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Résumé 

Dans les commandes classiques le flux est maintenu constant à sa valeur nominal hors régime de 

défluxage  constitue un degré de liberté non exploité. Dans la plupart des cas ce degré de liberté est 

utilisé pour élaborer des stratégies de commande qui minimisent la consommation de l’énergie du 

moteur tout en respectant les spécifications du couple. Dans ce contexte les techniques 

d’intelligence artificielles ont été largement exploitées dans le domaine de minimisation des pertes. 

Parmi  ces techniques l’application de la logique floue, les algorithmes génétiques, réseaux de 

neurones,   technique PSO a montrée un degré de performance élevée dans le domaine de 

l’optimisation énergétique. Le présent  travail entre dans ce cadre, où  des algorithmes basées sur les 

techniques  intelligentes :   à savoir la logique floue et les algorithmes génétiques  sont proposés pour  

optimiser le  flux en ligne  et par la même améliorer le rendement de l’ensemble motor asynchrone 

convertisseur statique,  en tenant compte des pertes fer et de la saturation dans la machine. Les 

resultats obtenus attestent de l’efficacité des approches proposées aussi bien pour les faibles 

charges que pour les charges élevées.  La robustesse de ces algorithmes  fut aussi testée là aussi les 

résultats sont assez encourageants. 

Mots clés :   Moteur asynchrone, Onduleur, Contrôleur Flou  , Algorithmes Génétiques Commande 

vectorielle, Pertes fer. 
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NOMENCLATURE 
 

•  Rs , Rr   stator and rotor resistance, 

 Rfs , Rfr  sator and rotor iron loss resistance, 

•  L s , L r   stator and rotor leakage inductances, 

•  M   magnetizing inductance, 

 Ls   total stator inductance, 

 Lr  total rotor inductance, 

 σ   leakage coefficient, 

 σr  rotor leakage coefficient 

• Tr   rotor time constant, 

 ω   motor speed,  

 ωs  synchronous speed, 

 ωr   

• Te , Tl    electromagnetic and load torques, 

• np   number of pole pairs, 

•  J   motor inertia constant, 

•  f   coefficient of friction, 

•  v sd,v sq   d and q components of the stator voltages, 

•  i sd ,i sq   d and q components of the stator currents, 

 � rd, � rq  d and q components of the rotor flux linkages, 

 i µ  magnetizing current, 

 PSO  Particle Swarm Optimization. 
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Introduction 

The interplay between economic and environmental issues, increasing energy 

demand and limited resources, has driven efficiency improvement in every aspects of 

electrical engineering [Bazzi 2010]. More than 50% of the electrical energy produced 

worldwide is consumed by motors, mainly the three phase induction ones being  the most 

widely used in industry application. The interest in energy saving is one of the major 

motivational factors in the introduction of variable-speed drives in some industries. 

Therefore, it is prevalent to encounter the efficiency computation for electric motors 

whenever variable-speed is considered, [R.Krishnan 2001] 

Induction motors (IM) are imposing themselves as a reliable and more economical choice in 

a wide range of applications. In industry, they represent an important factor of control.  

The efficiency of a drive system is a complex function which depends on  the type of the 

machine, the converter topology and the kind  of semi conductor power switches and the 

modulation algorithm. 

Furthermore, the control system has an important effect on drive efficiency. A drive system 

which normally operates at rated flux yields the fastest transient response. Depending on 

motor size and design, the rated load efficiency may attain 80 - 90% with power factors of 

0.7-0.9. However, when the load is reduced, the performances degrade accordingly [Peter 

Vas 1999].  

Power-loss minimization in induction machines has been investigated for over 30 years. The 

basic idea of efficiency optimisation control of motors is the adjustment of the motor flux  go 

as to achieve a minimum loss and hence  a maximum efficiency. Every motor operating point 

can be attained by different levels of motor flux and, usually, only one flux value among 

them ensures a minimum electrical loss. Efficiency optimizing controllers search this 

optimum value for each operating point and impose  it to the machine under control. This 

leads to a maximum efficiency operation a whole load range [Jinchuan. Li ,.2005]. 

The IM efficiency optimisation of the drives can be realised by different types of loss 

minimisation strategies. There are basically two methods for efficiency optimization control: 

off-line and on-line methods. The off-line method calculates the flux of the motor at each 

operating point by a set of predefined mathematical equations. The resulting flux values for 

a range of operating points are then stored in a look-up table. During the motor operation, 
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the flux value, corresponding to the present operating point, is fetched from memory and is 

applied to the machine as a command variable. This method is fast and can be implemented 

easily, since the flux values either exist in memory or are calculated using a simple equation. 

However, it is very difficult, with this method, to take into account system parameter 

variations caused by factors like magnetic saturation of iron that affects motor reactance or 

changes in temperature which affects motor resistances [Jinchuan. Li et al 2005]. 

To overcome these limitations of the off-line method, on-line efficiency optimization control 

(loss minimization) has been proposed [S.Vaez , 1999], [N.uddin , 2007], [ S.Sergaki , 2008].  

Review of Previous Works 

Loss Minimization of Induction Motor Drives 

Many drives operate at light load most of the time. At light loads, operation with rated flux 

causes excessive iron losses, thus reducing the efficiency of the drive. For these  loads, the 

slip is small and only small rotor current can flow whitch result in increased magnetizing 

voltage , in consequent  higher magnetizing current [Peter Vas,1999]. Therefore optimum 

efficiency at light load operation can be obtained by an appropriate selection of the flux.   

 Although several papers dealing with  the subject have  been published Among those 

focused on the importance of saving energy the one  of Nola [Nola, 1977] which  proposed a 

power factor controller. He suggested energy could be saved at light load by restoring the 

balance between no-load losses and load losses. However limitation of this approach (load 

must be less  than 0.45pu) was demonstrated   [Lipo , 1983]. 

The first strategy of the efficiency optimal control was proposed by [Kusko , 1983]; it is based 

on an analytical model of losses for induction machine scalar control and direct current (DC) 

machines. An analysis of motor losses was presented and it is shown that for a given speed 

and load torque losses can be minimized by adjusting input voltage and frequency.   

[Kirshen , 1985] proposed an optimal efficiency controller based on the finding of the 

minimum input power. Thus, by measuring the input power directly to the DC bus and using 

the vector control, they propose to gradually adjust the flux and torque   stator current 

components until the input power reaches a minimum  

*value for a given output power .It is obvious this strategy has the advantage to minimize 

the whole losses of the system drive and does not require. any knowledge of the model 
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parameters however it takes a long convergence time and generate torque ripples when flux 

value changes.  

Loss Model Based Controller (LMC) 

Among the techniques leading to  efficiency improvement, the so called loss-model –

based approach (LMC), which consists of computing losses by using the machine model and 

selecting a flux level that minimizes theses losses. It offers the advantage of fast response 

and no torque ripples . An overview of previous works is given hereafter. 

 In their work, [Kirshen., 1984] propose, as part of the design of a scalar control, a loss model 

much more developed introducing into account hysteresis and eddy currents losses by a 

resistance Rm. They also include in the equivalent circuit of the induction motor the stray 

losses. Their investigation also shows the importance of magnetic saturation in the loss 

model, thus making the optimal slip frequency load dependent and limiting the increase in 

air-gap flux for large loads. 

[Kioskederis,l996] calculated the total of iron loss, copper and stray losses and derived the 

loss model controller to determine the optimal flux that minimizing the total loss of the 

scalar control of the induction motor drive. [P.Famouri,1991] derived the per unit efficiency 

of the IM as a function of slip, frequency and losses including the core loss, the copper 

losses, rotational power losses and power loss crossing the motor air gap. The optimal 

efficiency can be obtained at any operating torque and speed by calculating the optimal 

frequency.  

In [Garcia., 1994] the authors propose a new version of the work of [Novotny., 1984], but 

based on vector control. The optimizing efficiency controller proposed by the authors 

includes a linear loss model but   they did an analysis on the efficiency sensitivity to 

parameter variations. Parameter that has the greatest influence on the energy efficiency of 

the system was the rotor resistance Rr.  

A loss model including magnetic saturation for machines with AC and DC was presented by 

[Bernal., 2000].  

In [Chakrabotry, 2003],a hybrid method combining the loss model and the search approach 

was presented for the indirect vector control of IM to extract the best of both thus improved 

the speed and the adaptation capability for a possible change in load or parameters 

variation. However the computations of loss model and input power measurement have to 

be done in this method which makes the overall control system more complicated.  
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[S.Lim , 2004],developed a simplified loss model with leakage inductance. In this model loss 

was represented as a resistance connected to a dependant voltage source, the simulation  

and experimental results show that the loss calculation based on this simplified model was 

closer to that of full model of previous works. 

[M.Nasir Uddin , 2008] presented an LMC based on induction motor model in d-q 

coordinates referenced to magnetizing current which leads to no leakage inductance in 

rotor. The obtained efficiency optimizer controller was implemented in vector control both 

simulation and experimental results show the effectiveness of the proposed method. 

[C.C.De .Wit,1997]  presented a procedure to get minimum energy by deriving the steady 

state values of current and fluxes for the given load and the design the steady state feedback 

control based on Lyaponov. Experimental results show good torque capability   

 One of the failing of LMC is that its precision depends on the accuracy of the motor drive 

and losses modeling. In the loss model development, a compromise between accuracy and 

complexity has to be found. To find the loss expression from the full model, it is a difficult 

task; this is why, in the majority of past literature review, motor models are taken with 

constant parameters which will lead to the LMC performances deterioration once these 

parameters are not constant anymore. The online estimation of these parameters can be the 

solution but it can make the whole minimization scheme more complicated to be 

implemented in real time [S.Vaez-Zadeh , 2005, [Sang Woo Nam,2006], [de Almeida ,2007].  

To solve these issues, intelligent methods like Artificial Neural Networks, Fuzzy Logic,Genetic 

Algorithms, Practical Swarm Optimization (PSO) can be applied as their design does not 

require an exact mathematical model of the system and, theoretically, they are capable of 

handling any nonlinearity.  

 

Search Controller (SC) 

In [Sul and Park, 1988], a method that maximizes efficiency by means of finding 

optimal slip was proposed. The technique can be considered as an indirect way to reduce 

input power. 

In [Sousa , 1995],the authors reduced the flux current reference by minimizing input DC bus 

power by using fuzzy logic nonetheless the torque pulsation is overcoming by feed forward 

pulsation torque compensation simulation and the  experimental results demonstrate that 

the convergence time was accelerated. However this controller works only in steady state 
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when a change occurs in load or speed the control must returns to a nominal flux 

configuration which complicates the system implementation .Also [Bose, 1997] present a 

neuro –fuzzy version of the previous controller.  

 The work of [Sul., 1988] proposed an alternative approach to research based on the 

frequency of optimal sliding. the authors show that at a constant speed, performance 

depends only on the slip frequency, regardless of the load torque. From voltage and stator 

current, they deduce the slip frequency, torque and power input. Thus, for invariant load dynamic 

time, they identify the optimal slip frequency of each operating point and placed it in 

memory. In normal operating mode, the control system has to adjust the frequency of 

optimal sliding previously identified. 

In [G.S.Kim, 1992] the square rotor flux is adjusted until the measured power reached it 

minimum;the controller depends on rotor resistance and its variations is also taken into 

account.  Three vector control schemes namely rotor flux orientation, stator flux orientation 

and air gap flux orientation was studied in [O.Ojo, I, 1993] for IM optimization of torque and 

efficiency and results shown that rotor flux orientation offers best optimal efficiency. 

, [Murphy J.M.D, 1982]. 

LMC and SC Hybrid Strategy 

Other researchers have combined the advantages of both techniques by proposing a 

hybrid strategy which combines fast convergence and robustness. 

The developed controller in [S.N.Vulovasitc, 2003] ensures to retain good features of both 

LMC and SC, while eliminating their major drawbacks. Authors used input power to identify 

on-line the loss function parameters and optimize flux value. Parameters variation sensitivity 

and slow convergence were eliminated. 

In [S.Ghozzi,K,2004],LMC and SC both was used and compared. The authors concluded that 

the LMC is more appropriate in Field Oriented Control (FOC) because the flux can be 

imposed in a short time while the SC vary the flux continuously which produces more torque 

ripples.  

 

Artificial Intelligence Based Controller 

In classical control systems, knowledge of the controlled system (plant) is required in 

the form of a set of algebraic and differential equations, which analytically relate inputs with 
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outputs. However, these models,are often complex, rely on many assumptions, contain 

parameters which are difficult to measure or may change  significantly during operations and 

sometimes such mathematical models cannot be  determined. Furthermore,dispite the great 

devoted efforts  classical control theory suffers from limitations due to the nature of the 

controlled (linearity, time invariance etc..) These problems can be overcome by using 

artificial intelligence- based control techniques relaying on human motivated and 

procedures [Peter Vas, 1999].  

There are many artificial intelligence (A I) based controllers applied to IM 

optimization through control using fuzzy logic (FL) or artificial neural network (ANN), 

Natureinspired algorithms,(NIA) like Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO) seem promising because of their social cooperative approach and also 

because of their ability to adapt themselves in continuously changing environment 

[C.Thanga Rag, 2009]. 

In the  field of loss minimization,many works was performed in this area some of them are 

enumerate bellow: 

[D.H.Kim, 2006] proposed a hybrid technique, GA-PSO based vector control of IM for loss 

minimization as well as torque control. 

[L.Vuichard, 2006] presented fuzzy controller that enable to calculate the optimal flux value 

leading to efficiency improvement in short time. They use a linear model. 

In [Peracaula,2002],a loss model including saturation was integrated in artificial neural 

networks (ANN). The response time of the efficiency optimized controller was about 100-

120ms. 

[E.Poirier,2001] derived the loss model by using genetic algorithms to find the optimal flux 

value. The convergence is very fast .The robustness of the algorithm for parameters 

variation, was demonstrated. 

 

Problem Identification and Thesis Objective 

As mentioned earlier, LMC is suitable for field oriented control but slacks of precision 

and depends on the accuracy of the motor drive and losses modeling.  

To find the loss expression from the full model, it is a very hard task. In the most previous 

works motor model is taken with constant parameters then when they change the LMC   
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performance deteriorates. It is always a compromise between accuracy and complexity. 

Thus the objective of this thesis is to investigate the improvement of the system drive by 

optimizing energetic performance of IM drive. To perform this task   intelligent techniques 

are introduced so as to make  the efficiency optimizer controller derived from the loss 

model independent of or less sensitive to motor parameter change. In this  thesis.  the AI 

energy saving of Induction machine is presented. These AI comprises Fuzzy logic and 

Genetic Algorithms that are investigated and developed for this purpose. 

Thesis Structure 

After a general introduction to the undertaken work and the presented literature review, the 

main body of the thesis is structured as follows: 

 Chapter one introduces the basic concepts, notation and basic operations for 

artificial intelligent techniques such as .Fuzzy logic, genetic algorithms and 

Particle Swarm Optimization that will be needed for efficiency optimization 

and control. 

 Chapter two presents the induction motor model including iron loss and the 

inverter loss model. The simplified inverter loss model will developed to be 

integrated in the efficiency optimization algorithm.  

 Chapter three expresses losses which are involved in IM and methods used to 

minimize them. The optimization is carried out by the use of the artificial 

intelligence methods described in chapter one. 

 Chapter four describes the complete drive system including the developments 

of the loss minimization algorithm. Extensive simulation results for both 

controller dynamics and loss minimization aspects will be presented.  

 At the end, a summary of the contribution of this investigation to energy 

saving with a general conclusion and proposed complementary future work 

are presented. 
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Chapter One 
 

Artificial Intelligence Optimization Techniques 
 

1.1 Introduction 

From an engineering perspective, the description of artificial intelligence (AI) may be 

summarized as: “the study of representation and search through which intelligent activity 

can be enacted on a mechanical device”. This perspective has dominated the origins and 

growth of AI. The first modern workshop/conference for AI practitioners was held at 

Dartmouth College in the summer of 1956, [George F Luger,2005] 

According to ), [D.A. Linkens, 1996]intelligent control shows high performance control over a 

wide range of operating conditions(e.g. parameters uncertainties) . It is defined as systems 

that have the ability to emulate human capabilities (planning, learning and adaptation). 

Unlike conventional control, intelligent control uses tow sources of information (learning 

from process and designer/skilled operator knowledge) to form the corresponding 

relationship between inputs and outputs. The most widely used intelligent control schemes 

are fizzy logic control (FLC), artificial neural networks (ANN). These techniques are used in the 

field of electrical drives for control process, estimation, system identification and 

optimization problems however genetic algorithms (GA’s) [Eldissouki, 2002] and particle 

swarm optimization are used to solving optimization problems. 

There are two large electrical drive manufactures, which incorporate AI into their drives there 

are Hitachi and Yaskawa. In addition to this, Texas Instruments (TI) has built a fuzzy 

controlled induction motor drive using the TMS320C DSP. The main conclusion obtained by TI 

agrees with results obtained from various fuzzy-control implementations: the development 

time of the fuzzy-controlled drive is significantly less than the corresponding development 

time of the drive using classical controllers.SGS Thomson has also built some DC and AC 

drives incorporating fuzzy logic control, [P.Vas et al, 1996]. 

In all drives, but especially in electrical vehicles, energy is a crucial factor. However, by using 

AI it may be possible to improve the efficiency. 

This chapter introduces the trends of intelligent control techniques and its application to AC 

drives for efficiency optimization. The study focuses on fuzzy control, genetic algorithms and 

PSO technique. 
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1.2 Artificial Neural Networks 

Artificial Neural network (ANN) resembles human brain in learning through training and data 

storage. They can approximate complicated functions using several layers of neurons 

structured in a way similar to the human brain; so, ANN acts as a universal approximator. 

ANN has learning capability and generalization property. Because of its learning capability, 

ANN is very powerful in control applications where the dynamics of a plant or process 

control is partially known or the mathematical representation is very complicated. The 

generalization property is very useful because it allows training of the neural networks with 

a limited training data set. 

Artificial neural network consists of a number of interconnected information-processing 

elements called neurons. It has certain performance characteristics in common with the 

biological neural networks, [Bose, 2006]. A neuron can be modeled to perform a 

mathematical function such as a pure linear function, step function, tan-sigmoid function 

etc. These neurons can be interconnected to establish a variety of network architecture. The 

attractive feature of the neural network is that it can be trained to solve complex nonlinear 

functions with variable parameters, which may not be attainable by conventional 

mathematical tools, [B.Kosko,1992] 

1.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization is an evolutionary computation technique introduced in 1995; 

its idea is based on simulation of social behavior of animals such as bird flocks or fish schools 

searching for food. PSO is another form of evolutionary computation it is population-based 

method, like genetic Algorithm. However, the basic concept is cooperation instead of 

competition. It is also very similar to GA, but it does not have genetic operators. 

In this algorithm, each individual is referred to as a particle and presents a candidate 

solution to the optimization problem. Unlike other population-based methodologies, every 

agent moves along its velocity vector, which is updated using two different best experiences; 

one is the best experience, which a particle has gained itself during the search procedure 

and the other is the best experience gained by the whole group. Combination of these 

experiences can provide useful information for each particle to explore new positions in the 

domain of the problem. 

1.3.1. Original PSO Algorithm 

The basic PSO algorithm consists of the velocity and position equations 
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For each particle i, the velocity and the position of particles can be updated by the 

following equations, [Taher Niknam,2010 ]: 

ܸ (݇ + 1) =  ܸ (݇) + 1݅൫݀݊ܽݎ − (݇)൯ݔ  + ܩ2݅൫݀݊ܽݎ −  (݇)൯  (1.1)ݔ 

 

݇) ݔ + 1) = (݇) ݔ + ݇) ݒ  + 1)        (1.2) 

Where i is the index of each particle, k is the discret time index, rand1 and rand2 are random 

numbers between 0 and 1. 

Pi is. The best position found by ith particle, G is the global best particle among the entire 

population. 

The most used PSO algorithm form is including an inertia term and acceleration constants as, 

[Brian .Brige,2003] : 

 ܸ  (݇ + 1) =  ∅(݇) ܸ (݇) + 1݅൫݀݊ܽݎ]ଵߙ − [(݇)൯ݔ  + ܩ2݅൫݀݊ܽݎ]ଶߙ −  (݇)൯]   (1.3)ݔ 

� is an inertia function and α1,2 are acceleration constants. 

PSO optimization procedure is established according to the flowchart shown in Figure 1.1.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig( 1.1). PSO Flowchart 
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A simple example would be find the minimum of the loss function given in chapter three for 

a given load Tl =25% TlN. A particle swarm optimization toolbox developed by [Brian 

Brige,2003] was used obtained result is shown in Fig (1.2) bellow: 

 

 

 

 

 

 

 

Fig( 1.2). Visualization of PSO process 

1.4 Fuzzy Logic System 

Fuzzy logic systems (FLSs) are else a universal function approximators. The heart of fuzzy 
logic system is linguistic rule-base, which can be interpreted as the rules of a single “overall” 
expert, or as the rule of “subexperts” and there is a mechanism (inference mechanism), 
where all the rules are considered in an appropriate manner to generate the 
output,[Zadeh,1965],[Mamdani and Assilian,1975],[Lee,1990] and [Kusko,1992]  

Fuzzy logic control has found many applications. This is so largely employed because this 

fuzzy logic control has the capability to control non-linear, uncertain systems even in the 

case where no mathematical model is available for the controlled system. 

The application of fuzzy logic has some advantages: 

 When parameters change 

 When existing traditional controllers must be augmented or replaced (e.g. to provide 

self-tuning, to give more flexibility of controller adaptability, etc...). 

 If sensor accuracy (or price) is a problem ( fuzzy logic can handle imprecise 

measurements, uncertainties) 

 To obtain solutions when solutions are not possible by using other technique.  

1.4.1 Conventional and Fuzzy Sets 

Fuzzy set theory resembles human reasoning in its use of approximate information and 
uncertainty to generate decisions. It was specifically designed to mathematically represent 
uncertainty and vagueness and provide formalized tools for dealing with the imprecision 
intrinsic to many problems. 
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Within the framework of classical logic, a proposition is either true or false (1 or 0).to clarify 

this concept the example bellow is used: 

For example, classical logic can easily divide the temperature of a room into two subsets, 

“less than 18° and 18° or more than 18°. Figure  (1.2). (a) Shows the result of this partition. 

All temperatures less than 18 are then considered as belonging to the set “less than 18”. 

They assign a value of 1 and all temperatures reaching 18 or more are not considering as 

belonging to the set “less than 18”. They are assigned a value of 0. 

However, human reasoning is often based on knowledge or inaccurate, uncertain or 

imprecise data. A person placed in a room in which the temperature is either 17.95° or 

18.05°, will certainly distinguish between these two temperature values. This person will be 

able to tell if the piece is “cold “or “hot” without accurate temperature indication. 

Fuzzy logic is used to define subsets, such as “cold” or “hot” by introducing the possibility to 

a value belonging more or less to each of these subsets. 

 

 

 

 

 

( a) Two sets according to classic logic ( b) Two sets according to fuzzy logic 

Fig (1.2). Temperature classification of a room in two sets 

In fuzzy set theory, the concept of characteristic function is extended into a more 

generalized form, known as membership function: μA(x): U → [0, 1]. While a characteristic 

function exists in a two-element set of {0, 1}, a membership function can take up any value 

between the unit interval [0, 1]. The set which is defined by this extended membership 

function is called a fuzzy set. In contrast, a classical set which is defined by the two-element 

characteristic function, is called a crisp set, [M.N Cirstea et al, 2002] 

According to the definition above a fuzzy set from Fig (1.2) can be defined as follows. Let U 

be a set, called the Universe of Discourse and u be a generic element of U (u ∈ ܷ). A fuzzy 

set A in a universe of discourse U is a function that maps U into the interval [0, 1]. The fuzzy 

set A is characterized by a membership function (MF) µA(x) that takes values in the interval 

[0, 1]. 
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1.4.2. Linguistic Variables and Values 

Words are constantly used to describe variables in human’s daily life. Similarly, words are 

used in fuzzy rules to formulate control strategies. Referring to the above example, words 

like “room temperature is hot” can be used to describe the state of a system (in the current 

case, it is the state of the room). In this example, the words “cold” and “hot” are used to 

describe the variable “temperature”. This means that the words “cold” and “hot” are the 

values of the fuzzy variable “temperature”. Note that the variable “temperature” in its turn, 

can also take crisp values, such as 18°, 15.6°, 0°, etc. 

If a variable is assigned some crisp values, then it can be formulated by a well established 

mathematical framework. When a variable takes words as its values instead of crisp values, 

there is no formal framework to formulate it in the classical mathematical theory. The 

concepts of Linguistic Variable and Value were introduced to provide such a formal 

framework. According to these concepts, if a variable can take words in natural languages as 

its values, then that variable is called Linguistic Variable. The words that describe the value 

of that linguistic variable are defined by fuzzy sets in the universe of discourse in which the 

variable is defined [L.-X. Wang, 1997]. These words are called Linguistic Values. 

In general a linguistic variable is characterized by (1) a name, (2) a term, and (3) a universe of 

discourse. For example on Figure 1.1. (b), the variable “temperature” is a linguistic variable 

with 2 linguistic values, namely “cold” and “hot”. The variable “temperature” can be 

characterized in the universe of discourse U = [-18°, +18°], corresponding to minimum and 

maximum temperature of the room, respectively. The linguistic values “cold” and “hot” can 

be characterized by the fussy sets described in Figure (1.2. b) or by any other set (depending 

on the application and the designer’s choice). 

These definitions show that linguistic variables are the necessary tools to formulate vague 

(ill-defined) descriptions in natural languages in accurate mathematical terms. They 

constitute the first step to incorporate human knowledge into engineering systems in a 

systematic and efficient manner, [L.-X. Wang, 1997]. 

1.4.3. Membership Functions (MFs) 

There are many other choices or shapes of MFs besides the ones described in Figure (1.2). A 

graphical illustration of typical and commonly used ones in literature is shown in Figure 1.3., 

[K.M. Passino, 1998] 
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The simplest and most commonly used MFs are the triangular types due to their simplicity 

and computation efficiency,[ K.M. Passino, 1998],[Bose,2006]. A singleton is a special type of 

MF that has a value of 1 at one point on the universe of discourse and zero elsewhere. The L-

function and sigmoid types are mainly used to represent saturation of variables. 

 

 

Fig. (1. 3).  Typical shapes of MFs (a) ..,(b) sigmoid,(c) L function,(d) Triangular,(e) 

Gaussian function,(f) Trapezoidal,[M.N Cirstea, 2002] 

 
 
1.4.4. Fuzzy Rules and Fuzzy Implication 

 A “fuzzy If-Then- rule” , also known as “ fuzzy rules”, “fuzzy implication”, or “fuzzy 
conditional statement” assume the form : 

If x is A then y is B 

Where A and B are linguistic values defined by fuzzy sets on universes of discourse X and Y, 
respectively. Often “x is A” is called antecedent or “premise”, while “y is B” is called the 
“consequence” or “conclusion”. 

Examples of fuzzy if-then rules are widespread in our daily linguistic expression, such as the 
following: 

1 



Chapter One Artificial Intelligence Optimization Techniques 

Contribution to Efficiency Enhancement of Induction Motor Drive using Artificial Intelligence Techniques 15 

 If pressure is high, then volume is small 

 If road is slippery, then driving is dangerous 

 If speed id high , then apply the brake is little 

The expression “if x I A the y is B”, is sometimes abbreviated as  ܣ →   ܤ

The procedure for assessing these influences is called “Fuzzy Implication”. Since fuzzy 
propositions and relations are expressed by MFs, fuzzy implications also imply MFs as a 
method of interpretation.  

In literature, there are a number of implication methods. The frequently used ones are 

[BK.Bose 2002], [L.-X. Wang, 1997], [Z. Kovacic, 2006]: 

1) Zadeh implication, 

2) Mamdani implication, 

3) Godel, implication, 

4) Lukasiewicz implication, 

5) Sugeno implication, 

6) Larsen implication, etc 

The differences between these methods are summarized in [Ajit.K.mandal.; 2006], 

[S.N.Sivanandam,2007], [Kwang.H.Lee,2005]. Their mathematical functions indicate that the 

Mamdani implication is the most suitable for hardware implementation, [ K.M. Passino, 

1998]. It is also the most commonly used in control system applications. 

1.5. Fuzzy Logic Controller (FLC) 

Usually a control strategy and a controller itself is synthesized on the base of mathematical 

models of the object or process under control. The models of an object under control involve 

quantitative, numeric calculations and commonly are constructed in advance, before 

realization. Since fuzzy logic control is based on human knowledge and experience, it doesn’t 

need an exact mathematical model, it is an automatic control strategy based on “IF-THEN” 

rules. 

The FLC can be viewed as a step toward a rapprochement between conventional precise 

mathematical control and human-like decision making. 

The principal structure of a fuzzy controller is illustrated in Figure 1.3.. It consists of 

normalization factors, fuzzification of inputs, inference or rule firing, defuzzification of 

outputs, and denormalization. 
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Fig. (1.4).  Basic structure of FLC 

 
1.5.1 Steps of Fuzzy Logic Controller Design 

 Initially choose the number of inputs/outputs 

 Fuzzify the real inputs using appropriate membership functions 

 Create the IF THEN rules using AND/OR operator 

 Defuzzify the output fuzzy to get the corresponding crisp output 

 
1.5.2. Fuzzification Interface 

The fuzzification interface transforms input crisp values into fuzzy values and it involves the 

following functions,[ Kwang H. Lee,2005]. 

 Receives the input values 

 Transforms the range of values of input variable into corresponding universe of 

discourse 

 Converts input data into suitable linguistic values (fuzzy sets). 

 

1.5.3. Rule Base 

Although differential equations are the language of conventional control, the dynamic 

behavior of a system is characterized by a set of linguistic descriptions in terms of fuzzy rules 

in FLCs Fuzzy rules serve to describe the quantitative relationship between the input and the 

output variables in linguistic terms such that, instead of developing a mathematical model 

that describes a system, a knowledge-based system is used. 
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Fuzzy rules are the core of the FLC. Generally the dynamic behavior of a fuzzy controller is 

characterized by a group of fuzzy rules which follows the format: 

 If antecedents Then consequence. 

The antecedents can be joined by union (OR) or by intersection (AND). In the speed control 

of induction motor for example typical rule reads as: 

If “the speed error” is positive small (PS) AND “change in speed error” is negative 

small (NS) THEN u is negative small (NS). 

1.5.4. Inference Engine 

The function of the inference engine provides a way to translate the input of a fuzzy set 

into the fuzzy output. It determines the extent to which each rule is relevant to the current 

situations as characterized by inputs. The inference engine is the decision-making logic of an 

FLC. It has the capability of simulating human decision-making based on fuzzy concepts and 

inferring fuzzy control actions using fuzzy implication and the rule of inference in FL. 

Normally this mechanism consists of set of logic operations. 

There are several ways to implement a fuzzy inference: the Mamdani fuzzy reference system 

and the Sugeno reference system are two commonly used.[ Hung T. Nguyen.,2003] 

1.5.5. Defuzzification Inference 

The result of implication and aggregation steps in the inference engine is a fuzzy output. 

This output is the union of all the outputs of individual rules that are validated [Bose 2002]. 

The conversion of this fuzzy output set to a single crisp value (or a set of crisp values) is 

referred to as Defuzzification. Hence, this latter interface generates the output control 

variables as a numeric value. 

Defuzzification can be implemented in different ways, general methods include MOM (mean 

of maximum), COA (center of area), and COM (center of maximum), [Hung T. Nguyen., 

2003], [Bose, 2002].  
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1.6 Genetic Algorithms 

Genetic algorithms (GAs) are global optimization techniques developed by John Holland in 

1975. They are perhaps the most widely known type in the family of evolutionary 

algorithms,[Mitsuo. Gen, 2000]. These algorithms search for solutions to optimization 

problems by “evolving” better and better solutions. A genetic algorithm begins with a 

“population” of solutions and then chooses “parents” to reproduce. During reproduction, 

each parent is copied, and then parents may combine in an analog to natural cross breeding, 

or the copies may be modified, in an analog to genetic mutation. The new solutions are 

evaluated and added to the population, and low-quality solutions are deleted from the 

population to make room for new solutions. As this process of parent selection, copying, 

crossbreeding, and mutation is repeated, the members of the population tend to get better. 

When the algorithm is halted, the best member of the current population is taken as the 

global solution to the problem posed,[Mitsuo.,Gen 2000], [Kwang,Y. 

Lee,2008];[Goldberg,1989].  

There has been widespread interest from the control community in applying the genetic 

algorithm (GA) to problems in control systems engineering. Compared to traditional search 

and optimization procedures, such as calculus-based and enumerative strategies, the GA is 

robust, global and generally more straightforward to apply in situations where there is little 

or no a priori knowledge about the process to be controlled. As the GA does not require 

derivative information or a formal initial estimate of the solution region and because of the 

stochastic nature of the search mechanism, the GA is capable of searching the entire 

solution space with more likelihood of finding the global optimum. 

The process of evolution is based on the following principles: 

• Individuals in a population compete for resources and mates. 

• The most successful individuals in each generation will have a chance to produce more 

offspring than those individuals that perform poorly. 

• Genes from ‘good’ individuals propagate throughout the population so that two good 

parents will sometimes produce offspring that are better than either parent. Thus each 

successive generation will become more suited to their environment. 

1.6.1 Implementation Details 

A population of individuals is maintained within search space for a GA, each representing a 

possible solution to a given problem. Each individual is coded as a finite length vector of 
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characters. A fitness value is assigned to each solution representing the ability of an 

individual to ‘compete’. The goal is to produce an individual with the fitness value close to 

the optimal. By combining information from the chromosomes, selective ‘breeding’ of 

individuals is utilized to produce ‘offspring’ better than the parents. Continuous 

improvement of average fitness value from generation to generation is achieved by using 

the genetic operators. The basic genetic operators are: 

• Selection: used to achieve the survival of the fittest. 

• Crossover: used for mating between individuals. 

• Mutation: used to introduce random modifications. 

The genetic operators are used in the GAs optimization procedure according to the 

flowchart given in Figure (1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig( 1.5). Genetic algorithms flowchart 
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reproduction ability of least fitted members of population. Fitness of an individual is usually 

determined by an objective function. 

1.6.1.2. Crossover 

The crossover operator divides a population into pairs of individuals and performs 

recombination of their genes with a certain probability. If one-point crossover is performed, 

as shown in Figure (1.6)., one position in the individual genetic code is chosen. All gene 

entries after that position are exchanged among individuals. The newly formed offspring 

created from this mating are put into the next generation. Recombination can be done at 

many points, so that multiple portions of good individuals are recombined, this process is 

likely to create even better individuals. The crossover operator roughly mimics biological 

recombination between two single−chromosome (haploid) organisms. 

 

 

 

 

 

 

Fig (1.6). One-point crossover example 

1.6.1.3. Mutation 

When using mutation operator a portion of the new individuals will have some of their bits 

flipped with a predefined probability. In Figure (1.7). Mutation operator is applied to the 

shaded genes of the parent. The purpose of mutation is to maintain diversity within the 

population and prevent premature convergence. The usage of this operator allows the 

search of some regions of the search space which would be otherwise unreachable. 

The described operators are basic operators used when the individuals are encoded using 

binary alphabet. Operators for real valued coding scheme were developed by Michalewicz 

[xx]. The following operators are defined: uniform mutation, non-uniform mutation, multi-

non-uniform mutation, boundary mutation, simple crossover, arithmetic crossover and 

heuristic crossover. 

• Uniform mutation randomly selects one individual and sets it equal to an uniform 

random number. 
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• Boundary mutation randomly selects one individual and sets it equal to either its lower 

or upper bound. 

• Non-uniform mutation randomly selects one variable and sets it equal to a non uniform 

random number. 

• Multi-non-uniform mutation operator applies the non-uniform operator to all of the 

individuals in the current generation. 

• Real-valued simple crossover is identical to the binary version. 

• Arithmetic crossover produces two complimentary linear combinations of the parents. 

• Heuristic crossover produces a linear extrapolation of the two individuals. 

 

 
 

 

 

 

Fig( 1.7). Mutation example 

As an example of application of the two intelligent techniques used in this thesis an optimal 

fuzzy controller based on GA is developed in next section.  

1.7. Induction Motor Speed Regulation  

This section will be dedicated to investigate the speed regulation of IM using both 

techniques focused in this chapter mainly fuzzy logic and genetic algorithms, in the first step 

an FLC is used  to regulate motor speed than it is performances are optimized by using GA’.  

1.7.1  Speed Control using FLC 

The components of the FLC will be introduced by using speed control of induction motor 

problem. Fig (1.9). depicts the typical response to step consign. One can see there are four 

zones:A1/ rise, A2/overtake,A3/ damping and A4/ steady state regions. 
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Fig. (1.8).  System step response 

 

Most closed-loop speed control systems react to the error (e (t)) between the reference 

speed and the output speed of the motor. When controlling processes, human operators 

usually compare the actual output of the system with the desired (reference) output and 

observe the evolution of this difference. This is why in most FLCs, including the controllers 

proposed in the input variables are the system error, e(t), and the change-in-error, Ce(t), to 

complete the initial description of the investigated speed control closed loop, let u(t) be the 

FLC output variable, i.e. the process input signal (which consist of  the torque current 

component namely Isq) .  

As the first step is the fuzzification hence it: 

(1) Measures the values of the input variables (e(t) and Ce(t) for the presented example, 

(2) Performs a scale mapping of the measured crisp values of the input variables into the 

universes of discourse of these input variables, and  

(3) Converts the input values into linguistic values compatible with the fuzzy set 

representation in the rule base. The three operations are performed as follows. Just 

as (e(t) and/or Ce(t)) take on values of, for example 0.2p.u at time instant t, linguistic 

variables also assume linguistic values at every time instant t. The values that 

linguistic variables take on over time change dynamically. 

   Let’s suppose, for the presented example, that e(t), Ce(t), and u  take on the following 

values: “Negative Big” or NB, “Negative Small” or NS, “Zero” or Z, “Positive Small” or PS, and 

“Positive Big” or PB. The meanings of these linguistic values are quantified by their 

respective MFs. For close-loop speed control, each of the following statement quantifies 

some of different configurations of the system: 

 The statement “e(t) is PB” can represent the situation where the output speed is 

significantly smaller than its reference.  
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 The statement “e(t) is NS” can represent the situation where the output speed is 

just slightly over the reference, but not too close to it to justify quantifying it as Z 

and not too far to justify quantifying it as NB. 

 The statement “e(t) is PB” and “Ce(t) is PS” can represent the situation where the 

speed is significantly below the reference, but while  “Ce(t) is PS”, the motor speed 

is away from its reference value. 

These statements indicate that in order to fuzzify the dynamics of a process successfully, one 

must first have a good understanding of the physics of the underlying process. Moreover, 

the accuracy of the FLC is built   on the shape, the number and the distribution of linguistic 

values or MFs used.  

Figure (1.10). Shows the fuzzy sets and the corresponding triangular MF description of each 

signal. The universe of discourse of all the variables, covering the whole region and all the 

MFs are asymmetrical because near the origin (steady state), the signal requires more 

precision. This completes the first step of FLCs according to Figure (1.4) 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (1.10). Inputs and output MFs of the induction motor speed control  
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1.7.2 Optimizing an FLC using GA’s 

Many methods for fuzzy control use genetic algorithms to search the fuzzy controller 

structure or parameters. However, one of the drawbacks of applying genetic algorithms in 

optimal fuzzy controller design is a lack of the theoretical knowledge. Each application has a 

different strategy to represent the fuzzy controller by chromosomes. 

In this part; we will be interested by optimizing the MF’s of the speed controller used in 

section 1.3 to achieve this task the fuzzy controller ( MF’s plus normalization gains) formed 

the chromosomes while the fitness was the square error of the speed. Genetic operator 

parameters used probabilities of crossover and mutation  are respectively set to 0.8 and 

0.005. 

Optimized MF’s obtained are shown in Figure (1.11). We can see that the MF’s intervals are 

changed compared with those in Figure (1.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 1 - 0 . 5 0 0 . 5 1

0

0 . 2

0 . 4

0 . 6

0 . 8

1

C e ( t )

D
eg

re
e 

of
 m

em
be

rs
hi

p

N B N S Z P S P B

- 1 - 0 . 5 0 0 . 5 1

0

0 . 2

0 . 4

0 . 6

0 . 8

1

e ( t )

D
eg

re
e 

of
 m

em
be

rs
hi

p

N B N S Z P S P B

- 1 - 0 . 5 0 0 . 5 1

0

0 . 2

0 . 4

0 . 6

0 . 8

1

u ( t )

D
eg

re
e 

of
 m

em
be

rs
hi

p

N B N S Z P S P B



Chapter One Artificial Intelligence Optimization Techniques 

Contribution to Efficiency Enhancement of Induction Motor Drive using Artificial Intelligence Techniques 25 

Fig(1.11). Optimized inputs and output MFs of the induction motor speed control 

Figure (1.12). shows the obtained motor speed response for the reference speed of 

157rad/s. Thus we can see that the optimized speed controller gives the best response 

compared to IP and fuzzy controllers. Also it has a very fast perturbation rejection. 

 

 

 

 

 

 

 

 

 

 

Fig (1.9). Induction motor speed response 

 
1.8. Summary 

This chapter has summarized the principles of some artificial intelligent techniques which are 

used to efficiency drives optimization. Attention has been focused on the two intelligent 

techniques investigated in this thesis namely fuzzy logic and genetic algorithms. The search 

of the IM speed response was investigated by both fuzzy logic and genetic algorithms to 

show the effectiveness of these two techniques. 

The investigation of fuzzy logic and genetic algorithms in order to optimize efficiency of the 

induction motor drive is described throughout the next chapter. 
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Chapter Two 
 

Motor and Inverter Losses Modeling 

 

2.1 Introduction 

Induction motor is the most robust so the most widely used electrical machine, it is used in 

domestic, commercial and industrial applications. Being very economical, rugged and 

reliable, induction motors are used extensively and they consume a considerable percentage 

of the overall production of the electrical energy.  

The motor  parameters variation  is often neglected when estimating motor performance, 

thus traditionally, the induction motor models are based on constant parameter model; 

however they do not give full satisfaction when flux level changes or  increasing  current  

occur [E.Mendes et al, 1994].  

In many applications like electric vehicles it is not only the high performances which are 

required but also the energy quantities must be optimal such the efficiency thus the flux level 

must change according to the operating point nevertheless the motor inductances cannot be 

considered constant. This change must be part of the calculations of the optimal conditions 

operating, because they have determinant influence   on the optimum location and on the 

energy savings potential, [S.kirschen , 1984]. 

The induction motor can be connected directly to a standard fixed frequency, fixed voltage 

three phase power source. Under these conditions, the motor speed and slip will only be 

determined by the load torque. Power electronic converters are used to produce a variable-

frequency supply to AC motors, thereby enabling variable-speed operations. 

 Power electronic converters have conduction and switching losses in the power devices, in 

addition to losses in both passive components and the auxiliary cooling systems. Therefore, 

modeling converters is a constant concern for electrical engineers, where various studies 

have been conducted in this area. 

We can distinguish several approaches designed to represent either the fine development of 

electrical quantities or their mean values. 
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For the control of electrical machines, it is unrealistic to use fine representation of switching 

phenomena because it leads to prohibitive computational time. However in this project, a 

compromised solution is adopted from [Abrahamsen,2001] simplified model of the converter.  

This chapter is divided into two parts, the first one presents the mathematical model of the 

induction motor including iron losses and magnetic saturation , whereas the second one is 

dedicated to converter losses modeling. 

2.2. Induction Motor Model including Saturation and Core Losses 

A dynamic modeling of the IM has been widely studied in the literature, by using the famous 

Park transformation the six equations relating the stator and rotor voltages are reduced to 

four equations. This transformation is based on a set of hypothesis assumptions, among 

others symmetrical three phase machine and neglected saturation and iron losses. 

The equations of stator and rotor voltages, and also the equation of motion can be used to 

express the system dynamics. 

The magnetic saturation is generally including in the model by modeling the magnetizing 

inductance as a function of the magnetizing flux or current. Hence, the saturation can be 

modeled with a rather simple function and the resulting inductance estimate is accurate 

enough in most cases,[M.Ranta ,2013]  

In order to take into account core losses and magnetizing saturation effects, Mendes’s and 

Razek model is used in this work.  

In this model the iron losses are represented by an equivalent resistance in series with the 

magnetizing branch as represented on Fig. (2.1). they are given by the expression; while the 

saturation is taken into account by the piecewise [Mendes,.1994]: 

ܴ௦ = ܣ × ௦݂ + ܤ × ௦݂
ଶ        (2.1) 

= ௦ܮ ቊ
௦ܫ        ܪ 0.6 ≤ ܣ 0.8

ଵ.ଷଷ
ଵ.ସସାூೞ

< ௦ܫ    ܪ  ܣ0.8
�         (2.2) 

Where: A and B and fs are respectively constants and stator current frequency. 
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Fig. (2.1)  Equivalent circuit of the IM. with series equivalent core losses resistance 

The choice of the state vector (Is Φr) allows us to neglect the cross saturation, without 

great influence on results[Levi,1997] however the  α-ß model for a three phase IM in the can 

be written, as ,[Z.Rouabah,2003]: 

r
rfs

r
rsss

r

rfs  ss L
  R      L

  M  i L   td
d   i 

    1
  R  R  V 



 










      (2.3) 

  s
r

rfr
r
rfrrsr

r
r i   1

σ  R  L
Φ R Φ )   - jdt

d ( i  - MΦ L
R  0


       (2.4) 

Where: 

1  
  R  R R

r

r
fss

'
s 


 ;  

1 
   R   R

r

r
fr

'
fr 


 ; 

r

r
r R

L T  ; 
M

M -  L   r 
r  . 

The electromagnetic  torque is given by: 
 

  * ) (       jeiimpMC rse          (2.5) 

The motion equation is given by the equation bellow: 

ܶ − ܶ = ܬ ௗఠ
ௗ௧

+ ݂߱          (2.6) 

2.2.1. Simulation of the Motor Model 

 Simulation was performed using Matlab/simulink, for no load starting at nominal speed, 

obtained results are given bellow: 

 

 

 

 

 

 

 

 

 

 

Fig. (2.2) Speed  evolution 
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Fig. (2.3) Torque evolution 

 

One can see on the above figures the influence of saturation on the torque which is subdued 

compared with the linear model however the speed rise time is greater than the linear 

model. 

Figure(2.4) shows the current evolution it is clear that in startup the current value is high 

nevertheless in steady state this value decreases . 

 

 

 

 

 

 

 

 

 

Fig. (2.4) Current  evolution 
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2.3. Inverter Model 

The inverter used here consists of three legs, each having two transistor switch and two 

diodes   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2.5)Three Phase Inverter 

 

We assume that the switches are ideal and admit only two states (on and off)   

The basic operation of the three phase inverter can be explained by considering the single 

inverter leg. For example turning on switch K1and turning off switch K’1 would establish  

Vdc across terminal ‘a’ and ‘g’ therefore uag=Vdc. On the other hand turning off K1 and turning 

on switch K’1would apply zero across ‘a’ and ‘g’ uag=0. 

Since the on/off states of the power switches in one inverter leg are always opposite without 

considering dead time, each inverter leg can be in either one of two states.  

Assuming that the motor winding are star connected with n neutral point  the relationship 

between the inverter leg voltages Vabcg  and motor phase  Vabcn voltages can  be written as: 

ܸ = ܸ + ܸ          

ܸ = ܸ + ܸ          (2.9) 

ܸ = ܸ + ܸ   

As the system Vabcn is balanced, it follows: 

ܸ + ܸ + ܸ = 0         (2.10) 

IM 

K1 K2 K3 

K’1 K’2 K’3 

g 
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c 

Vdc 
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Adding the equations (2.8) we get: 

ܸ = ଵ
ଷ

( ܸ + ܸ + ܸ)          (2.11) 

Therefore, substituting equation (2.11) in equations (2.9), it results: 

ܸ = ଶ
ଷ ܸ − ଵ

ଷ ܸ − ଵ
ଷ ܸ  

ܸ = − ଵ
ଷ ܸ + ଶ

ଷ ܸ − ଵ
ଷ ܸ       (2.12) 

ܸ = − ଵ
ଷ ܸ − ଵ

ଷ ܸ + ଶ
ଷ ܸ   

 Thus the inverter can be modeled by the following matrix: 

ܥ  = ଵ
ଷ

× 
2 −1 −1

−1 2 −1
−1 −1 2

൩        (2.13) 

 

2.4. Pulse Width Modulation (PWM) 

There are many PWM techniques proposed in the literature, well known ones   are 

sinusoidal PWM, hysteresis band current PWM, and space vector modulation (SVM). In this 

thesis only the sinusoidal PWM strategy is considered. 

Sinusoidal PWM technique is very popular in industrial inverters, it consists of comparing 

isosceles triangle carrier wave of frequency fsw with the fundamental frequency f sinusoidal 

modeling wave, and the intersection points determine the switching points of the electronic 

devices, [Bose, 2002]. 

2.5. Inverter Losses 

An inverter transistor has three states on (conductive), off (non conductive) and 

commutation state (switching from on to off and inversely).In the open state there is no 

current flowing therefore no losses, thus the inverter has two types of losses conducting 

losses and switching losses [Abrahamensen,2000],[Peron,2009]. Conduction losses are 

produced when the switch is in the on state, however switching losses appear when switch is 

turned on and off,[Josep Pou,2011]  

2.5.1 Inverter Conduction Losses 

 For power semiconductors conduction losses are often calculated by inserting a 

voltage “V” representing voltage drop and a resistor “r “representing the current 

dependency  in series, [Uwe Drofenik ,2005],[Josep.Pou,2011] 
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When transistor of the inverter drives a current Ic, the voltage VCE at its terminals is 

low but non zero it leads to conduction losses which are directly calculated by the intensity 

of the current Ic and the VCE-SAT characteristic of transistor.  

The diode respectively the transistor on-state voltages  can be characterized by dynamical 

resistance  and a constant drop voltage however it can be modeled by  [Blaabjerg,1992], 

[Abrahamsen,2000],[Uwe Drofenik,2005]: 

ܸ,் = ்ܸ + ்ݎ × ்݅
்,     ܸ, = ܸ + ݎ × ݅

     (2.14) 

Where: V0T, r0T BconT : constants characterizing the transistor conduction loss.  

             V0D, r0D BconD: constants characterizing the diode conduction loss. 

The instantaneous diode and transistor power losses are then: 

ܲ,் = ( ்ܸ + ்ݎ × ்݅
்) × ்݅  , ܲ, = ( ܸ + ݎ × ݅

) × ݅  (2.15) 

In practice, these curves can be reduced to a linear expression (BconT,D=1) ,[Perron,2009]. 

The modulation strategy has no influence on the conduction losses in the inverter. Thus, 

from the point of view of control, according to [Perron, 2009] it is no possible to reduce the 

conduction losses in the inverter  

2.5.2Inverter Switching Losses 

Switching losses  appear during commutation (turn on and turn off) According to 

[Blaabjerg,1992],it is possible to calculate these losses by means of collector –emitter 

voltage Vce and collector current Ic mainly because they are related to a type of  the used 

components . These losses can be approximated once the switching energy is measured as a 

function of load current, [Blaabjerg, 1995], [Abrahamsen,2000],[Perron,2009]. 

Switching power losses in each device are given by the following relations 

[Abrahamsen,2000]: 

௦ܲ௪,் = ௦݂௪ × ௦௪்ܣ × ்݅
௦௪  

௦ܲ௪,் = ௦݂௪ × ௦௪்ܣ × ்݅
௦௪       (2.16) 

௦ܲ௪, = ௦݂௪ × ௦௪ܣ × ்݅
௦௪  

Where: 

fsw : switching frequency. 

Aswon(off),B swon(off), : constants characterizing the transistor loss at turn-on(turn-off). 

AswD,B swD  : constants characterizing the diode loss at turn-off. 
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 The tota switching losses are then calculated by adding  the equation (2.16).Fig. (2.6) shows 

the total losses of  a 4 kVA inverter .used in [Blaabjerg, 1995], 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2.6)Total inverter losses for one leg 

2.6. Simplified Inverter Loss Model 

For an energy optimal control strategy where the inverter loss is an integral part of the 

Algorithm a simplified method is required for real time calculation.  

2.6.1 Simplified Model of Conduction Loss 

By approximating the on-voltage with linear first order functions as: 

ܸ, = ܸ + ݎ × ݅,      ்ܸ, = ்ܸ + ்ݎ × ்݅  (2.17) 

The same procedure is followed for the diode conduction loss calculation. The only 

difference is that the diode duty cycle used is: 

The whole inverter conduction power loss is: 

ܲ,௩ = 3( ்ܲ + ܲ,)        (2.18) 

 

2.6.2 Simplified Model of Switching Loss 

 According to [Abrahamsen, 2000] it has been shown that switching losses are proportional 

to the switching frequency and to the phase current, they are given by: 
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௦ܲ௪ = ௦௪ܭ)3 × ௦ܫ × ௦݂௪)        (2.19) 

Where   Ksw is   empirically  determined constant. 

Than the total inverter losses are given by the sum of (2.18) and (2.19) as: 

ܲ௦௦,௩ = 3൫ ்ܲ + ܲ,൯ + ௦௪ܭ) × ௦ܫ × ௦݂௪)     (2.20)   

The total inverter loss depends on the following parameters: r, fsw, Is and φ. 

 

 

 

 

 

 

 

Fig.(2.7)  Simplified Inverter Model 

2.7. Simulation of Simplified Inverter Model 

It is necessary to see the dependence of losses in relation to each of the above parameters 

to include this model in the energetic optimization. Simulation was performed for: 

 Is varying between 0 and 20 A,φ= 30° and r=0.5,fsw=2KHz. 

 r varying between 0 and 1;Is= 20A;φ= 30°;fsw=2KHz. 

 fswvarying from 1 to 10 KHz, Is=20A; φ= 30° and r=0.5. 

 φ varying from 10 to 80°, Is=10A; fsw =2KHz° and r=0.5. 

Obtained results show that the inverter losses are affected by current and as indicated on 

Figures (2.8) a, b, c and d. 
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Fig.(2.8)  Inverter Losses versus (a) current,(b) switching frequency,(c) modulation index,(d) 

phase shift 

 

Since the inverter losses highly depends on the current. They can be approximated by a 

second order polynomial function such as: 

ܲ௦௦,௩ = ݇ଵܫ௦
ଶ +  ݇ଶܫ௦         (2.21) 

According to [Branko blanusa,2010] among the converter losses comprising those of 

rectifier and DC link, we find inverter conductive and inverter commutation losses. In fact, 

the rectifier and DC link inverter losses are proportional to output power, so the overall flux-

dependent losses are the inverter losses. They are usually given by: 

ܲ௦௦,௩ = ܴ௩ × ௦ܫ
ଶ          (2.22) 

Figure (2.9) shows the plot of the approximated function of losses given by (2.21) and (2.22) 

we can see that the losses curves given by equations (2.20) and (2.21) are coincident. 

The values of the coefficients were determined using the Matlab curve fitting toolbox and 

are successively equals to 0.6849 and 3.8755. 

 

 

 

 

 

 

 

 

 

Fig. (2.9)   Approximated Inverter Losses function 
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In this chapter the induction motor and converter loss models were highlighted. Commonly 

used models of induction motors and inverter were also developed.  For the purpose of 

energy optimal control strategy, saturation was introduced in the motor model also  

asimplified inverter loss model was adopted in this work. To emphasize this model is used in 

this thesis because it is easy to use and it can be an integral part of the optimization 

algorithm. 

Four simulations were conducted using Matlab/Simulink software in order to verify affecting 

inverter losses parameters; these parameters are the current (Is), shift angle (φ), switching 

frequency (fsw), and modulation index (r). 

The simulation   results show that the inverter losses are mainly influenced by stator current, 

whereas the other parameters have neglecting effect. Thus the inverter losses were 

approximated by a second order polynomial function which it comes in agreement with 

those provided by equation (2.20). 
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Chapter Three 
 

Efficiency Optimization Approaches of Induction Machine Drive 

 

3.1 Introduction 

In this chapter, different types of losses involved in induction motor drives are classified and 

reviewed in the first section followed, in the second one, by a presentation of the loss model 

of the motor. 

Since the efficiency improvement of the induction motor (IM) is fulfilled by the magnetic flux 

adjustment, it is very important to take into account the magnetic deviations in the loss 

model. This is the reason for which the saturated motor model has been introduced. The last 

part of this chapter is dedicated to the development of proposed losses minimization 

strategies based simultaneously on genetic algorithms and fuzzy logic methods. 

 

3.2 Losses in Induction Motor Drives  

Induction motor drive losses can be divided into grid loss, motor loss and transmission loss. 

A brief description of these losses is given below [Sang woo Nam, 2006]: 

 Grid loss caused by harmonics contents in the input current. 

 Converter loss due mainly to switching and conduction losses of the inverter. 

 Transmission loss which could probably come from the bad coupled of the load. 

 The motor losses comprise resistive losses, core losses, mechanical losses (friction 

and windage) and stray load losses. 

Among the overall motor loss, resistive and core losses are the dominating ones compared 

to the stray and mechanical losses,[Ranta, 2011]. They also depend on magnetic and electric 

loading of the machine and therefore controllable. That is why in the current work stray and 

mechanical losses are neglected. At nominal operating point, the core losses are typically 2-3 

times smaller than the cooper losses, but they represent the main loss component of highly 

loaded induction motor drives, [branko blanusa, 2008]. 

In variable-speed induction motor drives, the losses depend on the flux level of the motor. A 

large number of loss minimization strategies have been developed for adjusting the flux level 
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according to the motor load and speed, [Ranta, 2011]. These loss minimization control 

techniques have been reviewed, in the introduction  

Various loss functions have been used for describing the IM losses, [Bazzi, 2010]. Commonly 

the resistive losses and core losses of the motor are included in the loss model. The core 

losses are assumed to be proportional to the square of the frequency; this behavior 

corresponds to eddy-current losses habitually. Also it is possible to include both eddy-

current and hysteresis losses in the loss model [Kioskederis, 1996]. If the loss model is 

sufficiently simple, the optimum flux level can be solved analytically. For more complicated 

loss models, it is possible to determine the optimum flux level iteratively, [Bazzi, 2010]. 

This thesis focuses on developing better control technique to reduce motor core loss which 

is the dominant one in IM dives. Figure 3.1 summarizes the different types of losses in IM 

drives and shows the possible methods of each loss reduction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig( 3.1). Different types of losses in IM drives and possible methods for loss reduction, [sang 
Woo Nam, 2006] 
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3.2.1 Motor Losses Model 

The d-q model for a three phase IM in the synchronous frame can be written, when selecting 

the stator currents (isd, isq) and the rotor fluxes (Φrd, Φrq) as state variables, [Rouabah,2003]: 

rq
r

srd
r

fs
sqss

rd

r

sd
ssd

'
ssd L

M
L
R

iL
dt

d
L
M

dt
di

LiRV 


  (3.1) 

rd
r

srq
r

fs
sdss

rq

r

sq
ssq

'
ssq L

M
L
RiL

dt
d

L
M

dt
di

LiRV 


  (3.2) 

dt
d

L
RRi

T
MR V rd

rqrrd
r

frr
sd

r

'
frrd










 









   (3.3) 

dt
d

L
RRi

T
MR V rq

rdrrq
r

frr
sq

r

'
frrq










 









   (3.4) 

Where: 

1  
  R  R R

r

r
fss

'
s 


 ,  

1 
   R   R

r

r
fr

'
fr 


 ,

r

r
r R

L T   and 
M

M -  L   r 
r  . 

The total losses of an IM consist of stator and rotor copper losses, core losses Pfe and 

mechanical losses Pm. In the steady state, the stator and rotor copper losses are defined as 

follows: 
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The core losses including eddy current and hysteresis losses are given by: 

 22
ee

2
ehfe kk   P   (3.7) 

The coefficients of hysteresis and eddy current losses are defined as kh and ke respectively 

They can be determined from standard no-load test data, [J. M. D. Murphy, 1982]. 

As a reasonable approximation, the mechanical losses are function of the rotor speed. 

2
rmm kP   (3.8) 
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Where km is the mechanical loss coefficient. 

As the stator currents isd and isq are regulated and the motor is controlled to be field oriented 

to the rotor flux, according to the following relation: 

0idr  and .݅ = ିெ
ೝ

× ݅௦  

In steady state, the operating losses of the machine can be expressed from eq. (3.1) to eq. 

(3.4) as follows: 

mfejr jsloss PP PP   P   (3.9) 

The motor torque can be expressed by: 

sqr
r

e iΦ
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 (3.10) 

By neglecting the mechanical losses and substituting (3.5),(3.6) and (3.7)  into (3.9), the 

operating losses of the machine become: 

 
   

2

2s
2

, 11
R 

























  iLp

TRiRRP
s

e

r

r
fssmotorloss  (3.11) 

As seen on chapter tow inverter losses can be approximated by a second order polynomial 
function given by equation (2.21) The drive losses which they   will be minimized are thus: 

ܲ௦௦ =  ܲ௦௦,௧ + ܲ௦௦,௩        (3.12) 

3.2.2 Loss Minimization 

Equation (3.11) gives the expression of IM losses in vector control drive system. 

Figure 3.2 depicts the relationship between the motor losses and the magnetizing current 

(rotor flux) under various loads. It is very clearly that there is a minimum magnetizing 

current value for each load. The relationship between the total losses and the magnetizing 

current (rotor flux) under various speeds is also illustrated in Figure 3.3 These figures 

demonstrate that the total losses may obviously be kept to their lowest values. In these 

conditions, the highest efficiency can be ensured by tuning the rotor flux or the magnetizing 

current. 
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Fig( 3.2). Motor losses versus magnetizing current at nominal speed  

Then we can conclude that the philosophy of the controller efficiency optimization aims to 

make the motor working at variable flux which leads to efficient conversion of the electrical 

power within the motor drive. This can be accomplished by finding the optimal value of the 

magnetizing current that satisfies the criterion below: 

∂Ploss/∂iµ=0 (3.13) 

 

 

 

 

 

 

Fig( 3.3).Motor losses versus magnetizing current at nominal load torque 

Figure (3.4) shows inverter losses versus magnetizing current (flux) for several load 

torques. Compared to the motor losses these losses are lowest they are around 4-5% of the 

motor losses.  
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Fig( 3.4).Inverter  losses versus magnetizing current (* minimal loss points) 

3.3 Proposed Loss Minimizing Strategies 

A simplified block diagram of the proposed efficiency optimization control system is 

depicted in Figure 3.5. It is implemented in classical indirect rotor flux oriented control 

(IFOC). In this scheme, two phase currents and the rotor speed are measured in order to 

calculate the electromagnetic torque and the magnetizing current (iμ) which enables us to 

express the total motor losses.  

 

 

 

 

 

Fig( 3.5). Block diagram of the Optimization Control System 

 

To get the best optimal solution of equation (3.12) we use fuzzy logic as first approach and 

then genetic algorithms as a second one with binary and real coding as described in the next 

subsections. 
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It can be noticed  from the losses expressions given by equations (3.10) and (3.11) , that 

the  losses are non linear function, also the efficiency control should follows known rules , 

these reasons permit the application of fuzzy logic to realize an optimal efficiency 

control,[Bose,2002] 

Tow fuzzy approaches are proposed in this section: the first one is based on the calculus of 

the optimal value of magnetizing current which leads to optimal efficiency, and the second 

approach is based on the estimation of the Kopt which permits the calculus of the optimal 

magnetizing current too. 

3. 3.1.1 First Fuzzy Approach 

The philosophy of the efficiency optimization controller aims at minimizing the rotor flux by 

adjusting the magnetizing current component with respect to the torque current one, [Roua, 

2008].According to [M.S.Nait Said 1999] ,as the flux decreases, the iron losses drop while 

copper losses rise. Consequently, such flux decrease yields a reduction of the converter input 

dc link power. 

The optimization principle is illustrated by Figure (3.6) which presents the induction motor 

circle diagram. In fact, as it appears, the induction motor operating point A has a lower 

power factor (low efficiency) that can be improved by maintaining the same active power, 

and displacing A to B location (optimal power factor). Under these circumstances, the 

magnetization current is minimized (IB < IA), causing hence a reduction of the stator 

current. Consequently, this strategy leads to copper losses decrease (i2t). In this case, losses 

balance can be approximately achieved leading therefore to a high efficiency level. 

 

Fig( 3.6). Losses minimization principle  
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 Fuzzy Controller Design 

According to the analysis based on Figure (3.6) two input variables are considered, the 

torque current component Isq and its variation Isq. The output of the fuzzy controller is the 
stator current component Isdn, which is calculated to minimize both copper and iron losses. 
The above inputs and output variation domains are limited and normalized as follows, 
[Roua,2008]: 
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Control rules are extracted and summarized in Table 3.1 below, also the membership of the 

used controller are shown in Figure (3.7): 

Table 3.1 Rule matrix for efficiency improvement 
 

 

 

 

 

 

 

 

 

 

Fig( 3.7). Membership distribution (a) input 1, (b) input 2 and (c) output 

The linguistic terms are defined as: 
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Z: Zero                   P: Positive 

The law mapping is illustrated  by  Fig(3.8) 

 

 

 

 

Fig( 3.8). Optimization control Law Mapping 
3. 3.1.2 Second Fuzzy Approach 

This second approach is based on the adaptation of the optimal factor Kopt , which depends 

on the motor parameters . Figure (3.9), shows the principle of the proposed fuzzy controller. 

The stator current magnitude change and the change of the magnetizing current are used as 

its input variables where the output variable is the Kopt change. 

The calculation of   the derivative of equation (3.13) when neglecting inverter losses leads 

to: 

Kopt=A/[np(1- )Ls]
1/2  (3.14) 

Where : A=[[(Rs+Rr)/(  r +1)2+  rRfs/(1+  r)]/(Rs+Rfs)]
1/2 

 

The choice of these input variables is made regarding to the variation of Kopt versus Rr and Rs, 

Ls and M as illustrated respectively in Figure (3.10) ,where the influence of magnetizing   and 

stator inductance is clearly shown . 

 

 

 

 

 

 

Figure (3.9). The proposed fuzzy controller 
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Fig.(3.10) Kopt variation versus Ls ,M, Rr and Rs 

 
 

 Fuzzy Controller Design 

The fuzzy controller is designed to have two fuzzy state variables and one control variable 

for reaching optimum motor efficiency as presented in Figure(3.11). Each variable is divided 

into fuzzy segments. The number of these fuzzy segments for each variable is chosen to have 

maximum control with minimum number of rules .The first variable is the stator current 

error and the second one is the magnetizing current error. 

Both fuzzy inputs are defined as: 

ݏܫ∆ = (݇)ݏܫ − ݇)ݏܫ − 1) (3.18) 

ߤܫ∆ = (݇)µܫ − ݇)µܫ − 1) (3.19) 

The universe of discourse of the first input is divided into three overlapping fuzzy sets: 

Positive Small (PS), Positive Medium (PM) and Positive Big (PB). 

The grade of membership distribution is given in Figure (3.11,a) which uses a triangular 

distribution. 

The universe of discourse of the second input is divided into three overlapping fuzzy sets: 

Negative (N), Zero (Z) and Positive (P). The grade of membership distribution is shown in 

Figure (3.11, b). 
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The output variable is the variation of Kopt variable. The universe of discourse of this fuzzy 

variable is divided into seven fuzzy sets. The membership distribution is shown in Figure 

(3.11,c). 

 

 

 

……  

 

 

                           (a)                                                (b)                                                            (c) 

Fig( 3.11). The membership distribution,(a) input1, (b) input 2 and (c) output 

The adopted inference method is basic and simple and is developed from the maximum 

operation rule as a fuzzy implementation function, [C.C.Lee, 1990],[ Duy C. Huynh,2010]. 

Table 3.2 contains the corresponding rule table of the designed controller. The mapping of 

the optimization control law is also shown in Fig (3.12). 

Table 3. 2 Rule matrix for Kopt adaptation  
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Fig( 3.12). The optimization control law mapping 

3.4 Genetic Algorithms Approach 

The procedure of loss minimization consists of optimizing the value of the magnetizing 

current (Iμ) for a given load torque so as to minimize the total motor losses in steady state 

operation. In this section, as in the case of fuzzy logic, tow genetic algorithm approaches are 

proposed.  

For the first one an off line optimization was done by using the binary coded genetic 

algorithms to calculate the optimal current leading to minimum losses. The obtained values 

are introduced in lookup table and implemented in the control scheme. The corresponding 

flux optimized value is calculating during the motor operating and is applied as a command 

variable. 

The second approach is an on line optimization. It uses the real coded genetic algorithms 

(RCGA); these algorithms have many advantages in numerical optimization over binary 

encoding. Efficiency of the RCGA is increased as there is no need to convert chromosomes to 

phenotypes before each fitness evaluation, less memory is required and there is no loss in 

precision by the conversion between binary and real values, [Ki Li She, 2001]. 

The principle operating structure of genetic algorithms (GAs) block is illustrated by the flow 
chart of Fig (3.13). 
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Fig (3.13). Efficiency optimization flowchart by genetic algorithms 

3.4.1 Genetic Algorithms Optimization Procedure 

This optimization procedure consists of searching the optimum magnetizing current (flux) 

value for a given load torque by relying on genetic algorithm. The latter is defined as 

stochastic optimization technique based on the genetic natural evolution mechanism of 

creative beings, [jnchaun,2005], [Sheble,1995]. Such algorithm is found to be a powerful 

computational tool in seeking optimums and is considered as the most up-to-date product of 

artificial intelligence techniques that emulate the mechanics of natural selection and 

genetics. It explores, with coding parameter set, the workspace by means of mechanism of 

reproduction, with the target of optimizing the process selection. This mechanism comprises 

selection, crossover and mutation operations, [Renders J.M, 1995], [Leigh J.R, 2004]. 

The application of this approach requires the introduction of an objective function which 

evaluates how good the fitted values of the magnetizing current are. From this function, a 

fitness that controls the reproduction process is derived. 
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The criterion to select the best individuals for reproduction is the objective (fitness) function. 

By proceeding in this way, the objective function adopted for this problem is the IM total 

losses given by equation (3.13). Each generation is subjected to the crossover and mutation 

mechanisms. The crossover consists in selecting two parent chromosomes randomly in order 

to generate two new individuals. The mutation follows crossover and is used to insure that 

useful genetic data that could have been disregarded during crossover is not permanently 

lost. 

3.4.1.1 Off Line Genetic Algorithms Optimization Procedure 

With this procedure, the individuals of the initial GA population are encoded in binary 

strings where each individual representing a parameter takes 10 bits. 

Each generation is subjected to the crossover and mutation mechanisms. The crossover 

consists in randomly selecting a position along parents string a swapping all binary digits 

following that position. The mutation follows crossover and works by randomly selecting one 

string and one bit location, changing that strings bit from 1 to 0 or vice versa.  

3.4.1.2 On Line Genetic Algorithms Optimization Procedure 

The procedure of real-coded genetic algorithm is outlined as follows: 

1) Initial generation: the RCGA begins by randomly N individuals inside certain range and 

forms initial generation. 

2) Fitness evaluation: every individual’s fitness is calculated according to the fitness function 

expressed by eq. (3.13). 

3) Reproduction: parent individuals are sorted from big fitness function value to small one, 

and excellent individuals from the headmost are directly passed to offspring generation 

and the rest is put in matching pool. 

4) Crossover and Mutation: those operations are finished in matching pool, and the 

generated individuals are sent to offspring generation. 

5) Iteration: the RCGA runs iteratively repeating the actions from 2 to 4 until population 

convergence condition is met or the maximum number of iterations is reached. 

As an example of the  
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3.5 Results of GA’s application 

The probabilities of the crossover and mutation are set to 0.8 and 0.01 respectively   and for 

both binary coded and real coded GAs simulation are performed for 30 generation which is 

choose as stopped criteria.  

Figure (3.14) illustrates the optimal values of the magnetizing current (iμ) for 50% of a 

rated load for real and coding, while Fig (3.15) shows the optimal evaluation (losses). It can 

be noticed that the convergence is rapidly achieved for both cases.  

 

 

 

 

 

 

Fig (3.14). Optimal solution obtained by genetic algorithms for TL=3.5Nm 
 

 

 

 

 

 

 

Fig (3.15). Optimal evaluation 
 obtained by genetic algorithms for TL=3.5Nm 
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3.6 Summary 

By focusing on developing a better control technique to improve motor efficiency, this 

chapter has presented the basic principles of tow intelligent optimization techniques based 

on the loss motor model. The first one is based on fuzzy logic where tow online efficiency 

optimizer algorithms were proposed and the second technique is based on genetic algorithms 

and both real and binary coding was used for an online and offline calculus of the optimizing 

magnetizing current. Results, interpretation and validation of the proposed approaches will 

be presented in the fourth chapter. 
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Chapter Four 
 

Simulation Results and Discussion 

 
 
 
 
 
 
 
 
4.1 Introduction 

 

This chapter presents the development of the proposed IM drive system for the simulation 

study using Matlab/Simulink software.  In order to verify the effectiveness of the proposed 

loss minimization algorithms given in chapter three for efficiency enhancement  and  their 

robustness in different dynamic operation. The performances of the proposed algorithms are 

than compared with traditional field oriented technique. Extensive simulation results on the 

proposed methods and the complete IM drive are presented.  

4.2 Drive System 

The proposed control scheme is presented in Figure. (4.1) which show the diagram of the 

system block using loss minimization algorithm for indirect field orientation of IM. The IM 

parameters used in the simulation are given in Appendix 1.  
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Fig.(4.1). Indirect vector Controlled IM with Efficiency Optimizer 

 

The motor phase currents are fed into the Clarke and Park block, namely abc/dq block. 

The magnetizing current reference which is the optimal value allowing loss minimization this 

current is generated based on the solution of equation (3.13).This latter indicate that the 

flux(magnetizing current) must vary with the torque which is the optimizer input. The 

command voltages are applied to the inverter via the inverse Clark and Park 

transformations. These voltages will generate the signals that drive the inverter by 

comparing with high frequency Pulse Width Modulation (PWM) holder signal.   

4.3 Simulation Results and Discussion 

An extensive simulation has been done in order to predict the performances of the 

loss minimization algorithms without taking into account magnetizing saturation first time.  

First the performance of the classical FOC has been investigated according to given load 

profile using a 2 KHz switching frequency. Figure (4.2) shows the torque response it is clear 

that the motor developed torque follows the load profile. 

The speed converges to its reference 157rad/s. without any overshoot, as seen on Figure 

(4.3).  Figure (4.4) shows the fluxes while the Figures (4.5) and (4.6) show losses and 

efficiency of the drive respectively one can see the poor efficiency when light loads are 

applied compared to the rated one  while the losses are mostly dependant  on load torque. 
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Fig.(4.2) Load Torque Profile and Torque response                   Fig.(4.3) Speed response  

 

 

 

 

 

 

 

 

 

 

Fig.(4.4) Motor fluxes                                                          Fig.(4.5) Losses                                                                                          

 

 

 

 

 

 

 

 

 

Fig.(4.6)  Energetic performance of the drive: (a) Efficiency versus time for rated speed, 

(b)  Motor efficiency versus load 
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4.3.1 Performance of Fuzzy Logic Approaches 

The aim to using the optimization algorithms was to let the motor working at variable 

flux, also to proof the effectiveness and the robustness of the proposed algorithm the motor 

drive was tested at different range of speeds highest and lowest than the nominal speed. 

 The figures bellow show the performances of loss minimization algorithms namely   “ fuzzy 

approaches” at rated speed.  

When the IM load is varying between 14% and 28% of the rated load for example in 

the time period 1s to 2 s, the rotor flux reference alters to adapt to the IM load variations as 

seen on Figure.( 4.7). This flux adaptation has a direct influence on the efficiency which is 

improved. At each operating point, the optimal efficiency is reached when using the 

optimization algorithm as we can see on Figures. (4.8) and (4.9), the motor efficiency is greatly 

improved over load range compared with the classical FOC (see Figure.(4.6)).However one can 

notice that the losses in transient  increased for the first fuzzy optimization approach compared 

to the conventional FOC. 

The efficiency improvements are significant at light load torque as it is apparent on the figures 

the efficiency is increased more than 5% for by the proposed approaches however the first fuzzy 

approach provides a best efficiency. It can be seen that fuzzy are effective : fast convergence is 

achieved. Fuzzy efficiency controller work effectively with sudden changes in the operating 

conditions. 

The importance of including inverter loss in energy optimal control is shown here as it is 

apparent on Figure. (4.9)  where the efficiency is reduced about 3-4%. 

  

 

  

 

 

 

 

 

 

 

Fig.(4.7)  Fluxes of the motor (a)  First fuzzy approach ,(b) Kopt fuzzy approach 
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Fig.(4.8)  Energetic performance of the drive: Losses (a) first fuzzy approach, (b) Kopt fuzzy 

approach 

     

 

 

 

 

 

 

 

 

 

 

Fig.(4.9)  Energetic performance of the drive at rated speed : Efficiency (a) versus time for 

a  given profile load,(b) versus load 

 

In order to fulfill the IM energy saving task robustness by the proposed approaches figures 

(4.10 a) and (4.10.b) show the efficiency at high (314 rad/s) and lower speed (75 rad/s) 

respectively. Also in this case it can be noticed the great improvement in efficiency over low 

load range compared with the classical FOC especially with first fuzzy approach. The motor 

efficiency is lowest with the inverter because of the harmonic motor loss with the PWM 

voltages [Abrahamsen,2000]. 
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Fig.(4.10) Efficiency Comparison for : high Speed (a)and low Speed (b) 

 

4.3.2 Performance of Genetic Algorithms Approaches 

Using the same load profile simulation results given by GA’s approach are presented 

on figures bellow. 

Figure (4.11) shows the fluxes variation according to the control law it is pursuing the load 

profile, while Figure (4.12) shows losses. One can see   the  increasing of losses in transient  

when they are greatly reduced in steady state. The reduction seen on the losses are of 

course reflected into the efficiency curves  on Figures 4.13 (a) ,(b) and (c) where we can see 

the great efficiency enhancement for rated, high and low speed. 

 

 

 

 

 

 

 

 

 

 

Fig.(4.11)  Fluxes of the motor (a) RCGA approach, (b)  off line BCGA 
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Fig.(4.12)  Energetic performance of the drive: Losses (a) RCGA approach, (b)  off line 

BCGGA 

 

 

 

 

 

 

 

 

 

Fig.(4.13)  Energetic performance of the drive at nominal speed: Efficiency (a) versus time 

for a  given profile load,(b) versus load 

 

 

 

 

 

 

 

 

 

Fig.(4.14)  Energetic performance of the drive: Losses (a) High  speed , (b)  Low speed 
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These results demonstrate that the proposed methods save more energy than the 

conventional. 

However the losses of the drive are reduced in the steady state while in the transient they 

are significantly increased relatively to the classical FOC.  In the second fuzzy approach 

mainly called fuzzy Kopt this leads us to use the optimizing controller only when steady state 

is reached and from starting up. 

Steady state efficiency optimizer controller is activated when the system reaches steady 

state and it is determined when the speed error maintains a particular value for a 

predetermined period of time as presented on Figure (4.15).  

 

 

 

 

 

 

 

 

 

 

 

Fig.(4.15)  Transit between transient and permanent mode 

 

4.4 Effect of Parametric variation on Performance of the Efficiency Optimization 

Motor parameters vary depending on operation conditions, affecting by the way the drive 

performance. As the efficiency optimization algorithm depends on these parameters in this 

section investigation of the parameters witch critically affect such control is doing. 

For a given load torque, the efficiency of the IM drive can be expressed as: 

 = ೠ


           (4.1) 

where: 

௨௧ =  ܶ × ߱      and      =  ௦ܸௗ × ௦ௗܫ + ௦ܸ ×   ௦ܫ

In terms of the equivalent circuit parameters the efficiency is given by: 
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ܲ =  ܲ௨௧ + ܯ × ቀ
ெ

+  ோೞ

ೝ
ቁ ఓܫ

ଶ + 

ோೝ൬ ಽೝమ

ಾమ൰
× ்

మ

ெమூഋ
మ + ோೝ× ்

మ

ெమூഋ
మ      (4.2) 

Where:  ܣ =  ோೞାோೞ  ఙೝ

(ଵାఙೝ)
  

 

 

 

 

 

 

 

 

 

Fig. (4.16) Saturated Motor Efficiency 

 

Figure (4.16) shows the motor efficiency while Figure (4.17) shows the parameters variation 

effects on the efficiency under rated speed.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(4.17)  Efficiency variation with Parametric Variation 
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4.4 1. Magnetic Saturation Effect 

 Usually the control algorithm used in vector control is derived from constant parameter 

induction motor model. Unfortunately, the machine parameters are subject to variation due 

to temperature changes and saturation, as a consequence mismatch between actual 

parameters and those used in the control occurs leading to detuned operation of the drive, 

[Levi, 1990].To overcome to this detuning Several works including magnetic saturation in 

control algorithms can found in literature [levi 1990, 2000], [Vas,1998], [Lorenz 

1990],[Novatnak , 1990],[Drago Dolinar , 2010]. 

In this work the inductances variation is taken into account by using the equation (2.2), also 

to overcome to the orientation detuning the inductances variation is including in the control 

algorithm .  obtained results are shown on figures bellow first for the case without energetic 

optimization according to a  given working profile.  
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Fig.(4.18)  Performances of saturated IM , (a) Speed, (b) Torque, (c) Fluxes, (d) Stator 

inductance, (e) Losses and (f) Efficiency 

One can see the motor speed tracks the commanded speed and load; in addition the flux 

follows the inductance evolution, it can be noticed also that the field orientation is 

maintained 

Energetic optimization performance of the proposed approaches are presented in the next 

section  

4.4 2. Efficiency Optimization of saturated IM 

To enhance the drive efficiency one needs to use a control algorithm that takes into account 

the variation of the magnetizing inductance. It is well known the efficiency improvement 

algorithms are based on variable flux. This flux can vary with the variation of the magnetizing 

inductance, thus    if the magnetizing inductance varies with the load, it should be variable. , 

[D.G. Stanescu, 2013]. 

Efficiency of the saturated motor supplied with PWM voltages with efficiency 

optimization  for rated, high and low speed is presented on figures below: 
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Fig. (4.19).Efficiency  (a) First Fuzzy approach , (b) Kopt fuzzy approach,(c) RCGA ,(d) GA’s 

 

The enhancement of the motor efficiency with optimized efficiency algorithms is seen 
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seem a constant efficiency for all loads. Regarding to the first fuzzy approach it gives better 

results compared to those above cited however at low speed the efficiency for  the first 

fuzzy and the off line GA’s approaches  decreases when load increases it is probably  due to 

the high stator copper loss which is generated at high load, where the core is saturated.   

These results demonstrate that the proposed approaches save more energy than the 

conventional FOC, it’s shown on figure (4.20) where the motor works at nominal speed 

loaded with 25% of its nominal load torque. Thus we have been able to achieve satisfactory 

efficiency and torque for IM drive. Likewise figure (4.20) shows that the proposed  fuzzy 
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algorithms provide  very close results. In fact the same remarks can be made as the previous 

case (without magnetizing saturation). 

However it should be noticed that the efficiency optimization of saturated motor is better 

than the unsaturated model as seen on efficiency curves which leads to   better energy 

saving as seen on Figures (4.20.a) and (4.20.b). 

Table (4.1) shows the amount of energy saved at t = 3.15 s for the proposed algorithms 

compared to the conventional FOC. For this task the percentage of energy saving is 

calculated considering the FOC dissipated energy as the reference. 

At first sight the saving ratio is practically the same with and without including 

magnetizing saturation it is about 7% exept in the case of GA’s where the difference is about 

4%.  

Table.(4.1) Comparison of Energy  saving for saturated and unsaturated Motor 
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452.3386 100 446.0749 100  
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104.131 23.02 124.1109 27.3 
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106..2514 23.49 108.0182 23.76 
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104.2282 23.04 106.3692 23.40 



Chapter Four                                                                                                                    Simulation Results and Discussion 

 

Contribution to Efficiency Enhancement of Induction Motor Drive using Artificial Intelligence Techniques  66 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

    time (s)

 D
is

si
pa

te
d 

E
ne

rg
y 

(j)

(a)
25%  of  rated  load torque  

 

 

FOC

Fuzzy Kopt

Fuzzy 1

RCGA

GA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4.20).Energy saving for (a) Saturated Motor, (b) Unsaturated Motor 
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4.4 3.rotor resistance Variation Effect On efficiency optimization 

It is well known that Rr variation leads to a detuning effect of the FOC produces a coupling 

effect between the flux and torque as a consequence the rotor flux deviate from its 

reference value as shown on figure (4.21) 

 

 

 

 

 

 

 

 

Fig. (4.21).Effect of Rr variation on fluxes 

 

Figure (4.22) shows the efficiency for a 100% Rr variation, one can see that the  

optimizing efficiency is not affected by this variation while it is decreasing for the classical 

FOC  

 

 

 

 

 

 

 

 

Fig. (4.22).Effect of Rr variation on efficiency 
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To maintain the FOC performances in addition to the energetic performances, a rotor 

resistance adaptation mechanism is used based on the fuzzy approach proposed by 

[Karanayil,2001.] 

4.4 Summary 

This chapter showed the great energy saving in IFOC induction motor drive obtained 

when we introduce an efficiency algorithm based on the flux variation. 

Efficiency optimization algorithms presented are based on fuzzy logic and genetic 

algorithms. The proposed control strategies save more energy due to the achievement of an 

optimal flux the plotted results validate the proposed approaches.  
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The present work concerns an important field of electrical engineering application 

which is the energy saving in electrical machines. The growth in the interaction of technical, 

economical, and environmental constraints in today’s industry requires advanced 

approaches to control and design of electric machines; as well as the increase in global 

energy demand make this study relevant for both technologic level and the current needs of 

the society. The subject was addressed from the angle of control system. 

This thesis followed the same line target .It’s contribution to the ongoing research on 

effective methods   based on intelligent techniques for energy saving of IM drives with FOC 

schemes. 

As  first step  the review of IM  drives efficiency improvement methods has been provided 

this identifies the problem of parameters dependency for the LMC category and intelligent 

techniques based on Fuzzy logic and GA  have been proposed to overcome this problem. 

In second step  

A  brief description of  the fundamentals of  intelligent techniques like ANN , PSO; fuzzy logic 

controller and GA  was provide in chapter one. The basic idea of fuzzy sets, membership 

functions, fuzzy inference engine and defuzzification have been presented   also the 

parameters of GAs have been presented. The optimization of the fuzzy speed controller of 

the IM drive was presented also  

As the motor is controlled by  a voltage inverter it is necessary to take into account the 

converter losses, thus based on the approach given by [Abrahamsen,2000]  the loss model 

was developed to be incorporating in loss minimization strategy. 

The proposed approaches for IM efficiency optimization were described in chapter three, 

after providing  details of IM drive losses.  

The proposed controllers based loss minimization by programming the flux component by 

using fuzzy logic and   real coded genetic algorithms techniques online and offline. 

Results were presented in chapter four which provides details of the implementation 

Simulation results show encouraging energetic and dynamic performances of the proposed 
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algorithms in all the load range. Nevertheless it is necessary to note that the converter losses 

lead to a decrease of approximately 2% of the overall efficiency of the drive of low power motors. 

In order to see the robustness of the proposed control with respect to the  parameters 

variation the  rotor resistance and  saturation  effect were  investigated .obtained results 

show  the great adaptation of the proposed algorithms  and it may be surprise at first sight 

the energy saving in saturated model was greater than the energy saving in  a linear motor 

model while the rotor resistance change affect the dynamic performance to overcome to 

this  problem  and maintain good performance an adaptation mechanism  based on fuzzy 

logic was introduced in the drive scheme. 

It was observed that, the fuzzy approach based Kopt   adaptation   gives excessive losses in 

transient   and since   the optimization   procedure is only available in stationary regime the 

nominal flux was restored   when the speed error maintains a particular value. 

The main contributions of this thesis: 

 A development of a simple  and robust  online  efficiency controllers based loss 

minimization model approach using intelligent techniques what made them 

parameter independent  

 In the field of energy optimal control of induction motors the   importance of 

including magnetic saturation and converter losses in the control algorithms is 

proven by obtained results. 

 

Concerning the future work in the field of energy optimal control, it will be interesting to   this 

work  to move towards adaptive approaches of the loss model of the motor to ensure robust 

optimal flux control with respect to variations of the IM parameters. 

Another Way of advancement is the experimental validation of the  proposal to increase energy 

saving. 
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Appendixe 1 

 
Motor Parameters [Mendes 1994] 

 
 

o Pn = 1.1 kw 
o U = 220/380 V 
o I = 4.7/2.7 A 
o f = 50Hz, 1400 tr/min 
o Rs = 8Ω, Rr = 1.2 Ω 
o Ls = Lr = 0.47 H 
o P = 2 
o J = 0.06kgm² 
o f = 0.042 Nms 
o Cr = 7Nm 

 
 


