
Abstract

In this thesis, we establish well-posedness, regularity and exact controllability of sev-

eral input-output systems described by partial di¤erential equations (transmission

Schödinger equation, fourth order Schrödinger equation) with boundary control and

collocated observation. The aproach we adopt uses classical multiplier, geometric mul-

tiplier method on Riemanniann manifolds and compactness/uniqueness arguments
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Chapter 1

Introduction

Linear �nite dimensional control and observavtion systems have the following general
form

_x(t) = Ax(t) +Bu(t) (1.1)

y(t) = Cx(t) +Du(t) (1.2)

where x(t) 2 X = Rn, the state space, u(t) 2 U = Rn, the input space and
y(t) 2 Y = Rn is the output space, (A;B;C;D) is a quadruple of matrices of compat-
ible dimensions, which we call the generating operators of (1.1)-(1.2). An important
property of the di¤erential equation (1.1) is that its unique continuously di¤erentiable
solution is de�ned by

x(t) = etAx0 +

tZ
0

e(t��)ABu(�)d�: (1.3)

for any given initial state x(0) = x0 2 X. This formula de�nes the state trajectories
x(:) also for input functions u 2 L2([0;1);U):

For any linear systems as above, we denote by S(t) = etA the semigroup on X and
we introduce families of linear operators depending on � � 0; �� 2 L(L2([0;1);U); X);
L� 2 L(X;L2([0;1);Y )) and z� 2 L(L2([0;1);U); L2([0;1);Y ))

��u =

�Z
0

e(���)ABu(�)d� (1.5)

(L�x) (t) =

�
CetAx; t 2 [0; � ]
0; t > �

(1.6)

(z�u) (t) =

8>><>>:
C

�Z
0

e(���)ABu(�)d� +Du(t); t 2 [0; � ]

0; t � �

(1.7)
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1. Introduction 4

are the input (reachability), output (observability) and input/output maps, respec-
tively.

y(t) = CetAx0 + C

�Z
0

e(���)ABu(�)d� +Du(t) (1.8)

If we let x0 = 0 in (1.8) and take Laplace transform, we obtain the frequency domain
description

ŷ(s) = G(s)û(s): (1.9)

Where G(s) is the transfer function of the system (1.1)-(1.2), given by

G(s) = C(sI �A)�1B +D (1.10)

Notice that the operators �� ; L� and G satis�es the following properties
(i) �� 2 L(L2([0;1);U); X) is bounded, i.e., for some and hence (for any) t > 0;

there exists Ct > 0 such that

k�� (u)k2 =


�Z
0

S (� � �)Bu(�)d�


2

� Ct

tZ
0

ku(�)k2U d� 8u 2 L2(0; T ;U): (1.11)

(ii) L� 2 L(X;L2([0;1);Y )) is bounded, i.e., for some and hence (for any) t > 0;
there exists C 0t > 0 such thatZ t

0
kCS(:)xk2Y dt � C 0t kxk

2
X , 8x 2 D(A) (1.12)

(iii) There is an � 2 R, G is bounded on C� = fs 2 C=Re(s) > �g ; i.e., for some
(and hence for any) t > 0; there exists C 00t such thatZ �

0
ky(t)k2Y dt � C 00t ku(t)k

2
U ; 8u 2 L2 (0; t;U) when x0 = 0 (1.11)

Linear in�nite dimensional control and observation systems can be described:
(i) directely in terms of PDEs or di¤erential-deley equations (see Lions [35],

Lasiecka and Triggiani [33], Triggiani and Yao [56], Delfour and Mitter [16], Hale
[27], Hale and Lunel [28],...);

(ii) in terms of a quadruple (A;B;C;D) of abstract operators on a Banach (or
Hilbert) space (see Weiss and Curtain [61], Curtain [10], Salamon [52],...);

(iii) as a frequency domain relationship between inputs and outputs (see Wen,
Chai and Guo [67], [69], Sta¤ans and Weiss [53],...).

Let us illustrate (ii) with the well known in�nite dimensional linear systems, we
choose X, U and Y , to be the state, input and output Hilbert spaces, respectively.
This system is described as (1.1)-(1.2) where the (usually unbounded) A generates a
C0-semigroup S(:) on X, B is a control operator from U to X, C is an observation
operator from X to Y and D is a bounded operator from U to Y: If we suppose that B
and C are bounded operators between compatible spaces, then the properties (1.11),
(1.12) and (1.11) holds. However, many interesting in�nite-dimensional systems fall
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outside this subclass. Usual applications include actuators and sensors supported at
isolated points or on lower-dimensional hyper-surfaces, or on the boundary of, a spatial
domain. As it is well known, such control and observation operators present consider-
able technical di¢ culties even at the level of state space formulations of the dynamics.
Indeed, there has been and continues to be signi�cant research devoted to formulating
analogs of classical feedback control methodologies for such systems. The most gen-
eral class of in�nite-dimensional systems for which there is a well established theory
of representation, transfer function, feedback, dynamic stabilization, controllability,
observability is the class of well-posed linear systems. This class introduced by Sala-
mon and Weiss in the late 1980s cover many control systems described by PDE�s or
di¤erential delay equations. The aim was to provide a unifying abstract framework
to formulate and solve control problems for systems described by functional and par-
tial di¤erential equations. Roughly speaking, a well-posed linear systems is a time
invariant system such that on any �nite time interval, the operator from the initial
state and the input function to the �nal state and the output function is bounded.
This means that every well-posed system has a well de�ned transfer function G(:).
An important subclass of well-posed linear systems is formed by the regular systems.
A regular system ([63]) is a well posed system satisfying the extra requirement that
lim

s2R;s!+1
G(s) = D exists.

There is now a rich literature on the abstract theory for regular well-posed linear
systems and from a practical point of view, the construction of speci�c examples of
in�nite dimensional systems which belong to this class is of considerable importance.
In recent years, a number of PDEs with boundary control and observation are proved
to be well-posed and regular (see Guo and Shao [20], [21], [19], Guo and Zhang [18],
[25], [23], [24], Allag and Rebiai [1], Weiss, [64], Byrnes, Gilliam, Shubov and Weiss
[6]...).

Byrnes, Gilliam, Shubov and Weiss [6] established the well posedness and regu-
larity of the multi dimensional heat equation with both Dirichlet and Neumann type
boundary controls. Using micro local analysis, Ammari [3] proved that the wave equa-
tion with boundary Dirichlet input and colocated output is well-posed with state space
X = L2(
) � H�1(
), input, output space U = Y = L2(�0) and the regularity was
proved by Guo and Zhang [18]. The well posedness and regularity of multi dimen-
sional Euler-Bernoulli plate equation on a bounded domain of Rn (n � 2) ; in the state
space X = L2(
) � H�2(
) and input output spaces U = Y = L2(�0) was estab-
lished by Guo and Shao [21] and they proved in [20] that the system composed by
Schrödinger equation with Dirichlet control and colocated observation with state space
X = H�1(
) and input, output space U = Y = L2(�0) is well-posed and regular. By
using the Riemannian geometry, Guo and Zhang [22] showed that the wave equation
with variable coe¢ cients is well-posed and regular. Guo and Shang [23] established
the well-posedness and regularity of an Euler-Bernoulli plate with variable coe¢ cients
and boundary control and observation by using the multiplier method on Riemannian
manifold. Similarly to [23], Wen, Chai and Guo [69], proved the well-posedness and
regularity of Euler-Bernoulli equation with variable coe¢ cients and Dirichlet bound-
ary control and colocated observation. A system of transmission of Euler-Bernoulli
plate equation with variable coe¢ cients under Neumann control and colocated obser-
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vation is studied by Guo and Shao [19], using the mulitiplier method on a Riemannian
manifold, it was shown that the system is well-posed and regular with feedthrough op-
erator is found to be zero, then they developed under a uniqueness assumption the
exact controllability by establishing the observability for the dual system.

The fourth order Schrödinger equation arises in many scienti�c �elds such as quan-
tum mechanics, plasma physics, nolinear optics and so on. In quantum mechanics, the
solution '(x; t) of system (4.43) denotes the probability amplitude function and the
conservation of the norms validates the Born�s statistical interpretation of '(x; t).
Furthermore,

R

 j'(x; t)j

2 d
 represents the probability of �nding the particle which
will not disapear in 
. The existence and uniqueness of the solutions has been studied
intensively from perspectives of mathematics (see [29], [30]) and the references therin.

Wen, Chai and Guo [67], studied the well posedness and exact controllability of a
system described by the this equation on a bounded domain on Rn (n � 2) with bound-
ary control and colocated observation, with the state space X = H�2(
) and the input
and output space U = Y = L2(�0): The Neumann boundary control problem is �rst
discussed, it is shown that the system is well-posed. This result is then generalized to
the Dirichlet boundary control problem. Then they discussed the exact controllability
with the Dirichlet boundary control, which is similar to the Neumann boundary case.
In addition, they proved that both systems are regular and their feedthrough opera-
tors are zero. They showed in [68] that the same equation with hinged boundary by
either moment or Dirichlet boundary control and colocated observation are well-posed
which implies that the systems are exactly controllable in some �nite time interval if
and only if its corresponding closed loop systems under the direct output proportional
feedback are exponentially stable, so they discussed the exact controllability of the
systems. In addition they showed that the systems are regular and their feedthrough
operators are zero.

Wen and Chai [70] generalize the well-posedness and exact controllability of this
equation with Neumann boundary control ([67]) in the case where the coe¢ cients are
spatial variable dependent. Using the multilplier method on Riemannian manifold,
they showed that the system is well-posed, regular and that the feedthrough operator
is zero. So in order to conclude feedback stabilization from well posedness, they studied
the exact controllability under a uniquenss assumption by presenting the observability
inequality for the dual system.

To facilitate the reading of the thesis, we give a brief description of the material
contained in the ful�lled chapters.

Chapter 2: This chapter contains some material which will be used in this thesis
such as: admissible control and observation operators, transfer functions, well-posed
and regular linear systems, concepts of controllability and stability of well-posed linear
systems.

Chapter 3: The aim of this chapter is to study the well posedness, regularity
and exact controllability for the problem of transmission of the Schrödinger equation
with Dirichlet control and colocated observation. First, we form the system into an
abstract framework of a �rst order colocated system, this formulate enable us to show
that the system is well-posed with input and output space U = Y = L2(�), state
space X = H�1(
); by using the multiplier method. The regularity of the system is
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also established and the feedthrough operator is found to be zero. We conclude this
chapter by obtaining the exact controllability using the observability inequality of the
dual system.

Chapter 4: The objectif of this chapter is to generalize the well posedness
for fourth order Schrödinger equation with hinged boundary control and colocated
observation [70] to the variable coe¢ cients case. On the one hand, we establish
the well posedness of this system in the state space V 0 which is the dual space of
V =

�
' 2 H3(
) : 'j� = A'j = 0

	
with respect to the pivot space L2(
) and the in-

put and output space U = Y = L2(�0) with help of multiplier method on Riemannian
manifold. In addition this system is regular with zero feedthrough operator. On the
other hand, we establish the exact controllability of this system by presenting the
observability inequality for the dual system.

Chapter 5: We recall that in chapter 4, our system is described with hinged
boundary condition. In this chapter we study the same system with impose the mo-
ment boundary control and set the Dirichlet boundary condition to be zero. We
begin with showing the well posedness of this system in the state space H1

0 (
) and
input/output space U = Y = L2(�0), the regularity of the system is also proved with
feedthrough operator is found to be zero. From the result of the well posedness, we
know that this system is exactly controllable in some interval [0; T ] (T > 0) if and
only if its corresponding closed loop systems under the output proportional feedback
u = �ky, k > 0 is exponentialy stable. Based on this argument, to get the feedback
stabilization of this system from the well posedness, we study the exact controllability
of the open-loop system.

Chapter 6: In this chapter we consider an open-loop system of a fourth or-
der Schrödinger equation with variable coe¢ cients, Dirichlet boundary control and
colocated observation, following the approach developed in [67] and the multiplier
method on Riemannian manifold, we show that the system is well-posed with in-
put and output space U = Y = L2(�0), state space V 0 which is the dual space of

V =
n
' 2 H3(
) : 'j� =

@'
@�A

��� = 0o with respect to the pivot space L2(
). In ad-
dition, this system is regular with zero feedthrough operator. In order to prove the
feedback stabilization from well posedness, we discuss the exact controllability of this
system.



Chapter 2

Basic properties of regular linear
systems

In this chapter, we introduce some basic concepts concerning regular linear systems. To
this aim, we de�ne the admissible control and observation operators, transfer function
and well posed linear systems. For detailed de�nitions, we refer to Salamon [52],
Curtain [17], Prichard and Salamon [47], or to Weiss [63], [64].
Notation. Throughout this chapter, U; X and Y are Hilbert spaces which are

identi�ed with their duals. A denote the generator of a strongly continuous semigroup
S. The Hilbert spaces X1 and X�1 are de�ned as follows: X1 is the domain of A with
the norm kxk1 = k (�I �A)xk; where � 2 � (A) is �xed and X�1 the completion of
X with respect to the norm kxk�1 = k (�I �A)�1 x: These spaces are independent
of the choise of �: If D(A�) is quite with its graph norm, then X�1 can be identi�ed
with D(A�)�, the dual of D(A�) with respect to the scalar product of X. We have
X1 ,! X ,! X�1, densely and with continuous embeddings. The semi group S can
be restricted to a semigroup on X1 and extended to a semigroup on X�1. These
three semigroups are isomorphic and we shall denote them by the same symbol. The
generator of S on X1 is the restriction of A to D(A), and the generator of S on X�1
is the extension of A to X, which is bounded as an operator from X to X�1: Like in
the case of S, we will use the same notation for the original generator A and for its
restriction and extension described above.

2.1 Admissible control and observation operators

2.1.1 Admissible control operators

The concept of an admissible control operator is motivated by the study of the solutions
of the di¤erential equation

_x(t) = Ax(t) +Bu(t) (2.1)

where u 2 L2loc([0;1];U); x(0) 2 X and B 2 L(U;X�1). We would like to study those
operators B for which all mild solutions x of this equation are continuous X-valued
functions. Such operators will be called admissible.

8



2. Basic properties of regular linear systems 9

LetB 2 L(U;X�1) and � � 0:We de�ne the input maps �� 2 L(L2([0;1);U); X�1)
by

�� (u) :=

Z �

0
S(� � �)Bu(�)d(�); 8u 2 L2([0;1];U) (2.2)

De�nition 2.1. The operator B 2 L(U;X�1) is called an admissible control operator
for S with respect to X�1 if for some � > 0 the inputs maps f��g�>0 are bounded
from L2([0;1);U) to X; i. e., Rang �� � X:

The operator B is called bounded if B 2 L(U;X) and unbounded otherwise.
Obeviously, every bounded B is admissible for S:

Proposition 2.1. ([57]) Suppose that B 2 L(U;X�1) is admissible; i.e., Rang
�� � X holds for a speci�c � > 0: Then for every t � 0 we have

�� 2 L(L2([0;1);U); X)

Remark 2.1. By a step function on [0; � ] (or a piecewise constant function) we
mean a function that is constant on each interval of a partition of [0; � ] into �nitely
many intervals. We have the following equivalent characterization of admissible control
operators: B 2 L(U;X�1) is admissible i¤, for some � > 0, there exists a Kt > 0 such
that for every step function v : [0; � ]! U;

k�� (v)k � Kt kvkL2 ; (2.3)

Proposition 2.2. ([57]) Assume that B 2 L(U;X�1) is an admissible control
operator for S. Then for every x0 2 X and every u 2 L2loc([0;1);U), the initial value
problem

_x(t) = Ax(t) +Bu(t); x(0) = x0;

has a unique solution in X�1. This solution is given by

x(t) = S(t)x0 + ��u; t � 0

and it satis�es
x 2 C([0;1);X) \H1

loc([0;1);X�1):

2.1.2 Admissible observation operators

We now introduce the concept of an admissible observation operator, which will turn
out to be the dual of the concept of an admissible control operator.

Let C 2 L (X1; Y ) : We are interested in the output function y generated by the
system

_x(t) = Ax(t); x(0) = x0; (2.4)

y(t) = Cx(t) (2.5)

where x0 2 X1 and t � 0:
De�nition 2.2. An operator C 2 L (X1; Y ) is called an admissible observation

operator for S(t) with respect to X1: If for some (and hence for any) � > 0; the output
map L� : X1 ! L2([0;+1);Y ), de�ned by

L� (x)(t) =

�
CS(t)x0; for t 2 [0; �)
0 t � �

(2.6)
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has a continuous extension to X:
Equivalently, C 2 L(X1; Y ) is called admissible observation operator for S(t) i¤,

for some � > 0, there exists a constants K� > 0, such thatZ t

0
kCS(t)x0k2Y dt � K� kx0k2X , 8x0 2 D(A); � � 0; (2.7)

The operator C is called bounded if it can be extended such that C 2 L(X;Y ) and
unbounded otherwise. Obviously, every bounded C is admissible for S.

Theorem 2.1. ([57], [52]) Suppose that B 2 L(U;X�1): Then B is an admissible
control operator for S(t) if and only if B� is an admissible observation operator for
S�(t). If B is admissible, then

k���xk =
Ld�x

where Ld� (with � � 0) are the output maps corresponding to the semigroup S�(t)
with the observation operator B�:

De�nition 2.3. The Lebesgue extension of C (with respect to S(t)), CL : D(CL)!
Y is de�ned by

CLx0 = lim
�!0

C
1

�

Z �

0
S (�)x0d� (2.8)

with D(CL) = fx0 2 X= the limit in (2.8) existsg ; and

X1 ,! D(CL) ,! X

For every x0 2 X; there holds S(t)x0 2 D(CL) for almost every t � 0 and

(L1x0) (t) = CLS(t)x0

A similar �-extension of C, denote C�, is de�ned by

C� = lim
�!+1

C� (�I �A)�1 x0 (2.9)

Its domain D (C�) consists of all x0 2 X, for which the above limit exists. C� is an
extension of CL:

2.2 Transfer functions

In this section, we use the control and observation operators to obtain a simple repre-
sentation of the transfer function.

De�nition 2.4. Suppose that B 2 L(U;X�1) is an admissible control operator
for S(t) with respect to X�1 and that C 2 L(X1; Y ) is an admissible observation
operator for S(t) with respect to X1. Then we de�ne the transfer functions of the
triple (A;B;C) to be the solutions, G : � (A)! L(U; Y ) of

G(s)�G(�)
s� � = �C (sI �A)�1 (�I �A)�1B; for s; � 2 � (A) ; s 6= � (2.10)
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We remark that since B is an admissible control operator for S(t), (:I �A)�1B is an
L(U;X)-valued analytic function and since C is an admissible observation operator
for S(t), C (:I �A)�1 is a L(X;Y )-valued analytic function. Both (:I �A)�1B and
C (:I �A)�1 are analytic on some right half plane C+� = fs 2 C= Re(s) > �g : Thus
any transfer function is L(U; Y )-valued function which is analytic in some C+� : More-
over any two transfer functions di¤er only by an additive constant, D 2 L(U; Y ). The
point is that they need not necessarily be bounded on any C+� :

2.3 Well-posed linear system

In the previous sections, we considered the admissible control, observation opera-
tors and the transfer functions, here we consider the extra assumption on the triple
(A;B;C) to be well-posed.

De�nition 2.5. Under the same assumption as in De�nition 2.4, we say that the
triple (A;B;C) is well-posed if B 2 L(U;X�1) is an admissible control operator for
S(t) and C 2 L(X1; Y ) is an admissible observation operator for (t) and its transfer
functions are bounded on some half-plane C+� :i.e.

sup
Re(s)>�>�

kG(�)kL(U;Y ) <1 (2.11)

The main result in Curtain and Weiss [13] is that a triple (A;B;C) that is well-posed
de�nes a familly of well-posed linear systems, � = (T;�;L;F), where T;� and L are
as before and the input-output map F is de�ned by

(F1u)(t) = C�

�Z �

0
S(� � �)Bu(�)d(�)� (�I �A)�1Bu(t)

�
+G(�)u(t) (2.12)

for u 2 L2loc (0;1;U).
If (A;B;C) is well-posed, then the state x(t) and the output y(t) satisfy the fol-

lowing equations for almost all t8>>><>>>:
x(t) = S(t)x0 +

R t
0 S (t� �)Bu(�)d� 2 C ([0;1);X)

8x0 2 X;u 2 L2loc (0;1;U) ;
y(t) = C�

h
x(t)� (�I �A)�1Bu(t)

i
+G(�)u(t) 2 L2loc (0;1;Y ) ;

8u 2 L2loc (0;1;U) ;

(2.13)

A well-posed system is a system for which both the state and output depend con-
tinuously on the initial state and input function of the system. The input/output
functions u and y are locally L2 functions with values in U and in Y respectively.
The boundedness property mensioned earlier means that for every t > 0 there is a ct
(which independent of x0 and of u) such that

kx(t)k2 +
Z t

0
ky(�)k2 d� � c2t

�
kx(0)k2 +

Z t

0
ku(�)k2 d�

�
(2.14)
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2.4 Regular linear systems

The paper [61] introduced an important subclass of well-posed systems, the so called
regular systems, for which the representation (2.13) becomes much simpler.

De�nition 2.6. Let � be a well-posed linear system, if for any u 2 U , the following
limit exists

lim
t!0

1

t

Z t

0
yu(�)d� = Du : (2.15)

where D is called the feedthrough operator and yu denotes the step response corre-
sponding to the constant input u:

In particular, if � is a well-posed system according to De�nition 2.5, then a su¢ -
cient condition that they generates a regular linear system is:

there exists s 2 � (A) such that (sI �A)�1Bu 2 D (CL) , for any u 2 U (2.16)

In this case, CL (sI �A)�1B is an analytic L(U; Y )-valued function of s on � (A) ;
bounded on some right-half plane.

Theorem 2.1. ([9]) Let � = (S;�;L;F) be a regular linear system with input
and output spaces U and Y; respctively. Let A be the in�nitesimal generator of S, B
be the admissible control operator, C be the admissible observation operator, CL is its
Lebesgue extension and D be the feedthrough operator of �: Then for any x0 2 X and
any u 2 L2loc (0;1;U) the functions x : [0;1)! X and y 2 L2loc (0;1;Y ) de�ned by

x(t) = S(t)x0 + ��u (2.17)

y = L1x0 + F1u (2.18)

satisfy the following equations for almost all t � 0

_x(t) = Ax(t) +Bu(t) (2.19)

y(t) = CLx(t) +Du(t) (2.20)

In particular, the function x is the unique strong continuous solution of (2.17) under
the initial condition x(0) = x0 and x(t) 2 D(CL):

The Laplace transform of y satis�es

ŷ(s) = C (sI �A)�1 x0 +G(s)û(s) (2.21)

for s 2 C with Re s su¢ ciently large.
The transfer function G is given by

G(s) = CL (sI �A)�1B +D (2.22)

and, for any u 2 U
lim

�!+1
G(�)u = Du; � 2 R (2.23)
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2.5 Usefullness of regular linear systems

The motivation for introducing regular linear systems has been the simple strucure
of the output equation and the simple formula for the trunsfer function, because this
allow us to try to replicate classical ideas from �nite-dimensional control theory in
an in�nite-dimensional context. Good examples of this being done are the papers
([60], [15]) on Luenberger observers, dynamic stabilization and coprime factorization.
Regular systems is also used in optimal control, see [11] and the references there in, the
theory of exponential stabilization by colocated feedback in [14], in the state feedback
regulator theory from [42], in the PI controller theory of [38] and others. The paper
[39] explores the robust stability of feedback systems with respect to small delay in
the loop.

2.6 Unitary group systems with unbounded control and
colocated observation

We consider the linear time invariant system:

_x(t) = Ax(t) +Bu(t) in D(A�)0 (2.24)

y(t) = B�x(t)

where
(a1) A : D(A) (� X)! X satis�es A� = �A so that A is the in�nitesimal generator

of a unitary C0-group eAt on X:

(a2) B is linear operator U !
h
D(A�

1
2 )
i0
, duality with respect to X as a pivot

space.
The following results provide su¢ cient conditions for well-posedness and regularity

of system (2.24)
Theorem 2.2 ([67]) Assume assumptions (a1) and (a2). If for some (and hence

for all) t > 0; the input/output map is continuous:

kykL2(0;t;U) � Ct kukL2(0;t;U) ; x(0) = 0, 8u 2 L
2
loc (0;1;U) (2.25)

for some positive constant Ct indepedent of u; then B is admissible for S(t) and hence
system (2.24) is well posed.

Theorem 2.3 ([67]) Under the assumptions of Theorem 2.2, the system (2.24) is
regular and the feedthrough operator is zero.

Now, we recall the concepts of controllability, stability for the system (2.24) and
explore how they are related to each other.

De�nition 2.8. Let � > 0:
The system (2.24) is exactly controllable on X over [0; � ] if and only if,
For any x0; x1 2 X; there exists u 2 L2 ([0; � ] ;U) such that the solution x of (2.24)

satis�es x(�) = x1:
Equivalently ([57]):
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The system (2.1) is exactly controllable on X over [0; � ] if and only if, there exists
 > 0 such that Z t

0
kB�S� (�)'k2U d� �  k'k2X ;

De�nition 2.9. A C0-semigroup S(t) on Hilbert space X is exponentially stable,
if for some constants M , ! � 0

kS(t)k �Me�!t, for all t � 0:

The following Theorem relates the concepts of exact controllability and uniform
stabilization for system (2.24).

Theorem 2.4 ([67], [34]) Assume assumptions (a1) and (a2), then the following
assertions hold true

1. If the open-loop system of (2.24) is well-posed with state space X, input/output
space U = Y and exactly controllable on X over [0; T ] then, the operator AF =
A�BB� generates an exponential stable C 0-semi group on X.

2. If the operator AF = A � BB� generates an exponential stable C 0-semi group
on X; then the system (2.24) is exactly controllable.



Chapter 3

Well posedeness, regularity and
exact controllability for the
problem of transmission of the
Schrödinger equation

In this chapter we shall study the system of transmission of Schrödinger equation with
Dirichlet boundary control and colocated observation. Using the mutiplier method,
we show that the system is well-posed with input and output space U = Y = L2(�)
and state space X = H�1 (
). The regularity of the system is also established and the
feedthrough operator is found to be zero. Finally, the exact controllobility of the open
loop system is obtained by proving the observability inequality of the dual system.
This chapter was the subject of the paper [2].

3.1 System description and main result.

Let 
 be an open bounded domain of Rn(n � 2) with smooth boundary � and let 
1
be a bounded domain contained inside 
; �
1 � 
 with smooth boundary �1,
2 is the
domain 
n �
1 and � is the unit normal of � or �1 pointing toward the exterior of 
2:

Let a time T > 0 and two distinct constants a1; a2 > 0 be given.
In this chapter, we shall concerned with the following system of transmission of

the Schrödinger equation with Dirichlet control and colocated observation.

yt(x; t) = i div (a(x)ry(x; t)) ; x 2 
; t > 0 ; (3.1)

y(x; 0) = y0(x); x 2 
, (3.2)

y2(x; 0) = u(x); (x; t) 2 �� (0; T ); (3.3)

y1(x; 0) = y2(x; 0); (x; t) 2 �1 � (0; T ); (3.4)

a1
@y1(x; t)

@�
= a2

@y2(x; t)

@�
; (x; t) 2 �1 � (0; T ); (3.5)

z(x; t) = i
@

@�

�
A�1y2(x; t)

�
; (x; t) 2 �� (0; T ); (3.6)

15
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where a(x) =
�
a1; x 2 
1
a2; x 2 
2

;

y(x; t) =

�
y1(x; t); (x; t) 2 
1 � (0; T )
y2(x; t); (x; t) 2 
2 � (0; T )

;

A : H�1(
)! H�1(
) is a positive self adjoint operator de�ned by

Af = ��f; D(A) = H1
0 (
) ;

u(:; :) is the input function, and z(:; :) is the output function
Equation (3.1), known as the position-dependent-mass (e¤ective mass) Schrödinger

equation, has important applications in the �eld of material science and condensed
matter physics such as semiconductor heterostructure(see [40], [51] and the references
therin).

When a1 = a2, Guo and Shao[20] ahve shown that the system (3.1)-(3.6) is well
posed with input and output space U = Y = L2(�) and the state space X = H�1

and regular with zero as the feedthrough operator. One of the aims of this chapter is
to investigate the well-posedness and regularity of the system (3.1)-(3.6) in the case
where

a1 6= a2:
Indeed, we shall prove the following
Theorem 3.1. The equations (3.1)-(3.6) determines a well-posed linear system

with input and output space U = Y = L2(�) and the state space X = H�1(
):
Theorem 3.2. The equations (3.1)-(3.6) is regular with zero feedthrough operator.

This means that the initial state y(:; 0) = 0 and u(:; t) = u(t) 2 U is a step input, then
the correspending output satis�es

Lim
�!0

Z
�

������ 1�
�Z
0

z(x; t)dt

������ d� = 0 (3.7)

The second aim is to study the exact controllability problem for the open loop system
(3.1)-(3.6). Exact controllability of the Schrödinger equation with smooth coe¢ cients
in the elliptic principal part and subject to boundary control was treated in [32], [41]
and [56]. To state our exact controllability result, we need the following assumptions:

(A1) � = �0 [ �1; �0 is possibly empty while �1 is nonempty and relatively open.
(A2) a2 < a1:
(A3) There exists a real vector �eld h(:) 2

�
C1
�
�

��n such that

Re

0@Z



H(x)v(x):v(x)dx

1A � �

Z



kv(x)k2 dx

for all v(:) 2
�
L2 (
)

�n for some � > 0, where
H(x) =

�
@hi(x)

@xj

�
; i = 1; :::; n and j = 1; :::; n.

(A3b)
h(x):�(x) � 0; x 2 �1:
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(A3c)
h(x):�(x) � 0; x 2 �0:

Theorem 3.3. Let T > 0 be arbitrary. Assume hypotheses (A1) and (A3), then for
any initial data y0 2 H�1(
); there exists a control u 2 L2(0; T ;L2(�)) with u = 0 on
�0 such that the corresponding solution of the system (3.1)-(3.5) satis�es y(x; T ) = 0:

As a consequence of Theorem 2.1, Theorem 2.3, and proposition 3.1 of [34], we
have the following uniform stabilization result for the system (3.1)-(3.5) on the space
H�1(
):

Corollary 3.1. Let the hypotheses of Theorem 2.3 hold true. Then there exist
positive constant M; ! such that the solution of (3.1)-(3.5) with u = ��z (� > 0)
satis�es

ky(t)kX �Me�!t
y0

X
:

3.2 Abstract formulation

We de�ne the space

H2(
;�1) =
�
y 2 H1

0 (
) : yi = yj 2 H2(
i); i = 1; 2;

a1
@y1
@�

= a2
@y2
@�

; on �1

�
with the norm

kyk2H2(
;�1)
= ky1k2H2(
1)

+ ky2k2H2(
2)
:

It can be shown that H2(
;�1) is dense in H1
0 (
) :

Let A1 : H1
0 (
) ! H�1 (
) be the extenstion of �div (a(x)r:) to H1

0 (
). This
means thatA1f =�div (a(x)rf) whenever f 2 H2(
;�1) and thatA�11 f =�div (a(x)r)�1 g
for any g 2 L2 (
) :

Let A�1 : H�1 (
) ! (D(A))0 be the extension of A1 to H�1 (
) : Notice that
(D(A))0 is the dual of D(A) with respect to the pivot space H�1 (
) :

De�ne the Dirichlet map  by
u = v

if and only if

div (a(x)rv) = 0 in 
;

u = v on �;

v1 = v2 on �1;

a1
@v1
@�

= a2
@v2
@�

on �1;

then  2 L
�
L2 (�) ; L2 (
)

�
([34]).

Using the operators introduced above, we can rewrite (3.1), (3.3)-(3.5) on (D(A))0

as
yt(x; t) = �iA�1y(t) +Bu(t)
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where B 2 L (U; (D(A))0) is given by

Bu = iA�1u

we have via, Greens second theorem,

�A = �@ 
@�

;  2 D(A):

Now, we can reformulate the system (3.1)-(3.6) into an abstract form in the state space
H�1 (
) as follows

yt(x; t) = �iA1y(t) +Bu(t) (3.8)

y(0) = y0; (3.9)

z(t) = Cu(t) (3.10)

3.3 Proof of Theorem 3.1

The fact that the operator �iA1 generates a C0-group of unitary operators S(t) on X
is a consequence of a Stone�s Theorem (see [46]). In order to establish the admissibility
of B and C for the group S(t), we need the following identity, which is a particular
case of the identity (3.69) in the appendix.

Lemma 3.1. Let m(x) be a real vector �eld on �
 of class C1 such that

m = � on � m = 0 in 
0;

where 
0 is an open domain in Rn that satis�es �
1 � 
0 � �
0 � 
:
Let f�0; fig 2 H1(
i)� L1(0; T; L2(
i)); i = 1:2; such that

�01 = �02 on �1;

�02 = 0 on �

then for every week solution of

�t(x; t) = i div (a(x)r�(x; t)) + f(x; t); (x; t) 2 
� (0; T ); (3.11)

�(x; 0) = �0(x); x 2 
, (3.12)

�2(x; 0) = 0; (x; t) 2 �� (0; T ); (3.13)

�1(x; t) = �2(x; t); (x; t) 2 �1 � (0; T ); (3.14)

a1
@�1(x; t)

@�
= a2

@�2(x; t)

@�
; (x; t) 2 �1 � (0; T ); (3.15)
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the following identity holds true:

a2

TZ
0

Z
�

����@�@�
����2 d�dt (3.16)

= Im

0@Z

2

�m:r��d


1AT

0

+ a2Re

TZ
0

Z

2

�r��:r (divm) d
dt

�2a2Re
TZ
0

Z

2

r�:mr��d
dt+Re
TZ
0

Z

2

�f� divmd
dt� 2 Im
TZ
0

Z

2

fm:r��d
dt:

Remark 3.1. Liu and Williams [9] made use of the vector �eld m to establish a
boundary regularity for the problem of transmission of the plate equation.

3.3.1 Admissibility of B and C for the group S(t):

Since the system (3.8)-(3.10) is colocated, the dmissibility of B for the group S(t) is
equivalent to the admissibility of C for the group S(t): But the latter means that

TZ
0

Z
�

jCS(t) j2 d�dt � k k k2X (3.17)

for all  2 D(A) and for some T > 0:
Here and throughout the rest of the chapter, k is a positive constant that takes

di¤erent values at di¤erent occurences.
An equivalent partial di¤erential equation characterization of the estimate (3.17)

is given by
TZ
0

Z
�

����@'@�
����2 d�dt � k k'0k2H1

0 (
)
(3.18)

where ' = A�1 and ' is the solution of

't(x; t) = i div (a(x)r'(x; t)) ; (x; t) 2 
� (0; T ); (3.19)

'(x; 0) = '0(x); x 2 
, (3.20)

'2(x; 0) = 0; (x; t) 2 �� (0; T ); (3.21)

'1(x; t) = '2(x; t); (x; t) 2 �1 � (0; T ); (3.22)

a1
@'1(x; t)

@�
= a2

@'2(x; t)

@�
; (x; t) 2 �1 � (0; T ): (3.23)
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Specialization of the identity (3.16) to the '-problem (3.19)-(3.23) yields

TZ
0

Z
�

����@'@�
����2 d�dt = Im

0@Z

2

'm:r�'d


1AT

0

+ a2Re

TZ
0

Z

2

'r�':r (divm) d
dt

�2a2Re
TZ
0

Z

2

r':mr�'d
dt (3.24)

Using Schwartz and Poincaré inequalities, we obtain from (3.24)

TZ
0

Z
�

����@'@�
����2 d�dt �

TZ
0

Z



jr'j2 d
dt+ k
Z



jr'(x; 0)j2 d
+ k
Z



jr'(x; T )j2 d
:

But Z



jr'(x; t)j2 d
 =
Z



��r'0��2 d

Thus

TZ
0

Z
�

����@'@�
����2 d�dt � k k'0k2H1

0 (
)

3.3.2 Boundedness of the input/output map.

It su¢ ces to show that the solution of (3.1)-(3.5) with y(x; t) = 0 satis�es

TZ
0

Z
�

����@A�1y(x; t)@�

����2 d�dt � k

TZ
0

Z
�

ju(x; t)j2 d�dt (3.25)

for all u 2 L2(0; T ;U):
From the admissibility of B, we have y 2 C(0; T ;H�1(
)) for every y0 2 H�1(
):
Let as introduce a new variable by setting

!t(x; t) = i div (a(x)r!(x; t)) + iu(x; t); (x; t) 2 
� (0; T ); (3.26)
!(x; 0) = 0; x 2 
, (3.27)

!2(x; 0) = 0; (x; t) 2 �� (0; T ); (3.28)

!1(x; t) = !2(x; t); (x; t) 2 �1 � (0; T ); (3.29)

a1
@!1(x; t)

@�
= a2

@!2(x; t)

@�
; (x; t) 2 �1 � (0; T ); (3.30)

The estimate (3.25) becomes

TZ
0

Z
�

����@!(x; t)@�

����2 d�dt � k

TZ
0

Z
�

ju(x; t)j2 d�dt (3.31)
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As for (3.18), the estimate can also be deduced from the identity (3.16). Indeed setting
f = iu in (3.16) and using the fact that  2 L

�
L2 (�) ; L2 (
)

�
, we obtain

TZ
0

Z
�

����@!(x; t)@�

����2 d�dt � k

TZ
0

Z



jr!j2 d
dt+ k
Z



jr!(x; T )j2 d
+
TZ
0

Z
�

juj2 d�dt

� k
�
k!k2C(0;T ;H1

0 (
))
+ kuk2L2(0;T ;L2(�))

�
:

this together with the admissibility of B for the C0�group S(t) yields (3.31).

3.4 Proof of Theorem 3.2

Since the system (3.1)-(3.6) is well-posed, its trunsfer function G(s) is bounded on
some right half-plane (see[7]). To continue, we need the following results.

The assertion of Theorem 2.2 holds if for any u 2 C10 (�) the solution y of

sy(x) = i div (a(x)ry(x)) ; x 2 
; (3.32)

y2(x) = u(x); x 2 �; (3.33)

y1(x) = y2(x); x 2 �1; (3.34)

a1
@y1(x)

@�
= a2

@y2(x)

@�
; x 2 �1; (3.35)

Satis�es

Lim
s2R;s!+1

Z
�

������1s
�Z
0

@y

@�

������ d� = 0 (3.36)

Proof. We know from [7] that in the frequency domain, (3.7) is equivalent to

Lim
s2R;s!+1

G(s)u = 0 (3.37)

In the strong topologiy of U , for any u 2 U: Due to the boundedness of G(s) and the
density of L2 (�) in C10 (�) ; it su¢ ces to establish (3.37) for all u 2 C10 (�) : Now for
u 2 C10 (�) and s > 0; let y satis�es (3.32)-(3.35) and

(G(s)y) (x) = i
@A�1y

@�
(x); x 2 �:

It follows from Lemma 7.1 in the appendix that there exists a function v 2 H2(
;�1)
satis�es the following boundary value problem:

div (a(x)ry(x)) = 0; x 2 
;
v2(x) = u(x); x 2 �;
v1(x) = v2(x); x 2 �1;

a1
@v1(x)

@�
= a2

@v2(x)

@�
; x 2 �1;
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Consequently, (3.32)-(3.35) can be written as

sy(x)� i div (a(x)r (y(x)� v(x))) = 0; x 2 
;
(y2(x)� v2(x)) = 0; x 2 �;
(y1(x)� v1(x)) = y2(x)� v2(x); x 2 �1;

a1
@ (y1(x)� v1(x))

@�
= a2

@ (y2(x)� v2(x))
@�

; x 2 �1;

Hence

(G(s)y) (x) =
a2
s

@y(x)

@�
� a1

s

@v(x)

@�
:

This gives (3.36).
Lemma 3.2. Let m be the vector �eld introducing in subsection 3.1. Let u 2

C10 (�) : Then the solution of (3.32) satis�es

a2

Z
�

����@y(x)@�

����2 d� = � s

a2
Im

Z



ym:r�yd
+ 2Re
Z

2

ry2:Mr�y2d
 (3.38)

�
Z

2

jry2j2 divmd
+
Z
�

jr�y2j2 d�:

Proof. We multiply both sides of (3.32) by m:r�y and integrate over 
, using
Green�s �rst Theorem, we �nd

s

Z
�

jyj2m:�d�� s
Z



�ym:ryd
� s
Z



jyj2 divmd
+ ia1
Z
�1

@y1
@�

m:r�y1d�(3.39)

+ia1

Z

1

ry1:r (m:r�y1) d
� ia2
Z
�2

@y2
@�

m:r�y2d�� ia2
Z
�

@y2
@�

m:r�y2d�

+ia2

Z

2

ry2:r (m:r�y2) d
 = 0

Recalling the assumptions made on the vector �eld m, we simplify (3.39) to

s

Z
�

jyj2m:�d�� s
Z



�ym:ryd
� s
Z



jyj2 divmd
� ia2
Z
�

���@y2@� ���2 d�
+ ia2

Z

2

ry2:r (m:r�y2) d
 = 0

from which we obtain

a2

Z
�

����@y2@�
����2 d� = �sZ




�ym:ryd
� s
Z



jyj2 divmd
+ a2Re
Z

2

ry2:r (m:r�y2) d


(3.40)
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On the other hand, we have

Re

Z

2

ry2:r (m:r�y2) d
 = Re
Z

2

ry2:Mr�y2d
+
1

2

Z
�

jry2j2 d��
1

2

Z

2

jry2j2 divmd


(3.41)
where

M =

�
@mi

@xj

�
i;j=1;:::;n

Using the fact that

jry2j2 = jr�y2j2 +
����@y2@�

����2 on �;
(3.41) becomes

Re

Z

2

ry2:r (m:r�y2) d
 = Re

Z

2

ry2:Mr�y2d
�
1

2

Z

2

jry2j2 divmd


+
1

2

Z
�

jr�y2j2 d� +
1

2

Z
�

����@y2@�
����2 d�: (3.42)

Insertion of (3.42) into (3.40) yields (3.38). �
Lemma 3.3. Let y be a solution of (3.32)-(3.35). Then

s

Z



jyj2 d
+ i
Z



a(x) jryj2 d
 = ia2
Z
�

@y2
@�

�y2d�: (3.43)

Proof. We multiply both sides of (3.32) by �y and integrate over 
: From Green�s �rst
theorem, we have

s

Z



jyj2 d
� i

8<:a2
Z
�

@y2
@�

�y2d� + a2

Z
�1

@y2
@�

�y2d�� a2
Z

2

jry2j2 d
 (3.44)

�a1
Z
�1

@y1
@�

�y1d�� a1
Z

2

jry2j2 d


9=; :

Inserting the boundary condition (3.35) into (3.44), we �nd that this simpli�es to
(3.43). �

3.4.1 Completion of the proof of Theorem 3.2

We �rst introduce some constants:
a = min (a1; a2) ; �1 = sup

�


jm(x)j ; �2 = sup
�


kM(x)k ; �3 = sup
�


jdiv v(x)j
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From (3.38), we have the estimate

1

s2

Z
�

����@y2@�
����2 d� � �1

2a2s
1
2

Z



jyj2 d
+ �2

2a2s
3
2

Z



jryj2 d
 (3.45)

+
�3 + 2�2

s2

Z

2

jry2j2 d
+
1

s2

Z
�

jr�y2j2 d�

On the other hand, (3.43) implies

1

s
1
2

Z



jyj2 d
 � a2

2s
1
2

Z
�

jy2j2 d� +
a2

2s
5
2

Z
�

����@y2@�
����2 d�; (3.46)

1

s
3
2

Z



Z



jryj2 d
 � a2

2as
1
2

Z
�

jy2j2 d� +
a2

2as
5
2

Z
�

����@y2@�
����2 d�: (3.47)

substituting (3.46),(3.47) into (3.45), we get

1

s2

Z
�

����@y2@�
����2 d� �

�
�1

4s
1
2

+
�1

4as
1
2

+
a2 (�3 + 2�2)

2as

�Z
�

jy2j2 d� (3.48)

+

�
�1

4s
1
2

+
�1

4as
1
2

+
a2 (�3 + 2�2)

2as

�
1

s2

Z
�

����@y2@�
����2 d� + 1

s2

Z
�

jr�y2j2 d�:

since
y2 = u on �� (0; T )

and
kyk2H1(�) = kyk

2
L2(�) + kjr�yjk2L2(�) ;

we rewrite (3.48) as follows:

1

s2

Z
�

����@y2@�
����2 d� �

�
�1

4s
1
2

+
�1

4as
1
2

+
a2 (�3 + 2�2)

2as

�
kuk2H1(�)

+

�
�1

4s
1
2

+
�1

4as
1
2

+
a2 (�3 + 2�2)

2as

�
1

s2

Z
�

����@y2@�
����2 d�:

This last estimate shows that

Lim
s2R;s!+1

Z
�

������1s
�Z
0

@y

@�

������ d� = 0:
Remark 3.1. The result can also be proved by applying Theorem 5.2 of [67]

which appeared shortly after the publication of their paper.
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3.4.2 Proof of Theorem 3.3.

Let

E(t) =

Z



a(x) jr'j2 d


bet the energy corresponding to the solution of the system (3.19)-(3.23). Then

E(t) = E(0) for all t > 0

By classical duality theory, to prove Theorem 3.2 it is enough to establish the
associated observability inequalitiy

TZ
0

Z
�

����@'@�
����2 d�dt � k k'0k2H1

0 (
)
(3.50)

where ' is the solution of the homogenuous system (3.19)-(3.23)
To this end, we apply the identity (3.69) to the '�problem (3.19)-(3.23), to obtain

a2

TZ
0

Z
�

����@'2@�

����2 h:�d�dt (3.51)

= 2a1

�
1� a1

a2

� TZ
0

Z
�1

����@'1@�

����2 h:�d�dt+ a2
TZ
0

Z
�1

jr'2j2 h:�d�dt

�a1
TZ
0

Z
�1

jr'1j2 h:�d�dt+ Im

24Z



'h:r�'d


35T
0

+ 2Re

TZ
0

Z



a(x)r':Hr�'d
dt

+Re

TZ
0

Z



a(x)'r�':r(div h)d
dt: (2.52)

But

jr'ij2 =

����@'i@�

����2 + jr�'ij2 on �1 � (0; T ); i = 1; 2

jr�'1j2 = jr�'2j2 on �1 � (0; T );

then (A2) and (A3b) imply that

2a1

�
1� a1

a2

� TZ
0

Z
�1

����@'1@�

����2 h:�d�dt+ a2
TZ
0

Z
�1

jr'2j2 h:�d�dt� a1
TZ
0

Z
�1

jr'1j2 h:�d�dt

= 2a1

�
1� a1

a2

� TZ
0

Z
�1

����@'1@�

����2 h:�d�dt� (a1 � a2)
TZ
0

Z
�1

jr�'1j2 h:�d�dt � 0: (3.53)
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from (2.52) and (3.53), we deduce that

2�T

Z



a(x)
��r'0��2 d
 � a2

TZ
0

Z
�1

����@'2@�

����2 h:�d�dt� Im
24Z



'h:r�'d


35T
0

+Re

TZ
0

Z



a(x)'r�':r(div h)d
dt: (3.54)

Application of Schwartz and Poincaré inequalities to the
Z



-terms on the right hand

side (3.54) yields

�
2�T � c1"

a2

�Z



a(x)
��r'0��2 d
 � a2c1

TZ
0

Z
�1

����@'2@�

����2 h:�d�dt (3.55)

+
1

2

�
(c2cp + c2)T +

2c1cp
a2"

�
k'k2C(0;T ;H1

0 (
)

where c1 = sup
�


jh(x)j, c2 = sup
�


jr (div h)j,

cp is the Poincaré constant:
Z



j'j2 d
 � cp

Z



jr'j2 d
; and

" is an arbitary positive small constant
The sought-after estimate follows from (3.55) by a compactness/uniqueness argu-

ment.

3.5 Appendix

Lemma 3.4. Let f be a solution to the following elliptic problem:

div(a(x)rf(x)) = g(x) ,x 2 
; (3.56)

f2(x) = u(x); x 2 �; (3.57)

f1(x) = f2(x); x 2 �1; (3.58)

a1
@f1(x)

@�
= a2

@f2(x)

@�
; x 2 �1; (3.59)

for g 2 L2(
) and u 2 H
3
2 (
). Then there exists a constant k independent of f; g

and u such that
kfkH2(
;�1)

= kfkgkL2(
) + kukH 3
2 (�)

g:

Proof. Let f be a solution to (3.56)-(3.59). Then f can be written as

f(x) =

�
f1(x); x 2 
1
f2(x); x 2 
2

;
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where f2 and f1 are respectively the solution of

a2�f2(x) = g(x); x 2 
;
f2(x) = u(x); x 2 �;

and

a1�f1(x) = g(x); x 2 
1; (3.60)

f1(x) = f2(x); x 2 �1;

a1
@f1(x)

@�
= a2

@f2(x)

@�
; x 2 �1;

From elliptic regularity theory (see[37]), we have

kf2kH2(
) � kfkgkL2(
) + kukH 3
2 (�)

g: (3.61)

It follows from the trace theorem that f2j�1 2 H
3
2 (�1) and

kf2k
H
3
2 (�1)

� k kf2kH2(
) : (3.62)

(3.60) together with (3.62) implies again via the elliptic regularity that f1 2 H2(
1)
and

kf1kH2(
1)
� kfkgkL2(
) + kf2kH 3

2 (�1)
g: (3.63)

combining (3.61),(3.62) and (3.63), we obtain

kf1kH2(
1)
+ kf2kH2(
) � kfkgkL2(
) + kukH 3

2 (�)
g:

from which follows the desired estimate, since

kfkH2(
;�1)
= kf1k2H2(
1)

+ kf2k2H2(
) : �

Lemma 3.5. Let h be a real vector �eld of class C1 on �
. Then for every solution
of the problem

�t(x; t) = i div (a(x)r�(x; t)) + g(x; t); (x; t) 2 
� (0; T ); (3.64)

�(x; 0) = �0(x); x 2 
, (3.65)

�2(x; 0) = 0; (x; t) 2 �� (0; T ); (3.66)

�1(x; t) = �2(x; t); (x; t) 2 �1 � (0; T ); (3.67)

a1
@�1(x; t)

@�
= a2

@�2(x; t)

@�
; (x; t) 2 �1 � (0; T ); (3.68)
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we have

a2

TZ
0

Z
�

����@�2@�
����2 h:�d�dt+ 2a1�a1a2 � 1

� TZ
0

Z
�1

����@�1@�
����2 h:�d�dt (3.69)

�a2
TZ
0

Z
�1

jr�2j2 h:�d�dt+ a1
TZ
0

Z
�1

jr�1j2 h:�d�dt

= Im

24Z



'h:r�'d


35T
0

+ 2Re

TZ
0

Z



a(x)r�:Hr��d
dt

+Re

TZ
0

Z



a(x)�r��:r(div h)d
dt+ Im
TZ
0

Z



�g� div hd
dt� 2 Im
TZ
0

Z



gh:r��d
dt

Proof. The identity (3.69) will be established for strong solutions and the general
case will follow by a standard density argument. to this end, let

�
�0i ; fi

	
2 H2(
i)�

H1(
i)� L1(0; T;H1(
i)); i = 1:2; such that

�01 = �02 on �1;

g1 = g2 on �1 � (0; T );
�02 = 0 on �

g2 = 0 on �� (0; T );

a1
@�01
@�

= a2
@�02
@�

; on �1;

we multiply both sides of (3.64) by h:r�� and integrate over 
� (0; T ) to obtain
TZ
0

Z



�th:r��d
dt = i
TZ
0

Z



div (a(x)r�)h:r��d
dt+
TZ
0

Z



gh:r��d
dt: (3.70)

we have
TZ
0

Z



�th:r��d
dt =

24Z



�h:r��d


35T
0

�
TZ
0

Z
�

���th:�d�dt (3.71)

+

TZ
0

Z



�
�i div

�
a(x)r��

�
+ �g
�
h:r��d
dt+

TZ
0

Z



���t div hd
dt:

substituting (3.71) into (3.70), we get24Z



�h:r��d


35T
0

�
TZ
0

Z
�

���th:�d�dt+

TZ
0

Z



�
�i div

�
a(x)r��

�
+ �g
�
h:r��d
dt

+

TZ
0

Z



���t div hd
dt = i

TZ
0

Z



�
div
�
a(x)r��

��
h:r��d
dt+

TZ
0

Z



gh:r��d
dt:
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hence

2Re

TZ
0

Z



�
div
�
a(x)r��

��
h:r��d
dt = Im

24Z



�h:r��d


35T
0

� Im
TZ
0

Z
�

���th:�d�dt

+Im

TZ
0

Z



���t div hd
dt� 2 Im
TZ
0

Z



gh:r��d
dt:

(3.72)
Using Green�s �rst theorem along with identity

2Re

Z



r!:r(h:r�!)d
 = 2Re
Z



r!:Hr�!d
+
Z



h:r
�
jr!j2

�
d
;

we rewrite the left hand side of (3.72) as

2Re

TZ
0

Z



�
div
�
a(x)r��

��
h:r��d
dt (3.73)

= 2a2Re

TZ
0

Z
�1

@�2
@�

h:r��2d�dt+ 2a2Re
TZ
0

Z
�

@�2
@�

h:r��2d�dt

�2a1Re
TZ
0

Z
�1

@�1
@�

h:r��1d�dt� a2
TZ
0

Z
�

jr�2j2 h:�d�dt� a2
TZ
0

Z
�1

jr�2j2 h:�d�dt

+a1

TZ
0

Z
�1

jr�1j2 h:�d�dt� 2a2
TZ
0

Z

2

r�2:Hr��2d
dt+ a2
TZ
0

Z

2

jr�2j2 div hd
dt

�2a1Re
TZ
0

Z

1

r�1:Hr��1d
dt+ a1
TZ
0

Z

2

jr�1j2 div hd
dt

recalling the boundary conditions(3.66)-(3.68), we have

h:r�2 =
@�2
@�

h:� on �� (0; T ); (3.74)

h:r (�1 � �2) =
@ (�1 � �2)

@�
h:�

=

�
1� a1

a2

�
@�1
@�

on �1 � (0; T ): (3.75)
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Inserting (3.74) and (3.75), we �nd that this simpli�es to

2Re

TZ
0

Z



�
div
�
a(x)r��

��
h:r��d
dt (3.76)

= �2a1
�
1� a1

a2

� TZ
0

Z
�1

����@�1@�
����2 h:�d�dt+ a2

TZ
0

Z
�

����@�2@�
����2 h:�d�dt� a2

TZ
0

Z
�1

jr�2j2 h:�d�dt

+a1

TZ
0

Z
�1

jr�1j2 h:�d�dt� 2Re
TZ
0

Z



a(x)r�:Hr��d
dt+
TZ
0

Z



a(x) jr�j2 div hd
dt

Now, we consider the third integral on the right hand side of (3.72). Applying Green�s
�rst theorem and taking into consideration the boundary condition (3.66), we obtain

Im

TZ
0

Z



���t div hd
dt (3.77)

= Re

TZ
0

Z



a(x) jr�j2 div hd
dt+Re
TZ
0

Z



a(x)�r��:r (div h) d
dt+ Im
TZ
0

Z



�g� div hd
dt:

Substituting (3.76) and (3.77) into (3.72) and using the boundary condition (3.66), we
obtain (3.69). �



Chapter 4

Well posedness and exact
controllability of fourth order
Schrödinger equation with
variable coe¢ cients, hinged
boundary control and colocated
observation

The objectif of this chapter is to generalize the well-posedness for fourth order Schrödinger
equation with hinged boundary control and colocated observation [70] to the variable
coe¢ cients case. On the one hand, we establish the well-posedness of this system in
the state space V 0 which is the dual space of V =

�
' 2 H3(
) : 'j� = A'j = 0

	
with

respect to the pivot space L2(
) and the input/output space U = Y = L2(�0) with
help of multiplier method on Riemannian manifold. In addition this system is regular
with feedthrough operator is found to be zero. On the other hand, we establish the
exact controllability of this system by presenting the observability inequality for the
dual system.

4.1 System description and statement of main results.

The system what are concerned with in this paper is described by the following PDEs8>>>>><>>>>>:

iwt(x; t) +A
2w(x; t) = 0 x 2 
; t > 0

w(x; t) = u(x; t) x 2 �0; t � 0
w(x; t) = 0 x 2 �1; t � 0

Aw(x; t) = 0 x 2 @
; t � 0
y(x; t) = �i@(A

�2
1 )w(x;t)
@�A

x 2 �0; t � 0

(4.1)

Let 
 � Rn (n � 2) is an open bounded region with C3-boundary @
 = � = ��0 [ ��1
and assume that �0 (int�0 6= ?) and �1 are relatively open in @
 and �0 \ �1 = ?:

31
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The operator A1 is de�ned in (4.4) later and A is a second order partial di¤erential
operator

A =

nX
i;j=1

@

@xi
(aij(x)

@

@xj
) (4.2)

which for some constants a; b > 0, satis�es

a

nX
i=1

j�ij2 �
nX

i;j=1

aij(x)�i
��j � b

nX
i=1

j�ij2 ; (4.3)

aij = aji 2 C1 (Rn) ; 8i; j = 1; 2; :::; n:
8x 2 �
; � = (�1; �2; :::; �n) 2 Cn; ;

we de�ne the operator A1 as follows

A1f = �Af (4.4)

8f 2 D(A1) = H2(
) \H1
0 (
)

and de�ne

�A =

 
nX
k=1

�kak1(x);

nX
k=1

�kak2(x);

nX
k=1

�kak3(x); :::;

nX
k=1

�kakn(x)

!
(4.5)

@

@�A
=

nX
i;j=1

aij(x)�i
@

@xj

where � is the unit normal vector of @
 pointing outwards of 
, u and y are the
boundary control and the boundary observation of the system (4.1) respectively.

Now, let A the positive self-adjoint operator in L2 (
) de�ned by

A' = A2'; (4.6)

D(A) =
�
' 2 L2 (
) ;A2' 2 L2 (
) ; 'j� = A'j� = 0

	
=

�
' 2 H4 (
) ; 'j� = A'j� = 0

	
One can show that A

1
2 = A1 where A1 is given by (4.4)

Let V = D(A
3
4 ) =

�
' 2 H3 (
) ; 'j� = A'j� = 0

	
and V 0 its dual space with

respect to the pivot space L2 (
), in the sence of Gelfand�s triple inclusions

V ,! L2 (
) ,! V 0:

The following Theorem shows that the system (4.1) is well-posed with state space V 0

and input/output space U = Y = L2(�0):
Theorem 4.1 The system (4.1) is well-posed. More precisely, for any T > 0,

initial value w0 2 V 0 and control input u 2 L2(0; T ;U) there exists a constant CT that
is independent of w0 and u such that

kw(:; T )k2V 0 + kyk2L2(0;T ;U) 6 CT (kw0k2V 0 + kuk2L2(0;T ;U)) (4.7)
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It is proved in [24, Theorem 5.8] (see also [43, Theorem 5.2]) that if the abstract system
(4.1) introduced later is well-posed, it must be regular in the sense of Weiss with the
zero feedthrough operator.

The following result is hence a consequence of Theorem 4.1.
Corollary 4.1 The system (4.1) is regular with zero feedthrough operator. This

means that if the initial state w(:; 0) = 0 and u(:; t) = u(t) 2 U is a step input, then
the correspending output satis�es

Lim
�!0

Z
�

������ 1�
�Z
0

y(x; t)dt

������
2

d� = 0 (4.8)

The second aim is to study the exact controllability problem for the open loop system
(4.1), this is the result of Theorem 4.1 under a certain geomtric condition on 
:

(H1) There is a vector �eld N on (Rn; g) such that

DN(X;X) = b(x) jXj2g , 8X 2 TxRn; x 2 
: (H1)

where b(x) is a function de�ned on 
 so that

b0 = inf
x2


b(x) > 0: (H2)

(H2)
� satis�es N(x):� > 0 on �0 (H3)

Theorem 4.2 Under assumptions (H1)-(H3), system (4.1) is exactly controllable
on some [0; T ] ; T > 0. That is, given initial data w(:; 0) = w0 2 V 0 and time T > 0;
there exists a boundary control u 2 L(0; T ;L2(�0)), such that the unique solution to
the system (4.1) satis�es w(T ) = 0:

The following result is a direct consequence Theorems 4.1 and 4.2.
Corollary 4.2
Let the Hypotheses of Theorem 4.2 hold true. Then system (4.1) is exponentially

stable under the proportional output feedback u = �ky for any k > 0:

4.2 Abstarct formulation

In this section we cast the system (4.1) into an abstract framework of a �rst order
collocated system in the state space V 0 and input/output space U = Y = L2(�0):
Extend the operator ~A of A to the domain V as follows:

h ~A'; iV 0 = hA
1=2';A1=2 iV 0 ; 8'; 2 V: (4.9)

Then ~A is a positive self-adjoint operato in V 0. In fact,

h ~A';'iV 0 = hA
1
2';A

1
2'iV 0 = hA

� 1
4';A�

1
4'iL2(
) (4.10)

� C k'k2L2(
) � C
0
A� 3

4'
2
L2(
)

= C
0 k'k2

V 0 ; 8' 2 V:
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where C and C

0
are constants. We identify H = V

0
with it�s dual H

0
. Then the

following Gelfand triple continuous inclusions positive hold true:

D( ~A
1
2 ) ,! H = H

0
,! D( ~A

1
2 )

0
: (4.11)

De�ne an extension Â 2 L(D( ~A1=2); D( ~A1=2)0) of ~A:

hÂf; gi
D( ~A

1
2 )0;D( ~A

1
2 )
= h ~A

1
2 f; ~A

1
2 giV 0 ; 8f; g 2 D( ~A

1
2 ): (4.12)

Let  be the Dirichlet map:  2 L(L2(�0);H1=2(
)) [34, p. 188-189] so that u = �
if and only if 8<:

A2� = 0; x 2 
;
�(x)j�0 = u(x); �(x)j�1 = 0 ;

A�(x)j� = 0
(4.13)

By virtue of the above map, one can write (4.1) in D( ~A
1
2 )

0
as

_w = iÂw +Bu: (4.14)

where B 2 L(U;D( ~A 1
2 )

0
) is given by

Bu = �iÂu; 8u 2 U: (4.15)

De�ne B� 2 L(D( ~A 1
2 ); U) by

hB�f; uiU = hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0
; 8f 2 D( ~A

1
2 ); u 2 U:

Then for any f 2 D( ~A 1
2 ) and u 2 C10 (�0), we have

hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0

= hf;�iÂuiD(Â1=2);D(Â1=2)0 = �ihÂ
1=2f; Â1=2uiV 0

= �ihA21(A�21 f); ~AuiV 00
= �ihA�3=4A21(A�21 f); A�3=4AuiL2(
); with A

1
2 = A1

= �ihA1(A�21 f); uiL2(
): = hu;�i
@(A�21 f))

@�A
; uiL2(�0): :

We have used in the last step Green�s second theorem.
Since C10 (�0) is dense in L

2(�0), we obtain

B�f = �i @(A
�2
1 f)

@�A

����
�0

; 8f 2 D( ~A1=2): (4.16)

we have thus formulated the open loop system (4.1) into an abstract �rst-order form
in the state space V 0:

_w = iÂw +Bu (4.17)

y = B�w (4.18)

where Â, B and B� are de�ned by (4.12), (4.15) and (4.16) respectively.
The operator A de�ned in (4.6) is a positive self adjoint in L2(
), then the operator

~A de�ned in (4.10) is a positive self adjoint in V 0, this follows that the operator iÂ

is a skew-adjoint
�
iÂ
��
= �iÂ and from the Stone�s Theorem, the operator iÂ is the

in�nitesimal generator of a C0-unitary group on V 0:
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4.3 Proof of Theorem 4.1

To prove Theorem 4.1, we need the following Lemma which comes from Theorem 8.4
of [24].

Lemma 4.1 If there exist constants T > 0 and CT > 0 such that the input and
the output of system (4.1) satisfyZ T

0
ky(t)k2U dt � CT

Z T

0
ku(t)k2U dt; 8u 2 L2(0; T ;L2(�0)) (4.19)

with w(:; 0) = 0; the system (4.1) is well-posed.
By lemma 4.1, Theorem 4.1 amounts to saying that the solution to system (4.1)

with zero initial data satis�es

ky(t)k2L2(0;T ;L2(�0)) � CT ku(t)k2L2(0;T ;L2(�0)) ; 8u 2 L2(0; T ;L2(�0)):

Make a transformation z = A�31 w(t) 2 C (0; T ;V ) : Instead with (4.1), we consider the
following system in V :8>><>>:

zt(x; t) = iA
2z(x; t) + i (G1u(:; t))) (x; t) ; (x; t) 2 
� (0; T ] =: Q;

z(x; 0) = z0(x); x 2 
;
z(x; t) = Az(x; t) = 0; ; (x; t) 2 @
� [0; T ] =: �;

y(x; t) = i@(Az(x;t))@�A
; ; (x; t) 2 �0 � [0; T ] =: �0;

(4.20)
where we used the following fact in the �rst equation of (4.20):

A�1u = �G1u; 8u 2 L2(�0)

so Theorem 4.1 holds true if and only if for some (and hence for all) T > 0, there exists
a CT > 0 such that the solution to (4.1) satis�es (consider smooth u if necessary)Z T

0

Z
�0

j@(Az(x; t))
@�A

j2d�dt 6 CT

Z T

0

Z
�0

ju(x; t)j2d�dt: (4.21)

Proof of Theorem 4.1 The proof will be spit into three steps
Step 1. As indicated in the beginning of the proof of Theorem.4.1, since @
 is of class
C3, it follows from Lemma 2.1 [25, Lemma 4.1], that there exists a C2 vector �eld h
on 
 such that

h(x) = �(x); x 2 �; jN(x)jg 6 1; x 2 
:

Multiply both sides of the �rst equation in (4.20) by h(Az) and integrate over Q to
obtain Z

Q
zth(Az)dQ� i

Z
Q
A2zh(Az)dQ+ i

Z
Q
G1uh(Az)dQ = 0: (4.22)
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Computing the second term on the left-hand side of (4.22) gives

i

Z
Q
A2zh(z)dQ (4.23)

= i

Z
Q
�g (Az)h(Az)dQ+ i

Z
Q
Dp (Az)h(Az)dQ

= i

�Z
�

@ (Az)

@�
h(Az)d��

Z
Q
hrg (Az) ;rg (A�z)igdQ

�
+ i

Z
Q
Dp (Az)h(Az)dQ

= i

�Z
�

@ (Az)

@�
h(Az)d��

Z
Q
Dh (rg (Az) ;rg (A�z)) dQ

�
+i

�
�1
2

Z
Q
divg

�
jrg (Az)j2g h

�
dQ+

1

2

Z
Q
jrg (Az)j2g divghdQ

�
+i

Z
Q
Dp (Az)h(Az)dQ

and by virtue of the divergence formula, we have

i

Z
Q
A2zh(Az)dQ = i

�Z
�

@ (Az)

@�
h(Az)d��

Z
Q
Dh (rg (Az) ;rg (A�z)) dQ

�
+i

�
�1
2

Z
�

D
jrg (Az)j2g h; �

E
g
d�+

1

2

Z
Q
jrg (Az)j2g divghdQ

�
+i

Z
Q
Dp (Az)h(Az)dQ:

Then

Im

�
i

Z
Q
A2zh(Az)dQ

�
(4.24)

= Re

Z
�

@ (Az)

@�
h(Az)d�� Re

Z
Q
Dh (rg (Az) ;rg (A�z)) dQ

�1
2

Z
�

D
jrg (Az)j2g h; �

E
g
d�+

1

2

Z
Q
jrg (Az)j2g divghdQ

+Re

Z
Q
Dp (Az)h(Az)dQ:

Moreover, by Lemma 2.1 [18, Lemma 4.1] we have

Im

�
i

Z
Q
h(Az)dQ

�
(4.25)

=
1

2

Z
�

����@ (Az)@�

����2 d�� Re Z
Q
Dh (rg (Az) ;rg (A�z)) dQ

+
1

2

Z
Q
jrg (Az)j2g divghdQ+

Z
Q
Dp (Az)h(Az)dQ
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Next, we compute the �rst term on the left hand side of (4.22), by virtue of the
divergence formula, we have

divg (ztA�zh) = ztdivg (A�zh) +A�zh (zt) (4.26)

= zt [A�zdivg (A�zh) + h (A�z)] +A�zh (zt)

= ztA�zdivg (h) + zth (A�z) +A�zh (zt)

= ztA�zdivg (N) + ztN (A�z) +
d

dt
[A�zN (z)]�A�ztN (z)

=
�
iA2z + iG1u

�
A�zdivg (h) + ztN (A�z)

+
d

dt
[A�zN (z)]�A�ztN (z)

In which, Z
Q
A�zth (z) dQ (4.27)

=

Z
Q
�g (�zt)h(z)dQ+

Z
Q
Dp (�zt)h(z)dQ

=

Z
�

@ (�zt)

@�
h(z)d�+

Z
Q
�zt�g (h (z)) dQ+

Z
Q
Dp (�zt)h (z) dQ

=

Z
�

@ (�zt)

@�
h(z)d��

Z
Q
hrg (�zt) ;rg (h(z))igdQ+

Z
Q
Dp (�zt)h(z)dQ

=

Z
�

@ (�zt)

@�
h(z)d�+

Z
Q
Dp (�zt)h (z) dQ

+

Z
Q
�zt
�
(�h) (z) + 2hDh;D2zi(TxRn)2 + h (Az)

�
dQ

+

Z
Q
�zt
�
Ricc (h;Dz)�D2p (h;Dz)�D2z (h;Dp)

�
dQ

Integrating the equality (4.25) over Q by taking (4.27) into account yieldsZ
Q
divg (ztA�zh) dQ =

Z
Q
�ztA�zdivg (h) dQ+

Z
Q
zth (A�z) dQ

+

Z
Q

d

dt
[A�zh (z)] dQ�

Z
Q
A�zth (z) dQ

Then Z
Q
zth (A�z) dQ =

Z
Q
A�zth (z) dQ�

Z
Q
�ztA�zdivg (h) dQ

�
Z
Q

d

dt
[A�zh (z)] dQ
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and

Im

�Z
Q
zth (A�z) dQ

�
(4.28)

= �1
2

Z
Q
G1uA�zdivg (h) dQ�

1

2

Z
Q
A2zA�zdivg (h) dQ+

i

2

Z


A�zh (z) d


�T
0

� i
2

Z
Q
�zt�(h (z)) dQ� i

Z
Q
�zthDh;D2zi(TxRn)2dQ+

i

2

Z
Q
�ztD

2p (h;Dz) dQ

� i
2

Z
Q
�ztRicc (h;Dz) dQ+

i

2

Z
Q
�ztD

2z (h;Dp) dQ

�
Z
�

@ (�zt)

@�
h(z)d�� i

2

Z
Q
Dp (�zt)h (z) dQ

while Z
Q
Dp (�zt)h (z) dQ = �

Z
Q
�ztDp (h (z)) dQ�

Z
Q
�zth (z) divg (Dp) dQ (4.29)

Combining (4.29), (4.28) and (4.27) to obtain

Im

�Z
Q
zth (A�z) dQ

�
(4.30)

= �1
2

Z
Q
G1uA�zdivg (h) dQ�

1

2

Z
�

@ (Az)

@�
A�zdivg (h) d�+

1

2

Z
Q
jrg (Az)j2g divghdQ

+
1

2

Z
Q
A�zhrg (Az) ;rg (divg (h))igdQ+

i

2

Z


(A�zh (z)) d


�T
0

� i

2

Z
�

@ (�zt)

@�
h (z) d�

+
1

2

Z
Q

�
A2�z +G1u

�
(�h) (z) dQ� 1

2

Z
Q

�
A2�z +G1u

�
hDh;D2zi(TxRn)2dQ

�1
2

Z
Q

�
A2�z +G1u

�
D2z (h;Dp) dQ� 1

2

Z
Q

�
A2�z +G1u

�
D2p (h;Dz) dQ

+
1

2

Z
Q

�
A2�z +G1u

�
Ricc (h;Dz) dQ
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then

Im

�Z
Q
zth (A�z) dQ

�
(4.31)

= �1
2

Z
Q
G1uA�zdivg (h) dQ+

1

2

Z
Q
jrg (Az) j2gdivg (h) dQ

+

Z
Q
A�zhrg (Az) ;rg (divg (h))igdQ+

i

2

Z


(A�zh (z)) d


�T
0

� 1
2

Z
�

@ (�zt)

@�

@z

@�
d�

�1
2

Z
�

@ (Az)

@�

�
A�zdivg (h) + (�h) (z) + hDh;D2zi(TxRn)2 �D

2p (h;Dz)
�
d�

+
1

2

Z
�

@ (Az)

@�

�
Ricc (h;Dz) +D2z (h;Dp) + h (z) divg (Dp)

�
d�

+
1

2

Z
Q
hrg (A�z) ;rg (�h) (z)igdQ+

1

2

Z
Q
hrg (A�z) ;rg

�
hDh;D2zi(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�z) ;rg

�
D2p (h;Dz)

�
igdQ�

1

2

Z
Q
hrg (A�z) ;rg (Ricc (h;Dz))igdQ

�1
2

Z
Q
hrg (A�z) ;

�
rg

�
D2z (h;Dp)

��
igdQ�

1

2

Z
Q
hrg (A�z) ;rg (Dp (h (z)))igdQ

�1
2

Z
Q
hrg (A�z) ;rg (h (z) divg (Dp))igdQ

+

Z
Q
Dp (Az)A�zdivg (h) dQ+

1

2

Z
Q
Dp (A�z) (�h) (z) dQ

�1
2

Z
Q
Dp (A�z)

�
D2p (h;Dz)

�
dQ� 1

2

Z
Q
Dp (A�z)Ricc (h;Dz) dQ

+
1

2

Z
Q
Dp (A�z)

�
hDh;D2zi(TxRn)2

�
dQ� 1

2

Z
Q
Dp (A�z)D2z (h;Dp) dQ

�1
2

Z
Q
Dp (A�z)Dp (h (z)) dQ� 1

2

Z
Q
Dp (A�z)h (z) divg (Dp) dQ

+
1

2

Z
Q
G1u

�
(�h) (z) + hDh;D2zi(TxRn)2 �D

2p (h;Dz) +Ricc (h;Dz)
�
dQ

�1
2

Z
Q
G1u

�
D2z (h;Dp) +Dp (h (z)) + h (z) divg (Dp)

�
dQ
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Used the properties of the vector �eld h, we have

Im

�
i

Z
Q
A2zN(Az)dQ

�
(4.32)

=
1

2

Z
�

����@ (Az)@�

����2 d�� Re �Z
Q
Dh ((rg (Az) ;rg (A�z))) dQ

�
�1
2

Z
�

D
jrg (Az)j2g h; �

E
g
d�+

1

2

Z
Q
jrg (Az) j2gdivg (h) dQ

+Re

Z
Q
Dp (Az)h (A�z) dQ

=
1

2

Z
�

����@ (Az)@�

����2 d�� Re �Z
Q
Dh ((rg (Az) ;rg (A�z))) dQ

�
+
1

2

Z
Q
jrg (Az) j2gdivg (h) dQ+Re

Z
Q
Dp (Az)h (A�z) dQ:

In which

�Re
�
i

2

Z
�

@ (�zt)

@�

@z

@�
d�

�
� Re

�
1

2

Z
�

@ (Az)

@�
A�zdivg (h) d�

�
(4.35)

�1
2
Re

�Z
�

@ (A�z)

@�
(�h) (z) d�

�
� Re

�Z
�

@ (A�z)

@�
hDh;D2zi(TxRn)2d�

�
�1
2
Re

�Z
�

@ (A�z)

@�
D2p (h;Dz) d�

�
+
1

2
Re

�Z
�

@ (A�z)

@�
Ricc (h;Dz) d�

�
+
1

2
Re

�Z
�

@ (A�z)

@�
D2z (h;Dp) d�

�
� 1
2
Re

�Z
�

@ (A�z)

@�
Dp (h (z)) d�

�
+
1

2
Re

�Z
�

@ (A�z)

@�
Dp (h (z)) d�

�
+
1

2
Re

�Z
�

@ (A�z)

@�
h (z) divg (Dp) d�

�

� 9

32

Z
�

����@ (Az)@�

����2 d�+ Ckzk2L2(0;T ;H3(
)) +
1

4

Z
�

����@z@�
����2 d�

#T
0

In the last step where we have used the Sobolev trace theorem with constant C > 0.
Combining (4.22), (4.31), (4.35) and (4.36) gives

7

32

Z
�

����@ (Az)@�

����2 d� � R1 +R2 + b0;T (4.36)
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where

R1 =
1

2
Re

�Z
Q
jrg (Az) j2gdivg (h) dQ

�
+Re

�Z
Q
hrg (Az) ;rg (divg (h))ig

�
+
1

2
Re

�Z
Q
hrg (A�z) ;rg (�h) (z)igdQ+

Z
Q
hrg (A�z) ;rg

�
hDh;D2zi(TxRn)2

�
igdQ

�
+
1

2
Re

�Z
Q
hrg (A�z) ;rg

�
hDh;D2zi(TxRn)2

�
igdQ�

Z
Q
hrg (A�z) ;rg

�
D2p (h;Dz)

�
igdQ

�
�1
2
Re

�Z
Q
hrg (A�z) ;rg (Ricc (h;Dz))igdQ+

Z
Q
hrg (A�z) ;

�
rgD

2z (h;Dp)
�
igdQ

�
�1
2
Re

�Z
Q
hrg (A�z) ;rg (Dp (h (z)))igdQ+

Z
Q
hrg (A�z) ;rg (h (z) divg (Dp))igdQ

�
+Re

Z
Q
AzDp (h (A�z)) dQ� Re

Z
Q
h (A�z)Dp (Az) divg (Dp) dQ+ Ckzk2L2(0;T ;H3(
))

and

R2 = �1
2

Z
Q
G1uA�zdivg (h) dQ� Re

Z
Q
G1uh (A�z) dQ (4.37)

�1
2
Re

Z
Q
G1u

�
(�h) (z) + hDh;D2zi(TxRn)2 �D

2p (h;Dz)�D2z (h;Dp)
�
dQ

�1
2

Z
Q
G1u [Dp (h (z))�Ricc (h;Dz)� h (z) divg (Dp)] dQ

b0;T = �1
2

Z


(A�zh (z)) d


�T
0

+
1

4

Z
�

����@z@�
����2 d�

#T
0

Step 2. Evaluation of R1:
Let G1u = 0 in the �rst identity of (4.19) and note that z = A�31 w 2 V: It is known

that (4.19) associates with a C0�group solution in V . That is to say, For any z0 2 V;
there exists aunique solution z 2 V the solution to (4.20), which depends continuously
on z0:This fact together with (4.37), (4.36) implies thatZ

�

����@ (Az)@�A

����2 d� � CT kz0k2V (4.38)

Hence the operator B� is admissible, and so is B [9]. Therfore,

u �! w is continuous from L2(0; T ;L2(�0)) to C(0; T ;V
0
): (4.39)

Moreover

z = A�31 w 2 C(0; T ;V ) depends continously on u 2 L2(0; T ;L2(�0)): (4.40)

Therefore,

R1 � CT kuk2L2(0;T ;L2(�0)) 8u 2 L2(0; T ;L2(�0)): (4.41)
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Step 3. Evaluation of R2 and b0;T

Since G1u 2 L2(0; T ;H
1
2 (
)); the terms in R2 and b0;T depend continuously on

u 2 L2(0; T ;L2(�0)), from this facts and (4.41), we obtain

R2 + b0;T � CT kuk2L2(0;T ;L2(�0)) 8u 2 L2(0; T ;L2(�0)): (4.42)

From (4.42), (4.41), and (4.36), it is seen that (4.20) holds true. �

4.4 Proof of Theorem 4.2

We show the exact controllability by means of the Hilbert Uniqueness Method (HUM),
which is stated as Theorem 11.2.1 in [57] for well-posed systems as the duality principe
between exact controllability and observability. Since by Theorem 4.1, system (4.1)
is well-posed, which is formulated into the abstract form (4.14) and (iÂ)� = �iÂ in
V 0: It follows from theorem 11.2.1 of [57] that _w = iÂw + Bu is exactly controllable
if and only if _w = iÂw, y = B�w is exactly observable. More precisely, the exact
controllability of system (4.1) is equivalent of the exact observability of the following
dual problem of (4.1):8<:

i't(x; t) +A
2'(x; t) = 0; in 
� (0; T ) = Q;

'(x; t) = 0; A' = 0 on @
� (0; T ) = �;
'(x; 0) = '0(x) in 
:

(4.43)

with the output y = B�A3'. That is to say, the "observability inequality" holds true
for system (4.43) in the sence of (see (4.20), (4.21)):Z

�0

j@ (A' (x; t))
@�A

j2d� � CT
'02

V
:; 8'0 2 V; (4.44)

for some (and hence for all) positive T > 0:
To prove (5.39), we let A de�ned by (4.6) and let ' be a solution to (5.38). Then

iA generates a strongly continuous unitary group on the space V = D(A
3
4 ) and hence

k'(t)kV =
(A 3

4'(t)

V
=
eiAt'0

V
(4.45)

=
'0

V
=
A 3

4'0

L2(
)

:

Next, we claim that for f 2 D(A 3
4 ), the norms

kfk
D(A

3
4 )
=
A 3

4 f

L2(
)

and
�Z



jrg (Af)j2g dx

� 1
2

are equivalent. (4.46)

Actually,
nR


 jrg (Af)j2g dx
o 1
2
being a norm is a trivial fact, since the norms kfk

D(A
1
4 )
=A 1

4 f

L2(
)

and
nR


 jrg (f)j2g dx
o 1
2
are equivalent by the Poincaré inequality, the
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norms kfk
D(A

3
4 )
=
A 3

4 f

L2(
)

=
A 1

4 (Af)

L2(
)

and
nR


 jrg (Af)j2g dx
o 1
2
are equiv-

alent (see [67])
Proof of Theorem 4.2 We split the proof into three steps.
Step 1. Multiply the both sides of the �rst equation of (4.43) by N(A�') and

integrate on Q to obtainZ
Q
'tN(A')dQ� i

Z
Q
A2'N(A')dQ = 0: (4.47)

By making use of the computation procedure form by setting N = h (4.24)-(4.32), we
get

Im

�Z
Q
'tN (A�') dQ

�
(4.48)

=
1

2

Z
Q
jrg (A') j2gdivg (N) dQ+

Z
Q
A�'hrg (A') ;rg (divg (N))igdQ

+
i

2

Z


(A�'N (')) d


�T
0

� 1
2

Z
�

@ (�'t)

@�A

@'

@�A
d�

�1
2

Z
�

@ (A')

@�A

�
A�'divg (N) + (�N) (') + hDN;D2zi(TxRn)2 �D

2p (N;D')
�
d�

+
1

2

Z
�

@ (Az)

@�A

�
Ricc (N;D') +D2' (N;Dp) +N (') divg (Dp)

�
d�

+
1

2

Z
Q
hrg (A�') ;rg (�N) (')igdQ+

1

2

Z
Q
hrg (A�') ;rg

�
hDN;D2'i(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2p (N;D')

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Ricc (N;D'))igdQ

�1
2

Z
Q
hrg (A�') ;

�
rg

�
D2' (N;Dp)

��
igdQ:

and

Im

�
i

Z
Q
A2'N(A')dQ

�
(4.49)

=
1

2
Re

Z
�

�
@ (A')

@�A

�
N (A�') d�� Re

�Z
Q
DN ((rg (A') ;rg (A�'))) dQ

�
�1
2

Z
�
jrg (A')j2gN:�d�+

1

2

Z
Q
jrg (A') j2gdivg (N) dQ:
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By (4.47), (4.48) and (4.49), it follows that

4X
i=1

Li (4.50)

=
1

2
Re

Z
�

�
@ (A')

@�A

�
N (A�') d�� 1

2

Z
�
jrg (A')j2gN:�d�

+
1

2

Z
�

@ (A')

@�A

�
D2' (N;Dp)�D2p (N;D') +N (') divg (Dp)

�
d�

�1
2

Z
�

@ (Az)

@�A

�
Ricc (N;D') + hDN;D2zi(TxRn)2

�
d�

= Re

�Z
Q
DN ((rg (A') ;rg (A�'))) dQ

�
+
i

2

Z


(A�'N (')) d


�T
0

�1
2

Z
�

@ (�'t)

@�A

@'

@�A
d�+

Z
Q
A�'hrg (A') ;rg (divg (N))igdQ

+

�
1

2

Z
Q
hrg (A�') ;rg (�N) (')igdQ+

1

2

Z
Q
hrg (A�') ;rg

�
hDN;D2'i(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2p (N;D')

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Ricc (N;D'))igdQ

�1
2

Z
Q
hrg (A�') ;

�
rg

�
D2' (N;Dp)

��
igdQ

�
=

4X
i=1

Mi

We �rst compute the four ters in the LHS of (4.50). For " > 0;

L1 � �1

Z
�

"
1

"

����@ (A')@�A

����2 + "jrg (A�') j2g

#
d� (4.51)

By (H2), we have

L2 = �
1

2

Z
�
jrg (A')j2gN:�d� � 0 (4.52)

and by (A.40), (A.41) (in Appendix A), we have

L3 �
1

4"

Z
�

����@ (A')@�A

����2 d�+ C" k'k2L2(0;T ;D(A 3
4 ))

(4.53)

L4 �
1

4"

Z
�

����@ (A')@�A

����2 d�+ C" k'k2L2(0;T ;D(A 3
4 ))

(4.54)

where in the last step we used the trace Theorem and the Poincaré inequality.
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Adding (4.51), (4.52), (4.53), and (4.54), we get

LHS of (4.50) �
�
1

2"
+
�1
"

�Z
�

����@ (A')@�A

����2 d� (4.55)

+�1"

Z
�
jrg (A�') j2gd��

1

2

Z
�
jrg (A')j2gN:�d�

+2C" k'k2
L2(0;T ;D(A

3
4 ))

:

Choosing " > 0 su¢ ciently small so that �1"
R
� jrg (A�') j2gd��1

2

R
� jrg (A')j2gN:�d� <

0 and making use of (4.45), we obtain

LHS of (4.50) �
�
1

2"
+
�1
"

�Z
�

����@ (A')@�A

����2 d� (4.56)

+2C"
'02

D(A
3
4 )
:

Next, we estimate the RHS of (4.50). First by (H1) and (4.45)

M1 � b0T k'k2
L2(0;T ;D(A

3
4 ))

(4.57)

= b0T
'02

D(A
3
4 )

jM2j =

����� i2
Z


(A�'N (')) d


�T
0

����� (4.58)

� 2�1

�
kA' (T )kL2(
) krg' (T )kL2(
) +

A'0
L2(
)

rg'
0

L2(
)

�
� �1

�
" kA' (T )k2L2(
) +

1

"
krg' (T )k2L2(
) + "

A'02
L2(
)

+
1

"

rg'
0
2
L2(
)

�
� 2�1"

'02
D(A

3
4 )
+
2�1
"
krg' (T )k2C(0;T ;L2(
)) :

jM3j =

�����12
Z
�

@ (�'t)

@�A

@'

@�A
d�

���� � Z
�

���� @'@�A
����2 d�

�����
T

0

(4.59)

� �3
4

�
kA' (T )k2L2(
) + kA' (T )k

2
L2(
) +

A'02
L2(
)

+
A'02

L2(
)

�
� �3

2

�
1

"
kA' (t)k2C(0;T ;L2(
)) + "

'02
D(A

3
4 )

�
by (A.40) and (A.41) (in Appendix A)

jM4j �
�3
"
C kA' (t)k2C((0;T );L2(
)) + C�3"

'02
D(A

3
4 )

(4.60)

Combining (4.57), (4.58), (4.59) and (4.60) gives

RHS of (4.50) � b0T
'02

D(A
3
4 )
� (C�3 + 2�1�3 + 4�1) "

'02
D(A

3
4 )

(4.61)

�(�3C + 2�1�3 + 4�1)
"

kA' (t)k2C(0;T ;L2(
))
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Therefore, from (4.55), (4.61) and (H1), we have�

1 + 2�1
2"

�Z
�

����@ (A')@�A

����2 d�+ (�3C + 2�1�3 + 4�1)"
kA' (t)k2C(0;T ;L2(
))(4.62)

� b0

�
T � (C�3 + 2�1�3 + 4�1)

b0
"

�'02
D(A

3
4 )
:

Step 2. We claim that the inequality (4.62) implies that any T > 0; there exists a
CT > 0 such that for all '0 2 D(A

3
4 );

kA' (t)k2C((0;T );L2(
)) � CT

Z
�0

����@ (A')@�A

����2 d� (4.63)

and for any sequence fTqg with Tq !1 as q !1;

limq!1CTq = 0: (4.64)

we �rst assume (4.63) is invalid to obtain a contradiction. To this purpose, let f'ng
be the solutions of the following system over [0; T ] :8<:

i'0n(x; t) +A
2'n(x; t) = 0; in 
� (0; T ) = Q;

'n(x; t) = 0; A'n(x; t) = 0 on @
� (0; T ) = �;
'n(x; 0) = '0n(x) in 
:

(4.65)

such that
kA' (t)k2C((0;T );L2(
)) = 1 (4.66)

and Z
�0

����@ (A')@�A

����2 d�! 0 as n!1: (4.67)

by (4.67), we have '0n2D(A 3
4 )
� C uniformly for n (4.68)

with some constant C > 0. Hence, there exists a subsequence of
�
'0n
	
, still denote by

itself without confusion, and a function '0 2 D(A 3
4 ) such that

'0n ! '0 weakly in D(A
3
4 ): (4.69)

Let ~' be the solution to (4.65) associated with the initial data '0. Then we can claim
that there exists a ~' 2 L1 (0; T ;V ) such that

'n ! ~' weak� in L1
�
0; T ;D(A

3
4 )
�
: (4.70)

In fact, since
'n(t) = U(t)'0n; ~'(t) = U(t)'0; (4.71)
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where U(t) is the unitary group generated by iA inD(A
3
4 ). For any  2 L1

�
0; T ;D(A

3
4 )0
�
,

it follows that Z T

0

�
A

3
4 ('n(t)� ~'(t)) ;A�

3
4 (t)

�
dt (4.72)

=

Z T

0

�
A

3
4U(t)

�
'0n � '0

�
;A�

3
4 (t)

�
L2(
)

dt

=

Z T

0

�
A

3
4
�
'0n � '0

�
;A�

3
4 (U(t))�1  (t)

�
L2(
)

dt! 0as n!1:

where in the last step we used the Lebesgue dominated Theorem, (4.69) and the
property that kU(t)k is uniformly bounded over t 2 [0; T ] : Equation (4.70) then follows
from (4.72). Since (4.69) implies that f'ng is uniformly bounded in L1

�
0; T ;D(A

3
4 )
�
,

this together with the compact imbeding: D(A
3
4 ) ,! D(A

2
4 ) = H2(
)\H1

0 (
) implies
that there exists a subsequence of f'ng, still denoted by itself without confusion, such
that

'n ! ~' strongly in L1
�
0; T ;D(A

2
4 )
�
: (4.73)

From (4.66) and (4.73), we obtain

1 = kA'nk2C((0;T );L2(
)) ! kA~'k2C((0;T );L2(
)) = 1; (4.74)

Moreover, by (4.67), it follows that

@ (A~')

@�A
= 0 on �0: (4.75)

Thus, ~' satis�es 8<:
i~'t +A

2~' = 0; in 
� (0; T ) = Q;
~' = A~' = 0 on @
� (0; T ) = �;

@(A~')
@�A

= 0 on �0:
(4.76)

Now, setting � = A~' = �A 2
4 ~', we obtain the system8<:

i�t +A
2� = 0; in 
� (0; T ) = Q;

� = A� = 0 on @
� (0; T ) = �;
@�
@�A

= 0 on �0:
(4.77)

where the boundary condition A� = 0 follows from A� = A2~' = �i~'t in Q:
Its restriction in � vanishes by (4.76). Therfore, (4.77) implies that � � 0 in Q

[36] or ~' � 0. But this contradics (4.74). Then (4.63) follows.
Next, we prove (4.64). For notation convnience, we set for any T > 0 and '0 2

D(A
3
4 ) that

NT ('
0) = kA'k2C((0;T );L2(
)) ; DT ('

0) =

Z
�0

����@ (A')@�A

����2 d�; (4.78)
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Then we can take CT in (4.63) as

CT = sup
'02V;'0 6=0

NT ('
0)

DT ('0)
<1 (4.79)

Suppose on the contrary that there exists a sequence Tq !1 such that CTq � � > 0
for all q: Then from (4.79), for every su¢ ciently large q; there is an initial value
'0q 2 D(A

3
4 ) such that

NT ('
0
q)

DT ('0q)
� CTq �

1

q
� �� 1

q
; (4.80)

we may suppose without loss of generality that the '0q 2 D(A
3
4 ) satis�es

NTq('
0
q) =

A'q2C((0;T );L2(
)) = 1 (4.81)

and

DT ('
0
q) =

Z
�0

����@ (A')@�A

����2 d� � ��� 1q
��1

< C for all q (4.82)

with some C > 0: Let '(t; '0q) be the solution of (4.43) corresponding to the initial
value '0q : By (4.62), (4.81), (4.82) we have�

Tq � "0
� '0q2D(A 3

4 )
< C uniformly in q; (4.83)

where "0 = (C�3+2�1�3+4�1)
b0

": This gives further

'0q ! 0 in D(A
3
4 ) as q !1: (4.84)

Since '(t; '0q) = U(t)'0q where U(t) is a unitary group, we have

'(t; '0q)! 0 in C
�
0;1;D(A

2
4 )
�
as q !1: (4.85)

Therefore, (4.85) implies lim
q!1

NT ('
0
q) = 0 which contradicts (4.81). (4.64) is thus

proved.
Step 3. From (4.62)-(4.64), we �nally getZ

�0

���� @'@�A
����2 d� � C 00

�
T � (C�3 + 2�1�3 + 4�1)

b0
"

�'02
D(A

3
4 )

where C 00 = 2b0"
(1+2�1)+2(C�3+2�1�3+4�1)CT

> 0: So (4.44) holds for all T > 0: The proof
is complete. �

Remark 4.1 Using the inequality of admissibility (4.38) we obtain that the
solution of (4.43) satis�es the following inequalityZ

�0

j@ (A')
@�A

j2d� � CT
'02

D(A
3
4 )
; (4.86)

for any T > 0 with some constant CT > 0: By (4.44) and (4.86), we see that for
any T > 0, the norm

R
�0
j@(A')@�A

j2d� on the space D(A
3
4 ) is equivalent to the norm'02

D(A
3
4 )
=
A 3

4'0
2
L2(
)

:



Chapter 5

Well posedness and exact
controllability of fourth order
Schrödinger equation with
variable coe¢ cients, moment
boundary control and colocated
observation

We recall that in chapter 4 our system is described with hinged boundary condition.
In this chapter we study the same system with impose the moment boundary control
and set the Dirichlet boundary condition to be zero. We begin with showing the well-
posedness of this system in the state space H1

0 (
) and input/output space U = Y =
L2(�0), the regularity of the system is also proved with feedthrough operator is found
to be zero. From the result of the well-posedness, we know that this system is exactly
controllable in some interval [0; T ] ; (T > 0) if and only if its corresponding closed
loop systems under the output proportional feedback u = �ky, k > 0 is exponentialy
stable. Based on this argument, to get the feedback stabilization of this system from
the well-posedness, we study the exact controllability of the open-loop system.

5.1 System description and statement of main results.

The system what we concerned within is discribed by the following PDE�s8>>>>><>>>>>:

iwt(x; t) +A
2w(x; t) = 0; x 2 
; t > 0

Aw(x; t) = u(x; t) x 2 �0; t � 0
Aw(x; t) = 0 x 2 �1; t � 0
w(x; t) = 0 x 2 @
; t � 0
y(x; t) = i

@(A�11 )w(x;t)
@�A

x 2 �0; t � 0

(5.1)

Where, u is also standing for the boundary control input and y is the output.

49
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Here we still use 
 de�ned in chapter 4, system (4.1), A1 and A de�ned by (4.4)
and (4.6), respectively.

Let H1 = H1
0 (
);H =H�1(
): The following Theorem shows that the system (5.1)

is well posed with the state spaceH1; and the input and out put space U = Y = L2(�0):
Theorem 5.1 The system (5.1) is well-posed. More precisely, for any T > 0,

initial value w0 2 H1 and control input u 2 L2(0; T ;U) there exists a unique solution
w 2 C (0; T ;H1) to (5.1) such that

kw(:; T )k2H1 + kyk
2
L2(0;T ;U) 6 CT (kw0k2H1 + kuk

2
L2(0;T ;U)) (5.2)

where CT is used to represent the constant that depends only on T .
It is proved in [26, Theorem 5.8] (see also [68, Theorem 5.2]) that if the abstract

system (5.1) introduced later is well-posed, it must be regular in the sense of Weiss
with the zero feedthrough operator.

The following result is hence a consequence of Theorem 5.1.
Corollary 5.1 The system (5.1) is regular and the feedthrough operator is zero.
The second aim is to study the exact controllability problem for the open loop

system (5.1), this is the result of Theorem 5.1 under a certain geomtric condition on

:

(H1) There is a vector �eld N on (Rn; g) such that

DN(X;X) = b(x) jXj2g , 8X 2 TxRn; x 2 
: (H1)

where b(x) is a function de�ned on 
 so that

b0 = inf
x2


b(x) > 0: (H2)

(H2)
� satis�es N(x):� > 0 on �0 (H3)

Theorem 5.2 Under assumptions (H1) and (H2), system (5.1) is exactly controllable
on some [0; T ] ; T > 0. That is, given initial data w(:; 0) = w0 2 H1

0 (
) and time
T > 0; there exists a boundary control u 2 L(0; T ;L2(�0)), such that the unique
solution to the system (5.1) satis�es w(T ) = 0:

The following result is a direct consequence of Theorems 5.1 and 5.2.
Corollary 5.2 Let the Hypotheses of Theorem 5.2 hold true. Then system (5.1)

is exponentially stable under the proportional output feedback u = �ky for any k > 0:

5.2 Abstract formulation

We formulate system (5.1) as an abstract framework of a �rst order colocated system
in the state space H1 = H1

0 (
) and control and output space U = Y = L2(�0):
Extend the operator ~A of A into the space V as
De�ne an extension operator ~A of A to the domain H as follows:

h ~A'; iH = hA1=2';A1=2 iH; 8'; 2 V: (5.3)

Then ~A is a positive self-adjoint operator in H:
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Then ~A is a positive self-adjoint operator in H as follows,

h ~A';'iH = hA
1
2';A

1
2'iH = hA

1
4';A

1
4'iL2(
) (5.4)

� C k'k2L2(
) � C
0
A� 1

4'
2
L2(
)

= C
0 k'k2H ; 8' 2 V;

Where C and C
0
are constants. We identify H with it�s dual H

0
, then the following

Gelfand inclusions hold true:

D( ~A�
1
2 ) ,! H = H

0
,! D( ~A�

1
2 )

0
: (5.5)

De�ne an extension Â 2 L(D( ~A1=2); D( ~A1=2)0) of ~A:

hÂf; gi
D( ~A

1
2 )0;D( ~A

1
2 )
= h ~A

1
2 f; ~A

1
2 giH; 8f; g 2 D( ~A

1
2 ): (5.6)

Let G1 be the Dirichlet map: G1 2 L(L2(�0);H5=2(
)) by G1u = � if and only if8<:
A2� = 0; x 2 
;

�(x)j� = 0;
A�(x)j�0 = u(x); A�(x)j�1 = 0:

(5.7)

By virtue of the operators Â and G1; system (5.1) can be written in D( ~A
1
2 )

0
as

_w = iÂw +Bu: (5.8)

where B 2 L(U;D( ~A 1
2 )

0
) is given by

Bu = �iÂG1u; 8u 2 U: (5.9)

De�ne B� 2 L(D( ~A 1
2 ); U) by

hB�f; uiU = hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0
; 8f 2 D( ~A

1
2 ) = H1

0 (
); u 2 U: (5.10)

Then for any f 2 D( ~A 1
2 )

0
and u 2 C10 (�0), we have

hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0

= hf;�iÂG1ui
D( ~A

1
2 );D( ~A

1
2 )0
= h ~A1=2f;�i ~A1=2G1uiH

= �ihA1(A�11 f); ~AG1uiH
= �ihA2(A�2f); ~AG1uiV0

= �ihA�1=4A1(A�11 f); A�1=4AG1uiL2(
):
= �ihA1(A�11 f); A1G1uiL2(
):
= �ihA21(A�11 f); G1uiL2(
):

= hu;�i@(A1
�1f))

@�A
; ui

L2(�0)
:

In the last step, we have used Greens formula and the de�nitions G1 and A1.
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Since C10 (�0) is dense in L
2(�0), we obtain

B�f = �i@(A
�1
1 f))

@�A

����
�0

; 8f 2 D( ~A1=2) = H1
0 (
): (5.11)

Combing the above operators, we cast the open loop system (5.1) into an abstract
�rst-order form in H1

0 :

_w = iÂw +Bu (5.12)

y = B�w

where Â, B and B� are de�ned by (5.6), (5.9) and (5.10) respectively.

5.3 Proof of Theorem 5.1

Make a transformation z = A�11 w; then z 2 C (0; T ;V ) ; Then z satis�es8<:
zt(x; t) = iA

2z(x; t) + i (u(:; t))) (x; t) ; (x; t) 2 
� (0; T ] =: Q;
z(x; 0) = z0(x); x 2 
 ;
z(x; t) = Az (x; t) = 0 ; (x; t) 2 @
� [0; T ] ;

(5.13)
and from (5.11) the output of (5.1) is changed into the form

y(x; t) = B�w(x; t) = B�A1A
�1
1 w(x; t) = B�A1z(x; t) = i

@z(x; t)

@�A
x 2 �0; t > 0

(5.14)
and we used the fact in the �rst equation of (5.13)

A�11 ÂG1u = Â
1
2G1u = �u; 8u 2 L2(�0)

where  2 L(L2(�0);H1=2(
)) is de�ned by u = ' if and only if

A� = 0; x 2 
;
�(x)j�0 = u(x); �(x)j�1 = 0:

Therefore, to prove theorem (5.1), we need only to prove thatZ T

0

Z
�0

j@z (x; t)
@�A

j2d�dt 6 CT

Z T

0

Z
�0

ju(x; t)j2d�dt: (5.16)

For the system (5.13) with the output (5.14).
Since @
 is of class C3, it follows from [25, Lemma 4.1] that there exists a C2-vector

�eld q on 
 such that

q(x) = �(x); x 2 �; jN(x)jg 6 1; x 2 
: (5.17)

Now, multiply both sides of the �rst equation in (5.13) by q(z) and integrate over Q
to obtain Z

Q
ztq(z)dQ� i

Z
Q
A2zq(z)dQ = i

Z
Q
uq(z)dQ (5.18)
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Computing the �rst term on the left hand side of (5.18) and integrating by parts we
obtainZ

Q
ztq(z)dQ =

Z


zq(z)d


����T
0

�
Z
Q
zq(�zt)dQ (5.19)

=

�Z


divg(jzj2 q)d
�

Z


zq (z) d
�

Z


jzj2 divg(q)d


�����T
0

�
�Z

Q
divg (z�ztq) dQ�

Z
Q
�ztq (z) dQ�

Z
Q
z�ztdivg(q)dQ

�
and hence

2i Im

Z
Q
ztq(z)dQ (5.20)

=

Z
Q
z�ztdivg (q) dQ�

�Z


zq (z) d
+

Z


jzj2 divg(q)d


�����T
0

= �i
Z
Q
zudivg (q) dQ� i

Z
Q
zA2zdivg (q) dQ

�
�Z



zq (z) d
+

Z


jzj2 divg(q)d


�����T
0

A straight computation shows thatZ
Q
zA2zdivg (q) dQ (5.21)

=

Z
�

@ (Az)

@�A
zdivg (q) d��

Z
�

@ (zdivg (q))

@�A
Azd�+

Z
Q
A (zdivg (q))AzdQ

=

Z
Q
Az (divg (q)Az + zAdivg (q) + 2 hrgz;rg (divg (q))igi) dQ

=

Z
Q
jAzj2 divg (q) dQ+

Z
Q
zAzAdivg (q) dQ+ 2

Z
Q
Az hrgz;rg (divg (q))igi dQ

Where we have used the fact that A(' ) =  A'+ 'A + 2hrg';rg ig, substi-
tuting (5.21) in (5.20) to yield

Im

Z
Q
ztq(z)dQ (5.22)

= �1
2

Z
Q
zudivg (q) dQ�

1

2

Z
Q
jAzj2 divg (q) dQ�

1

2

Z
Q
zAzAdivg (q) dQ

�
Z
Q
Az hrgz;rg (divg (q))igi dQ+

i

2

�Z


zq (z) d
+

Z


jzj2 divg(q)d


�����T
0
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Next, compute the second term of the left-hand side of (5.18) to yield

Im i

�Z
Q
A2zq(z)dQ

�
(5.23)

= Re

�Z
Q
A2zq(z)dQ

�
= Re

Z
Q
�g (Az) q(z)dQ+Re

Z
Q
(Dp) (Az) q(z)dQ

= Re

Z
�

@ (Az)

@�
q(z)d�+Re

Z
Q
Az�g (q(z)) + Re

Z
Q
(Dp) (Az) q(z)dQ

= Re

Z
�

@ (Az)

@�
q(z)d�+Re

Z
Q
Az (�q) (z)dQ+Re

Z
Q
Azq(Az)dQ

+2Re

Z
Q
AzhDq;D2�zi(TxRn)2dQ� Re

Z
Q
AzD2p (q;D�z) dQ

�Re
Z
Q
AzD2�z (q;Dp) dQ+Re

Z
Q
AzRicc (q;D�z) dQ+Re

Z
Q
(Dp) (Az) q(z)dQ

Furthermore, the following inequalities hold true: @z

@�A


L2(�)

� C kzkH2(
) � C
0 kAzkL2(
) (5.24)

Where C,C
0
> 0 are constants. The �rst inequality of (5.24) comes from the trace

theorem, and the second one is attributed to the equivalence of the norms kzkH2(
)

and kAzkL2(
) in the space H2(
):
Combining (5.18), (5.22), (5.23), we get

C

Z
�

����@z@�
����2 d� (5.25)

� inf
�

jdivg (q)jg

Z
Q
jAzj2g dQ

� �
Z
Q
udivg (q) dQ�

Z
Q
AzA (divg (q)) dQ

�2
Z
Q
Az hrgz;rg (divg (q))igi dQ+ i

�Z


zq (z) d
+

Z


jzj2 divg(q)d


�����T
0

+2Re

Z
�

@ (Az)

@�
q(z)d�� 2Re

Z
Q
Az (�q) (z)dQ� 2Re

Z
Q
Azq(Az)dQ

�4Re
Z
Q
AzhDq;D2�zi(TxRn)2dQ+ 2Re

Z
Q
AzD2p (q;D�z) dQ

+2Re

Z
Q
AzD2�z (q;Dp) dQ� 2Re

Z
Q
AzRicc (q;D�z) dQ� 2Re

Z
Q
(Dp) (Az) q(z)dQ

�2Re
�
i

Z
Q
uq(z)dQ

�
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In which

Re

Z
�

@ (Az)

@�
q(z)d� � 7

32

Z
�

����@ (Az)@�

����2 d�+ C 0 kzk2L2(0;T ;H2(
)) (5.26)

where C,C
0
> 0 are constants.

Moreover, we can use (5.32) by making h = q, to have

7

32

Z
�

����@ (Az)@�

����2 d� � R
0
1 +R

0
2 + b

0
0;T (5.27)

where R
0
1 and b

0
0;T are the same as the representations of R1 and b0;T in (5.33), re-

spectively, and the representation of R
0
2 is as follows:

R
0
2 = �1

2
Re

Z
Q
uAzdiv (q) dQ (5.28)

�1
2
Re

Z
Q
u
�
(�h) (z) + hDh;D2zi(TxRn)2 �D

2p (h;Dz) +Ricc (h;Dz)�D2z (h;Dp)
�

�1
2
Re

Z
Q
u [Dp (h (z))� h (z) divg (Dp) dQ]� Re

Z
Q
uq (Az) dQ

Combining (5.25), (5.26), and (5.27) to get

C

Z
�

����@z@�
����2 d� � R

00
1 +R

00
2 + b

00
0;T (5.29)

Where

R
00
1 (5.30)

= R
0
1 �

Z
Q
AzA (divg (q)) dQ� 2

Z
Q
Az hrgz;rg (divg (q))igi dQ� 2Re

Z
Q
Az (�q) (z)dQ

�4Re
Z
Q
AzhDq;D2�zi(TxRn)2dQ+ 2Re

Z
Q
AzD2p (q;D�z) dQ+ 2Re

Z
Q
AzD2�z (q;Dp) dQ

+2Re

Z
Q
AzD2�z (q;Dp) dQ� 2Re

Z
Q
AzRicc (q;D�z) dQ� 2Re

Z
Q
(Dp) (Az) q(z)dQ

�1
2

Z
Q
jAzj2g divg (q) dQ+ C

0 kzk2L2(0;T ;H2(
))

R
00
2 = R

0
2 �

Z
Q
udivg (q) dQ� 2Re

�
i

Z
Q
uq(z)dQ

�
b
00
0;T = b

0
0;T + i

�Z


zq (z) d
+

Z


jzj2 divg(q)d


�����T
0

Now, we estimate R
00
1 ; R

00
2 , b

00
0;T in the following steps.

Step 1. Evaluation of R
00
1 . It is found that the dual system of (5.13) is8<:

zt(x; t) = i ~Az(x; t);
z(0) = z0;
y = B�A1z;

(5.31)
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Where ~A and A1 are given by (5.4), (4.4) respectively. It is well known that system
(5.13) associates with a C0-group solution in the space V . That is to say, for any
z0 2 V to (5.31) depends continuously on z0. By this facts and letting u = 0 in
(5.18), we obtain Z

�

���� @z@�A
����2 d� � CT kz0k2V (5.32)

Which is equivalent to saying that for any initial w0 2 V
0
, the solution to system

(5.13) with u satis�es Z
�

����@(A�11 w))

@�A

����2 d� � CT kw0k2H1
0 (
)

(5.33)

Hence the operator B� is admissible, and so is B [9]. In other words,

u �! w is continuous from L2(0; T ;L2(�0)) to C(0; T ;V 0): (5.34)

Moreover

z 2 C(0; T ;V ) depends continously on u 2 L2(0; T ;L2(�0)): (5.35)

Therefore

R
00
1 � kuk2L2(0;T ;L2(�0)) 8u 2 L2(0; T ;L2(�0)): (5.36)

Step 2. Evaluation of R
00
2 and b

00
0;T : This can be easy done from the representation

of R
0
2 and b

0
0;T in (5.30),and by virtue of (5.35). we can readly obtain

R
00
2 + b

00
0;T � kuk2L2(0;T ;L2(�0)), 8u 2 L2(0; T ;L2(�0)): (5.37)

From (5.29), (5.36), and (5.37), it is seen that (5.16) holds true.�

5.4 Proof of Theorem 5.2

Since by Theorem 5.1, the operator B is admissible in system (5.12), the exact con-
trollability of system (5.1) is equivalent to the exact observability to the dual problem
of (5.1): 8<:

i't +A
2'(x; t) = 0; in 
� (0; T ) = Q;

' = 0; A' = 0 on @
� (0; T ) = �;
'(x; 0) = '0(x) in 
:

(5.38)

with the output y = B�A'. That is to say, the "observability inequality" holds true
for system (5.38) in the sence of (5.13), (5.16):Z

�0

j@ (' (x; t))
@�A

j2d� � CT
'02

V
:; 8'0 2 V; (5.39)

for some (and hence for all) positive T > 0:
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To prove (5.39), we let A de�ned by (4.6) and let ' be a solution to (5.38). Then
iA generates a strongly continuous unitary group on the space V = D(A

3
4 ) and hence

k'(t)kV =
(A 3

4'(t)

V
=
eiAt'0

V
(5.40)

=
'0

V
=
A 3

4'0

L2(
)

:

Next, we claim that for f 2 D(A 3
4 ), the norms

kfk
D(A

3
4 )
=
A 3

4 f

L2(
)

and
�Z



jrg (Af)j2g dx

� 1
2

are equivalent. (5.41)

Actually,
nR


 jrg (Af)j2g dx
o 1
2
being a norm is a trivial fact, since the norms kfk

D(A
1
4 )
=A 1

4 f

L2(
)

and
nR


 jrg (f)j2g dx
o 1
2
are equivalent by the Poincaré inequality, the

norms kfk
D(A

3
4 )
=
A 3

4 f

L2(
)

=
A 1

4 (Af)

L2(
)

and
nR


 jrg (Af)j2g dx
o 1
2
are equiv-

alent.
Proof of Theorem 5.2
Multiplying both sides of the �rst equation of (5.38) by N(�') and integrating

over Q, applying the same computation procedure from (5.18)-(5.23) in the proof of
Theorem 5.1, we obtain

�Re
Z
�

@ (A')

@�A
N(')d� (5.42)

= Re

Z
Q
Azq(Az)dQ+

1

2

Z
Q
jA'j2 divg (N) dQ�

1

2

Z
Q
'A'Adivg (N) dQ

+

Z
Q
A' hrg';rg (divg (N))igi dQ�

i

2

�Z


'N (') d
+

Z


j'j2 divg(N)d


�����T
0

+Re

Z
Q
A'

�
(�N) (') +N(A') + 2hDN;D2�'i(TxRn)2

�
dQ

�Re
Z
Q
A'

�
D2p (N;D�') +D2�' (N;Dp)�Ricc (N;D�')

�
dQ

To obtain the observability inequality, we de�ne T 2 (TxRn)2 for any x 2 �
 as follows:

T (X;Y ) = DN(X;Y ) +DN(Y;X); 8X;Y 2 TxRn: (5.43)

It is clear that T (:; :) is symmetric, and from (H1), we have

DN(X;Y ) +DN(Y;X) = 2b(x) hX;Y ig ; 8X;Y 2 TxR
n; x 2 �
 (5.44)

Fix x 2 �
, and let feigni=1 be an orthogonormal basis of (TxRn; g): By (5.44), we have
2 


DN;D2'
�
TxRn =

nX
i;j=1

DN(ei; ej)D
2'(ei; ej) (5.45)

= b(x)�g' = b(x) (A'�Dp (')) :
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Combining (5.44), (5.45) and (5.42) we obtain

�Re
Z
�

@ (A')

@�A
N(')d� (5.46)

= Re

Z
Q
Azq(Az)dQ+

1

2

Z
Q
jA'j2 divg (N) dQ

+

Z
Q
A' hrg';rg (divg (N))igi dQ�

1

2

Z
Q
'A'Adivg (N) dQ

+Re

Z
Q
A'

�
(�N) (')� 2

Z
Q
b(x)A'Dp (�')

�
dQ

�Re
Z
Q
A'

�
DN (D�';Dp)�D2p (N;D�') +Ricc (N;D�')

�
dQ

� i
2

�Z


'N (') d
+

Z


j'j2 divg(N)d


�����T
0

=
6X
i=1

Mi

We compute the LHS of (5.46), to get

�Re
Z
�

@ (A')

@�A
N(')d� � 1

"

Z
�

���� @'@�A
����2N:�d�+ "�1 Z

�

����@ (A')@�A

����2 d�: (5.47)

A direct computation shows thatZ
Q
Azq(Az)dQ =

Z
Q

�
divg

�
jA'j2N

�
�A�'N (A')� jA'j2g divg (N)

�
dQ

This implies that

Re

Z
Q
Azq(Az)dQ =

1

2

Z
Q
jA'j2g divg (N) dQ

Multiply both sides of the �rst equation of (5.38) by �' and A�', respectively and
integrate over Q to obtain

i

Z
Q
't�'dQ+

Z
Q
jA'j2g dQ = 0

i

Z
Q
rg't:rg�'dQ+

Z
Q
jrg (A')j2g dQ = 0

Then Z
Q
jA'j2g dQ =

Z
Q
jrg (A')j2g dQ+ i

Z
Q
rg't:rg�'dQ� i

Z
Q
't�'dQ: (5.48)
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Next, we evaluate the terms of the RHS of (5.46) and using (5.48), we obtain

M1 =

Z
Q
jA'j2g divg (N) dQ (5.49)

� �2

�Z
Q
jrg (A')j2g dQ+ i

Z
Q
rg't:rg�'dQ� i

Z
Q
't�'dQ

�
� �2

(A 3
4'0
2
L2((0;T )�
)

+ �2

�
i

Z
Q
rg't:rg�'dQ� i

Z
Q
't�'dQ

�
= �2T

(A 3
4'0
2
L2((0;T )�
)

+ �2i

Z
Q
rg't:rg�'dQ� �2i

Z
Q
't�'dQ

= �2T
'02

D(A
3
4 )
+ �2i

Z
Q
rg't:rg�'dQ� �2i

Z
Q
't�'dQ

by (5.41), the Poincaré inequality, we obtain

jM2j =

����Z
Q
A' hrg';rg (divg (N))igi dQ�

1

2

Z
Q
'A'Adivg (N) dQ (5.50)

+Re

Z
Q
A'

�
(�N) (')� 2

Z
Q
b(x)A'Dp (�')

�
dQ

�Re
Z
Q
A'

�
DN (D�';Dp)�D2p (N;D�') +Ricc (N;D�')

�
dQ

����
� �03

"
kA' (t)k2C((0;T );L2(
)) + �3"

'02
D(A

3
4 )

jM3j =

������ i2
�Z



'N (') d


�����T
0

����� � �1
2

�' (T ) krg' (T )k+
'0rg'

0
�(5.51)

� �1
4

�
1

"
krg' (T )k2 + "

' (T )2 + 1
"

rg'
0
2 + " '02�

� �1
2

�
1

"
�3 kA' (t)k2C((0;T );L2(
)) + "

'02
D(A

3
4 )

�
;

jM4j =

������ i2
�Z



j'j2 divg(N)d


�����T
0

����� (5.52)

=

������ i2
�Z



'�' divg(N)d


�����T
0

�����
� �1

2

�
k' (T )k

' (T )+ '0'0�
� �1

4

�
1

"
k' (T )k2 + "

' (T )+ 1
"

'02 + " '02�
� �1

2

�
1

"
�03 kA' (t)k

2
C((0;T );L2(
)) + "

'02
D(A

3
4 )

�
;
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jM5j =

������2iZ
Q
rg't:rg�'dQ

���� � Z
Q
jrg'tj jrg�'j dQ �

�2
2

Z


jrg'j2g d


����T
0

(5.53)

� �2
2

�
krg' (T )k

rg' (T )
+ rg'

0
rg'0

�
� 1

"

�3�2
2

kA' (t)k2C((0;T );L2(
)) +
�2
2
"
'02

D(A
3
4 )

jM6j =

�����2iZ
Q
't�'dQ

���� � �2

Z
Q
j'tj j'j dQ � �2

Z


j'j2

����T
0

(5.54)

� �2

�
k' (T )k

' (T )+ '0'0�
� �03

"
kA' (t)k2C((0;T );L2(
)) + "

'02
D(A

3
4 )
;

where �i and �
0
i i = 1; 2; 3 are constants. Combining (5.49)-(5.54) gives

RHS of (5.46) � �2T
'02

D(A
3
4 )
�
�
2 +

�2
2
+ �3

�'02
D(A

3
4 )

(5.55)

�
��2
2 + 1

�
�03 +

��2
2 + 1

�
�3

"
kA' (t)k2C((0;T );L2(
))

Therefore, by the estimates of the LHS and RHS of (5.46) in (5.47) and (5.55) respec-
tively, we have by taking (H2), (5.24) and (4.86) into account, that

1

"

Z
�0

���� @'@�A
����2 d�+ �1C

02 +
��2
2 + 1

�
�03 +

��2
2 + 1

�
�3

"
kA' (t)k2C((0;T );L2(
))(5.56)

� �2

�
T �

2 + �2
2 + �3 + �1C

00
T

�2
"

�'02
D(A

3
4 )
:

We claim that the inequality (5.56) implies that for any T > 0, there exists � > 0,
such that for all '0 2 D(A 3

4 );

kA' (t)k2C((0;T );L2(
)) � �

Z
�0

���� @'@�A
����2N:�d�; (5.57)

and for any sequence Tn with Tn !1;

lim
n!1

�Tn = 0: (5.58)

The proofs for aforementioned claims are similar to step to in the proof of Theorem
4.2. Actually, we will assume that they are not true to obtain a contradiction , to this
purpose, let be the solution sequence f'ng to the system of (5.38) such that

kA'nk2C((0;T );L2(
)) = 1; (5.59)Z
�0

���� @'n@�A

����2 d� ! 0; n!1 (5.60)
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By (5.56), we can obtain (5.54) and hence (5.55), (5.56) and

1 = kA'nk2C((0;T );L2(
)) ! kA~'k2C((0;T );L2(
)) = 1: (5.61)

In addition, owing to (5.60), we have

@~'

@�A
= 0 on �0:

Thus, ~' satis�es8<:
i~'t(x; t) +A

2~'(x; t) = 0; in 
� (0; T ) = Q;
~'(x; t) = 0; A~'(x; t) = 0 on @
� (0; T ) = �;

@~'
@�A

= 0 on �0:

This leads to ~' � 0 in Q, contradicting (5.59). (5.57) is thus proved.
To prove (5.58), we set

NT ('
0) = kA'k2C((0;T );L2(
)) ; DT ('

0) =

Z
�0

���� @'@�A
����2 d�;

for each T > 0 and each '0 2 D(A 3
4 ): The remaining proof for (5.58) is similar to the

proof of (??), thenZ
�0

���� @'@�A
����2 d� � C

�
T �

2 + �2
2 + �3 + �1C

00
T

�2
"

�'02
D(A

3
4 )

where C = �2"

1+[�1C02+(
�2
2
+1)�03+(

�2
2
+1)�3]�

> 0: The proof is complete. �



Chapter 6

Well posedness, regularity and
exact controllability of fourth
order Schrödinger equation with
variable coe¢ cients, Dirichlet
boundary control and colocated
observation

In this chapter we consider an open-loop system of fourth order Schrödinger equation
with variable coe¢ cients, Dirichlet boundary control and collocated observation, fol-
lowing the approach developed in [67] and the multiplier method on Riemannian man-
ifold, we show that the system is well-posed with input/output space U = Y = L2(�0),

state space V 0 which is the dual space of V =
n
' 2 H3(
) : 'j� =

@'
@�A

��� = 0o with
respect to the pivot space L2(
). In addition, this system is regular with feedthrough
operator is zero. In order to prove the feedback stabilization from well posedness, we
discuss the exact controllability of this control system.

6.1 System description and statement of main results

The system that we are concerned with in this chapter is described as follows8>>>>>><>>>>>>:

iwt(x; t) +A
2w(x; t) = 0 x 2 
; t > 0

w(x; t) = 0 x 2 @
; t � 0
@w(x;t)
@�A

= 0 x 2 �1; t � 0
@w(x;t)
@�A

= u(x; t) x 2 �0; t � 0

z(x; t) = i@A(A)
� 3
2w(x;t)

@�A
x 2 �0; t � 0

(6.1)

Where, u is also standing for the boundary control input and y is the output.
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Here we still use 
 de�ned in chapter 4 and 5. Now, let A be the positive self-
adjoint operator in L2(
) de�ned by

Af = A2f; D(A) = H4(
) \H2
0 (
): (6.5)

one can show that A1=2 = �A. Moreover,

V = D(A
3
4 ) =

�
' 2 H3(
) : 'j� =

@'

@�A

���� = 0� ;
Then the following theorem states that the system is well-posed with the state space
V 0 which is the dual of the space V with respect to the pivot space L2(
) in the
sence of Gelfand�s triple inclusions V ! L2(
)! V 0 and the input and output space
U = Y = L2(�0).

Theorem 6.1 The system (6.1) is well-posed. More precisely, for any T > 0,
initial value w0 2 V 0 and control input u 2 L2(0;1;U) there exists a unique solution
w 2 C (0; T ;V 0) to (6.1) such that

kw(:; T )k2V 0 + kzk2L2(0;T ;U) 6 CT (kw0k2V 0 + kuk2L2(0;T ;U))

where CT is used to represent the constant that depends only on 
; �0 and T .
Theorem 6.2 The system (6.1) is regular with zero feedthrough operator. This

means that if the initial state w(:; 0) = 0 and u(:; t) = u(t) 2 U is a step input, then
the correspending output satis�es

Lim
�!0

Z
�

������ 1�
�Z
0

z(x; t)dt

������
2

d� = 0 (6.6)

The second aim is to study the exact controllability problem for the open loop system
(6.1), this is the result of Theorem 6.1 under a certain geomtric condition on 
:

(H�1) There is a vector �eld N on (Rn; g) such that

DN(X;X) = b(x) jXj2g , 8X 2 TxRn; x 2 
: (H�1)

where b(x) is a function de�ned on 
, so that

b0 = inf
x2


b(x) > 0: (H�2)

(H�2)
� satis�es N(x):� > 0 on �0 (H3)

Theorem 6.3 Under assumptions (H�1) and (H�2), system (6.1) is exactly controllable
on some [0; T ] ; T > 0. That is, given initial data w(:; 0) = w0 2 V 0 and time T > 0;
there exists a boundary control u 2 L(0; T ;L2(�0)), such that the unique solution to
the system (6.1) satis�es w(T ) = 0:

The following result is a direct consequence Theorems 4.1 and 4.2.
Corollary 6.1 Let the hypotheses of Thorem 6.3 hold true. Then system (6.1) is

exponentially stable under the proportional output feedback u = �ky for any k > 0:
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6.2 Abstract formulation

In this section we cast the system (6.1) into an abstract �rst order system in the state
space V 0 and control and output space U = Y = L2(�0).

De�ne an extension operator ~A of A de�ned as in (4.6) to the space V 0 by

h ~A'; iV 0 = hA
1=2';A1=2 iV 0 ; 8'; 2 V:

~A is a positive self-adjoint operator in V 0. In fact,

h ~A';'iV 0 = hA
1
2';A

1
2'iV 0 = hA

� 1
4';A�

1
4'iL2(
)

� C k'k2L2(
) � C
0
A� 3

4'
2
L2(
)

= C
0 k'k2

V 0 ; 8' 2 V;

where C and C
0
are constants. We identify H = V

0
with it�s dual H

0
. Then the

following Gelfand triple continuous inclusions positive hold true:

D( ~A
1
2 ) ,! H = H

0
,! D( ~A

1
2 )

0
:

De�ne an extension Â 2 L(D( ~A1=2); D( ~A1=2)0) of ~A:

hÂf; gi
D( ~A

1
2 )0;D( ~A

1
2 )
= h ~A

1
2 f; ~A

1
2 giV 0 ; 8f; g 2 D( ~A

1
2 ): (6.7)

De�ne the map  2 (L2(�0);H1=2(
)) [37, pp. 188-189] so that u = � if and only if(
A2� = 0; x 2 
;

@�(x)
@�A

��� = 0; �(x)j�1 = 0; �(x)j�0 = u
(6.8)

By virtue of Â and  system (6.1) can be written in D( ~A)0 as

_w = iÂw +Bu: (6.9)

where B 2 L(U;D( ~A1=2)0) is given by

Bu = �iÂu; 8u 2 U: (6.10)

De�ne B� 2 L(D( ~A1=2)0; U) by

hB�f; uiU = hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0
; 8f 2 D( ~A

1
2 ) = H1

0 (
) ; u 2 U: (6.13)

Then for any f 2 D( ~A 1
2 ) and u 2 C10 (�0), we have

hf;Bui
D( ~A

1
2 );D( ~A

1
2 )0

= hf;�iÂuiD( ~A1=2);D( ~A1=2)0 (6.14)

= �ih ~A1=2f; ~A1=2uiV 0

= �ih ~A3=2
�
~A�3=2f

�
; ~AuiV 0

= �ihA�3=4A3=2(A�3=2f); A�3=4AuiL2(
); with A
1
2 = A1

= hA2(A�3=2f);�iAuiL2(
):

= hi@(A(A
�3=2f))

@�A
; uiU:
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We have used in the last step Green�s second theorem.

Since C10 (�0) is dense in L
2(�0), we obtain

B�f = �i@(A(A
�3=2f))

@�A

�����
�0

; 8f 2 D(A1=2) = H1
0 (
): (6.15)

Thus, we have formulated the open loop system (6.1) into an abstract �rst-order form
in H:

_w = iÂw +Bu (6.16)

z = B�w

where Â, B and B� are de�ned by (6.7), (6.10) and (6.13) respectively.

6.3 Proof of Theorem 6.1

In order to prove Theorem 6.1, we need the following Lemma which comes from [8,
Theorem A.1].

Lemma 6.1. If there exist constants T > 0, CT > 0 , such that the input and
output of system (6.1) satisfyZ T

0
kz(t)k2U dt � CT

Z T

0
ku(t)k2U dt; 8u 2 L2(0; T ;L2(�0)) (6.17)

with y(:; 0) = 0; the system (6.1) is well-posed
make a transformation z = A�3=2w 2 H1

�
0; T ;H4(
)

�
; Then z satis�es8>>><>>>:

zt(x; t) = iA
2z(x; t)� i

�
A�1=2u(:; t))

�
(x; t) ; (x; t) 2 
� (0; T ] =: Q;

z(x; 0) = 0; x 2 
;
z(x; t) = @z(x;t)

@�A
= 0; ; (x; t) 2 @
� [0; T ] =: �;

y(x; t) = i@(Az(x;t))@�A
; ; (x; t) 2 @
� [0; T ] ;

(6.18)
and from (6.16) the output of (6.18) is changed into the form

y(x; t) = B�w(x; t) = B�A1A
�1
1 w(x; t) = B�A1z(x; t) (6.19)

= �i@(A(A
�3=2f))

@�A
(x; t) x 2 �0; t > 0

So Theorem 6.1, holds true if and only if for some (and hence for all) T > 0, there exists
a CT > 0 such that the solution to (6.18) satis�es (consider smooth u if necessary)Z T

0

Z
�0

j@ (Az (x; t))
@�A

j2d�dt 6 CT

Z T

0

Z
�0

ju(x; t)j2d�dt: (6.20)

We proceed the proof in three steps.
Step 1. Since @
 is of class C3, it follows from [25, Lemma 4.1] that there exists a
C2 vector �eld N on 
 such that

N(x) = �(x); x 2 �; jN(x)j 6 1; x 2 
: (6.21)
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Let P (x; T ) =

�
A�1=2u (:; t)

�
(x; t) ; then by de�nition of A and  we haveZ T

0
kP (x; t)k2L2(
) dt � CT

Z T

0
ku(:; t)k2L2(�0) dt; (6.22)

Now, multiply both sides of the �rst equation in (6.18) by N(Az) and integrate over
Q to obtain Z

Q
ztN(Az)dQ� i

Z
Q
AzN(Az)dQ+ i

Z
Q
PN(Az)dQ = 0: (6.23)

Compute the second term on the left-hand side of (6.23) to yield

i

Z
Q
A2zN(Az)dQ (6.24)

= i

Z
Q
�g (Az)N(Az)dQ+ i

Z
Q
Dp (Az)N(Az)dQ

= i

�Z
�

@ (Az)

@�
N(Az)d��

Z
Q
hrg (Az) ;rg (A�z)igdQ

�
+i

Z
Q
Dp (Az)N(Az)dQ

= i

"Z
�

����@ (Az)@�

����2 d�� Z
Q
DN (rg (Az) ;rg (A�z)) dQ

#

+i

�
�1
2

Z
Q
divg

�
jrg (Az)j2gN

�
dQ+

Z
Q
jrg (Az)j2g divgNdQ

�
+i

Z
Q
Dp (Az)N(Az)dQ

Then

Im

�
i

Z
Q
A2zN(Az)dQ

�
= Re

�Z
Q
A2zN(Az)dQ

�
=

Z
�

����@ (Az)@�

����2 d�� Re�Z
Q
DN (rg (Az) ;rg (A�z)) dQ

�
�1
2

Z
Q
divg

�
jrg (Az)j2gN

�
dQ+Re

�Z
Q
Dp (Az)N(Az)dQ

�
Next, we compute the �rst term of LHS of (6.23) and by virtue of the divergence
formula, we have

divg (zt�zN) = ztdivg (A�zN) +A�zN (zt) (6.25)

= zt [A�zdivg (N) +N (A�z)] +A�zN (zt)

= ztA�zdivg (N) + ztN (A�z) +A�zN (zt)

=
�
iA2z � iP

�
(A�zdivg (N)) + ztN (A�z) +

d

dt
[A�zN (z)]�A�ztN (z)
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in which Z

Q
A�ztN (z) dQ (6.26)

=

Z
Q
[�g�zt +Dp (�zt)]N (z) dQ

=

Z
Q
�g�ztN (z) dQ+

Z
Q
Dp (�zt)N (z) dQ

=

Z
�

@ (�zt)

@�
N (z) d�+

Z
Q
�zt�g (N (z)) dQ+

Z
Q
Dp (�zt)N (z) dQ

=

Z
�

@ (�zt)

@�
N (z) d�+

Z
Q
Dp (�zt)N (z) dQ

+

Z
Q
�zt
�
�(N (z)) + 2hDN;D2zi(TxRn)2 +N (Az)

�
dQ

+

Z
Q
�zt
�
Ricc (N;Dz)�D2p (N;Dz)�D2z (N;Dp)

�
dQ

where we have used (A.33). ThenZ
Q
A�ztN (z) dQ (6.27)

=

Z
�

@ (�zt)

@�
N (z) d�+

Z
Q
�zt (�N) (z) dQ+ 2

Z
Q
�zthDN;D2zi(TxRn)2

+

Z
Q
�ztN (Az) dQ�

Z
Q
�ztD

2p (N;Dz) dQ+

Z
Q
�ztRicc (N;Dz) dQ

�
Z
Q
�ztD

2z (N;Dp) dQ+

Z
Q
Dp (�zt)N (z) dQ

integrating the equality (6.26) over Q by taking (6.27) into account, yieldsZ
Q
ztNA�zdQ = i

Z
Q
PA�zdivg (N) dQ� i

Z
Q
A2zA�zdivg (N) dQ�

Z
Q

d

dt
(A�zN (z)) dQ

+

Z
�

@ (�zt)

@�
N (z) d�+

Z
Q
�zt (�N) (z) dQ+ 2

Z
Q
�zthDN;D2zi(TxRn)2

+

Z
Q
�ztN (Az) dQ�

Z
Q
�ztD

2p (N;Dz) dQ+

Z
Q
�ztRicc (N;Dz) dQ

�
Z
Q
�ztD

2z (N;Dp) dQ+

Z
Q
Dp (�zt)N (z) dQ
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this implies that

2i Im

�Z
Q
ztN (A�z) dQ

�
= i

Z
Q
PA�zdivg (N) dQ� i

Z
Q
A2zA�zdivg (N) dQ�

Z
Q

d

dt
(A�zN (z)) dQ

+

Z
�

@ (�zt)

@�
N (z) d�+

Z
Q
�zt (�N) (z) dQ+ 2

Z
Q
�zthDN;D2zi(TxRn)2

+

Z
Q
�ztN (Az) dQ�

Z
Q
�ztD

2p (N;Dz) dQ+

Z
Q
�ztRicc (N;Dz) dQ

�
Z
Q
�ztD

2z (N;Dp) dQ+

Z
Q
Dp (�zt)N (z) dQ

and hence

Im

�Z
Q
ztN (A�z) dQ

�
(6.28)

=
1

2

Z
Q
PA�zdivg (N) dQ�

1

2

Z
Q
A2zA�zdivg (N) dQ�

i

2

Z
Q

d

dt
(A�zN (z)) dQ

+
i

2

Z
�

@ (�zt)

@�
N (z) d�+

i

2

Z
Q
�zt (�N) (z) dQ+ i

Z
Q
�zthDN;D2zi(TxRn)2

+
i

2

Z
Q
�ztN (Az) dQ�

i

2

Z
Q
�ztD

2p (N;Dz) dQ+
i

2

Z
Q
�ztRicc (N;Dz) dQ

� i
2

Z
Q
�ztD

2z (N;Dp) dQ+
i

2

Z
Q
Dp (�zt)N (z) dQ

whileZ
Q
Dp (�zt)N (z) dQ = �

Z
Q
�ztDp (N (z)) dQ�

Z
Q
�ztN (z) divg (Dp) dQ (6.29)

Im

�Z
Q
ztN (A�z) dQ

�
=

1

2

Z
Q
PA�zdivg (N) dQ�

1

2

Z
Q
A2zA�zdivg (N) dQ+

i

2

Z



d

dt
(A�zN (z)) d


�T
0

+
i

2

Z
�

@ (�zt)

@�
N (z) d�� i

2

Z
Q
�zt (�N) (z) dQ� i

Z
Q
�zthDN;D2zi(TxRn)2dQ

+
i

2

Z
Q
�ztD

2p (N;Dz) dQ� i

2

Z
Q
�ztRicc (N;Dz) dQ+

i

2

Z
Q
�ztD

2z (N;Dp) dQ

+
i

2

Z
Q
�ztDp (N (z)) dQ+

i

2

Z
Q
�ztN (z) divg (Dp) dQ
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Then

Im

�Z
Q
ztN (A�z) dQ

�
(6.30)

=
1

2

Z
Q
PA�zdivg (N) dQ�

1

2

Z
Q
A2zA�zdivg (N) dQ+

i

2

Z


(A�zN (z)) d


�T
0

� i
2

Z
�

@ (�zt)

@�
N (z) d�� 1

2

Z
Q

�
A2�z � �P

�
(�N) (z) dQ

�
Z
Q

�
A2�z � �P

�
hDN;D2zi(TxRn)2dQ+

1

2

Z
Q

�
A2�z � �P

�
D2p (N;Dz) dQ

�1
2

Z
Q

�
A2�z � �P

�
Ricc (N;Dz) dQ+

1

2

Z
Q

�
A2�z � �P

�
D2z (N;Dp) dQ

+
1

2

Z
Q

�
A2�z � �P

�
N (z) divg (Dp) dQ+

1

2

Z
Q

�
A2�z � �P

�
Dp (N (z)) dQ

and hence

Im

�Z
Q
ztN (A�z) dQ

�
=

1

2

Z
Q
PA�zdivg (N) dQ�

1

2

Z
�

@ (Az)

@�
A�zdivg (N) d�+

1

2

Z
Q
jrg (Az) j2gdivg (N) dQ

+

Z
Q
A�zhrg (Az) ;rg (divg (N))igdQ+

Z
Q
Dp (Az)A�zdivg (N) dQ

+
i

2

Z


(A�zN (z)) d


�T
0

� i

2

Z
�

@ (�zt)

@�
N (z) d�� 1

2

Z
Q
A2�z (�N) (z) dQ

�
Z
Q
A2�zhDN;D2zi(TxRn)2dQ+

1

2

Z
Q
A2�zD2p (N;Dz) dQ

�1
2

Z
Q
A2�zRicc (N;Dz) dQ+

1

2

Z
Q
A2�zD2z (N;Dp) dQ

+
1

2

Z
Q
A2�zDp (N (z)) dQ+

1

2

Z
Q
A2�zN (z) divg (Dp) dQ+

1

2

Z
Q

�P (�N) (z) dQ

+

Z
Q

�P hDN;D2zi(TxRn)2dQ�
1

2

Z
Q

�PD2p (N;Dz) dQ

+
1

2

Z
Q

�PRicc (N;Dz) dQ� 1
2

Z
Q

�PD2z (N;Dp) dQ

�1
2

Z
Q

�PDp (N (z)) dQ� 1
2

Z
Q

�PN (z) divg (Dp) dQ
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Then

Im

�Z
Q
ztN (A�z) dQ

�
(6.31)

=
1

2

Z
Q
PA�zdivg (N) dQ�

1

2

Z
�

@ (Az)

@�
�zdivg (N) d�

+
1

2

Z
Q
jrg (Az) j2gdivg (N) dQ+

i

2

Z


(A�zN (z)) d


�T
0

+

Z
Q
A�zhrg (Az) ;rg (divg (N))igdQ+

Z
Q
Dp (Az)A�zdivg (N) dQ

+
1

2

Z
�

@ (A�z)

@�

�
D2p (N;Dz)� (�N) (z)� hDN;D2zi(TxRn)2 +Ricc (N;Dz)

�
d�

+
1

2

Z
�

@ (A�z)

@�

�
D2z (N;Dp) +Dp (N (z)) +N (z) divg (Dp)

�
d�

+
1

2

Z
Q
hrg (A�z) ;rg (�N) (z)igdQ+

1

2

Z
Q
hrg (A�z) ;rg

�
hDN;D2zi(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�z) ;rg

�
D2p (N;Dz)

�
igdQ�

1

2

Z
Q
hrg (A�z) ;rg (Ricc (N;Dz))igdQ

�1
2

Z
Q
hrg (A�z) ;

�
rgD

2z (N;Dp)
�
igdQ�

1

2

Z
Q
hrg (A�z) ;rg (Dp (N (z)))igdQ

�1
2

Z
Q
hrg (A�z) ;rg (N (z) divg (Dp))igdQ

+
1

2

Z
Q
Dp (A�z) (�N) (z) dQ+

1

2

Z
Q
Dp (A�z)

�
hDN;D2zi(TxRn)2

�
dQ

�1
2

Z
Q
Dp (A�z)Ricc (N;Dz) dQ� 1

2

Z
Q
Dp (A�z)D2z (N;Dp) dQ

�1
2

Z
Q
Dp (A�z)Dp (N (z)) dQ� 1

2

Z
Q
Dp (A�z)N (z) divg (Dp) dQ

�1
2

Z
Q
Dp (A�z)

�
D2p (N;Dz)

�
dQ

+
1

2

Z
Q

�P
�
(�N) (z) + hDN;D2zi(TxRn)2 �D

2p (N;Dz)
�
dQ

+
1

2

Z
Q

�P
�
Ricc (N;Dz)�D2z (N;Dp)�Dp (N (z))�N (z) divg (Dp)

�
dQ

compute the second term of the LHS of (6.23) to obtain

Im

�
i

Z
Q
A2zN(Az)dQ

�
(6.32)

=
1

2

Z
�

����@ (Az)@�

����2 d�� 12
Z
�

����@ (Az)@�

����2 d�� Re �Z
Q
DN ((rg (Az) ;rg (A�z))) dQ

�
+Re

�Z
Q
Dp (Az)N (A�z) dQ

�
+
1

2

Z
Q
jrg (Az) j2gdivg (N) dQ
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Where � = � (x) is the tangential vector at x 2 � and we have used the divergence
formula.

1

2

Z
�

@ (Az)

@�

�
N (z) divg (Dp)�A�zdivg (N)� hDN;D2zi(TxRn)2

�
d� (6.33)

+
1

2

Z
�

@ (Az)

@�

�
D2p (N;Dz) +Ricc (N;Dz) +D2z (N;Dp)� (�N) (z)

�
d�

�
Z
�

����@ (Az)@�

����2 d�+ Z
�
jA�zdivg (N)j2 d�+

Z
�
j(�N) (z)j2 d�+

Z
�

��hDN;D2zi(TxRn)2
��2 d�

+

Z
�
jRicc (N;Dz)j2 d�+

Z
�

��D2z (N;Dp)
��2 d�+ Z

�
jN (z) divg (Dp)j2 d�

�
Z
�

����@ (Az)@�

����2 d�+ Ckzk2L2(0;T ;H3(
))

In the last step where we have used the Sobolev trace theorem with constant C > 0.
Combining (6.23), (6.31), (6.32) and (6.33) givesZ

�

����@ (z)@�

����2 d� � R0 +R1 +R2 + b0;T (6.34)

wher

R0 =
1

2

Z
�

����@ (Az)@�

����2 d� (6.35)

R1 = Re

�Z
Q
DN (rg (Az) ;rg (A�z)) dQ

�
+

Z
Q
A�zhrg (Az) ;rg (divg (N))igdQ

+
1

2

Z
Q
hrg (A�z) ;rg (�N) (z)igdQ

+
1

2

Z
Q
hrg (A�z) ;rg

�
hDN;D2zi(TxRn)2

�
igdQ�

1

2

Z
Q
hrg (A�z) ;rg

�
D2p (N;Dz)

�
igdQ

+
1

2

Z
Q
hrg (A�z) ;rg

�
hDN;D2zi(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�z) ;rg (Ricc (N;Dz))igdQ�

1

2

Z
Q
hrg (A�z) ;

�
rgD

2z (N;Dp)
�
igdQ

�1
2

Z
Q
hrg (A�z) ;rg (Dp (N (z)))igdQ

�1
2

Z
Q
hrg (A�z) ;rg (N (z) divg (Dp))igdQ

R2 =
1

2

Z
Q

�P
�
(�N) (z) + hDN;D2zi(TxRn)2 �D

2p (N;Dz)
�
dQ

+
1

2

Z
Q

�P
�
Ricc (N;Dz)�D2z (N;Dp)�Dp (N (z))�N (z) divg (Dp)

�
dQ

b0;T =
i

2

Z


(A�zN (z)) d


�T
0
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We now estimate R0. To this purpose, we �rst introduce the following operator:
B = �rst order di¤erential operator on 
; tangential to � (i.e., wihtout transversal
derivatives to � when it is expressed in local coordinates) and with smooth coe¢ cients
on �
:
Next, we de�ne a new variable

� = Bz 2 C
�
0; T ;H2(
)

�
(6.36)

and apply B to system (6.18) to obtain8<:
�t(x; t)� iA2� = P (x; t) 2 
� (0; T ] =: Q;

�(x; 0) = 0; x 2 
;
�(x; t) = @�(x;t)

@�A
= 0; ; (x; t) 2 @
� [0; T ] =: �;

(6.37)

where

S = �i
�
A2;B

�
z � iBA�1=2u; (6.38)

Kz =
�
A2;B

�
z 2 C

�
0; T ;H�1(
)

�
is the interior commutator.

Since @�
@�A

���
@
�[0;T ]

=
h

@
@�A

;B
i
z is smooth, we can replace it with the homogenuous

boundary value without loss of generality. In this way, we getZ
�

����@ (Az)@�

����2 d� (6.39)

=

Z
�
jB (Az)j2 d� =

Z
�
jA (Bz)j2 d� + l1 =

Z
�
jA�j2 d� + l1

Where l1 denotes the lower order terms of z, so we need to evaluate only
R
� jA�j

2 d�
for the system (6.36) in order to evaluate R0:

Now, multiply both sides of the �rst equation of (6.36) by N(��) and integrate over
Q. We obtain

1

2

Z
�
jA�j2 d� = R

0
0 +R

0
1 +R

0
2 + b

0
0;T (6.40)

with

R
0
0 = Re

Z
Q
��hrg�;rg (divg (N))igdQ+

1

2
Re �A��A (divg (N)) dQ (6.41)

+Re

Z
Q
A�

�
(�N) (�) + 2hDN;D2�i(TxRn)2

�
dQ;

+Re

Z
Q
A�

�
Ricc (N;D�)�D2p (N;D�)�D2� (N;Dp)

�
dQ

R
0
1 = �1

2
Re

Z
Q
A��Dp (�divg (N)) dQ+

1

2
Re

Z
Q
�divg (N)Dp (A��) dQ

+Re

Z
Q
N (��)Dp (A�) dQ;

R
0
2 = �1

2
Re

Z
Q

�S�divg (N) dQ+ Im

Z
Q

�SN (�) dQ;

b
0
0;T =

1

2
Im

Z


��N (�) d


����T
0

+

Z


j�j2 divg (N) d


����T
0
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compute the two terms of R

0
1 respectively to obtain

�1
2
Re

Z
Q

�S�divg (N) dQ (6.42)

= �1
2
Re

Z
Q
�
�
A2;B

�
�divg (N) dQ�

1

2
Re

Z
Q
�B

�
A�1=2�u

�
divg (N) dQ

and

Im

Z
Q

�SN (�) dQ (6.43)

= �Re
Z
Q
�
�
A2;B

�
�N (��) dQ� Re

Z
Q
B
�
A�1=2�u

�
N (��) dQ

Then, from (6.34) and (6.39)-(6.43), we have

5

16

Z
�

����@ (Az)@�A

����2 d� � R001 +R
00
2 + b

00
0;T ; (6.44)

Where

R001 = R1 +R
0
0 +R

0
1 �

1

2
Re

Z
Q
�
�
A2;B

�
�divg (N) dQ (6.45)

�Re
Z
Q
�
�
A2;B

�
�N (��) dQ+

1

2
l1

R002 = R2 � Re
Z
Q
B
�
A�1=2�u

�
N (��) dQ� 1

2
Re

Z
Q
�B

�
A�1=2�u

�
divg (N) dQ

b000;T = b0;T + b
0
0;T

In the following steps, we estimate R
00
1 , R

00
2 ; b

00
0;T separately

Step 2. Evaluation of R
00
1 :It is found that the dual system of (6.16) is8<:

zt(x; t)� iA1z(x; t) = 0;
z(0) = z0;

y = B�A3=2z;
(6.46)

Where A1, B� are given by (4.4), (6.15) respectively, It is well known that system
(6.46) associates with a C0�group solution in the space V that is to say, for any
z0 2 V to (6.46) depends continusly on z0. By this facts and letting u = 0 in (6.45),
we obtain Z

�

����@ (Az)@�A

����2 d� � CT kz0k2V ; (6.47)

which is equivalent to saying that for any initial w0 2 V
0
, the solution to system (6.18)

with u satis�es Z
�

�����@(A(A�3=2w))@�A

�����
2

d� � CT kz0k2V 0 : (6.48)
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Hence the operator B� is admissible, and so is B. Therfore,

g �! w is continuous from L2(0; T ;L2(�0)) to C(0; T ;V
0
): (6.49)

By virtue of 6.49, we have

z 2 C(0; T ;V ) depends continously on g 2 L2(0; T ;L2(�0)): (6.50)

Therefore
R001 � kuk2L2(0;T ;L2(�0)) 8u 2 L2(0; T ;L2(�0)): (6.51)

Step 3. Evaluation of R002 and b
00
0;T : This can be easy done from the representation

of R002 and b
00
0;T in (6.22),and by virtue of (6.50). we can readly obtain

R002 + b
00
0;T � kuk2L2(0;T ;L2(�0)) 8u 2 L2(0; T ;L2(�0)): (6.52)

From (6.44), (6.51), and (6.52), it is seen that (6.20) holds true. �

6.4 Proof of Theorem 6.2

From the appendix of [53], the transfer function of (6.16) is

H(�) = �B�
�
�2 + ~A

��1
B (6.53)

Where ~A; B and B� are di�ned by (6.9), (6.10), (6.15) respectively. Moreover, the
well-posedness claimed by Theorem 6.1 implies that there exist a positive constants
M , � > 0; such that

Sup
Re���

kH(�)kL(U) =M < +1 (6.54)

Proposition 6.1 The Theorem 6.2 is valid, if for any u 2 C10 (�0) and " > 0, the
solution v"to the following sysytem8<:

iv"(x)� "A2v(x) = 0 x 2 
;
v"(x) = u(x) x 2 �;
@(v"(x))
@�A

= 0 x 2 �;
(6.55)

Satis�es

Lim
"!0+

Z
�

����" @v"@�A

����2 d� = 0 (6.56)

Proof. We need only to show that H(�)u converges to zero in the strong topology of
U along the positive real axis ([53]), that is,

Lim
�!+1

H(�)u = 0; (6.57)

for any u 2 L2(�). By density argument and (6.54), it su¢ ces to show that (6.57)
holds for all u 2 C10 (�0). To this purpose, let

v�(x) =

��
�2 � i ~A

��1
Bu

�
(x) : (6.58)
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Then v� satis�es 8<:

�v�(x)� iA2v�(x) = 0; x 2 
;
v�(x) = u(x) x 2 �;
@v�(x)
@�A

= 0 x 2 �;
(6.59)

and

(H(�)u) (x) = �
@
�
A((A1)

�3=2v�(x)
�

@�A
; 8x 2 � (6.60)

Because u 2 C10 (�), there exists a unique solution to (6.59) Let ~v 2 H4(
) be the
unique solution to the following boundary value problem8<:

A2~v(x) = 0, x 2 
;
~v(x) = u(x) x 2 �;
@~v(x)
@�A

= 0 x 2 �;
(6.61)

Then (6.59) becomes8<:
�v�(x)� iA2 (v�(x)� ~v(x)) = 0; x 2 
;
v�(x)� ~v(x) = 0 x 2 �;
@(v�(x)�~v(x))

@�A
= 0 x 2 �;

(6.62)

�iA((A)�3=2v�(x) = v�(x)� ~v(x) (6.63)

Therefore, (6.60) is found to be

(H(�)u) (x) =
1

�

@v�(x)

@�A
� 1

�

@~v(x)

@�A
(6.64)

If we set v"(x) = v�(x) with " = 1
� , we obtained the required result immediately.

From the boundary condition of (6.59), it is easy to know that (6.56) holds. This
completes the proof of Theorem 6.2. �

6.5 Proof of Theorem 6.3

In this section we establish the exact controllability of system (6.1), by means of the
Hilbert Uniqueness Method (the proof is similar to that in theorem 4.3 in[67]). Since
by Theotem 6.1, the operator B is admissible in system (6.16), the exact controllability
of system (6.1) is equivalent of the exact observability of the following dual problem
of (6.1): 8<:

i't(x; t) +A
2'(x; t) = 0; in 
� (0; T ) = Q;

'(x; t) = @'
@�A

(x; t) = 0 on @
� (0; T ) = �;
'(x; 0) = '0(x) in 
:

(6.65)

That is, the "observability inequality" holds for system (6.65) in the sence of (see
(6.18) and (6.20))Z

�0

j@ (A' (x; t))
@�A

j2d� � CT
'02

V
:; 8'0 2 V; T > T0 (6.66)
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for some T0 > 0:

In order to prove (6.66), we let A de�ned by (6.65) and let ' be a solution to (6.66).
Then iA generates a strongly continuous unitary group on the space V = D(A

3
4 ) and

hence

k'(t)kV =
(A 3

4'(t)

V
=
eiAt'0

V
(6.67)

=
'0

V
=
A 3

4'0

L2(
)

:

Next, we claim that for f 2 D(A 3
4 ), the norms

kfk
D(A

3
4 )
=
A 3

4 f

L2(
)

and
�Z



jrg (Af)j2g dx

� 1
2

are equivalent. (6.68)

Actually,
nR


 jrg (Af)j2g dx
o 1
2
being a norm is a trivial fact, since the norms kfk

D(A
1
4 )
=A 1

4 f

L2(
)

:If jrg (f)j2g 2 L2(
) with f j� =
@f
@�A

= 0; then it follows that @(Af)
@xj

=

Afxj = lj 2 L2(
) and fxj
��
�
= 0 and hence fxj 2 H2(
) by the elliptic regularity

theory. THis together with f j� = 0 yields f 2 L2(
), by the Poincaré inequality.
Thus f 2 H3(
) and so (6.68) follows (see [67]).

Lemma 6.1. Suppose that (H�1) and (H�2), the following inequality holds true:�
�1 + CN
2"

�Z
�

�
@ (A')

@�A

�2
d�+

2�2
"
krg' (T )k2C(0;T ;L2(
)) (6.69)

�
hh
b0 �

��1
2
C + C 0

�
"
i
T � 2 (�2 + 3�3) "

i '02
D(A

3
4 )

where " > 0 is su¢ ciently small and �1 = max
x2@


jN(x)j ; �2 = 1
4maxx2


jN(x)j ;
Proof. Multiply the both sides of the �rst equation of (6.65) by N(A�') and inte-

grate on Q to obtain Z
Q
'tN(A')dQ� i

Z
Q
A2'N(A')dQ = 0: (6.70)

By making use of the computation procedure from (6.24)-(6.31) by setting h(x) to
N(x), we get respectively

i

Z
Q
A2'N(A�')dQ (6.71)

= Re

Z
�

@ (A')

@�A
N(A')d�� Re�

Z
Q
hrg (A') ;rg (A�')igdQ

= Re

Z
�

@ (A')

@�A
N(A�')d�� Re

Z
Q
DN (rg (A') ;rg (A�')) dQ

�1
2

Z
�
jrg (A')j2gN:�d�+

1

2

Z
Q
jrg (A')j2g divgNdQ
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and

Im

�Z
Q
'tN (A�') dQ

�
(6.72)

=
i

2

Z


(A�'N (')) d


����T
0

+
1

2

Z
Q
jrg (A') j2gdivg (N) dQ

+

Z
Q
A�'hrg (A') ;rg (divg (N))igdQ

+
1

2

Z
�

@ (A')

@�A

�
D2p (N;D')� (�N) (')� hDN;D2'i(TxRn)2 +Ricc (N;D')

�
d�

+
1

2

Z
�

@ (A')

@�A

�
D2' (N;Dp) +N (') divg (Dp)

�
d�

+
1

2

Z
Q
hrg (A�') ;rg (�N) (')igdQ+

1

2

Z
Q
hrg (A�') ;rg

�
hDN;D2'i(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2p (N;D')

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Ricc (N;D'))igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2z (N;Dp)

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Dp (N (')))igdQ

By (6.70), (6.71) and (6.72), we get

3X
i=1

Li = Re

Z
�

@ (A')

@�A
N(A�')d�� 1

2

Z
�
jrg (A')j2gN:�d� (6.73)

+

�
1

2

Z
�

@ (A')

@�A

�
(�N) (')�D2p (N;D') +D2' (N;Dp)�Ricc (N;D')

�
d�

+
1

2

Z
�

@ (A')

@�A

�
hDN;D2'i(TxRn)2 �N (') divg (Dp)

�
d�

�
= Re

Z
Q
DN (rg (A') ;rg (A�')) dQ�

1

2
Im

Z


(A�'N (')) d


����T
0

+

�
1

2

Z
Q
hrg (A�') ;rg (�N) (')igdQ+

1

2

Z
Q
hrg (A�') ;rg

�
hDN;D2�'i(TxRn)2

�
igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2p (N;D�')

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Ricc (N;D'))igdQ

�1
2

Z
Q
hrg (A�') ;rg

�
D2' (N;Dp)

�
igdQ�

1

2

Z
Q
hrg (A�') ;rg (Dp (N (')))igdQ

�
=

3X
i=1

Mi

We �rst compute the three terms in the LHS of (6.73).
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For any " > 0;

L1 = Re

Z
�

@ (A')

@�A
N(A�')d� (6.74)

� �1
2

Z
�

"
1

"

�
@ (A')

@�A

�2
+ " jA�'j2

#
d�

� �1
2"

Z
�

�
@ (A')

@�A

�2
d�+

�1
2
"

Z
�
jA�'j2 d�

� �1
2"

Z
�

�
@ (A')

@�A

�2
d�+

�1
2
C" k�'k2

L2(0;T ;D(A
3
4 ))

;

L3 =

�
1

2

Z
�

@ (A')

@�A

�
(�N) (')�D2p (N;D') +D2' (N;Dp)

�
d� (6.75)

+
1

2

Z
�

@ (A')

@�A

�
hDN;D2'i(TxRn)2 �N (') divg (Dp)

�
d��Ricc (N;D')

�
� CN

2"

Z
�

�
@ (A')

@�A

�2
d�+ C 0" k'k2

L2(0;T ;D(A
3
4 ))

where in L1 and L3 we used the trace theorem and the Poincaré inequality:

kA�'kL2(�) � C kA�'kL2(�) � C k�'kH3(
) � k�'kD(A 3
4 )
:

kD�'kL2(�) � C kD�'kL2(�) � C k�'kH3(
) � k�'kD(A 3
4 )

and by (H2)

L2 = �
1

2

Z
�
jrg (A')j2gN:�d� � 0 (6.76)

Adding (6.74), (6.75) and (6.76), we get

LHS of (6.73) �
�
�1 + CN
2"

�Z
�

�
@ (A')

@�A

�2
d�+

��1
2
C + C 0

�
" k'k2

L2(0;T ;D(A
3
4 ))

:

(6.77)
Making use of (6.67), we obtain

LHS of (6.73) �
�
�1 + CN
2"

�Z
�

�
@ (A')

@�A

�2
d�+

��1
2
C + C 0

�
"T
'02

D(A
3
4 )
:

Next, we estimate the three terms in the right hand side (RHS). Using (H�1) we get
at �rst

M1 = Re

Z
Q
DN (rg (A') ;rg (A�')) dQ �

Z
Q
b(x) jrg (A')j2g dQ (6.78)

� b0

Z
Q
jrg (A')j2g dQ = b0 k'k2

L2(0;T ;D(A
3
4 ))

� b0T
'02

D(A
3
4 )
:
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jM2j =

������12 Im
Z


(A�'N (')) d


����T
0

����� (6.79)

� �2

�
kA' (T )kL2(
) krg' (T )kL2(
) +

A'0
L2(
)

rg'
0

L2(
)

�
� �2

�
" kA' (T )k2L2(
) +

1

"
krg' (T )k2L2(
) + "

A'02
L2(
)

+
1

"

rg'
0
2
L2(
)

�
� 2�2

"
krg' (T )k2C(0;T ;L2(
)) + 2�2"

'02
D(A

3
4 )
:

and
jM3j �

6�3
"
krg' (T )k2C(0;T ;L2(
)) + 6�3"

'02
D(A

3
4 )

(6.80)

By (6.69), (6.78), (6.79) and (6.80)

RHS of (6.73) � b0T
'02

D(A
3
4 )
�2 (�2 + 3�3) "

'02
D(A

3
4 )
�2�2

"
krg' (T )k2C(0;T ;L2(
))

(6.81)
Inequality (6.69) then follows from (6.73), (6.77) and (6.81). �

Remark 6.1. We reestimate the second term of the RHS of (6.73) to obtain

M2 = �1
2
Im

Z


(A�'N (')) d


����T
0

(6.82)

� 2�2

�
kA' (T )kL2(
) krg' (T )kL2(
) +

A'0
L2(
)

rg'
0

L2(
)

�
� �2

�
kA' (T )k2L2(
) + krg' (T )k2L2(
) +

A'02
L2(
)

+
rg'

0
2
L2(
)

�
� 2�2

�
k' (T )k2

D(A
3
4 )
+
'02

D(A
3
4 )

�
� 4�2

'02
D(A

3
4 )
:

This improve (6.81) as

RHS of (6.73) � b0T
'02

D(A
3
4 )
� (4�2 + 6�3)

'02
D(A

3
4 )
: (6.83)

It then follows from (6.73), (6.77) and (6.83) thatZ
�

�
@ (A')

@�A

�2
d� �

�
b0 �

��1
2 C + C

0� "� 2"
�1 + CN

 
T � (4�2 + 6�3)

b0 �
��1
2 C + C

0
�
"

!'02
D(A

3
4 )

(6.84)

Choosing " > 0 small enough so that C 00 = [b0�(�12 C+C
0)"]2"

�1+CN
> 0; (6.66) then follows

for CT = C 00 (T � T0) ; T0 = (4�2+6�3)

b0�(�12 C+C0)"
and T > T0:

In what follows, we prove that the requirement T0 in (6.66) can be taken as T0 = 0:
Lemma 6.2. Suppose that (H1) and (H2) holds. Then for any T > 0 and

nonegative integer k, there exists a CT > 0 such that

krg' (T )k2C(0;T ;L2(
)) � CT

(Z
�

�
@ (A')

@�A

�2
d�+ kA'k2H�k(�)

)
: (6.85)
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Proof. We suppose that (6.85) is not true and obtain a contradiction. Let f'ng be
the solutions of the following system over [0; T ] :8<:

i'0n +A
2'n(x; t) = 0; in 
� (0; T ) = Q;

'n =
@'
@�A

= 0 on @
� (0; T ) = �;
'n(x; 0) = '0n(x) in 
:

(6.86)

such that
krg'n (T )k2C(0;T ;L2(
)) = 1 (6.87)

and Z
�0

����@ (A'n)@�A

����2 d�+ kA'nk2H�k(
) ! 0 as n!1: (6.88)

By (6.69), we have '0n2V � C uniformly for n (6.89)

for some constant C > 0. Hence, there exists a subsequence of
�
'0n
	
, still denote by

itself without confusion, and a function '0 2 V such that

'0n ! '0 weakly in V: (6.90)

Let ~' be the solution to (6.86) associated with the initial data '0. Then we can claim
that there exists a ~' 2 L1 (0; T ;V ) such that

'n ! ~' weak� in L1 (0; T ;V ) : (6.91)

In fact, since
'n(t) = U(t)'0n; ~'(t) = U(t)'0; (6.92)

where U(t) is the unitary group generated by iA inD(A
3
4 ). For any  2 L1

�
0; T ;D(A

3
4 )0
�
,

it follows that Z T

0

�
A

3
4 ('n(t)� ~'(t)) ; A�

3
4 (t)

�
dt (6.93)

=

Z T

0

�
A

3
4U(t)

�
'0n � '0

�
; A�

3
4 (t)

�
L2(
)

dt

=

Z T

0

�
A

3
4
�
'0n � '0

�
; A�

3
4 (U(t))�1  (t)

�
L2(
)

dt! 0as n!1:

where in the last step we used the Lebesgue dominated Theorem, (6.90) and the
property that kU(t)k is uniformly bounded over t � 0: Equation (6.91) then follows
from (6.93). Since (6.91) implies that f'ng is uniformly bounded in L1 (0; T ;V ), this
together with the compact imbeding: D(A

3
4 ) ,! D(A

1
4 ) = H1

0 (
) implies that there
exists a subsequence of f'ng, still denoted by itself without confusion, such that

'n ! ~' strongly in L1
�
0; T ;H1

0 (
)
�
: (6.94)

From (6.87) and (6.94), we obtain

1 = krg'nk2C(0;T ;L2(
)) ! krg~'k2C(0;T ;L2(
)) = 1; (6.95)
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Moreover, by (6.88), it follows that

@ (A~')

@�A
= A~' = 0 on @
; (6.96)

Thus, ~' satis�es 8><>:
i~'t +A

2~' = 0; in 
� (0; T ) = Q;

~' = @~'
@�A

= 0 on @
� (0; T ) = �;
@(A~')
@�A

= A~' = 0 on �:

(6.97)

in t 2 [0; T ] : By the Holmogren classical uniqueness Theorem (see [31, Theorem 5.33,
p. 129]), we conclude that ~' � 0 in Q:

This contradicts (6.95. Lemma 6.2 is proved. �
It is noted by (6.69) and (6.85), there exists a C 0T such that

'02
V
� C 0T

 Z
�

�
@ (A')

@�A

�2
d�+ kA'k2H�k(�)

!
(6.98)

for any T > 0:
Lemma 6.3 Suppose that ' satis�es8><>:

i't +A
2' = 0; in 
� (0; T ) = Q;

' = @'
@�A

= 0 on @
� (0; T ) = �;
@(A')
@�A

= 0 on �:

Then for any T > 0; ~' = 0 in Q:

Proof. Introduce F = L1
�
0; T ;D(A

3
4 )
�
, which contains the solution ' to system

(6.65) with the initial value '0 2 D(A 3
4 ): In addition, let E be the space composed of

all solutions of system (6.65) in F that satisfy the boundary condition

@ (A~')

@�A

����
�

= 0: (6.99)

Now, we show that E is �nite-dimentional. To this end, we only need to show that
BF \ E is sequentially compact, where BF is the unit ball of F: Let ' 2 BF \ E:

Then (
i ('t)t +A

2't = 0; in 
� (0; T ) = Q;

't =
@'t
@�A

= @(A't)
@�A

= 0 on @
� (0; T ) = �: (6.100)

Furthermore, by virtue of the interior regularity and the Sobolev trace Theorem, it
follows that A'j� 2 H

1
2 (�) and A'tj� 2 H�1 �0; T ;L2 (�)� : This together with

(6.98) and boundary conditions of (6.100) gives

k't (0)k2V � C 0T

 Z
�

�
@ (A't)

@�A

�2
d�+ kA'tk2H�k(�)

!
(6.101)

� CT kA'tk2H�1(0;T ;L2(�)) � CT
'02

V
8T > 0:



6. Well posedness, regularity and exact controllability of fourth order
Schrödinger equation with variable coe¢ cients, Dirichlet boundary
control and colocated observation 82
Hence 't (0) 2 V and

't = U(t)'t(0) 2 C(0; T ;V ): (6.102)

This shows that
't = iA2' 2 C(0; T ;V ): (6.103)

Therefore,
' 2 C(0; T ;H7 (
)):

We then have
BF \ E ,! C(0; T ;H7 (
)) ,! C(0; T ;V ); (6.104)

where each inclusion is compact embedding. This shows that E must be �nite-
dimensional. By the arguments of [4], the elements of E are solutions of an equivalent
�nite-dimensional ordinary di¤erential equation with constant coe¢ cients. Since such
a solution must vanish for all T > T0 > 0 by remark 6.1, for all T > 0: �

Lemma 6.4. Suppose that (H1), (H2), (H3) holds, Then for any T > 0, there
exists a CT > 0 such that

krg'k2C(0;T ;L2(
)) � CT

Z
�

�
@ (A')

@�A

�2
d� (6.105)

Proof. The proof is similar to that of Lemma 6.2. We suppose that (6.105) is not
true and obtain a contradiction. Let f'ng be the solutions of system (6.86) over [0; T ],
which satis�es such that

krg'n (T )k2C(0;T ;L2(
)) = 1; (6.106)Z
�

�
@ (A'n)

@�A

�2
d�! 0 as n!1: (6.107)

By (6.69), we have (6.89) and hence (6.90)-(6.95). By (6.107), it follows that (6.107),
it follows that

@ (A~')

@�A
= 0 on �: (6.108)

Thus ~' satis�es 8><>:
i~'t +A

2~' = 0; in 
� (0; T ) = Q;

~' = @~'
@� = 0 on �;

@(A~')
@�A

= 0 on �:

(6.109)

for all t 2 [0; T ]. By Lemma 6.3, we conclude that

~' = 0 in Q; (6.110)

which contradics (6.95) so that (6.105) follows.�
Proof of Theorem 6.3. Combining (H1), (H2), (H3) and (6.105), we see that (6.66)

is true for any T > 0: This complites the proof of Theorem 6.3. �



Chapter 7

Conclusion and open problems

Regular linear systems form a very general class of in�nite-dimensional systems whose
basic properties are rich enough to develop a parallel of the theory of control for
�nite-dimensional systems. In the literature, several examples of regular linear sys-
tems described by partial di¤erential equations has been given ([19], [20], [21], [1],...)
and the aim of this thesis is to provide further regular PDE�s systems. Indeed, we
have established the well-posedness and regularity of a several input/output systems,
namely:

1. Problem of transmission of the Schrödinger equation, in the state space X =
H�1(
); input/output space U = Y = L2(�):

2. Fourth order Schrödinger equation with variable coe¢ cients, hinged boundary
control and colocated observation, in the state space V 0 which is the dual space
of V =

�
' 2 H3(
) : 'j� = A'j = 0

	
, input/output space U = Y = L2(�0).

3. Fourth order Schrödinger equation with variable coe¢ cients, moment boundary
control, zero Dirichlet boundary condition and colocated observation, in the state
space H1

0 (
), input/output space U = Y = L2(�0).

4. Fourth order Schrödinger equation with variable coe¢ cients, Dirichlet boundary
control and colocated observation, in the state space V 0 which is the dual space

of V =
n
' 2 H3(
) : 'j� =

@'
@�A

��� = 0o ; input/output space U = Y = L2(�0).

The following open problems can be made regarding the material presented in this
thesis.

1. The exact controllability problem for the transmission wave equation with Dirich-
let boundary control has been considered in [36]. It would be interesting to study
the well-posedness and the regularity of this control system with the correspond-
ing colocated observation.
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2. In [58], the authors have considered the system

wtt(x; t) = �w(x; t) on 
� [0;1) ;
w(x; t) = 0 on �0 � [0;1) ;

@
@�w(x; t) + jb(x)j

2wt(x; t) =
p
2b(x)u(x; t) on �1 � [0;1) ;

@
@�w(x; t)� jb(x)j

2wt(x; t) =
p
2b(x)y(x; t) on �1 � [0;1) ;

w(x; 0) = w0(x); wt(x; 0) = z0(x) on 
;

where 
 � Rn is a bounded domain with Lipschitz boundary � = �0 [ �1 with
�0 \ �1 = ; the function b 2 L1(�1), such that b(x) 6= 0, for almost every
x 2 �1, w0(x) and z0(x) are the initial state of the system. They showed that
this system is a conservative linear system with input, output space U = L2(�0)

and state space H 1
2
�H, with H 1

2
= D(A

1
2
0 ) = H1

�0
(
) and

A0w = ��w;
D (A0) =

�
w 2 H1

�0 (
) = �w 2 H; 1w = 0
	
:

with 1 is the Neumann trace operator and H = L2(
). By conservative system,
we mean

kw(:; T ); wt(:; T )k2H 1
2
�H+

Z T

0
ky(t)k2L2(�0) dt = kw0; z0k

2
H 1
2
�H+

Z T

0
ku(t)k2L2(�0) dt:

A study of regularity of this system is desirable.

1. In [5], the authors established su¢ cient conditions for the admissibility and the
observability of observation operators for semilinear systems of the form

yt(t) = Ay(t) + F (y(t)); y(0) = x; t � 0, x 2 X;
z(t) = Cy(t)

where A is the in�nitesimal generator of a C0-semigroup (T (t))t�0 in a Banach
space X, F is a nonlinear continuous function on X and z is the output function.
Motivated by this paper, one may consider for future investigation, the well-
posedness problems for semilinear control system of the form

yt(t) = Ay(t) +Bu(t) + F (y(t)); y(0) = x; t � 0, x 2 X;
z(t) = Cy(t)

with B 2 L(U;X�1) and C 2 L(X1; Y ):

2. Although the class of well-posed linear systems includs many input/state/output
systems described by PDE or delay di¤erential equations, there are impor-
tant systems that do not belong to this class, for example the heat equation
with Dirichlet control and Neumann observation (see ([34]) for other examples).
Therefore a new abstract framework for linear in�nite-dimensional systems that
covers these examples is needed, some works in this direction, has been done in
([45], [44]).



Appendix A

Riemannian Metric generated by
the Principal part A

In this appendix, we recall some well known results from the Riemannian Metric.
Recalling the coe¢ cients aij(x) = aji(x) of A, let A(x) and G(x) be respectively,

the coe¢ cients matrix and its inverse, and the determinant of G(x) by �(x)

A(x) = aij(x); G(x) = [A(x)]�1 = (gij(x)) ; (A.1)

�(x) = det [gij(x)] ; i; j = 1; :::; n; x 2 Rn:
Both A(x) and G(x) are n � n matrices.A(x) is positive de�nite for any x 2 Rn by
assumption

nX
i;j=1

aij(x)�i
��j > 0; 8x 2 �
; � = (�1; �2; :::; �n) 2 Rn; (A.2)

A.1 Riemannian metric.

Let Rn be the usual topology. De�ne the inner product and the norm on the tangent
space TxRn by

g (X;Y ) = hX;Y ig =
nX

i;j=1

gij(x)�i�j (A.3)

jXjg = hX;Xi
1
2
g ; 8X =

nX
i=1

�i
@

@xi
; Y =

nX
i=1

�i
@

@xi
2 TxRn (A.4)

It is easy checked that (Rn; g) is a Riemannian manifold with the Riemannian metric
g.

A.2 Euclidean metric.

For each x 2 Rn, denote by

X � Y =
nX
i=1

�i�i; jXj0 = hX;Xi
1
2 (A.5)
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The Euclidian metric on Rn,for x 2 Rn and with reference to (A.1), set

A(x)X (x) =
nX
i=1

0@ nX
j=1

aij(x)�j

1A @

@xi
; 8X =

nX
i=1

�i
@

@xi
2 TxRn (A.6)

Thus recalling the co-normal derivative de�ned in (6.20), we have

@w(x)

@�A
=

nX
i=1

0@ nX
j=1

aij(x)
@w

@xi

1A �i = (A(x)r0w) � �

A.3 Covariant derivative and covriant di¤erential

Denote the Levi Civita connection in the Riemannian metric g by D. Let

H =

nX
k=1

hk
@

@xk
; X =

nX
i=1

�k
@

@xk
(A.7)

be the vector �elds on (Rn; g). The covariantdi¤erentialDH ofH determines a bilinear
form on TxRn� TxRn, for each x 2 Rn; de�ned by

DH(X;Y ) = hDXH;Y ig ; 8X;Y 2 TxRn (A.8)

Where DXH is the covariant derivative of H with respect to X; This computed as
follows, in the notation of (A.7), (A.8), by using the axioms of a connection,

DXH =
nX
l=1

0@X(hl) + nX
i;k=1

hk�i�
l
ik

1A @

@xl
(A.9)

X(hl) =
nX
i=1

�i
@hl
@xi

(A.10)

�lik being the connection coe¢ cients (Cristo¤el symbols) of the connection D.

�lik =
1

2

nX
l=1

alp

�
@gkp
@xi

+
@gip
@xk

� @gik
@xp

�
; gij = (aij)

�1 (A.11)

Inserting (A.11) into (A.9) and then (A.9) into (A.8) yields

DH(X;Y ) = hDXH;Y ig =
nX

l;j=1

24X(hl) + nX
i;k=1

hk�i�
l
ik

35�jglj (A.12)

by (A:10) =
nX

l;j=1

24@hl
@xi

glj +

nX
i;k=1

hkglj�
l
ik

35�i�j (A.13)

Thus , in TxRn� TxRn, DH(�; �) is equivalent to the n� n matrix0@mij =
@hl
@xi

glj +
nX

i;k=1

hkglj�
l
ik

1A (A.14)
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A.4 Hessian in the Riemannian metric g.

Let f 2 C2(Rn). By de�nition, the Hessian of f with respect to the metric g is

D2f(X;X) � hDX (rgf) ; Xig (A.15)

=
nX

i;j=1

�i

0@ @fl
@xi

glj +
nX

i;k=1

fkglj�
l
ik

1A�j (A.16)

Where H = rgf; hl = (rgf)l = fl is the l- coordinate of rgf :

(rgf)l = fl =

nX
p=1

alp
@f

@xp
(A.17)

Put

mij =
@fl
@xi

glj +

nX
i;k=1

fkglj�
l
ik; i; j = 1; :::; n: (A.18)

Then 8>>><>>>:
D2f is positive on TxRn � TxRn if and only if the

n� n matrix
 
mij =

@hl
@xi
glj +

nP
i;k=1

hkglj�
l
ik

!
i; j = 1; :::; n is positive, with fl given by (A.17)

The following lemma provide further relationships[56, lemma 2.1]
Lemma A.1. Let f; h 2 C1(�
) and let H; X be vector �elds. Then with reference

to the above notation, we have
(a)

hH(x); A(x)X(x)ig = H(x) �X(x); x 2 Rn; (A.19)

(b)
X(f) = X � r0f = hX;rgfig (A.20)

Where

Df(x) = rgf(x) =
nX
i=1

0@ nX
j=1

aij
@f

@xj

1A @

@xi
; div0(H) =

nX
i=1

@hi(x)

@xj
(A.21)

divg(H) =
nX
i=1

1p
�(x)

@

@xi

�p
�(x)hi(x)

�
(A.22)

�g' =
nX

i;j=1

1p
�(x)

@

@xi

�p
�(x)aij(x)

@'

@xj

�
= A'� (Dp)'; and (A23)

Dp =

nX
i;j=1

aijp
�(x)

@
p
�(x)

@xi

@

@xj

p =
1

2
ln (det [aij(x)]) (A.24)
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Where div0 is the divergence operator in Euclidean space Rn, and rg; divg and �g

are the gradiant operator, the divergence operator and the Beltrami- Laplace operator
in (Rn; g) respectively.

(c) The normal derivative @y
@�A

de�ned by

@y

@�A
= (A(x)r0y) � � = rgy � � (A.25)

(d)
hrgf;rghig = rgf (h) = hA(x) � r0f;rghig = r0f �A(x)r0h (A.26)

(e)
Ay = div0 (rgy) ; y 2 C2(�
) (A.27)

(f)

hrgf;rg(H(f))ig (x) = DH (rgf;rgf) (x) +
1
2 div0

�
jrgf j2gH

�
(x)

� 1
2 jrgf j2g (x) div0 (H) (x), x 2 Rn;

(A.28)

Let � = �A
j�Ajg

be the unit outward-pointing normal to @
 in terms of the Riemmannian

metric g. The following Lemma [54, p. 128,138] provides some useful identities.
Lemma A.2. Let '; 2 C2(�
) and let N be a vector �eld on (Rn; g). Then we

have
(1): Divergence formulae

div0('N) = 'div0(N) +N(');divg('N) = ' divg(N) +N('); (A.29)Z


div0(N)d
 =

Z
�
N � �d�;

Z


divg(N)d
 =

Z
�
hN;�ig d� (A.30)

(2) Green�s formulae

hA'; iL2(
) =

Z


A'� d
 =

Z
�

� 
@'

@�A
d��

Z


hrg';rg ig d
; (A.31)

h�g'; iL2(
) =

Z


�g'� d
 =

Z
�

� 
@'

@�
d��

Z


hrg';rg ig d
; (A.32)

A (' ) =  A'+ 2 hrg';rg ig + 'A 

where we have

2 hrg';rg ig =
�
@'

@x1
; :::;

@'

@xn

�
:A(x):

�
@ 

@x1
; :::;

@ 

@xn

��
Lemma A.3. We denote byX(Rn) the set of all vector �elds on Rn: Let � : X(Rn)!
X(Rn) the hodge Laplace operator. Then [56, (2.2.7),(2.2.14)]:

�g (N(')) = (�N) (') + 2


DN;D2'

�
TxRn +N(�g') +Ricc (N;D') ;(A.33)

N(�g') = N(A')�D2p (N;D')�D2' (N;Dp) ; 8' 2 C2(Rn);
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Where Ricc is the Ricci curvature tensor of the Riemannian metric g,D2'; D2p are
the Hessian of ' and p, respectively, in terms of the Riemannian metric g:

For a �xed x 2 Rn. Let E1, E2,..., En be a frame �eld normal at x on (Rn; g) ;
which means that hEi; Eji=�ij in some neighborhood of x and (DEiEj) (x) = 0 for
i; j = 1; :::; n:

SetN =
nP
i=1

iEi, thenN(') =
nP
i=1

iEi ('), where Ei (') is the covariant derivative

of ' with respect to Ei under the Riemannian metric g. Then

hDp;D(N('))ig = Ei (p)Ei (N (')) (A.34)

= Ei (p)
�
Ei
�
j
�
Ej (') + jEiEj (')

�
= DN (D';Dp) +D2' (N;Dp)

From (A.33) and (A.34), we obtain

A (N(')) = (�g +Dp) (N(')) (A.35)

= �g (N(')) + hDp;D (N('))ig
= (�N) (') + 2



DN;D2'

�
TxRn +N(A')�D

2p (N;D')

+Ricc (N;D')�DN (D';Dp) ;

Lemma A.4. [19, Lemma 4.1] Let  a smooth function on �
 satisfy  j� = 0:Then
there exists a continuous function q(x) on � which is independent of  such that

�g (x) =
@2 

@�2
+ q(x)

@ 

@�
; (A.36)

@ 

@�
=

1

j�Ajg
@ 

@�A
, 8x 2 �

Morever, if  satis�es @ 
@�A

���
�
= 0; then

N( )j� = 0 on �
 for any vector �eld N (A.37)

So,

A ( ) = �g + (Df) ( ) = �g =
@2 

@�2
=

1

j�Aj2g

@2 

@�2A
on �; (A.38)

and

@N( )

@�A
= N

�
@ 

@�A

�
=

*
N;

�A
j�Ajg

+
g

�A
j�Ajg

�
@ 

@�A

�
(A.39)

= N � � 1

j�Aj2g

@2 

@�2A
= A N � � on �

Lemma A.5. Let ' a complex function de�ned on �
 with suitable regularity. Then
there exist some constants C, possibly depending on g, N; and 
, such that:
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(1):

sup
x2�


jN jg � C; sup
x2�


jDN jg � C; sup
x2�


jdivg(N)j � C; (A.40)

sup
x2�


jDpjg � C; sup
x2�


jrg (divg(N))j � C;

sup
x2�


jA (divgN)jg � C; sup
x2�


jDf (divg(N))j � C;

sup
x2�


jA (divgN)j0 � C; sup
x2�


jDf (div0(N))j � C;

sup
x2�


jdivg (N)j0 � C; sup
x2@


����� 1

j�Ajg

����� � C; sup
x2@


jDf:�j � C:

(2):

jN(')j � C jrg'jg ; jDp(')j � C jrg'jg ; jDp(')j � C jrg'jg���hrg';rg (divg(N))ig
���
g
� C jrg'jg ; j(�N) (')jg � C j�N jg jrg'jg � C jrg'jg���
DN;D2'
�
TxRn

��� � C jDN jg
��D2'

��
g
� C

��D2'
��
g
;��D2p (N;D')

�� � C
��D2p

��
g
jN jg jD'jg � C jD'jg ;��D2' (N;Dp)

�� � C
��D2'

��
g
jN jg jDpjg � C

��D2'
��
g
;

jRic (N;D')j � C jRicjg jN jg jD'jg � C jD'jg ;
(A.41)

(3):Z


j'j2 d
 � C k'k2H2(
) ;

Z


jD'j2g d
 � C k'k2H2(
) ;

Z



��D2'
��2
g
d
 � C k'k2H2(
)

(A.42)



Appendix B

Linear semigroup theory

In this appendix we recall some basic properties of the theory of semigroups

B.1 Strongly continuous semigroups

De�nition B.1. A strongly continuous semigroup is an operator- valued function
S(t) that satis�es the following properties:

1. S(t+ s) = S(t)S(s) for any s; t � 0

2. S(0) = IX

3. kS(t)y � yk ! 0 when t! 0+, for any y 2 X:

Some elementary properties of semigroups are given in the following theorem
Theorem B.1. [12] A strongly continuous semi group on a Hilbert space H: S(t)

has the following properties

1. kS(:)k is bounded on every �nite subinterval of [0;1) ;

2. S(:) is strongly continuous for all t 2 [0;1) ;

3. If !0 = inf
t>0

1
t (log kS(t)k), then lim

t!+1
1
t (log kS(t)k) < +1;

4. For all y 2 H we have that 1
t

R t
0 S(s)yds! y for t! 0+

5. For any ! > !0; there exists a constant M! � 1 such that kS(t)k � Me!t for
all t � 0;

This constant !0 is called the grouwth bound of the semigroup.
Let D(A) denote the subspace of all elements such that (S(t)y�y)

t converges in H
for t! 0+:De�ne the operator on D(A):

Ay = lim
t!0

(S(t)y � y)
t

(A43)

De�nition B.2. The operator given by (A43) is the in�nitesimal generator of the
semi group S(t):
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B.2 The Hille-Yosida Theorem

In the sequel we shall denote by G(M;w) the set of all strongly continuous semigrous
S such that kS(t)k �Me!t; t � 0:

Lemma B.4. We have

f� 2 C; Re� > wg � � (A)
R(�;A)y =

R1
0 e��tS(t)ydt; y 2 X;Re� > w:

De�nition B.3. (Groups of bounded operators) A parameter family T (t);�1 <
t < 1; of bounded linear operators on banach space X is a C0 group of bounded
operators if it satis�es

1. S(0) = IX

2. S(t+ s) = S(t)S(s) for �1 < t; s <1;

3. lim
t!0

S(t)x = x for x 2 X:

De�nition B.4. (Self adjoint operators). Let H be a Hilbert space with the
scalar product (:; :). An operator A in H is symmetric if D(A) = H and A � A�, that
is, (Ax; y) = (x;Ay) for all x; y 2 D(A): A self adjoint if A = A�:

Theorem B.2.(Stone Theorem) ([46]). A is the in�nitesimal generator of a
C0 group of unitary on a Hilbert space H if and only if iA is self adjoint (iA) = (iA)�:

The result below which is known as the Hille- Yosida Theorem provide a complete
characterization of in�nitasimal generators [12]

Theorem B.3. (Hille- Yoshida Theorem)([46]) Let A : D(A) � X ! X
be a closed operators. Then A is the in�nitesimal generator of a strongly semigroup
belonging to G(M;w) if and only if

(i)- f� 2 C; Re� > wg � � (A)
(ii)- kRr(�;A)k � M

(��!)r ; for all r � 1; 8� > w

(iii)- D(A) is dence in X:
Remark B.1. To use the Hille-Yosida Theorem requires to check in�nite con-

ditions. However if M = 1 it is enough to ask (ii) only for r = 1, in such a case
S 2 G(M;w): If w � 0 we say that S(:) is a contraction semigroup.
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