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في الوقت ف. ، آانت الرياح باستمرار شريكا طبيعيا فعالا لمجتمعاتناإلى يومنا هذامن قدماء المصريين 
  . الكهرباءلإنتاجبدلا من طحن الحبوب وضخ المياه، يمكننا تسخير الرياح  الحاضر،

 بةالمرآ للتفاعلات نتيجة وهذا ،للتنبؤ تعقيدا لأرصاد الجويةا رأآثر معايي واحدة من الرياح غالبا ما تعتبر
 ،دوران الأرض ،الضغط ودرجة الحرارة اختلافات مثل الطبيعية الظواهر بين على نطاق واسع

  .الأرض سطحل المحلية الخصائصو
. اتهاتطبيق بالتاليو ،)الأفق( للتنبؤ النطاق الزمنيالمعلومات المتاحة و على أساسا يعتمد عمل التنبؤ تقنية
تحويل طاقة  نظم السيطرة على  هودقائق بضع إلى وانبضع ث تتراوح بين لفترات  التنبؤأفاقهدف ف

 ترتبط نطاق من الأيام في التوقعات في حين أن ،الطاقة نظم  جدولةهو منها الهدف ساعات وفي ،الرياح
  .وتخطيط الموارد صيانة مع
 : ينتمستقلو ينمختلفت ينمنهجيت عن طريق الرياح سرعة تنبؤ مع التعامل يقترح هذه الأطروحة في
 ،التنبؤ خوارزميات من مجموعة بين للتنبؤ أفضل أداء العثور على يسعى إلى ، النظام المقترحولىالأ في

 ثلاثة عن طريق التنبؤ المفردة أبنية التي قدمتها النواتج يتم الجمع بين حيث. جديد نظامباستخدام  ويتم ذلك
يمكن تحقيقه من  بالمقارنة مع ما تفوقةم كفاءةب الرياح سرعةتنبؤ نهائي ل تحقيق نصهار من أجلللا أساليب
  .التنبؤ المفردة تقنيات خلال
 عدة وقد تم التحقيق في. السلاسل الزمنية إطار في الرياح سرعةب التنبؤ مشكلة  صياغةتتم، ثانية الفي

  .تنبؤ الحصول على أفضل من أجل سرعة الرياح لالسابقة القيم من العدد الأمثل للعثور على تقنيات
  .بيانات حقيقية  مجموعاتعن طريق ينالمنهجيت المصادقة على تتم التجريبية ، مرحلةال  في

  

 مجموعة؛ يةزمن سلسلة نموذج؛ ثابت نموذج؛ سرعة الرياح تنبؤ الطاقة المتجددة؛ :الكلمات المفتاحية
 ناقلات آلات؛ العصبية، الشبكات التعلم الآلي؛ إسقاط المتغيرات؛ متغيرات، اختيار الجمع التنبؤات التعلم؛
  .الانحدار إحصائية؛ الدعم
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ABSTRACT

From the ancient Egyptians to today’s modern wind farms, the wind has con-
stantly been a natural partner in propelling our societies forward. Nowadays,
instead of grinding grain and pumping water, we can harness the wind to pro-
duce electricity. The wind is often considered as one of the most complicated
meteorological parameters to predict. This is a consequence of the composite
interactions between large scale of natural forcing phenomena such as pressure,
temperature differences, earth rotation, and local characteristics of the earth sur-
face. The predicting technique employed depends essentially on the available
information and the time scale in question (horizon), and thus its application.
For horizon periods ranging from few seconds up to minutes, the predicting
goal is the control of wind energy conversion systems. Wind predictions in the
horizon range of hours target the problem of scheduling in a power system,
whereas predictions in the range of days are related with maintenance and re-
source planning.
In this dissertation it is proposed to deal with the prediction of wind speed by
two different and independent methodologies:
In the first one, the proposed static system seeks to find the best prediction per-
formance among a set of different predicting algorithms, this is done by using
a new approach, where the outputs yielded by the different single prediction
architectures are combined by three fusion methods in order to achieve a final
prediction of the wind speed with a superior efficiency compared to what can
be achieved by the single prediction techniques.
In the second one, the wind speed prediction problem is formulated in the
framework of time series. Several variable selection techniques were investi-
gated to find the optimal number of historical wind speed values in order to get
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the best prediction performance.
In the experimental phase, the validation of the two methodologies is carried
out on real data sets.

Keywords: Renewable energy; Wind speed prediction; Static model; Time se-
ries model; Ensemble learning; Combining predictions; Variable selection; Variables
projection; Machine learning; Neural networks; Support vector machines; Statistical
regression.



RESUMÉ

De l’Egypte ancienne aux fermes éolienne moderne d’aujourd’hui, le vent a tou-
jours été un partenaire naturel de propulsion vers l’avant dans nos sociétés.
Aujourd’hui, au lieu de moudre le grain et pomper l’eau, nous pouvons ex-
ploiter le vent pour généré de l’électricité. Le vent est souvent considéré comme
l’un des paramètres météorologiques les plus complexes à prévoir. Ceci est
une conséquence des interactions à grande échelle entre les phénomènes de
forces naturels tels que la pression, les changements de température, la rota-
tion de la terre, et les caractéristiques locales de la surface de la terre. Les tech-
niques employées de prévision reposent essentiellement sur les informations
disponibles et l’échelle de temps en question (horizon de prédiction), et donc
son application. Pour des périodes allant de quelques secondes à quelques min-
utes, l’objectif de prévision est le contrôle des systèmes de conversion éolienne.
Les prévisions dans quelques heures visent l’ordonnancement dans un système
d’alimentation, tandis que les prévisions de l’ordre du jour sont liées à la main-
tenance et la planification des ressources.
Dans cette thèse, nous proposons de traiter la prédiction de la vitesse du vent
par deux méthodes différentes et indépendantes:
Pour la première, le système statique proposé cherche à obtenir la meilleure
performance de prédiction possible d’un ensemble de différents algorithmes de
prédiction, cela se fait en utilisant une nouvelle approche, les sorties produites
par les différentes architectures de prédiction Individuelle sont combinées par
trois méthodes de fusion afin d’obtenir une prédiction finale de la vitesse du
vent avec une efficacité supérieure par rapport à ce qui peut être obtenue par
les approches de prédiction Individuelles.
Dans la deuxième, le problème de prédiction de vitesse du vent est formulé
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dans le cadre des séries temporelles. Plusieurs techniques de sélection de vari-
ables ont été étudiées pour trouver le nombre optimal de précédentes valeurs de
vitesse du vent afin d’obtenir une meilleure prédiction. Dans la phase expéri-
mentatale, la validation des deux méthodes est réalisée sur des données réelles.

Mots-clés: Energie renouvelable; Prédiction de la vitesse du vent; Modèle sta-
tique; Modèle de séries temporelles; Apprentissage d’ensembles; Combinaison des
prédictions; Sélection des variables; Projection des variables; Apprentissage machine;
Réseaux de neurones; Machines à vecteurs de support; Régression statistique.
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1

INTRODUCTION

Contents
1.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of this thesis . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the dissertation . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions of the dissertation . . . . . . . . . . . . . . . . . 5

1.1 Context and objectives

Renewable energy plays a crucial role in modern society. Power sources obtain
their energy from existing flows of energy, from developing natural processes,
such as sunshine, wind, flowing water, biological processes, and geothermal
heat flows. A common definition of renewable energy sources is that renewable
energy is captured from an energy resource that is replaced rapidly by a natural
process such as power generated from the wind or from the sun [1]. At present,
the most promising and feasible alternative energy sources include wind power,
solar power [2, 3], and hydroelectric power. Other renewable sources include
geothermal and ocean energies, as well as biomass and ethanol as renewable fu-
els.
Despite a range of energy sources that exists, the way we use energy (the final
product), is in general for one of three needs:

1



CHAPTER 1. INTRODUCTION 2

• Production of electricity;

• Generation of heat;

• Energy power for transport.

Renewable energy can be used to generate electricity, produce heat and trans-
port goods and people. Increasingly, governments around the world are turning
to renewable energy to end our dependence on fossil fuels.

One of the most auspicious alternative energy technologies of the future is
wind energy. Throughout recent years, the amount of energy produced by wind-
driven turbines has increased exponentially thanks to significant breakthroughs
in turbine technologies, making wind power economically compatible with con-
ventional sources of energy.

Wind energy is a dirt-free and renewable supply of power. The exploit of
windmills to produce energy has been utilized as early as 5000 before Christ
(B.C.) [4], but the development of wind energy to produce electricity was sparked
by the industrialization. The new windmills, also known as wind turbines, ap-
peared in Denmark as early as 1890. The popularity of wind energy however
has always depended on the price of fossil fuels. For example, after World War
II, when oil prices were low, there was hardly any interest in wind power. How-
ever, when the oil prices increased dramatically in the 1970s, there has been
a worldwide interest in the development of commercial use of electrical wind
turbines. Nowadays, the wind-generated electricity is very close in cost to the
power from conventional energy sources in some locations.

Often, the implementation of a wind energy generation systems requires
defining the proper site where to put the wind turbines. Therefore, the pre-
diction of wind speed/power is needed. It is often considered as one of the most
difficult meteorological parameters to forecast. This is essentially due to the
composite interactions between large scale of natural forcing phenomena such
as pressure,temperature differences, earth rotation, and local characteristics of
the surface.

A good prediction of wind speed could be an efficient way to overcome many
challenges. For instance, when it comes to competitive electricity markets, ac-
curate wind prediction is always interesting for a variety of reasons. Firstly,
appropriate incentives of attractive market price are offered on energy imbal-
ance charges based on market price. Secondly, a correct prediction can improve
the development of well-functioning hour-ahead or day-ahead markets [5].
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Predicting models can be classified broadly into two classes:
With respect to their time-scale, we distinguish four predicting horizons [6]:

1. Very short term: from seconds to 30 minutes ahead;

2. Short-term: 30 minutes to 6 hours ahead;

3. Medium-term: 6 hours to 1 day ahead;

4. Long-term: 1 day to 1 week or more ahead.

According to the prediction technique in use, four models categories:

1. Physical models [7, 8];

2. Spatial correlation models [9–11];

3. Conventional statistical models [12–17];

4. Artificial intelligence and new models [18–29].

Increased prediction accuracy of wind speed to be produced at future time
periods is often bounded by two issues, the prediction technique employed and
the input parameters involved. Given this, we can draw two important chal-
lenges facing researchers working on:

• In the first issue, the choice of the best prediction model for a particular
prediction problem among a set of techniques could be addressed.

• In the seconde issue, where the prediction horizon is directly related to the
projected/selected past wind speed variables, the choice of the past wind
speed series is critical for the prediction model effectiveness, in particular
when dealing with time series data.

1.2 Objectives of this thesis

The goal of this thesis is twofold:

First, the proposed long-term static1 system for wind speed prediction seeks
to find the best prediction performance among a set of different predicting al-
gorithms, this is done by using a new approach inspired from the ensemble

1The word static refers to data that are not organized in a chronological manner like time
series.
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learning theory [30], where the outputs yielded by the different single predic-
tion architectures are combined by three fusion models in order to give a final
prediction of the wind speed with a superior efficiency compared to what can
be achieved by the single prediction approaches. The experimental assessment
of the proposed approach will be carried out by real data acquired from seven
locations in Algeria, covering the major directions of the Algerian territory.

Second, the wind speed prediction problem is formulated in the framework
of time series. The proposed very short term model tries to predict future time
series values 10 min ahead by a function that approximates its values according
to historical wind vectors. The choice of the historical wind vectors is addressed
in the framework of dimensionality reduction concept; two main families of di-
mensionality reduction techniques were investigated to find the optimal input
wind speed variables in order to obtain the best prediction performance. In the
experimental phase, the validation of the methodology is carried out on two real
data sets from United States (US).

1.3 Structure of the dissertation

The first chapter 1 introduces the thesis by defining the main constituents re-
lated to it, emphasizes the importance of the prediction of wind speed and
provides some key-lines serving to understand the context of the proposed ap-
proaches and finishing by giving an overview of this dissertation and the main
contributions.

The next chapter 2 gives a large overview of the wind nature and the physi-
cal background associated to it.

The third chapter 3 gives a state-of-the-art summary of the main prediction
techniques found in the literature of wind speed community and provides the
basic background for understanding these techniques.

The two proposed approaches used all over this dissertation are given in the
fourth 4 and the fifth 5 chapters along with the obtained results and discus-
sions.

Finally, Chapter 6 reviews the main contributions of this dissertation and
proposes guidelines for future works.



1.4 Contributions of the dissertation

The main contributions of the thesis are:

1. With respect to prediction model choice: A combination approach based
on the fusion of the outputs of different prediction techniques. Several
predictions categories (statistical, neural and kernel) were employed in
the Multiple Architecture System (MAS) [31].

2. With respect to time series model inputs: new methodologies are investi-
gated in this thesis for selecting the optimal inputs for a wind speed time
series model, broadly classified into two dimensionality reduction-based
techniques (projection and selection).
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2.1 Introduction

Until the industrial revolution, renewable energy sources were practically the
only forms of energy used by human beings; burning wood (biomass) and mak-
ing use of windmills, watermills and sailing ships. But during the last two cen-
turies, modern society has become increasingly more dependent on fossil fuels:
oil, coal and natural gas. One characteristic of fossil fuels is that, they form so
slowly in comparison with the rate of their use; they are considered finite or
limited resources.

Furthermore, the burning of fossil fuels creates greenhouse gases and other
pollutants. Greenhouse gases are believed to be responsible for creation heat
in the atmosphere, heat that would normally be radiated back into space. This
effect is being attached to changes in the Earth’s climate.
Renewable energy generally produces few or no greenhouse gases. The ex-
ception, however, is biomass. The carbon dioxide emitted is balanced by the
amount of carbon absorbed from the atmosphere while the organic material is
produced. If biomass is being used sustainably, there are no net carbon emis-
sions over the time frame of a cycle of biomass production. Biomass is in general
considered to be carbon neutral [1].

Using renewable energy can present many benefits, including:

• Making use of secure, local and replenishable resources;

• Reducing reliance on non-renewable energy;

• Serving to keep the air clean;

• Helping to reduce the production of carbon dioxide and other greenhouse
gases;

• Creating new jobs in renewable energy industries.

In this chapter, a large overview on wind energy is given. Starting from
presenting the different renewable energies and emphasizing the importance of
the wind power in this context, next, the physical nature of the wind and its
variations are presented. A small wind power system is then illustrated with a
modern wind turbine configuration. Finally, the history of wind generation and
utilization are provided in the last section.

2.2 The different types of renewable energies

The most common types of renewable energy and the technologies used to ex-
tract the energy from the source are shown in the table 2.1 below .
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Table 2.1: Renewable energy sources and the associated technologies and ap-
plications

Energy source Technology / Application
Solar 1. Photovoltaic (PV) cells to produce electricity

2. Solar thermal system for heating water
Wind 1. Wind turbine: single turbines or a number

of turbines in a wind farm
2. Conventional windmill to pump water

Water Hydro electric, wave and tidal systems
to produce electricity

Biomass Direct combustion of gas produced from biomass,
or biogas, to generate electricity and/or heat -
e.g. wood stoves or larger commercial operations

Geothermal Using the temperature of the earth to produce
electricity and/or heat,
e.g. ground source heat pumps

2.3 Wind as renewable energy

Wind energy is one of the most auspicious alternative energy technologies of
the future. Throughout recent years, the amount of energy produced by wind-
driven turbines has increased exponentially thanks to significant breakthroughs
in turbine technologies, making wind power economically compatible with con-
ventional sources of energy.

Wind energy is a dirt-free and renewable supply of power. The exploit of
windmills to produce energy has been utilized as early as 5000 B.C., but the de-
velopment of wind energy to produce electricity was sparked by the industrial-
ization. The new windmills, also known as wind turbines, appeared in Denmark
as early as 1890. The popularity of wind energy however has always depended
on the price of fossil fuels. For example, after World War II, when oil prices
were low, there was scarcely any interest in wind power. However, when the
oil prices increased spectacularly in the 1970s, there was a worldwide interest
in the development and commercial use of electrical wind turbines. Today, the
wind-generated electricity is very close in cost to the power from conventional
energy sources in a number of places [4, 32].
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2.4 The nature of the wind

The energy available in the wind varies as the cube of the wind speed, thus, an
understanding of the nature of the wind resource is important to all aspects of
wind energy exploitation, from the identification of appropriate sites and pre-
dictions of the economic viability of wind farm projects through to the design
of wind turbines themselves, and understanding their effect on electrical energy
distribution networks and consumers.

From the point of view of wind energy, the most prominent characteristic of
the wind resource is its variability. The wind is highly variable, both geograph-
ically and temporally. Moreover, this variability persists over a very wide range
of scales, together in space and time. The importance of this is amplified by
the cubic relationship to available energy. On a large scale, spatial variability
explains the fact that there are several different climatic regions in the world,
some much windier than others. These regions are mainly governed by the lat-
itude, which have an effect on the quantity of insolation. In the same climatic
region, there is a lot of variation on a smaller scale, principally determined by
physical geography - the proportion of sea and land, the size of land masses,
and the presence of mountains or plains for instance. The type of vegetation
may also have an important influence through its effects on the absorption or
reflection of solar radiation, affecting surface temperatures, and on humidity.

In the local scale, the topography has the most important effect on the wind
nature. More wind could be found on the tops of mountains and hills than in
the lee of high ground or in sheltered valleys, for instance. In addition, wind
velocities are considerably decreased by obstacles such as buildings or trees.
For a given location, temporal changeability on a large scale indicates that the
amount of wind may vary from one year to the next, with even larger scale vari-
ations over periods of decades or more. These long-term variations are not well
understood, and may make it difficult to have correct predictions of the eco-
nomic viability of particular wind-farm projects.

In time-scales less than a year, seasonal wind variations are much more pre-
dictable, even if there are large variations on smaller time-scales still, which
could be logically understood, are often not easy to predict more than a few days
ahead. These "synoptic" variations are associated with the passage of weather
systems. Depending on location, there may also be significant variations with
the time of day (diurnal variations) which usually can be predictable. On these
time-scales, the predictability of the wind is important for integrating large
amounts of wind energy into the electrical energy network, to let the other gen-
erating plant supplying the network to be organized suitably [32].
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time of day (diurnal variations) which again are usually fairly predictable. On these
time-scales, the predictability of the wind is important for integrating large amounts
of wind power into the electricity network, to allow the other generating plant
supplying the network to be organized appropriately.
On still shorter time-scales of minutes down to seconds or less, wind-speed

variations known as turbulence can have a very significant effect on the design and
performance of the individual wind turbines, as well as on the quality of power
delivered to the network and its effect on consumers.
Van der Hoven (1957) constructed a wind-speed spectrum from long- and short-

term records at Brookhaven, New York, showing clear peaks corresponding to the
synoptic, diurnal and turbulent effects referred to above (Figure 2.1). Of particular
interest is the so-called ‘spectral gap’ occurring between the diurnal and turbulent
peaks, showing that the synoptic and diurnal variations can be treated as quite
distinct from the higher-frequency fluctuations of turbulence. There is very little
energy in the spectrum in the region between 2 h and 10 min.

2.2 Geographical Variation in the Wind Resource

Ultimately the winds are driven almost entirely by the sun’s energy, causing differ-
ential surfaceheating. Theheating ismost intense on landmasses closer to the equator,
and obviously the greatest heating occurs in the daytime,whichmeans that the region
of greatest heating moves around the earth’s surface as it spins on its axis. Warm air
rises and circulates in the atmosphere to sink back to the surface in cooler areas. The
resulting large-scale motion of the air is strongly influenced by coriolis forces due to
the earth’s rotation. The result is a large-scale global circulation pattern. Certain
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Figure 2.1 Wind Spectrum Farm Brookhaven Based on Work by van der Hoven (1957)

12 THE WIND RESOURCE

Figure 2.1: Wind spectrum of Brookhaven farm based on work by Van Der
Hoven (1957)

On time-scales of minutes down to seconds or less, wind-speed variations
known as turbulence can have a very considerable effect on the design and per-
formance of the wind turbine, as well as on the quality of power supplied to the
network and its consequence on consumers.
Van der Hoven (1957) [33] built a wind-speed spectrum from long- and short
term records at Brookhaven, New York, showing clear peaks corresponding to
the synoptic, diurnal and turbulent effects referred to above (Figure 2.1) [32].
Particularly interesting is the so-called "spectral gap" taking place between the
diurnal and turbulent peaks, illustrating that the synoptic and diurnal varia-
tions can be considered as quite dissimilar from the higher-frequency fluctua-
tions of turbulence. There is very little energy in the spectrum in the region
between 2 h and 10 min.

2.5 Geographical variations in the wind resource

The winds are driven almost wholly by the sun’s energy, causing differences on
surface temperatures. The heating is most intense on land masses nearer to the
equator, and evidently the maximum temperatures occur in the daytime, which
indicates that the hottest region moves around the earth’s surface as it spins
on its axis. Warm air climbs and circulates in the atmosphere to descend back
to the surface in cooler areas. The resulting large-scale movement of the air is
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strongly influenced by coriolis forces 1 caused by the earth’s rotation. The result
is a large-scale global circulation pattern. Certain identifiable features of this
are well known such as the trade winds2.

The earth’s surface non-uniformity, with its topography of oceans and land
masses, ensures that this global circulation pattern is disturbed by smaller-scale
variations on continental scales. These variations act together in a very com-
posite and nonlinear manner to produce a slightly chaotic result, which is the
origin of the day-to-day prediction difficulty of the weather in some particular
places. It is clear that, underlying tendencies are the main reason of clear cli-
matic differences between regions. These differences are adjusted by additional
local thermal and topographical effects.

Increased wind speed in local regions is due mainly to hills and mountains.
This is in part a consequence of altitude - the earth’s boundary layer means that
wind speed usually increases with altitude above land, and hill tops and moun-
tain peaks may "project" into the higher wind-speed layers. It is also to a cer-
tain extent the effect of the acceleration of the wind flow over and around hills
and mountains, and funnelling through passes or along valleys aligned with the
flow. Similarly, topography may produce areas of reduced wind speed, such as
sheltered valleys, areas in the lee of a mountain ridge or where the flow patterns
result in stagnation points.

Considerable local variations can be a result of thermal effects. Coastal ar-
eas are often windy for the reason of differential temperatures between sea and
land. Though the sea is warmer than the land, surface air flows from the land to
the sea developing a local circulation, with warm air growing from the sea and
cool air sinking over the land. After the land is warmer the pattern reverses. The
land will heat up and cool down more rapidly than the sea surface, and so this
pattern of land and sea breezes tends to reverse over a 24 h cycle. These prop-
erties were important in the early development of wind energy in California,
where an oceanic current transports cold water to the coast, near desert regions
which heat up powerfully by day. An intervening mountain range funnels the
resulting air flow through its passes, generating locally very strong and reliable
winds (which are well linked with peaks in the local electricity demand caused
by air-conditioning loads). Differences in altitude may also cause thermal ef-
fects. Therefore, cold air from high mountains can go down to the plains below,
causing quite strong and highly stratified "downslope" winds [32].

1An apparent force that as a result of the earth’s rotation deflects moving objects (as pro-
jectiles or air currents) to the right in the northern hemisphere and to the left in the southern
hemisphere.

2any wind that blows in one regular course, or continually in the same direction.
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2.6 Long-term wind speed variations

It is confirmed that the wind speed at any particular place may be subject to very
slow long-term variations. Though the availability of precise historical records
is a limitation, careful analysis has demonstrated clear trends. Clearly these
may be related to long-term temperature variations for which there is sufficient
historical evidence. There is also much debate at the present time about the
probable effects of global warming, caused by human activity, on climate, and
this will certainly affect wind climates in the coming decades.

Despite these long-term tendencies, there may be considerable changes in
windiness at a certain location from year to year. These changes have various
causes. For instance, they may be due to global climate phenomena such as
el nino 3, changes in airborne particles coming from volcanic eruptions, and
sunspot activity. These changes affect considerably the effectiveness of predict-
ing the energy output of a wind farm at a particular location during its expected
lifetime [32].

2.7 Annual and seasonal variations

Despite the fact that year-to-year variation in annual mean wind speeds stays
difficult to predict, wind speed variations during the year can be well described
in terms of a probability distribution. It has been found that the Weibull distri-
bution can give a good illustration of the mean hourly variation of wind speed
for the period of a year at several typical locations. It is represented by the
following form [32]

F(U ) = 1− exp
(
−
(U
c

)k)
(2.1)

where F(U ) is the fraction of time where the hourly mean wind speed ex-
ceeds U . It is described by two parameters, a "scale parameter" c and a "shape
parameter" k which express the variability about the mean. c is connected to the
annual mean wind speed U via the next relationship

U = cΓ
(
1 +

1
k

)
(2.2)

where Γ is the complete gamma function. This can be derived by considera-
tion of the probability density function

3An invasion of warm water into the surface of the Pacific Ocean off the coast of Peru and
Ecuador every four to seven years that causes changes in local and regional climate, associated
with a positive anomaly.
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f (U ) =
dF(U )
dU

= k
U k−1

ck
exp

(
−
(U
c

)k)
(2.3)

while the mean wind speed is given by

U =
∫ ∞

0
Uf (U )dU (2.4)

A special case of the Weibull distribution is the Rayleigh distribution, with
k = 2, which is in fact a reasonably typical value for many locations. In this case,
the factor (1 + 1/k) has the value

√
π/2 = 0.8862. A superior value of k, such

as 2.5 or 3, point to a site where the variation of hourly mean wind speed with
reference to the annual mean is small, which is the case of the trade wind belts
for example. An inferior value of k, such as 1.5 or 1.2, indicates larger variability
about the mean. Some examples are represented in Figure 2.2 [32]. The value
of (1 + 1/k) varies little, between about 1.0 and 0.885 see Figure 2.3 [32].

ˆ(1þ 1=k) has the value
ffiffiffi

�
p

=2 ¼ 0:8862. A higher value of k, such as 2.5 or 3,
indicates a site where the variation of hourly mean wind speed about the annual
mean is small, as is sometimes the case in the trade wind belts for instance. A lower
value of k, such as 1.5 or 1.2, indicates greater variability about the mean. A few
examples are shown in Figure 2.2. The value of ˆ(1þ 1=k) varies little, between
about 1.0 and 0.885 see (Figure 2.3).
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Figure 2.2: Example of Weibull Distributions

The Weibull distribution of hourly mean wind speeds during the year is vis-
ibly the consequence of a significant amount of random variation. Nevertheless,
there exists also a strong underlying seasonal component to these variations, as
a result of the changes in insolation during the year driven by the incline of the
axis of rotation.
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Figure 2.3: The Factor Γ (1 + 1/k)

Therefore, in moderate latitudes, the months of winter have a tendency to be
considerably windier than the months of summer. There may also be a tendency
for powerful winds or gales to develop during spring and autumn equinox’s
times 4. Tropical regions also know seasonal phenomena such as tropical storms
and monsoons5 which have an impact on the wind climate. Certainly the ex-
treme winds coupled with tropical storms may considerably influence the de-
sign of wind turbines intended to subsist in these sites.

Even if a Weibull distribution represents a good illustration of the wind
regime at many locations, it is not always true. for instance, some sites present-
ing clearly diverse wind climates in summer and winter can be characterized
better by a double-peaked ’bi-Weibull’ distribution, with dissimilar scale fac-
tors and shape factors in the two seasons, i.e. [32],

F(U ) = F1 exp

−(Uc1

)k1
+ (1−F1)exp

−(Uc2

)k2
 (2.5)

2.8 Synoptic and diurnal variations

Wind speed variations are to some extent more random on shorter time-scales
than the seasonal changes, and more difficult to predict. On the other hand

4The time or date (twice each year, about 22 September and 20 March) at which the sun
crosses the celestial equator, when day and night are of equal length.

5The monsoon is the season in Southern Asia when there is a lot of very heavy rain.



CHAPTER 2. OVERVIEW OF WIND ENERGY 15

these variations enclose definite patterns. The frequency signal of these varia-
tions generally peaks at about 4 days or so. These are called synoptic variations,
which are linked with large-scale weather patterns such as regions of low and
high pressure and associated weather fronts as they move across the earth’s sur-
face.

Coriolis forces provoke a circular movement of the air when moving from
high- to low-pressure regions. These coherent large-scale atmospheric circu-
lation patterns may normally take a few days to pass over a given point, even
if they may occasionally "stick" in one position for longer before moving on or
dissipating in the end. In the frequency spectrum of higher frequencies, many
locations will demonstrate different diurnal peak at a frequency of 24 h, which
is usually caused by local thermal effects. Strong heating in the daytime can
cause large convection cells in the atmosphere, which die down at night [32].

2.9 Components of wind energy systems

A wind turbine is a core device of a wind energy system; it converts the wind
power into electricity energy. This is contrary to a "windmill", which is a ma-
chine that converts the wind’s power into mechanical power. The same as elec-
tricity generators, wind turbines are linked to some electrical network. These
networks comprise battery charging circuits, housing scale power systems, iso-
lated or island networks, and large utility grids. In terms of total numbers, the
most commonly found wind turbines are in fact quite small - on the order of
10 kW or less. In terms of total generating capacity, the turbines that constitute
the majority of the capacity are usually quite large - in the range of 500 kW to 2
MW. These big turbines are employed mainly in large utility grids, principally
in Europe and the United States. A representative modern wind turbine, linked
to a utility network, is shown in Figure 2.4.

These basic components consist of [34]:

• A rotor: which is a set of blades with aerodynamic surfaces. When the
wind touches the blades, the rotor turns, and hence the generator or alter-
nator in the turbine turn and generate electricity;

• A gearbox: which matches the rotor speed to the generator/alternator
speed;

• An enclosure, or nacelle, used to protect the gearbox, generator and other
turbine components from the elements;

• A tailvane or yaw system, which lines up the turbine with the wind.
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Figure 2.4: Components of a wind energy system

To understand how wind turbines are employed, it is helpful to concisely
consider a number of the elementary facts underlying their operation. In present
wind turbines, the actual conversion process utilizes the basic aerodynamic
force of lift to create a net positive torque on a rotating shaft, resulting first
in the creation of mechanical power and after that in its transformation to elec-
tricity in a generator. Wind turbines, dissimilar from the other generators, can
generate energy only in response to the wind that is directly available. It is
impossible to store the wind and exploit it a later time. The output of a wind
turbine is therefore naturally fluctuating and non-dispatchable. Any system to
which a wind turbine is linked must somehow take into account this variability.
In the large networks, the wind turbine helps to decrease the entire electrical
load and consequently results in a decrease in either the number of usual gen-
erators or in the fuel used of the running generators. In the small networks, we
may find energy storage, backup generators, and some specific control systems.
Other interesting property is that the wind is not transportable: it can just be
converted where it is blowing. Nowadays, the possibility of transmission elec-
trical energy by means of power lines compensates for wind’s incapability to be
transported [35].
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2.9.1 Modern wind turbine design

At present, the most common design of wind turbine is the horizontal axis wind
turbine (HAWT). Where, the rotation axis is parallel to the ground. HAWT ro-
tors are generally classified according to the rotor orientation (upwind or down-
wind of the tower), hub design (rigid or teetering), rotor control (pitch vs. stall),
number of blades (generally two or thee blades), and how they are aligned with
the wind (free yaw or active yaw). Figure 2.5 illustrates the upwind and down-
wind configurations [34].

 Upwind 

Wind Direction 

Downwind

Wind Direction 

Figure 2.5: HAWT rotor configurations

2.10 Historical utilization of wind power

For many centuries, the wind has been utilized to power sailing ships. A lot of
countries owed their prosperity to their sailing skill. The New World was dis-
covered via wind powered ships. In fact, wind was almost the single source of
power for ships until Watt invented the steam engine in the 18th Century [34].
On land, wind turbines date back many centuries. In the seventeenth century
B.C, the Babylonian emperor Hammurabi have been planned to utilize wind
turbines for irrigation. Hero of Alexandria, who lived in the third century B.C.,
has given a description to a four sails wind turbine with simple horizontal axis
which was used to blow an organ. The Persians were using wind turbines widely
by the middle of the seventh century. There was a vertical axis machine with a
number of sails mounted radially [4].
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These former devices were certainly basic and mechanically ineffective; how-
ever they served their purpose well for a long time. They were made from local
resources by cheap labour. Maintenance was possibly a difficulty which served
to keep many people at work. Their size was probably dictated by the accessi-
ble materials. A need for additional power was satisfied by constructing further
wind turbines rather than larger ones. There are several smaller countries of the
world today which can usefully utilize such low technology machines due to the
large amounts of cheap, inexperienced labour available. Such countries often
have difficulty obtaining the foreign exchange needed to acquire high technol-
ogy equipments, and then have complexity maintaining them.

The former English wind turbine date to 1191. The first corn-grinding wind
turbine was constructed in Holland in 1439. There were a few technological im-
provements throughout the centuries, and by 1600 the most widespread wind
turbine was the tower mill. The word mill refers to the action of milling or
grinding grain. This application was so usual that all wind turbines were often
called windmills even when they pumped water or carried out some other op-
eration.

The tower mill had a fixed supporting tower with a rotating cap holding the
wind rotor. The tower was generally built of brick in a cylindrical form, and
sometimes was built of wood, with polygonal cross section. In one manner, the
cap had a support or tail extending out and down to land level. The tower was
surrounded by a circle of posts where the support touched the soil. The miller
have to check the direction of the dominant wind and turn the cap and rotor
into the wind with a winch connected between the tail and one of the posts. The
tail is then attached to a post to maintain the rotor in the right direction. This
operation would be repeated after the wind direction changed. Protection from
high winds was implemented by turning the rotor out of the wind or taking out
the canvas wrapping the rotor latticework.

The development of the rotor form perhaps took a long time to complete.
It is worth noting that the rotors on the majority of the Dutch mills are twisted
and tapered to get a maximum efficiency. The rotors at the moment on the tower
mills possibly do not get reference from the original structure of the tower, but
still reveal a high quality aerodynamic engineering of an earlier period.

In the mid-1700’s, Dutch colonist bring this kind of wind turbine to Amer-
ica. A number were constructed, but not the same number which was in Europe.
Then in the mid-1800’s, a need expressed for a small wind turbine to pump wa-
ter. The American West was being colonized and there were wide zones of good
grazing lands with no surface water but with generous ground water just a few



meters beneath the ground. In such conditions, a typical wind turbine was con-
structed, named the American Multi-bladed wind turbine. It had high starting
torque and satisfactory efficiency, and fulfilled the wanted water pumping pur-
pose very well. If there is no wind activity for several days, the pump would be
activated by hand. Because this is a rationally good wind regime, hand pumping
was relatively rare to happen. Between 1880 and 1930, an approximate 6.5 mil-
lion units were constructed in the United States by several companies, a lot of
are still working satisfactorily. By supplying water for livestock, these machines
played an important role in settling the American West [4].

2.11 Conclusion

As wind power is a renewable energy, it is considered as a better option in pref-
erence to the conventional energy resources like fossil fuels. In this chapter, it
is introduced the most important principles and concepts related to the wind
energy, its nature, origin and the main constituents related to a good under-
standing of its characteristics. To comprehend how to convert the wind into
electrical power, a brief introduction to wind turbine technology is provided.
Finally the historical use of wind energy is reported in the last section.
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3.1 Introduction

Improved wind-forecasting is considered as an efficient means to overcome many
of the energy market’s difficulties. For instance, regarding competitive electric-
ity markets, precise wind forecast is always appealing for a variety of reasons.
Firstly, appropriate incentives of attractive market price are offered on energy
imbalance charges based on market price. Secondly, a correct forecast can help
to develop well-functioning hour-ahead or day-ahead markets [5, 8]. Many of
the stated topics are further discussed in [36–39]. A probabilistic method for
estimating energy expenses associated with prediction errors for wind genera-
tors is discussed in [36] where case studies demonstrate that error prediction
costs can attain up to 10% of the entire revenues from selling wind power. A
short term probabilistic forecast of wind power is discussed in [37] where it is
presented a method for optimal bidding strategy derived from uncertainty in-
formation of forecasts. Some good reviews on wind speed prediction and power
generation could be found in the literature [40–42].

In this chapter, a large overview of wind prediction techniques is provided
with respect to both: i) prediction technique category and ii) prediction time
horizon. Covering the majority of wind speed techniques found in the literature.

3.2 Time-scale classification

Time-scale classification of wind forecasting methods is vague. However, as
shown in Table 3.1 [6], wind forecasting can be classified into four categories:

• Very short-term forecasting: From few seconds to 30 minutes ahead;

• Short-term forecasting: From 30 minutes to 6 hours ahead;

• Medium-term forecasting: From 6 hours to 1 day ahead;

• Long-term forecasting: From 1 day to 1 week ahead.

3.3 Synopsis of wind forecasting methods

A general summary of wind forecasting methods is reported in Table 3.2 [6].
The majority of wind forecasting techniques developed and presented in litera-
ture use one of the followings:
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Table 3.1: The applications of specific time horizon with respect to the function
of electricity systems.

Time horizon Range Applications
Very short term Few seconds to - Electricity market clearing

30 minutes ahead - Regulation actions
Short-term 30 minutes to - Economic load dispatch planning

6 hours ahead - Load increment/decrement decisions
Medium-term 6 hours to - Generator online/offline decisions

1 day ahead - Operational security in day-ahead
electricity market

Long-term 1 day to 1 week - Unit commitment decisions
or more ahead - Reserve requirement decisions

- Maintenance scheduling to obtain
optimal operating cost

3.3.1 Persistence method

This method is also called "Naïve Predictor". It is supposed that the wind speed
at time t +∆t will be equal as it was at time t. Incredibly, it is more accurate for
very-short to short term forecasts than the majority of the physical and statisti-
cal methods. It is still used by industry for very-short term forecasts [5], [43].
For this reason, any developed forecasting method have to, first, be compared
against the traditional persistence method to verify how much it can improve
over this technique [44].

3.3.2 Physical approach

Physical systems use parameterizations derived from an entire physical descrip-
tion of the atmosphere. Generally, wind speed provided by the weather agency
on a coarse grid is transformed to the onsite conditions at the wind farm site
[45].

3.3.2.1 Numeric Weather Prediction (NWP):

This method is classified as a physical approach to wind forecasting. NWP mod-
els work by solving complex mathematical models that utilize weather data such
temperature, pressure, surface roughness and obstacles. NWPs are operated on
supercomputers since they require lots of computations. Usually, NWPs are run
1 or 2 times a day because of the complexity to gain information in short-time
and the related high costs. This limits its effectiveness to medium to long-term
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Table 3.2: Basic wind speed and power forecasting methods
Forecasting Method Subclass Examples Remarks
Persistence Method/ – P (t + k) = P (t) - Benchmark approach
Naïve Predictor - Very accurate for very short and

short term
Physical Approach Numeric - Global Forecasting - Use of meteorological data

Weather System such as wind speed and direction,
Predictor - MM5 pressure, temperature, humidity,
(NWP) - Prediktor terrain structure etc.

- HIRLAM, etc. - Proved better for long term.
Statistical Artificial - Feed-forward - Proved better for short-term
Approaches Neural - Recurrent - Their hybrid structures practi-

cal for medium to long term fore-
casts

Networks - Multilayer Perceptron - generally, outperform time se-
ries models

(ANN) - Radial Basis Function
- ADALINE, etc

Time- - ARX - Proved better for short-term
series - ARMA - Some very good Time series
models - ARIMA models replace ANN structures.

- Grey Predictors
- Linear Predictions
- Exponential Smoothing,
etc.

Novel Techniques – - Spatial Correlation - Spatial correlation is good for
short term.

- Fuzzy Logic - Entropy based training of model
- Wavelet Transform improves the model perfor-

mance.
- Ensemble Predictions - non-Gaussian error pdf
- Entropy based training,
etc.

improves the model accuracy

Hybrid Structures – NWP+ANN - ANFIS more accurate for very-
- ANN + Fuzzy logic = short term forecast.
ANFIS -NWP + ANN models are very
- Spatial Correlation + ANN accurate for medium and long-

term forecasts.
- NWP+time series
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forecasts (> 6 h ahead). These methods present a better precise predictions
when weather conditions are stable [43, 46].

3.3.3 Statistical approach

The statistical approach is based on learning a model with historical experimen-
tal data and uses difference between the actual and the predicted wind speed
values to adjust model parameters [43, 45]. It is straightforward to model, in-
expensive, and provides timely predictions. It is not based on any predefined
analytical model and rather it is based on patterns. The error minimization is
achieved by fitting the patterns to the historical data. Sub-classification of this
approach is: Time-series based models, and artificial neural network (ANN)
based methods.
Auto-Regressive models (AR) are the most popular kind in the time-series based
approach to predict future values of wind speed or power. A number of varieties
are autoregressive models, moving average model (MA), autoregressive moving
average model (ARMA) [12], autoregressive integrated moving average model
(ARIMA) [13, 14].

The Neural Networks are trained using past data taken over a long time-
frame to learn the relationship between input data and output wind-speeds. In
general, ANNs have an input layer where historical data are fed for learning, one
or more hidden layer(s) and an output layer providing prediction values [18,19].
(They include: Multi-Layer Perceptrons (MLP) [20, 21], Radial Basis Functions
Networks [22](RBFN) and Recurrent Neural Networks (RNN) [23, 24]), Fuzzy
Logic [25], and Support Vector Machines (SVM) [26, 27].

In general, ANNs perform better than time-series models for approximately
all time-scales, even if this is not necessarily general. For instance, s-ARIMA
(Seasonal ARIMA) and Adaline ANN models are applied to predict wind speed
in Mexico and are compared with each other [47]. The results confirm that s-
ARIMA fit better the actual pattern. Likewise in [48], the single exponential
smoothing model is applied for forecasting. The later follows very well the ac-
tual trend with a good values of error adjustment coefficient. The Comparison
with the Adaline ANN demonstrates that exponential smoothing model reveals
better sensitivity to the tuning and prediction of the wind speed. However,
when the number of the input training vectors is increased for the given ANN
model, its performance gets improved.
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3.3.4 Hybrid approach

In general, combination of diverse methods such as combining statistical and
physical models or mixing short term and medium-term models, and so on, is
called a hybrid approach. For example, radiative transfer and ANN approaches
are combined with Special Sensor Microwave/Imager (SSM/I) to obtain the wind
speeds and direction of ocean surface in [49]. Results illustrate that combina-
tion of ANN can significantly improve the effect of these data in NWPs than just
using SSM/I.

Among the recent techniques is the model derived from the spatial correla-
tion of wind speeds, where a spatial relation between wind speeds at different
locations is considered. The historical wind time-series of a considered site and
its neighbouring sites are used to forecast the future wind speed value, gener-
ally by ANNs or adaptive neuro-fuzzy networks [25, 50]. This is due to the fact
that changes in wind speed time-series remote stations will be observed at local
station with some time delay.

3.4 Wind speed against wind power

Power production of a wind turbine is directly related to the wind speed, which
varies with time and depends on regional weather conditions and type of land-
scape. Relationship between wind speed v(m/s) through swept area A(m2) of
wind turbine and wind energy per unit time or wind power P (W ) is [32]

P =
1
2
ρAv3 (3.1)

where ρ is the density of air (kg/m3), which is based on pressure and temper-
ature of air. From this relationship, it is clear that the relationship between
wind speed and power is nonlinear, essentially cubic. Accordingly, any error
incurred in wind speed forecast will cause a large cubic error in wind power.
Additionally, for the complete wind farm, this relation is more complex because
different turbines in the farm use various wind directions and speeds to get op-
timal power output of wind farm. Hence, small error in wind speed forecast can
produce a large error in wind power forecast.
To convert wind speed into power, it is recommended to use the producer’s
power curve for each wind turbine independently and combine the results; as
in [51–54]. But this will not give an optimal result.

Thus, as illustrated in [5], the improved approach is to use a power curve
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formed using recorded wind speed values at the location. This is able to improve
Root Mean Squared Error (RMSE) of forecast by about 20% compared to when
manufacturer’s power curve used.

3.5 Review of wind forecasting techniques

Based on the timescales, this present section is divided into four parts. For each
timescale, different forecasting techniques reported recently in the literature are
discussed in brief as below.

3.5.1 Very-short term forecasting

Only a few papers are presented for very-short term forecasting timeframe. A
case study from Tasmania, Australia for very short-term (2.5 minutes ahead)
forecasting using "Adaptive Neuro-Fuzzy Interface System" (ANFIS) to fore-
cast wind vectors is proposed in [43], it is reported that wind direction could
have great impact to obtain a better forecasting precision over very-short term
timescale. To build the model, dataset containing 21 months time series in steps
of 2.5 minutes is used, wind speed and direction are projected into two vectors
’u’ and ’v’. The results confirm that ANFIS gave less than 4% mean absolute
percentage error (MAPE) while that for persistence is about 30% in deciding ei-
ther ’u’ or ’v’.
It is also recommend developing very-short term forecast models for time dura-
tion a little longer, since several deregulated markets are cleared every 5 min-
utes and settlements are done each 30 minutes. This is described in [8] for the
timeframe of 5 to 15 minutes. Tests are done with actual wind speed data of 30s
resolution from a wind farm. It is recommended, to develop a system that fore-
casts for 30 min timeframe for future research, and to consider the conditions
like non-uniform wind speeds in a single park.

A combination method based on ’linear prediction model’ of ARMA with
’filtering’ of wind waveforms for wind speed forecasting is reported in [17]. A
linear combination of actual and past samples is given as output. Wind speed
signal is passed by a low pass filter of the wind turbine mechanical system, since
the spectrum of a signal with small frequency components exposes better short
term prediction, Prediction results of 1s and 5s ahead are reported in [55].
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3.5.2 Short term forecasting

The majority of research on wind forecasting has been done in this time scale.
Short-term forecasting of 1-h ahead is discussed in [56] where the authors pro-
pose an AR model of 6th order based on Bayesian approach. Comparison with
persistence model indicates efficiency of method although lower order AR mod-
els fail to give satisfactory accuracy.

ARMA with historical data for 6-h advance predictions is reported in [44].
The reported approach outperforms persistence by 7% in the first hour and 18%
in the sixth hour. The test results of the model for 10-min ahead timescale pro-
vide poor performance illustrating that the capability of ARMA models changes
when applied to different time periods. Using a case-study of a Mexican wind
farm, a hybrid model combining nine different statistical forecasting methods
is investigated in [55]. The final prediction is achieved by an aggregated sin-
gle model using adaptive linear combination of alternative methods, where the
weight of every model is derived from its actual forecast performance. Results
demonstrate that final forecast of power is almost identical to its real values.
Auto Regressive Model with External Inputs (ARX) and ANN models versus
persistence method for the forecasting horizons of 1, 3, 6 and 12 hours are com-
pared in [57]. Tests show that persistence is better than ARX for horizons lesser
than 13 hours; whereas ANN model outperforms persistence model.

In [23], RNNs are employed for scheduling autonomous wind-diesel system
for a horizon of 2 hours. Three diverse ANN architectures are assessed with
RMSE criterion. All the architectures outperform the persistence model. A
Mexican case study using ANN to the hourly prediction of time series is dis-
cussed in [58]. For each month of year, a model is developed. Four dissimilar
ANN architectures are assessed. The simplest architecture with two layers, two
input neurons and one output neuron proved to be the best with 0.0016 Mean
Square Error (MSE) and 0.0399 Mean Absolute Error (MAE) values. Examples
of [23] and [58] clarify that the choice of an appropriate ANN architecture ne-
cessitates careful examination and depends on the problem description.

Under the framework of kernel-machines, a Gaussian Process (GP) with
Bayesian estimation for predicting lower and upper limits and average of wind
speed 1-hour horizon is presented in [59]. Historical wind speed data in addi-
tion to other meteorological features are tested with GP and evaluated against
RBFN and MLP ANN models. GP experimental results show an improvement
of 27% of average error and 13% of maximum error.
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Spatial correlations for 15-min to 3-hour ahead speed forecasting using ANNs
for predicting the relation between recorded data at 1 reference and 2 remote
sites are employed in [50]. Inputs are 1 to 5-min wind speed averages from re-
mote sites. Using two cases of long and short spatial distances, results show that
forecasting effectiveness was enhanced by 28% against the persistence, suggest-
ing that data from neighbouring sites are always valuable.

A further application of spatial correlation method using Takagi-Sugeno-
Kang (TSK) fuzzy interface model for 2-hour ahead forecasting is proposed
in [25]. Inputs are wind speeds given by "upwind station". The model train-
ing was carried out by means of genetic algorithm. Case results of ’flat terrain’
presents an improvement of 29% over naïve predictor, while in the case of "com-
plex terrain", the model proved non successful because of the non-correlation
between local and remote sites.

In [18], three different architectures of ANNs specifically BP, adaptive lin-
ear element, and RBFN for 1-hour ahead wind speed prediction are discussed,
the error assessment is done with three different error criteria MAE, RMSE and
MAPE. Experimental tests were carried out by varying the number of wind fea-
tures given to the ANN input with diverse learning rates. For each ANN model,
experimental results show that different optimal architectures were found for
each different site and error criterion; i.e., none of ANNs outperform others
universally. This recommends that the configuration of ANN model to be uti-
lized, number of model inputs and learning rates have to be carefully chosen.
A universal evaluation criteria and robust method are required for combining
predictions from different models.

A novel approach called Mycielski was introduced in [60]. Where, next value
in the current random process is the longest repeating data chain that has been
recorded in the historical data sequence. The methodology validation was car-
ried out on three Turkish case studies; presenting a maximum RMSE of only
1.5%. The model proved robust; therefore the authors recommend the model to
be employed for forecasting in any region.

In [61], first, data were pre-processed to extract properties such standard
deviation, average and slope prior to providing it to either ANN or fuzzy logic.
This diminishes the fuzzy rule base or ANN size and make more fast the learn-
ing process. For the presented approach, RMSE and coefficient of determination
(COD) used as evaluation criteria gave less computational time, less RMSE and
more COD.
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A new 1-hour ahead forecasting method derived from Grey model (GM) is
proposed in [62], where the original time series data are transformed into a new
series with less noise and randomness. Next, a differential equation is formed
with a coefficients computed by means of least square method. Predicted values
of new series are computed with these coefficients, and actual forecasted values
of original series are restored using inverse operation. However, it presents over-
shoots and therefore, to reduce them, alpha GM is proposed in [63], it is based
on weighting factors for calculating differential equation coefficients. However,
it has poor time-series tracking feature. To this end, two new models "Improved
GM" and "Averaged GM" have been proposed. Improved GM generates two
shifted-prediction models from the normal GM. Next, the two models are com-
bined to make final improved GM based on their weights. In averaged GM, the
weights are the same for both models (i.e., 0.5 for each one). Experimental re-
sults with MAE and RMSE error criteria show that all models outperform the
standard persistence model. Additionally, average GM has a general superiority
over all GMs and naïve predictor.

A hybrid approach is presented in [51]. It uses wavelet technique to decom-
pose the original time-series data into a number of subseries. Next, an improved
ARIMA method is applied to forecast the future values in each subseries. Re-
sults of subseries are then combined and compared with standard time-series
model and BP ANN with MAE, MSE and MAPE criteria. The proposed method
offers enhanced results (less error) compared to others for 3-step, 5-step and
10-step ahead prediction respectively. It is concluded that, a better accuracy is
achieved for smaller forecasting steps and vice versa.

In [52], it is proposed an "augmented complex statistics" based linear se-
quential least mean square algorithm (ACLMS), for instantaneous modelling of
wind speed and direction in the complex numbers domain. The prediction of
wind power is done by finite impulse response (FIR) filter. Results are assessed
against "standard complex filter" for wind data sampled with a small interval
over 1-, 3- and 6-hour intervals with MAE and COD criteria, it presents an im-
portant improvement for ACLMS algorithm.

3.5.3 Medium term forecasting

The majority of methods proposed for this time-scale are based on ANN tech-
niques, physical weather models, and hybrid models combining these models
or some recent techniques. In [64], wavelet transform is used to decompose
the original signal and divide data into several subsets with different frequency
components. The coefficients of decomposed waveforms are estimated by a pre-
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diction technique, which are then reconstructed to obtain the original samples
together with forecast of next 24 hours. Experimental assessment with MSE
shows that only one or two out of four different daubechies wavelets do better
than persistence method.

A case-study by means of Feedforward Neural Networks (FNN) trained us-
ing Levenberg-Marquardt (LM) algorithm is proposed in [65] for 1 to 24-hour
ahead forecasts. Optimal number of neurons was obtained experimentally by
an error method. A MAPE improvement of 12% for FNN compared to persis-
tence method with a computational time of 5s only.

A hybrid approach for 1 to 48-hour ahead forecasts is presented in [52]. It
offers preliminary forecast based on NWPs using RBFN. The evaluation of the
quality of forecast was accomplished by calculating the errors between the es-
timated and actual values of power and direction. The "poor" NWPs were en-
hanced by fuzzy rules to get better predictions. Results comparison is based on
MAE and RMSE in opposition to naïve predictor and ’just’ NWP method; pre-
senting a significant improvement for both (up to 46%). Also, a comparison of
the proposed model with the state of the art statistical model, with NWPs’ and
online-prediction data as input is proposed in [66]. Results show that hybrid
approach of [52] outperforms the state-of-the-art method.

A special case of ARIMA process is proposed in [67]. f-ARIMA model pa-
rameters were computed using "exact maximum likelihood" optimized accord-
ing to the Akaike’s Information Criterion, which evaluates the accuracy versus
the complexity of the model. Results with COD, Daily Mean Error (DME), and
variance presented a very high COD (95%) and very low DME and variance in
comparison with the standard persistence and ARIMA models. Projection from
wind speed to wind power forecasts also presents accurate results for 24 to 48-
hour ahead.

In [68], it is proposed to evaluate the performance of a regional NWP, called
Eta model. Eta forecasts 12 to 36-hour ahead wind speed forecasts are evalu-
ated against wind recorded at nearest surface station at the elevation of 10 m in
Sweden. The results present a high COD (0.8), and low MAE and RMSE. Con-
sequently, Eta model is recommended for wind energy prediction.

A two-stage hybrid model is proposed in [69]. A "Bayesian clustering by
dynamics" classifies the input training dataset into a number of subsets with
similar properties in unsupervised mode. A ’support vector regression’ learns
the training data in each subset in a supervised manner. Past wind genera-
tion behaviour is extrapolated by finding hidden recurring trends, structural
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changes etc. using RQA analysis for 1 to 48-hour ahead forecasts. Based on
RMSE and MAE error criteria, the proposed methodology outperforms the per-
sistent model for all predictions by around 40%.

In [70], the standard hypothesis of Gaussian distribution of wind power
forecast error is discussed by analyzing the errors against persistence for 1 to
24-hour ahead forecast, demonstrating that their kurtosis varies from 3 to 10,
corresponding to Beta probability distribution function (pdf); whereas that of
Gaussian distribution is equal to 3. To confirm this, forecast results are arranged
into several power bins and pdf within each bin is roughly the Beta pdf. Results
for a 24-hour ahead forecast show that Beta pdf fits in a perfect manner the ac-
tual data. A case-study for sizing an "Energy Storage System" shows that the
presented model performs very well for loss values larger than 2%.

3.5.4 Long term forecasting

As mentioned earlier, long-term forecasting is very important in restructured
electricity markets and its applications. A new kind of physical method for the
estimation of wind power generation for 1-to-10 days ahead forecast by means
of "weather ensemble predictions" (WEP) is proposed in [71]. The model is
calibrated and smoothened to suitably predict the uncertainty in weather con-
ditions. Comparison of results over a period of week with classical time series
methods (ARMA based models) shows that WEP presents more precise predic-
tions.

In [72], numerical wind speed and direction forecasts are fed as input to
three RNNs for timescale prediction of 72-hour ahead. The results comparison
of two FNNs and the naïve predictor based on MAE and RMSE criteria, show
that RNNs outperform persistence by around 50% and follow the real power
curve more narrowly than FNNs. It is remarked that the prediction accuracy
improves when additional "nodes" are added. Method of [72] is very exhaustive
and time-consuming. Thus, it is necessary for RNN to forecast in smaller times
and without involving excessively meteorological data or complications. This
is presented in reference [73] by using RNN for wind speed forecasts of each
month independently. RNN is trained by 1 year data at only one site. Results
indicate that, RNNs presents more accurate results than FNNs for some hours
to 1 day-ahead forecasts.

Fifth generation mesoscale (MM5) model using meteorological data from a
global NWP is proposed in [74]. Ensemble models are developed in order to
obtain mean hourly wind speed predictions at Spanish wind farm. These in ad-
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dition to wind direction and temperature are fed to ANN to obtain wind speed
forecasts of 48-hour ahead for each wind turbine. The results assessment is
done with MAE and MSE error criteria. In addition, a statistical analysis is car-
ried out in order to prove the superiority of the proposed methodology over the
standard ANN approach. Curves of predicted and actual wind speeds illustrate
that hybrid system follows the actual wind series very narrowly.
In [53], two hybrid systems of MM5 and ANNs are combined in such a manner
that ANNs work as transfer functions between NWP wind speed and direction
forecasts and corresponding electric power generation; the last measured val-
ues of wind power are used to get forecast in the first hours. A system known
as FORECAS uses single MLP; while SGP system uses combination of Kalman
filter, ARMA model and several ANN models, all optimized with fuzzy sys-
tem. Simulation results show that FORECAS and SGP present fairly accurate
predictions of the wind power with an improvement of 48% on average over
persistence model.
Several FNN architectures such as 1 or 2 hidden layers, varying number of neu-
rons (5 to 15) and different learning algorithms like "scaled conjugate gradient"
and LM for predicting the mean monthly wind speed of 28 sites in Nigeria are
explored in [21]. The input variables were latitude, longitude, altitude, and
month of year. The optimal architecture was obtained by two hidden layers
with 15 neurons for each layer using LM algorithm. The model assessment gave
8.9% of MAPE, and 93.8% COD. The developed model is used to monitor and
forecast wind speed at locations with no monitoring stations.

For non-Gaussian error distribution, error criteria derived from minimizing
information content or entropy such as MEE (minimum error entropy), MCC
(maximum correntropy) or MEEF (MEE with fiducial points) instead of mini-
mizing its variance (MSE criterion) are more appropriate to train the forecast
models, as proposed in [75]. To confirm this, tests based on MCC and MEEF
criteria against MSE criterion were performed on FNNs with one hidden layer
containing nine neurons for 3 days-ahead forecasts with half hour sampling.
FNNs inputs were wind speed and direction. In the case of offline training,
ANNs trained with MEEF and MCC presented a Normalized MAE improve-
ment of 1.5% when compared with ANNs trained according to MSE criterion.
For online training, this was approximately 1.15%. The average difference be-
tween online and offline trained MEEF was 1.56%. Further improvements can
be obtained if this approach is integrated into some more advanced wind power
prediction techniques.



3.6 Conclusion

This chapter presented a literature review on forecasting of wind speed and
generated power with regard to different time scales. With the intention to
provide the reader with a broad understanding of the state of the art methods
used in wind speed prediction, numerous forecasting models, which have their
own descriptions, were discussed and presented. A number of them are good
at short-term prediction whereas others perform better in long-term prediction;
some are simple and broadly used while other complex ones have more accurate
results. Recently, with the progress of artificial intelligence and mathematical
tools, several new methods were suggested. Many of them are more outstand-
ing than the conventional methods and have good development prospect. The
most important focus was to give emphasis to the variety of diverse forecasting
methods available.
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4.1 Introduction

A sustainable energy supply, both in the short and the long-term, is needed
for promoting both economic development and people’s quality of life, as well
as protecting the environment. In this context, wind may be one of the most
significant renewable energy sources for the next few decades [32]. New wind
power projects have proven that wind energy not only is cost competitive, but
also offers additional benefits to the economy and the environment. The devel-
opment of wind energy carries the economic benefits of creating jobs and new
businesses while supporting local economies and reducing reliance on imported
energy [76].

Along with the fast growth of wind power generation and the increasing in-
tegration of wind power into energy systems, effective techniques and methods
of wind speed prediction are becoming more and more important and immedi-
ately needed for the characterization and prediction of wind resource as well as
for the integration of wind power into energy systems.

The MAS proposes to exploit the peculiarities of different prediction algo-
rithms (MLR, ANN and SVM) by means of a Multiple Architecture System [31].
The MAS relies on the idea to fuse the estimates obtained by an ensemble of dif-
ferent prediction techniques, in order to exploit synergistically predictors with
different characteristics. If the ensemble is suitably designed, the MAS can re-
sult in more accurate and reliable final prediction than those provided by the
single prediction algorithms [77]. Note that the proposed approach takes ori-
gin from combining classifiers [78], and closely related to the ensemble learning
theory [30].

In this chapter, we present the two building stages of the MAS. The first
stage consists in training different regression methods for the Input data. For
this reason, we will explore both linear (Multiple Linear Regression (MLR) and
Linear Support vector Machines) as well as non-linear regression algorithms
(the Multi-layer Perceptron Networks, Radial Basis Functions Neural network,
Gaussian SVM and Polynomial SVM). In the second stage, the estimates yielded
by the ensemble of linear and non-linear predictors are combined in order to
make a final estimate of the wind speed. Three combination (fusion) strategies
are investigated. The first linear fusion strategy is based on a simple average
operation, while the second one carries out a weighted averaging after deter-
mining the weights to be assigned to each predictor. The non-linear fusion is
accomplished by means of an ANN method. The experimental assessment of
the MAS was carried out on the basis of real data set. Finally, a statistical anal-
ysis of the MAS based on hypothesis testing is presented.
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4.2 Problem formulation

Let us consider a set of training samples xi = (i = 1, ...,N ) represented in the d-
dimensional variable space<d . Let us assume that a target yi ∈<(i = 1, ...,N )
is associated with each vector xi , where yi is a real value of the daily mean
wind speed. Let us consider a set of T predictors fi(x) = (i = 1, ...,T ) trained
independently on the available training samples. It should be noted that the
T predictors (in the present work, T=6 predictors: MLR, MLP, RBF, SVM-Lin,
SVM-Pol and SVM-Rbf) have the same input variables. As depicted in Figure
4.1, the problem is to define a combination strategy φ {.} such that the resulting
estimate (obtained after fusing the outputs of the different single predictors) for
a given unknown sample is given by

F(x) = φ {f1(x), f2(x), ..., fT (x)} (4.1)

 

 
Input Variables 

 
Fusion 

Strategy 
{}⋅φ  

 

MLR 
Predictor

MLP 
Predictor

RBF 
Predictor

 f1(x)

SVM-Lin 
Predictor 

SVM-Pol 
Predictor 

SVM-Rbf 
Predictor 

 f2(x)

 f3(x)

 f4(x)

 f5(x)

 f6(x)

 F(x) 

Figure 4.1: Architecture of the proposed system

4.3 Prediction process

The question is to predict a dependent variable Y (daily wind speed) from inde-
pendent variables z1, z2, ..., zd which are in our case respectively: Latitude, Lon-
gitude, Altitude, month, day, mean temperature, maximum temperature and
minimum temperature. In the following sections, a brief description of the main
prediction techniques used in this chapter will be provided.
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4.3.1 Multiple linear regression

The multiple linear regression model is given by [79–83]:

Y = Xb+ e (4.2)

Where Y is a (N × 1) vector of measured values of mean wind speed, X is a
(N × d + 1) matrix of input data (independent variables) augmented with a col-
umn of ones, b is a (d + 1×1) vector of prediction coefficients and e is a vector of
residuals.

The Prediction of the unknown parameters constituting the vector b is re-
alized by minimizing cost function, usually mean square error (MSE). If the
number of samples is greater than the number of variables (N > d + 1) then a
least squares solution for b is obtained by forming the generalized inverse of X:

XT Y = XTXb (4.3)

(XTX)−1XT Y = (XTX)−1XTXb (4.4)

b = (XTX)−1XT Y (4.5)

4.3.2 Multi-layer perceptron neural networks

A multi-layer perceptron neural network is composed of a number of highly in-
terconnected units (neurons) working in parallel and organized in layers with
a feed-forward information flow (no loops). The architecture of the multi-layer
perceptron is organized as follows (see Figure 4.2): the signals flow consecu-
tively through the different layers from the input to the output layer. The in-
termediary layers are called hidden layers. For each layer, each elementary unit
calculates a scalar product between a vector of weights and the output vector
given by the previous layer. A transfer function is then applied to the result to
produce an input for the next layer [84–89].

A common transfer function for the hidden layers is the sigmoidal function:

f (x) =
1

1 + e−x
(4.6)

Arriving at the neuron of the output layer, other transfer function can be
used; for example, the identity function (simple linear activation) can be used
for regression problems. The MLP neural networks are trained by the error
back-propagation (EBP) algorithm, optimized according to a predefined crite-
rion [88].



CHAPTER 4. STATIC WIND SPEED PREDICTION 38

 

(Sigmoid function)

Output layer 

Weights 

Identity function 

Input layer One or more 
hidden layer 

Wind speed 

x1

Input variables 

x8 

Figure 4.2: Architecture of a multilayer perceptron neural network

4.3.3 Radial Basis Functions neural networks

RBF neural network is composed of three layers (an input, a hidden, and an
output layer). As depicted in Figure 4.3, Input neurons (as many as input vari-
ables) just propagate input variables zj to the next layer. Each neuron in the
hidden layer is associated with a kernel function ϕj (usually a Gaussian func-
tion) characterized by a centre cj and a width σj .

ϕj(
∥∥∥z − cj∥∥∥) = exp

−1
2


∥∥∥z − cj∥∥∥
σj

2 (4.7)

The common architecture of RBFN is illustrated in Fig. 4.3

The output layer is composed of one neuron giving the predicted value. The
output function is given by

f (z) =
P∑
j=1

λjψj
(∥∥∥z − cj∥∥∥) (4.8)

where P and λj are the number and the weight of the radial functions. For
more details about RBF and MLP neural networks, we refer the reader to [85–
92].
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Figure 4.3: Architecture of a Radial Basis Function Neural Network

4.3.4 Support vector machines

Derived from Vapnik and Chervonenkis Statistical Learning Theory [93], the
aim of support vector regression approach is to find a function f (x) that has
at most ε deviation from the desired targets yi (daily wind speed) and, at the
same time, is as smooth as possible. This is obtained by mapping the input data
from the original d-dimensional variable space to a higher dimensional variable
space, i.e.,Φ(x) ∈ <d′ (d′ > d) , and then finding a linear approximation as fol-
lows:

f (x) = w∗.Φ(x) + b∗ (4.9)

The linear function in the transformed variable space is obtained by min-
imizing a cost function defined as a minimization of two criteria: Euclidean
norm (equivalent to maximizing flatness) and error minimization, it is defined
as

Ψ (ω,ζ) =
1
2
‖ω‖2 +C

N∑
i=1

(
ζi + ζ∗i

)
(4.10)

This cost function minimization is subject to the following constraints:yi − (w.Φ(xi) + b) ≤ ε+ ζi
(w.Φ(xi + b)− yi ≤ ε+ ζ∗i

ζi ,ζ
∗
i ≥ 0 and i = 1, ...,N (4.11)

where the ζi and ζ∗i are called slack variables associated to samples that do
not belong to the ε-deviation tube. Constant C represents a regularization pa-
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rameter tuning the trade-off between function’s flatness and the value up to
which deviations larger than are accepted. The formulation of the error func-
tion is equivalent to dealing with ε-insensitive loss function |ζ|ε defined as

|ζ|ε =
{

0 if |δ| ≤ ε
|δ| − ε otherwise

(4.12)

where δ represents the deviation with respect to the desired target. This
means that the differences between the measured values and the predicted val-
ues are accepted inside the ε-tube (error lower than ε), while a linear penalty is
assigned to those lying outside the ε-insensitive tube. An illustration of linear
SVM is reported in Figure 4.4

 

f(x)

x

ε

-ε

Support vector 

Regression line 

Figure 4.4: Example of linear SVM regression with ε -tube.

The final result obtained from the optimization problem, is a function rep-
resented in the original (lower) dimensional variable space as

f (x) =
∑
i∈S

(αi −α∗i )K(xi ,x) + b∗ (4.13)

where K(., .) is a kernel function. S is the subset of indices (i = 1, ...,N ) cor-
responding to the nonzero Lagrange multipliers αi or α∗i . The Lagrange multi-
pliers weight each training sample according to its importance in determining a
solution. The training samples which have nonzero weights are called support
vectors. It should be noted that the kernel K(., .) must fulfils Mercer’s theorem
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condition, so that it can correspond to some type of inner product in the trans-
formed (higher) dimensional variable space. Examples of common kernels that
satisfy Mercer’s condition are the Gaussian radial basis functions and the poly-
nomial kernel functions. We refer the reader to [93–99] for greater detail on the
SVM regression theory.

4.4 Fusion process

In this step, the outputs obtained from the different prediction models are com-
bined by three fusion strategies, namely: the average strategy, the weighted
strategy and the non-linear-based strategy.

4.4.1 Average Strategy(AS)

AS is a simple strategy in which the fusion is based on the average operator; the
resulting estimate is given by

fAS(x) =
1
T

T∑
i=1

fi(x) (4.14)

It has been shown that the average strategy could be more efficient if all
predictors are unbiased and have uncorrelated errors with similar variances or,
in general, when all the single predictors reveal comparable accuracies [99,100].

4.4.2 Weighted Strategy (WS)

The basic idea is to exploit the available prior knowledge about the data in order
to derive a weighted linear fusion of the outputs of the predictors. Thanks to
the assignment of a weight to each predictor. Note that average strategy (AS) is
a particular case of weighted strategy (WS) where all predictors have the same
weight. The weight associated with each predictor can be seen as a "reliability
factor". The final prediction provided in output from WS is given by:

fWS(x) =
T∑
i=1

βifi(x) (4.15)

Where βi represents the reliability factor (weight) assigned to the ith predic-
tor. The problem in WS is the determination of weight values. This problem
can be formulated in different ways. A simple solution (which is widely used in
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the literature) is based on the minimum square error (MSE) pseudoinverse tech-
nique [80–83]. It consists in solving the following system of N linear equations
with unknown variables (N > T ):

f1(x1) f2(x1) ... fT (x1)
f1(x2) f2(x2) ... fT (x2)
...

...
. . .

...
f1(xN ) f2(xN ) ... fT (xN )

×

β1
β2
...
βT

 =


y1
y2
...
yT

⇔ F̄.β̄ = Ȳ (4.16)

An interesting property of WS is that, if proper values of the reliability fac-
tors are used, the combination of the predictions obtained from the different
single predictors is less sensitive to their respective bias and variance than in
the AS strategy.

4.4.3 Non-linear Strategy (NLS)

The non-linear strategy can be useful when the outputs of the predictors have
a complex relationship that cannot be captured by a simple linear model. Note,
that all non-linear predictors presented in this work can be used for this strat-
egy. Accordingly, an MLP network was chosen for such a purpose (see Subsec-
tion 4.3.2).

4.5 Experimental assessment of the MAS

4.5.1 Data description

There are 7 locations in Algeria where mean daily values of meteorological pa-
rameters were measured and recorded. These measured parameters include
mean, maximum and minimum values of temperature and mean wind speed.
Daily values of wind speed recorded for a period of 10 years (between 1995
- 2004) were used for all 7 locations [101]. Table 4.1 shows names, latitude,
longitude, altitude and number of records for each location. As seen from Fig-
ure 4.5, these stations cover the four directions of Algeria, from east to west and
from north to south, including the central area.
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Table 4.1: Summary of meteorological data for 7 locations in Algeria
Location Latitude (deg) Longitude (deg) Altitude (m) No. of Records
Adrar 27.88 -0.28 263 3653
Annaba 36.83 7.81 4 3653
Batna 35.75 6.18 1052 3653
Bechar 31.5 -2.23 773 3653
Chlef 36.21 1.33 143 3378
Oran 35.63 -0.6 90 3653
Tamanrasset 22.8 5.46 1377 3653

 

Figure 4.5: Map showing the regions under study.
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4.5.2 Single models learning

The available data cover a period of 10 years between 1995 and 2004. In our
experiments, the total number of available samples is equal to 24450. The sam-
ples are defined in eight-dimensional variable space. Our goal is to construct a
model for automatic wind speed prediction. The MAS requires the definition
of an ensemble of different prediction algorithms. A first condition to suitably
design the ensemble and thus to increase the likelihood of obtaining a better
prediction accuracy, is that the single predictors are not characterized by poor
prediction accuracies. Another condition is the diversity in the ensemble so that
to ensure that the errors incurred by the single predictors are as uncorrelated as
possible [102]. In our case, the diversity will be achieved by applying different
prediction techniques to the input data.

Before building the MAS, the samples are subdivided into learning (training
and, validation) and test sets. In order to calculate the predictive ability of a
model, we need to set aside some data which is not used in learning phase. This
set is known as a test set. Approximately one-third (1/3) of the data are to be
randomly assigned to the test set (8150 days). The rest will belong to the learn-
ing set, i.e., the set of data used for building models. The learning set itself will
be divided into a training set and a validation set. The first set is used to obtain
the parameters for nonlinear predictors (MLP, RBF and SVM) (12000 days); the
second set is used to choose their optimal parameters (4300 days). The model
selection adopted throughout this paper is referred as a hold-out method [90].

After building the different models composing the MAS, their performance
on the data set has to be evaluated. Different error criteria have been proposed
and used in the literature, but no single error criterion has been proved to be
the universal measure. This complicates the performance comparison of differ-
ent wind speed models. Therefore, we need to evaluate the performance based
on multiple criteria, and it is interesting to see if different criteria will give the
same performance level for the models to be assessed. The error criteria con-
sidered in this paper are: mean absolute error (MAE), root mean square error
(RMSE) and the normalized mean square error [103].

MAE =
1
NT

NT∑
q=1

∣∣∣f̂ (xq)− yq
∣∣∣ (4.17)

RMSE =

√√√√
1
NT

NT∑
q=1

(
f̂ (xq)− yq

)2
(4.18)
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NMSE =
1
NT

∑NT
q=1

(
f̂ (xq)− yq

)2

var(y)
(4.19)

where NT is the number of test samples; var(y) is the variance of the output
values (which plays the role of normalizing constant) estimated on all samples
(training, validation and test sets)), f̂ (xq) is the value predicted by the model
and yq is the measured value.

In order to assess the efficiency of the proposed approach, different experi-
ments were carried out on a data set. For each predictor composing the MAS,
different architectures/parameters were used. The optimal parameters are achieved
by minimizing the error obtained on the validation set. The optimality is ex-
pressed in term of normalized mean square error (NMSE).

Ê(xi) = argmin
i=1,...,NV

{NMSE} (4.20)

where NV is the number of validation set samples.

4.5.2.1 MLR learning

For the first predictor (MLR), which is based on a statistical linear model, no
tuning parameters are needed.

4.5.2.2 RBF learning

For the RBFN architecture based on the Gaussian kernel, the training algorithm
consists in finding the parameters λj , cj and σj such that the predicted function
F̂(z) fits the desired function F(z) as best as possible. Since F(z) is unknown, the
quality of fit is measured empirically using the set of training samples. Con-
cisely, the training of the hidden layer, which is corresponding to the compu-
tation of the kernel parameters ( cj and σj), is accomplished by applying the
clustering algorithm k-means (with k = P ) to the set of training samples. Here,
for simplicity, we will assume that all kernel functions have the same width
(σ = σj). The training of the output layer (i.e., the estimation of the λj param-
eter) is carried out by formulating the estimation problem as a linear system of
equations solved according to the pseudoinverse technique.

Different training architectures were analyzed by varying for each Gaussian
kernel width σj belonging to the range [1, 500], the number of hidden neurons
from 1 to 50; the minimal validation error was obtained with 12 neurons.
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4.5.2.3 MLP learning

For this kind of ANNs, Levenberg Marquardt backpropagation algorithm (LM)
was used for this model. Neurons in the input layer have no transfer function.
Logistic sigmoid transfer function (logsig) and linear transfer function (purelin)
were used in the hidden layers and output layer of the network as an activa-
tion function, respectively. The weights of the connections between neurons are
adjusted in order to achieve the desired input/output relation of the network.
This procedure goes on until the difference between the output of the network
and the desired output is equal to a predefined threshold error. Here, the crite-
rion is put forward as the network output which should be closer to the value
of desired output. This training procedure has to be repeated for the rest of the
input-output pairs existing in the training data. Different architectures were
investigated. Such architectures were obtained by varying:

1. The number hidden layers (1 or more);

2. The number of hidden neurons in each hidden layer (from 1 to 50).

In this case, the optimal architecture of the MLP network composed of one
hidden layer containing 5 neurons was achieved by minimizing the error ob-
tained on the validation set.

4.5.2.4 SVM learning

Considering the SVM regression, three different kinds of SVMs were used: a
linear SVM (equivalent to an SVM without kernel transformation), a nonlinear
SVM with polynomial kernels (SVM-Polynomial), and a nonlinear SVM with
Gaussian radial basis functions (SVM-RBF). Several experiments were carried
out in order to identify empirically (on the basis of the validation samples) the
best parameter(s) associated with each of the three considered types of SVM.

For all SVM-based predictors, it was necessary to derive the value of the
regularization parameter C, since data are not all enclosed in the ε-insensitive
tube. By contrast with the linear SVM, the nonlinear SVMs required the de-
termination of additional parameters, i.e., the order of the polynomial and the
γ parameter (width of the Gaussian kernels) for the SVM-Polynomial and the
SVM-RBF, respectively.

Regarding the SVM-polynomial, on the one hand, without validation pro-
cess, by rising the polynomial order we can attain more accurate prediction
capabilities. On the other hand, the generalization capabilities of the predic-
tor decrease. This becomes critical in running situations where the number of
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training samples is very limited and a high polynomial degree is considered
(large number of coefficients to predict). The parameter γ of the SVM-RBF is
related to the width of the Gaussian radial basis kernels, and thus, tunes the
smoothing of the predicting function.

Table 4.2 summarizes the optimal tuning parameters found in our experi-
ments.

Table 4.2: Summary of tuning parameters.
Model Optimal parameters Parameter Range
MLP 5 neurons, 1 Hidden layer # Hidden layers ∈ [1,3]; # neurons ∈ [1, 50]
RBF 12 neurons; width=270 # neurons ∈ [1, 50]; width ∈ [1, 500]
SVM-Lin C =1 C ∈ [1,10,100,200,...,1000]
SVM-Pol C =1 Order=2 C ∈ [1,10,100,200,...,1000] ; Order ∈ [1, 3]
SVM-RBf C =1 , γ = 0.05 C ∈ [1,10,100,200,...,1000] ; γ ∈[0.0001, 10]
MLP(Fusion) 8 neurons, 1 Hidden layer # Hidden layers∈ [1,3]; # neurons ∈ [1, 50]

4.5.3 Experimental results

For the sake of comparison, Table 4.3 shows the results on the test set obtained
by the proposed approach based on the MAS along with the single-based pre-
diction models according to the three error criteria.

Table 4.3: Results achieved on the test set by different models.
NMSE MAE RMSE

MLR 0.8415 1.5636 1.9961
MLP 0.6412 1.3280 1.7337
RBF 0.6856 1.3722 1.7927
SVM-Lin 0.8648 1.5347 2.0135
SVM-Pol 0.7111 1.3880 1.8258
SVM-Rbf 0.6172 1.2777 1.7010

AS 0.6564 1.3360 1.7542
MAS WS 0.6086 1.2857 1.6890

NLS 0.6079 1.2854 1.6881

As we can see, the worst-performing predictors were the linear-based ones
(MLR and SVMlin), which can be explained by the fact that wind speed signal is
characterized by continuous variations and thus could be not captured by a lin-
ear model. The best performing single predictor was the SVM with a Gaussian
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kernel. This confirms that SVM could be a good alternative to the well-known
neural networks methods, since it achieves a better precision and good general-
ization capability.

From the table 4.3, It is clear that the MAS exhibited encouraging results in
particular when implemented with the NL strategy. Note that the WS strategy
competes seriously with the NL strategy though more simple and less compu-
tationally demanding. In the following, we present an example of prediction
using the different models used in this work for 50 days. The predictions to-
gether with the real values of wind speed are shown in Figures 4.6- 4.12.
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Figure 4.6: Measured and predicted values of wind speed by MLR model
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Figure 4.7: Measured and predicted values of wind speed by MLP model
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Figure 4.8: Measured and predicted values of wind speed by RBF model
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Figure 4.9: Measured and predicted values of wind speed by SVM-Lin model
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Figure 4.10: Measured and predicted values of wind speed by SVM-Pol model
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Figure 4.11: Measured and predicted values of wind speed by SVM-Rbf model
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Figure 4.12: Measured and predicted values of wind speed by MAS models
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4.5.4 Hypothesis testing of the MAS

The statistical analysis used in this work is based essentially on the paired t-test
or a Fisher sign test that are applied to evaluate whether a given fusion strat-
egy performs statistically better than the best single predictor (See appendix
A) [28]. To carry out the statistical tests, the whole data set was partitioned into
a set of K subsets in such a way that each model is trained in subset i and tested
in subset i + 1. We have set K = 23 to obtain a set of 22 different training sets
(1000 samples in each subset). To this end, first, the Kolmogorov-Smirnov (K-S)
test is used to verify the normality of the data, if it is confirmed, then a t-test is
used to prove the statistically better performance of the different fusion strate-
gies. Otherwise, a non-parametric Fisher sign test is used as an alternative for
the comparison.

Table 4.4 shows the results, in terms of NMSE, obtained by the proposed
MAS in the 22 runs conducted for the statistical analysis. Note that the MAS
approach formed by the two supervised strategies (WS and NLS) proves robust
and even capable of improving the prediction error of the best single predic-
tor of the ensemble (Polynomial SVM), while AF strategy performed worse and
shows more sensitive to the presence of poor predictors in the ensemble, as it is
was supposedly expected. This can be confirmed by the corresponding statisti-
cal tests, shown in Table 4.5, where the comparison between the three fusion
strategies and the best performing predictor is carried out. In this table we show
the result of the K-S test and the t-test or the Fisher sign test in each case, at α
= 0.05 level of significance. We also show the win-lost-tie (W-L-T) values in the
different subsets. From the table, it is clear that the two fusion strategies WS
and NLS outperform statistically the best single predictor, as confirmed by W-
L-T values (22-0-0 for both).

As discussed above, the results show a very important aspect which approves
that the MAS approach improves the effectiveness of the prediction process, mit-
igating the effects introduced by not-optimally designed predictors. Thus, the
results obtained confirm the MAS approach as a consistent way of improving
the prediction efficiency.
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Table 4.4: Evaluation of NMSE for the MAS. The results are averaged over 22
runs. Mean, SD, Min, Max indicate the mean value, standard deviation, mini-
mum and maximum value, respectively.

NMSE
MODEL MEAN S.D. MIN MAX
MLP 0.8464 0.0380 0.7892 0.9139
MLP 0.7106 0.0463 0.6327 0.8018
RBF 0.7080 0.0341 0.6495 0.7827
SVM-Lin 0.8728 0.0496 0.7964 0.9751
SVM-Pol 0.6764 0.0420 0.5943 0.7567
SVM-Rbf 0.6902 0.0429 0.6155 0.7579
S. A. Fusion 0.6839 0.0363 0.6230 0.7549
W. S. Fusion 0.6576 0.0371 0.5880 0.7240
N. L. Fusion 0.6515 0.0360 0.5763 0.7181

Table 4.5: t-test values comparing the best performing predictor to the MAS
formed by the three fusion strategies. The values were calculated based on 22
independent experiments.

Fusion strategy vs K-S t-test Fisher test W-L-T
best single model p-value p-value p-value
SA 0.82 0.06 0.7892 7-15-0
WF 0.56 0.00 0.6327 22-0-0
NLF 0.17 0.00 0.6495 22-0-0



4.6 Conclusion

In this chapter, a new approach to the prediction of wind speed has been pre-
sented. Such an approach is based on a multiple architecture system composed
of different prediction algorithms. Particularly, MLR-based regression, MLP
neural networks, RBF neural networks and SVM regression have been used to
define six different predictors to be integrated in the MAS. The validation of
the proposed approach was carried out using real data recorded from seven lo-
cations in Algeria. The choice of the seven locations was dictated by the fact
that the locations are covering the four directions of the Algerian territory, from
north to south and from east to west. In addition to the three evaluation criteria
used to evaluate the MAS, a statistical analysis was carried out using hypothesis
testing. The results obtained are more than satisfactory, confirmed the effec-
tiveness of the proposed approach. In all the experiments carried out, the three
proposed fusion strategies present an improved performance with respect to the
single performing predictors. Thus, it can be recommended, that the MAS could
be used as a model for other prediction problems.
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5.1 Introduction

Amongst the three main classes of techniques that have been known for very
short-term wind forecasting: statistical methods, ANN methods and NWP meth-
ods; the previous two methods have revealed most promise. They have both pre-
sented improvement in performance compared to the benchmark persistence
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model, with a remarkable loss of accuracy above a prediction horizon of sev-
eral hours. The persistence model considers the present wind speed value the
same as the future forecasted wind speed, offering easily accessible results for
the very short-term prediction.

The NWP models present an accuracy which is typically not as good as the
persistence method under the timescale of only some hours. The neural net-
works and statistical methods are mainly intended at forecasting horizons of
minutes to several hours. A number of inputs are used but for the majorities
are either based on present and past measurements at a set of wind farm lo-
cations [104] or on measurements offered by weather stations mostly upstream
from the current weather movement direction [50, 105, 106]. One of the princi-
pal inputs to the majority of these systems is the current wind speed (or turbine
power output) at the site(s). This is one of the explanations for the compara-
tively accurate forecast speeds for short time frames. Nevertheless, these meth-
ods are generally too simplistic for longer timescales, giving poor results for
forecasts above 5 hours ahead.

In this chapter, novel methodologies are proposed for predicting wind speed
series at very short term timescale. The development of the proposed approaches
contains two core steps: The first step consists in applying several dimensional-
ity reduction methods to select the past wind speed values to be fed to the next
stage. For this aim, we will investigate two different families of techniques (pro-
jection and selection). In the second stage, the variables furnished by the differ-
ent dimensionality reduction techniques are fed to different predictors in order
to produce a global estimate of the wind speed. Two predictors are used. The
first is linear and based on multiple linear regression (MLR), whereas the sec-
ond one is non-linear and accomplished by means of an ANN method (RBFN).
The experimental evaluation was carried out using two real data sets.

5.2 Definitions and problem formulation

The full system can be divided in tow steps: In the first step, the problem of
variable space reduction can be defined in this way: given a set of candidate
variables (previous wind speed values), select a subset that performs best (ac-
cording to some criterion) in a prediction system. It should be noted that, input
variables are similar in nature, i.e. all of them are historical wind speed val-
ues. More expressly, prior to be fed to the predictors, the original vector of wind
speed series have to be transformed into a matrix X, where the columns of X are
the different variables (n) and rows are observations or samples (m).
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The goal is to find a subset of the columns of X(Y < X), containing d vari-
ables that can produce the best prediction model [107]. In the second step, as it
is shown in figure 5.1, the new selected/projected variables are introduced to a
regression technique in order to predict the future value of a vector containing
the past wind speed series.

 

 
Input Variables X 

 

Regression 
Technique 

Variable Space 
Reduction 

 F(Y)Y

Figure 5.1: General block diagram of the proposed system

5.3 Selection procedure

The goal is to predict a dependent variable Z (forecasted wind speed value)
from independent variables y1, y2, ..., yd which are in this case the variables gen-
erated by the selection/projection approach. In the subsequent sections, a brief
description of the main dimensionality reduction techniques used within this
thesis will be provided. Concerning the regression techniques, the reader is re-
ferred to the previous chapter for more details.

5.3.1 Projection-based dimensionality reduction

5.3.1.1 Principal component regression

The principal component regression (PCR) method is based on the basic model
of principal component analysis (PCA)(See appendix B) [108]. For PCR, the
estimated scores matrix T̂ consists of the A most dominating principal compo-
nents of X. These components are linear combinations of X determined by their
capability to account for variability in X. The first principal component, t̂1, is
calculated as the linear combination of the original x-variables with the maxi-
mum possible variance. The vector defining the linear combination is scaled to
have length 1 and is denoted by p̂1. The second component, t̂2, is then defined
with the same manner, but under the constraint that it is uncorrelated with t̂1.
The second direction vector is also of unit length and is represented by p̂2. It can
be shown that this is orthogonal to p̂1. The process continues until the wanted
number of components, A, has been extracted.
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Theoretically, the process can continue until there is no variability left in X.
If the number of samples is greater than the number of variables, the maximum
number of components that may be computed is equal to the number of vari-
ables K .

The matrix consisting of the A most dominating principal component scores
is represented by T̂ and the corresponding matrix of loadings is represented by
P̂ . Sometimes a subscript A is used for both T̂ and P̂ to indicate the number of
columns, but this is avoided here. With these definitions, it can be proven that
the centred matrix X can be written as

X = T̂ P̂ t + Ê (5.1)

showing that X can be estimated by a product of the A first scores and their
corresponding loadings. It can also be shown that no other A-dimensional ap-
proximation gives a better fit to X, i.e. one for which the sum of squares of
elements of Ê is smaller.

The principal components can simply be calculated using the eigenvector
decomposition of the cross-product matrix XtX. Since the X-matrix is centred,
this matrix is identical to N − 1 times the empirical covariance matrix. The
columns of the P̂ -matrix are the unit length eigenvectors of this matrix. The
scores matrix T̂ can easily be found by regressing X onto P̂ , giving the solution
T̂ = XP̂ . The eigenvalues of the cross-product matrix are identical to the sums of
squares of the columns of T̂ . The A first principal component scores correspond
to the A eigenvectors with the largest eigenvalues.
The next step is to use the matrix T̂ in the regression equation instead of the
original variables in X. The regression model can be written as

y = T̂ q+ f (5.2)

and the regression coefficients in q are estimated by regular least squares.
With A equal to its maximal value K , the equation (5.2) becomes equivalent
to the full regression equation and the PCR predictor becomes equivalent to
the MLR predictor. The idea behind the PCR method is to eliminate the X-
dimensions with the least variability from the regression. These are the main
reasons for the instability of the predictions. Hence, the principal component
corresponding to the smallest eigenvalues are omitted from the regression equa-
tion. This intuitive idea is also supported by comparing theoretical formulae for
the prediction ability of PCR and LS regression. These results show clearly that
PCR can give substantially more stable regression coefficients and better pre-
dictions than ordinary LS regression.



CHAPTER 5. TIME SERIES WIND SPEED PREDICTION 59

Predicting y for new samples can be done in two equivalent ways. One pos-
sibility is to compute t̂ for each sample using the formula t̂t = xtP̂ (centred x),
and then to use this t̂ in the prediction equation ŷ = y + t̂t + q̂ corresponding to
equation (5.2). The other way is to use the linear predictor ŷ = y + xtb̂ directly
where the regression coefficient vector b is computed as

b̂ = P̂ q̂ (5.3)

Note that the intercept in both cases is equal to y since the X-matrix is cen-
tred. It is worthnoting that there are other manners to select principal compo-
nents for regression. Some authors recommend the use of t-tests (See appendix
A). The idea behind this approach is that PCR, as defined above, selects compo-
nents only according to their capacity to account for variability in X and without
using information about y. One is then accepting the risk that some of the com-
ponents have little relevance for predicting y. Using t-tests is one such means
of testing for relevance of the components, which in some cases may guide to
improvements. In other cases, the opposite can also take place.

5.3.1.2 Partial least squares regression

One of the motivations for the development of the partial least squares regres-
sion (PLS) method was to avoid the problem in PCR of choosing which com-
ponents to use in the regression equation. Instead of using selected principal
components in T̂ , PLS uses factors determined by utilizing directly both X and
y in the estimation. For PLS regression each component is acquired by maximis-
ing the covariance between y and all possible linear functions of X. This leads
to components, which are more directly related to variability in y than are the
principal components [108–115].

The direction of the first PLS component, achieved by maximising the covari-
ance criterion, is represented by ŵ1. This is a unit length vector and is habitually
called the first loading weight vector. The scores along this axis are calculated
as t̂1 = Xŵ1. All variables in X are then regressed onto t̂1, in order to get the
loading vector p̂1 . The regression coefficient q̂1 is achieved in the same way by
regressing y onto t̂1 .

The product of t̂1 and p̂1 is then subtracted from X, and t̂1q̂1 is subtracted
from y. The second direction is established in the same way as the first, but us-
ing the residuals after subtraction of the first component instead of the original
data. The process is continued in the same way until the required number of
components, A, is extracted. If N > K , the process can continue until A = K . In
this case PLS is, as was PCR, equivalent to MLR.
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Note that for PLS, the loading weights are not equal to the loadings P̂ . For
PCR, nevertheless, only one set of loadings was required. It can be shown that
the PLS loading weight column vectors are orthogonal to each other, while the
PLS loading vectors are not. The columns of the PLS scores matrix T̂ are or-
thogonal. The matrix P̂ and vector q̂ can therefore, as for PCR, be achieved by
regressing X and y onto the final PLS scores matrix T̂ . The regression coefficient
vector used in the linear PLS predictor can be computed using the equation

b̂ = Ŵ
(
P̂ tŴ

)−1
q̂ (5.4)

where the Ŵ is the matrix of loading weights.The PLS regression method
as explained here can be extended to handle several y-variables simultaneously
(PLS2). The methods are very similar, the only modification is that instead of
maximising the covariance between y and linear functions of x, we needs to
optimise the covariance between two linear functions, one in x and the other in
y.

5.3.2 Selection-based dimensionality reduction

In this phase, we make use of three simple unsupervised strategies, in which the
repartition of the original variables is done by the following ways:

5.3.2.1 Stepwise backward selection

In this approach, the model is based on the stepwise backward selection of the
past chronological wind speed series. The subsets are composed of an incre-
mental number of adjacent wind series, chosen in a backward sense (with re-
spect to the prediction horizon axe) (See figure 5.2). Therefore, the best model
is determined by minimizing the error criterion between the forecasted and the
measured values of wind series with respect to the third group (validation set).

 

Subset 1  

Historical wind series vector Forecasted variable  

Subset 2  

Subset N  

Prediction horizon axe

Figure 5.2: Backward selection
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5.3.2.2 Sampling selection

In this technique, we construct our variable groups by means of sampling. For
each group, a predetermined number of observations (Wind speed series), dis-
tant by a changeable sampling-step (SS)1, will be taken from a larger population
(Entire time series). The figure below 5.3 shows the block diagram of the sam-
pling selection approach.

 

Subset 1 (SS=1)

Historical wind series vector Forecasted variable  

Prediction horizon axe

Subset 2 (SS=2)

Subset 10 (SS=10)

Figure 5.3: Sampling selection

5.3.2.3 Grouping selection

The technique is based on the grouping of several blocks of adjacent variables (
see figure 5.4). The rational behind this approach, is to examine the impact of
neighbourhood on the accuracy of the prediction procedure. Note that, all the
groups contain an equal number of time series variables.

 

Subset 1  

Historical wind series vector Forecasted variable  

Prediction horizon axe

Subset 2  

Subset N 

Figure 5.4: Grouping selection

1N.B. The SS refers to the sampling step, changeable from 1 to 10.
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5.3.2.4 Sequential forward selection

Sequential forward selection (SFS, or the method of set addition) is a bottom-
up search procedure that adds new wind series variables to a variable set con-
secutively until the final variable set is attained. Suppose we have a set of d1
variables, Xd1

. For each of the variables ξj not yet selected (i.e. in X −Xd1
) the

error criterion Ej = E(Xd1
+ ξj) is evaluated. The variable that gives the mini-

mum value of Ej is selected as the one that is added to the set Xd1
. Hence, at

each stage, the variable is chosen that, when added to the current set, minimises
the error criterion [116].

When the best improvement makes the error criterion worse, or when the
wanted number of variables is attained, the process terminates. It is therefore
important to assess the error criterion on a validation set, separate from the
training dataset. It should be noted that, the error on a validation dataset will
increase only when the number of selected variables is larger, leading to the
well-known overfitting phenomenon (see figure below 5.5) [90, 117].
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Figure 5.5: Typical evolution of the performances of training and validation

5.4 Experimental results

5.4.1 Description of data used

Two locations in United States (U.S.), where the values of wind speed series were
measured and recorded. These values of wind speed recorded for a period of 1
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year [118] . Table 5.1 shows names, latitude, longitude and altitude for each
site. In Figure 5.6 and Figure 5.7, is shown the wind speed signals recorded
from the two stations. It should be noted that the wind series from the two wind
turbines are recorded each 10min.

Table 5.1: Summary of geographical characteristics for the two locations.
Location Latitude (deg) Longitude (deg) Altitude (m)
Connecticut 41.43 72.70 202
Colorado 40.58 -103.96 1520

 
 

 

(10 min step) 

10 (min step) 

Figure 5.6: Wind speed curve for Connecticut site
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(10 min step) 

 (10 min step)

Figure 5.7: Wind speed curve for Colorado site

5.4.2 Data set repartition

Prior to build the model, the data should be subdivided in a specific manner,
usually in three parts: "training", "validation" and "test" sets. All three sets have
to be representative samples of the data that the model will be applied to (see
figure 5.8).

5.4.2.1 Training set

The data used to construct the model or discover a predictive relationship are
called the training data set. Most approaches that search through training data
for empirical relationships have a tendency to overfit the data; this means that
they can identify clear relationships in the training data that do not hold in gen-
eral. A test set is a set of data that is independent of the training data, but that
follows the same probability distribution as the training data. If a model fit to
the training set also fits the test set well, minimal overfitting has taken place.
If the model fits the training set much better than it fits the test set, overfitting
is probably the cause. The training set is used to train or build a model. For
instance, in linear regression, the training set is used to fit the linear regression
model, i.e. to calculate the regression coefficients. In a neural network model,
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the training set is used to obtain the network weights.

5.4.2.2 Validation set

Some supervised learning algorithms require the user to determine certain con-
trol parameters. These parameters may be adjusted by optimizing performance
on a subset called a validation set. For instance, when we want to choose our
best neural network model amongst various models with different configura-
tions (for example, in the case of an MLP network, different number of hidden
layers and different number of neurons in each hidden layer) and test the accu-
racy of each of the validation sets to choose among the competing architectures.

5.4.2.3 Test set

In the final phase, we need to assess the prediction error of the learned model.
After parameter adjustment and learning, the performance of the resulting func-
tion should be measured on a test set that is separate from the training and
validation sets. The accuracy of the model on the test set can give a reasonable
assessment of the performance of the constructed model on totally unseen (new)
data.

 

NTR NVL NTST

Training set Validation set Test set 

Total Number of samples

Figure 5.8: Repartition of training, validation and test sets

As it can be seen in Figures ( 5.9 and 5.10), we have divided our two datasets
into three sets: training, validation and test. To ensure a good repartition of
data (less correlation between wind speed vectors), the distribution of data is
performed based on random sort of wind series vectors, where, one half of the
whole data sets is assigned to the training set, and approximately one quarter
for both validation and test sets.
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Figure 5.9: 3D Repartition of the training, validation and test sets for Colorado
data set
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Figure 5.10: 3D Repartition of the training, validation and test sets for Con-
necticut data set
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5.4.3 Simulations results

5.4.3.1 Connecticut data set

In the following Figures 5.11 and Figures 5.12, we present the validation curve
when using the different dimensionality reduction models with linear and non
linear predictors, respectively.

For the sake of comparison, Table 5.2 shows the results on the Connecticut
data set obtained by the proposed methodologies.

Table 5.2: Results achieved on the Connecticut dataset by different models
NMSE MLR Optimal RBF Optimal Number

validation validation hidden
variables variables units

All variables 0.0545 — 0.0458 — 43
Changing 0.0514 46 before 0.0372 36 before 50
Sampling 0.0545 1 0.0281 2 50
Grouping 0.1737 31-35 before 0.1005 06-10 before 18
PCA 0.0528 48 PC 0.0240 18 PC 50
PLS 0.0489 19 LV 0.0230 19 LV 50
FS 0.0483 43 0.0055 43 199

As shown in the tables and validation curves, in the first selection strategy
(Changing), Adding more wind speed variables leads to better prediction per-
formance, almost all the variables are maintained using the validation process
(46 for MLR and 36 for RBFN). In the second selection strategy, it was found
that the best sampling step was reasonably 1 for MLR predictor and 2 for RBFN
predictor; this can be logically explained by the high fluctuations that character-
ize the wind speed signals. The uncorrelation between the input wind vectors
and the forecasted wind speed value let the grouping strategy to give the worst
performance for both predictors.

In the projection approaches, PCA and PLS, it is obviously clear that they
surpass the selection procedures, mainly caused by the fact that the whole part
of the information contained in the wind series vectors is preserved. It should be
noted that they give comparable accuracies for both cases (MLR and RBFN). The
better performing approach was the FS approach, an improvement of around
(10%) for the linear predictor and (88%) for the non-linear predictor over the
basic approach with all wind vectors when using an RBFN.
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Figure 5.11: (a-f) Validation curves of the linear predictor for Connecticut data
set
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Figure 5.12: (a-f) Validation curves of the non-linear predictor for Connecticut
data set
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5.4.3.2 Colorado data set

In the following Figures 5.13 and Figures 5.14, it is shown the validation curves
of the Colorado dataset.

Table 5.3 reports the results on the Colorado data set obtained by the pro-
posed methodologies, with the two different predictors.

Table 5.3: Results achieved on the Colorado dataset by different models
NMSE MLR Optimal RBF Optimal Number

validation validation hidden
variables variables units

All variables 0.0116 — 0.0096 — 50
Changing 0.0116 49 before 0.0090 22 before 47
Sampling 0.0116 1 0.0068 3 50
Grouping 0.0436 01-05 before 0.0257 01-05 before 19
PCA 0.0111 46 PC 0.0050 18 PC 49
PLS 0.0109 09 LV 0.0070 09 LV 39
FS 0.0102 41 0.0015 41 170

From the tables and validation curves of the Colorado site, it can be easily
seen that, for the first selection, where the previous wind series are added iter-
atively. Adding more variables, which is equal to more information, can leads
to better prediction accuracy, whereas, in the sampling strategy, a poor results
are achieved by rising the sampling step, which is principally caused by the
continuous character of the wind signals. As it was supposedly expected, the
worst results are obtained with the grouping strategy, logically due to the un-
correlation between the input wind vectors and the forecasted wind speed value.
Concerning the projection approaches, PCA and PLS, it is visibly clear that they
outperform the selection procedures, sometimes with one order of magnitude,
essentially due to the fact that, in both cases, the most part of the information
contained in the wind series vectors( when projecting from the original data
space into a lower-dimensional space) is preserved. The intelligent iterative se-
lection of the best variables composing the model with respect to the error cri-
terion, allows the FS approach to achieve the most significant accuracy, an im-
provement of (80%) over the basic approach with all wind vectors when using
an RBFN. Note that the trend of results is almost the same for both predictors,
MLR and RBFN, which indicates that the first stage (selection / projection) and
the second one (Prediction) are independent from each other.
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Figure 5.13: (a-f) Validation curves of the linear predictor for Colorado data set
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Figure 5.14: (a-f) Validation curves of the non-linear predictor for Colorado
data set



In terms of prediction algorithm, In both cases, the worst-performing pre-
dictors were logically the linear-based ones (MLR), which can be caused by the
fact that wind speed signals are characterized by continuous variations and thus
wind patterns could not be captured by a linear model. The best performing
predictor was the non linear (RBFN). This confirms that neural networks could
be a good predictor for such signals, From the tables 5.2 and 5.3, it is obvious
that the FS revealed encouraging results in particular when implemented with
the NL predictor. Note that the two projection methods strategies competes
acutely with the FS employed with non-linear predictor though more simple
and with less computational time.

5.5 Conclusion

Predicting very short-term wind speed is important in order to model an accu-
rate forecasting system for electricity market clearing and some other regulation
tasks. In the time series framework, the wind speed in a near future depends on
the values of the wind speed variables in previous times. The main challenge
here resides in the choice of the previous wind speed series. In this part of the
thesis, numerous techniques have been investigated to face this issue, mainly
classified into two categories, selection techniques and projection techniques.
Two predictors, MLR (linear) and the RBFN (non-linear) have been used to pre-
dict the wind speed 10 min. in advance, with the minimum possible error. The
datasets used to validate the proposed methodologies in this part are obtained
from National Renewable Energy Laboratory NREL (USA). It was concluded
that, even with the same wind data set, different inputs and different model
structures directly influence the forecast accuracy.
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6.1 Contributions and final remarks

This thesis explores the problem of the prediction of wind speed by two differ-
ent and independent methodologies used to two different kinds of wind data.

For the first part, the multiple architecture system was proposed; this latter
has been proposed in the classification context, and later in the regression, the
great success of the multiple systems, allows us to extend the application of the
multiple system to solve the problem of wind speed forecasting, encountered
in renewable energy and meteorology applications. Creating accurate predic-
tors from a set of examples is extremely important for different machine learn-
ing problems. The fact that no single learning algorithm will perform well for
all domains has stimulated much research in the area of combining multiple
learned models. Combining predictors have been proposed to be a very effec-
tive way of improving generalization performance. Their understanding leads
to new strategies, a better identification of existing strategies, and a characteri-
zation of the regions where they perform best.
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In this context, The MAS was developed to handle such kind of problems,
where it is proposed to combine several predictions techniques with different
categories (statistical, neural and kernel) to solve the problem of long term wind
speed prediction. The experimental assessment of the static system was carried
out on the basis of real dataset acquired from seven locations in Algeria. The
choice of the seven locations was motivated by the fact that the locations are
covering the four directions of the Algerian territory, from north to south and
from east to west, and thus, providing more generalization capability to the pro-
posed approach. The obtained results show the outstanding performance of the
fusion strategies over the single individual predictors, which is confirmed by
the statistical analysis of the MAS.

The second part of this thesis was devoted to methodologies used to deal
with data that can be considered as particular because of their characteristics
(continuous time series). The proposed approaches are intended to predict in
a very short term horizon. The study in chapter 5 shows that the prediction,
in the context of time series, is directly connected to both the historical input
values of wind speed to be fed to the predictor and the prediction technique
used, In this context, different techniques were proposed to efficiently find the
optimal way to select the input parameters. Broadly, they can be classified into
two families: projection-based reduction and selection-based reduction. In the
second step, where the selected/projected variables are fed to the predictor, two
different kinds of predictors were used (linear (MLR) and non-linear (RBFN)).
The experimental results based on two real data sets, acquired from two loca-
tions in U.S., show very promising, especially when using an intelligent variable
selection method (FS).

6.2 Perspectives and future work

The problem of wind speed prediction have been discussed and analysed thor-
oughly in this thesis by two different methodologies. We mention here some
future possible research directions with respect to each methodology:

1. Variables selection/projection:

• The problem of variable selection remains always the major problem
of the pattern recognition community, for this purpose, new algo-
rithms of feature selection will be of a great importance to improve
the accuracy and the robustness of the prediction process.



• Another way to explore could be to go further into the employ of
other criteria or measures that have a well established relation, to
select the optimal number of historical inputs to better argument the
choice of the selected variables.

• Another future issue is, to substitute the Principal Components Anal-
ysis step with a technique known as Independent Component Anal-
ysis ICA. ICA decomposes information in a way that minimizes the
statistical dependence between its components.

2. Choice of the prediction technique:

• Using new families of machine learning techniques such us, kernel
methods and Gaussian process that have been proven effective in
many research disciplines.

This thesis serves as a useful synthesis and extension of the current literature
in wind speed forecasting. It is hoped that future researchers will find helpful
utility in the proposed methods, and find stimulating new directions based on
the defined guidelines, and the outline of future works.



APPENDIX

A

HYPOTHESIS TESTING

Hypothesis testing is the use of statistics to determine the probability that a
given hypothesis is true. The usual process of hypothesis testing consists of four
steps.

1. Formulate the null hypothesisH0 (commonly, that the observations are the
result of pure chance) and the alternative hypothesis Ha (commonly, that
the observations show a real effect combined with a component of chance
variation).

2. Identify a test statistic that can be used to assess the truth of the null hy-
pothesis.

3. Compute the P -value, which is the probability that a test statistic at least as
significant as the one observed would be obtained assuming that the null
hypothesis were true. The smaller the P -value, the stronger the evidence
against the null hypothesis.

4. Compare the P -value to an acceptable significance value α (sometimes
called an alpha value). If p ≤ α , that the observed effect is statistically
significant, the null hypothesis is ruled out, and the alternative hypothesis
is valid.
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A.1 Kolmogorov-Smirnov test

A goodness-of-fit test for any statistical distribution. The test relies on the fact
that the value of the sample cumulative density function is asymptotically nor-
mally distributed. To apply the Kolmogorov-Smirnov test, calculate the cumula-
tive frequency (normalized by the sample size) of the observations as a function
of class. Then calculate the cumulative frequency for a true distribution (most
commonly, the normal distribution). Find the greatest discrepancy between the
observed and expected cumulative frequencies, which is called the "D-statistic."
Compare this against the critical D-statistic for that sample size. If the calcu-
lated D-statistic is greater than the critical one, then reject the null hypothesis
that the distribution is of the expected form. The test is an R-estimate.

A.2 Paired t-test

Given two paired sets Xi and Yi of n measured values, the paired t-test deter-
mines whether they differ from each other in a significant way under the as-
sumptions that the paired differences are independent and identically normally
distributed.

X̂i = Xi −X (A.1)

Ŷi = Yi −Y (A.2)

then define t by

(X −Y ) =

√
n(n− 1)∑n
i=1(X̂i − Ŷi)2

(A.3)

This statistic has n− 1 degrees of freedom.
A table of Student’s t-distribution confidence intervals can be used to deter-

mine the significance level at which two distributions differ.

A.3 Fisher sign test

A robust nonparametric test which is an alternative to the paired t-test. This
test makes the basic assumption that there is information only in the signs of
the differences between paired observations, not in their sizes. Take the paired



observations, calculate the differences, and count the number of +sn+ and −sn−,
where

N ≡ n+ +n− (A.4)

is the sample size. Calculate the binomial coefficient

N ≡
(
N
n+

)
(A.5)

Then B/2N gives the probability of getting exactly this many +s and −s if
positive and negative values are equally likely. Finally, to obtain the P -value for
the test, sum all the coefficients that are ≤ B and divide by 2N .



APPENDIX

B

PRINCIPAL COMPONENT
ANALYSIS

Principal components analysis (PCA) takes origin from the work of [119]. The
underlying principle of principal components analysis is to derive new vari-
ables (with a decreasing order of significance) that are linear combinations of
the original variables and are uncorrelated. Geometrically, principal compo-
nents analysis can be seen as a rotation of the axes of the original coordinate
system to a new set of orthogonal axes that are ordered in terms of the quantity
of variation of the original data they represent. One of the rationales for apply-
ing a principal components analysis is to derive a smaller group of underlying
variables that describe the data.
For this aim, it is desired that the first few components will comprise the ma-
jority of the variation in the original data. A low dimension representation may
help the user for many reasons. Although the data can be possibly represented
by a few variables, it is more difficult to provide an interpretation to these new
variables. Principal components analysis is a variable-directed technique. It
makes no hypothesis about the existence of grouping patterns inside the data.
Thus, it is considered as an unsupervised feature extraction approach.

Principal components analysis can be expressed mathematically with several
manners but let us close the eyes to the mathematics for the moment and keep
on with a geometrical derivation. We must momentarily limit our imagination
to two dimensions, but on the other hand we have to define the most of stan-
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dard terminology and consider some of the problems of a principal components
analysis.
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Figure B.1: Principal components line of best fit

In Figure B.1 are plotted a number of points, with the x and y values for each
point in the figure indicating measurements on each of the two variables. They
can characterize the weight and height of a set of persons, for instance, where
one variable would be measured in metres or centimetres and the other variable
in grams or kilograms. Hence the units of measurement could be different.
The question to be answered here is: what is the best straight line through this
set of points? Prior to answer, we have to explain what signify "best". If we
consider the variable x as an input variable and y a dependent variable so it is
wished to calculate the expected value of y given x,E[y|x] , then the best (with a
least squares criterion) regression line of y on x is the line where the sum of the
squared distances of points from the line is a minimum, and the distance of a
point from the line is the vertical distance.

y =mx+ c (B.1)

If y is the regressor and x the dependent variable, then the linear regression
line is the line where the sum of squares of horizontal distances of points from
the line is a minimum. Obviously, this gives a different solution. (A good exam-
ple of the two linear regressions on a bivariate distribution is provided in [120])
Thus we have two lines of best fit, and it is worth noting that, if we change the
scale of the variables, this does not change the predicted values.
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If the scale of x is compressed or expanded, the slope of the line alters but the
predicted value of y does not change. Principal components analysis provides a
single best line and the constraint that has to be fulfilled is that the squares sum
of the perpendicular distances from the sample points to the line must be a min-
imum. A common procedure that is frequently used (and almost surely if the
variables are measured in dissimilar units) is to make the variance of each vari-
able unity. Therefore the data are mapped to new axes, centred at the centroid
of the data sample and in coordinates defined with units of standard deviation.
The principal components line of best fit is not invariant to changes of scale.

The first principal component is the variable defined by the line of best fit.
The second principal component is the variable defined by the line that is or-
thogonal with the first and so it is exclusively defined in the two-dimensional
example. In the case of high dimensional data, the variable defined by the vector
orthogonal to the line of best fit of the first principal component that, together
with the line of best fit, defines a plane of best fit that is the plane where the sum
of squares of perpendicular distances of points from the plane is minimum. Fol-
lowing principal components are defined in a similar manner.

A different manner of looking at principal components is the variance of the
data. If the date are projected onto the first principal axis (i.e., the vector defin-
ing the first principal component), then the variation in the direction of the first
principal component is proportional to the sum of the squares of the distances
from the second principal axis (the constant of proportionality depending on
the number of samples, 1/(n− 1)).

Likewise, the variance along the second principal axis is in proportion to the
sum of the squares of the perpendicular distances from the first principal axis.
At the present, given that the total sum of squares is a constant, minimising the
sum of squared distances from a given line is equivalent as maximising the sum
of squares from its perpendicular or, by the above, maximising the variance in
the direction of the line. This is a different way of obtaining principal compo-
nents: find the direction that comprises the maximum possible of variance; the
second principal component is defined by the direction orthogonal to the first
where the variance is a maximum, and so forth. The variances are the principal
values.

Principal components analysis creates an orthogonal coordinate system where
the axes are ordered in terms of the amount of variance in the original data
where the corresponding principal components account. If the first few princi-
pal components account for the most part of the variation, then these could be
used to describe the data, hence leading to a reduced-dimension representation.
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It is also interesting to know if the new components can have meaningful inter-
pretation in terms of the original variables. This wish is not sure to occur, and
in fact the new components will be complicated to interpret.

Derivation of principal components At least there are three ways in which we
can tackle the problem of deriving a set of principal components. Let x1,x2, ...,xp
be the set of original variables and let ξi = 1, ...,p , be linear combinations of
these variables

ξi =
p∑
j=1

aijxj (B.2)

or
ξ = AT x (B.3)

where ξ and x are vectors of random variables and A is the matrix of coeffi-
cients. Then we can go on like this:

• Looking for the orthogonal transformation A presenting new variables ξj
that have stationary values of their variance. This approach, presented
in [121], is the one which will be presented in more detail below;

• Looking for the orthogonal transformation that provides uncorrelated vari-
ables ξj ;

• Considering the problem geometrically and find the line where the sum of
squares of perpendicular distances is a minimum, then the plane of best
fit and so on.

Consider the first variable ξ1:

ξ1 =
p∑
j=1

a1jxj (B.4)

We choose a1 = (a11, a12, ..., a1p)T to maximise the variance of ξ1 , subject to
the constraint aT1 a1 = |a1|2 = 1 .

var(ξ1) = E[ξ2
1 ]−E[ξ1]2

= E[aT1 xx
T a1]−E[aT1 x]E[xT a1]

= aT1
(
E[xxT ]−E[x]E[xT ]

)
a1

= aT1 Σa1

(B.5)
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where Σ is the covariance matrix of x and E[.] represents expectation. Find-
ing the stationary value of aT1 Σa1 subject to the constraint aT1 a1 = 1 is equal to
finding the unconditional stationary value of

f (a1) = aT1 Σa1 − vaT1 a1 (B.6)

where v is a Lagrange multiplier. Differentiating with respect to each of the
components of a1 in turn and equating to zero gives

Σa1 − va1 = 0 (B.7)

For a non-trivial solution for a1 (i.e., a solution excluding the null vector),
a1 must be an eigenvector of Σ with v an eigenvalue. Now Σ has p eigenvalues
λ1, ...,λp , not all necessarily dissimilar and not all non-zero, but they can be
ordered so that λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. We have to choose one of these for the
value of v. At present, since the variance of ξ1 is

aT1 Σa1 = vaT1 a1 = v (B.8)

and we wish to maximise this variance, then we choose v to be the largest
eigenvalue λ1, and a1 is the corresponding eigenvector. This eigenvector will
not be unique if the value of v is a repeated root of the characteristic equation

|Σ− vI | = 0 (B.9)

The variable ξ1 is the first principal component and has the largest variance
of any linear function of the original variables x1, ...,xp.

The second principal component,ξ2 = aT2 x , is obtained by choosing the co-
efficients a2i , i = 1, ...,p , so that the variance of ξ2 is maximised subject to the
constraint |a2| = 1 and that ξ2 is uncorrelated with the first principal component
ξ1 . This second constraint implies

E[ξ2ξ1]−E[ξ2]E[ξ1] = 0 (B.10)

or

aT2 Σa1 = 0 (B.11)

and given that a1 is an eigenvector of Σ , this is equivalent to aT2 a1 = 0 , i.e. a2
is orthogonal to a1. Using the method of Lagrange’s undetermined multipliers
again, we seek the unconstrained maximisation of

aT2 Σa2 −µaT2 a2 − ηaT2 a1 (B.12)

Differentiating with respect to the components of a2 and equating to zero gives
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2Σa2 − 2µa2 − ηa1 = 0 (B.13)

Multiplying by aT1 gives

2a1Σa2 − η = 0 (B.14)

since aT1 a2 = 0 and aT2 Σa1 = aT1 Σa2 = 0 , thus η = 0 Equation (B.13) becomes

Σa2 = ηa2 (B.15)

Thus, a2 is also an eigenvector of Σ , orthogonal to a1. Since we are looking for
maximising the variance, it must be the eigenvector corresponding to the largest
of the remaining eigenvalues, that is, the second largest eigenvalue overall.

Continuing in this way, with the kth principal component ξk = aTk x , where
ak is the eigenvector corresponding to the kth largest eigenvalue of Σ and with
variance equal to the kth largest eigenvalue.

If some eigenvalues are equal, the solution for the eigenvectors is not unique,
but it can be possible to find an orthonormal set of eigenvectors for a real sym-
metric matrix with non-negative eigenvalues.
In matrix notation,

ξ = AT x (B.16)

[a1, ..., ap] , the matrix whose columns are the eigenvectors of Σ .

So far, we have seen how to find the principal components, by carrying out an
eigenvector decomposition of the symmetric positive definite matrix Σ, and em-
ploying the eigenvectors as coefficients in the linear combination of the original
variables. In the following, we consider the problem of reducing the dimension
representation of some given data. Let us consider the variance. The sum of the
variances of the principal components is given by

k∑
i=p

var(ξi) =
p∑
i=1

λi (B.17)

the sum of the eigenvalues of the covariance matrix Σ , equal to the total vari-
ance of the original variables. We can then say that the first k principal compo-
nents comprise the total variance.
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k∑
i=1

λi/
p∑
i=1

λi (B.18)

We can now consider a mapping to a reduced dimension by specifying that
the new components must represents at least a part d of the whole variance. The
value of d would be specified by the user. We then choose k so that

k∑
i=1

λi ≥ d
p∑
i=1

λi ≥
k−1∑
i=1

λi (B.19)

and transform the data to

ξk = ATk x (B.20)

where ξk = (ξ1, ...,ξk)T and Ak = [a1, ..., ak] is a p × k matrix. Selecting a value
of d between 70% and 90% conserves most of the information in x [122].

In [123], it is advised to not use of this procedure: justified by the fact that is
difficult to choose an appropriate value for d. An alternative approach is to look
at the eigenvalue spectrum and observe if there is a point where the values fall
brusquely before stabilizing at small values. We preserve those principal com-
ponents corresponding to the eigenvalues before the cut-off point or ’elbow’ (see
Figure B.2) [116]. Nevertheless, occasionally the eigenvalues drift downwards
with no clear cutting point and the first few eigenvalues represent only a small
fraction of the variance. It is very difficult to determine the ’right’ number of
components and the majorities of tests are for limited special cases and assume
multivariate normality. [123] Depicts a variety of procedures and reports the re-
sults of numerous comparative studies.

324 Feature selection and extraction

the sum of the eigenvalues of the covariance matrix �, equal to the total variance of the
original variables. We can then say that the first k principal components account for
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components must account for at least a fraction d of the total variance. The value of d
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where ξ k D .¾1; : : : ; ¾k/T and Ak D [a1; : : : ; ak] is a p ð k matrix. Choosing a value of
d between 70% and 90% preserves most of the information in x (Jolliffe, 1986). Jackson
(1991) advises against the use of this procedure: it is difficult to choose an appropriate
value for d – it is very much problem-specific.

An alternative approach is to examine the eigenvalue spectrum and see if there is
a point where the values fall sharply before levelling off at small values (the ‘scree’
test). We retain those principal components corresponding to the eigenvalues before the
cut-off point or ‘elbow’ (see Figure 9.5). However, on occasion the eigenvalues drift
downwards with no obvious cutting point and the first few eigenvalues account for only
a small proportion of the variance.

It is very difficult to determine the ‘right’ number of components and most tests are
for limited special cases and assume multivariate normality. Jackson (1991) describes a
range of procedures and reports the results of several comparative studies.
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Figure B.2: Eigenvalue spectrum
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