(Az)dz— /Q Dh(V, (Az),V, (Az))dQ]
+i [—;/Z<|vg (Az)\jh,ﬂ>gdz+;/Q|vg (Az)|§divgth]
+i /Q Dp(Az) h(AZ)dQ.
Then
Im <i /Q A2zh(Az)dQ) (4.24)

= e 8(Az) z — Re z z
= R/E o h(AZ)d% R/QDh(Vg(A),Vg(A ) dQ

1 1 .
2/E<|vg (Az)|§h,u>gd2+2/Q|Vg (A2)|2 divghdQ

+Re /Q Dp (Az) h(AZ)dQ.

Moreover, by Lemma 2.1 [18, Lemma 4.1] we have

Im <i /Q h(Az)dQ> (4.25)

1 0(Az)
N 2/2 ou

1 .
+5 /Q Vg (A2)|% divghdQ + /Q Dp (Az) h(AZ)dQ

2
4% — Re / Dh (Y, (A2),V, (AZ))dQ
Q
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Next, we compute the first term on the left hand side of (4.22), by virtue of the
divergence formula, we have

divg (z¢AZh) = zdivy (AZh) + Azh (%) (4.26)
2 [AZdivg (AZh) + h (AZ)] + Azh (%)
= 2z AzZdivg (h) + zth (AZ) + AZh ()

= zAZdivg (N) + %N (Az) + % [AZN (z)] — AZN (2)
= (1A%z +iGyu) Azdivg (h) + 2N (AZ2)

d . . _ _
+o [AZN (2)] — AZN (2)

In which,
/ Azh (2)dQ (4.27)
Q
— [ AR + [ Dol b0
Q Q
= M z Z z Z z
= [ T s [ wng(u:)de+ [ Dp(h()a
= @ z - z z Z z
= [ nas jg<vg<t>,vg<h<>»ng-+/gzno<t>h<>dQ
= M z Z z
= [ Zneas [ Doy hiaq
+/Q,2t [(AR) (z) + 2<Dh,D22>(TZRn)2 + h(Az)] dQ
+/ % [Rice (h, Dz) — D*p (h, Dz) — D*z (h, Dp)] dQ
Q

Integrating the equality (4.25) over @ by taking (4.27) into account yields

/ divg (% Azh)dQ = / ZiAZdivg (h) dQ + / zih (AZ)dQ
Q Q Q

i ]
4 /Q < [Azh (2)]dQ - /Q Azh (2)dQ
Then

/ ah(AZ)dQ = / Azh (2)dO — / 5 Azdivy (h) dQ
Q Q Q

—Aimmwa
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and

Im [/ zth (AZ) dQ] (4.28)
Q
T
- _= / GruAZzdivg (h) dQ — / A?zAzdiv, (h) dQ+ ~ / Azh(z Q}
0
1

_Q/ta () dQ—i | 2D D)1z Q + 5 /tapz (h, D=) dQ

2/ ZiRicc (h, Dz)dQ + 2/ 2 D?z (h, Dp) dQ

2)dy — ;/QDp(Zt)h(z) dQ

while
/Dp (Zt) h(2)dQ = —/ zZtDp (h(2)) dQ — /zt z) divg (Dp) dQ (4.29)
Q

Combining (4.29), (4.28) and (4.27) to obtain

m ( /Q 21h (AZ) dQ) (4.30)
_ ; / GruAzdiv, () dQ—% /E 8552'2)A2dwg () d2+% /Q IV (A2) ] divghdQ
. T . _
/Az )\, (div, (h))>ng+;/ﬂ(A2h(z))dQL —;/Eaé;t)h(z) i3

1 o
= /Q (A% + Gu) (AR) (2)dQ — /Q (A2 1 Gru) (Dh, D?2) (g, goy2dQ

/ (A2z + Giu) D?z (h, Dp) dQ — 1/ (A%z + Giu) D*p (h, Dz) dQ
Q Q

N = l\DM—*

+ / (A%2 + Gyu) Rice (h, Dz) dQ
Q
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then

Im ( /Q 2h (AZ) dQ) (4.31)

= /Glqudwg( )dQ + = /|V Az)\ divg (h) dQ

/ AZ(V Vg (divg (1))gdQ + 5 /Q<Azh (2)) dﬂ]j - % /E aéﬂ) gﬂ

3 /E on A% [Azdivg (h) + (AR) (2) + (Dh, D*2) (1, gny2 — D*p (h, Dz)] dS

Az)
ou

I

[ (V5 (82). ¥, (A1) (1)4dQ + 5 [ (7(42), 9, (DB D) 1, 012))50Q
Q Q

I,

Q

[Ricc (h, Dz) + D*z (h, Dp) + h (2) divy (Dp)] dS

(55 (A2), ¥, (D% (h, D))y — 5 | (9, (A2), 9, (Rice (h D=}
1 _ _
= /Q (V4 (A2),V, (h (=) divy (Dp)))gdQ
Dp(Az) Azdiv, (h)dQ + = | Dp(Az) (Ah) () d
+ [ Dr(az) Asdin, (@ + [ Dp(Az) (A1) (2)4Q
_;/QDp (Az) (D*p (h,Dz)) dQ — ;/QDp (AZ) Ricc(h, Dz)dQ
+1/ Dp (A%) ((Dh, D*z)(r, Rn)Q)dQ—l/ Dp (AZz) D*z (h, Dp) dQ
_/Dp (A%) Dp (b (2) dQ—/Dp (A2) h (=) div, (Dp) dQ
/ Gru [(Ah) (2) 4+ (Dh, D*2)(,gny2 — D*p (h, Dz) + Ricc(h, Dz)] dQ

) / Giu [D?z (h, Dp) + Dp (h(2)) + h (2) divy (Dp)] dQ
Q



4. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, hinged boundary control and
colocated observation 40

Used the properties of the vector field h, we have

Im <i /Q AzzN(Az)dQ) (4.32)

B 1/ d(Az)|?
o 2 » au
1

1 .
/E<|vg (Az)|3h,u>gd2+2/Q|Vg (Az) [2divy (h) dQ

4% — Re [ /Q Dh((V,(A2),V, (AZ)) dQ]

2

+Re / Dp (Az)h (AZ)dQ
Q

_1/
= 5/

1
+5 /Q Vg (A2) |2divg (h) dQ + Re /Q Dp (Az)h(AZ)dQ.

d2> <; / a (h) dE) (4.35)
) < / Dh D?*z )(Tan)de>

2 (h, D2) d ) ;R< o chc(th)dE)
1

( E?u h(z))dz>
Dp(h (z))dz> +§Re (/E (52 V1 (2) div, (Dp) dZ)

9 T
dp]
0

In the last step where we have used the Sobolev trace theorem with constant C > 0.
Combining (4.22), (4.31), (4.35) and (4.36) gives

d(Az)|?
op

dS — Re [ /Q Dh((V,4(Az),V,(AZ))) dQ]

In which

Q
)
N

|
=
@
7N

+
= NI = N = N
=
o
Q MM N NN N N

@
> =
o5
t

=
@
Q

=

@
Q
=

S
>
SL

22 (h, Dp) dZ)

o5
=

Q
>
X

+
=)
@

— U U T 5—
o2
[ =l

o5
=

9 )|?

32 Jx

(A

N

<

1 0z
A2 + Cll2llf2rms @) + 3 /p ‘3#

(o))
=

7

7 [|oAr)]?
32 Js

d¥ < Ry + Ro+byr (4.36)
ou ’
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where
R = %Re < /Q Vg (Az) |2divg (h) dQ) + Re ( /Q (Vy(A2),V, (div, (h))>g)
+%Re (/ng (Az),V, (Ah) (z)>ng+/Q<vg (Az),V, ((Dh, D?2) (TuRn)2) ) gdQ
( / (Vg (A2),Vy ((Dh,D*2)(q,gn)2))gd@Q — / (Vg (AZ),V, (D?p(h, Dz))>ng>
Q Q
lpe ( /Q (V, (A2),V, (Rice (h, D2)))ydQ + /Q (V, (A2), (V,D? (h, Dp)) ng>
(47829, 0 (DDt + [ (7, (42),9, (1 2) divy (D)) Q)
Q Q
+Re /Q AzDp (h(AZ))dQ — Re /Q h (AZ) Dp (Az) divg (Dp) dQ + CHzH%Q(QT;Hg(Q))
and
Ry — —% /Q GruAzdiv, (h) dQ — Re /Q Gruh (AZ) dQ (4.37)
—% Re /Q Ghu [(Ah) () + (Dh, D*2)(q,gny2 — D*p (h, Dz) — Dz (h, Dp)] dQ

~5 | GuulDp(b(2)) = Rice (b D2) - h(2) div, (Dp))dQ
Q

bor = —;/Q(Azh(z))dQE+i/F 2dF]T

0
Step 2. Evaluation of R;.

Let Giu = 0 in the first identity of (4.19) and note that z = A7 3w € V. Tt is known
that (4.19) associates with a Cy—group solution in V. That is to say, For any zy € V,
there exists aunique solution z € V' the solution to (4.20), which depends continuously
on zo.This fact together with (4.37), (4.36) implies that

d(Az)|?

/E ova

Hence the operator B* is admissible, and so is B [9]. Therfore,

0z

O

dx < Crllzoll} (4.38)

uw — w is continuous from L2(0,T; L?(T')) to C(0,T;V"). (4.39)
Moreover
z = A73w € C(0,T; V) depends continously on u € L*(0,T; L*(Ig)). (4.40)
Therefore,

Ry < Orllull220.1.02(00)) Vu € L*(0,T; L*(Ty)). (4.41)
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Step 3. Evaluation of Rj and by r

Since Giu € L2(0,T;H% (€2)), the terms in Ry and by depend continuously on
u € L%(0,T; L3(Ty)), from this facts and (4.41), we obtain

Ry +bor < Crllulla 10200 Yu € L*(0,T; L*(Ty)). (4.42)

From (4.42), (4.41), and (4.36), it is seen that (4.20) holds true. W

4.4 Proof of Theorem 4.2

We show the exact controllability by means of the Hilbert Uniqueness Method (HUM),
which is stated as Theorem 11.2.1 in [57] for well-posed systems as the duality principe
between exact controllability and observability. Since by Theorem 4.1, system (4.1)
is well-posed, which is formulated into the abstract form (4.14) and (i4)* = —iA in
V', Tt follows from theorem 11.2.1 of [57] that @ = iAw + Bu is exactly controllable
if and only if w = iAw, y = B*w is exactly observable. More precisely, the exact
controllability of system (4.1) is equivalent of the exact observability of the following
dual problem of (4.1):

iy(@,1) + A2p(x,1) = 0, in Qx (0,T) = Q,
oz, t) =0, Ap=0 on 002 x (0,7) =%, (4.43)
p(2,0) = ¢%(z) inQ

with the output y = B*A3p. That is to say, the "observability inequality" holds true
for system (4.43) in the sence of (see (4.20), (4.21)):

/ ELED s> or | v e, (4.44)
S ova v

for some (and hence for all) positive T' > 0.
To prove (5.39), we let A defined by (4.6) and let ¢ be a solution to (5.38). Then
1A generates a strongly continuous unitary group on the space V = D(A%) and hence

3 i
le@ly = [Aate®] =l (4.45)
0 2.0
- = |ate
1%l = 4% o,
Next, we claim that for f € D(A%), the norms
3
HfHD(A%) = HA%fHLz(Q) and {/Q Vg (Af)|3 dm} are equivalent. (4.46)
1
Actually, V,(Af Zdwt® being a norm is a trivial fact, since the norms || f 1=
Q g g D(AT)

1
HAi f HL2(Q) and { fQ Vg ( f)|§ daz}2 are equivalent by the Poincaré inequality, the
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2@ = HAi (Af)‘ and {fQ Vg (Af))? d:L‘} are equiv-

norms | 1], 3, = |

alent (see [67])

Proof of Theorem 4.2 We split the proof into three steps.

Step 1. Multiply the both sides of the first equation of (4.43) by N(A®) and
integrate on () to obtain

L2()

/ 0, N(AP)dQ — i / A%2pN(AD)dQ = 0. (4.47)
Q Q

By making use of the computation procedure form by setting N = h (4.24)-(4.32), we
get

Im (/Q o N (Ap) dQ> (4.48)
_ / 1V, (A) Pdiv, (V) dQ + / AB(Y, (M), Vy (divy (N))4dQ
i _ T 8(%&) e
v5 | (aen ] 5 [ FE)
= / aayA [A@divg (N) + (AN) () + (DN, D%2) (g, zny: — D*p (N, Dy)] d%
3 a(AZ) [Ricc (N, D) + D?*p (N, Dp) + N (p) divg (Dp)] d
. OVA
+§ /Q<vg (A9),Vy (AN) (0))4dQ + % /Q<vg (AD),Vy (DN, D?*¢)(1,mn)2))9dQ

-3 /Q (¥, (Ag), ¥4 (D (N, D)))ydQ — 5 /Q (Vo (A) . Vg (Rice (N, Di)))gdQ
1

) / (Vg (AD), (Vg (D*¢ (N, Dp))))gdQ-
Q

and
m <i /Q A%N(Agp)d@) (4.49)

= e /2 <0a<ff>) N (Ap)dS - Re [ / DN ((, (A), V, (A7) dQ

—/|V A<p| N.vd¥ + = /|V |dwg(N)dQ.
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By (4.47), (4.48) and (4.49), it follows that
4
Y L (4.50)
i=1

- ;Re/z (aé‘ff))N(Aga)dz—;/E\vg (Ap)2 N.vds
+% /E 88(‘3;") (D2 (N, Dp) — D*p (N, D) + N (¢) divy (Dp)] dS
—% : %(ij) [Rice (N, D) + (DN, D*z) (1, 5ny2] d%

= Re| [ DN, (A9)., <A¢>>>dcz} +5 [ (apN (a0
—1 %f; ;:ider / AR(V, (Ap), Y, (divy (N)))ydQ

1

_|_

2

Q
! /Q (Vy (A7), (T, (D% (N, Dp>>)>gdc2}
- Z M;

=1

We first compute the four ters in the LHS of (4.50). For ¢ > 0,
1

Ly <y / [

» | €

1
Ly = —/ IV, (A@)|2 N.vds <0
2 /s, 9

9 (Ap)|*
Oova

+ €|V, (Ap) yg] dx

By (H2), we have

and by (A.40), (A.41) (in Appendix A), we have

A<P)
L3 < 45 dZ—i—C’sH@Hm(OTD(AZ))
1 []0(Ap)
< —
Las de Js;| Ova X+ Ce H(p”LQ(OTD(AZ))

where in the last step we used the trace Theorem and the Poincaré inequality.

[ | (V5 (89,9, (AN) (0))dQ + ; [ (V0 (40).9, (DN, D) 502) 0
Q Q

3 [ (Va(A2), ¥, (D% (¥ Do)y [ (9, (47) 9, (Rice (N, Dg)))yiQ

(4.51)

(4.52)

(4.53)

(4.54)



4. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, hinged boundary control and
colocated observation 45

Adding (4.51), (4.52), (4.53), and (4.54), we get
LHS of (4.50) < <1+H1>/ 9 (Ay)
2¢e € )

ova
3 1
e [ 19, (490 Bas - L [ 19, (A0 Nz
) 2 Jx g

2
£2(0,13D(A))

2
s (4.55)

+2Ce||¢l|

Choosing & > 0 sufficiently small so that p e [, |V, (A) [2dE—3 [V, (Anp)|§ N.wvd¥ <
0 and making use of (4.45), we obtain

0 (Ay)|?

L m /
LHS of (4. < — 4+ = dx 4,
S of (4.50) < <2€+5)E N (4.56)
0112
+2Ce ||g HD(A%)'
Next, we estimate the RHS of (4.50). First by (H1) and (4.45)
2
My > Tl 00 (4.57)
_ 012
= bOTH90 HD(A%)
i T
Ml = |5 [ (N )] (458)
Q 0
< 2 <||A<P (D2 1962 (Dl 2oy + | A2, vasa“HLz(m>
< 1A (D)]22(0) + < 950 (D) 2aqy + A,  +2 962
S mp(ellap rx@) T 7 lVg¥ L2(Q) TE|AY 12) e 9% ll2()
2 2
< 2melle sy + o Ve Doz
1 [ 0(p) 0p / op |?
Myl = |—= | = d¥| < —| dI 4.
‘ 3| ‘ 2 /s Ova Ova — Jr|ova ( 59)
M3 —_ 2 2 —5lI1? 02
< b <!A<P (Dlta@) + 140 (D2 + AL, + 149 Hm))
ws (1 2
< 2 (2180 Ofmuan + ¢ as,) )

by (A.40) and (A.41) (in Appendix A)
W 2
| My| < ;30 1A (DG 0,720y + Chse HSDO”D(A%) (4.60)
Combining (4.57), (4.58), (4.59) and (4.60) gives

RHS of (4.50) > boT ngOHZD(A%) — (Cug + 2uqppg +4py) € “900“2(A3 (4.61)

1)

2 4
_(/~L30+ Mg + :ul) HA(P (t)

2
- 1E0.m12 ()
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Therefore, from (4.55), (4.61) and (H1), we have
0 (Ap)|?

142, /
_ X
< 2e ) b)) aVA +

(Cus + 2uq pig + 41q) 2
> by (T— : bz : - 5> H OHD(A%)

s C =+ 2pq pg + 41
O 200t 00 A 1), 0l 62)

Step 2. We claim that the inequality (4.62) implies that any 7" > 0, there exists a
Cr > 0 such that for all ° € D(A1),

9 (Ay)|?

2
MwmmmﬂmgwéowA(m (4.63)
and for any sequence {7} with T;, — oo as ¢ — o0,
lim, . .Cr, =0. (4.64)

we first assume (4.63) is invalid to obtain a contradiction. To this purpose, let {¢,,}
be the solutions of the following system over [0,7] :

i (z,1) + A%p, (2,1) =0, in Qx(0,T) =Q,
oz, t) =0, Ap,(x,t) =0 on 90 x (0,T) =%, (4.65)

such that
2
1A Ol (0,200 =1 (4.66)
and )
A
/ 9(Ap) d¥X — 0 as n — oo. (4.67)
5| Ova

by (4.67), we have
HSOE’)lHQD(A%) < C uniformly for n (4.68)
with some constant C > 0. Hence, there exists a subsequence of {cp%}, still denote by

itself without confusion, and a function ¢" € D(A%) such that
@% — % weakly in D(A%). (4.69)

Let  be the solution to (4.65) associated with the initial data ¢°. Then we can claim
that there exists a ¢ € L (0,T;V) such that

0, — @ weak” in L* <0 T; D(A%)) (4.70)

In fact, since
en(t) = Ut)en, @(t) = U(t)¢’, (4.71)
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where U () is the unitary group generated by ¢A in D(A%). For any ¢ € L™ (O, T; D(A%)’> ,
it follows that

T
| (8 at = o). At a (172)

T
_ 500 0 -1 -1 — 0as n — 0.
- / (At et =) A o) em) ,  de =0

where in the last step we used the Lebesgue dominated Theorem, (4.69) and the
property that ||U(t)| is uniformly bounded over ¢ € [0, 7] . Equation (4.70) then follows

from (4.72). Since (4.69) implies that {¢,,} is uniformly bounded in L*> <O, T; D(A%)),

this together with the compact imbeding: D(A%) — D(A%) = H%(Q)N H}(Q) implies
that there exists a subsequence of {,,}, still denoted by itself without confusion, such
that

@, — @ strongly in L (O,T; D(A%)> . (4.73)

From (4.66) and (4.73), we obtain

1= |Ag, |2 omr2@) — IABIE©0r)L2@) = 1 (4.74)
Moreover, by (4.67), it follows that

J(Ap)
Ova

=0on Iy, (4.75)

Thus, @ satisfies
ip, + A2p =0, inQx(0,7T)=Q,

p=Ap=0 on 002 x (0,7) =X, (4.76)
HA2) — 0 on X,

Now, setting ¢ = Ap = —A%@, we obtain the system

ig, + A%26 =0, inQx(0,T)=Q,

p=Ap=0 on 90 x (0,T) =%, (4.77)
881/(;1: =0 on X,

where the boundary condition A¢ = 0 follows from A¢ = A%2p = —ip, in Q.

Its restriction in ¥ vanishes by (4.76). Therfore, (4.77) implies that ¢ = 0 in @
[36] or @ = 0. But this contradics (4.74). Then (4.63) follows.

Next, we prove (4.64). For notation convnience, we set for any 7' > 0 and ¢° €

D(A1) that

2

V(A s (4.78)

Ova

Nr(6®) = [ AGl oy . Dr(e?) = /E
0



4. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, hinged boundary control and
colocated observation 48

Then we can take Cp in (4.63) as

N 0
Cr= sup T(SOO)
o0V, 000 D1 (¢°)

(4.79)

Suppose on the contrary that there exists a sequence T; — oo such that Crqy > a >0
for all gq. Then from (4.79), for every sufficiently large ¢, there is an initial value
0 € D(A%) such that

0
gzgzg; > Crq — ; > - 2, (4.80)
we may suppose without loss of generality that the <p2 € D(A%) satisfies
Nr,(¢g) = HA('DQHZ‘((O,T);LQ(Q)) =1 (4.81)
and ) o
Dr(yy) = / aéA¢) s < <a - 1) < C for all g (4.82)
o VA q

with some C' > 0. Let @(t,cpg) be the solution of (4.43) corresponding to the initial
value ). By (4.62), (4.81), (4.82) we have

( — E) Hcqu A3y < C uniformly in g, (4.83)

4

where ¢/ = . This gives further

(Cu3+2;zéu3+4yl)
cpg — 0 in D(A%) as ¢ — 00. (4.84)

Since ¢ (t, cpg) = U(t)gog where U(t) is a unitary group, we have
o(t, <p2) —0in C (0,00;D(A%)> as ¢ — 00. (4.85)
Therefore, (4.85) implies qliréloNT(wg) = 0 which contradicts (4.81). (4.64) is thus

proved.
Step 3. From (4.62)-(4.64), we finally get

o |° (Cug +2p1p3 + 441y) 0|2
Llpefas=cn (- ) 11,
0

ale b()
2bg
where C" = (1+2u1)+2(Cu3+€2ulu3+4u1)0 > 0. So (4.44) holds for all T > 0. The proof
is complete. [ |

Remark 4.1 Using the inequality of admissibility (4.38) we obtain that the
solution of (4.43) satisfies the following inequality

Ova

for any 7" > 0 with some constant Cr > 0. By (4.44) and (4.86), we see that for
any 7' > 0, the norm fz \ 8VA ]2d2 on the space D(Ai) is equivalent to the norm

T = e (10

°II

Ir2



Chapter 5

Well posedness and exact
controllability of fourth order
Schrodinger equation with
variable coefficients, moment
boundary control and colocated
observation

We recall that in chapter 4 our system is described with hinged boundary condition.
In this chapter we study the same system with impose the moment boundary control
and set the Dirichlet boundary condition to be zero. We begin with showing the well-
posedness of this system in the state space H(Q) and input/output space U =Y =
L?(T'g), the regularity of the system is also proved with feedthrough operator is found
to be zero. From the result of the well-posedness, we know that this system is exactly
controllable in some interval [0,7], (T" > 0) if and only if its corresponding closed
loop systems under the output proportional feedback u = —ky, k > 0 is exponentialy
stable. Based on this argument, to get the feedback stabilization of this system from
the well-posedness, we study the exact controllability of the open-loop system.

5.1 System description and statement of main results.

The system what we concerned within is discribed by the following PDE’s

iwg(z,t) + Aw(z,t) =0, ret>0
Aw(z,t) = u(zx,t) x €Ty, t>0
Aw(z,t) =0 zely,t>0 (5.1)
w(z,t) =0 xedt>0
-1
y(z,t) = i 2wl z€Tot>0

Where, u is also standing for the boundary control input and y is the output.

49
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Here we still use €2 defined in chapter 4, system (4.1), A; and A defined by (4.4)
and (4.6), respectively.

Let Hy = H}(Q), H=H1(Q). The following Theorem shows that the system (5.1)
is well posed with the state space Hy, and the input and out put space U = Y = L%(T).

Theorem 5.1 The system (5.1) is well-posed. More precisely, for any T > 0,
initial value wo € Hy and control input u € L?(0,T;U) there exists a unique solution
we C(0,T;Hy) to (5.1) such that

leo( DI, + 912000y < Crllwolly, + ez oroy) (5.2)

where Cr is used to represent the constant that depends only on T.

It is proved in [26, Theorem 5.8] (see also [68, Theorem 5.2]) that if the abstract
system (5.1) introduced later is well-posed, it must be regular in the sense of Weiss
with the zero feedthrough operator.

The following result is hence a consequence of Theorem 5.1.

Corollary 5.1 The system (5.1) is regular and the feedthrough operator is zero.

The second aim is to study the exact controllability problem for the open loop
system (5.1), this is the result of Theorem 5.1 under a certain geomtric condition on
Q.

(H1) There is a vector field N on (R", g) such that

DN(X,X) =b(z)|X|Z, VX eTR", xe. (H1)

where b(x) is a function defined on 2 so that

bop = ;Ielgb(l‘) > 0. (H2)
(H2)
I" satisfies N(x).v > 0 on I'y (H3)

Theorem 5.2 Under assumptions (H1) and (H2), system (5.1) is exactly controllable
on some [0,T), T > 0. That is, given initial data w(.,0) = wy € H} (Q) and time
T > 0, there exists a boundary control u € L(0,T;L*Ty)), such that the unique
solution to the system (5.1) satisfies w(T') = 0.

The following result is a direct consequence of Theorems 5.1 and 5.2.

Corollary 5.2 Let the Hypotheses of Theorem 5.2 hold true. Then system (5.1)
is exponentially stable under the proportional output feedback u = —ky for any k > 0.

5.2 Abstract formulation

We formulate system (5.1) as an abstract framework of a first order colocated system
in the state space Hy = H}(£2) and control and output space U =Y = L%(T).
Extend the operator A of A into the space V as
Define an extension operator A of A to the domain H as follows:

(Ap, V) = (A2, A2, Vo, 0 € V. (5.3)

Then A is a positive self-adjoint operator in H:
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Then A is a positive self-adjoint operator in H as follows,

~ 1 1 1 1
(Ap,p)m = (A2p,A2¢)a = (A1p, A1) 12 (5.4)

9 AR A2
Ol 2 O 4740, = O llelix,  VoeV.

Y

Where C and C' are constants. We identify H with it’s dual H', then the following
Gelfand inclusions hold true:

DA 2) > H=H < D(A 2). (5.5)
Define an extension A € L(D(A'?), D(A'/?)) of A:

(Af.9), 5 = (A3f, AZg)n, Vfg€ D(4%), (5.6)

(AZ),D(A2)
Let Gy be the Dirichlet map: Gy € L(L?*(Ty), H*/?(Q)) by Giu = ¢ if and only if

A2 =0, z€Q,
{ ¢(z)|r =0, (5.7)
Ad(z)|p, = u(z), Ag(z)lp, =0.

By virtue of the operators A and G1, system (5.1) can be written in D(fl%), as
W = iAw + Bu. (5.8)
where B € L(U, D(A2)') is given by
Bu = —iAGu, YueU. (5.9)
Define B* € L(D(A2),U) by
(B*f,u)y = (f, Bu) |, 13y paty

Then for any f € D(A%)

(f.Bu),

/

and u € C§°(I'p), we have

= <f7 _iAG1u> <1 = <Al/2f, _iA1/2G1u>H

D(A%),D(A3)
= —i(A1 (A7), AGiu)m
= —i(A%(ATEf), AG u)v
= —(ATYA (AT S), AT AG ) 2 )
(
(

(A3),D(A%Y

(A1)

= (u,—i Don ’u>L2(r0)'

In the last step, we have used Greens formula and the definitions G1 and A;.
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Since C§°(Tp) is dense in L?(Tg), we obtain

o= QAT pave) - o) (5.11)
Ova T

Combing the above operators, we cast the open loop system (5.1) into an abstract
first-order form in H{:

w = iAw + Bu (5.12)
y = B*w

where A, B and B* are defined by (5.6), (5.9) and (5.10) respectively.

5.3 Proof of Theorem 5.1
Make a transformation z = Aflw, then z € C(0,T;V), Then z satisfies

zi(z,t) = iA%2(x,t) +1(yu(., 1)) (z,t), (xz,t) € Q2 x (0,T] =: Q,
Z(:L”,O) = Zg(ﬁ), r €,
z2(z,t) = Az (2,t) =0 , (z,t) € 00 x 0,17,
(5.13)
and from (5.11) the output of (5.1) is changed into the form

y(l‘,t) = B*w(q;’t) — B*AlAflw(x,t) _ B*AlZ(CC,t) _ 182(:17,25)

xely, t>0
(5.14)

Ova
and we used the fact in the first equation of (5.13)
Al_lflGlu = A%Glu = —u, Yu € L2(I‘0)
where v € L(L?(I'g), H/?(2)) is defined by yu = ¢ if and only if
Ap=0, ze€(
¢(@)[p, = u(@), ¢(@)lp, = 0.
Therefore, to prove theorem (5.1), we need only to prove that

/ 2D 20y < ¢y / |u(z, t)[2dTdt. (5.16)
o Jr, Ova 0 Jrg
For the system (5.13) with the output (5.14).

Since 99 is of class C3, it follows from [25, Lemma 4.1] that there exists a C2-vector
field g on Q such that

g(z) =p(z), €l |N(z)|lg <1, ze (5.17)

Now, multiply both sides of the first equation in (5.13) by ¢(Z) and integrate over Q
to obtain

[ wa@iq i [ Aq1dq =i [ ua(z)a (5.18)
Q Q Q
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Computing the first term on the left hand side of (5.18) and integrating by parts we
obtain

/taq(z)dQ = /qu(z)dQ
_ (/Qdivg(\z\Qq)dQ—/qu(z)dﬂ—/ﬂ\z|2divg(q)d9> 0

- ( /Q divg (279) dQ — /Q 2q (2) dQ — /Q Zztdivg(Q)dQ>

T
- / 24(2)dQ (5.19)
0 Q

T

and hence
Qilm/ 2:q(Z)d@ (5.20)
Q
T
= [ iy @dq - ( [ zaa0 [ 5P diny(oin)
Q Q Q 0
R / Audivg (q)dQ — i | =A?Zdiv, (¢) dQ
Q Q
T
_ (/ 2¢(2) dQ+/ |z|2divg(q)dﬂ>
Q Q 0
A straight computation shows that
/ 2A*Zdiv, (q) dQ (5.21)
Q
Az .
= [ 2D qas [ 2CA D) o [ A (i (a) Az
> Ova b)) Ova Q

= /QAz (divg (q) Az + zAdivg (q) + 2 (Vgez, V4 (divg (9)))g)) dQ
= / ]Az|2 divg (¢) dQ + / zAZAdivg (q) dQ + 2/ Az (Vyz,V, (divg (q)))g) dQ
Q Q Q

Where we have used the fact that A(py)) = YAy + Ay + 2(Vyp, V1)), substi-
tuting (5.21) in (5.20) to yield

Im / e (5.22)

= —Q/szudwg( )dQ — = /]Az| divg (q) Q—l/QzAzAdzvg( ) dQ
T

— /Q AZ(Vyz, Vg (divg (q)))g) dQ + 3 </Q zZq (z) dQ + /Q |2 diUg(Q)dQ>

0



5. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, moment boundary control and

colocated observation 54
Next, compute the second term of the left-hand side of (5.18) to yield
mi (/ A2zq(z)dQ> (5.23)
Q

= Re ( / A2zq(z)dQ>

_ Re/A (A2) g dQ+Re/( 0) (A2) g(2)dQ

Q
= Z)dY¥ 4+ Re | AzA, Re Dp) (Az)q(Z)d
e | A8, 02 +Re | (Dp)(A2)a(2)i0Q
= Re (Az) e z e zq(AZ
= R/E o ()dZ—i—R/A Aq)()dQ—i—R/AqA)dQ

+2 Re/ Az(Dq, D* Z) (1,rr)2dQ — Re/ AzD?p(q, Dz) dQ
Q Q
- Re/ AzD?%(q, Dp) dQ + Re/ AzRicc(q,Dz)dQ + Re/ (Dp) (Az)q(z)dQ
Q Q Q

Furthermore, the following inequalities hold true:

Where C,C" > 0 are constants. The first inequality of (5.24) comes from the trace
theorem, and the second one is attributed to the equivalence of the norms ||z ;2 (q)
and ||Az||2(q) in the space H2(Q).

Combining (5.18), (5.22), (5.23), we get

0z
ova

< Cllzll gz < of Az 120 (5.24)
L2(T)

(5.25)

IN

. , 2
%f |divg (q)|g/Q |Az[; dQ

IN

- / adiv, (q) dQ — / AZA (divy (q)) dQ
Q Q
T

9 /Q AZ(V,2,V, (div, (q)),) dQ +i ( /Q 2(2)d) + /Q |z|2divg(q)dQ>

0

8(A§) z — e z z — e z z
+2Re/28,u(J(z)d2 2R /QA (Ag) (2)dQ — 2R /QA q(AZ)dQ

—4Re / Az(Dq, D2) 7, gny2dQ + 2 Re / AzD?p(q, DZ)dQ
Q Q

+2 Re/ AzD?2 (q, Dp) dQ — 2Re/ AzRicc(q,Dz)dQ — 2 Re/ (Dp) (Az) q(Zz)dQ
Q Q

_9Re (i /Q 'yuq(z)dQ> )
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In which

0(Az) ,_ 7
Re/E o q(z)dE < 32/2

where C,C" > 0 are constants.
Moreover, we can use (5.32) by making h = ¢, to have

0(Az)

2
o A + C' |20 220 12 () (5.26)

2

7 ! i !
dS < Ry + Ry + by 1 (5.27)

32 Jx

0(Az)
o

where R/1 and bE)T are the same as the representations of R; and by r in (5.33), re-

spectively, and the representation of R'2 is as follows:

/

1
Ry, = —2Re/’yqudiv(q)dQ (5.28)
Q

—% Re / U [(Ah) (2) + (Dh, D*2) (g, gny2 — D*p (h, Dz) + Ricc (b, Dz) — D*z (h, Dp)]
Q

1 . _
-5 Re/Q’yu [Dp (h(2)) — h(z) divg (Dp) dQ] — Re/Q’yuq (AZ)dQ
Combining (5.25), (5.26), and (5.27) to get
aZ 2 " " 7"
c [ |Z] a8 <R} + R, + by p (5.29)
= | Op ’

Where
R; (5.30)
- R, - / AZA (divy (g)) dQ — 2 / AZ(V,2, Y, (divy (g)))g) dQ — 2 Re / Az (Ag) (2)dQ
Q Q Q

—4 Re/ Az(Dgq, D2Z>(T1Rn)2dQ +2 Re/ AzD%p(q,Dz)dQ + 2 Re/ AzD?z (¢, Dp) dQ
Q Q Q
+2 Re/ AzD?z (¢, Dp) dQ — 2 Re/ AzRicec(q,Dz)dQ — 2Re/ (Dp) (Az) q(z)dQ
Q Q Q
1 ) /
—y 1A% iy (0)4@ + € 12 s e

Ry, = Ry- /Q Judivg (¢) dQ — 2 Re (i /Q ’YUQ(Z)dQ)

T

bor = bor+i </ zq (2) dQ +/ |z]2divg(q)d(2>
Q Q 0
Now, we estimate Rlll, Rg, bg,T in the following steps.
Step 1. Evaluation of Rj. It is found that the dual system of (5.13) is
{ zi(x,t) = 1Az(x, 1),

2(0) = 2o, (5.31)
y= B*Ayz,
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Where A and A; are given by (5.4), (4.4) respectively. It is well known that system
(5.13) associates with a Cp-group solution in the space V. That is to say, for any
29 € V to (5.31) depends continuously on zy. By this facts and letting yu = 0 in

(5.18), we obtain
2

0z
| d% < Cpll2ol} (5.32)

/281/

Which is equivalent to saying that for any initial wy € V', the solution to system
(5.13) with u satisfies

2

—1
/Z f‘?(f(};VAw)) d¥ < Crllwoll 7 o (5.33)
Hence the operator B* is admissible, and so is B [9]. In other words,
u — w is continuous from L%(0,T; L*(Ty)) to C(0,T;V"). (5.34)
Moreover
z € C(0,T;V) depends continously on v € L?(0,T; L*(T)). (5.35)
Therefore
Ry < JlullZaorinaro) vue L*(0,T;L%(To)).  (5.30)

Step 2. Evaluation of Rg and bg}T. This can be easy done from the representation
of Ry and bE)’T in (5.30),and by virtue of (5.35). we can readly obtain

Ry +bor < llull 72010200y Vu € L*(0,T; L*(To)). (5.37)

From (5.29), (5.36), and (5.37), it is seen that (5.16) holds true.l

5.4 Proof of Theorem 5.2

Since by Theorem 5.1, the operator B is admissible in system (5.12), the exact con-
trollability of system (5.1) is equivalent to the exact observability to the dual problem
of (5.1):
i, + A2p(z,t) =0, inQx(0,7T)=Q,
=0, Ap=0 on 002 x (0,T) =%, (5.38)
©0(z,0) = (z) in Q.

with the output y = B*Ap. That is to say, the "observability inequality" holds true
for system (5.38) in the sence of (5.13), (5.16):

9 (¢ (2,1)) o 02 0
/20! D 2d > Cr ||y, . Ve’ eV, (5.39)

for some (and hence for all) positive T' > 0.



5. Well posedness and exact controllability of fourth order Schrédinger
equation with variable coefficients, moment boundary control and
colocated observation 57

To prove (5.39), we let A defined by (4.6) and let ¢ be a solution to (5.38). Then
1A generates a strongly continuous unitary group on the space V = D(A%) and hence

le@ly = [ate®)| =[], (5.40)

3
Il = [|4%¢°]

L2(Q)

Next, we claim that for f € D(A%), the norms

1
2 ? :
@) and {/Q|Vg (ASI, dx} are equivalent. (5.41)

£y, = 434]

1
Actually, {fﬂ Vg4 (Af) |§ dx} * being a norm is a trivial fact, since the norms Hf”D(A

1)

1
HA% f ‘ . and { Jo 1 Vg ( f)\?] d:c}2 are equivalent by the Poincaré inequality, the

3 1
norms | fl,3, = [[A41]] . g, = [[4% A1)
alent.

Proof of Theorem 5.2

Multiplying both sides of the first equation of (5.38) by N(®) and integrating
over @, applying the same computation procedure from (5.18)-(5.23) in the proof of
Theorem 5.1, we obtain

0(Ay) ..,
—Re/E A N(p)d% (5.42)

1

2@ and {fQ Vg (Af)|§ d:z;}E are equiv-

B _ 1 92 . 1 g
= Re/QAzq(Az)dQ—l—2/Q|A<p| divg (N) dQ 2/ngAg0Adwg (N)dQ

T

+/QA¢<vg¢,vg (div, (N))>g>dQ—% (/ngN (¢) dQ+/Q|<p|2dz'vg(N)dQ) )

+R9/QA<P [(AN) (?) + N(A) + 2(DN, D*) 1,ny2] dQ
—Re / Ay [D?*p (N, D) + D*@ (N, Dp) — Rice (N, D@)] dQ
Q

To obtain the observability inequality, we define T' € (T, R")? for any = € € as follows:
T(X,Y)= DN(X,Y)+ DN(Y,X), VX,Y € T,R". (5.43)
It is clear that T'(.,.) is symmetric, and from (H1), we have
DN(X,Y) + DN(Y,X) = 2b(z) (X,Y),, VX,Y € TLR", z € Q (5.44)
Fix z € , and let {e;}|~; be an orthogonormal basis of (T,R", g). By (5.44), we have
2

(DN,D*¢), o = Y DN(ei,e;)D*p(es, €;) (5.45)

ij=1
= b(x)Agp =b(z) (Ap — Dp(p)).
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Combining (5.44), (5.45) and (5.42) we obtain

0 (Ap)
—Re/zal/AN(go)dE (5.46)

= Re/QAzq(Az)dQ—i—;/Q|Acp|2divg (N)dQ

+ / AB (V. Y, (div (N)))g) dQ — = / pAPAdiv, (N) dQ
Q Q

+Re/QAgp [(AN) —2/b VAwDp (7 )] 40

—Re / Ay [DN (D@, Dp) — D*p (N, D) + Rice (N, D@)] dQ

T

( BN (¢ dQ+/|<p| divg (N )dQ)

0

I
M@
l\D\»—'

M;
1

.
Il

We compute the LHS of (5.46), to get

0(Ay) .., 1
Re/E Don N(p)dx < 5/2

A direct computation shows that

2

2
0 dy.  (5.47)

Ova

d(Ayp)
Ova

),

/Q Azq(AZ)dQ = /Q (divy (|A9I* V) = ApN (Ap) — [Ap]2 div, (N)) dQ

This implies that
_ 1 .
Re/QAzq(Az)dQ = 2/Q|Ago]§ divg (N) dQ

Multiply both sides of the first equation of (5.38) by @ and A@, respectively and
integrate over @@ to obtain

Il
o

i / 12dQ + / Apl2dQ
Q Q
i/ngt-Vg@lQJr/ Vg (Ap)|2dQ = 0
Q Q
Then

/Q ApldQ = /Q 1V, (AQ)P dQ + i /Q Vo VopdQ i [ 0 (49
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Next, we evaluate the terms of the RHS of (5.46) and using (5.48), we obtain

M — /Q |Ap[2 divy (V) dQ (5.49)
> ([ @00+ [ TyeuTipa0-i [ apiq)
Q Q Q
3 2
> 3 9 . . _ iy _
> i H(A4so )Lz((omm) + 1o (Z/QVM VydQ z/@%m@)

2

L2((0,T)xQ)

1 [ Vo~ i [ e
Q Q
2 . _ . _
= MQTHSOOHD(A%)+M22/Qvgs0t-vgs0d(a?—MQZ/Q%WQ
by (5.41), the Poincaré inequality, we obtain
) 1 .
sl = | [ A (50,9, din, (V0 5 [ emeading ()0 (550
+ Re /Q Ap [(AN) () -2 /Q b(ﬂ?)Ason(so)] iQ

—Re / Ay [DN (D@, Dp) — D*p (N, D) + Ricc (N, D@)] dQ‘
Q

IN

" 2
?3 |Ap (t)”é((O’T);LQ(Q)) + Hge “900“D(A%)

i = |5 (v @m)] | <% (T ive o ] 9
1 T
< & (Lo +e [p@| + 2wt +<[])
1
< M;(g/l:aHA‘P ||c(0T)L2( )+5H<’00HD 2))’
; T
|My| = l ( [p|? divg (N dﬂ) (5.52)
2 0
; T
- (/ e divy(N dQ)
2 0 0
My 0
< B (e@ifem|+ 1l &)
1
< ‘j;(g o @DIF +e o @) + 2 ) +< [ H)
7 1
< 21(5//3\A80 N om2@ )+5H‘POHDAZ)>’
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T
M| = |t [ Voo Vo] < [ 9,001Veld0 < 22 [ 190 a0|559
< <va@ H HVQSO H + va‘P H HVQSO H)
< s [

o W2 om)22@ ))+*5H80 HD 1

T
Mo = | [ cpo| < [ lalleld < [ @
0
< (le @[]+ 11l ]|<°]])
T
< ?3 1A® O 0,722 () + € HSDOHD(A%) :
where y; and ) i = 1,2,3 are constants. Combining (5.49)-(5.54) gives
2 ! 2
RHS of (5.46) > T [|¢°][ 08, — (2+ 22 +u3> 19" a2, (5.55)
B+ (R

5 A (t) H2C((O,T);L2(Q))

Therefore, by the estimates of the LHS and RHS of (5.46) in (5.47) and (5.55) respec-
tively, we have by taking (H2), (5.24) and (4.86) into account, that

1 oo |? pC? + (B2 + 1) s+ (52 + 1) pg 2
: /E o] @ - 1A® (Dlle(0.7);2(376)
2+ 2+ pg + 1, O 2
>y (1 HEEECEL ) o,

We claim that the inequality (5.56) implies that for any 7' > 0, there exists a > 0,
such that for all ¢° € D(A1),

dp 2
Ap (1)]2 < .
1A% Oz < [ |5 (557
and for any sequence T}, with T,, — oo,
lim a7, = 0. (5.58)

n—oo

The proofs for aforementioned claims are similar to step to in the proof of Theorem
4.2. Actually, we will assume that they are not true to obtain a contradiction , to this
purpose, let be the solution sequence {y,,} to the system of (5.38) such that

||A90n||%((o,T);L2(Q)) = 1 (5.59)
2

/ Onlgs = 0, no oo (5.60)
5o | OVA
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By (5.56), we can obtain (5.54) and hence (5.55), (5.56) and

1= | Aeull&omy 2y — 1APIE 0.y 2@y = 1 (5.61)
In addition, owing to (5.60), we have

0P
v _
5 =0on Iy

Thus, @ satisfies

i@ (z,t) + A2§0(a:,t) =0, inQx(0,7)=0Q,
Pz, t) =0, Ap(z,t) =0  ondQ x (0,T) =X,

20 _
Bia = 0 on Y.

This leads to @ = 0 in @, contradicting (5.59). (5.57) is thus proved.
To prove (5.58), we set

2

% | s,

Ova

Nr(6®) = [ AGl oz - Dr(e?) = /E
0

for each T' > 0 and each ¢° € D(A%). The remaining proof for (5.58) is similar to the
proof of (?7), then

L,
Ha€

Hu O+ (5 +1) (2 +1) g

Oy

Ova

2 Mo "
s > C (T BEL Rl ﬂ“CTE) e lpeaty

Ha

where C = N o > 0. The proof is complete. W



Chapter 6

Well posedness, regularity and
exact controllability of fourth
order Schrodinger equation with
variable coefficients, Dirichlet
boundary control and colocated
observation

In this chapter we consider an open-loop system of fourth order Schrédinger equation
with variable coefficients, Dirichlet boundary control and collocated observation, fol-
lowing the approach developed in [67] and the multiplier method on Riemannian man-
ifold, we show that the system is well-posed with input/output space U = Y = L?(T),

state space V'’ which is the dual space of V = {(p € H3 Q) : plp = g/—‘i = 0} with
respect to the pivot space L?(2). In addition, this system is regular with feedthrough

operator is zero. In order to prove the feedback stabilization from well posedness, we
discuss the exact controllability of this control system.

6.1 System description and statement of main results

The system that we are concerned with in this chapter is described as follows

iwg(x,t) + A2w(z,t) =0 reQt>0
w(z,t) =0 xedt>0
Ow(x,t) _
%TZ—O $EF1,7§ZO (61)
Tg%A’t):u(gc,t)3 z €T, t>0
z(m,t):i%iw(m x€lo,t>0

Where, u is also standing for the boundary control input and y is the output.

62
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Here we still use €2 defined in chapter 4 and 5. Now, let A be the positive self-
adjoint operator in L2(€2) defined by

Af =A%f, D(A) = HYQ) N H(Q). (6.5)
one can show that A2 = —A. Moreover,
3 3 Dy
V=DA1)=qpeH () :¢lp=—|=0¢,
Ova

Then the following theorem states that the system is well-posed with the state space
V' which is the dual of the space V with respect to the pivot space L?(f) in the
sence of Gelfand’s triple inclusions V — L2(Q) — V' and the input and output space
U=Y = L*Ty).

Theorem 6.1 The system (6.1) is well-posed. More precisely, for any T > 0,
initial value wo € V' and control input u € L%(0,00;U) there exists a unique solution
we C(0,T;V') to (6.1) such that

(., D) + 121720750y < Cr(lwoll}r + llullf2 )

where Cr is used to represent the constant that depends only on Q, I'g and T.
Theorem 6.2 The system (6.1) is reqular with zero feedthrough operator. This
means that if the initial state w(.,0) =0 and u(.,t) = u(t) € U is a step input, then
the correspending output satisfies
- 2

1
Lim /z(a:,t)dt do =0 (6.6)

o

o—0

r 0

The second aim is to study the exact controllability problem for the open loop system
(6.1), this is the result of Theorem 6.1 under a certain geomtric condition on €.
(H’1) There is a vector field N on (R™,g) such that

DN(X,X)=b(z)|X|2, VX €T,R", z€Q. (H'1)

where b(x) is a function defined on Q, so that

— inf . H™2
b = inf b(z) > 0 (12)
(H’2)

I" satisfies N(z).v > 0 on I'y (H3)

Theorem 6.3 Under assumptions (H’1) and (H’2), system (6.1) is exactly controllable
on some [0, T], T > 0. That is, given initial data w(.,0) = wy € V' and time T > 0,
there exists a boundary control u € L(0,T;L?(I'g)), such that the unique solution to
the system (6.1) satisfies w(T) = 0.

The following result is a direct consequence Theorems 4.1 and 4.2.

Corollary 6.1 Let the hypotheses of Thorem 6.3 hold true. Then system (6.1) is
exponentially stable under the proportional output feedback v = —ky for any k£ > 0.
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6.2 Abstract formulation

In this section we cast the system (6.1) into an abstract first order system in the state
space V' and control and output space U = Y = L2(Ty).
Define an extension operator A of A defined as in (4.6) to the space V' by

(Ap, )y = (A2, AV2) i Y, € V.

A is a positive self-adjoint operator in V. In fact,

bt 1 1 _1 _1
(Ap, ) = (A2, A2) 1 = (A1, AT190) 12
2 4 3 |12
> Cllele > ¢ 475,

= C ||90H%/’7 VQD € ‘/7

where C' and C' are constants. We identify H = V' with it’s dual H'. Then the
following Gelfand triple continuous inclusions positive hold true:

D(A2) — H = H < D(Az)'.
Define an extension A € L(D(A'/?), D(AY/2)") of A:

(AF.9) a1y poaky = (A2 F A2g)y, Vi.g € D(A3). (6.7)
Define the map v € (L?(Ty), H'/2(Q)) [37, pp. 188-189] so that yu = ¢ if and only if
A26=0, z€Q,
{%ﬁ>=a¢um3=a¢umb:u 05
By virtue of A and v system (6.1) can be written in D(A) as
W = iAw + Bu. (6.9)
where B € L(U, D(AY/?)') is given by
Bu = —iAyu, YueU. (6.10)
Define B* € L(D(AY2),U) by
(B*f,u)y = (f, Bu) . VfeD(A2)=HLQ), uel. (6.13)

D(A%),D(A%y
Then for any f € D(A %) and u € C§°(T'y), we have

(f, BU>D(A%),D(A%)/ = (/, _1A7u>D(A1/2) D(A1/2) (6.14)
= —i(AV2f, AV,

= —i(4¥ (A_3/2f> , Aqu)y
= 1<A /4A3/2( _3/2f);A_3/4A’7U>L2(Q), with A% — A

= (AXAT2f), —iyAu) 20

O(A(ATY2))
= (i—F—"uu

Ova
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We have used in the last step Green’s second theorem.
Since C§°(Tp) is dense in L?(Ty), we obtain

O(A(AT*2)))

B =i Ova

, VfeD(AY?) = H}(Q). (6.15)
1)
Thus, we have formulated the open loop system (6.1) into an abstract first-order form
in H:
W = iAw + Bu (6.16)
z = B'w

where A, B and B* are defined by (6.7), (6.10) and (6.13) respectively.

6.3 Proof of Theorem 6.1

In order to prove Theorem 6.1, we need the following Lemma which comes from [8,
Theorem A.1].

Lemma 6.1. If there exist constants 7' > 0, C'r > 0 , such that the input and
output of system (6.1) satisfy

T T
[l a<cr [Cluld voe 2o @
0 0

with y(.,0) = 0, the system (6.1) is well-posed
make a transformation z = A=3/2w € H! ((), T, H4(Q)) , Then z satisfies

zi(w,t) = 1A%2(z, t) — i (A7 qu(., 1)) (1), (x,1) € 2% (0,T) = Q,
z(z,0) =0, x € Q,

2z, t) = Ll — g, (z,t) €09 x [0,T] = 3,

y(z, t) =1 240) ,(z,t) € 09 x [0, 7],
(6.18)

and from (6.16) the output of (6.18) is changed into the form
y(z,t) = B*w(z,t) = B*A1 AT w(z,t) = B*Ay2(z,t) (6.19)
—3/2
= —iw(:c,t) x €Ty, t>0
Ova

So Theorem 6.1, holds true if and only if for some (and hence for all) T > 0, there exists
a Cr > 0 such that the solution to (6.18) satisfies (consider smooth wu if necessary)

T A T
[ 22D g cop [7 [ jugeppara (6:20)
0 Jro ova 0 Jro

We proceed the proof in three steps.
Step 1. Since 01 is of class C3, it follows from [25, Lemma 4.1] that there exists a
C? vector field N on € such that

N(z)=p(x), z el |N(z)| <1, zel (6.21)
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Let P(z,T) = (A_1/27u (-,t)) (z,t), then by definition of A and v we have

T T
1PNyt < O [ a0 (6.22)

Now, multiply both sides of the first equation in (6.18) by N(AZ) and integrate over
QQ to obtain

/ 2N (AZ)dQ — i/ AzN(AZ)dQ +i/ PN(AZ)dQ = 0. (6.23)
Q Q Q
Compute the second term on the left-hand side of (6.23) to yield
i / A?2N(AZ)dQ (6.24)
Q

= i/ Ay (Az) N(AZ)dQ + i/ Dp(Az) N(AZ)dQ
Q Q

_ i[ /E a(atz)N(Az)dE— /Q (V, (A2),V, (A2)>ng]

+i/ Dp (Az) N(AZ)dQ

Q

_ 2(A2)|* i

_ /E G| as /Q DN(Vg(Az),Vg(Az))dQ]

+i [—; /Q divg (\vg (Az)]ZN) dQ + /Q v, (Az)|3divgNdQ]
—l—i/QDp(Az)N(Az)dQ
Then
Im (i /Q A?zN(Az)dQ)
= Re < /Q A%N(Az)d@)
_ /E 859‘22) " 4% - Re ( /Q DN (V,(Az),V, (Az))dQ)
_;/deg (IV, (A2)2 N) dQ + Re </Q Dp(Az) N(Az)dQ)

Next, we compute the first term of LHS of (6.23) and by virtue of the divergence
formula, we have
divg (z:ZN) = zdivg(AZN) + AZN (%) (6.25)
= 2z [AZdivg (N)+ N (AZ)] + AZN (z)
= 2z AZdivg (N) + 2N (AZ) + AZN (%)

= (iA%z —iP) (AZdivg (N)) + 2N (AZ) + % [AZN (2)] — AzN (2)
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in which
AZN (2)dQ (6.26)
Q
_ /Q [AyZ + Dp (2)] N (2) dQ

= M z Z z Z z
= [N [ aa,w@)det [ Doy e
- / 9C) (14w +/ Dp(2) N (2)dQ
= Q
+ /Q z [A (N (2)) + 2(DN, D22>(Tan)z + N (A2)] dQ
+ / z [Ricc (N, Dz) — D*p (N, Dz) — D*z (N, Dp)] dQ
Q
where we have used (A.33). Then
AZN (2)dQ (6.27)

Q
_ Z;M)N(z)dm /Q 5 (AN) (2)dQ + 2 /Q 2/(DN, D22) (7, gy
+ /Q ZN (Az)dQ — /Q %D?p (N, Dz) dQ + /Q ZRicc (N, Dz) dQ
— / zD?z (N, Dp) dQ + / Dp (%) N (2) dQ
Q Q

integrating the equality (6.26) over @ by taking (6.27) into account, yields

/Q 4NAZdQ = i /Q PAzdiv, (N)dQ — i /Q A2zAzdiv, (N)dQ — /Q %(AzN(z))dQ

8 (Zt) _ — 2
+/2 o N (2) dE—F/ta (AN) (z) dQ—i-?/C?Zt(DN,D Z)(T,Rn)?

+ /Q ZN (Az)dQ — /Q % D?p (N, Dz)dQ + /Q ZRicc (N, Dz) dQ

_ / D%z (N, Dp) dQ + / Dp(2) N (2) dQ
Q Q
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this implies that

2iIm </Q 2N (Az) dQ)
- / PAzdiv, (N)dQ — i / A2z Azdivg (N) dQ — / (AZN (2))dQ
o

z)dX + / zZ (AN) (2)dQ + 2/ z (DN, D? Z)(T,Rn)?
Q Q

—i—/taN (Az) dQ—/taDQp (N, Dxz) dQ—i—/taRicc(N, Dz)dQ

- [ D% (N, Dp)d@ + | Dp(a) N (2)dQ
Q Q
and hence

Im ( /Q %N (A2) dQ) (6.28)

= ;/QPAzdwg( )dQ — = /A zAZdivg (N)dQ — / ;(AZN (2))dQ

o
o5 [N @z [ @N) ()a@ i [ AN, D)y

—|—1/ ZN (Az) dQ—l/ % D*p (N, Dz) dQ+1/ ZiRice (N, Dz) dQ
2Jq 2 Jq 2 Jq
i

_2/QgtD2Z(N,Dp)dQ+;/QDP(Et)N(z)dQ
while

/Q Dp (%) N (2)dQ = — / 5Dp (N (2))dO — / 5N (2)div, (Dp)dQ  (6.29)

Im < /Q 4N (AZ) dQ)

1 1 i [ d
- - /Q PAzdiv, (N)dQ - 5 /Q A2zAzdiv, (N) dQ+% /Q 5 (AZN (z))dQ}

T

0

+;/;({98(?N(Z)d2—;/@5t (AN) (Z)dQ—i Q2t<DN’D2Z>(TZR")2dQ

4 / %D%p (N, Dz)dQ — = / % Rice (N, Dz2)dQ + - / 7Dz (N, Dp) dQ
2 Jq 2Jq 2 Jq

+§ /Q zZ:Dp (N (2))dQ + 3 /Q Z N (z) divg (Dp) dQ
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Then
Im </ 2N (AZ) dQ> (6.30)
Q
1 ) 1 o : B T
= 5 /Q PAZzdivg (N)dQ — B /Q A?zAzdiv, (N)dQ + % /Q (AzZN (2)) dQ} )
I O A
2/2 A 2/Q(A z— P) (AN) (2)dQ
/Q (A*z — P) (DN, D*z >(T1Rn)de+% /Q (A%2 — P) D*p(N,Dz)dQ
1 2. B\ ps 1 22 2
2/Q(A zP)chc(N,Dz)dQ+2/Q(A — P) D*2 (N, Dp) dQ
1 . . 1 B
+2/Q(A22—P)N(z)dwg (Dp)dQ+2/Q(A2 P) Dp (N (2))dQ
and hence

Im ( /Q %N (AZ) dQ>

1 1 0(A 1
= 3 / PAZzdivg (N)dQ — 2/2 (0,uZ) Azdivg (N)dE + 2/Q Vg (Az) \gdivg (N)dQ

/ AZ(V, (A2), Y, (div, (N))),dQ + /Q Dp (Az) Azdiv, (N) dQ
T i o) 1 .
Q/Q(AZN())dQL—Q/E o N(z)d2—2/QA Z(AN) (2)dQ

— / A?z(DN,D2z>(TIW)2dQ+1 / A?zD%p (N, Dz) dQ
—/ A?ZRicc (N, Dz)dQ + = /AQZD2 (N, Dp) d@Q
/ A2zZDp (N (2))dQ + = / A?ZN (2) divy (Dp) dQ + = = / P(AN)(2)dQ
Q
1 2
+/QP<DN,D 2)(r,mny2dQ — 2/QPD p(N,Dz)dQ
U b [ ppe
+2/QPRZCC<N,DZ)dQ 2/QPD z (N, Dp)dQ

1 _ 1 _ .
= /Q PDp(N (2))dQ - ; /Q PN (2) divy (Dp) dQ
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Then
Im ( /Q 2N (AZ) dQ) (6.:31)
_ % /Q PAZzdiv, (N) dQ—% /Z 8(87)2@@9 (N)dS
+1/ Vg (Az) |2div, (N)dQJr;/Q(AZN(Z))dQ]:
/ AZ(V  (divy (N)))ydQ + /Q Dp (A=) Azdiv, (N) dQ
™ /E E; %) [D%p (N, Dz) — (AN) () — (DN, D*2) g,z + Rice (N, Dz)] ds
% /E 8(522) (D22 (N, Dp) + Dp (N (2)) + N (2) divy (Dp)] dS
5 [ (V0 (A2, 9, (AN) (2),4Q + 5 [ (9, (42), ¥y (DN, D) 15010
3 | (55 (82), 9, (D (. D))y [ (9, (42), 9, (Rice (¥, D)) g

= /Q (V, (A2), (V4D (N, Dp))d@ — | /Q (Vg (AZ), Vg (Dp (N (2))))gdQ
5 / (Vy (A2),V, (N (2) divy (Dp)))ydQ
Q
r /Q Dp(A2) (AN) (2)dQ + /QDP (AZ) (DN, D*2) (z,mny2) dQ
_% /Q Dp(AZ) Rice (N, Dz) dQ — % /Q Dp(Az) D*z (N, Dp) dQ
~3 ], DA% DoV (4@ [ Do(AZ)N @) divg (Dp) 4@
_;/Qpp (Az) (D*p (N, D2)) dQ
+;/ P [(AN) (2) + (DN, D*2) (g, gny2 — D?p (N, D2)] dQ
Q
+% /Q P [Ricc (N, Dz) — D*2 (N, Dp) — Dp (N (2)) — N (z) divg (Dp)] dQ

compute the second term of the LHS of (6.23) to obtain

Im (i /Q A2zN(Az)dQ> (6.32)

2
_ 1/ 0(Az) dZ—l/
2 )y 2 Jx

op
Re [ /Q Dp(Az) N (AZ) dQ} +% /Q Vg (A2) [2divg (N) dQ

d(Az)|?
or

dS — Re [/Q DN ((V, (Az),V, (A%)))dQ
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Where 7 = 7 (x) is the tangential vector at = € I" and we have used the divergence
formula.

1 _ .
3 | "on [N (2) divg (Dp) — Azdivg (N) — (DN, D*z) (g, gn)2] dS (6.33)
+% 9 gzz) [D?p (N, Dz) + Ricc(N,Dz) + D*2 (N, Dp) — (AN) (2)] dE
%
d(Az)? . 2 2 2 2
< 5 d¥ + [ |Azdivg (N)[?dS+ | [(AN) (2)[?dS+ [ (DN, D?2),gny2|” dS
by 1] by by by

+/ Ricc(N,Dz)|2dE—|—/ ]DQz(N,Dp)}2dE~I—/ |N (2) divy (Dp)|? d%.
by by b))

J

In the last step where we have used the Sobolev trace theorem with constant C' > 0.
Combining (6.23), (6.31), (6.32) and (6.33) gives

0 (2)
o

d(A2)|?

o d¥ + C||ZH%2(0,T;H3(Q))

2
dX < Ryp+ Ri1+ Ry + b[)’T (634)

wher

1
R[) — 2/2

R = Re ( / DN (V, (Az),V, (A2)) dQ) / AZ(V, (Az),V, (div, (N))),dQ

2

ACS (6.35)

or

5 (V0 (A2), 9 (AN) ()

1

+5 /Q (Vg (A2),Vy ((DN,D*2)(1,gny2))gdQ — /Q (V4 (AZ),V, (D?p(N,Dz)))edQ

1
+5 /Q (Vg (A2),V, ((DN,D*2)(1,gny2))gdQ

—% /Q (Vy4(A2),V, (Ricc(N,Dz)))ng—é /Q (Vg (AZ), (V4D?*z (N, Dp)))ydQ
1

_2/Q<vg (AZ), V4 (Dp(N (2))))gdQ

3 (%0 (A9, 9, (¥ @) div, (D)@

Ry = / P [(AN)(2) + (DN, D*2)(q,gny2 — D*p (N, Dz)] dQ

+5 /QP [Rice (N, Dz) — D*z (N, Dp) — Dp (N (2)) — N (2) divg (Dp)] dQ

T

bor — % /Q (AzN(z))th
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We now estimate Rg. To this purpose, we first introduce the following operator:
B = first order differential operator on 2, tangential to I" (i.e., wihtout transversal
derivatives to I when it is expressed in local coordinates) and with smooth coefficients
on .

Next, we define a new variable

n=BzeC(0,T;H*(Q)) (6.36)
and apply B to system (6.18) to obtain
n,(z,t) —iA*n = P (z,t) € Q@ x (0,T] = Q,
n(z,0) =0, zeQ, (6.37)
n(@,t) = 200 o (a,1) €00 x [0,T] = 3,
where
S = —i[A%B]z—iBA 2y, (6.38)
Kz = [AQ, B] zeC (0, T, H_l(Q)) is the interior commutator.
Since 88" = [%,B} z is smooth, we can replace it with the homogenuous
VA [9Qx[0,T] va
boundary value without loss of generality. In this way, we get
9 (Az) |
/ oA (6.39)
T 37’

= /|B(Az)\2dr:/|A(Bz)\2dr+ll=/|An|2dr+ll
T Iy r

Where I; denotes the lower order terms of z, so we need to evaluate only |, \An[Z dr
for the system (6.36) in order to evaluate Rj.

Now, multiply both sides of the first equation of (6.36) by N (7)) and integrate over
). We obtain

1 ’ ’ ’ ’
with

R, = Re /Q 'F](Vgn, Vy (divg (N)))QdQ + % RenAnA (divg (N))dQ (6.41)
+RgLAnKANMm+auﬂmD%hmwﬂdQ

+Re / An [Ricc (N, Dn) — D*p (N, Dn) — D*n (N, Dp)] dQ
Q

R, = —%Re /Q ARDp (ndiv, (N))dQ—i—%Re /Q ndivy (N) Dp (A7) dQ
+Re [ N (@) Dp (An) dC.
Q
R, = —%Re / Sndiv, (N) dQ + Im / SN (n) dQ,
Q Q

T T
+ [ nfdiv, (V) do
0 Q 0

1 _
bor = 2Im/977N(77)dQ
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compute the two terms of Rll respectively to obtain

1 _
—3 Re/Q Sndivg (N) dQ (6.42)

1 1
— _-Re / n [A2, B] ndiv, (N) dQ — = Re / nB <A‘1/27a> divy (N) dQ
2 Jo 2 Jg

and

Im / SN (n)dQ (6.43)
Q
= ~Be [ n[A% BN @) ke | B(47 ) N ) dQ

Then, from (6.34) and (6.39)-(6.43), we have

2

> d¥ < R+ Ry + by p, (6.44)

16 Jx

0(Az)
Ova

Where

, |
7 = Ri+Ry+R, — 5 Re /Q n [A%,B] ndivy (N) dQ (6.45)
1
—Re/ n [AQ,B] nN (1) dQ + 511
Q

1
Rl — Ry—Re / B (A‘1/2~ya> N (1) dQ — 5 Re / nB (A—l/%a) divy (N) dQ
Q Q
or = bor+byr

In the following steps, we estimate R/l/, R/Q/, bg’T separately
Step 2. Evaluation of R].It is found that the dual system of (6.16) is

zt(x,t) —1Aqz(x,t) =0,
z(0) = 2o, (6.46)
y = B*A3/22’,

Where A;, B* are given by (4.4), (6.15) respectively, It is well known that system
(6.46) associates with a Cy_group solution in the space V' that is to say, for any
29 € V to (6.46) depends continusly on zp. By this facts and letting yu = 0 in (6.45),

we obtain
i

which is equivalent to saying that for any initial wg € V', the solution to system (6.18)
with u satisfies
I

2

042" 155 < Crllao?, (6.47)

Ova

2

—3/2
AN\ 5: < Oz (6.48)

Ova
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Hence the operator B* is admissible, and so is B. Therfore,

g — w is continuous from L2(0,T; L*(Ty)) to C(0,T;V"). (6.49)
By virtue of 6.49, we have

z € C(0,T;V) depends continously on g € L*(0,T; L*(Ty)). (6.50)

Therefore
Rlll S HUH%Q(O,T;L2(F0)) Vu c LQ(O,T, LQ(FO)) (651)

Step 3. Evaluation of R/ and b{)”T. This can be easy done from the representation
of Ry and bf 1 in (6.22),and by virtue of (6.50). we can readly obtain

Ry + b5 < lull720. 702 (r0)) Vu € L*(0,T; L*(To)). (6.52)

From (6.44), (6.51), and (6.52), it is seen that (6.20) holds true. B

6.4 Proof of Theorem 6.2

From the appendix of [53], the transfer function of (6.16) is
, o\l
H()\) = AB* ()\ +A> B (6.53)

Where A, B and B* are difined by (6.9), (6.10), (6.15) respectively. Moreover, the
well-posedness claimed by Theorem 6.1 implies that there exist a positive constants
M, a > 0, such that
Sup HH()\)HL(U) =M < 40 (6.54)
Re >«
Proposition 6.1 The Theorem 6.2 is valid, if for any v € C§°(I'g) and € > 0, the
solution v.to the following sysytem

iv.(z) —eA%v(z) =0 x € Q,

ve(x) = u(z) zel, (6.55)
Aelz) — g zel,
Satisfies
Lim [ 2% ar = o (6.56)
e—0t Jr ova N ’

Proof. We need only to show that H(A)u converges to zero in the strong topology of
U along the positive real axis ([53]), that is,

Lim H(Mu = .
Lim (Mu =0, (6.57)

for any u € L?(T'). By density argument and (6.54), it suffices to show that (6.57)
holds for all uw € C§°(I'g). To this purpose, let

(@) = (</\2 —ifl)_lBu> (2). (6.58)
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Then vy, satisfies
vy (z) — iA2vy(z) = 0, x €,

ua(z) = u(z) zeT, (6.59)
ngff) =0 zel,

and
0 (A((A1)"*vx(2))

Ova

(H(M\u) (z) = A . Vazel (6.60)

Because u € C§°(I), there exists a unique solution to (6.59) Let & € H*(2) be the
unique solution to the following boundary value problem

A2%5(x) =0, z €,
U(z) = u(z) rel, (6.61)
%U(LE) =0 zel,
N

Then (6.59) becomes

vy (z) —1A2 (vy(z) — () = 0, x €,

v () - o(z) =0 zel, (6.62)
Aealz)-2(w) _ g veT,
NA((A)73 20\ (z) = vp(x) — () (6.63)

Therefore, (6.60) is found to be

_ 10ux(z) 100(=)
X Ova A Ova

(H(ANu) (x) (6.64)
If we set v.(z) = vy(z) with e = §, we obtained the required result immediately.

From the boundary condition of (6.59), it is easy to know that (6.56) holds. This
completes the proof of Theorem 6.2. W

6.5 Proof of Theorem 6.3

In this section we establish the exact controllability of system (6.1), by means of the
Hilbert Uniqueness Method (the proof is similar to that in theorem 4.3 in[67]). Since
by Theotem 6.1, the operator B is admissible in system (6.16), the exact controllability
of system (6.1) is equivalent of the exact observability of the following dual problem
of (6.1):

i, (z,t) + A%p(x,t) =0, in Qx(0,T)=Q,

p(z,t) = g (z,t) =0 on dQx (0,T) =3, (6.65)

2(2,0) = golx) in €.

That is, the "observability inequality" holds for system (6.65) in the sence of (see
(6.18) and (6.20))

0(Ayp (z,t 5
/ ’(ay())’zdz >Cr ||y VP eV, T>T (6.66)
) A
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for some Ty > 0.
In order to prove (6.66), we let A defined by (6.65) and let ¢ be a solution to (6.66).

°f

Then ¢ A generates a strongly continuous unitary group on the space V.= D(A1) and
hence
3 i
le@ly = [ate®], =l (6.67)
0 320
- = At ,
1%l = 4% .,
Next, we claim that for f € D(A%), the norms
3

HfHD(A%) = HA%f“B(Q) and {/Q Vg (Af)|§ dx} are equivalent. (6.68)

Actually, {fQ Vg (Af))? dZC} being a norm is a trivial fact, since the norms ||f|| pak) =

f |V, (f)l € L*(Q) with f|p = Of 0, then it follows that (Af)

ova

Af., =1 € LQ( ) and fy, lr 0 and hence f;; € H?(Q) by the elliptic regularity
theory. THis together with fl, = 0 yields f € L?(f2), by the Poincaré inequality.
Thus f € H3(Q2) and so (6.68) follows (see [67]).

Lemma 6.1. Suppose that (H’1) and (H’2), the following inequality holds true:

w +Cn d(Ap)\? 2#2 )
< 25 ) /E ( 8VA dz +— va(p( )HC(QT;L?(Q)) (669)

> Hbo - (%C-I- C/) El T —2(pg + 3#3)5l (e ll2D(A%)

where £ > 0 is sufficiently small and p; = max IN(x)|, pe = meax |N(2)],

Proof. Multiply the both sides of the first equation of (6.65) by N(A®) and inte-
grate on () to obtain

/ 0, N(AD)dQ — i / A%pN(AD)dQ = 0. (6.70)
Q Q

By making use of the computation procedure from (6.24)-(6.31) by setting h(x) to
N(z), we get respectively

i / A%pN(AP)dQ (6.71)
Q
— Re /E aéAf)N(Acp)dE—Re— /Q (V, (Ap),V, (AD)),dQ
. / aa Ap)dS — Re / DN (V4 (Ap),V,(AD))dQ
VA

—/ IV, (Ap))? N.VdE—l-/ IV, (Ap)|? div, NdQ
2 Js g 2 Jo g
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Im ( /Q o N (A) dQ> (6.72)

- i/(AsoN( >>d@ /rv (Ag) divy (N) dQ

and

/ Ap(V Y, (divy (N)))4dQ

T3 /Z aéfjf : [D?p (N, D) — (AN) (¢) = (DN, D) (g, pny2 + Ricc (N, Dg)] dS:

% /E ‘95‘:‘? [D*¢ (N, Dp) + N (¢) divg (Dp)] d5:

2

=5 | (Vo (A89) .V, (D% (N, De))}ydQ ~ 5 [ (7, (47).7, (Rice (N, Dy))yd@
Q

5 [ (9 (A0). Y, (AN) (£)4d@ + 5 [ (7,(A9). Vy (DN, D) 1,5002)),Q
Q Q

2 Q
3 (T (AR), ¥y (D% (V. D03 5 [ (V4 (A2), ¥, (Dp (N (£l
By (6.70), (6.71) and (6.72), we get
3
ZLi = Re /E 9 é‘/:f)N(A@)dE - % /E IV, (Ap)? N.vds (6.73)

T [; / 0(A) [(AN) (¢) — D*p (N, Dp) + D*¢ (N, Dp) — Ricc (N, Dp)] d%:
P

N ;/Eagsap) (DN, D)1, zny2 — N (¢) divy (Dp)] dz]

T
— Re [ DN (Y, (A¢).V, (A9)dQ - jTm | (ApN (s))d0
Q Q

1

+ [2 /Q (Vg (A®),Vy (AN) (s0)>ng+% /Q (Vg (AD),Vy ((DN, D*@)(,mny2))gdQ

0

3 (Fa (A2, ¥,y (D (¥ DRy ;[ (9, (47) 9, (Rice (N, De))yQ
~5 | (Vo (A9) .V, (D% (N, D)))ydQ ~ 5 [ (7,(49).9, (Dp (N (9))),Q
Q Q

We first compute the three terms in the LHS of (6.73).
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For any € > 0,
0 (A
Li = Re / ( ‘p) N(Ap)ds (6.74)
1 2
< - +e|Ap|”| dX
9 8VA
( H1 / 2
< dZ — Ap|*dE
< ( a +5¢ [ AP
( 1251 _
< dZ—i— CEH ||L2 or:pud)’

\_/

- |

3 | 2oL [(AN) (6) — D (N, D) + D (V. D)) d (6.75)

1 [d(A
L1 / (Ap) [((DN, D) 1, gy — N () divg (Dp)] d — Rice (N, Dy)
2 )y Ova
Cn [ (0(Ap))? :
< _
= % ( dva ) O el oty

where in L, and L3 we used the trace theorem and the Poincaré inequality:

1Al 2y < IRl < Clellms < 16l 43,
1D2ll 2y < ClD@l 2y < C”SOHHB(Q) < H‘PH pah
and by (H2)
Ly = —;/Z Vg (Ap)|Z Nvds <0 (6.76)

Adding (6.74), (6.75) and (6.76), we get

LHS of (6.73) < <’“+CN>/Z<6(A‘P)> as+ (B0 + 0 < ol

£2(0,7;0(A%))
(6.77)

2¢e 81/A

Making use of (6.67), we obtain

py + Cn 2(Ap)\* M 2
LHS of (6.73) < <125>/2< o > d2+(?10+0/) eT [ pat

Next, we estimate the three terms in the right hand side (RHS). Using (H'1) we get
at first

My = Re / DN (V, (Ag), V, (A9)) dQ > /Q b(w) [V, (Ap)2dQ  (6.78)

Y

bo/ 1V, (Ag)[2dQ = bo ||

£2(0,T;D(A))

v

boT H‘pOHD(A%)
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T
f% Im /Q (APN () d2

|Ms| = (6.79)

0

IN

o (IIAw (Dl 2@y 1952 (D)l ey + || A%, o HWOHW)

1 —1|2 1
o < 1A (T)ae) + 2 1V (D)) + AL, o + 2 vaso()uim))

2y
3

IN

IN

2 2
Vg (T)Hc(o,:r;/;z(g)) + 2pi9 HSDOHD(A%) :
and
63 2 02
|M3| < e ”VgSD (T)Hc(o,T;Lz(Q)) + 6pge ”‘P HD(A%) (6.80)
By (6.69), (6.78), (6.79) and (6.80)

2y

RHS of (6.73) = boT | ¢° [}y 43,2 iz + 315 € [ 1y a3~ =

||vg$0 (T) H2C(0,T;L2(Q))
(6.81)
Inequality (6.69) then follows from (6.73), (6.77) and (6.81). W
Remark 6.1. We reestimate the second term of the RHS of (6.73) to obtain
T

My — —%Im /Q (AN () dO (6.82)

0

IA

205 (AP (Dlzn Va9 (Dl + 477

ey 195

— 12
iz (189 (D) sy + 1950 Dy + [A2] )+ 19060 o)

IN

2 0|2
< 2 <\|¢(T)HD(A;;) + e HD(Ag))
0112

< dpsle HD(A%)'

This improve (6.81) as
0|2 0|2
RHS of (6.73) > boT ||¢ HD(A%) — (4pg + 6p3) || HD(Ag) . (6.83)

It then follows from (6.73), (6.77) and (6.83) that

9 (A‘P))Q [bo — (5-C +C")e] 2 (4pg + 6pu3) 0|2
—= ] dX > T — 3
L) et we oty 19
(6.84)
> 0, (6.66) then follows

[bo— (&L C+C)e]2e
p1+Cn

forC’T:C”(TfTO),TUZ%andT>T0.
2

In what follows, we prove that the requirement Tj in (6.66) can be taken as Ty = 0.
Lemma 6.2. Suppose that (H1) and (H2) holds. Then for any 7" > 0 and
nonegative integer k, there exists a Cr > 0 such that

2(Ap)\?
2 2
||vgso<T>uC(0,T;L2(m)scT{ L(%n2) s 1avlinm - 089

Choosing € > 0 small enough so that C" =
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Proof. We suppose that (6.85) is not true and obtain a contradiction. Let {¢,,} be
the solutions of the following system over [0,7] :

7'90;7, + A2(Pn<xvt) =0, inQx (OvT) =@,

On = 2 = on 90 x (0,T) = %, (6.86)
on(2,0) =@ (z) in Q.
such that
va(pn (T)H%V(QT;LZ(Q)) =1 (687)
and ,
O (A
[ 2820 4 A sy — 0 s o (689
Yo VA
By (6.69), we have
1€21?, < € uniformly for n (6.89)

for some constant C' > 0. Hence, there exists a subsequence of {@2}, still denote by
itself without confusion, and a function ¢° € V such that

@2 — 0 weakly in V. (6.90)

Let  be the solution to (6.86) associated with the initial data ¢°. Then we can claim
that there exists a @ € L (0,T;V) such that

©, — @ weak® in L>° (0,T;V). (6.91)

In fact, since

Pu(t) = U)pn,  @(t) = U(t)e", (6.92)
where U(t) is the unitary group generated by 74 in D(A%). For any ¢ € L™ ((), T; D(A%)’> ,
it follows that

T 3 3
| (4 at = 20 470 (6.93)
= [ (0= atew)
— /OT (A% (0 — ), A75 (U(t) w(t))p(m dt — Oas n — oco.

where in the last step we used the Lebesgue dominated Theorem, (6.90) and the
property that ||U(t)|| is uniformly bounded over ¢ > 0. Equation (6.91) then follows
from (6.93). Since (6.91) implies that {¢,,} is uniformly bounded in L (0,7"; V'), this
together with the compact imbeding: D(A%) — D(A%) = H}(Q) implies that there
exists a subsequence of {p,,}, still denoted by itself without confusion, such that

v, — @ strongly in L* (0, T; H} (Q)) . (6.94)
From (6.87) and (6.94), we obtain

I= ||vgson”%j(07T;L2(Q)) - ||VQ¢H2C(0’T;L2(Q)) =1, (6.95)
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Moreover, by (6.88), it follows that

d(Ag
(A%) _ Az —0on o0, (6.96)
Ova
Thus, @ satisfies
i+ A’9=0, inQx(0,T)=Q,
P == =0 ondx(0,T) =%, (6.97)
UAZ) — Ap=0onx.
VA

in ¢t € [0, 7] . By the Holmogren classical uniqueness Theorem (see [31, Theorem 5.33,
p. 129]), we conclude that @ =0 in Q.

This contradicts (6.95. Lemma 6.2 is proved. W

It is noted by (6.69) and (6.85), there exists a C7. such that

0/2 ! 9(Ap) 2 2
1l = €7 (/E< an ) =T IAelErm) (6.98)

for any 1" > 0.
Lemma 6.3 Suppose that ¢ satisfies

i()@t_‘_AQ(p:O? in Qx(0,T) =@,
=22 = on 80 x (0,T) = %,

o(Ay) _
al/f =0on X

Then for any T'> 0, =0 in Q.
Proof. Introduce F' = L (O, T, D(A%)), which contains the solution ¢ to system

(6.65) with the initial value " € D(A%). In addition, let E be the space composed of
all solutions of system (6.65) in F that satisfy the boundary condition

J(Ap)
Ova

=0. (6.99)
P

Now, we show that F is finite-dimentional. To this end, we only need to show that
Br N E is sequentially compact, where B is the unit ball of F. Let ¢ € Bp N E.
Then

(6.100)

i(got)t + Azgpt = 07 in Q x (07T) = Q:
o, = o = 2B2) _ g on 9Q x (0,T) = .
VA

Ova
Furthermore, by virtue O1f the interior regularity and the Sobolev trace Theorem, it
follows that Ayl € H2(X) and Ag,|y, € H™'(0,T;L*(T)). This together with
(6.98) and boundary conditions of (6.100) gives

2 < Cl a (Agpt> 2 dz A 2
le: Ol < Cr oA + [Ae -z (6.101)
b VA
2
< Cr ||A80t||§rl(o,T;L2(F)) <Cr H‘POHV VT > 0.
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Hence ¢, (0) € V and

o, = U(t)p,(0) € C(0,T;V). (6.102)

This shows that
¢, = iA%p € C(0,T;V). (6.103)

Therefore,
0 e C0,T; H™ (Q)).

We then have
BrNE < C(0,T; H' (Q)) — C(0,T;V), (6.104)

where each inclusion is compact embedding. This shows that F must be finite-
dimensional. By the arguments of [4], the elements of E are solutions of an equivalent
finite-dimensional ordinary differential equation with constant coefficients. Since such
a solution must vanish for all 7' > Ty > 0 by remark 6.1, for all 7> 0. N

Lemma 6.4. Suppose that (H1), (H2), (H3) holds, Then for any 7' > 0, there
exists a C'r > 0 such that

<W>2 s (6.105)

2
IVl o,rrz@) < CT/ ™

b
Proof. The proof is similar to that of Lemma 6.2. We suppose that (6.105) is not
true and obtain a contradiction. Let {¢,,} be the solutions of system (6.86) over [0, T,
which satisfies such that

IVgon (T)”é(o,T;Lz(Q)) =1, (6.106)
2

/ (8(A¢n)> d¥> — 0 as n — oo. (6.107)

=\ Ova

By (6.69), we have (6.89) and hence (6.90)-(6.95). By (6.107), it follows that (6.107),
it follows that 5 (AP)
P

= DI 1
Doa 0 on (6.108)

Thus @ satisfies
ip,+ A2 =0, inQx(0,T)=Qq,

p=%-0 on¥y, (6.109)
HAD) — () on ¥
N .

for all ¢ € [0,T]. By Lemma 6.3, we conclude that
»=0in Q, (6.110)

which contradics (6.95) so that (6.105) follows.H
Proof of Theorem 6.3. Combining (H1), (H2), (H3) and (6.105), we see that (6.66)
is true for any T > 0. This complites the proof of Theorem 6.3. W



Chapter 7

Conclusion and open problems

Regular linear systems form a very general class of infinite-dimensional systems whose
basic properties are rich enough to develop a parallel of the theory of control for
finite-dimensional systems. In the literature, several examples of regular linear sys-
tems described by partial differential equations has been given ([19], [20], [21], [1],...)
and the aim of this thesis is to provide further regular PDE’s systems. Indeed, we
have established the well-posedness and regularity of a several input/output systems,
namely:

1. Problem of transmission of the Schrodinger equation, in the state space X =
H~Y(Q), input/output space U =Y = L?(T).

2. Fourth order Schrodinger equation with variable coefficients, hinged boundary
control and colocated observation, in the state space V’ which is the dual space
of V.={p € H*Q): ¢|p = Ap| =0}, input/output space U =Y = L?(I'y).

3. Fourth order Schrodinger equation with variable coefficients, moment boundary
control, zero Dirichlet boundary condition and colocated observation, in the state
space HE(Q), input/output space U =Y = L?(Ty).

4. Fourth order Schrodinger equation with variable coefficients, Dirichlet boundary
control and colocated observation, in the state space V’ which is the dual space

of V.= {g@ € H3(Q): plp = Bay—‘i‘ = 0} , input /output space U = Y = L?(Ty).
The following open problems can be made regarding the material presented in this
thesis.

1. The exact controllability problem for the transmission wave equation with Dirich-
let boundary control has been considered in [36]. It would be interesting to study
the well-posedness and the regularity of this control system with the correspond-
ing colocated observation.
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2. In [58], the authors have considered the system

wi(x,t) = Aw(z, t) on Q x [0,00),

w(z,t) =0 on I'g x [0,00),
a%w(w,t) + |b(2)|? wi(x, t) = V2b(2)u(x, t) on I'y x [0,00),
%w(:c,t) — |b(z) [ wy(z, t) = V2b(z)y(z, t) on 'y x [0,00),

w(z,0) = wo(x), we(z,0) = zp(x) on €,

where 2 C R™ is a bounded domain with Lipschitz boundary I' = I'g U I'; with
IoNTy = 0 the function b € L*°(T1), such that b(z) # 0, for almost every
x € I'1, wo(z) and zp(x) are the initial state of the system. They showed that
this system is a conservative linear system 1With input, output space U = L?(T'g)

and state space Hi x H, with H, = D(Ag) = Hy, () and

Agw = —Aw,
D(Ay) = {weH} (Q)/AweH, yyw=0}.

with 7, is the Neumann trace operator and H = L?(€2). By conservative system,
we mean

T T
[w (., T), wi(, T)H%—I% XH+/O ly(0) 1 Z2ry) dt = [lwo, ZOH?{% XH+/O () 1Z2 g -

A study of regularity of this system is desirable.

1. In [5], the authors established sufficient conditions for the admissibility and the
observability of observation operators for semilinear systems of the form

yit) = Ay(t) + F(y(t), y(0) ==, t=>0, zcX,
z(t) = Cy(t)

where A is the infinitesimal generator of a Cop-semigroup (7°(¢));>0 in a Banach
space X, F'is a nonlinear continuous function on X and z is the output function.
Motivated by this paper, one may consider for future investigation, the well-
posedness problems for semilinear control system of the form

ye(t) = Ay(t) + Bu(t) + F(y(t), y(0) ==, t=>0, z€X,
2(t) = Cy(t)
with B € L(U,X_1) and C € L(X3,Y).

2. Although the class of well-posed linear systems includs many input/state/output
systems described by PDE or delay differential equations, there are impor-
tant systems that do not belong to this class, for example the heat equation
with Dirichlet control and Neumann observation (see ([34]) for other examples).
Therefore a new abstract framework for linear infinite-dimensional systems that
covers these examples is needed, some works in this direction, has been done in
([45], [44]).



Appendix A

Riemannian Metric generated by
the Principal part A

In this appendix, we recall some well known results from the Riemannian Metric.
Recalling the coefficients a;j(x) = aj;(z) of A, let A(z) and G(x) be respectively,
the coefficients matrix and its inverse, and the determinant of G(z) by p(x)

Alz) = ay(z); Glz)=[A@@)] " = (9(2)); (A.1)
p(z) = detlgj(x)], 4,5=1,...,n; z €R".

Both A(x) and G(x) are n x n matrices.A(z) is positive definite for any = € R" by
assumption

n

Z a@j<ﬂf)§zg] > 07 Vo € Q7§ = (§17£27 7571) S an (A2)
ij=1
A.1 Riemannian metric.

Let R™ be the usual topology. Define the inner product and the norm on the tangent
space T, R™ by

g(X,Y) = (X,Y), = gij(z)aiB, (A.3)

ij=1
1 ~ 9 “ 0 " (A
X = (X, X VX = i—,Y = — €T, R 4
| |g < ) >97 ;ala’m’ ;Bzaxie T ( )
It is easy checked that (R"™, g) is a Riemannian manifold with the Riemannian metric
g.
A.2 Euclidean metric.

For each x € R", denote by

XY =Y aif X, = (X.X)? (A.5)
=1
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The Euclidian metric on R” for € R™ and with reference to (A.1), set

A(z)X Z Zaw aj aml Zaz GTR" (A.6)

=1 7j=1

Thus recalling the co-normal derivative defined in (6.20), we have

88VA Z g% vi = (A(x)Vow) - v

=1

A.3 Covariant derivative and covriant differential

Denote the Levi Civita connection in the Riemannian metric g by D. Let

- 0 - 0
H= hy=—; X = — AT
be the vector fields on (R", g). The covariantdifferential DH of H determines a bilinear
form on T,.R"x T,R"™, for each = € R", defined by
DH(X,Y)=(DxH)Y),, VXY eT,R" (A.8)

Where Dx H is the covariant derivative of H with respect to X, This computed as
follows, in the notation of (A.7), (A.8), by using the axioms of a connection,

n

0
DxH = E E oyl o2 (A.9)
=1 i,k=1
~ Ol
X(h) = A.10
) = Paig,! (A.10)
I',, being the connection coefficients (Cristoffel symbols) of the connection D.
RS agkp agip 0gik -1
= - ii = (@ij A1l
320 (G + e~ )+ = ew) (A1)

Inserting (A.11) into (A.9) and then (A.9) into (A.8) yields

n

DH(X,Y) = (DxHY),=Y_ |X(h)+ Y heailly| ajg;  (A12)
l,j=1 ik=1

n

oh
by (A10) = Y 9, L+ Z higi Tl | cic; (A.13)
1,j=1 ik=1

Thus , in T,R"x T,R"™, DH(-,-) is equivalent to the n X n matrix

mij = 8 gzg + Z higi; Ty, (A.14)
i,k=1
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A.4 Hessian in the Riemannian metric g.

Let f € C?(R™). By definition, the Hessian of f with respect to the metric g is

D*(X.X) = (Dx(Vef).X), (A.15)
Z & (a 915 + Z Tk915 zk) Q; (A.16)
1,J=1 i,k=1

Where H =V f, hy = (Vyf), = fi is the I- coordinate of V, f:

=fi= Zalpaimp (A.17)
p=1
Put
ofi .
mij = oz, 91 T Z fkglj i Li=1..,mn (A.18)
i,k=1
Then

D?f is positive on T,R™ x T,R™ if and only if the

i,k=1
i,j =1,...,n is positive, with f; given by (A.17)

. oh,
n X n matrix <mij = 5091 + Z hkglJ i

The following lemma provide further relationships[56, lemma 2.1]
Lemma A.1. Let f, h € C1(Q) and let H, X be vector fields. Then with reference
to the above notation, we have

(a)
(H(z), A(x)X (2)), = H(z) - X(z), x€R"™ (A.19)

(v)
X(f) = X -Vof = (X.V,f), (A.20)

Where

Df@) = Vof(r) =3 (Z(ff) s divalin) = >0 %0 (o)

Zg

i=1 \j=1 i=1
divy(H) = Z\ﬁaxz <w/ (z )h-(:c)> (A.22)
A = ) (\/ @oi(@) 57 ) = Ap — (Dp) g, and (A23)
g o \/783: 0z
" aij 8\/ 0
bp = Zl 8331 ax]

p = 5 in(det fos(a)) (A.24)
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Where divg is the divergence operator in Euclidean space R", and V4, div, and Ay
are the gradiant operator, the divergence operator and the Beltrami- Laplace operator
in (R™, g) respectively.

(c¢) The normal derivative 8 defined by

y

B = (A(x)Voy) -v=Vyy-v (A.25)
VA
(d)
(Vgf.Vgh), =Vgof (h) = (A(z) - Vof,Vgh), = Vof - Alz)Voh (A.26)
(€)
Ay =divg(Vyy), yeC%Q) (A.27)

(Vof. Vy(H()), (@) = DH (Vof.Vyf) () + divo (|9, 2 H) (2)

— L |V, f? () divo (H) (), = €R™ (A.28)

Let p = be the unit outward-pointing normal to 9 in terms of the Riemmannian

\V \
metric g. The following Lemma [54, p. 128,138] provides some useful identities.
Lemma A.2. Let p,¢ € C%(Q) and let N be a vector field on (R",g). Then we
have
(1). Divergence formulae

divog(eN) = @divg(N) + N(p),divg(eN) = @ divg(N) + N(p), (A.29)
/divo(N)dQ = /N-VdF,/ divy(N)dQ2 = / (N, p),dr (A.30)
Q T Q r

(2) Green’s formulae

Apvlog = [ Avido= [ 57000 [ (909,000 (d3)
<A9907¢>L2(Q) = /QAngQ=/¢¢dF—/< 9% g¢> Q, (A32)
A(p) = YAp+2(Vep, Vi), + pAy

where we have

9 0 ) o\
2< gPs 9¢> (83?”(912) A('r) <a;‘b17..-7 8.:;)

Lemma A.3. We denote by X(R") the set of all vector fields on R". Let A : X(R") —
X(R"™) the hodge Laplace operator. Then [56, (2.2.7),(2.2.14)]:

Ag(N(®)) = (AN)(p) +2(DN,D’0) 5. + N(Agp) + Rice (N, D) (A.33)
N(Ag(p) = N(ASO) - D2p (N7 DSO) - DQQD (N7 Dp) ) V(,D € CQ(Rn)v
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Where Ricc is the Ricci curvature tensor of the Riemannian metric g,D%p, D?p are
the Hessian of ¢ and p, respectively, in terms of the Riemannian metric g.

For a fixed x € R". Let Ey, Es,..., B, be a frame field normal at = on (R",g),
which means that (E;, E;)=0;; in some neighborhood of z and (Dg, E;) () = 0 for
ij=1,..n.

Set N = > ~v,E;, then N(p) = > v,E; (@), where E; (¢) is the covariant derivative
i=1 i=1
of ¢ with respect to E; under the Riemannian metric g. Then
(Dp, D(N(¢))), = Ei(p)Ei(N () (A.34)
= Ei(p) [Ei (v;) B () + v, EiEj (#)]
= DN (Dg, Dp) + D*¢ (N, Dp)
From (A.33) and (A.34), we obtain

A(N(p) = (Ag+Dp)(N(p)) (A.35)
= Ay (N(p)) + (Dp, D (N(¢))),
= (AN)(¢) +2(DN,D?*p), ». + N(Ap) — D*p (N, Dy)
+Ricc(N,Dy) — DN (Dyp, Dp)

Lemma A.4. [19, Lemma 4.1] Let ¢ a smooth function on {2 satisfy ¢|r = 0.Then
there exists a continuous function g(x) on I' which is independent of 1) such that

8% oy
Agth(z) = 8TL2+Q($>8T/ (A.36)
oy = 1 9 , Ve el
8# ’VA‘g Ova
Morever, if 1 satisfies % L= 0, then
N@)p=00n Q  for any vector field N (A.37)
So,
0% 1 0%
A (V) =Ap+ (D = Ay = = T, A.38
W)= A+ DHW) =M= G5 = gz o (4.38)
and
ON(W) _ <3¢> _ (N A VA ( oY ) (A.39)
Ova ova lval, , lval, \Ova
2
= N-V%a—z/}:A@Z)N-V on X
’VA‘g aVA

Lemma A.5. Let ¢ a complex function defined on Q with suitable regularity. Then
there exist some constants C', possibly depending on g, N, and 2, such that:
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(1).
sup|[N|, < C, sup|DN|, <C, sup|divy(N)| <C, (A.40)
z€Q z€Q z€Q
sup [Dpl, < C, sup|Vgy(divg(N))| <C,
z€Q zeQ
sup |A (divy N), = C, sup |[Df (divg(N))| < C,
z€Q z€Q
sup |A (divg N)|0 < C, sup|Df (divo(N))| < C,
zeQ z€Q
sup [divg (N)|, < C, sup < C,sup |[Dfv| <C.
e weon | |val, €00
(2).

IN(@)| < ClVgol,, [Dple)] < C Vel , [Dple)| <CVyel,
(Vgp, Vg (divg(N))>g(g < C|Vgel,, [(AN) (), < ClAN| [Vgpl, < C|Vgel,

‘<DN, D290>wa’ < CIDN|, ‘DQ‘P‘Q <C ‘D2‘P}g>
|D?p (N, Dy)| < C|D?p| IN|,|Dgl, < C|Dyl,,
|D?¢ (N, Dp)| < C'|D?*p| |N|,|Dpl, < C|D?¢]
|Ric (N, Do)| < C'|Ricl|, |N|, |Dgl, < C|Dg|,,
(A.41)
(3).

2
lol? d2 < Clloll32 (g |Do|2d < C el F20 » |D%p.d2 < Cllo) 2
() () (@)

Q Q Q g
(A.42)



Appendix B

Linear semigroup theory

In this appendix we recall some basic properties of the theory of semigroups

B.1 Strongly continuous semigroups

Definition B.1. A strongly continuous semigroup is an operator- valued function
S(t) that satisfies the following properties:

1. S(t+s)=5(t)S(s) for any s, t >0

2. S(0) = Iy

3.

S(t)y — y|| — 0 when ¢t — 0%, for any y € X.

Some elementary properties of semigroups are given in the following theorem
Theorem B.1. [12] A strongly continuous semi group on a Hilbert space H. S(t)
has the following properties

1.
2.
3.

IS(.)]| is bounded on every finite subinterval of [0,00);
S(.) is strongly continuous for all t € [0,00);

If wo = inf§ (log [|S(t)[)), then lim 3 (log [S(t)]]) < +o0;

For oll y € H we have that %fg S(s)yds — y for t — 0T

For any w > wy, there exists a constant M, > 1 such that ||S(t)|| < Me“t for
all t > 0;

This constant wq is called the grouwth bound of the semigroup.
Let D(A) denote the subspace of all elements such that M converges in H
for t — 01.Define the operator on D(A):

Ay = %%W (A43)

Definition B.2. The operator given by (A43) is the infinitesimal generator of the
semi group S(t).
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B.2 The Hille-Yosida Theorem

In the sequel we shall denote by G(M, w) the set of all strongly continuous semigrous
S such that [|S(t)]| < Me*t, t > 0.
Lemma B.4. We have

{AeC, ReA>w} Cp(A)
R\ A)y = [F e MS(t)ydt, y € X,Re X > w.

Definition B.3. (Groups of bounded operators) A parameter family T'(¢), —oo <
t < oo, of bounded linear operators on banach space X is a Cp group of bounded
operators if it satisfies

1. S(0)=1Ix
2. S(t+s) =5(t)S(s) for —oo < t,s < o0,

3. %%S(t)x =z for z € X.

Definition B.4. (Self adjoint operators). Let H be a Hilbert space with the
scalar product (.,.). An operator A in H is symmetric if D(A) = H and A C A*, that
is, (Az,y) = (x, Ay) for all z,y € D(A). A self adjoint if A = A*.

Theorem B.2.(Stone Theorem) ([{6]). A is the infinitesimal generator of a
Co group of unitary on a Hilbert space H if and only if iA is self adjoint (iA) = (1A)*.

The result below which is known as the Hille- Yosida Theorem provide a complete
characterization of infinitasimal generators [12]

Theorem B.3. (Hille- Yoshida Theorem)([{6]) Let A : D(A) C X — X
be a closed operators. Then A is the infinitesimal generator of a strongly semigroup
belonging to G(M,w) if and only if

(i)-{Ae€C, ReA>w} Cp(A)

(ii)- [|R"(\ A)|| < 2oy for all 721, YA > w

(iii)- D(A) is dence in X.

Remark B.1. To use the Hille-Yosida Theorem requires to check infinite con-
ditions. However if M = 1 it is enough to ask (ii) only for » = 1, in such a case
S e G(M,w). If w <0 we say that S(.) is a contraction semigroup.
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