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Abstract 

This thesis presents a study on how microemboli problems can be detected and 

characterized. It investigates a novel approach to the detection and classification of 

microemboli using a combination of data mining techniques, signal processing methods, and 

Radio Frequency information extracted from gaseous and solid emboli instead of the 

traditionally used Doppler signals processing. 

 Embolic phenomena, whether air or particulate emboli which are particles larger than 

blood cells, could occlude blood vessels and consequently prevent the normal blood flow to 

vital organs and surrounding tissue. As a result, it can induce immediate damages like heart 

attack or ischemic stroke. It is believed that detecting the emboli in early stage could prevent 

or reduce the associated risks of embolism. Embolus composition (gaseous or particulate 

matter) is vital in predicting clinically significant complications. Unfortunately, embolus 

detection using Doppler methods have shown their limits to differentiate solid and gaseous 

embolus. Radio Frequency (RF) ultrasound signals backscattered by the emboli contain 

additional information on the embolus in comparison to the traditionally used Doppler 

signals. Gaseous bubbles show a nonlinear behavior under specific conditions of the 

ultrasound excitation wave, this nonlinear behavior is exploited to differentiate solid from 

gaseous microemboli.  

In order to verify the usefulness of RF ultrasound signal processing in the detection 

and classification of microemboli, an in vitro set-up is developed at the University of François 

Rabelais Tours, France in the INSERM U930 laboratory under the direction of Professor A. 

Bouakaz. Sonovue micro bubbles are exploited to mimic the acoustic behavior of gaseous 

emboli. They are injected in a nonrecirculating flow phantom containing a tube of 0.8 mm in 

diameter. The tissue mimicking material surrounding the tube is chosen to imitate the acoustic 

behavior of solid emboli. Both gaseous and solid emboli are imaged using an Anthares 

ultrasound scanner with a probe emitting at a transmit frequency of 1.82 MHz and at two 

mechanical indices (MI) 0.2 and 0.6. Therefore, we acquire four datasets, each dataset 

consists of 102 samples (51 gaseous emboli and 51 solid emboli). This dataset is exploited to 

create a number of discriminative features used for the detection and classification of 

circulating microemboli. 
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First, we employ Fast Fourier Transform approach based on neural network analysis 

using fundamental and second harmonic components information contained in the RF signal 

backscattered by an embolus. The proposed approach allows the classification of microemboli 

with a discrimination rate of 92.85%. 

Second, we exploit a discrete wavelet transform approach using three dimensionality 

reduction algorithms; Differential Evolution technique, Fisher Score method, and Principal 

Component Analysis based on Support Vector Machines in the analysis and the 

characterization of the backscattered RF ultrasound signals from the emboli. Furthermore, we 

propose a strategy to select the suitable wavelet filter among 59 mother wavelet functions. 

The experimental results, based on the selected wavelet function and differential evolution 

algorithm, show clearly that discrete wavelet transform method achieves better average 

classification rates (96.42%) compared to the results obtained in the previous method using 

FFT based approach. The obtained results demonstrated that Radio Frequency ultrasound 

signals bring real opportunities for microemboli detection and characterization. 
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Résumé 

Cette thèse présente une étude sur la façon dont les micro-emboles peuvent être 

détectés et caractérisés. Elle examine une nouvelle approche pour la détection et la 

classification des micro-emboles en utilisant une combinaison: des techniques d'intelligence 

artificielle, des méthodes de traitement du signal et de l'information extraite des emboles gaz 

et solides en utilisant les signaux radiofréquence (RF) au lieu des signaux Doppler 

traditionnellement utilisés. 

Les phénomènes emboliques, que ce soit de l'air ou des emboles solides, sont des 

particules plus grandes que les cellules sanguines, qui pourraient obstruer les vaisseaux 

sanguins et par conséquent empêcher le flux sanguin normal aux organes vitaux et au tissu 

environnant. Par conséquent, ils peuvent induire des dommages immédiats comme une crise 

cardiaque ou un accident ischémique cérébral. La composition de l'embole (gaz ou solide) est 

essentielle dans la prévision de complications cliniquement significatives. Malheureusement, 

la détection des emboles en utilisant le Doppler a montré leurs limites pour différencier 

l'embole solide et l’embole gaz. Les signaux ultrasonores radiofréquence (RF) rétrodiffusés 

par les emboles contiennent des informations supplémentaires sur l'embole par rapport aux 

signaux Doppler traditionnellement utilisés. Les bulles gazeuses montrent un comportement 

non linéaire dans des conditions spécifiques de l'onde d'excitation ultrasonore, ce 

comportement non linéaire est exploité pour différencier les emboles solides des emboles gaz. 

Afin de vérifier l'utilité du traitement des signaux ultrasonores RF dans la détection et 

la classification des micro-emboles, une étude expérimentale (in vitro) est développée à 

l'Université de François Rabelais Tours, en France, dans le laboratoire INSERM U930 sous la 

direction du Professeur A. Bouakaz. Les microsbulles de Sonovue sont exploitées pour imiter 

le comportement acoustique des emboles gaz. Elles sont injectées dans un phantom 

(nonrecirculating flow phantom), qui a les mêmes caractéristiques que le tissu humain, 

contenant un trou de diamètre de 0.8 mm. Le matériau imitant le tissu entourant le tube est 

choisi pour imiter le comportement acoustique de l'embolie solide. Les images 

échographiques des emboles gaz et solides sont recueillies à l'aide d'un scanner à ultrasons 

Anthares avec une sonde émettant à une fréquence d'émission de 1.82 MHz et avec deux 

index mécaniques (MI) 0.2 et 0.6. Donc, nous avons construit quatre bases de données, 

chaque base de données est composée de 102 échantillons (51 emboles gaz et 51 emboles 

solides). L’ensemble de ces quatre bases de données sont exploitées pour extraire un certain 
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nombre de caractéristiques discriminatives utilisées pour la détection et la classification des 

micro-emboles. 

En premier lieu, nous proposons une nouvelle approche basée sur la transformée de 

Fourier rapides (FFT) et les réseaux de neurone artificielles (classificateur) en utilisant les 

propriétés de la fondamentale et de la deuxième composante harmonique contenue dans le 

signal RF rétrodiffusé par un embole (gaz ou solide). L'approche proposée permet la 

classification des micro-emboles avec un taux de discrimination de 92.85%. 

En second lieu, nous exploitons la transformée en ondelettes discrète en utilisant trois 

algorithmes de réduction de dimensionnalité: la technique évolution différentielle, méthode 

Fisher Score et l'Analyse en Composantes Principales basées sur les machines à vecteurs de 

support (SVM: classificateur), dans l'analyse et la caractérisation des signaux RF ultrasonores 

rétrodiffusés de l'embole (gaz ou solide). De plus, nous proposons une stratégie pour 

sélectionner le filtre d'ondelettes approprié (meilleure ondelette mère) parmi 59 filtres. Les 

résultats expérimentaux, basés sur la fonction d'ondelettes sélectionnée et l'algorithme 

d'évolution différentielle, montrent clairement que la méthode basée sur la transformée en 

ondelettes discrète atteint de meilleurs taux de classification (96.42%) par rapport aux 

résultats obtenus dans la méthode précédente en utilisant l'approche basée sur la FFT. Les 

résultats obtenus ont démontré que les signaux radiofréquence ultrasonores offrent de réelles 

opportunités pour la détection et la caractérisation des micro-emboles. 
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 ملخص

تقدم ھذه الأطروحة دراسة عن كیفیة اكتشاف مشاكل المیكروأومبولي وتمیزھا. وھي تحقق في نھج جدید للكشف 

عن المیكروبمولي وتصنیفھ باستخدام مزیج من تقنیات استخراج البیانات وطرق معالجة الإشارات ومعلومات التردد 

 یمكن لظواھر .تقلیدیا الرادیوي المستخرجة من المیكروأومبولي الغازیة والصلبة بدلا من معالجة إشارات دوبلر المستخدمة

المیكروأومبولي، سواء كانت ھواء أو جسیمات صلبة، و التي ھي جسیمات أكبر من خلایا الدم، أن تسد الأوعیة الدمویة 

وبالتالي تمنع تدفق الدم الطبیعي إلى الأعضاء الحیویة والأنسجة المحیطة بھا. ونتیجة لذلك, یمكن أن تسبب أضرارا مباشرة 

حل المبكرة أن یمنع أو یقلل من المخاطر الكشف عن المیكروأومبولي في المرلمثل الأزمة القلبیة أو الجلطة الدماغیة. یمكن 

) أمر حیوي في التنبؤ بالمضاعفات الھامة  الصلبةالمرتبطة بانسداد الشرایین. تكوین المیكروأومبولي (الغازیة أو الجسیمات

، كشف الانسداد باستخدام أسالیب دوبلر أظھرت حدودھا للتمییز بین المیكروأومبولي الصلبة للأسف .في الكشف الطبي

والغازیة. تحتوي إشارات الموجات فوق الصوتیة الرادیویة (الترددات الرادیویة) المرتدة بواسطة المیكروأومبولي على 

معلومات إضافیة مقارنة بإشارات دوبلر المستخدمة تقلیدیا. الفقاعات الغازیة تظھر سلوك غیر خطي في ظل ظروف 

محددة من الموجات فوق الصوتیة. یتم استغلال ھذا السلوك غیر الخطي للتمییز بین المیكروأومبولي الغازیة و الصلبة.  

من أجل التحقق من فائدة معالجة الموجات فوق الصوتیة في كشف وتصنیف المیكروأومبولي ، تمت دراسة 

 تحت إشراف البروفیسور INSERM U930تجریبیة (في المختبر) في جامعة فرانسوا رابلیھ تور، فرنسا، في المختبر

ع.بوعكاز. تم استغلال فقاعات سونوفو الصغیرة لتقلید السلوك الصوتي المیكروأومبولي الغازیة. حیث تم حقنھا في نسیج 

 مم. تم اختیار المادة المحیطة بأنبوب 0.8 اصطناعي (لدیھ نفس خصائص الأنسجة البشریة) یحتوي على أنبوب قطره

الأنسجة لتقلید السلوك الصوتي للمیكروأومبولي الصلبة. تصویر كل من للمیكروأومبولي الغازیة والصلبة تم باستخدام 

 میغاھیرتز وباستعمال اثنین من 1.82جھاز التصویر بالموجات فوق الصوتیة مع مسبار یبعث على تردد الإرسال 

. بناء على ذلك، تم الحصول على أربع مجموعات للبیانات، تتكون كل مجموعة بیانات 0.6 و 0.2 المؤشرات المیكانیكیة

). یتم استغلال ھذه البیانات لإنشاء عدد من ة میكروأومبولي صلب51 میكروأومبولي غازیة و 51 عینة (102 من

الخصائص التمییزیة المستخدمة في كشف وتصنیف المیكروأومبولي.  

ل فورییھ السریع وتقنیات الشبكات العصبیة الاصطناعیة باستخدام خصائص  أولا، قمنا باستغلال طریقة محوِّ

الترددات الأساسیة والثانیة الواردة في إشارة الموجات فوق الصوتیة المرتدة بواسطة المیكروأومبولي. یسمح النھج المقترح 

٪. 92.85بتصنیف المیكروأومبولي مع نسبة تمییز 

التطور   تقنیة : لتخفیض الأبعادات خوارزمي ثلاثثانیا، استخدمنا طریقة تحویل المویجات المنفصلة القائم على

في تحلیل و وتصنیف إشارة الحاملة  الأشعة آلة تقنیة باستخدام الرئیسیة المكونات حِسَاب فیشر و تحلیلالتفاضلي، طریقة 

 لاختیار مرشح المویجات إستراتیجیة ذلك، نقترح إلى بالإضافةالموجات فوق الصوتیة المرتدة بواسطة المیكروأومبولي. 

 التفاضلي، التطور وخوارزمیة المختار المویجة مرشح إلى استنادا التجریبیة، النتائج  أظھرت مرشح.59المناسب من بین 

 الطریقة في علیھا المتحصل بالنتائج مقارنة٪) 96.42 (أفضل تصنیف معدلات تحقق تحویل المویجات المنفصلة طریقة أن

ل فورییھ السریعباستخدام السابقة  للموجات الرادیویة الترددات إشارات أن علیھا الحصول تم التي النتائج . أظھرت محوِّ

 ھا. المیكروأومبولي وتصنیفعن للكشف حقیقیة فرصا تجلب الصوتیة فوق
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General Introduction 

1. Definition of microemboli 

Embolism is an intravascular migration of an insoluble body such as gas bubble, fat 

globule, blood clot, atheromatous plaque, or piece of thrombus. Embolic phenomena are still 

one of the leading causes of serious and sometimes life-threatening disorders in the developed 

and the majority of developing countries [1-7]. Since the 60s, ultrasound researchers have 

demonstrated that gas emboli can be detected using ultrasound waves. However, it was only 

in 1990s that it was revealed that solid emboli, composed of thrombus or platelet aggregates, 

could also be detected using ultrasound [8, 9].  

It is believed that embolus (singular of emboli) composition (solid or gaseous emboli) 

is vital in predicting clinically significant complications [10]. For example, patients on bypass 

for open-heart surgery are known to encounter gaseous emboli but may also have some solid 

emboli due to pre-existing cardiovascular disease [10]. Most studies diagnose the risk to these 

patients by counting the number of emboli detected during surgery without considering how 

the composition might influence the outcome [11, 12]. These emboli can induce immediate 

damages like stroke or heart attack, thus the importance of an automatic detection and 

classification system. 

In stroke, embolus detection using Transcranial Doppler (TCD) methods have shown 

their limits to distinguish between emboli and artifacts, and more importantly to make the 

differentiation between solid and gaseous microemboli using the backscattered TCD signals 

[13-16]. Radio-Frequency (RF) ultrasound signals backscattered by the emboli contain 

additional information on the embolus in comparison to the traditionally used Doppler signals 

[17]. Gaseous bubbles show a nonlinear behavior under specific conditions of the ultrasound 

excitation wave, this nonlinear behavior is exploited to differentiate solid from gaseous 

microemboli.  
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General Introduction 

2. Aim of the thesis 

As visual detection and analysis of microemboli Doppler signals by experts are 

subjective to observer’s experience and also very time-consuming, development of computer-

based decision support systems that intend to characterize particles whether solid or gaseous 

emboli is vital in the field of biomedical engineering. This thesis proposes an automatic 

detection and classification system of circulating microemboli in the bloodstream using Radio 

Frequency ultrasound signals instead of the traditionally used Doppler signals [18-24]. Due to 

resonance phenomenon, microbubbles interact actively with the excitation wave exhibiting a 

nonlinear scattering components. This nonlinear behavior is specific to gaseous emboli and 

cannot be related to solid emboli and therefore this characteristic can be exploited to 

characterize gaseous and solid emboli. 

In order to verify the usefulness of Radio Frequency ultrasound signal processing for 

microemboli classification, an in vitro set-up is developed. To imitate the ultrasonic behavior 

of gaseous emboli, Sonovue micro bubbles are administered into a 200 ml volume of Isoton. 

A flow phantom containing a tube of 0.8 mm in diameter is exploited in order to approximate 

the size of a human vessel.  

Since solid emboli present acoustic properties comparable to those of biological tissue, 

the tissue mimicking material surrounding the vessel is chosen to mimic the behavior of solid 

emboli. In order to reproduce real clinical pathological situations, Sonovue concentration are 

chosen such that the fundamental scattering from the tissue and from the contrast are 

identical. The backscattered signals are extracted using a commercially available ultrasound 

scanner [24]. 

In the first part of the thesis, we employ Fast Fourier Transform (FFT) and Artificial 

Neural Network (ANN) to study the nonlinear characteristics of gaseous emboli. The 

amplitudes and bandwidths of fundamental and 2nd harmonic components are selected as 

input parameters to two ANN models namely Multilayer Perceptron (MLP) and Radial-Basis 

Function Network (RBFN). Moreover, the frequency bandwidths of fundamental and 2nd 

harmonic echoes are approximated by gaussian functions and the coefficients are used as a 

third input parameter to the neural network models [24]. 
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In the second part, we exploit discrete wavelet transform (DWT) to characterize the 

behavior of solid and gaseous emboli [25, 26 ,27]. However, the selection of an appropriate 

mother wavelet for the signal being analyzed is a vital criterion. Consequently, several 

wavelet functions are evaluated within a microemboli classification system. The effectiveness 

of the choice of the suitable mother wavelet in the evaluation of the proposed system is 

assessed [22]. Then, we employ DWT algorithm based on the selected wavelet function and 

dimensionality reduction techniques based on Differential Evolution Algorithm (DEFS), 

Fisher Score method, and Principal Component Analysis (PCA) in the analysis and the 

characterization of the backscattered RF ultrasound signals from the emboli using Support 

Vector Machines (SVM) classifier [18]. 

The main contribution of this thesis is twofold: first, we exploit Radio-Frequency (RF) 

ultrasound signals backscattered by the emboli instead of the traditionally used Doppler 

signals for the detection and classification of circulating microemboli in the bloodstream. 

Therefore, we develop an experimental set-up in order to mimic the ultrasonic behavior of 

gaseous and solid emboli.  

Second, we implement signal processing and data mining techniques in order to create 

an automated microemboli detection and classification system. Involving methods are: FFT, 

DWT, ANN models (MLP and RBFN), and SVM. Furthermore, we compare the 

performances of three dimensionality reduction techniques; Differential Evolution algorithm 

(DEFS), Fisher Score method, and Principal Component Analysis (PCA). 

3. Organization of the thesis 

The thesis is divided into five chapters. The first part aims at introducing embolism 

problem and types. The causes of embolism are also highlighted in this section. Furthermore, 

we introduce the detection techniques and the nonlinear scattering properties of the interaction 

between ultrasound and gas bubble.  

In chapter II, we present a literature review of artificial intelligence methods employed 

in this thesis. We illustrate three classification algorithms with main focus on: Multilayer 

Perceptron Neural Networks, Radial Basis Function Neural Networks, and Support Vector 

Machines. Furthermore, we describe the use of three dimensionality reduction techniques; 

Differential Evolution algorithm, Fisher Score method, and Principal Component Analysis. 
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General Introduction 

Chapter III presents the experimental set-up realized as part of the cooperation project 

INSERM (France / Algeria DPGRF) 2007-2008 study and the TASSILI project (14 MDU 

909) in the INSERM U930 laboratory at the University of François Rabelais Tours.  

The results are presented in Chapters IV and V. In Chapter IV, we focused on the use 

of FFT approach in the detection and classification of microemboli by exploiting radio 

frequency signals backscattered by the emboli as an alternative of the commonly used 

Doppler signals. We employ Multilayer Perceptron and Radial-Basis Function Network 

models in the classification system. 

In order to enlarge the range of the detection system, we investigate in Chapter V 

wavelet-based approach instead of FFT technique to detect and classify the emboli. Since the 

performance of the classification system greatly depends on the selection of the mother 

wavelet, we select the required wavelet filter experimentally among 59 mother wavelet 

functions. Furthermore, we propose a classification system of microemboli using 

dimensionality reduction techniques (DEFS, Fisher Score, and PCA algorithms), SVM as a 

classifier, and the backscattered RF signals. Moreover, the best results are compared to the 

FFT based neural network approach.  

The last section of the thesis draws the conclusions and the perspectives of this 

experimental study. 
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Chapter I                                  Literature Review of Embolism 

I.1 Introduction 

 To prescribe the appropriate treatment and reduce the risk of embolism, several 

ultrasonic methods using Doppler processing have been used for emboli detection and 

classification as solid or gaseous matter. Unfortunately, Doppler processing technique, which 

is commonly used for emboli detection, presents some limitations to distinguish between 

embolus and artifacts [13-16]. This chapter reports on the types of embolism, the detection 

techniques, and the interaction between microbubbles and ultrasound. 

I.2 Types of embolism 

 Three general categories of embolism are identified: arterial, gas, and pulmonary 

embolism, the most common are pulmonary emboli. 

I.2-1 Pulmonary Embolism  

An embolus, generally formed in the leg, sometimes referred to as deep vein 

thrombosis (DVT), will lodge in one of the pulmonary arteries. Several emboli are dissolved 

by the organism and disappear spontaneously, however severe pulmonary embolism can 

cause death [28, 29] (refer to figure I.1). 

 

Figure I.1 Formation of a thrombus, A. hip, B. thigh, C. calf [29] 
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I.2-2 Arterial embolism 

Arterial emboli are usually a complication of heart disease. It happens when the blood 

flow is blocked at the junction of major arteries [30-33]. If a blood clot travels to the brain, it 

causes a cerebral infarction or transient ischemic stroke which can be fatal [30]. Clots too 

small to plug a major artery may block the smaller blood vessels that feed the retina at the 

back of the eye. This results in a sudden loss of vision in one eye [31]. If fat particles or other 

particles from the bone marrow are introduced into the bloodstream, they can block blood 

vessels in the same way as a blood clot or air bubble [34]. 

I.2-3 Gaseous embolism  

Underwater divers that rise too quickly to the surface can generate a gas embolism, 

caused by air bubbles in the blood that can block blood flow in the arteries. It may also occur 

during surgery and other medical procedures where small amounts of air often get into the 

blood circulation accidentally (for example a bubble entering an intravenous fluid line) [35].  

This often leads to obstruction of blood flow through the heart and pulmonary edema 

(inflammation of the pulmonary blood vessels). Moreover, this may cause cerebral edema 

(inflammation of the brain) , heart failure, or stroke (refer to Figure I.2) [35]. 

 

Figure I.2 Bubble Obstructing End-Arterial Flow in a Cerebral Vessel [36]. 
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I.3 Causes of embolism 

Most embolisms occur in people who have risk factors for the formation of blood 

clots, such as smoking or heart disease. For other types of embolism, risk factors include high 

cholesterol, high blood pressure, and atherosclerosis (the accumulation of fatty plaques in 

blood vessels). Arterial emboli are usually a complication of heart disease in which blood 

clots form in the heart's chambers. Rapid changes in environmental pressure that could 

happen when scuba diving or flying may produce Gas embolism. 

The primary cause of most pulmonary embolism is deep vein thrombosis (DVT). It is 

a condition in which clots develop in the veins of the legs (refer to Figure I.1) [37]. Natural 

blood agents usually dissolve small clots without blocking. However, some clots are too large 

to be dissolved and large enough to block major blood vessels in the lungs or in the brain. 

Any slowing down of blood flow in the legs can contribute to the formation of clots. A 

DVT or pulmonary embolus may develop in people who have remained motionless for a long 

period of time during a long-term flight or as a result of the immobilization of a leg by a 

plaster or prolonged bed rest without moving the legs. Other factors associated with DVT or 

pulmonary embolism include cancer, previous surgery, leg or hip fracture, or a genetic 

predisposition of blood cells that increases the risk of clot formation [29-37]. 

I.4 Detection techniques 

The ultrasound community has experienced dramatic technical advances over the last 

decades, such as blood flow measurements with elaborate Doppler techniques or real time 

three-dimensional imaging with 2-D phase array transducers. This is partly ascribed to the 

advantages of ultrasound over other diagnostic modalities, including its low cost, real-time 

character and safety. 

One of these recent ultrasound technologies is Transcranial Doppler (TCD). TCD is a 

non-invasive ultrasound method used to assess blood flow velocity in the major basal 

intracranial arteries on a real-time basis. 

Doppler ultrasonography has been proposed for the detection of gas embolism since 

1968. The development of transcranial Doppler in the 1980s has allowed wide clinical use in 

the study of decompression accidents and monitoring of surgical procedures (carotid surgery, 

extracorporeal circulation) and then in patients with prosthetic heart valves [38-40]. 
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Currently, Transcranial Doppler based techniques rely on the appearance of high 

intensity transient signals, which are used as indictors of the presence of emboli [41] 

(Figure.I.3).  

 

Figure I.3 Sonogram of micro-embolic Doppler signal [42]. 

Study by E. Roy et al. employed time-frequency representation using spectrogram in 

order to automatically detect the circulating embolus [43]. However, they stated that Doppler 

signals found in clinical applications are more complex than their Doppler signals and that 

their results are applicable just for their simulated signals. 

Ping-Wing Lui et al. performed an experiment set up on seven dogs for the detection 

of venous embolic Doppler signals employing DWT [44]. The method is found useful in the 

detection of emboli, however the algorithm is not suitably applicable to small emboli 

detection since the emboli exploited in their study are bigger than the emboli discovered in 

human body. 

Jean-Marc Girault et al. presented an emboli detection method based on parametric 

signal processing approaches. In their approach, they compared the Doppler embolic signal to 

its autoregressive model and then they constructed a decision information which contains the 

signature of the micro-embolus signal [45]. 

Nizamettin Aydin et al. employed discrete wavelet transform to investigate the 

transcranial Doppler audio signals for detection of embolic signals [25]. 
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The results of these two approaches [25, 45] are promising however, the challenge 

remains to distinguish between emboli and artifacts, and more importantly to make the 

differentiation between solid and gaseous microemboli using the backscattered TCD signals 

[13-16], especially before performing interventional procedures for neuroprotection where the 

nature of the emboli is an important diagnostic criterion. This is the case during carotid 

endarterectomy and cardiac surgery where air and solid emboli are strongly intricate. They 

can be detected with TCD but it has been very difficult to distinguish solid from gaseous 

microemboli [13-16].  

Solid emboli are potentially far more damaging than gaseous emboli and they imply 

different therapeutic strategies [4]. Indeed, gaseous emboli are considered as a risk indicator 

and their detection implies to seek for the cause of the emboli. However, when solid emboli 

are detected, an anticoagulant or antiaggregant treatment is usually administered. 

Although a number of technological developments have been achieved in the 

microemboli detection area, it is still impossible to reliably distinguish gaseous from solid 

emboli using Doppler techniques [13-16]. Classification of gaseous and solid microemboli 

using Doppler approaches rely on the appearance of high intensity transient signal, which is 

used as indictor of the presence of embolus. However, there is a generally established strategy 

of rejection of low-intensity micro embolic signals [46]. Consequently, a priori rejection of 

these embolic signals (ES) may reduce the predictive value and the sensitivity of the whole 

process. A recent study has revealed that there is a considerable relationship between low and 

high-intensity micro embolic signals, suggesting that these rejected ESs, because of their low 

intensity, are real and can predict future occurrence of high-intensity ES [47]. 

Furthermore, Doppler based techniques are strongly affected by artifacts caused by 

patient moving the head, coughing, or any movement that causes displacement of the probe 

which can produce similar signals as solid emboli or gaseous emboli [48]. 

Therefore, we propose a new approach based on the analysis of backscattered Radio 

Frequency ultrasound (RF) signals instead of Doppler signals [18-24]. In order to verify the 

usefulness of Radio Frequency ultrasound signal processing for microemboli detection and 

classification, we develop an in vitro set-up. Sonovue micro bubbles are used to imitate the 

ultrasonic behavior of gaseous emboli. In order to approximate the size of a human vessel, a 
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flow phantom with a tube of 0.8 mm in diameter is exploited. The tissue mimicking material 

surrounding the vessel is chosen to imitate the behavior of solid emboli. 

In order to accurately discriminate gaseous from solid emboli, we exploit the nonlinear 

characteristics of gaseous emboli under an ultrasound excitation. We employ Fast Fourier 

Transform (FFT) and artificial neural network for the detection and classification of micro 

emboli [24]. 

A number of researchers have reported that discrete wavelet transform (DWT) 

performs better than Fast Fourier Transform for the analysis and the detection of embolic 

signals [25, 26, 27]. Therefore, we employ a DWT approach and a dimensionality reduction 

technique based on differential evolution algorithm, Fisher Score method, and PCA for the 

analysis of the backscattered RF ultrasound signals from the emboli [18]. 

I.5 Interaction Ultrasound Gas Bubble 

I.5-1 Ultrasound contrast agents   

Since the 1970s, researchers have tried to find ways to enhance the ultrasound signal 

backscattered from blood vessels. The answer has been found in the introduction of small air 

bubbles, which are at the origin of an increase in reflection. In 1968, Gramiak and Shah 

observed an enhancement of the echo returned by the blood following the injection of 

solutions such as green indocyamine, physiological saline, or alkaline serum into the vascular 

network [49]. This enhancement, which increases the contrast of the image, is a result of the 

presence of highly echogenic gas bubbles in the injected solution due to their density and 

compressibility which are very different from those of the blood. Another factor contributing 

to the enhancement of the collected echo is due to the resonant nature of the gas bubbles 

subjected to an ultrasonic beam. 

However, the use of these primary contrast products was limited by their very short 

lifetime, once injected, these microbubbles disappeared relatively quickly, not allowing 

adequate examination (less than one second) in addition to their uncontrollable and 

inappropriate size preventing their passage through the pulmonary capillaries. 
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In order to allow optimal use of contrast agents, microbubbles must fulfill certain 

conditions: they must be administered intravenously and they must be sufficiently small and 

stable to ensure a lung passage and their lifetime must be long enough to allow ultrasound 

examination and image acquisition. In order to behave as a perfect tracer, microbubbles must 

also exhibit the same flow dynamics as blood. In order to comply with these specifications, 

the physical properties must be carefully selected. These properties concern the diameter of 

the microbubbles, the physical characteristics of their envelops, and the properties of the gas 

that composes them. In addition, consideration should be given to the effects of the 

surrounding environment, such as temperature and hydrostatic pressure [17]. 

For two decades efforts have been made to develop more stable and smaller contrast 

agents. Microbubbles composed of heavy gases were then developed to decrease their rate of 

dissolution in the blood and increase the duration of the examination (a few minutes). In 

addition, the gas bubble is surrounded by an envelope composed of proteins, phospholipids, 

surfactants, or polymers in order to protect it. Finally, the developed contrast agents are: non-

toxic, non-allergenic, easy to apply (injectable through the peripheral vein), small enough to 

be able to cross the pulmonary barrier (<8μm), and have a lifetime for ultrasound examination 

[17]. 

The first commercialized second-generation ultrasound contrast agents fabricated was 

Optison (1997). It was later followed by other types of agents, such as; Definity (2001), 

Sonovue (2001), Luminty (2006), Sonazoid (2007), and Lumason (2014). Over the years, 

several other agents were developed. However, various types are no longer in production. 

Table I.1 illustrates the commercial contrast agents currently in clinical use [50]. 

Sonovue and Lumason consist of microspheres with an outer lipid shell that 

encapsulates sulfur hexafluoride gas. These types of ultrasound contrast agents are produced 

by Bracco Imaging S.p.A (Milan, Italy) and they are currently marketed in Europe, North 

America, Australia, and parts of Asia and South America. These agents can be administered 

by either bolus or infusion [51]. 
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Table I.1 Currently marketed ultrasound contrast agents [50]. 

Brand name Manufacturer Approved 
year  Inner gas Outer 

shell Marketed in 

Optison GE Healthcare 1997 Perflutren Albumin USA, Europe 

Definity/Luminity 
Lantheus 
Medical 
Imaging 

2001/2006 Perflutren Lipid 

USA, Canada, 
Europe, 

Australia, 
parts of Asia 

Sonovue/Lumason Bracco Imaging 
S.p.A 2001/2014 Sulfur 

hexafluoride Lipid 

North 
America, New 

Zealand, 
Europe, 

Brazil, parts of 
Asia 

Sonazoid GE Healthcare 2007 Perflubutane Lipid Japan, South 
Korea 

I.5-2 Microbubbles-Ultrasound interaction 

The ultrasonic contrast agents modify the physical properties of the tissues and thus 

the behavior of the ultrasonic waves which pass through them. The mechanism of action 

associates, to different degrees according to the agents, an increase in the intensity of the 

backscattered ultrasonic beam, an attenuation of the ultrasound beam, and a decrease in the 

ultrasound speed. The main effect used by the ultrasonic contrast agents is the increase in the 

intensity of the backscattered ultrasonic field [17]. This backscattering can be classified into 

two categories: passive and active. The microbubble passively reflects the incident wave due 

to the difference in acoustic impedance between the surrounding environment (tissue, water) 

and the microbubble (gas). 
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In addition to passive backscattering, the microbubble acts as an active reflector by 

itself becoming a source of ultrasound. Under ultrasonic wave excitation, the microbubble is 

submitted to volumetric pulsations. In the simplest case, the size of the microbubble decreases 

during the compression phase of the ultrasonic wave (positive pressure) and increases during 

the decompression phase of the wave. The size variations of the microbubble depend on the 

frequency of the incident wave and are maximum for the resonance frequency. This resonance 

phenomenon is very important because the resonant microbubble significantly increases the 

amplitude of the reflected signals [17, 52]. 

Due to the resonance phenomenon, microbubbles do not respond in the same way to 

ultrasonic excitations as tissues. Indeed, the microbubbles interact actively with the excitation 

process. This interaction depends on several parameters, in particular the negative pressure of 

rarefaction and the incident frequency. The response of the microbubble can thus be separated 

into three acoustic regimes. For low acoustic pressures, the compression and expansion of the 

microbubble are symmetrical and of small amplitude. Thus, the size of the microbubble varies 

slightly but linearly with the amplitude of the acoustic pressure. For higher acoustic 

amplitudes, the compression of the microbubble is smaller than its expansion. As the rigidity 

of the microbubble varies locally as a function of the compression and expansion phases, the 

expansion of the microbubble is then easier than its compression (refer to Figure I.4). This 

difference in the elastic behavior of the microbubble during the compression and expansion 

phases generates an asymmetry in its response, characteristic of the generation of nonlinear 

frequency components, called harmonics (refer to Figure I.5). For higher acoustic pressures, 

the microbubbles are destroyed [17, 53, 54].  

The spectrum of the echo clearly shows a nonlinear component produced at twice the 

incident frequency, i.e. at 8 MHz. This nonlinear frequency component, called the second 

harmonic, has a relatively small amplitude compared to the fundamental component (refer to 

Figure I.5) [17]. 
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A       B 

Figure I.4 Oscillations of a bubble subjected to a pressure wave; A) symmetrical 

(linear) oscillations, B) asymmetrical (nonlinear) oscillations adopted for this study form [17]. 

 
A 

 
B 

Figure I.5 Acoustic response of a microbubble of 1 μm of initial radius to a wave of 4 

MHz of frequency and 5 kPa of amplitude: A) temporal response; B) frequency response 

adopted for this study form [17]. 
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I.5-3 Mechanical index (MI)  

Mechanical index (MI), defined as a safety measure and imposed on ultrasound 

scanner manufacturers by the US Food and Drug Administration (FDA), expresses the 

amount of mechanical work performed on a microbubble during half of an ultrasonic period. 

MI is defined as the negative pressure in megapascal divided by the square root of the 

ultrasonic frequency in megahertz. Depending on the recommendations for ultrasound use, 

this index is between 0 and 1.9. 

𝑀𝑀𝑀𝑀 =
𝑃𝑃− (𝑀𝑀𝑀𝑀)
�𝑓𝑓 (𝑀𝑀𝑀𝑀𝑀𝑀)

,                                                                                                           (I. 1) 

where P_ is the peak negative pressure (in MPa) of the ultrasound wave at the point of 

interest, f   is the center frequency of the transmitted ultrasound wave (in MHz). 

Available MI on ultrasound scanners corresponds to the maximum value of acoustic 

pressure in the focal length of the probe. Nevertheless, this pressure is not constant on the 

whole image and varies considerably according to depth and to radial distance. 

Figure I.6 summarizes the different microbubble responses and the corresponding 

acoustic excitations. In fact, these acoustic zones overlap each other according to the type of 

contrast agents and are therefore not easily separable. These acoustic excitations are grouped 

according to the acoustic pressure of the ultrasonic field, incident produced by the ultrasound 

scanner or as a function of MI. At low mechanical indexes, the microbubbles reflect linearly 

but provide a substantial improvement in ultrasonic echo from the blood vessels, mainly in 

the Doppler mode. Nevertheless, this mode of imaging, called fundamental or conventional 

mode, is being used less and less because of its limitations in several applications. When the 

intensity of the ultrasonic field is increased, at mechanical indexes greater than 0.1, the 

microbubbles behave nonlinearly generating harmonic frequency components.  

These pressures are high enough to induce microbubbles in stable nonlinear vibrations 

without destroying them. In this regime, the components generated by the microbubbles are 

stationary nonlinear components and the selective detection of these components represents 

the basis of the harmonic imaging. This mode has now become the default imaging mode in 

contrast ultrasonography [17]. 
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P > 500 kPa 

MI > 0.5 

Transitional nonlinear regime (destruction) 

Intermittent Imaging or time-lapse imaging 

Destruction 

P=100- 500 kPa 

MI=0.1- 0.5 

Stationary nonlinear regime (nonlinear vibration) 

Harmonic imaging 
Nonlinear 

P < 100 kPa 

MI < 0.1 

Linear regime (linear vibration) 

Fundamental imaging 
Linear 

Figure I.6 Acoustic bubble regimes according to the mechanical index [17]. 

At higher mechanical index (mechanical index above 0.5), the destruction of the 

microbubbles under the ultrasonic beam is observed. Although the destruction of 

microbubbles is avoided in most imaging modes, it is also exploited in other applications [55]. 

I.6 Conclusion 

This chapter presents the major types of embolism as well as the current techniques 

employed for classification of circulating microemboli in the bloodstream. The traditional 

techniques are largely based on the Doppler techniques. Unfortunately, these methods have 

shown some limitations to determine clearly the nature of circulating microemboli. 

Consequently, we propose in the following chapters another approach based on the analysis of 

radio frequency (RF) ultrasound signals instead of Doppler signals for the detection and 

classification of circulating microemboli by exploiting the nonlinear behavior of gaseous 

bubbles. 
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II.1 Introduction 

Man's intelligent behavior is due in part to his ability to select, classify, and abstract 

significant information reaching him from his environment by way of his senses. Artificial 

Intelligence (AI), otherwise known as machine learning or computational intelligence is the 

science and engineering of creating intelligent machines designed in a way to make computers 

perform tasks that were earlier thought of human intelligence involvement. AI facilitates and 

replicates actions and decisions of humans without human shortcomings, such as fatigue, 

emotion, and limited time. Typically, artificial intelligence techniques use training samples in 

order to build a model that enables reliable predictions. In this chapter, we present a literature 

review of artificial intelligence methods employed in this thesis.  

II.2 Classification 

Classification of data is considered as one of the most vital tasks in real world 

problems with the objective of finding the underlying patterns of the data and making use of 

the found patterns [56]. The objective of classification is to predict a class label for an 

unclassified input. Classification consists of two stages: (i) Model construction; in which the 

classifier is built by analyzing and learning from the training set. (ii) Model usage; the 

classifier is used to determine what specific class is assigned to a new input. In this thesis, the 

evaluation of the classification performances is carried out using cross validation technique. 

II.2-1 Model selection (Cross-validation) 

Cross-validation is a machine learning method that can be used to select the optimal 

parameters for a classifier while preventing overfitting the classifier to the training data [57]. 

We use hold-out-set cross-validation strategy to fix the parameters of the classifiers. While 

there are other validation techniques, including, but not limited to, bootstrap and leave-one-

out, we focus on the more commonly used cross-validation approach in this thesis [57]. Hold-

out-set cross-validation works by randomly dividing the dataset, into two subsets learning set 

and test set (hold-out-set). the testing set is hidden for the most part of the process and it is 

only used to check the final performance. After that, we randomly generate new training and 

validation sets from the initial learning set. The classifier parameters that results in a model 

with highest accuracy, using the validation set, are picked as the best choice of the 

classification problem (refer to figure II.1). Once the optimal parameters are fixed, the test set 

is used to validate the selected model. 
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The experimental evaluation is performed using hold-out-set to avoid overfitting and 

assure statistical validity of the results [57]. The test set is used only for the assessment of the 

model selected by the cross-validation algorithm. Therefore, the algorithm has only access to 

the training and validation sets, the test set is kept unseen in the selection process of the best 

model. 

 

Figure II. 1. Optimal parameters using Cross validation strategy. 

In our case, the experimental dataset consists of four acquisitions, each contains 102 

samples (51 solid embolus and 51 gaseous embolus). In order to evaluate the predictive ability 

of a model, we randomly divide the dataset, into three subsets training set, validation set, and 

test set. The test set, approximately one-third (1/3) of the data (14 solid embolus and 14 

gaseous embolus), is used only for the assessment of the model selected by the cross-validation 

technique, while the rest of the data will belong to the learning set (used for building the 

models) which will be divided into a training set (approximately two-third) and a validation set 

(approximately one-third). The validation set is used to tune the classifiers parameter. 

In this thesis and in order to evaluate the performance of the proposed system, we 

employ three types of classification algorithms: Multilayer Perceptron (MLP), Radial Basis 

Function Neural Networks (RBFN), and Support Vector Machine (SVM). In the next three  

subsections, we briefly recall the basis of MLP, RBFN, and SVM models. 

 

Accuracy 

Iteration 

Training 

Validation 

Optimal parameters  

Validation 
Accuracy 
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II.2-2 Multilayer Perceptron Neural Networks 

The most widely used neural classifier today is Multilayer Perceptron (MLP) network 

which has also been extensively analyzed and for which many learning algorithms have been 

developed. MLP belongs to the class of supervised neural networks. MLP networks are 

general-purpose, flexible, and nonlinear models consisting of a number of units organized into 

multiple layers. The complexity of MLP network can be changed by varying the number of 

layers and the number of units in each layer. Given enough hidden units and enough data, it 

has been shown that MLPs can approximate virtually any function to any desired accuracy. In 

other words, MLPs are universal approximators [58, 59].  

The multi-layer perceptron neural network model consists of a network of processing 

elements or nodes arranged in layers. Typically it requires three or more layers of processing 

nodes: an input layer which accepts the input variables used in the classification procedure, 

one or more hidden layers, and an output layer with one node per class, which in this thesis 

two classes (gaseous and solid embolus). The principle of the network is that when data from 

an input pattern is presented at the input layer the network nodes perform calculations in the 

successive layers until an output value is computed at each of the output nodes. This output 

signal should indicate which is the appropriate class for the input data i.e. we expect to have a 

high output value on the correct class node and a low output value on all the rest. Every 

processing node in one particular layer is usually connected to every node in the layer above 

and below. The connections carry weights which encapsulate the behavior of the network and 

are adjusted during training. The operation of the network consists of two stages. The 

``forward pass'' and the ``backward pass'' or ``back-propagation''. In the ``forward pass'' an 

input pattern vector is presented to the network and the output of the input layer nodes is 

precisely the components of the input pattern. For successive layers the input to each node is 

then the sum of the scalar products of the incoming vector components with their respective 

weights. That is the input to a node j is given by [58]. 

∑=
i

ijij outwinput ,                                                      (II.1) 

where jiw  is the weight connecting node i to node j and iout  is the output from node i.  

The output of a node j is 

( )jj inputfout = ,                                                           (II.2) 
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Which is then sent to all nodes in the following layer. This continues through all the 

layers of the network until the output layer is reached and the output vector is computed. The 

input layer nodes do not perform any of the above calculations. They simply take the 

corresponding value from the input pattern vector. The function ( )xf  denotes the activation 

function of each node. A sigmoid activation function is frequently used, 

( ) ( )x
xf

−+
=

exp1
1 ,                                                      (II.3) 

where x is inputj . 

The multi-layer feed-forward neural network is trained by supervised learning using 

the iterative back-propagation algorithm. In the learning phase a set of input patterns, called 

the training set, are presented at the input layer as feature vectors, together with their 

corresponding desired output pattern which usually represents the classification for the input 

pattern. Beginning with small random weights, for each input pattern the network is required 

to adjust the weights attached to the connections so that the difference between the network's 

output and the desired output for that input pattern is decreased. Based on this difference the 

error terms or δ  terms for each node in the output layer are computed. The weights between 

the output layer and the layer below (hidden layer) are then adjusted by the generalized delta 

rule [58]. 

( ) ( ) ( )kkkjkj outtwtw δη+=+1 ,                                    (II.4) 

where ( )1+twkj  and ( )twkj  are the weights connecting nodes k and j at iteration (t+1) 

and t respectively, η  is a learning rate parameter. Then the δ  terms for the hidden layer nodes 

are calculated and the weights connecting the hidden layer with the layer below (another 

hidden layer or the input layer) are updated. This procedure is repeated until the last layer of 

weights has been adjusted. The δ  term in Equation II.5 above is the rate of change of error 

with respect to the input to node k, and is given by: 

( ) ( )kkkk inputfoutd ′−=δ ,                                          (II.5) 

for nodes in the output layer, and: 

( )∑′=
k

kjkkj winputf δδ ,                                             (II.6) 
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for nodes in the hidden layers, where dk is the desired output for a node k. The back-

propagation algorithm is a gradient descent optimization procedure which minimizes the 

mean square error between the network’s output and the desired output for all input patterns 

P. 

Several studies applied MLP neural networks in the diagnosis of emboli. D. Shanthi, et 

al. used MLP in predicting the Thrombo-embolic stroke disease for 50 patients who have 

symptoms of stroke disease [60], they obtained an overall predictive accuracy of 89%. 

S. Matos et al. employed Multilayer Perceptron Neural Networks for the classification 

of cerebral embolic signals using transcranial Doppler ultrasound. The results obtained in this 

study show that the MLP based approach is a suitable tool for characterizing cerebral embolic 

signals [61]. 

Tourassi, G. D. et al. investigated the use of three-layer perceptron neural network as a 

computer-aided diagnostic tool for predicting pulmonary embolism from ventilation-perfusion 

lung scans and chest radiographs. The results illustrated that MLP  neural network can be 

trained to successfully perform the diagnostic task [62]. 

II.2-3 Radial Basis Function Neural Networks 

Radial-basis function neural networks can be used for a wide range of applications 

mainly due to the fact they can approximate any regular function and their training is faster 

compared to the multilayer perceptron [63]. The training of RBFN networks can be split into 

an unsupervised part and a linear supervised part. Unsupervised updating techniques are 

straightforward and relatively fast. Moreover, the supervised part of the learning invokes 

solving a linear problem. Therefore, it is fast and it avoids local minima encountered when 

using the multilayer perceptron [24, 63-65]. RBFN consists of an input layer, a hidden layer 

(radial basis function layer), and an output layer [66].   

A RBFN network is a two-layered ANN and it is defined as: 

( ) ( )∑
=

−=
K

j
jijjf̂

1
cxx φλ  ,                   (II.7) 
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where 

( )
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

 −
−=−
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2
1exp

j

ji
jij σ

φ
cx

cx .                 (II.8) 

According to Equations II.7 and II.8, the model is characterized by three types of 

parameters. The cj are called centers (centroids), they are chosen into dense regions of the 

input space, via a vector quantization technique [63, 67]. The number K represents the number 

of centers in the hidden layer while σj is the width (spread) of each center. The centers cj are 

chosen regardless of the outputs ( ) 0=xf  (gaseous embolus) or ( ) 1=xf  (solid embolus), the 

choice of cj is based only on the properties of the distribution of the inputs space x. Finally, 

the weights λj between the hidden layer and the output layer are found by linear regression 

analysis (by minimizing the mean squared difference between the network's output and the 

desired output value) [63]. 

The input nodes in the input layer are equal to the dimension of the input vector. The 

optimal number of neurons in the hidden layer as well as the spread of the RBFN Gaussian 

are determined experimentally using cross validation technique. The combination (number of 

neurons in the hidden layer, spread of the RBFN Gaussian) that results in a model with 

highest validation accuracy is picked as the best choice of the classification problem. Once the 

optimal parameters are fixed, the test set is used to validate the selected RBFN model. 

Radial Basis Function Neural Networks have been used in Several studies for 

characterizing micro emboli.  

Adem Karahoca, et al. performed an embolic signal detection system using a data set 

obtained with Doppler signals including 100 embolic signals, 100 speckle, and 100 artifacts. 

The results indicated that Radial Basis Function Neural Networks provides better 

classification rates than MLP [68]. 

N. Benoudjit, et al. conducted an experimental comparative study of microemboli 

classification based on radio frequency signals using Multilayer Perceptron (MLP) and 

Radial-Basis Function Network (RBFN). The results demonstrate the opportunity to classify 

emboli based on neural network analysis and Radio Frequency ultrasound signals instead of 

Doppler signals [24]. 
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II.2-4 Support Vector Machines 

Support Vector Machine (SVM) [69] is a novel machine learning technique based on a 

statistical learning theory proposed by Vapnik's group in 1995. SVM has gained increasing 

attention in areas that range from pattern recognition to regression estimation due to its 

remarkable learning performance. On the basis of the structural risk minimization principle 

[70], SVM can improve the generalization ability of a learning machine. At the same time, an 

optimization problem can be transformed into a convex quadratic programming problem. The 

solution of a quadratic programming problem is the unique optimization solution of the 

whole. Hence, SVM does not have the problems with local extrema that are present for 

traditional neural networks, which require large numbers of training samples. 

SVM performs pattern recognition for two classes problems by determining the 

hyperplane of separation w.x+b=0 that best separates the two classes with the maximum 

distance
w
2 to the narrowest points (support vectors) (refer to Figure II.2) [69, 71]. 

 

Figure II. 2.    Separation of two classes by SVM. 

where 
w
b

is the offset of the hyperplane from the origin along the normal vector. 
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Figure II.2 shows the hyperplane of separation and margins for an SVM trained with 

samples from two classes. Samples on the margin are called the support vectors. M (margin) 

is the distance from the hyperplane to the closest point for both classes of data points [71]. 

SVM is originally designed for linear binary classification. In practice, several applications of 

SVM are nonlinear classification problems. For nonlinear classification problems, we can use 

nonlinear transforms. A transformation, Φ(x), maps the data from the input space to a feature 

space that allows linear separation. One then seeks the optimization separation plane in 

feature space in addition to an inner product operation within the feature space. The inner 

product operation may be implemented by function (called a kernel function). In SVM, we 

introduce a kernel function K(xi, xj)= Φ(xi) • Φ(xj) to perform the transformation [72,73]. 

Then the basic form of SVM can be obtained [72,73]: 

( ) ( ) bxxKyxf
l

i
jiii +=∑

=1
,α .    (II.9) 

where [ ]lααα  ...., , ,α 21=  is the vector of Lagrange multipliers and K(xi, xj) is a kernel 

function. In SVM literature, several kernels functions such as linear, polynomial, and radial 

basis function (RBF) are introduced. In our case, radial basis kernel is used to differentiate 

between gaseous and solid embolus and it is given as below: 

( ) ( )2
  exp, jiji xxxxK −−= γ .    (II.10) 

where γ is the width of RBF kernel function. More details about recent developments 

of SVM can be found in [74]. 

The kernel parameter γ and the penalty parameter C are the two major parameters of 

the RBF applied in SVM-RBF which have to be set appropriately in order to improve SVM 

learning. γ is the width of RBF kernel. C is the regularization parameter of error which allows 

one to trade off training error vs. model complexity. 

In this thesis, γ and C are optimized using grid search algorithm [75]. The evaluation 

of the classifier performances is carried out using hold-out-set cross validation technique. We 

carried out experiments by trying exponentially growing sequences of C and γ (C =2-3, 2-2,..., 

29, 210, γ=2-3, 2-2,.., 24, 25) [75]. For each pair of (C, γ) we train the SVM classifier with the 

training data, and then we use the SVM to classify the validation data. The combination that 

results in a model with highest validation accuracy is picked as the best choice of the 

49 
 



Chapter II                               Literature Review of Artificial Intelligence Methods 

classification problem. Therefore, the algorithm only has access to the training and validation 

sets, the test set is kept unseen in the selection process of the best model. The testing accuracy 

is obtained by applying the selected SVM model on the testing data. 

Support vector machines classifier has been exploited in several emboli 

characterization systems using transcranial Doppler signals. G. Serbes, et al. proposed an 

emboli detection system using Doppler ultrasound signals recorded from both forward and 

reverse flow of blood, the highest performance where achieved when they exploited SVM in 

the classification process [76]. 

N. Ghazali, et al. used a transcranial Doppler (TCD) system simulator for the 

classification of microembolus from the background signal of three virtual patients. They 

obtained a classification performance of 83.04% using SVM as a classifiers and principal 

component analysis as a dimensionality reduction technique [77]. 

F. Douak, et al. proposed an experimental study, in which a wavelet optimization 

approach for microemboli is conducted using RF signals, genetic algorithm, and SVM 

classifier [19]. 

K. Ferroudji, et al. proposed an empirical mode decomposition system for the 

detection and classification of microemboli using RF signals and SVM [20]. Furthermore, the 

authors used FFT approach and a Non-linear Kernel Support Vector Machines for 

microemboli classification using RF signals [21]. Then, they suggested a strategy to select the 

suitable wavelet filter among 59 mother wavelet functions for microemboli classification 

using SVM and the same RF signals, the results indicate that Daubechies 6 is the most 

appropriate wavelet function for this application [22]. 
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II.3 Dimensionality Reduction 

The performance of machine learning methods relies heavily on how well the 

characteristics of signals are represented by a feature vector. This step may provide a high 

dimensional feature vector; such feature vector is normally too large to be handled properly 

by a classifier during training thus the need of a dimensionality reduction method. 

The main reasons for using a dimensionality reduction algorithm are explained by: 

− The need to reduce number of features in order to eliminate poor features by 

reducing pairwise correlation and perform a more accurate training and an optimal 

classification. 

− The limitation of the training set: high dimensional data requires a very large 

number of training data to uncover and optimally estimate the model parameters 

for classification. 

− The decrease of the learning and prediction computational complexity. 

In sight of these requirements, and to overcome the "curse of dimensionality", we 

perform two approaches of dimensionality reduction techniques: feature selection and feature 

generation. 

Dimensionality reduction can be performed either by removing feature closely related 

with other feature in the dataset (feature selection), or combining features to create a smaller 

set of features while minimizing the information loss (feature generation). In either case, the 

goal is to find a low-dimensional representation of the data that preserves (most of) the 

information.  

The feature selection methods performed in this thesis are Differential Evolution 

algorithm (DEFS), and Fisher score algorithm. Feature generation is achieved by the use of 

principal components analysis. 

Feature selection techniques usually fall into three main categories; filter, wrapper, or 

embedded methods. Filter approaches perform feature selection using the intrinsic properties 

of the data independently of the learning algorithm. Wrapper approaches conduct feature 

selection using a learning algorithm as part of the evaluation function to estimate the 
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relevance of a given set of features, in embedded approaches the search for an optimal set of 

features is built into the learning algorithm construction [78]. 

II.3-1 Feature selection  

II.3-1.1 Differential Evolution algorithm 

Differential Evolution algorithm (DEFS) is a wrapper dimensionality reduction 

technique. DEFS algorithm is a population-based stochastic search method, it belongs to the 

family of evolutionary algorithms, it was initially proposed by Storn and Price in 1995 [79, 

80]. 

Later it has been successfully applied to a large number of problems such as remote 

sensing images [81], classification rule discovery [82], and features selection [83]. To solve 

an optimization problem, DEFS starts by iteratively modifying a randomly generated initial 

population of candidate solutions using of floating-point encoding instead of binary numbers 

[84]. This process is then enhanced using selection, mutation, and crossover operations (refer 

to Figure II.3). DEFS combines different, randomly chosen populations (Xr0, Xr1 and Xr2) to 

create a mutant element (Vi,g) from the current generation g: 

𝑉𝑉𝑖𝑖 ,𝑔𝑔 = 𝑋𝑋𝑟𝑟0,𝑔𝑔 + 𝐹𝐹 × (𝑋𝑋𝑟𝑟1,𝑔𝑔 − 𝑋𝑋𝑟𝑟2,𝑔𝑔),      (II.11) 

where F ∈ (0,1) is a scale factor that controls the rate at which the population evolves. 

In addition, DEFS also uses discrete recombination (crossover), in order to construct 

trial vectors out of parameter values that have been copied from two different populations. 

𝑈𝑈𝑗𝑗 ,𝑖𝑖 ,𝑔𝑔 = �
𝑉𝑉𝑗𝑗 ,𝑖𝑖 ,𝑔𝑔  𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) ≤ 𝐶𝐶𝑟𝑟  𝑜𝑜𝑜𝑜

𝑋𝑋𝑗𝑗 ,𝑖𝑖 ,𝑔𝑔  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�     (II.12) 

𝑈𝑈𝑗𝑗 ,𝑖𝑖 ,𝑔𝑔  is the jth trial element along ith dimension from the current population g. 

𝐶𝐶𝑟𝑟 ∈ [0, 1] is the crossover probability which controls the fraction of parameter values 

that are copied from the mutant.  

If the newly generated element results in a better fitness (classification accuracy) than 

the predetermined population member, then the resulting element replaces the vector with 

which it was compared. 
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The block diagram of the used DEFS algorithm is shown in Figure II.3, and it is 

defined by the following steps: 

• Generate new population elements from the original population. 

• Create a new mutant vector for each position in the population matrix. 

• A trial vector is obtained by crossing the mutant vector with the original vector. 

• The corresponding position in the new population will contain either: 

− The trial vector or its corrected version 

− or the original target vector depending on which one of them achieved a 

better fitness. 

− The process is repeated until each of the population elements have competed 

against a randomly generated trial element  

• Generate new population elements from the original population. 

A roulette wheel weighting scheme is utilized [85] to prevent two dimensions from 

settling at the same feature coordinates. This is achieved using a features distribution factor to 

aid in the replacement of the duplicated features which gives higher weights to features that 

make enhancement in the pending iteration compared with the previous one. Furthermore, it 

aims to keep features that are relevant in the two iterations, even without making any 

improvement [84]. 

Once the last trial element has been evaluated, the survivors of the population pairwise 

competitions become parents for the next generation in the evolutionary cycle. For further 

details on the above DEFS method, please refer to [83, 86]. 
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Figure II. 3. Block diagram of the DEFS Algorithm [83, 86]. 

DEFS algorithm has been employed in microemboli detection field in [18], in which 

K. Ferroudji, et al. conducted an experimental study on how micro emboli problem can be 

detected and characterized using discrete wavelet transform and DEFS algorithm, the results 

indicate that DEFS approach is suitable for this application [18]. 
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II.3-1.2 Fisher Score algorithm 

Fisher score is a supervised filter feature selection technique, it is one of the most 

widely used supervised feature selection techniques due to its general good performance. 

Given class labels, y ={y1,...yn}, Fisher Score selects each feature independently by which the 

within-class distance is minimized and the between-class distance is maximized [64]. The 

evaluation criterion used in Fisher Score can be formulated as: 

( )
( )

∑
∑

=

=
−

= c

j jij

c

j ijij
iF

n

n
fSC

1
2
,

1
2

,

σ

µµ
 ,     (II.13) 

where 

µi is the mean of the feature fi,  

nj is the number of samples in the jth class.  

µi,j , σ2
i,j are the mean and the variance of the feature fi in class j, respectively. 

Fisher score seeks features that are efficient for discrimination. In order to select the 

most significant features, they are sorted according to the decreasing order of their Fisher 

criterion (refer to Figure II.4). It assigns the highest score to the feature on which the data 

points of different classes are far from each other while requiring data points of the same class 

to be close to each other. Consequently, Fisher score algorithm provides a ranked list of all 

features. 

Figure II.4 draws the separability (SCF) of each component of feature, in blue the 

features are sorted according to the decreasing order of their Fisher criterion. The original 

order of the features is presented in red. 
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Figure II. 4. Separability (SCF) of each component of feature with concentration of 
microbubbles (0.025  µl / ml) at low MI (0.2). 

II.3-2 Feature generation  

 II.3-2.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a statistical technique of dimensionality 

reduction that is used to approximate a large dataset and decrease its complexity while 

retaining as much of its information as possible (the information is measured here by the total 

variance of the data points). Approximation of the data patterns is obtained by creating new, 

mutually independent, features that are mathematically represented by linear combinations of 

the original features.  

Given a dataset of n dimensions, PCA aims to create a linear subspace of dimension d 

lower than n such that the data points are positioned mainly on this linear subspace. The linear 

subspace is defined by d orthogonal vectors that form a new coordinate system, called the 

"principal components". 

The new orthogonal dataset which is linearly projected to another dimension contains 

a series of principal components. These principal components are sorted in the descending 
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component followed by the second principal component and so on till the last column based 

on the decreasing eigen values. The eigen vectors or the principal components whose 

respective eigen values are very small are discarded, thereby producing a new matrix Y. In 

such case the initial data set X which was of the dimension 𝑟𝑟 × 𝑐𝑐 is finally transformed and 

reduced to a matrix Y with dimension 𝑟𝑟 × 𝑘𝑘, where k is less than c [87].  

The PCA algorithm is performed using the following procedure: 

Step 1. Data preparation 

In this step, the dataset Xrxc (data matrix) is prepared with r rows where each row 

represents a sample with c features. 

Step 2. Mean subtraction 

In this step, the mean of each column in the dataset Xrxc is calculated and subtracted 

from every data of their respective columns. Therefore, the new dataset is zero mean. 

𝑀𝑀𝑗𝑗 =
1
𝑟𝑟

� 𝑋𝑋𝑖𝑖𝑖𝑖                      𝑗𝑗 = 1,2,3 … , 𝑐𝑐
𝑟𝑟

𝑖𝑖=1

                                                            (II. 14) 

𝑋𝑋 = 𝑋𝑋 − 𝐼𝐼𝐼𝐼          (II.15) 

Here, Irx1 is a unity column vector and M1xc is a row vector with all the mean values of 

each column [Mj]. 

Step 3. Covariance matrix 

Covariance is a practical measure which finds out the variance of the data from the 

mean with reference to other data in that row. The covariance of a data with itself is equal to 

the variance of that data. For example, a 3-dimensional data set (x1,x2, x3), the covariance that 

can be obtained are cov(x1, x2), cov(x2, x3) and cov(x1, x3). Consequently, a covariance matrix 

C is produced with 𝑐𝑐 × 𝑐𝑐 dimension. This is represented as: 

𝐶𝐶 = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥3)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥3)
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥2) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥3, 𝑥𝑥3)

�    (II.16) 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥2, 𝑥𝑥1)        (II.17) 
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𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥2) =
∑ ��𝑥𝑥1,𝑖𝑖 − 𝑀𝑀1��𝑥𝑥2,𝑖𝑖 − 𝑀𝑀2��𝑟𝑟

𝑖𝑖=1
(𝑟𝑟 − 1)                                                      (II. 18) 

Computationally, a much simpler way of doing this calculation is 

𝐶𝐶 = 𝑋𝑋𝑇𝑇𝑋𝑋         (II.19) 

𝑋𝑋 = [𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑟𝑟 ]𝑇𝑇        (II.20) 

𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … 𝑥𝑥𝑖𝑖𝑖𝑖 )           𝑖𝑖 = 1,2, … , 𝑟𝑟     (II.21) 

Step 4. Eigen vectors and eigen values  

In view of the fact that the covariance matrix is a square matrix, the calculation of 

eigen vectors and eigen values are possible. The eigen vectors are sorted based on the 

descending order of their respective eigen values (k). The first column in the eigen vector 

matrix is the first principal component and is the one with the biggest variance. All eigen 

vectors are orthogonal to each other. The second column in the eigen vector matrix is called 

the second principal component and so on. 

Step 5. Selection of basis vectors 

This step is vital for undergoing dimensionality reduction of the data set as the cut-off 

factor number or column number eventually selects the basis vectors of the reduced eigen 

vector matrix. This selection should be carried out in an optimized manner where 

dimensionality reduction is achieved without the loss of important information. The basis 

vectors from all the eigen vectors are selected based on a threshold value α which is 

dependent on the problem statement. This threshold value is compared with the sum of the 

eigen values (bk). 

𝑏𝑏𝑘𝑘 = � 𝜆𝜆𝑖𝑖                                                                                                                  (II. 22)
𝑘𝑘

𝑖𝑖=1

 

If bk is greater than the threshold value α and k is the cut-off factor number, then the 

first k eigen vectors are selected as basis vectors.  

These basis vectors form a new matrix named Bcxk where k is less than c. A scree test 

also helps in deciding the k-value or cut-off factor number [88]. 
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Step 6. Final projected data set 

The initial Xrxc data set is finally projected on to a new structure with a new set of data 

matrix Yrxk. 

𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟 × 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐         (II.23) 

This produces a new data set with reduced dimensionality. 

Principal component analysis is employed in [89] as a dimensionality reduction 

technique together with SVM as a classifier, SERBES, et al. used Doppler ultrasound signals 

recorded from both forward and reverse flow of blood for the classification of embolic 

signals. 

Moreover, Da Xu, et al. proposed an emboli detection system for the classification of 

three kinds of clinical signals: the normal blood flow signal, the signal containing emboli 

(embolic signal), and the signal containing disturbance noises. They employed PCA, fuzzy 

sets and Doppler ultrasound signals in the classification system [90]. 

II.4 Performance Metrics 

In order to evaluate the performance of our model we use information collected from 

the confusion matrix (CM). CM illustrates the number of correct and incorrect predictions 

made by the classifier compared with the true labels in the test data. Furthermore, the 

performance of the proposed model is evaluated by comparing the predicted values with the 

actual class values using different statistical indexes such as Recall (Sensitivity), Specificity, 

Precision, Kappa, F-measure, overall accuracy, and AUC (Area Under Curve). 

Table II. 1. Confusion matrix for binary classification model. 

 
Predicted 

Gaseous emboli Solid emboli 

Actual class 
Gaseous emboli TP FP 

Solid emboli FN TN 
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where 

• True Positive (TP): The classifier predicts a label as gaseous emboli and the actual 

class is gaseous emboli. 

• True Negative (TN): The classifier predicts a label as solid emboli and the actual 

class is solid emboli. 

• False Positive (FP):  The classifier predicts a label as solid emboli and the actual 

class is gaseous emboli. 

• False Negative (FN):  The classifier predicts a label as gaseous emboli and the 

actual class is solid emboli. 

II.4-1 Accuracy 

Accuracy (ACC) is a widely used metric for measuring the performance of a classifier. 

ACC is the percentage of the correctly classified positive and negative labels. However, ACC 

does not discount the correct match between the reference and the predicted data obtained by 

pure chance. It is expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

      (II.24) 

II.4-2 Sensitivity or Recall 

Recall (r) is defined as the number of actual positives divided by the total number of 

samples that actually belong to the positive class (the proportion of actual positives which are 

predicted positive) it can be expressed as: 

𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

        (II.25) 

II.4-3 Specificity 

Specificity (Spe) is the proportion of actual negative which are predicted negative: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

        (II.26) 
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II.4-4 Precision 

In the actual context, the precision (P) is defined as the number of true positives 

divided by the total number of elements categorized as belonging to the positive class: 

𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

        (II.27) 

II.4-5 F-measure 

The F-measure (F) combines the two ratios known as recall and precision [91]. F-

measure represents the harmonic mean of precision (P) and recall (r); it is expressed as 

follows: 

𝐹𝐹 = (1 + 𝛽𝛽2) × 𝑝𝑝×𝑟𝑟
(𝛽𝛽 2×𝑝𝑝)+𝑟𝑟

 ,    (II.28) 

where 

P: is the Precision  

r: is the recall 

The precision, recall, and F-measure vary from 0 to 1. The F-measure reaches its best 

value at 1 whenever P and r are simultaneously equal to 1. The parameter β allows one to 

weight either precision or recall more heavily, and they are balanced when β = 1. In most 

experiments, there is no particular reason to favor precision or recall, therefore In this section, 

the value of β is set to 1. 

II.4-6  Kappa coefficient 

Another measure which can be extracted from a confusion matrix is the Kappa 

coefficient. It is a statistical measure of inter-raters agreement [91, 92]. This measure is more 

robust than the accuracy measure since it subtracts the agreement occurring by chance. This 

coefficient is expressed as:  

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑃𝑃(𝑎𝑎)−𝑃𝑃(𝑒𝑒)
1−𝑃𝑃(𝑒𝑒)

  ,       (II.29) 
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where  

P(a): is the probability of relative observed agreement among raters,  

P(e) : is the probability of chance agreement.  

The range of the kappa values is [-1,1], although it usually falls between 0 and 1. The 

value 1 represents perfect agreement, indicating that the raters agree in their classification in 

every case. The value 0 indicates agreement no better than chance, as if the rater has simply 

"guessed" every rating. A negative Kappa would indicate agreement worse than chance. 

II.4-7  ROC curve 

Furthermore, we investigated other statistical measure which better estimates the 

accuracy of a given trial test by analyzing sensitivity and specificity simultaneously, this 

approach is the area under curve (AUC) associated to the Receiver Operating Characteristic 

curve (or ROC curve) [93]. AUC allows to quantify the ROC curve performance using a 

single value. It is well known that the higher the AUC value, the more efficient the classifier. 

Efficient classifier’s areas should have an AUC value larger than 0.5. 

II.4-8  Determination coefficient 

The determination coefficient (R2) indicates the strength of the fitting model that 

illustrates the relationship between the measured and predicted values (R2 indicates of how 

well the model fits the data) [94] and is computed from the sums-of-squares terms: 

�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

= �(𝑓𝑓𝑖𝑖 − 𝑦𝑦�)2 + �(𝑓𝑓𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

                                                     (II. 30) 

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅                                                                                              (II. 31) 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇
= 1 −

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇
,                                                                                         (II. 32) 

where   

𝑦𝑦𝑖𝑖  : The data set values. 

𝑦𝑦� : Average value of the data set values.  
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𝑦𝑦� =
1
n

� yi

∞

i=1

,                                                                                                                (II. 33) 

where 

𝑓𝑓𝑖𝑖 : Predicted model values. 

n : length of the data set 

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇  : The total sum of squares (proportional to the variance of the data). 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅  : The regression sum of squares, also called the explained sum of squares. 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅  : The sum of squares of residuals, also called the residual sum of squares. 

If the regression is perfect, all residuals are zero, 𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅  is zero, and 𝑅𝑅2 = 1 if there is 

no linear relationship between the predicted and the actual values, then 𝑅𝑅2 is equal to 0. 

II.5 Conclusion 

This chapter presents a literature review of available artificial intelligence techniques 

that have been employed in this thesis. In order to evaluate the performance of the proposed 

system, we evaluate three classification algorithms with main focus on: Multilayer Perceptron 

Neural Networks, Radial Basis Function Neural Networks, and Support Vector Machines. 

Furthermore, we compare the performances of three dimensionality reduction techniques; 

Differential Evolution algorithm, Fisher Score method, and Principal Component Analysis. 

The motivation of dimensionality reduction approach is that the more powerful among the 

existing machine learning algorithms tend to get confused when supplied with a large number 

of features. In order select the optimal parameters of the proposed models and to avoid the 

overfitting of the classifiers, we use Cross-validation technique with several evaluation 

metrics. 
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III.1 Introduction 

As part of the cooperation project INSERM (France / Algeria DPGRF) 2007-2008 and 

the TASSILI project (14 MDU 909), the acquisition of echo signals is made in the INSERM 

U930 laboratory at the University of François Rabelais Tours, France under the direction of 

Professor A. Bouakaz. In this chapter we present the experimental set-up as well as the 

acquisition of the embolic signal used in this thesis. 

III.2 Experimental set-up 

In order to verify the usefulness of RF ultrasound signal processing for microemboli 

classification, an in vitro set-up is developed. It consists of a Doppler flow phantom 

containing 3 tubes of 0.2, 0.4 and 0.8 mm in diameter. The tube of 0.8 mm is chosen since its 

size approximates the size of a human vessel (Figure III.1). In order to mimic the ultrasonic 

behavior of gaseous emboli, contrast agents consisting of microbubbles are used in our 

experimental setup. Indeed, several studies have revealed that the acoustic behavior of 

gaseous emboli and microbubbles are similar, mainly the nonlinear behavior [16, 18, 24]. 

Hence, a continuous flow carries Sonovue microbubbles [51, 95] (contrast microbubbles) 

through the insonified vessel is exploited in the experimental set-up. We used Sonovue 

microbubbles since it is the only commercially available contrast agent in Europe. The 

concentration of microbubbles and the flow are controlled by the operator. In clinical 

situations, the scattering amplitude of emboli approaches that of blood, hence we fixed the 

concentration of Sonovue microbubbles such as its scattering amplitude at the fundamental 

frequency is comparable to the scattering of the surrounding tissue at the same frequency. 

 

Figure III. 1. Experimental set-up 

Water tank 

Sonovue 
microbubble 

US scanner 

Ultrasonic probe 

Flow phantom 

65 
 



Chapter III                               Experimental set-up and data acquisition 

However, solid emboli present acoustic properties comparable to those of biological 

tissue, in their scattered signal no harmonic components can be seen, therefore the scattering of 

solid emboli is purely linear. Thus, the tissue mimicking material surrounding the vessel is 

chosen to mimic the behavior of solid emboli. Moreover, the applied acoustic pressures are not 

sufficiently high to induce nonlinear propagation effects and does not generate any harmonic 

components during ultrasound propagation. 

 

Figure III. 2. Grayscale images acquired: A. MI= 0.2, B. MI= 0.6 for two microbubbles 

concentrations 

The ultrasound waves are generated by a VF13-5 probe connected to a Siemens 

Antares scanner (Anthares, Siemens, MV, CA). The acquisitions are carried out at 1.82 MHz 

transmit frequency in Tissue Harmonic Imaging (THI) mode using 14 fps frame rate, and 20 

MHz as the sampling rate of the signals. The acoustic focus is set at 2 cm which is the depth 

at which the flowing contrast microbubbles are situated. Ultrasound waves are transmitted at 

two different intensities corresponding to mechanical indices (MI) of 0.2 (low MI) and 0.6 

(high MI).  
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The User Research Interface is used to grab the unfiltered RF signals to a personal 

computer for further analysis. The microbubbles are administered into a 200 ml volume of 

Isoton. Two concentrations of contrast agent/Isoton are used: 0.025µl/ml and 0.05µl/ml [18, 

24]. The regions of interests where RF signals corresponding to gaseous embolus and solid 

embolus are shown in Figure III.2. 

From Figure III.2, it is clear that the white spots represent microbubbles, i.e the gas 

embolus and the remaining is the solid embolus. 

Examples of radio frequency (RF) signals extracted from the ultrasound images are 

shown in Figures III.3 and III.4. 

 

Figure III. 3. RF Signals Acquisition 1 and 2. 
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Figure III. 4. RF Signals Acquisition 3 and 4. 

Each echo of the four acquisitions consists of 51 radio frequency signals. In the next 

section we extract the gas and solid intervals from the RF signals constituting the ultrasound 

image. 

III.2-1 Gas and solid intervals  

III.2-1.1 Gas intervals 

In the following, we describe the steps that we have performed to create the gas 

interval:  

1- Take a time segment of signal whose width is equal to 223 µs (a time window), and 

move it along the global interval and calculate the energy of the signal in each 

iteration. 

𝐸𝐸𝑥𝑥 = ���𝑥𝑥(𝑁𝑁:𝑀𝑀, 𝑖𝑖)��2,   
51

𝑖𝑖=1

                                                                                     (III. 1) 
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where: 

Ex : energy of the RF signal. 

x : Radio frequency signal. 

N : The minimum value of the interval (Initially equal to 1). 

M : The maximum value of the interval (Initially equal to 223). 

2- We choose the interval which gives maximum energy. 

3- What remains is the solid interval 

Once the window passes over the entire signal, we obtain 51 gas signals and 51 solid 

signals of size equal to 223 µs and 778 µs respectively. 

The results are shown in the Figures III.5, III.6, III.7, and III.8. 

 

Figure III. 5. Gas and solid signals Acquisition 1. 
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Figure III. 6. Gas and solid signals Acquisition 2. 

 

Figure III. 7. Gas and solid signals Acquisition 3. 
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Figure III. 8. Gas and solid signals Acquisition 4. 

 

Figure III. 9. Gas intervals for the four Acquisitions. 
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The intervals of RF gas signals for the two concentrations of microbubbles 0.025µl/ml 

and 0.05µl/ml at two mechanical indices (MI) of 0.2 (low MI) and 0.6 (high MI) are shown in 

Figure III.9. 

III.2-1.2 Solid intervals 

Once the gas intervals are calculated, it remains the calculation of the solid intervals 

which must has the same size as gas intervals. In order to do so, we chose the solid intervals 

which has the same depth as that of the gas intervals (refer to Figure III.10). 

Figure III.11 shows the gas and solid intervals that will be used to extract gas signals 

(stand for gas emboli) and solid signals (stand for solid emboli). 

 

Figure III. 10. Solid intervals for the four Acquisitions. 
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Figure III. 11. Gas and solid intervals for the Acquisition 1. 

In previous work of N. BENOUDJIT et al. on the same ultrasound images the 

classification rates were 100% this is due to the fact that the amplitudes of the gas signals are 

clearly superior to those of the solid signals [96]. In our work, and in order to get closer to the 

reality that corresponds to the acquisition of ultrasounds on the capillaries whose diameter is 

too small which gives a very low distinction between the gas and the tissue. We have opted 

for the normalization of gas signals (gaseous emboli) and solid signals (solid emboli) 

III.2-1.3 Normalization  

Normalization is a pre-processing performed on all time segments of RF signals. It is 

employed to restrict the values of all features within predetermined ranges. It consists in 

normalizing the amplitude of the signal to the unit value [97]. 

The normalization of the gas and solid signals is performed according to the following 

two equations:  

𝑥𝑥 𝑔𝑔𝑔𝑔𝑔𝑔 _𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑥𝑥 𝑔𝑔𝑔𝑔𝑔𝑔

𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥𝑔𝑔𝑔𝑔𝑔𝑔 �
                                                                                          (III. 2) 
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𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑_𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑

𝑚𝑚𝑚𝑚𝑚𝑚|𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑 | ,                                                                                    (III. 3) 

where: 

𝑥𝑥 𝑔𝑔𝑔𝑔𝑔𝑔  , 𝑥𝑥 𝑔𝑔𝑔𝑔𝑔𝑔 _𝑁𝑁𝑁𝑁𝑁𝑁  : Are the gas signals before and after normalization respectively. 

𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑  , 𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑_𝑁𝑁𝑁𝑁𝑁𝑁  : Are the solid signals before and after normalization respectively. 

The following figure (Figure III.12) shows the effect of normalization on the four 

ultrasound images. It should be noted that the distinction between contrast (gaseous emboli) 

and tissue (solid emboli) is very difficult. 

 
A     B 

Figure III. 12. Grayscale images acquired after normalization: A) MI= 0.2, B) MI= 0.6 for 

two microbubbles concentrations. 

Once the gas and solid intervals are selected and the normalization of the signals is 

done, we construct our dataset which contains 51 gas signals and 51 solid signals for each 

acquisition. 
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A     B 

Figure III. 13. Examples of normalized RF signals A) MI= 0.2, B) MI= 0.6. 

Figure III.13 illustrates two types of normalized RF signals extracted from the obtained 

grayscale images. Panel A shows RF signal backscattered by gaseous and solid embolus at low 

MI (0.2). Panel B illustrates the RF signal of each type of embolus at higher MI (0.6). 

III.3 Conclusion 

In this chapter, an in vitro set-up is developed in the INSERM U930 laboratory at the 

University of François Rabelais Tours, France under the direction of Professor A. Bouakaz. 

As a result, we obtain four datasets, each dataset consists of 102 samples (51 solid emboli and 

51 gaseous emboli). In next sections several features are extracted from these signals in order 

describe the acquired datasets by a number of discriminative features good for classification.  
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IV.1 Introduction 

In this chapter, we propose a new approach to detect and classify microemboli using 

artificial neural networks and the backscatter RF (Radio-Frequency) signals instead of 

Doppler signals [24]. We evaluate the predictive power of a set of three feature extraction 

methods and two different classifiers. The amplitudes and bandwidths of the fundamental (f0) 

and the 2nd  harmonic components (2f0) are selected as input parameters to the Multilayer 

Perceptron (MLP) and Radial-Basis Function Network (RBFN) models. Moreover the 

frequency bandwidths of the fundamental and the 2nd harmonic echoes are approximated by 

Gaussian functions and the coefficients are used as a third input parameter to the neural 

network models. 

IV.2 Detection algorithm 

Figure IV.1 shows the general block diagram of the FFT based neural network 

classification model employed in this chapter. The input backscatter RF signals are first 

detected and collected (signal acquisition). In the feature extraction stage and for each gas or 

solid signal, a vector containing the values of the parameters (amplitude, bandwidth, or the 

Gaussian coefficients) is constructed. This vector is used as an input to the MLP or RBFN 

model which provides in its output a value of 1 or 0 for gaseous or solid emboli respectively. 
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Figure IV.1. Block diagram of the FFT-based detection system. 
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IV.2-1  Feature extraction 

In pattern recognition research, we always aim to reach the best classification rate 

according to the characteristics required. Feature extraction greatly affects the performance 

and design of the classification model, and it is one of the core issue of pattern recognition 

research. 

Feature extraction aims to describe the acquired signals by a number of discriminative 

features good for classification 

The following parameters are selected as input to the models: 

1- The bandwidths of the scattered RF signals at the fundamental and at the second 

harmonic frequencies. 

2- For every RF signal scattered from the microbubbles (gas emboli) or surrounding 

tissue (solid emboli), its FFT is calculated. The amplitudes at the fundamental 

frequency (f0) and at the second harmonic frequency (2f0) are selected. These 

values are used as an input parameter. 

3- The frequency spectra of the fundamental and the second harmonic are 

approximated by a Gaussian shape function using the following equation: 

( )




















 −
−=

2

1

1
1

xx
c

bexpa)(g       (IV.1) 

where : 

a1, c1, and b1 are the amplitude, width, and center of the Gaussian respectively. 

The Gaussian coefficients a1, b1 and c1 are used as a third input parameter. 

IV.2-1.1 Amplitudes of gas and solid signals at f0 and 2f0 

In order to extract the amplitudes at the frequencies f0 and 2f0, we filter the normalized 

gas and solid signals by a Butterworth filter. 
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The normalized RF signals are band-pass filtered by Butterworth filter, then the 

amplitudes of the signals f0 and 2f0 are estimated from the filtered RF signals at the frequency 

bands: [1.5-2.5 MHz ] and [3-4.5 MHz], the transmit frequency is 1.82 MHz. 

This type of filter is designed to have as flat a frequency response as possible in 

the passing band. The module square of the frequency response of a low pass Butterworth 

filter is given by [98]: 

|𝐻𝐻(𝑗𝑗𝑗𝑗)|2 =
1

1 + �𝑤𝑤𝑤𝑤𝑐𝑐
�

2𝑛𝑛                                                                                         (IV. 2) 

where :  

H(jw) : is the frequency response of the filter. 

ω : is the angular frequency and is equal to 2πf.   

ωc : is the cutoff frequency. 

n : represents the filter order. 

The implemented filter for the acquired signals is a band-pass third-order Butterworth 

filter. This choice is because the Butterworth approximation has a monotonic function in the 

pass-band and suppression-band. The Butterworth filter that we have used is characterized by: 

fh1 = 2.5 MHz: High cutoff frequency. 

fb1 = 1.5 MHz: Low cut-off frequency  

and, 

fh2 = 4.5 MHz: High cutoff frequency. 

fb2 = 3 MHz: Low cut-off frequency  

After the application of the Butterworth filter on the four acquisitions, the obtained gas 

and solid signals before and after filtering at the frequencies f0 and 2f0 are illustrated in the 

Figures IV.2 to IV.9: 

filtering around the fundamental frequency 

f0=1.82 MHz 

filtering around the second harmonic 2f0 

2f0=3.64 MHz 
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Figure IV.2. Gas signals filtered at f0 and 2f0 for acquisition 1. 

 

Figure IV.3. Solid signals filtered at f0 and 2f0 for acquisition 1. 
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Figure IV.4. Gas signals filtered at f0 and 2f0 for acquisition 2. 

 

Figure IV.5. Solid signals filtered at f0 and 2f0 for acquisition 2. 
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Figure IV.6. Gas signals filtered at f0 and 2f0 for acquisition 3. 

 

Figure IV.7. Solid signals filtered at f0 and 2f0 for acquisition 3. 
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Figure IV.8. Gas signals filtered at f0 and 2f0 for acquisition 4. 

 

Figure IV.9.  Solid signals filtered at f0 and 2f0 for acquisition 4. 
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In order to extract the amplitudes at the frequencies f0 and 2f0 of the gas and solid 

signals, we use the Hilbert transform. 

The Hilbert transform is a mathematical tool widely used in signal processing for the 

computation of signal envelope. In mathematics and in signal processing, the Hilbert 

transform (Hi) of a function with real variable x(t) is obtained by convolution of the signal      

x(t) with 
t.

1
π

 [99], which gives )(ˆ tx :  

𝑥𝑥�(𝑡𝑡) = 𝐻𝐻𝐻𝐻[𝑥𝑥(𝑡𝑡)] = 𝑥𝑥(𝑡𝑡) ∗
1
𝜋𝜋𝜋𝜋

=
1
𝜋𝜋𝜋𝜋
� � 𝑥𝑥(𝜏𝜏) ∙

1
(𝑡𝑡 − 𝜏𝜏) ∙ 𝑑𝑑𝑑𝑑

+∞

−∞

�                          (IV. 3) 

The envelope of the signal x(t) is simply the modulus of y(t) [99] where : 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑗𝑗𝑗𝑗𝑗𝑗[𝑥𝑥(𝑡𝑡)]                                                                                        (IV. 4) 

Figures IV.10, IV.11, IV.12, and IV.13 show an example of envelopes for gas and 

solid signals at frequencies f0 and 2f0 for the four acquisitions. 

 
Figure IV.10.  Envelope of gas and solid signals at f0 acquisition 1. 
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Figure IV.11.  Envelope of gas and solid signals at 2f0 acquisition 1. 

 
Figure IV.12.  Envelope of gas and solid signals at f0 acquisition 2. 
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Figure IV.13.  Envelope of gas and solid signals at 2f0 acquisition 1. 

Then the amplitudes at the frequencies f0 and 2f0 are calculated using the following 

equations: 

𝐴𝐴𝐴𝐴𝑝𝑝𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔
= 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔

� �                                                   (IV. 5) 

𝐴𝐴𝐴𝐴𝑝𝑝2𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔
= 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔

��                                                (IV. 6) 

𝐴𝐴𝐴𝐴𝑝𝑝𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

��                                                (IV. 7)

 

𝐴𝐴𝐴𝐴𝑝𝑝2𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙2𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ��                                            (IV. 8) 

where, 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔
, 𝐴𝐴𝐴𝐴𝐴𝐴2𝑓𝑓0𝑔𝑔𝑔𝑔𝑔𝑔

: are the amplitudes of gas signals at frequencies f0 and 2f0 

respectively. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
, 𝐴𝐴𝐴𝐴𝐴𝐴2𝑓𝑓0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

: are the amplitudes of solid signals at frequencies f0 and 2f0 

respectively. 
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IV.2-1.2 Bandwidths of gas and solid signals at f0 and 2f0  

Bandwidth is the frequency interval within which the amplitude is not attenuated by 

more than -3 dB (or half-power bandwidth), which is a factor of √2, This can be deduced 

graphically from Figure IV.14. Indeed, it is sufficient to draw on the H(dB) axis a line       

(H=-3dB) and we calculate the difference between the two curves H(dB) (frequency response 

of the filter) and H = - 3dB [100]. 

𝐻𝐻𝑑𝑑𝑑𝑑 = 20 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10 �
|𝐻𝐻|

𝑚𝑚𝑚𝑚𝑚𝑚|𝐻𝐻|� ,                                                                               (IV. 9) 

where : 

H : Is the frequency response of the filter. 

HdB : is the frequency response of the filter in dB. 

 

Figure IV.14.  Bandwidth of gas signal at f0 and 2f0 acquisition 1. 
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Figure IV.15.  Bandwidth of solid signal at f0 and 2f0 acquisition 1. 

  

Figure IV.16.  Bandwidth of gas and solid signals at f0 and 2f0 acquisition 2. 
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Figure IV.17. Bandwidth of gas and solid signals at f0 and 2f0 acquisition 3. 

  
Figure IV.18.  Bandwidth of gas and solid signals at f0 and 2f0 acquisition 4. 

Figures IV.14, IV.15, IV.16, IV.17, and IV.18 illustrate the obtained bandwidths of 

gas and solid signals acquired at frequencies f0 and 2f0 for two microbubbles concentrations 

and two mechanical indices 0.2 and 0.6. 

IV.2-1.3 Approximation of the frequency spectra of the fundamental and the 

second harmonic 

In this section the frequency spectra of the fundamental (f0) and the second harmonic 

(2f0) are approximated by a Gaussian function (refer to Figure IV.19). In order to perform this 

approximation, we first need to determine Fourier transform for the filtered gas and solid 

signals. 
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Figure IV.19. Examples RF signals and their corresponding frequency spectrum represented 

with the Gaussian approximation (dashed line) at high MI 

A- Fourier Transform 

Lets s(t) a deterministic, finite energy signal. Its Fourier transform is a generally 

complex function of the variable f and defined by: 

𝑆𝑆(𝑗𝑗𝑗𝑗) = 𝑇𝑇𝑇𝑇[𝑠𝑠(𝑡𝑡)] =  � 𝑠𝑠(𝑡𝑡) ∙ 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 ∙ 𝑑𝑑𝑑𝑑
+∞

−∞

                                                 (IV. 10) 

Figure IV.20 and IV.21 illustrate Fourier transform of gas signals at frequencies f0 and 

2f0  respectively for acquisition 1. 
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Frequency (MHz) 

Figure IV.20. Fourier transform of gas signal at fundamental frequency (f0) Acquisition 1. 

 
Frequency (MHz) 

Figure IV.21. Fourier transform of gas signal at second harmonic (2f0) Acquisition 1. 
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Frequency (MHz) 

Figure IV.22. Fourier transform of solid signal at fundamental frequency (f0) Acquisition 1. 
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Figure IV.23. Fourier transform of solid signal at second harmonic (2f0) Acquisition 1. 
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Figure IV.22 and IV.23 illustrates Fourier transform of solid signals at frequencies f0 

and 2f0  respectively for acquisition 1. 

B- Approximation 

In the following, the frequency spectra of the fundamental and the second harmonic 

are approximated by a Gaussian shape function using the following equation:  

𝑔𝑔(𝑥𝑥) = 𝑎𝑎1𝑒𝑒𝑒𝑒𝑒𝑒 �−�
(𝑥𝑥 − 𝑏𝑏1)

𝑐𝑐1
�

2

�                                                                             (IV. 11)
 

where, 

a1: is the amplitude of the Gaussian, 

c1: is the width of the Gaussian, and 

b1 : is center of the Gaussian. 

Once these coefficients are calculated, they are used as input parameter to the 

classifiers. 

 

Figure IV.24. Gaussian function with a1 = 4, b1 = 50 and c1 = 20. 

Figure IV.24 shows an example of the Gaussian function with a1 = 4, b1 = 50, and 

c1=20. 
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C- Quality of adjustment 

Once the approximation by the Gaussian functions is constructed, it is vital to check 

the quality of the adjustment of the models, this can be done using the determination 

coefficient (R2) which indicates the strength of the fitting model that illustrates the 

relationship between the measured and predicted values (R2 indicates of how well the model 

fits the data) [94]. The determination coefficient is defined in chapter II section II.4-8. 

If the regression is perfect: 𝑅𝑅2 = 1, if there is no linear relationship between the 

predicted and the actual values, then 𝑅𝑅2 is equal to 0.  

The approximation results for the four acquisitions 1, 2, 3 and 4 are shown in Figures 

IV.25, IV.26, IV.27 and IV.28. 

 
Figure IV.25.  Fourier Transforms and their approximations acquisition 1. 
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Figure IV.26.  Fourier Transforms and their approximations acquisition 2. 

 
Figure IV.27. Fourier Transforms and their approximations acquisition 3. 
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Figure IV.28.  Fourier Transforms and their approximations acquisition 4. 

Finally, after the construction of feature vector, we obtain four databases each consists 

of 102 samples (51 solid embolus and 51 gaseous embolus) with a dimension of 10 features 

(refer to Table IV.1).  
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Table IV. 1. The obtained 10 features: 

1 BP f0 Bandwidth of the scattered RF signals at the fundamental frequency 

2 BP 2f0 Bandwidth of the scattered RF signals at the second harmonic frequency 

3 Amp f0 Amplitude at the fundamental frequency 

4 
Amp 

2f0 
Amplitude at the second harmonic frequency 

5 a1 f0 Amplitude of the Gaussian at the fundamental frequency 

6 b1 f0 Widths of the Gaussians at the fundamental frequency 

7 c1 f0 Center of the Gaussian at the fundamental frequency 

8 a1 2f0 Amplitude of the Gaussian at the second harmonic frequency 

9 b1 2f0 Width of the Gaussian at the second harmonic frequency 

10 c1 2f0 Center of the Gaussian at the second harmonic frequency 

IV.3 Classification 

For binary classification problems with limited number of samples it is crucial to 

validate the classification model with cross validation technique. Before building the 

classification model, the samples are often subdivided into three subsets training set, validation 

set, and test set. The test set is used only for the assessment of the model selected by the cross-

validation technique, while the validation set is used to tune the classifiers parameter. 

Therefore the algorithm has only access to the training and validation sets, the test set is kept 

unseen in the selection process of the best model. 
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Our experimental data consists of 102 samples (51 solid embolus and 51 gaseous 

embolus). In order to evaluate the predictive ability of a model, we randomly divide the 

dataset, into three subsets training set, validation set, and test set. The test set, approximately 

one-third (1/3) of the data (14 solid embolus and 14 gaseous embolus), is used only for the 

assessment of the model selected by the cross-validation technique, while the rest of the data 

will belong to the learning set (used for building the models) which will be divided into a 

training set (approximately two-third) and a validation set (approximately one-third). The 

validation set is used to tune the classifiers parameter. 

Artificial Neural Networks (ANN) are widely used in applications involving 

classification or function approximation. It has been proven that several classes of ANN such 

as Multilayer Perceptron (MLP) and Radial-Basis Function Networks (RBFN) are universal 

function approximators. In the next two subsections, we briefly recall the basis of MLP and 

RBFN models. In order to evaluate the performance of the proposed system, we employ two 

types of classification algorithms: Multilayer Perceptron and radial basis function neural 

networks presented in chapter II section II.2. 

IV.3-1 Multilayer Perceptron Neural Networks 

The most widely used neural classifier today is Multilayer Perceptron (MLP) network 

which has also been extensively analyzed and for which many learning algorithms have been 

developed [58]. The MLP (presented in chapter II section II.2.2) belongs to the class of 

supervised neural networks.  MLP networks are general-purpose, flexible, nonlinear models 

consisting of a number of units organized into multiple layers. The complexity of the MLP 

network can be changed by varying the number of layers and the number of units in each 

layer. 

IV.3-2 Radial Basis Function Neural Networks 

Radial-basis function neural networks (defined in chapter II section II.2.3) can be used 

for a wide range of applications mainly due to the fact they can approximate any regular 

function [63] and their training is faster compared to the multilayer perceptron (MLP). 
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The input nodes in the input layer are equal to the dimension of the input vector. The 

optimal number of neurons in the hidden layer as well as the spread of the RBFN Gaussian 

are determined experimentally using cross validation technique. The combination (number of 

neurons in the hidden layer, spread of the RBFN Gaussian) that results in a model with 

highest validation accuracy is picked as the best choice of the classification problem. Once the 

optimal parameters are fixed, the test set is used to validate the selected RBFN model. 

IV.4 Results and discussion 

Figure IV.29 shows an example of a typical grayscale images obtained at an MI of 0.2 

(panel A) and an MI of 0.6 (panel B) for a concentration of microbubbles equal to 0.025µl/ml. 

The regions of interest corresponding to gaseous and a solid emboli are shown on each of the 

images.  

 
A                                     B 

Figure IV.29.  Examples of grayscale images acquired: A) at low MI (0.2) and B) high MI 

(0.6) for two concentrations of microbubbles. 
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Figure IV.30 displays two examples of RF signals extracted from the regions of 

interest at the two different mechanical indices. The acoustic pressures are given through the 

mechanical index as displayed on the scanner monitor. The mechanical index is defined as the 

peak negative pressure (in MPa) divided by the square root of the frequency (in MHz). Figure 

IV.30.A displays an RF signal backscattered by solid and gaseous emboli at MI of 0.2. The 

frequency spectra of both signals include only a component at the fundamental frequency. 

The acoustic pressure is not sufficiently high to generate nonlinear microbubbles oscillations 

characterized by the formation of a second harmonic component. Thus the solid embolus 

responds linearly to the ultrasound excitation in a similar way as the gaseous embolus. At this 

mechanical index and frequency (0.2 and 1.8 MHz respectively), the peak negative pressure is 

260 kPa. The frequency spectra of the scattered signals from the region of the microbubbles 

do not show any harmonic components and thus we assume that at this acoustic pressure the 

microbubbles scatter only linearly [24]. 

Figure IV.30.B shows the scattered RF signals of both solid and gaseous emboli at a 

higher MI (0.6). We observe for this excitation pressure the generation of nonlinear 

components at the second harmonic frequency by both gaseous and solid particles. For the 

case of a gaseous embolus, this component is produced by the nonlinear oscillations of the 

microbubbles and therefore is considered as a classification parameter since solid embolus 

scatters only linearly. Nevertheless, at high acoustic pressure (or MI’s), which is the case at 

MI of 0.6; the propagation of an ultrasound wave becomes nonlinear, meaning that harmonic 

components (2nd, 3rd and higher) are generated in the propagation path. As a consequence, a 

solid embolus that is located at a distance from the transducer will be hit not only by the main 

(or fundamental) component but also by the harmonics that are generated during the 

propagation path. Since a solid embolus scatters linearly, it will scatter all the impinging 

components including the fundamental and the second harmonic. Thus, and at this applied 

MI, a generated second harmonic component does not necessarily indicate that a gas bubble is 

present since it can be generated during the nonlinear propagation process. Therefore the 

frequency spectrum of the signal backscattered by a solid embolus will also include some 

nonlinear components. Since these nonlinear propagation effect will contaminate the 

scattering nonlinearity of the gas microbubbles, the harmonic generation cannot be used as the 

only discrimination factor between solid and gaseous matter [24]. 
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A 

 
B 

Figure IV.30. Examples RF signals and their corresponding frequency spectrum represented 

with the Gaussian approximation (dashed line) : A) at low MI ; B) high MI. 
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Table IV.2 and Table IV.3 summarize the percentage of correct classification of 

microemboli using the MLP and RBFN analysis as a function of the different input 

parameters and the mechanical index for the two microbubble concentrations 0.025µl/ml and 

0.05µl/ml. 

The bandwidths of the linear and nonlinear components for the two concentrations do 

not provide a significant average rate of classification neither at the low MI (0.2) and nor at 

the high MI (0.6). Only 50% of classification rate is obtained for both models (RBFN and 

MLP) using the bandwidths as input parameter. When amplitudes of the fundamental and the 

second harmonic components are introduced as input parameters into the neural networks 

models, the correct average rate of classification of microemboli at high MI (0.6) reached 

87.5% for the RBFN classifier and 82.14% for the MLP classifier for the higher 

concentration. At the low microbubble concentration (0.025µl/ml), the correct average rates 

of classification for microemboli at high MI (0.6) are 83.13% and 78.56% for RBFN and 

MLP models respectively. Here, we talk about  RF signal scattered from the microbubbles 

(gas emboli) or surrounding tissue (solid emboli), its FFT is calculated. The amplitudes at the 

fundamental frequency and at the second harmonic frequency are selected. These values are 

used as an input parameter [24]. 

Figure IV.31 shows the results of classification for the Gaussian coefficients of the 

spectral envelopes when used as input parameters in both neural network models (RBFN and 

MLP). The highest classification rate reached a value of 92.85% for the RBFN model at high 

MI (0.6). Using the MLP model, the Gaussian coefficients provided a classification rate of 

89.28% at high MI (0.6) for both microbubble concentrations. These high classification rates 

might be ascribed to the fact that the coefficients of the spectral envelopes contain additional 

information about the bandwidths and the amplitudes of the linear and nonlinear components 

of the backscattered signals from both solid and gaseous emboli [24]. 
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Table IV. 2. Classification rates of the MLP and RBFN models with concentration of 

microbubbles (0.05µl/ml) at low MI (0.2) and high MI (0.6) for three different 

input parameters: the bandwidths and the amplitudes of the fundamental and 

the second harmonic and the Gaussian parameters issued form Equation 

(IV.11) [24]: 

Results with 

MLP 

C =0.05µl/ml 

Bandwidths Amplitudes Gaussian Coefficients 

Low MI High MI Low MI High MI Low MI High MI 

Gaseous Emboli 0% 0% 100% 100% 85.71% 78.57% 

Solid Emboli 100% 100% 64.28% 64.28% 85.71% 100% 

Average rate 50% 50% 82.14% 82.14% 85.71% 89.28% 

Results with 

RBFN 

C =0.05µl/ml 

Bandwidths Amplitudes Gaussian Coefficients 

Low MI High MI Low MI High MI Low MI High MI 

Gaseous Emboli 0% 0% 78.57% 85.71% 92.85% 85.71% 

Solid Emboli 100% 100% 71.42% 85.71% 78.57% 100% 

Average rate 50% 50% 74.99% 85.71% 85.71% 92.85% 
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Table IV. 3. Classification rates of the MLP and RBFNmodels with concentration of 

microbubbles (0.025µl/ml) at low MI (0.2) and high MI (0.6) for three different 

input parameters: the bandwidths and the amplitudes of the fundamental and 

the second harmonic and the Gaussian parameters issued form Equation 

(IV.11) [24]: 

Results with 

MLP 

C =0.025µl/ml 

Bandwidths Amplitudes Gaussian Coefficients 

Low MI High MI Low MI High MI Low MI High MI 

Gaseous Emboli 0% 0% 71.42% 71.42% 92.85% 78.57% 

Solid Emboli 100% 100% 85.71% 78.57% 85.71% 100% 

Average rate 50% 50% 78.56% 78.56% 89,28% 89.28% 

Results with 

RBFN 

C =0.025µl/ml 

Bandwidths Amplitudes Gaussian Coefficients 

Low MI High MI Low MI High MI Low MI High MI 

Gaseous Emboli 0% 0% 78.57% 71.42% 78.57% 92.85% 

Solid Emboli 100% 100% 92.85% 92.85% 78.57% 85.71% 

Average rate 50% 50% 85.71% 83.13% 78.57% 89.28% 
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Figure IV.31. Classification rates of gaseous and solid emboli with the two concentrations of 

microbubbles at low and high MI (0.6) for three different input parameters [24]. 

Figure IV.32 and Figure IV.33 show the best model obtained for embolus 

classification using MLP and RBFN with concentration of microbubbles 0.025µl/ml at low 

(0.2) and high MI (0.6) respectively. For our data, in the classification process the threshold is 

set to 0.5 to have an initial probability of 0.5 (half) for both solid and gaseous embolus. In a 

clinical situation, the threshold can be set to a different value depending on the application. 
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A 

 
B 

Figure IV.32. Embolus classification using MLP and RBFN with concentration of 

microbubbles of 0.025µl/ml at low MI, (A) MLP; B) RBFN using Gaussian Coefficients. 
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A 

 
B 

Figure IV.33. Embolus classification using MLP and RBFN with concentration of 

microbubbles of 0.025µl/ml at high MI, (A) MLP; B) RBFN using Gaussian Coefficients. 
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An output value of 1 corresponds to the gaseous embolus represented by circles and an 

output value of 0 corresponds to the solid embolus represented by stars. For example, Figure 

IV.32.A, corresponding to low MI (0.2) shows that the RBFN classification model used in 

this experiment succeeded in classifying 11 gaseous embolus out of 14 and 11 solid embolus 

out of 14 also. On the other hand, the MLP classification model used for the same experiment 

succeeded in classifying 13 gaseous embolus out of 14 and 12 solid embolus out of 14. 

Table IV. 4. Confusion matrix of the proposed MLP model using Gaussian Coefficients 

Gaussian coefficients 

Results with MLP (C = 0.025µl/ml) 

Predicted 

Low MI (0.2) High MI (0.6) 

 

 

Actual class 

 
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Gaseous emboli 13 1 11 3 

Solid emboli 2 12 0 14 

 

Results with MLP (C = 0.05µl/ml) 

Predicted 

Low MI (0.2) High MI (0.6) 

 

 

Actual class 

 
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Gaseous emboli 12 2 11 3 

Solid emboli 2 12 0 14 
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Table IV. 5. Confusion matrix of the proposed RBFN model using Gaussian Coefficients 

Gaussian coefficients 

Results with RBFN (C = 0.025µl/ml)  

Predicted 

Low MI (0.2) High MI (0.6) 

 

 

Actual class 

 
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Gaseous emboli 11 3 13 1 

Solid emboli 3 11 2 12 

 

Results with RBFN (C = 0.05µl/ml)  

Predicted 

Low MI (0.2) High MI (0.6) 

 

 

Actual class 

 
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Gaseous emboli 13 1 12 2 

Solid emboli 3 11 0 14 

Table IV.4 and Table IV.5 illustrate the confusion matrix of the proposed neural 

network models (MLP and RBFN respectively) using Gaussian coefficients. The numbers of 

correct and incorrect predictions made by the two models compared to the target values in the 

test data are shown in these two tables. For example, at microbubble concentration 0.05 µl/ml 

at high MI (0.6) the proposed RBFN classification model succeeded in classifying 12 gaseous 

embolus out of 14 (Sensitivity=85.71%) and 14 solid embolus out of 14 (Specificity =100%). 

Thus 2 gaseous embolus are not recognized i.e. classified as solid embolus, the solid embolus 

are all recognized. 
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The processing time is an important issue if we have to implement this technique in a 

clinical machine. However the main objective of our study is only to evaluate the 

performances of the proposed approach in classifying the emboli. Therefore, we did not focus 

on the time of processing the data. Obviously, MATLAB will not be used as a processing tool 

since other software packages are more appropriate. Nevertheless, it should be noted that the 

training phase for the MLP network lasts for a few minutes while the training phase for RBFN 

network takes less than one minute. The processing time for the test phase (classification) is 

less 1 second. The current emboli classification techniques are performed in real time using 

TCD machines since this differentiation is observed in the Doppler signal. 

IV.5 Conclusion  

This chapter demonstrates the usefulness of exploiting RF signals instead of Doppler 

signals for a better classification of microemboli as solid or particulate matter. A neural 

network (MLP or RBFN) analysis using the fundamental and the second harmonic 

components information contained in the RF signal backscattered by an embolus allows the 

classification with a classification rate of 92.85%. Furthermore, the strategy to construct the 

feature vector employed in the classification section is presented. We evaluate the predictive 

power of a set of three feature extraction approaches and two different classifiers.  

The following features are selected as input parameters to the neural network (MLP or 

RBFN) models: 

1- The bandwidths of the scattered RF signals at the fundamental and at the second 

harmonic frequencies. 

2- The amplitudes at the fundamental frequency and at the second harmonic 

frequency. 

3-  The frequency spectra of the fundamental and the second harmonic are 

approximated by a Gaussian function. 
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V.1 Introduction 

A number of researchers have reported that discrete wavelet transform (DWT) 

performs better than fast Fourier transform (FFT) for the analysis and the detection of embolic 

signals (ES) [25, 26 ,27]. The existence of fast algorithms to implement DWT, makes also the 

investigation of the feasibility of ES detection systems based on DWT worthwhile. Therefore, 

we suggest in this chapter to exploit wavelet-based techniques to detect and to classify the 

embolic signals. However, the selection of an appropriate mother wavelet for the signal being 

analyzed is an important criterion [101]. 

Consequently, in the first part on this chapter we describe a strategy to choose a 

suitable mother wavelet for detection and classification of microemboli exploiting 

experimental backscattered RF signals. Several wavelet functions namely, Biorthogonal, 

Coiflet, Daubechies, and Symlets are evaluated within a microemboli classification system 

based on discrete wavelet transform (DWT) and support vector machines (SVM) as a 

classifier. The effectiveness of the choice of the suitable mother wavelet in the evaluation of 

the proposed system is assessed.  

Then, in the second part of this chapter, we employ DWT algorithm based on the 

selected wavelet function to decompose RF signals into different frequency bands and identify 

which features lead to a better recognition performance. Several features are evaluated from 

the detail coefficients. It should be noted that the features used in this study are the same used 

in the work by N. Aydin et al. [25]. These features are used as inputs to the classification 

models without using feature selection method. Thereafter, and due to curse of dimensionality, 

we employ three different dimensionality reduction technique based on Differential Evolution 

algorithm (DEFS), Fisher Score method, and Principal Component Analysis (PCA). This last 

step is vital since dimensionality reduction algorithms improve classification accuracy by 

selecting features that are most relevant to the classification task. 
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Part.1: Selection of mother wavelet 

The general block diagram of the detection algorithm is shown in Figure V.1. The input 

backscatter RF signals are first detected and collected (signal acquisition). At the second stage, 

DWT coefficients of the signals are obtained using several wavelet functions. This process 

decomposes the input signal into an optimum number of frequency bands. Therefore, it is 

important to determine a suitable wavelet for the signal being analyzed. We evaluate several 

wavelet functions namely; Biorthogonal, Coiflet, Daubechies, and Symlets within a 

microemboli classification system based on discrete wavelet transform (DWT) and support 

vector machines (SVM) as a classifier. In the third step, after applying the DWT on the 

backscatter RF signals, several features are evaluated from detail and approximation 

coefficients. In the last step, these features are used as input parameters to the SVM 

classification model. 

 

Figure V. 1.  Flowchart of the proposed approach. 
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V.2.1 Wavelet Transform 

The wavelet transform is a linear process that decomposes a signal into components 

that appear at different scales [25, 102]. The basic idea of the wavelet transform is to represent 

any arbitrary signal x(t) as a superposition of a set of wavelets or basis functions. These basis 

functions (wavelets) are obtained from a single prototype wavelet called the mother wavelet 

by dilation (scaling) and translation (shifts). The wavelet transform of a continuous signal x(t) 

is defined as [25, 102]: 

( ) dt
a

bt
a

txbac
R )(

)(1)(, −
= ∫ ψ ,    (V.1) 

where, the indexes c(a,b) are called wavelet coefficients of signal x(t), a is the dilation 

and b is the translation, Ψ(t) is the transforming function (the mother wavelet). Low 

frequencies are explored with low temporal resolution while high frequencies with more 

temporal resolution. The discrete wavelet transform (DWT) of a signal is depicted with 

respect to a mother wavelet and maps continuous finite energy signals to a two-dimensional 

grid of coefficients [25, 102]. The scale a in the discrete wavelet transform case becomes 
maa 0= , and the translation b becomes manbb 00=  [25, 102]. The DWT of a discrete signal 

with length N is defined as: 
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DWT of a discrete signal yields a set of coefficients including all the detailed 

coefficients and the last approximation coefficients [25, 102]. 

V.2.2 Feature Extraction 

Using DWT, the normalized backscattered RF signal can be transformed into different 

time–frequency scales through the wavelet analysis. It employs two functions as high-pass 

filters and low pass filters. The high-frequency filter generates a detailed version of the 

backscatter RF signal (D), while the low-frequency filter produces its approximate version (A). 
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a) Gaseous embolus 

 
b) Solid embolus 

Figure V. 2.  Examples of DWT using Daubechies (db4) as mother wavelet of backscatter 

RF signal at low mechanical index (MI = 0.2). 
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In our study, we decompose the backscatter RF signal x(t) into two levels. Wavelet 

functions used for this study are standard DWT functions available in Matlab Wavelet toolbox  

[103] namely Daubechies (1 to 32), Coiflet (1 to 5), Symlet (2 to 8), and Biorthogonal (1.1, 

1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6,8). These functions are integrated 

into the automatic classification system. 

An example of the decomposition of gaseous embolus and solid embolus signals using 

Daubechies (db4) as mother wavelet is shown in Figure V.2. The detail and approximation 

coefficients are not directly used as inputs for the classifier. Several features are evaluated 

from the detail and approximation coefficients. It should be noted that for each of the DWT 

coefficients, four features (standard deviation, root mean square, energy and Shannon-entropy) 

are calculated using the equations given in Table V.1 [104]. All features are individually 

applied on the detail and approximation coefficients of each decomposition level. 

Table V. 1. Features and their corresponding formulas applied on the detail and 

approximation coefficients of each decomposition level. 

Features Formulas 
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Standard deviation: The standard deviation is a measure of how far a sample in the 

signal fluctuates from the mean value. A low standard deviation indicates that the samples tend 

to be very close to the mean value, high standard deviation indicates that the samples are 

spread out over a large range of values. 

Root mean square amplitude: The root mean square (RMS) of a signal is defined as 

the averaged amplitude of signal: it is used to quantify the overall energy content of the signal. 

Energy: The energy of the signals is computed as a feature in this study. Since often 

gaseous embolus occurrence increases the energy of the signal, it is typical to use energy for 

microemboli detection. 

Shannon entropy: The Shannon entropy is calculated as a measure of energy 

randomness in each wavelet decomposition level. 

As a result, we obtain 12 features for each backscattered RF signal (solid or gaseous 

embolus). These features are used as inputs to the SVM classifier, which provides in its output 

a value of 1 or -1 for gaseous or solid emboli, respectively. 

V.2.3 Classification (Support Vector Machines) 

The classification process consists of two steps: (i) assign the system certain signals as 

training samples, and (ii) classify the signals according to their features via a trained classifier 

model. Several types of classifiers have been deployed in the microemboli classification 

community [18-25]. In this section, we choose SVM  classifier (illustrated in chapter II section 

II.2-4) due to its high generalization performance. Other competitive classifiers could have 

also been chosen. 

After Applying DWT on the backscatter RF signals we obtain 12 features for each 

mother wavelet filter. In order to get a deep insight into our dataset, we employ Principal 

Component Analysis (PCA) method depicted in chapter II section II.3-2.1. PCA maps the 

original feature space to a lower-dimensional space so as to conserve the maximum amount of 

information from the initial dimensions. It can supply us with a lower-dimensional 

visualization, it is a projection of the dataset when viewed from its most informative 

viewpoint. This is done by using only the first few principal components so that the 

dimensionality of the transformed data is reduced. 
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It should be noted that PCA is used in this section only for the visualization of our 

dataset. Figure V.3 shows the distribution of the 1st three feature components using Principal 

Component Analysis (PCA) extracted using Daubechies db4 mother wavelet. The projection 

of the features constructed from the dataset in a 3-dimensional chart illustrates that these 

features are nonlinearly separable. 

 

Figure V. 3. Distribution of the 1st three feature components for the concentration of 

microbubbles (0.025µl/ml) at Low MI (0.2) with Daubechies db4 mother wavelet using PCA. 

In order to evaluate the performance of the proposed system, and since the feature 

vector extracted from RF signals is nonlinearly separable (refer to Figure V.3), we prefer a 

nonlinear support vector machines classifier to solve this classification problem. 
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V.2.4 Results and Discussions 

Classification performances are evaluated in term of overall accuracy, which is the 

percentage of correctly classified emboli among all the emboli independently of the classes 

they belong to. For each dataset, we ran a nonlinear SVM classifier based on the Gaussian 

RBF (SVM-RBF) [22]. Classification results for four datasets with each of the wavelet 

functions used in the classification algorithm are summarized in Table V.2, Table V.3, Table 

V.4, and Table V.5. The best results appear in bold. 

Table V. 2. Detection with Biorthogonal wavelet functions [22]. 

 Classification rate (%) 

Wavelet type 
C=0.025µl/ml C=0.05µl/ml 

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

Bior1.1 79,17 75,00 70,83 79,17 

Bior1.3 79,17 79,17 79,17 79,17 

Bior1.5 75,00 83,33 83,33 79,17 

Bior2.2 83,33 87,50 83,33 79,17 

Bior2.4 87,50 83,33 83,33 83,33 

Bior2.6 83,33 87,50 83,33 83,33 

Bior2.8 83,33 79,17 83,33 91,67 

Bior3.1 87,50 91,67 91,67 95,83 

Bior3.3 83,33 87,50 87,50 87,50 

Bior3.5 83,33 91,67 87,50 95,83 

Bior3.7 83,33 83,33 87,50 91,67 

Bior3.9 83,33 91,67 87,50 95,83 

Bior4.4 83,33 83,33 87,50 91,67 

Bior5.5 79,17 87,50 87,50 91,67 

Bior6.8 83,33 87,50 87,50 91,67 
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Table V. 3. Detection with Coiflet wavelet functions [22]. 

 Classification rate (%) 

Wavelet type 
C=0.025µl/ml C=0.05µl/ml 

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

Coif1 83.33 83.33 83.33 83.33 

Coif2 87.50 87.50 83.33 83.33 

Coif3 87.50 91.67 87.50 91.67 

Coif4 87.50 75.00 87.50 87.50 

Coif5 83.33 75.00 87.50 87.50 

Table V. 4. Detection with Symlet wavelet functions [22]. 

 Classification rate (%) 

Wavelet type 
C=0.025µl/ml C=0.05µl/ml 

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

Sym2 75.00 75.00 87.50 83.33 

Sym3 75.00 79.17 87.50 87.50 

Sym4 79.17 87.50 83.33 83.33 

Sym5 79.17 87.50 79.17 79.17 

Sym6 87.50 87.50 87.50 83.33 

Sym7 87.50 91.67 91.67 87.50 

Sym8 83.33 83.33 83.33 83.33 
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Table V. 5. Detection with Daubechies wavelet functions [22]. 

 Classification rate (%) 

Wavelet type 
C=0.025µl/ml C=0.05µl/ml 

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

db 1 79.17 79.17 83.33 75.00 

db 2 62.50 83.33 91.67 83.33 

db 3 75.00 79.17 91.67 79.17 

db 4 83.33 83.33 79.17 87.50 

db 5 87.50 91.67 79.17 91.67 

db 6 91.67 91.67 91.67 95.83 

db 7 79.17 83.33 83.33 87.50 

db 8 83.33 79.17 79.17 91.67 

db 9 70.83 83.33 83.33 91.67 

db 10 70.83 70.83 87.50 91.67 

db 11 83.33 79.17 75.00 87.50 

db 12 70.83 70.83 83.33 91.67 

db 13 75.00 91.67 83.33 91.67 

db 14 79.17 75.00 83.33 87.50 

db 15 75.00 70.83 83.33 95.83 

db 16 75.00 70.83 83.33 91.67 

db 17 62.50 75.00 79.17 87.50 

db 18 75.00 70.83 83.33 87.50 

db 19 75.00 75.00 70.83 91.67 

db 20 75.00 75.00 79.17 83.33 

db 21 75.00 79.17 83.33 83.33 

db 22 70.83 75.00 83.33 87.50 

db 23 75.00 75.00 83.33 83.33 

db 24 75.00 75.00 75.00 87.50 

db 25 70.83 75.00 79.17 91.67 

db 26 75.00 75.00 83.33 83.33 

db 27 75.00 79.17 79.17 83.33 

db 28 70.83 75.00 79.17 87.50 

db 29 70.83 75.00 83.33 87.50 

db 30 75.00 79.17 83.33 87.50 

db 31 70.83 75.00 79.17 87.50 

db 32 70.83 75.00 70.83 83.33 
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Since no other parameters than the wavelet filter type changed, the results give an 

indication on the suitability of the wavelet function for the particular acquisition. In Table V.2, 

detection results are given for different Biorthogonal types of the wavelet function. The 

Biorthogonal 3.1 achieved the best detection. For the Coiflet type wavelet, Coiflet3 achieved 

the best results (Table V.3). For the Symlet type wavelet, the best results are obtained using 

Symlet 7 (Table V.4). For the Daubechies type wavelet, the best results are reached by 

Daubechies 6 (Table V.5). 

 Classification results for the wavelet functions given in the Table V.2, Table V.3, Table 

V.4, and Table V.5 indicate that there is no analytical justification for the choice of a particular 

wavelet function for a particular signal, so the required wavelet filter should be determined 

experimentally. The performance of the classification system greatly depends on the selection 

of the mother wavelet. 

The best results for the wavelet functions given in the Table V.2, Table V.3, Table V.4, 

and Table V.5 are grouped in Table V.6. 

Table V. 6. Best classification rates and corresponding mother wavelet functions [22]. 

 Classification rate (%) 

Wavelet type 
C=0.025µl/ml C=0.05µl/ml 

Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

Bior3.1 87.50 91.67 91.67 95.83 

Coif3 87.50 91.67 87.50 91.67 

db 6 91.67 91.67 91.67 95.83 

Sym7 87.50 91.67 91.67 87.50 

From Table V.6, the wavelet corresponding to the highest classification rate is selected 

as the most suitable mother wavelet. Therefore, conclusively we can say that among 59 mother 

wavelet functions db6 appears to be the most appropriate wavelet function for this medical 

application. 
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Part.2: Detection using Dimensionality Reduction algorithms 

The general block diagram of the detection system is shown in Figure V.4. The input 

backscatter RF signals are first detected and collected (signal acquisition). At the second 

stage, DWT coefficients of the signals are collected. Input signal are decomposed into an 

optimum number of frequency bands using DWT. Therefore, it is vital to select an appropriate 

wavelet for the signal being analyzed. Suitability of the wavelet filters and orders are 

determined experimentally. As shown in section V.2 the best mother wavelet on the same 

types of backscatter RF signals is Daubechies (db6) [22]. In the third step, after applying 

DTW on the backscatter RF signals, several features are evaluated from the detail 

coefficients. It should be noted that the features used in this study are the same in the paper by 

N. Aydin et al. [25]. Table V.7 shows the ten (10) features for each decomposition level and 

their formulas. In the last step, all these features are first used as inputs to the classification 

model without feature selection method. Second, due to the curse of dimensionality, we 

employ three dimensionality reduction techniques dimensionality reduction techniques; 

Differential Evolution algorithm (DEFS), Fisher Score method, and Principal Component 

Analysis (PCA) [64, 83, 86, 87]. The motivation for this approach is that the more powerful 

among the existing machine learning algorithms tend to get confused when supplied with a 

large number of features [105]. 

Before classification and dimensionality reduction tasks, and since the generalization 

performance of an algorithm should be estimated using unseen samples, we randomly divide 

the dataset into two subsets (training set and test set). After that, we apply cross-validation 

technique only on the training set to tune the classifier parameters and to select the features. 

Thus the algorithms have only access to the training set, and the test set is kept unseen both to 

the ranking step and to the classifying step. The experimental evaluation is performed using 

hold-out-set cross-validation to avoid overfitting and assure statistical validity of the results 

[57]. 
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Figure V. 4. Block diagram of the DWT-based detection system. 
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To summarize, our experiment setting is based on the cross-validation technique. A 

complete algorithm is constructed by cascading dimensionality reduction and classification. 

The dimensionality reduction step is achieved by DEFS algorithm, PCA technique, or Fisher 

score method.The classification step is SVM algorithm. The training data is used to select the 

most relevant features and to fix the classifier parameters. The final results presented are 

based on the system’s performance using one unseen test session. 

V.3-1 Feature extraction 

The goal of feature extraction is to determine those components of the signal that are 

deemed most relevant to the application at hand. An example of the decomposition of gaseous 

embolus and solid embolus signals using the selected wavelet function Daubechies (db6) is 

shown in Figure V.5. The detail and approximation coefficients are not directly used as inputs 

for the classification model. Several features are evaluated from the detail and approximation 

coefficients. 

The instantaneous power (IP) is calculated for the DWT coefficients of each level. A 

threshold value for each level is determined. Figure V.6 illustrates the associated IP and 

threshold values, which are used in the detection algorithm. 

The threshold is calculated from the data using a statistical method, which depends on 

the data length and the standard deviation [106], and it is given by: 

Ath = σn�log2𝑁𝑁,       (V.3) 

where: 

σn  : is the standard deviation of the signal power at the nth level  

𝑁𝑁 : is the length of the observation. 

 

126 
 



Chapter V           Particle Characterization Using Wavelet Based Approach  and 
           SVM Based Dimensionality Reduction 

 

 

 
Figure V. 5. Examples DWT of backscatter RF signal using Daubechies (db6) as mother 

wavelet for C=0.025µl/ml at low MI. 
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Gaseous signals 

 
Time (µs) 

Solid signals 
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Figure V. 6. Instantaneous power and corresponding threshold values for each level 

(gaseous and solid embolus signals). 
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The following parameters relating the threshold are determined: 

The ratio of the embolic signal to the background signal (EBR) is the most widely 

used feature in microemboli detection [25]. EBR shows how strong an embolic signal is 

relative to the background. P2TR is one of the definitions of the EBR, P2TR can be calculated 

using the measures given in Figure V.7. 

 
Time (µs) 

Figure V. 7. Instantaneous power of the detail coefficient and parameters used to calculate 

detection features. 
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Another feature, the total power to the threshold ratio (TP2TR) which is the quantity 

of power a signal has relative to the background energy, and it is given by: 
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A
log 10

A
Alog 10TP2TR

thth

tot ∑ ===
ffo

on

t

tk f k

   
(V.5) 

where Atot is the total power of the signal A(k). It is calculated by integrating the IP of 

signal between ton and toff , as illustrated in Figure V.7. 
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Two other features, which use threshold indirectly, are rise rate (RR) and fall rate 

(FR):  

ms) / (dB   
t
P2TR

t
A
A

log  10
RR

pkpk

th

onon

pk

tt −
=

−
=     (V.6) 

ms) / (dB   
t
P2TR

t
A
A

log  10
FR

offoff

th

pkpk

pk

tt −
=

−
=     (V.7) 

where: ts is the average time of the signal and fs is the average frequency of the signal. 

ts and fs are calculated, respectively, as 

( )∫
+∞

∞−

= dttst
E

t
s

s
2   1 , and      (V.8) 

( )∫
+∞

∞−

= dffSf
E

f
s

s
2   1       (V.9) 

where S(f) is the Fourier transform of the signal s(t). 

Time spreading Ts2 and frequency spreading Bs2 are defined as: 

( ) ( ) dttstt
E

T s
s

s

2
22    1

∫
+∞

∞−

−= , and     (V.10) 

( ) ( ) dffSff
E

B s
s

s

2
22    1

∫
+∞

∞−

−=      (V.11) 

where: 

𝐸𝐸𝑠𝑠 = ∫ |𝑠𝑠(𝑡𝑡)|2𝑑𝑑𝑑𝑑+∞
−∞        (V.12) 

The instantaneous envelope and instantaneous frequency of a signal [107] are used to 

describe a signal simultaneously in time and in frequency. These two parameters are defined, 

respectively, as: 
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𝑎𝑎(𝑡𝑡) = |𝑠𝑠𝑎𝑎(𝑡𝑡)|       (V.13) 

𝑓𝑓(𝑡𝑡) = 1
2𝜋𝜋

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑎𝑎 (𝑡𝑡)
𝑑𝑑𝑑𝑑

       (V.14) 

where 𝑠𝑠𝑎𝑎(𝑡𝑡) is the Hilbert transform of s(t). 

𝑠𝑠𝑎𝑎(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑗𝑗𝑠̂𝑠(𝑡𝑡). 𝑠̂𝑠(𝑡𝑡)      (V.15) 

The variances of instantaneous envelope and instantaneous frequency (VIE and VIF) 

are used as other types of features. 

Processing steps for the classification of microemboli can be summarized as follows: 

- Apply DWT to for both solid and gaseous signals in order to collect DWT 

coefficients; 

- Calculate Instantaneous power for each level; 

- From each level, derive a threshold value to be employed in detection; 

- Evaluate previously described parameters for each DWT level; 

- Apply: (i) classification, (ii) dimensionality reduction. 

Table V.7 summarizes the feature extractor methods that are used in this study It 

should be noted that the features illustrated in this table are the same used in the work by N. 

Aydin et al. in which he employed a fuzzy classification system for the characterization of 

Doppler signals [25]. 
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Table V. 7. The features used in this section and their formulas [25]. 

 Feature 
number (n) Formulations of detail coefficients 
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It should be noted here that n is the number of the detail coefficient which is used to 

calculate the classification parameters. In our case n is equal to 5 for each decomposition 

level. 

As shown in Figure V.7, and unlike all the detail coefficients, the approximation 

coefficients does not have a similar shape (peak or Gaussian) thus we can't extract the 

parameters ton and toff, therefore we discarded the approximation coefficients from the feature 

extraction phase. 

V.3-2 Classification without dimensionality reduction 

For binary classification problems with limited number of samples it is crucial to 

validate the classification model with cross-validation technique. Before building the 

classification model, the samples are subdivided into three subsets training set, validation set, 

and test set. The test set is used only for the assessment of the model selected by the cross-

validation technique, while the validation set is used to tune the classifiers parameter. 

Therefore the algorithm has only access to the training and validation sets, the test set is kept 

unseen in the selection process of the best model. 

Classification performance is evaluated in terms of seven evaluation measures 

(illustrated in chapter II section II.4), which are: Recall (Sensitivity), Specificity, Precision, 

Kappa, F-measure, overall accuracy, and AUC (Area Under Curve). We have invoked the 

same SVM classifier (defined in chapter II section II.2.4). Furthermore, we have iteratively 

tested different SVM parameter settings by trying exponentially growing sequences 

of C and γ [75] (C =2-3, 2-2,..., 29, 210, γ=2-3, 2-2,.., 24, 25). For each pair of (C, γ) we train the 

SVM with the training data, and then we use the SVM to classify the validation data. The 

combination that results in a model with highest validation accuracy is picked as the best 

choice of the classification problem. The testing accuracy is obtained by applying the selected 

SVM model on the testing data. 

Table V.8 summarizes the percentage of the seven evaluation measures defined in 

chapter II section II.4 (Accuracy (ACC), Sensitivity or Recall (r), Specificity (Spe), precision 

(P), F-measure (F), Kappa coefficient (Kappa), and area under curve (AUC)) using SVM 

analysis as a function of all input features (50 features) and mechanical indexes for the two 

microbubble concentrations (0.025 µl/ml and 0.05µl/ml). 
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Table V. 8. Evaluation measures of gaseous and solid emboli using all features [18]. 

 C = 0.025µl/ml C = 0.05 µl/ml 

 Low MI (0.2) High MI (0.6) Low MI (0.2) High MI (0.6) 

Sensitivity or Recall (r) 

(Gaseous emboli) 
92.85 78.57 85.74 92.85 

Specificity (Spe) 

(Solid emboli) 
78.57 85.71 85.71 78.57 

Precision (P) 81.25 84.61 85.71 81.25 

Kappa 71.42 64.28 71.42 71.42 

F-measure (F) 86.66 81.48 85.71 86.66 

Accuracy (ACC) 85.71 82.14 85.71 85.71 

AUC (Area Under Curve) 92.85 86.73 91.83 91.83 

OT: Optimal Threshold -0.279 -0.093 0.758 -0.098 

Figure V.8 shows the ROC curves of the four datasets using several detection 

thresholds in which TP rate is plotted on the Y axis and FP rate is plotted on the X axis. The 

best results that maximizes (sensitivity and specificity) are achieved using the thresholds of -

0,279, -0.093, 0.758, and -0,098 for the acquisitions 1, 2, 3, and 4 respectively. The ROC 

curves in Figure V.8 indicate that the proposed model is deteriorated by irrelevant features. 

Figure V.8 illustrates that for the concentration C = 0.025µl/ml at low MI and the 

concentration C = 0.05µl/ml at high MI with optimal thresholds of -0,279 and -0,098 

respectively, the proposed classification model classifier recognizes better gaseous emboli 

than at solid emboli with a sensitivity of 92.85% and a specificity of 78,57%. However, for 

the concentration C=0.025µl/ml at high MI (0.6), the classifier performs better at identifying 

solid emboli than at identifying gaseous emboli with a sensitivity of 78,57% and a specificity 

of 85,71%. For the concentration C = 0.05µl/ml at low MI and the classification performances 

for gaseous and solid emboli are quite similar. 
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C = 0.025 µl/ml 

  
C = 0.05 µl/ml 

 
A 

 
B 

Figure V. 8. ROC curve at different detection thresholds using all features, : A). MI= 0.2,   

B). MI= 0.6 for two microbubbles concentrations [18] 

Average classification rate, F-measure, and Kappa coefficient did not exceed 85.71%, 

86.66%, 71.42% respectively for all datasets using all features as input vector. Therefore, the 

feature vector is too large to be handled properly by the classifier. To overcome this 

limitation, we group the input parameters into small feature vectors regarding the nature of 

each feature then we apply the classification algorithm on each set of features separately, the 

results are shown in Table V.9 and Table V.10. 
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Table V. 9. Evaluation measures using each set of features separately Acqu 1 and 2 [18]. 

 C = 0.025µl/ml 

Features 
Low MI (0.2) 

r Spe P Kappa F ACC AUC OT 

P2TRn 71.42 71.42 71.42 42.85 71.42 71.42 65.30 -0.972 

TP2TRn 92.85 78.57 81.25 71.42 86.66 85.71 90.81 -0.001 

RRn 100 50 66.66 50 80 75 80.61 -0.817 

FRn 85.71 78.57 80 64.28 82.75 82.14 85.20 -0.167 

nst  78.57 100 100 78.57 88 89.28 94.38 0.336 

nsf  100 78.57 82.35 78.57 90.32 89.28 93.87 -0.737 

nsT 2  85.71 85.71 85.71 71.42 85.71 85.71 88.26 -0.007 

nsB2  78.57 92.85 91.66 71.42 84.61 85.71 86.22 -0.231 

VIEn 92.85 85.71 86.66 78.57 89.65 89.28 92.34 0.002 

VIFn 100 28.57 58.33 28.57 73.68 64.28 52.55 -0.888 

Features 
High MI (0.6) 

r Spe P Kappa F ACC AUC OT 

P2TRn 71.42 50 58.82 21.42 64.51 60.71 60.20 -0.215 

TP2TRn 92.85 78.57 81.25 71.42 86.66 85.71 86.22 0.072 

RRn 71.42 71.42 71.42 42.85 71.42 71.42 74.49 -0.210 

FRn 92.85 57.14 68.42 50 78.78 75.00 79.59 -0.186 

nst  85.71 92.85 92.30 78.57 88.88 89.28 93.87 -0.165 

nsf  92.85 85.71 86.66 78.57 89.65 89.28 94.38 -0.246 

nsT 2  71.42 100 100 71.42 83.33 85.71 88.26 0.433 

nsB2  100 71.42 77.77 71.42 87.50 85.71 92.34 -0.222 

VIEn 92.85 92.85 92.85 85.71 92.85 92.85 95.40 -0.450 

VIFn 64.28 85.71 81.81 50 72 75 70.91 -0.001 
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Table V. 10. Evaluation measures using each set of features separately Acqu 3 and 4 [18]. 

 C = 0.05µl/ml 

Features 
Low MI (0.2) 

r Spe P Kappa F ACC AUC OT 

P2TRn 92.85 71.42 76.47 64.28 83.87 82.14 86.73 -0.342 

TP2TRn 92.85 78.57 81.25 71.42 86.66 85.71 92.34 0.001 

RRn 64.28 85.71 81.81 50 72 75 64.79 0.165 

FRn 64.28 92.85 90 57.14 75 78.57 78.06 0.213 

nst  92.85 85.71 86.66 78.57 89.65 89.28 91.83 -0.177 

nsf  78.57 92.85 91.66 71.42 84.61 85.71 93.36 0.425 

nsT 2  78.57 100 100 78.57 88 89.28 94.38 0.197 

nsB2  78.57 92.85 91.66 71.42 84.61 85.71 92.34 -0.186 

VIEn 100 78.57 82.35 78.57 90.32 89.28 96.42 0.463 

VIFn 78.57 71.42 73.333 50 75.86 75 73.98 -0.312 

Features 
High MI (0.6) 

r Spe P Kappa F ACC AUC OT 

P2TRn 92.85 71.42 76.47 64.28 83.87 82.14 79.08 0.253 

TP2TRn 100 64.28 73.68 64.28 84.84 82.14 87.24 -0.457 

RRn 92.85 78.57 81.25 71.42 86.66 85.71 86.73 -0.352 

FRn 64.28 78.57 75 42.85 69.23 71.42 65.81 0.053 

nst  64.28 100 100 64.28 78.26 82.14 86.73 0.002 

nsf  71.42 92.85 90.90 64.28 80 82.14 88.26 0.331 

nsT 2  78.57 100 100 78.57 88 89.28 94.89 0.240 

nsB2  100 78.57 82.35 78.57 90.32 89.28 94.38 -0.275 

VIEn 100 64.28 73.68 64.28 84.84 82.14 81.12 -0.352 

VIFn 50 78.57 70 28.57 58.33 64.28 48.98 -0.104 
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After combining the features into five characteristic vector regarding the nature of 

each feature and introduced them separately as input parameters into the SVM model, the 

features P2TRn, RRn, FRn, and VIFn for the two concentrations do not provide significant 

classification rates neither at low MI (0.2) nor at high MI (0.6). When the set of features 

TP2TRn, nst , nsf , nsT 2 , nsB2 , and VIEn are introduced separately as input parameters into the 

SVM model, the correct average rate of classification of microemboli reached 89.28%, thus a 

significant improvement in the classification rates is observed. In order to further improve the 

classification rates we perform in the next section classification based on dimensionality 

reduction technique. 

V.3-3 Classification using Dimensionality Reduction 

The feature vector build in section V.3-1 is too large to be handled properly by a 

classifier during training. To overcome this curse of dimensionality, we perform two 

approaches of dimensionality reduction techniques: feature selection and feature generation. 

Feature selection methods in this thesis are realized using Differential Evolution 

algorithm (DEFS), and Fisher score algorithm. Feature generation is achieved by the use of 

principal components analysis. 

With the purpose of having similar chances for the three dimensionality reduction 

techniques, the testing set was hidden for the most part of the experiments and it was only 

used to ultimately check the final performances. 

V.3-3.1 Differential Evolution algorithm 

DEFS algorithm is a population-based stochastic search method (described in chapter 

II section II.3-1.1), it belongs to the family of evolutionary algorithms, it was initially 

proposed by Storn and Price in 1995 [79, 80]. DEFS algorithm is a wrapper feature selection 

approach; it conducts a search for a good subset using the classification algorithm as part of 

the function evaluating feature subsets. These features generates a classifier with the highest 

possible accuracy. We select the set of features that maximizes the AUC and thus the 

accuracy of the classification model (refer to Figure V.9). 
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Figure V. 9. Classification rates Vs number of features selected with concentration of 

microbubbles (0.025µl/ml) at low MI (0.2) using DEFS algorithm.  

V.3-3.2 Fisher score 

Fisher score is a filter feature selection algorithm (depicted in chapter II section II.3-

1.2), it is one of the most widely used supervised feature selection techniques due to its 

general good performance. It aims at selecting each feature independently by which the 

within-class distance is minimized and the between-class distance is maximized. Features are 

ranked in descending order from higher to lower scores, according to their corresponding 

Fisher criterion independently of the classification algorithm (refer to Figure V.10). After that, 

feature subset selection is conducted by introducing to the classifier the feature with the 

highest value of Fisher criterion then adding the next ranked feature until we add all the 

ranked features one by one. We pick up the set of features that gives the best AUC of the 

classification model (refer to Figure V.11). 

0 5 10 15 20 25 30 35 40 45 50
30

40

50

60

70

80

90

100

 

 X: 7
Y: 92.86

Selected Features

A
cc

ur
ac

y 
[%

]
LOW MI

ACC DEFS

139 
 



Chapter V           Particle Characterization Using Wavelet Based Approach  and 
           SVM Based Dimensionality Reduction 

 

 

Figure V. 10. Separability (SCF) of each component of feature with concentration of 

microbubbles (0.025  µl / ml) at low MI (0.2). 

 

Figure V. 11. Classification rates Vs number of features selected with concentration of 

microbubbles (0.025µl/ml) at low MI (0.2) using Fisher Score algorithm. 
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V.3-3.3 Principal Component Analysis (PCA) 

PCA is a feature generation technique presented in chapter II section II.3-2.1, it maps 

a data vector from an original space a new space to create new features that are uncorrelated 

over the dataset so as to conserve the maximum amount of information from the initial 

features. If the information associated with the first 2 or 3 principal components represents a 

sufficient percentage of the total variability of the dataset, the observations could be 

represented with these on a 2 or 3 components, thus making interpretation much easier. In our 

case, and since the goal is to obtain the best possible classification rates, we introduce the 

principal components to the SVM classifier and we select the set of component that generates 

the highest possible AUC (refer to figure V.12). 

 

Figure V. 12. Classification rates Vs number of features selected with concentration of 

microbubbles (0.025µl/ml) at low MI (0.2) using PCA algorithm. 
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Figure V. 13. Classification rates Vs number of features selected with concentration of 

microbubbles (0.025µl/ml) at high MI (0.6) using 3 dimensionality reduction techniques. 

Figure V.13 and Figure V.14 draw the evolution of the average classification rate Vs 

number of selected features using the three dimensionality reduction techniques performed in 

this thesis. At microbubble concentration (0.025 µl/ml) with low and high MI , the best results 

are obtained using DEFS algorithm (92.85% for low MI and 96.42% for high MI) with  seven 

and four features respectively. For these two acquisitions PCA technique and Fisher score 

algorithm produce similar classification rates of 89,28% and 92.85% for low and high MI 

respectively. However, PCA method reaches its highest ACC using only 1 principal 

component for the two Mechanical index compared to Fisher Score algorithm which achieves 

the same ACC using 3 and 7 features for low and high MI respectively. 
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C = 0.025µl/ml 

  
C = 0.05µl/ml 

  
Figure V. 14. Classification rates Vs number of features selected for the four acquisitions 

using DEFS, Fisher score, and PCA. 

At microbubble concentration (0.05 µl/ml) with low MI (0.2), PCA and DEFS 

achieved comparable results with an ACC of  92.85% with 3 principal component and 5 

features respectively. Classification using Fisher score algorithm reached 89,28% average 

classification rate using 4 features. For the concentration of microbubble (0.05 µl/ml) at high 

MI (0.6), the best classification rates are obtained using Fisher score and DEFS algorithms 

with an ACC of 92.85% using a total of 4 and 7 features respectively. PCA reached an ACC 

of 89,28% using the first three principal components.  

Table V.11 shows the final selected features for each acquisition using Differential 

Evolution algorithm (represented in blue) and Fisher score (represented in red) with SVM as a 

classifier. 
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Table V. 11.  Selected features for each Acquisition. 

 C = 0.025µl/ml C = 0.05 µl/ml 

Features Nbr of 
features 

Low MI High MI Low MI High MI 
DEFS Fisher.S DEFS Fisher.S DEFS Fisher.S DEFS Fisher.S 

P2TRn 

1         
2         
3         
4         
5         

TP2TRn 

6         
7         
8         
9         

10         

RRn 

11         
12         
13         
14         
15         

FRn 

16         
17         
18         
19         
20         

nst  

21         
22         
23         
24         
25         

nsf  

26         
27         
28         
29         
30         

nsT 2  

31         
32         
33         
34         
35         

nsB2  

36         
37         
38         
39         
40         

VIEn 

41         
42         
43         
44         
45         

VIFn 

46         
47         
48         
49         
50         
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Table V. 12.  Generalization performances using 3 Dimensionality Reduction techniques [18]. 

 

C = 0.025µl/ml 

Low MI (0.2) High MI (0.6) 

PCA Fisher Score DEFS PCA Fisher Score DEFS 

Nbr of features | 
P. Components (PCA) 

1 3 7 1 7 4 

Sensitivity or Recall 
(Gaseous emboli) 

100 92.85 85.71 92.85 92.85 100 

Specificity 
(Solid emboli) 

78.57 85.71 100 92.85 92.85 92.85 

Precision 82.35 86.66 100 92.85 92.85 93.33 

Kappa 78.57 78.57 85.71 85.71 85.71 92.85 

F-measure 90.32 89.65 92.30 92.85 92.85 96.55 

Accuracy 89.28 89.28 92.85 92.85 92.85 96.42 

AUC (Area Under Curve) 89.79 91.83 96.93 95.40 97.44 97.44 

OT: Optimal Threshold -0.988 -0.016 0.418 -0.140 0.292 0.116 

 

C = 0.05µl/ml 

Low MI (0.2) High MI (0.6) 

PCA Fisher Score DEFS PCA Fisher Score DEFS 

Nbr of feature | 
P.components (PCA) 

3 4 5 3 4 7 

Sensitivity or Recall 
(Gaseous emboli) 

92.85 100 92.85 92.85 100 100 

Specificity 
(Solid emboli) 

92.85 78.57 92.85 85.71 85.71 85.71 

Precision 92.85 82.35 92.85 86.66 87.50 87.50 

Kappa 85.71 78.57 85.71 78.57 85.71 85.71 

F-measure 92.85 90.32 92.85 89.65 93.33 93.33 

Accuracy 92.85 89.28 92.85 89.28 92.85 92.85 

AUC (Area Under Curve) 90.30 87.24 96.93 92.85 94.38 96.93 

OT: Optimal Threshold 0.037 -0.366 0.032 -0.301 -0.111 0.089 
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The output of the designed approach using the three dimensionality reduction 

techniques and SVM classifier based on hold-out-set cross validation are illustrated in Table 

V.12. DEFS algorithm presents the best classification rates for the concentration of 

microbubbles (0.025 µl/ml) at low MI (0.2) and high MI (0.6) our proposed method achieved 

92.85%, 96.42%  classification rates using 7 and 4 features respectively. For the other two 

acquisitions the performance measures are quite similar, the proposed method reached a 

classification rate of 92.85%.  

Table V.12 illustrates the analysis of ROC curves using PCA, Fisher score, and DEFS 

algorithms. The best value of accuracy based on the optimal threshold is obtained using DEFS 

for concentration C = 0.025µl/ml at high MI (0.6), the ROC point at (0.07, 1) produces its 

highest accuracy (96.42%), with an AUC of 97.44%. For all the acquisitions a significant 

improvement in terms of accuracy, sensitivity, and specificity is observed when using 

dimensionality reduction techniques. 

Figure V.15 shows the PCA ROC curves of the four datasets using several detection 

thresholds in which TP rate is plotted on the Y axis and FP rate is plotted on the X axis. The 

best results that maximizes (sensitivity and specificity) are achieved for the concentration C = 

0.025µl/ml at high MI (0.6) and concentration C = 0.05µl/ml at low MI (0.2) using optimal 

thresholds of -0.140 and 0.037 respectively. At this cut-offs, the sensitivity is 92.85% and 

specificity is 92.85%. The ROC curves for this two acquisitions indicate that PCA based 

classification algorithm recognizes solid emboli and gaseous emboli in a similar manner.  

For the concentration C = 0.025µl/ml at low MI (0.2) and the concentration C = 

0.05µl/ml at high MI (0.6) the proposed PCA model performs better at identifying gaseous 

emboli (sensitivities of 100% and 92.85% respectively) than at identifying solid emboli 

(specificities of 78.57% and 85.71% respectively), the ROC curve produce AUC of 89.79% 

and 92.85% using optimal thresholds of -0.988 and -0.301 respectively. 
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C = 0.025 µl/ml 

  
C = 0.05 µl/ml 

 
A 

 
B 

Figure V. 15. ROC curve at different detection thresholds, : A. MI= 0.2, B. MI= 0.6 for two 

microbubbles concentrations using PCA. 

The Roc curves using Fisher score model are illustrated in Figure V.16. The best 

performances are obtained for the concentration C = 0.025µl/ml at high MI (0.6) and 

concentration C = 0.05µl/ml at high MI (0.6) with OT of 0.292 and -0.111 respectively. The 

ROC curve for the concentration C = 0.025µl/ml at high MI (0.6) indicates that the proposed 

Fisher score model recognizes solid emboli and gaseous emboli en a comparable manner with 

a sensitivity of 92.85% and a specificity of 92.85%. However for the concentration C = 

0.05µl/ml at high MI (0.6) Fisher score model performs better at identifying gaseous emboli 

(sensitivity=100%) than at identifying solid emboli (specificity =78,57%). 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (1 - Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

ROC: PCA

 

 

ROC Curve
AUC = 0.898
Max Acc 0.893

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (1 - Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

ROC: PCA

 

 

ROC Curve
AUC = 0.954
Max Acc 0.929

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (1 - Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

ROC: PCA

 

 

ROC Curve
AUC = 0.903
Max Acc 0.929

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (1 - Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)
ROC: PCA

 

 

ROC Curve
AUC = 0.929
Max Acc 0.893

147 
 



Chapter V           Particle Characterization Using Wavelet Based Approach  and 
           SVM Based Dimensionality Reduction 

 
C = 0.025 µl/ml 

  
C = 0.05 µl/ml 

 
A 

 
B 

Figure V. 16. ROC curve at different detection thresholds, : A. MI= 0.2, B. MI= 0.6 for two 

microbubbles concentrations using Fisher score. 

For the concentrations C = 0.025µl/ml and C = 0.05µl/ml at low MI (0.2), Fisher 

based classification model recognizes gaseous emboli (with sensitivities of 92.85 and 100% 

respectively) in a better way than solid emboli (with specificities of 85.71% and 78.57% 

respectively). 
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C = 0.025 µl/ml 

  
C = 0.05 µl/ml 

 
A 

 
B 

Figure V. 17. ROC curve at different detection thresholds, : A. MI= 0.2, B. MI= 0.6 for two 

microbubbles concentrations using DEFS [18]. 

Figure V.17 shows the DEFS ROC curves of the four datasets using several detection 

thresholds in which TP rate is plotted on the Y axis and FP rate is plotted on the X axis. The 

best results that maximizes (sensitivity and specificity) are achieved using a threshold of 

0.1163. At this cut-offs, the sensitivity is 100% and specificity is 92.85%. The ROC curves in 

Figure V.17 indicate that the DEFS model performs better at identifying gaseous emboli than 

at identifying solid emboli for the concentrations C = 0.025µl/ml and C = 0.05µl/ml at high 

MI (0.6), the ROC curves produce an AUC of 97.44% and 96.93% respectively.  
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On the contrary, for the concentration C=0.025µl/ml at low MI (0.2), the DEFS based 

SVM model recognizes better solid emboli than gaseous emboli. The classification 

performances for gaseous and solid emboli are quite similar for the concentration C = 

0.05µl/ml at low MI (0.2). 

The DEFS model presents better performances compared to the PCA and the Fisher 

score models [18]. 

Table V. 13. Confusion matrix of the DEFS model [18]. 

 
C = 0.025 µl/ml 

 
Predicted 

 
Low MI (0.2) Nbr of 

selected 

features 

High MI (0.6) Nbr of 

selected 

features   
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Actual 

class 

Gaseous 

emboli 
12 2 

07 
14 0 

04 

Solid emboli 0 14 1 13 

 
 

C = 0.05 µl/ml 

 Low MI (0.2) Nbr of 

selected 

features 

High MI (0.6) Nbr of 

selected 

features   
Gaseous 

emboli 

Solid 

emboli 

Gaseous 

emboli 

Solid 

emboli 

Actual 

class 

Gaseous 

emboli 
13 1 

05 
14 0 

07 

Solid emboli 1 13 2 12 
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Table V.13 illustrates the confusion matrix of the DEFS system. The numbers of 

correct and incorrect predictions made by DEFS model compared to the target values in the 

test data are shown in Table V.13. For example, at microbubble concentration 0.025 µl/ml and 

high MI (0.6) the proposed classification model succeeded in classifying 14 gaseous embolus 

out of 14 (Sensitivity=100%) and 13 solid embolus out of 14 (Specificity =92.85%). Thus 1 

solid embolus is not recognized i.e. classified as gaseous embolus, the gaseous embolus are 

all recognized. 

C=0.025µl/ml 

  
C=0.05µl/ml 

 
A 

 
B 

Figure V. 18. Generalisation performances using DEFS algorithm [18] and comparison with 
the results obtained with FFT model [24]: A. MI= 0.2, B. MI= 0.6 for two microbubbles 

concentrations. 

In order validate the proposed approach; we compare the best proposed model (DWT 

based DEFS model) [18] in this study with the results obtained in our recently published 

study (FFT model) [24] on the same backscatter RF signals (refer to Figure V.18). The 

average percentage of correct classification of microemboli using DEFS algorithm with SVM 

classifier for two microbubbles concentrations (0.025 µl/ml and 0.05 µl/ml) at high and low 

mechanical index (0.2 and 0.6) are given in Table V.14. 
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Table V. 14. Generalisation performances using DEFS algorithm and comparison with the 

results obtained with the FFT model [24]. 
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V.3-6 Discussion 

In this experimental study, we exploit RF signals in the detection and the classification 

of microemboli into gaseous or solid embolus. Several features are evaluated from the detail 

coefficients using DWT technique. It should be noted that the features used in this study are 

the same used in the work by N. Aydin et al. [25]. These features are used as inputs to the 

classification models without dimensionality reduction method. The average classification 

rate doesn't exceed 89.28% for all datasets, this can be explained by the fact that even the 

more powerful among the existing machine learning algorithms tend to get confused when 

supplied with a large number of features. 

Building quantitative models (classifiers) using a large number of features most often 

requires using a smaller set a features than the initial one. Indeed, a too large number of 

features feed to a model (classifier) results in a too large number of parameters, leading to 

overfitting and poor generalization abilities [105]. It is noteworthy, in our case, the original 

data set contains d features (d = 50), an extensive search of all possible combinations would 

involve the design of 2d-1 different models. This value grows exponentially, making an 

exhaustive search impractical even for moderate values of d. In order to reduce the 

dimensionality and select a relevant set of features, we implement three dimensionality 

reduction techniques based on differential evolution, Fisher score, and PCA algorithms. For 

all the acquisitions a significant improvement in the classification rates is observed when 

using dimensionality reduction methods. The average classification rate goes down when the 

number of selected features gets larger which validates that learning might be deteriorated by 

irrelevant features (refer to Figure V.13 and Figure V.14). 

We employ seven evaluation measures such as: Recall (Sensitivity), Specificity, 

Precision, Kappa coefficient, F-measure, overall accuracy, and AUC (Area Under Curve). 

These performance measures are used to discriminate relevant information that provide more 

insight into the characteristics of the model in order to make meaningful decisions. Sensitivity 

relates to a test's ability to correctly identify those patients with pathology as positive. 

Specificity of a test refers to its ability to correctly identify individuals without the pathology 

as negative. Precision measures that fraction of patients classified as positive that are truly 

positive. Recall and Precision are combined as their harmonic mean, known as the F-measure. 

Kappa is a coefficient developed to measure agreement among observers. Furthermore, we 
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investigate other statistical measure which better estimates the accuracy of a given trial test by 

analyzing sensitivity and specificity simultaneously, this approach  is the area under curve 

(AUC) associated to the receiver operating characteristic (ROC) curve. AUC allows to 

quantify the ROC curve performance using a single value. It is well known that the higher the 

AUC value, the more efficient the classifier. 

The best results are obtained using DEFS algorithm [18]. The superiority of DEFS 

Algorithm over PCA and Fisher score techniques is due to process of selection of the best set 

of features; DEFS technique employs the classification algorithm (SVM in this case) as part 

of the function evaluating each set of features. However, this process is time consuming in the 

training and feature selection step compared to PCA and Fisher score algorithms in which the 

evaluation of the features is conducted independently of the classification algorithm. Fisher 

Score model and PCA model present similar performances. However, PCA method reach its 

highest ACC using only the first three principal components compared to Fisher Score 

algorithm which achieves the same ACC using more than 3 features. This can be explained by 

the fact that the first three principal components preserve the maximum amount of 

information from the initial features.   

In order validate the proposed approach; we compare the obtained results (DWT based 

DEFS model) [18] in this study with those obtained in our recently published study [24] on 

the same backscatter RF signals (refer to Table V.14). In the FFT model [24] we employ a 

neural network (MLP and RBFN) analysis using the fundamental and the second harmonic 

components information contained in the RF signal backscattered by an embolus. The 

experimental results show clearly that our proposed method (DWT based DEFS model) 

achieves better average classification rates compared to the method cited in [24] using also 

the same backscatter RF signals. 

The superiority the DWT based DEFS and SVM approach over the FFT based Neural 

Network approach, can be explained by the fact that: (i) DWT is well localized in both time 

and frequency domain whereas FFT is only localized in frequency domain. (ii) The use of 

dimensionality reduction technique (DEFS) reduces the size of input vector; therefore, finds 

the most relevant set of feature that result in higher average classification rate. (iii) SVM has a 

high capacity for generalization using limited numbers of training data points; furthermore, 

SVMs don't have local extrema problems that are present for neural networks, which involve 
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large numbers of training patterns. The performance of SVMs relies on the choice of kernel 

type and kernel parameters, but this dependence is less influential. (iv) Besides, testing all 

possible cut-offs using ROC analysis and choosing the optimal threshold lead to better 

classification rates compared to the fixed threshold of 0.5 adopted in FFT based approach 

(chapter II) [24]. 

It is noteworthy that the results depicted by Tables V.8 to V.14 are reproducible. The 

best results appear in bold. The algorithm has only access to the training and validation sets, 

the test set is kept unseen in the selection process of the best model. The test set is used only 

for the assessment of the model selected by the cross-validation technique. 

V.4 Conclusion 

The results presented in this experimental study demonstrate the usefulness of RF 

ultrasound signal processing in detection and classification of microemboli. A first proof of 

concept of emboli classification based on the combination of a time-frequency based feature 

extraction technique (discrete wavelet transform), dimensionality reduction methods (DEFS, 

PCA, and Fisher score), and backscatter RF signals is demonstrated. The results indicate that 

dimensionality reduction not only has the ability to find the most relevant set of inputs that 

result in higher average classification rate but also has the ability to reduce the size of feature 

vector. We demonstrate in this experimental study that combining DEFS algorithm and 

discrete wavelet transform [18] provides better average classification rates (96.42%) in 

comparison to our previous study using also the same backscatter RF signal [24] that is 

evaluated extensively in a comparable manner.  
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 Conclusions and perspectives 

Conclusions and perspectives 

Emboli detection and classification remain a promising research area due to the 

correlation between embolism consequences and embolus nature (gaseous or solid emboli). 

The detection and classification of circulating microemboli is nowadays considered as a main 

challenge in the field of emboli detection. In the human body; emboli can produce severe 

damage like stroke or heart attack thus the importance of an automatic classification system. 

This thesis presented a study on how microemboli problems can be detected and 

characterized. It investigated a novel approach to the detection and classification of 

microemboli using Radio-Frequency (RF) ultrasound signals and artificial intelligence 

techniques. Emboli classification is of high clinical importance for selecting appropriate 

patient treatment. Several ultrasonic methods using Doppler processing have been used for 

emboli detection and classification as solid or gaseous matter. Until now, Doppler techniques 

have shown some limitations to determine clearly the nature of circulating microemboli. 

Under specific conditions of the ultrasound excitation wave, gaseous bubbles show a 

nonlinear behavior exploited in this work to distinguish gaseous from solid microemboli. 

Therefore, we suggested in this experimental study to focus on Radio-Frequency ultrasound 

signals backscattered by the emboli since they contain additional information about the 

embolus than the commonly used Doppler signal.  

The proposed experimental set-up in this thesis is developed at the University of 

François Rabelais Tours, France in the INSERM U930 laboratory under the direction of 

Professor A. Bouakaz. It consists of an Anthares scanner with RF access with a transmit 

frequency of 1.82 MHz at two mechanical indices (MI) 0.2 and 0.6. To imitate emboli US 

behavior, Sonovue microbubbles are injected at two different concentrations (10µl and 5µl) in 

a nonrecirculating flow phantom with a 0.8 mm diameter vessel at a constant flow. Non 

perfused tissue is assumed to behave as solid emboli. Sonovue concentration is chosen such 

that fundamental scattering from tissue and contrast are identical. As a result, we obtain four 

datasets, each dataset consists of 102 samples (51 gaseous emboli and 51 solid emboli). This 

dataset is used to create a number of discriminative features exploited for the detection and 

classification of circulating microemboli. 
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At first, we employed Fast Fourier Transform (FFT) and artificial neural network 

models for the analysis of RF signals backscattered by gaseous and solid emboli. The results 

demonstrated the opportunity to classify emboli based on a RF signals by exploiting the 

nonlinear behaviour of gaseous emboli. The proposed model reached a classification rate of 

92.85%.  

In view of the fact that several researchers have revealed that discrete wavelet 

transform performs in a better way than Fast Fourier Transform for the analysis of embolic 

signals, we employed at a second stage DWT for the analysis of RF signals backscattered by 

gaseous and solid emboli. We described a strategy to choose the appropriate mother wavelet 

among 59 mother wavelet functions. Moreover, we proposed another classification system of 

microemboli using three dimensionality reduction technique (Differential Evolution 

algorithm, Fisher Score method, and Principal Component Analysis), support vector machines 

(SVM), and the backscattered RF signals based on the selected wavelet filter. DEFS based 

approach provides better average classification rates (96.42%) in comparison to the previous 

study using FFT approach.  

With the ability to localize well both in time and frequency, wavelet based 

dimensionality reduction technique presents higher overall classification accuracies than FFT 

based neural network approach. Nevertheless, it would be interesting to incorporate both FFT 

and DWT approaches together in the same classification model. 

The immediate extension of the study presented in this thesis include the use of 

circulating solid emboli instead of surrounding tissue. We should also test the proposed 

algorithms on a larger dataset and  in animal experiments. Besides, we intend to exploit 

subharmonics in order to allow better discrimination of solid and gaseous emboli. 

The combination of classifiers, would simplify the decision-making process. Ensemble 

classifiers could be an alternative to the stand alone artificial neural network models or the 

support vector machines. 

 According to the obtained results, one may need to combine other types of approaches 

(e.g., filter and embedded) in order to improve the discriminative power of the proposed 

method. The processing time is an essential consideration if we have to implement this 

approach in clinical situation. It should be noted that the training/feature selection phase lasts 

for a few minutes while the processing time for the test phase (classification) is less than 1s. 
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 Conclusions and perspectives 

We demonstrated in this in vitro study, a first proof of concept of emboli classification 

based on the combination of data mining techniques, signal processing methods, and Radio 

Frequency information extracted from gaseous and solid emboli. The technique as suggested 

in this study proves to be effective in improving classification. The implementation of such 

algorithm in real time applications makes also the investigation of the feasibility of emboli 

detection systems using RF signal worthwhile. It may let a surgeon, for example, know that 

something is causing emboli. However, further validations in in-vivo situations are required to 

demonstrate the additional benefit.  

The studies described in this thesis contribute to the general knowledge on the 

detection and classification problem of microemboli and offer more insight to the use of the 

RF signals instead of Doppler signals to classify embolic signals. Our conviction is that Radio 

Frequency ultrasound signals bring real opportunities for microemboli detection and 

classification and should be also used in combination with Doppler approach in order to 

improve the discrimination rate. Although the clinical utility still needs evaluation and 

validation in practical diagnosis, the main message of this study is to validate this strategy in a 

simple and a controlled experimental environment before further pre-clinical and clinical 

validations are undertaken. 

 

 

 

 

 

 

 

 

 

159 
 



 References 

 

References 

[1] PIPER Keaton, ALGATTAS Hanna, DEANDREA-LAZARUS Ian A, KIMMELL 

Kristopher T, LI Yan Michael, WALTER Kevin A, SILBERSTEIN Howard J, and 

VATES G Edward. Risk factors associated with venous thromboembolism in patients 

undergoing spine surgery. Journal of Neurosurgery: Spine, 2017, vol. 26, no 01, p. 90-

96. 

[2] KOJURI Javad, MEHDIZADEH Morteza, ROSTAMI Hamed, and SHAHIDIAN 

Danial. Clinical significance of retinal emboli during diagnostic and therapeutic 

cardiac catheterization in patients with coronary artery disease. BMC cardiovascular 

disorders, 2011, vol. 11, no 01, p. 5. 

[3]  FARGE Dominique, BOUNAMEAUX Henri, BAUERSACHS Rupert M, and 

BRENNER Benjamin. Women, thrombosis, and cancer: A gender-specific analysis. 

Thrombosis Research, 2017, vol. 151, p. S21-S29.  

[4] BECATTINI Cecilia, AGNELLI Giancarlo, LANKEIT Mareike, MASOTTI Luca, 

PRUSZCZYK Piotr, CASAZZA Franco, VANNI Simone, NITTI Cinzia, 

KAMPHUISEN Pieter, and VEDOVATI Maria Cristina. Acute pulmonary embolism: 

mortality prediction by the 2014 European Society of Cardiology risk stratification 

model. European Respiratory Journal, 2016, vol. 48, no 03, p. 780-786. 

[5] HARRIS Adam A, and BROWN David L. Evaluation of Patients with Suspected 

Cardiac Sources of Emboli. In Evidence-Based Cardiology Consult, Springer London, 

2014, p. 539-551. 

[6] RUSSELL David A, ROBINSON Graham J, and JOHNSON Brian F. Popliteal 

venous aneurysm: a rare cause of recurrent pulmonary emboli and limb swelling. 

Cardiovascular and interventional radiology, 2008, vol. 31, no 05, p. 1026-1029. 

[7] PETRACCA Martina, CALANDRELLI Rosalinda, BROCCOLINI Aldobrando, 

CALIANDRO Pietro, DELLA Marca Giacomo, FRISULLO Giovanni, MOROSETTI 

Roberta, PROFICE Paolo, LAMENDOLA Priscilla, and PENNESTR Faustino. 

Thrombus in Transit: A Potentially Life-threatening Complication of Cerebral Sinus 

Thrombosis. The Neurologist, 2017, vol. 22, no 01, p. 21-23. 

160 
 



 References 

 
[8] AUSTEN W Gerald, and HOWRY Douglass H. Ultrasound as a method to detect 

bubbles or particulate matter in the arterial line during cardiopulmonary bypass. 

Journal of Surgical Research, 1965, vol. 05, no 06, p. 283-284. 

[9] SPENCER Merrill P, THOMAS George I, NICHOLLS Stephen C, and SAUVAGE 

Lester R. Detection of middle cerebral artery emboli during carotid endarterectomy 

using transcranial Doppler ultrasonography. Stroke, 1990, vol. 21, no 03, p. 415-423. 

[10] BASCIANI Reto, KRÖNINGER Felix, GYGAX Erich, JENNI Hansjörg, REINEKE 

David, STUCKI Monika, HAGENBUCH Niels, CARREL Thierry, EBERLE 

Balthasar, and ERDOES Gabor. Cerebral Microembolization During Aortic Valve 

Replacement Using Minimally Invasive or Conventional Extracorporeal Circulation: 

A Randomized Trial. Artificial organs, 2016, vol. 40, no 12, p. E280–E291. 

[11] MARTIN Kristin K, WIGGINTON Jeremy B, BABIKIAN Viken L, POCHAY Val E, 

CRITTENDEN Michael D, and RUDOLPH James L. Intraoperative cerebral high-

intensity transient signals and postoperative cognitive function: a systematic review. 

The American Journal of Surgery, 2009, vol. 197, no 01, p. 55-63. 

[12] PATEL Nikil, MINHAS Jatinder S, and CHUNG Emma ML. Intraoperative 

embolization and cognitive decline after cardiac surgery: a systematic review. In 

: Seminars in cardiothoracic and vascular anesthesia. Sage CA: Los Angeles, CA : 

SAGE Publications, 2016. vol. 20, no. 03 p. 225-231. 

[13] MARKUS Hugh S, and PUNTER Martin. Can transcranial Doppler discriminate 

between solid and gaseous microemboli?. Stroke, 2005, vol. 36, no 08, p. 1731-1734. 

[14] RODRIGUEZ Rosendo A, GIACHINO Allan, HOSKING Martin, and NATHAN 

Howard J. Transcranial Doppler characteristics of different embolic materials during 

in vivo testing. Journal of Neuroimaging, 2002, vol. 12, no 03, p. 259-266. 

[15] VUKOVIĆ-CVETKOVIĆ Vlasta. Microembolus detection by transcranial Doppler 

sonography: review of the literature. Stroke research and treatment, 2011, vol. 2012, p. 

1-7. 

161 
 



 References 

 
[16] PALANCHON Peggy, BOUAKAZ Ayache, KLEIN Jan, and De JONG Nico. 

Multifrequency transducer for microemboli classification and sizing. IEEE 

transactions on biomedical engineering, 2005, vol. 52, no 12, p. 2087-2092. 

[17] TRANQUART François, CORREAS Jean-Michel, and BOUAKAZ, 

Ayache. Echographie de contraste: méthodologie et applications cliniques. Springer 

Science & Business Media, 2007. 

[18] FERROUDJI Karim, BENOUDJIT Nabil, and BOUAKAZ Ayache. An automated 

microemboli detection and classification system using backscatter RF signals and 

differential evolution. Australasian Physical & Engineering Sciences in Medicine, 

2017, vol. 40, no 01, p.85-99. 

[19] DOUAK Fouzi, TAFSAST Abdelghani, FOUAN Damien, FERROUDJI Karim, 

BOUAKAZ Ayache, and BENOUDJIT Nabil . A wavelet optimization approach for 

microemboli classification using RF signals. In : Ultrasonics Symposium (IUS), IEEE 

International. IEEE, 2016. p. 1-4. 

[20] FERROUDJI Karim, BENOUDJIT Nabil, and BOUAKAZ Ayache. Empirical mode 

decomposition based support vector machines for microemboli classification. In 8th 

International Workshop on: Systems, Signal Processing and their Applications 

(WoSSPA), IEEE, 2013. p. 84-88. 

[21] FERROUDJI Karim, BAHAZ Mohamed, BENOUDJIT Nabil, and BOUAKAZ 

Ayache. Microemboli Classification using Non-linear Kernel Support Vector 

Machines and RF signals. Rev. des Sci. la Technol, 2012, vol. 03, p. 79-87. 

[22] FERROUDJI Karim, BAHAZ Mohamed, BENOUDJIT Nabil, and BOUAKAZ 

Ayache. Selection of a suitable mother wavelet for microemboli classification using 

SVM and RF signals. In : 24th International Conference on Microelectronics (ICM), 

IEEE, 2012. p. 1-4. 

[23] FERROUDJI Karim, BAHAZ Mohamed, BENOUDJIT Nabil, and BOUAKAZ 

Ayache. Feature selection based on RF signals and KNN Rule: Application to 

microemboli classification. In 7th International Workshop on: Systems, Signal 

Processing and their Applications (WOSSPA), IEEE, 2011. p. 251-254. 

162 
 



 References 

 
[24] BENOUDJIT Nabil, FERROUDJI Karim, BAHAZ Mohamed, and BOUAKAZ 

Ayache. In vitro microemboli classification using neural network models and RF 

signals. Ultrasonics, 2011, vol. 51, no 03, p. 247-252. 

[25] AYDIN Nizamettin, MARVASTI Farrokh, and MARKUS Hugh S. Embolic Doppler 

ultrasound signal detection using discrete wavelet transform. IEEE Transactions on 

Information Technology in Biomedicine, 2004, vol. 08, no 02, p. 182-190. 

[26] SERBES Gorkem, and AYDIN Nizamettin. Modified dual tree complex wavelet 

transform for processing quadrature signals. Biomedical Signal Processing and 

Control, 2011, vol. 06, no 03, p. 301-306. 

[27] AYDIN Nizamettin, PADAYACHEE Soundrie, and MARKUS Hugh S. The use of 

the wavelet transform to describe embolic signals. Ultrasound in medicine & biology, 

1999, vol. 25, no 06, p. 953-958. 

[28] PRANDONI P, LENSING AWA, PRINS MH, BARON-ESQUIVIAS G, 

MARTÍNEZ-ALDAY J, MARTÍN A, MOYA A, SUTTON R, and AMMIRATI F. 

Pulmonary Embolism in Patients Hospitalized for Syncope. N Engl J Med, 2017, vol. 

2017, no 376, p. 494-497. 

[29] JEAN-PHILIPPE Rivière. Thrombose, phlébite, embolie : quels sont vos risques? 

2003 from:  

 [http://www.doctissimo.fr/html/sante/mag_2003/sem01/mag0627/sa_6870_thrombose

_risques.htm] 

[30] TOMITA Hirofumi, HAGII Joji, and OKUMURA Ken. Severity and Outcomes of 

Intracerebral Bleeding and Cardiac Cerebral Embolism. In : Treatment of Non-vitamin 

K Antagonist Oral Anticoagulants. Springer Singapore, 2017. p. 41-51. 

[31] SAMARDZIC Kristian, SAMARDZIC Pejo, VUJEVA Bozo, PRVULOVIC Djeiti, 

and LATIC-HODZIC Leila. Embolism in retinal circulation after invasive 

cardiovascular procedures. Medical Archives, 2012, vol. 66, no 01, p. 66. 

 

 

163 
 



 References 

 
[32] Kobayashi Nobuaki, Shibata Yusaku, Hata Noritake, and Shimizu Wataru. Formation 

of Infectious Coronary Artery Aneurysms After Percutaneous Coronary Intervention 

in a Patient With Acute Myocardial Infarction Due to Septic Embolism. JACC: 

Cardiovascular Interventions, 2017, vol. 10, no 03, p. E21-E22. 

[33] KANAYAMA Naohiro, INORI Junko, ISHIBASHI-UEDA Hatsue, TAKEUCHI 

Makoto, NAKAYAMA Masahiro, KIMURA Satoshi, MATSUDA Yoshio, 

YOSHIMATSU Jun, and IKEDA Tomoaki. Maternal death analysis from the Japanese 

autopsy registry for recent 16 years: significance of amniotic fluid embolism. Journal 

of Obstetrics and Gynaecology Research, 2011, vol. 37, no 01, p. 58-63. 

[34] RISKA Erik B., and MYLLYNEN P. Fat embolism in patients with multiple 

injuries. Orthopedic Trauma Directions, 2009, vol. 07, no 06, p. 29-33. 

[35] MCCARTHY Colin J, BEHRAVESH Sasan, NAIDU Sailendra G, and OKLU 

Rahmi. Air Embolism: Diagnosis, Clinical Management and Outcomes. Diagnostics, 

2017, vol. 07, no 01, p. 5. 

[36] MUTH Claus M, and SHANK Erik S. Gas embolism. New England Journal of 

Medicine, 2000, vol. 342, no 07, p. 476-482. 

[37]  DI NISIO Marcello, VAN ES Nick, and BÜLLER Harry R. Deep vein thrombosis and 

pulmonary embolism. The Lancet, 2017, vol. 388, no 10063, p. 3060-3073. 

[38] RIES S, KNAUTH M, KERN R, KLINGMANN C, DAFFERTSHOFER M, 

SARTOR K, and HENNERICI M. Arterial gas embolism after decompression: 

correlation with right-to-left shunting. Neurology, 1999, vol. 52, no 02, p. 401-401. 

[39] WOLF Lorenzo Guerrieri, CHOUDHARY Bikram P, ABU-OMAR Yasir, and 

TAGGART David P. Solid and gaseous cerebral microembolization after biologic and 

mechanical aortic valve replacement: investigation with multirange and 

multifrequency transcranial Doppler ultrasound. The Journal of thoracic and 

cardiovascular surgery, 2008, vol. 135, no 03, p. 512-520. 

[40] PADAYACHEE TS, PARSONS S, THEOBOLD R, LINLEY J, GOSLING RG, and 

DEVERALL PB. The detection of microemboli in the middle cerebral artery during 

cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using 

164 
 



 References 

 
membrane and bubble oxygenators. The Annals of thoracic surgery, 1987, vol. 44, no 

03, p. 298-302. 

[41] LAROVERE Kerri L and O'BRIEN Nicole F. Transcranial Doppler Sonography in 

Pediatric Neurocritical Care. Journal of Ultrasound in Medicine, 2015, vol. 34, no 12, 

p. 2121-2132. 

[42] BRUCHER Rainer and RUSSELL David. Automatic online embolus detection and 

artifact rejection with the first multifrequency transcranial Doppler. Stroke, 2002, vol. 

33, no 08, p. 1969-1974. 

[43] ROY Emmanuel, MONTRÉSOR Silvio, ABRAHAM Pierre, and SAUMET Jean-

Louis. Spectrogram analysis of arterial Doppler signals for off-line automated HITS 

detection. Ultrasound in medicine & biology, 1999, vol. 25, no 03, p. 349-359. 

[44] LUI Ping-Wing, CHAN Brent CB, CHAN Francis HY, POON Paul WF, WANG 

Hsin, and LAM FK. Wavelet analysis of embolic heart sound detected by precordial 

Doppler ultrasound during continuous venous air embolism in dogs. Anesthesia & 

Analgesia, 1998, vol. 86, no 02, p. 325-331. 

[45] GIRAULT J-M, KOUAMÉ Denis, OUAHABI Abdeldjalil, and PATAT 

Frédéric. Micro-emboli detection: an ultrasound Doppler signal processing 

viewpoint. IEEE Transactions on biomedical Engineering, 2000, vol. 47, no 11, p. 

1431-1439. 

[46] VALTON Luc, LARRUE Vincent, LE TRAON Anne Pavy, MASSABUAU Pierre, 

and GÉRAUD Gilles. Microembolic signals and risk of early recurrence in patients 

with stroke or transient ischemic attack. Stroke, 1998, vol. 29, no 10, p. 2125-2128. 

[47] TELMAN G, SPRECHER E, and KOUPERBERG E. Potential relevance of low-

intensity microembolic signals by TCD monitoring. Neurological Sciences, 2011, vol. 

32, no 01, p. 107-111. 

[48] VUKOVIĆ Vlasta, LOVRENČIĆ-HUZJAN Arijana, and DEMARIN Vida. 

Microembolus Detection by Transcranial Doppler Sonography. Technical and Clinical 

Aspects. Acta Clinica Croatica, 2005, vol. 44, no 01, p. 33-45. 

165 
 



 References 

 
[49] GRAMIAK Raymond and SHAH Pravin M. Echocardiography of the aortic root. 

Investigative radiology, 1968, vol. 03, no 05, p. 356-366.. 

[50] APPIS Andrew W, TRACY Melissa J, and FEINSTEIN Steven B. Update on the 

safety and efficacy of commercial ultrasound contrast agents in cardiac 

applications. Echo research and practice, 2015, vol. 02, no 02, p. R55-R62. 

[51] SCHNEIDER M. SonoVue, a new ultrasound contrast agent. European radiology, 

1999, vol. 09, no 03, p. S347-S348. 

[52] PALANCHON P, BOUAKAZ Ayache, KLEIN Jan, and De JONG Nico. Emboli 

detection using a new transducer design. Ultrasound in medicine & biology, 2004, vol. 

30, no 01, p. 123-126. 

[53] PALANCHON P, BOUAKAZ Ayache, KLEIN Jan, and De JONG Nico. 

Subharmonic and ultraharmonic emissions for emboli detection and characterization. 

Ultrasound in medicine & biology, 2003, vol. 29, no 03, p. 417-425. 

[54] PALANCHON P, BOUAKAZ Ayache, Van BLANKENSTEIN Jan Heim, KLEIN 

Jan, BOM N, and De JONG Nico. New technique for emboli detection and 

discrimination based on nonlinear characteristics of gas bubbles. Ultrasound in 

medicine & biology, 2001, vol. 27, no 06, p. 801-808. 

[55] BOUAKAZ Ayache, FRINKING Peter JA, De JONG Nico, and BOM Nicolaas. 

Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on 

the disappearance time of micrometer-sized free gas bubbles. Ultrasound in medicine 

& biology, 1999, vol. 25, no 09, p. 1407-1415. 

[56] BRAMER Max. Principles of data mining. Springer, 2016. 

[57] BREIMAN Leo and SPECTOR Philip. Submodel selection and evaluation in 

regression. The X-random case. International statistical review/revue internationale de 

Statistique, 1992, p. 291-319. 

[58] GRAUPE Daniel. Principles of artificial neural networks. World Scientific, 2013. 

[59] DU Ke-Lin and SWAMY M. N. S. Radial basis function networks. In : Neural 

Networks and Statistical Learning. Springer London, 2014. p. 299-335. 

166 
 



 References 

 
[60] SHANTHI D, SAHOO G, and SARAVANAN N. Designing an artificial neural 

network model for the prediction of thrombo-embolic stroke. International Journals of 

Biometric and Bioinformatics (IJBB), 2009, vol. 03, no 01, p. 10-18. 

[61] MATOS S, RUANO M Graca, RUANO AE, and EVANS DH. Neural network 

classification of cerebral embolic signals. In : Engineering in Medicine and Biology 

Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. 

IEEE, 2001. p. 1761-1764. 

[62] TOURASSI Georgia D, FLOYD Carey E, SOSTMAN H Dirk, and COLEMAN R 

Edward. Acute pulmonary embolism: artificial neural network approach for diagnosis. 

Radiology, 1993, vol. 189, no 02, p. 555-558. 

[63] BENOUDJIT Nabil and VERLEYSEN Michel. On the kernel widths in radial-basis 

function networks. Neural Processing Letters, 2003, vol. 18, no 02, p. 139-154. 

[64] DUDA, Richard O., HART, Peter E., et STORK, David G. Pattern classification. John 

Wiley & Sons, 2012. 

[65] DEMUTH Howard B, BEALE Mark H, DE JESS Orlando, and HAGAN Martin T. 

Neural network design. Martin Hagan, 2014. 

[66] JAIN Lakhmi, SEERA Manjeevan, LIM Chee, and BALASUBRAMANIAM 

Pagavathigounder. A review of online learning in supervised neural networks. Neural 

Computing and Applications, 2014, vol. 25, no 3-4, p. 491-509. 

[67] KARAYIANNIS Nicolaos and VENETSANOPOULOS Anastasios N. Artificial 

neural networks: learning algorithms, performance evaluation, and applications. 

Springer Science & Business Media, 2013. 

[68] KARAHOCA Adem, KUCUR Turkalp, and AYDIN Nizamettin. Data mining usage 

in emboli detection. In : ECSIS Symposium on Bio-inspired, Learning, and Intelligent 

Systems for Security, BLISS. IEEE, 2007. p. 159-162. 

[69] CORTES Corinna and VAPNIK Vladimir. Support-vector networks. Machine 

learning, 1995, vol. 20, no 03, p. 273-297. 

167 
 



 References 

 
[70] KARAÇALI Bilge, RAMANATH Rajeev, and SNYDER Wesley E. A comparative 

analysis of structural risk minimization by support vector machines and nearest 

neighbor rule. Pattern Recognition Letters, 2004, vol. 25, no 01, p. 63-71. 

[71] DORAN Gary and RAY Soumya. A theoretical and empirical analysis of support 

vector machine methods for multiple-instance classification. Machine Learning, 2014, 

vol. 97, no 1-2, p. 79-102. 

[72] ANDREW Alex M. An Introduction to Support Vector Machines and Other 

Kernel‐based Learning Methods. Kybernetes, 2013. 

[73] WANG Lipo. Support vector machines: theory and applications. Springer Science & 

Business Media, 2005. 

[74] TOMAR, Divya et AGARWAL, Sonali. Twin support vector machine: a review from 

2007 to 2014. Egyptian Informatics Journal, 2015, vol. 16, no 01, p. 55-69. 

[75] WU Kuo-Ping and WANG Sheng-De. Choosing the kernel parameters for support 

vector machines by the inter-cluster distance in the feature space. Pattern Recognition, 

2009, vol. 42, no 05, p. 710-717. 

[76] SERBES, Gorkem, SAKAR, Betul Erdogdu, GULCUR, Halil Ozcan, et al. An emboli 

detection system based on Dual Tree Complex Wavelet Transform and ensemble 

learning. Applied Soft Computing, 2015, vol. 37, p. 87-94. 

[77] GHAZALI Najah, JAAFAR Haryati, and RAMLI Dzati Athiar. Microembolus 

Classification Using MFCC and LPC Feature Extractions. Recent Advances in 

Electrical Engineering and Educational Technologies. Athens, Greece, November 

2014. p.185-190. 

[78] BOLÓN-CANEDO Verónica, SÁNCHEZ-MARONO Noelia, ALONSO-BETANZOS 

Amparo, BENÍTEZ José Manuel, and HERRERA Francisco. A review of microarray 

datasets and applied feature selection methods. Information Sciences, 2014, vol. 282, 

p. 111-135. 

168 
 



 References 

 
[79] STORN Rainer and PRICE Kenneth. Differential evolution–a simple and efficient 

heuristic for global optimization over continuous spaces. Journal of global 

optimization, 1997, vol. 11, no 04, p. 341-359. 

[80] PRICE Kenneth, STORN Rainer M, and LAMPINEN Jouni A. Differential evolution: 

a practical approach to global optimization. Springer Science & Business Media, 2006. 

[81] SEHGAL Smriti, KUMAR Sushil, et BINDU M. Hima. Remotely sensed image 

thresholding using OTSU & differential evolution approach. In : 7th International 

Conference on Cloud Computing, Data Science & Engineering-Confluence, 2017. 

IEEE, 2017. p. 138-142. 

[82] SU Haijun, YANG Yupu, and ZHAO Liang. Classification rule discovery with 

DE/QDE algorithm. Expert Systems with Applications, 2010, vol. 37, no 02, p. 1216-

1222. 

[83] KHUSHABA Rami, AL-ANI Ahmed, and AL-JUMAILY Adel. Feature subset 

selection using differential evolution. Advances in neuro-information processing, 

Springer Berlin Heidelberg, 2009, p. 103-110. 

[84] STORN Rainer. Differential evolution research–trends and open questions. In : 

Advances in differential evolution. Springer Berlin Heidelberg, 2008. p. 1-31. 

[85] HAUPT Randy L, and HAUPT Sue Ellen. Practical genetic algorithms. John Wiley & 

Sons, 2004. 

[86] KHUSHABA Rami N, AL-ANI Ahmed, and AL-JUMAILY Adel. Feature subset 

selection using differential evolution and a statistical repair mechanism. Expert 

Systems with Applications, 2011, vol. 38, no 09, p. 11515-11526. 

[87] VIDAL René, MA Yi, and SASTRY S. Shankar. Principal Component Analysis. In : 

Generalized Principal Component Analysis. Springer New York, 2016. p. 25-62. 

[88] CATTELL Raymond B. The scree test for the number of factors. Multivariate 

behavioral research, 1966, vol. 01, no 02, p. 245-276. 

169 
 



 References 

 
[89] SERBES Gorkem, SAKAR Betul Erdogdu, GULCUR Halil Ozcan, and AYDIN 

Nizamettin. An emboli detection system based on Dual Tree Complex Wavelet 

Transform and ensemble learning. Applied Soft Computing, 2015, vol. 37, p. 87-94. 

[90] XU Da and WANG Yuanyuan. An automated feature extraction and emboli detection 

system based on the PCA and fuzzy sets. Computers in Biology and Medicine, 2007, 

vol. 37, no 06, p. 861-871. 

[91] LI Wenkai and GUO Qinghua. A new accuracy assessment method for one-class 

remote sensing classification. IEEE Transactions on Geoscience and Remote Sensing, 

2014, vol. 52, no 08, p. 4621-4632. 

[92] CICCHETTI Domenic V, KLIN Ami, and VOLKMAR Fred R. Assessing Binary 

Diagnoses of Bio-behavioral Disorders: The Clinical Relevance of Cohen's 

Kappa. The Journal of Nervous and Mental Disease, 2017, vol. 205, no 01, p. 58-65. 

[93] BANDOS Andriy I, GUO Ben, and GUR David. Estimating the Area Under ROC 

Curve When the Fitted Binormal Curves Demonstrate Improper Shape. Academic 

Radiology, 2017, vol. 24, no 02, p. 209-219. 

[94] FERRARO Maria Brigida, COLUBI Ana, GONZÁLEZ‐RODRÍGUEZ Gil, COPPI 

Renato. A determination coefficient for a linear regression model with imprecise 

response. Environmetrics, 2011, vol. 22, no 04, p. 516-529. 

[95] PIRON Julien, ESCOFFRE Jean-Michel, KADDUR Kadija, NOVELL Anthony, and 

BOUAKAZ Ayache. Enhanced gene transfection using ultrasound and Vevo 

Micromarker® microbubbles: Microbubbles-assisted ultrasound and gene delivery. In: 

Ultrasonics Symposium (IUS), IEEE, 2010. p. 1586-1589. 

[96] PALANCHON P, BENOUDJIT N, BAHAZ M, CHERRID N, and BOUAKAZ 

Ayache. P1A-5 Analysis of Backscattered Signals with a Neural Network Model for 

Microemboli Classification. In : Ultrasonics Symposium, IEEE, 2007. p. 1259-1261. 

[97] SINGH Bikesh Kumar, VERMA Kesari, and THOKE A. S. Investigations on impact 

of feature normalization techniques on classifier's performance in breast tumor 

classification. International Journal of Computer Applications, 2015, vol. 116, no 19. 

p. 11-16. 

170 
 



 References 

 
[98] THEDE Leslie D. Practical analog and digital filter design. Norwood, Mass, USA : 

Artech House, 2005. 

[99] COLOMINAS M. A, SCHLOTTHAUER G, and TORRES M. E. Complete ensemble 

EMD and Hilbert transform for heart beat detection. In: VI Latin American 

Conference in Biomedical Engineering. 2014. p. 496-499. 

[100] TAHAR Neffati, L'électronique de A à Z, Paris, Dunod, 2006, p. 26-27. 

[101] NGUI Wai Keng, LEONG M Salman, HEE Lim Meng, and ABDELRHMAN Ahmed 

M. Wavelet analysis: mother wavelet selection methods. In : Applied mechanics and 

materials. Trans Tech Publications, 2013, vol. 393. p. 953-958.  

[102] STRANG Gilbert and NGUYEN Truong. Wavelets and filter banks. SIAM, 1996. 

[103] MISITI Michel, MISITI Yves, OPPENHEIM Georges, and POGGI Jean-Michel. 

Matlab Wavelet Toolbox User\'s Guide. Version 3. 2004. 

[104] ERIŞTI Hüseyin, UÇAR Ayşegül, and DEMIR Yakup. Wavelet-based feature 

extraction and selection for classification of power system disturbances using support 

vector machines. Electric power systems research, 2010, vol. 80, no 07, p. 743-752. 

[105] ROSSI Fabrice, LENDASSE Amaury, FRANÇOIS Damien, WERTZ Vincent, and 

VERLEYSEN Michel. Mutual information for the selection of relevant variables in 

spectrometric nonlinear modelling. Chemometrics and intelligent laboratory systems, 

2006, vol. 80, no 02, p. 215-226. 

[106] DONOHO David L. De-noising by soft-thresholding. IEEE transactions on 

information theory, 1995, vol. 41, no 03, p. 613-627. 

[107] BOASHASH, Boualem. Estimating and interpreting the instantaneous frequency of a 

signal. II. Algorithms and applications. Proceedings of the IEEE, 1992, vol. 80, no 04, 

p. 540-568. 

171 
 



PUBLICATIONS RELATED TO THIS THESIS 

The thesis is based on the following papers: 

1- FERROUDJI Karim, BENOUDJIT Nabil, et BOUAKAZ Ayache. An automated 

microemboli detection and classification system using backscatter RF signals and 

differential evolution. Australasian Physical & Engineering Sciences in Medicine, 2017, 

vol. 40, no 1, p.85-99. 

2-  FERROUDJI Karim, BENOUDJIT Nabil, BAHAZ Mohamed, et BOUAKAZ 

Ayache. Selection of a suitable mother wavelet for microemboli classification using 

SVM and RF signals. In: 2012 24th International Conference on Microelectronics 

(ICM),. IEEE, 2012. p. 1-4. 

3-  BENOUDJIT Nabil, FERROUDJI Karim, BAHAZ Mohamed, et BOUAKAZ 

Ayache. In vitro microemboli classification using neural network models and RF 

signals. Ultrasonics, 2011, vol. 51, no 3, p. 247-252. 

172 
 


	1_page_de_garde_doct_sc_VF
	Soutenue le  30/11/2017
	Devant le jury:

	2_Abstract
	3_PREFACE
	4_Acknowledgments_V
	6_Table of Contents
	7_list of tables
	8_list of figures
	9_list of abbreviations
	10_General Introduction
	1. Definition of microemboli
	2. Aim of the thesis


	11_Chapter I _Literature Review of Embolism
	I.5-1 Ultrasound contrast agents
	Table I.1 Currently marketed ultrasound contrast agents [50].

	12_Chapter II _Literature Review of Artificial Intelligence Methods
	13_Chapter III _Experimental set-up and data acquisition
	14_Chapter IV_Particle Characterization Using FFT Based Approach and Artificial Neural Networks
	15_Chapter V_Particle Characterization Using Wavelet Based Approach and SVM Based Dimensionality Reduction
	16_Conclusion and perspectives
	17_References
	18_List of Publications

